WO2021095738A1 - 分子篩活性炭 - Google Patents

分子篩活性炭 Download PDF

Info

Publication number
WO2021095738A1
WO2021095738A1 PCT/JP2020/041963 JP2020041963W WO2021095738A1 WO 2021095738 A1 WO2021095738 A1 WO 2021095738A1 JP 2020041963 W JP2020041963 W JP 2020041963W WO 2021095738 A1 WO2021095738 A1 WO 2021095738A1
Authority
WO
WIPO (PCT)
Prior art keywords
molecular sieve
activated carbon
alcohol
sieve activated
present
Prior art date
Application number
PCT/JP2020/041963
Other languages
English (en)
French (fr)
Inventor
夏子 小嶋
康之 山根
Original Assignee
大阪ガスケミカル株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 大阪ガスケミカル株式会社 filed Critical 大阪ガスケミカル株式会社
Priority to JP2021556107A priority Critical patent/JPWO2021095738A1/ja
Priority to US17/775,811 priority patent/US20220387967A1/en
Publication of WO2021095738A1 publication Critical patent/WO2021095738A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/20Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising free carbon; comprising carbon obtained by carbonising processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D15/00Separating processes involving the treatment of liquids with solid sorbents; Apparatus therefor
    • B01D15/02Separating processes involving the treatment of liquids with solid sorbents; Apparatus therefor with moving adsorbents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28014Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their form
    • B01J20/28016Particle form
    • B01J20/28019Spherical, ellipsoidal or cylindrical
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28054Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J20/28078Pore diameter
    • B01J20/2808Pore diameter being less than 2 nm, i.e. micropores or nanopores
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/30Active carbon
    • C01B32/306Active carbon with molecular sieve properties
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C29/00Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring
    • C07C29/74Separation; Purification; Use of additives, e.g. for stabilisation
    • C07C29/76Separation; Purification; Use of additives, e.g. for stabilisation by physical treatment
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C31/00Saturated compounds having hydroxy or O-metal groups bound to acyclic carbon atoms
    • C07C31/02Monohydroxylic acyclic alcohols
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C31/00Saturated compounds having hydroxy or O-metal groups bound to acyclic carbon atoms
    • C07C31/02Monohydroxylic acyclic alcohols
    • C07C31/08Ethanol
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2253/00Adsorbents used in seperation treatment of gases and vapours
    • B01D2253/10Inorganic adsorbents
    • B01D2253/102Carbon
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2253/00Adsorbents used in seperation treatment of gases and vapours
    • B01D2253/30Physical properties of adsorbents
    • B01D2253/302Dimensions
    • B01D2253/308Pore size
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2253/00Adsorbents used in seperation treatment of gases and vapours
    • B01D2253/30Physical properties of adsorbents
    • B01D2253/34Specific shapes
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12HPASTEURISATION, STERILISATION, PRESERVATION, PURIFICATION, CLARIFICATION OR AGEING OF ALCOHOLIC BEVERAGES; METHODS FOR ALTERING THE ALCOHOL CONTENT OF FERMENTED SOLUTIONS OR ALCOHOLIC BEVERAGES
    • C12H6/00Methods for increasing the alcohol content of fermented solutions or alcoholic beverages

Definitions

  • the present invention relates to molecular sieve activated carbon.
  • Biomass alcohol represented by bioethanol is mainly produced by alcoholic fermentation from plant-derived raw materials, and is attracting attention as carbon-neutral energy.
  • the concentration of ethanol recovered after alcoholic fermentation is about 10% by mass
  • the produced biomass alcohol requires a dehydration step by distillation or the like.
  • a concentration of 97% by mass or more (preferably 99% by mass or more) is required, but in particular, water and ethanol have a high concentration of ethanol (for example, 95% by mass or more). Since it forms an azeotropic mixture and the ethanol concentration in the gas phase is the same as that in the liquid phase, the alcohol concentration cannot be further increased by distillation. That is, it is extremely difficult to make the ethanol concentration in the liquid phase 97% by mass or more by a general method such as distillation.
  • a method in which a third component such as benzene is added to forcibly change the composition of the azeotropic mixture for azeotropic distillation.
  • ethanol is used.
  • the disadvantage is that the energy required to concentrate ethanol is extremely high.
  • a method of removing water by a separation method that does not depend on the phase equilibrium of gas and liquid, such as removing water from distilled ethanol vapor using zeolite or the like. (See, for example, Non-Patent Document 1).
  • an object of the present invention is to provide an alcohol concentrating material that can efficiently concentrate alcohol without going through a distillation step and is easy to reuse.
  • the present inventors have found that alcohol can be efficiently concentrated without going through a distillation step by adsorbing water with molecular sieve activated carbon having a specific pore inlet diameter. I found it.
  • the molecular sieve activated carbon is excellent in reusability because the adsorbed water can be desorbed by mild heating (about 70 to 80 ° C.). Based on such findings, the present inventors have further studied and completed the present invention. That is, the present invention includes the following configurations.
  • Item 1 A molecular sieve activated carbon for adsorbing water molecules in an alcohol solution to separate the alcohol from the water molecules, and the total volume of pores having an inlet diameter of 0.33 nm or more determined by the molecular probe method. Molecular sieve activated carbon having an inlet diameter of 0.46 nm or more, which is at least three times the total volume of pores.
  • Item 2 The molecular sieve activated carbon according to Item 1, which is crushed, pellet-shaped, plate-shaped, rod-shaped, hollow-shaped, block-shaped, honeycomb-shaped, spherical, elliptical spherical, distorted or fibrous.
  • Item 3 The molecular sieve activated carbon according to Item 2, wherein the pellet has a maximum diameter of 0.5 to 5.0 mm and an aspect ratio of 1: 1 to 1: 5.
  • Item 4. The molecular sieve activated carbon according to any one of Items 1 to 3, which is a carbide of at least one material selected from the group consisting of coal, coconut shell, natural fiber, synthetic fiber, synthetic resin and charcoal.
  • Item 5 The molecular sieve activated carbon according to any one of Items 1 to 4, wherein the alcohol is an alcohol having 1 to 6 carbon atoms.
  • Item 6 The molecular sieve activated carbon according to any one of Items 1 to 5, wherein the 1/2 equilibrium adsorption time of the water molecule is 1/2 or less of the 1/2 equilibrium adsorption time of the alcohol.
  • Item 7 A water molecule adsorbent containing the molecular sieve activated carbon according to any one of Items 1 to 6.
  • Item 8 An alcohol concentrate containing the molecular sieve activated carbon according to any one of Items 1 to 6.
  • Item 9 An alcohol concentrator comprising the water molecule adsorbent according to claim 7 or the alcohol concentrator according to claim 8.
  • Item 10 A method for producing an alcohol having a concentration of 97% by mass or more.
  • a production method comprising a step of bringing the molecular sieve activated carbon according to any one of Items 1 to 6 into contact with an alcohol solution.
  • the molecular sieve activated carbon of the present invention is a material that can efficiently concentrate alcohol and is easily reused without going through a distillation step. Therefore, the molecular sieve activated carbon of the present invention can be suitably used for an alcohol concentrator.
  • the molecular sieve activated carbon of the present invention is a molecular sieve activated carbon for adsorbing water molecules in an alcohol solution to separate alcohol and water molecules, and has an inlet diameter of 0.33 nm or more determined by the molecular probe method.
  • the total volume of a pore is at least three times the total volume of a pore having an inlet diameter of 0.46 nm or more.
  • the molecular probe method refers to a method of measuring the adsorbed amount using several types of adsorbates (probe molecules) having different molecular diameters and obtaining the pore size distribution from the relationship between the molecular diameter and the pore volume. Since the probe molecule cannot penetrate into pores smaller than its own size, the pore volume calculated from the adsorption amount of each probe molecule corresponds to a volume larger than the molecular diameter of the probe molecule used. If the relative pressure (the value obtained by dividing the equilibrium pressure at the time of adsorption measurement by the saturated vapor pressure) is sufficiently high (for example, about 0.9), the pore volume corresponding to each probe molecule is the adsorption amount and the adsorption amount of the molecule. It can be calculated from the liquid density, and even when the relative pressure is low, it is calculated from the adsorption isotherm based on the Dubinin-Stakhov equation.
  • probe molecules are adsorbed on molecular sieve activated carbon in an atmosphere of 25 ° C. and 1 atm, and pores having a specific inlet diameter are obtained from the mass change of the molecular sieve activated carbon after equilibrium adsorption.
  • the total volume of can be calculated. For example, when calculating the total volume of pores having an inlet diameter of 0.33 nm or more and the total volume of pores having an inlet diameter of 0.46 nm or more, carbon dioxide (minimum molecular diameter 0.33 nm), respectively. And chloroform (minimum molecular diameter 0.46 nm) can be used as the molecular probe.
  • the molecular sieve activated carbon of the present invention has a total volume of pores having an inlet diameter of 0.33 nm or more and a total volume of pores having an inlet diameter of 0.46 nm or more. It is more than 3 times the volume, especially 5 to 100 times. If the total volume of the pores having a diameter of 0.33 nm or more is less than three times the total volume of the pores having an inlet diameter of 0.46 nm or more, the alcohol solution cannot be sufficiently concentrated.
  • the molecular sieve activated carbon of the present invention can preferentially adsorb water molecules among alcohol and water molecules in an alcohol solution. More specifically, when the molecular sieve activated carbon of the present invention is brought into contact with the alcohol solution, the adsorption rate of water molecules is significantly higher than the adsorption rate of alcohol. As a result, water molecules can be preferentially adsorbed, and as a result, the alcohol solution can be concentrated to increase the concentration, for example, 97% by mass or more, particularly 99% by mass or more.
  • the pore inlet diameter of the molecular sieve activated charcoal of the present invention when the pore inlet diameter determined by the molecular probe method is within a predetermined range, the pore inlet diameter of the molecular sieve activated charcoal is sufficiently larger than that of water molecules, while the pore inlet diameter of alcohol molecules is large. Since it is about the same size or slightly smaller than the size, the adsorption rate of water molecules is significantly higher than the adsorption rate of alcohol molecules, and as a result, it is more effective without going through the distillation step as in the conventional method. Efficiently desorbs water molecules from the alcohol solution, facilitating concentration of alcohol.
  • the pore inlet diameter of the molecular sieve activated carbon is larger than that of water molecules. Therefore, the pore inlet diameter obtained by the molecular probe method in the molecular sieve activated carbon of the present invention makes the adsorption rate of water molecules significantly higher than the adsorption rate of alcohol molecules, and as a result, the conventional method 0.33 to 0.46 nm is preferable, and 0.35 to 0.40 nm is preferable, because water molecules are more efficiently desorbed from the alcohol solution to facilitate concentration of alcohol without going through the distillation step. More preferred.
  • the pore inlet diameter is preferably set to a size that allows water molecules to easily pass through but alcohol does not easily pass through so that water molecules are adsorbed but alcohol is not easily adsorbed. From the viewpoint of efficiently concentrating the solution, it is preferable that the pore volume is large so that many water molecules can be adsorbed. From such a viewpoint, the pore volume of the molecular sieve activated carbon of the present invention preferably has a water vapor adsorption amount of 100 NmL / g or more, and more preferably 150 NmL / g.
  • the shape of the molecular sieve activated carbon of the present invention is not particularly limited.
  • the molecular sieve activated carbon of the present invention can have a shape applicable as a known adsorbent.
  • the molecular sieve activated carbon of the present invention may be crushed, pellet-shaped, plate-shaped, rod-shaped, hollow-shaped, block-shaped, honeycomb-shaped, spherical, elliptical-spherical, distorted or fibrous.
  • the shape of the molecular sieve activated carbon of the present invention is preferably pellet-like from the viewpoint that alcohol is particularly easy to concentrate, easy to process, high strength, high packing density, and easy to apply to various uses. Further, when the molecular sieve activated carbon of the present invention is in the form of pellets, unnecessary fine powder is unlikely to be generated, so that clogging of the piping of the apparatus or the like is unlikely to occur in the dehydration step in alcohol.
  • the plan-view shape can be, for example, a shape applicable as a known adsorbent.
  • the pellet shape may be any of a circular shape, an elliptical shape, a rectangular shape, a rod shape, a distorted shape, and the like in a plan view.
  • the thickness of the pellet is also not particularly limited. For example, it can be the same as a known adsorbent, and it is particularly preferable that the thickness is applicable to an alcohol concentrator.
  • the molecular sieve activated carbon of the present invention has a pellet shape
  • its maximum diameter is preferably 0.5 to 5.0 mm.
  • the maximum diameter means a value obtained by randomly collecting 30 molecular sieve activated carbons of the present invention and averaging the maximum diameters of these molecular sieve activated carbons.
  • the molecular sieve activated carbon of the present invention has a pellet shape
  • its aspect ratio is preferably 1: 1 to 1: 5.
  • the aspect ratio means the ratio of the minimum diameter to the maximum diameter of one molecular sieve activated carbon, that is, the maximum diameter of the molecular sieve activated carbon / the minimum diameter of the molecular sieve activated carbon.
  • the aspect ratio means a value obtained by randomly collecting 30 molecular sieve activated carbons and averaging the aspect ratios of these molecular sieve activated carbons.
  • the maximum diameter and aspect ratio of the molecular sieve activated carbon of the present invention described above the maximum diameter of one molecular sieve activated carbon and the minimum diameter described later are measured with calipers.
  • the type of alcohol is not particularly limited.
  • specific examples of such alcohols include, for example, methanol, ethanol, n-propyl alcohol, isopropyl alcohol, n-butyl alcohol, isobutyl alcohol, sec-butyl alcohol, tert-butyl alcohol, n-pentyl alcohol, and n-hexyl.
  • examples thereof include alcohols having 1 to 20 carbon atoms such as alcohols. These alcohols can be used alone or in combination of two or more.
  • the molecular sieve activated carbon of the present invention concentrates alcohol by adsorbing water molecules in an alcohol solution but not adsorbing alcohol. Therefore, an alcohol having a large number of carbon atoms is less likely to be adsorbed by the molecular sieve activated carbon of the present invention because its molecule is large and it is difficult to pass through the pore inlet of the molecular sieve activated carbon of the present invention.
  • an alcohol having a large number of carbon atoms for example, an alcohol having 2 to 20 carbon atoms, particularly 6 to 20 carbon atoms is preferable.
  • the present invention is based on the fact that it was difficult to separate water molecules and alcohol, and requires an energy required for alcohol concentration as compared with the conventional method of removing water from alcohol vapor by requiring a distillation step. From the viewpoint of reducing the amount, the distillation step is also performed on alcohols having a small carbon number (for example, alcohols having 1 to 12 carbon atoms, particularly 1 to 6 carbon atoms), which are particularly difficult to separate from water molecules. It is particularly useful in that the alcohol solution can be concentrated at least.
  • the adsorption rate of water molecules in the alcohol solution is higher than the adsorption rate of alcohol.
  • the adsorption time of water molecules is shorter than the adsorption time of alcohol.
  • the 1/2 equilibrium adsorption time of water molecules can be 1/2 or less of the 1/2 equilibrium adsorption time of alcohol, preferably 1/5 or less, and more preferably 1/10 or less.
  • the adsorption characteristics of the molecular sieve activated carbon of the present invention are particularly excellent in the adsorption selectivity of water molecules, and alcohol can be concentrated more efficiently.
  • the lower limit is not particularly limited, and the smaller the value, the better.
  • the 1/2 equilibrium adsorption time of water molecules can be 1/10000 or more of the 1/2 equilibrium adsorption time of alcohol.
  • the 1/2 equilibrium adsorption time of water molecules is preferably 5 to 600 seconds, more preferably 6 to 60 seconds.
  • the 1/2 equilibrium adsorption time of alcohol is preferably 1 to 1500 seconds, more preferably 10 to 500 seconds.
  • the 1/2 equilibrium adsorption time means the time from the start of adsorption measurement to 50% of the adsorption amount with respect to the equilibrium adsorption amount. That is, the 1/2 equilibrium adsorption time means the time from the start of the adsorption measurement to the value of the adsorption amount / equilibrium adsorption amount reaching 0.5.
  • the molecular sieve activated carbon of the present invention can be suitably used as a water molecule adsorbent. Since the water molecule adsorbent includes the molecular sieve activated carbon of the present invention, it is possible to efficiently adsorb water molecules and efficiently concentrate the alcohol solution. In particular, when the alcohol solution is passed through a container filled with the molecular sieve activated carbon of the present invention, water molecules can be more efficiently adsorbed on the molecular sieve activated carbon of the present invention to concentrate the alcohol solution.
  • the molecular sieve activated carbon of the present invention as described above is used for desorbing water molecules contained in an alcohol solution to concentrate the alcohol solution, and in particular, the pore inlet diameter is adjusted to an appropriate range. As a result, the selectivity of adsorption is excellent, and the alcohol solution can be efficiently concentrated, so that it can be used as an alcohol concentrating material. Therefore, the molecular sieve activated carbon of the present invention can be suitably used for a method of concentrating an alcohol solution to produce, for example, alcohol having a concentration of 97% by mass or more (particularly 99% by mass or more). In particular, when the alcohol solution is passed through a container filled with the molecular sieve activated carbon of the present invention, the alcohol solution can be concentrated more efficiently.
  • the water molecule adsorbent or alcohol concentrate described above may be formed only of the molecular sieve activated carbon of the present invention, or may be formed by combining other known members.
  • the molecular sieve activated carbon of the present invention can be suitably used for an alcohol concentrator.
  • the alcohol concentrator also includes the molecular sieve activated carbon of the present invention, other configurations can be, for example, the same as those of a known alcohol concentrator.
  • the container filled with the molecular sieve activated carbon of the present invention is provided, for example, as an adsorption column, it is preferable to provide a liquid feed pump or the like as a means for passing the alcohol solution.
  • the relationship between the amount of the molecular sieve activated carbon of the present invention filled in the adsorption column and the amount of the alcohol solution introduced in one adsorption step is preferably set as appropriate, but the concentrated alcohol solution From the viewpoint of concentration, the mass of water in the alcohol solution is preferably 5 parts by mass or less (for example, 0.01 to 5 parts by mass) with respect to 100 parts by mass of the molecular sieve activated carbon of the present invention.
  • (the value flow rate Ji divided by empty adsorption column hourly alcohol solution) flow rates of passing the alcoholic solution, from the viewpoint of the concentration of the alcohol solution after concentration, SV 0.8 ⁇ 10h - 1 is preferable.
  • the time for passing the alcohol solution is preferably 1 to 60 minutes from the viewpoint of the concentration of the alcohol solution after concentration.
  • a diaphragm pump or the like as a means for recovering the alcohol solution (concentrated alcohol solution) that has passed through the molecular sieve activated carbon of the present invention in the adsorption column. This makes it possible to concentrate the alcohol solution more efficiently.
  • the alcohol solution as described above it is preferable to desorb the water adsorbed on the molecular sieve activated carbon of the present invention in the adsorption column and reuse the molecular sieve activated carbon of the present invention.
  • the water adsorbed on the molecular sieve activated carbon of the present invention can be desorbed and the molecular sieve activated carbon of the present invention can be reused. Therefore, after concentrating the alcohol solution as described above, it is preferable to provide a means for heating the inside of the adsorption column. Normally, excess waste heat exists in the factory, and this waste heat is often discharged into the atmosphere or water and discarded.
  • the water adsorbed on the molecular sieve activated carbon of the present invention can be desorbed and the molecular sieve activated carbon of the present invention can be reused with almost no application. That is, it is preferable to provide a waste heat inflow pump that allows waste heat to flow into the adsorption column after the alcohol solution is concentrated as described above.
  • the configuration of the device described above does not limit the present invention, but is merely an example.
  • the above-mentioned alcohol concentrator can be used for, for example, chemical synthesis, fuel, and the like.
  • the total volume of pores having an inlet diameter of 0.33 nm or more determined by the molecular probe method is 0.46 nm or more. It is not limited as long as a molecular sieve activated carbon having a total volume of 3 times or more can be obtained.
  • molecular sieve activated carbon can be produced by a known production method.
  • Examples of the method for producing the molecular sieve activated carbon of the present invention include a heat shrinkage method, an impregnation method, and a CVD (chemical vapor deposition) method.
  • An example of the method for producing the molecular sieve activated carbon of the present invention will be described below.
  • the molecular sieve activated carbon of the present invention can be produced by a method including a carbonization step of carbonizing a carbon precursor to obtain a carbide and an activation step of activating the carbide.
  • the carbon precursor is not particularly limited as long as it is a material capable of obtaining the desired molecular sieve activated carbon.
  • carbon precursors examples include coal, palm husks (specifically, palm husks, coconut coconut husks, etc.), natural fibers (specifically, hemp, cotton, etc.), and synthetic fibers (specifically, hemp, cotton, etc.). Rayon, polyester, etc.), synthetic resin (specifically, polyvinylidene chloride, phenol resin, polyvinylidene chloride, polycarbonate, polyvinyl alcohol), charcoal and the like can be mentioned. These carbon precursors can be used alone or in combination of two or more.
  • the carbon precursor is preferably coal, coconut shell, synthetic resin, charcoal or the like. Therefore, the molecular sieve activated carbon of the present invention is preferably formed of a carbide of at least one material selected from the group consisting of coal, coconut shells, natural fibers, synthetic fibers, synthetic resins and charcoal. More preferably, it is formed of charcoal of at least one material selected from the group consisting of coconut shells, synthetic resins and charcoal.
  • the raw material may contain an additive if necessary.
  • the additive include water, coal tar, anhydrous tar, hard pitch, coal tar-based pitch, petroleum-based pitch, and the like.
  • the additive may be used alone or in combination of two or more.
  • the amount of the additive used can be, for example, 1 to 100 parts by mass with respect to 100 parts by mass of the carbon precursor.
  • the amount of oxygen in the raw material can be adjusted in advance in the range of 1 to 20% by mass, for example, assuming that the total amount of the raw material is 100% by mass, if necessary.
  • the amount of oxygen in the raw material can be adjusted, for example, by mixing the carbon precursor and oxygen at 150 to 300 ° C.
  • the carbonization conditions of the raw material are not particularly limited.
  • the carbon precursor can be carbonized by heating to 300 to 900 ° C., more preferably 300 to 800 ° C. under oxygen-free conditions.
  • the carbonization time can be appropriately set depending on the raw material used and the equipment for carbonization. For example, carbonization can be carried out in 15 minutes to 20 hours, preferably 30 minutes to 10 hours.
  • the carbonization treatment can be performed using, for example, a known manufacturing facility such as a rotary kiln.
  • a carbonized product of a carbon precursor can be obtained.
  • cleaning treatment, drying treatment and the like can be performed. These conditions can be performed, for example, under the same conditions as before.
  • the carbide obtained by the above carbonization treatment is activated in the activation step.
  • the activation treatment can be performed by a known method.
  • an activation method using an active gas such as water vapor, oxygen, or carbon dioxide is appropriately used.
  • known manufacturing equipment such as a rotary kiln and a flow furnace can be used.
  • activation can be performed by contacting water vapor with carbides at a flow rate of 10 to 300 liters per minute for 1 minute or longer.
  • the temperature of the activation treatment is not particularly limited.
  • the temperature of the activation treatment is preferably 750 to 1200 ° C., more preferably 800 to 1100 ° C., from the viewpoint that the desired pore inlet diameter and the pore volume can be easily adjusted as needed.
  • the partial pressure of the active gas can be 10 to 100%, preferably 30 to 100%.
  • the activation time can be adjusted in an appropriate range depending on the conditions such as the raw material used, the activation temperature, and the manufacturing equipment. For example, it can be 0 to 48 hours, preferably 0.5 to 24 hours. When the activation time is 0 hours, it means that the activation treatment is not performed, and when a synthetic resin is used as the carbon precursor, the molecular sieve activated carbon of the present invention can be obtained without the activation treatment. is there.
  • the activation treatment After the activation treatment, it can be fired if necessary.
  • known methods such as a heat shrinkage method, an impregnation method, and a CVD method can be widely adopted.
  • a carbon source can be used in this firing process.
  • a known carbon source used in the impregnation method and the CVD method can be widely used as the carbon source.
  • known materials such as coal tar, anhydrous tar, coal tar-based pitch, petroleum-based pitch, and creosote oil (see Japanese Patent No. 4893944) can be widely applied as the carbon source.
  • CVD method for example, as a carbon source, alcohols such as methanol and ethanol; esters such as ethyl acetate; ketones such as acetone and methyl ethyl ketone; aromatics such as benzene (see JP-A-2004-530622), toluene and xylene. Hydrocarbons; hydrocarbons such as hexane, amide solvents such as dimethylformamide; solvents such as polyhydric alcohols such as ethylene glycol can be mentioned.
  • the firing temperature can be 600 to 900 ° C., more preferably 700 to 800 ° C., because it is easy to adjust the desired pore inlet diameter and the pore volume as needed.
  • the firing time can be appropriately determined according to the firing temperature, and can be, for example, 15 to 240 minutes.
  • the firing process can be performed, for example, in a nitrogen atmosphere or an argon atmosphere.
  • the molecular sieve activated carbon of the present invention can be obtained by undergoing the above carbonization step, activation step, and firing treatment if necessary.
  • the molecular sieve activated carbon of the present invention thus obtained can be washed by a known method or the like, if necessary.
  • the present invention by appropriately setting one or more conditions such as activation conditions, the type of carbon source used in the firing treatment, the amount of carbon source used, and the firing temperature (CVD treatment temperature), the present invention
  • the molecular sieve activated carbon of the present invention can be produced.
  • Example 1 100 parts by mass of coal having a particle size of 0.05 mm or less was placed in an atmosphere of 250 ° C. in a rotating bed, and air was circulated up to an oxygen content of 10% by mass based on the total weight of the coal. Next, while adding water to the coal, 25 parts by mass of hard pitch and 15 parts by mass of coal tar were added and kneaded. At this time, the outer surface of the mixer was heated to 80 ° C. so that uniform kneading was possible. The obtained kneaded product was filled in an extrusion molding machine and molded into pellets having a diameter of 2.0 mm.
  • the pellet thus obtained was heated in a rotary kiln over about 5 hours until the final temperature reached 800 ° C. while removing air. Then, steam was added at a rate of 100 liters per minute, and the treatment was carried out for 30 minutes to obtain an activated product. Then, under a nitrogen atmosphere at 800 ° C., 2.0 parts by mass of benzene was circulated over 100 parts by mass of the obtained activated product over 120 minutes. By this firing treatment, molecular sieve activated carbon was obtained.
  • Example 2 (KP-566) Molecular sieve activated carbon was obtained in the same manner as in Example 1 except that benzene was changed to 1.0 part by mass.
  • Comparative Example 2 Granular Shirasagi WH2c8 / 32 (activated carbon, not molecular sieve charcoal) manufactured by Osaka Gas Chemical Co., Ltd. was used.
  • Test Example 1 Pore inlet diameter Pore volume was measured by the molecular probe method. The pore volume was calculated by measuring the equilibrium adsorption amount using several types of probe molecules having different molecular diameters.
  • the probe molecules used here were two types, carbon disulfide (0.37 nm) and chloroform (0.46 nm). The number in parentheses is the smallest molecular diameter.
  • the probe molecules were adsorbed on the molecular sieve activated carbon in an atmosphere of 25 ° C. and 1 atm, and the pore volume was calculated from the mass change of the molecular sieve activated carbon after equilibrium adsorption (TABraymer, et al., Carbon, Vol. 32,445-452, according to the method described in 1994).
  • the pore volume ratio was 3 or more in Examples 1 and 2, but less than 3 in Comparative Examples 1 and 2. From this result, in Examples 1 and 2, the total volume of the pores having an inlet diameter of 0.33 nm or more determined by the molecular probe method is 3 of the total volume of the pores having an inlet diameter of 0.46 nm or more. On the other hand, in Comparative Examples 1 and 2, the total volume of the pores having an inlet diameter of 0.33 nm or more determined by the molecular probe method has an inlet diameter of 0.46 nm or more. It is suggested that it is less than 3 times the total volume of the pores.
  • Test Example 2 Adsorption rate The adsorption rate was measured using an automatic adsorption device Belsorb-max manufactured by Microtrac Bell. First, 0.01 g of activated carbon to be used was placed in a measurement cell and heated at 150 ° C. for 3 hours while reducing the pressure with a rotary pump for pretreatment. After that, the measurement cell was attached to the automatic adsorption device, steam or ethanol vapor was introduced, and the time required for adsorption was measured. The results are shown in Table 2. In Table 2, "unmeasurable" means that it is larger than the measurement limit.
  • Test Example 3 An ethanol concentration test was performed using the ethanol concentrator shown in FIG.
  • the molecular sieve activated carbon used was washed with water before use to remove fine powder on the surface.
  • the adsorption column having a volume of 90 mL was filled with 53 g of the molecular sieve activated carbon obtained in Examples 1 and 2.
  • the pressure inside the adsorption column was reduced, the diaphragm pump was stopped, and a 10 mass% ethanol solution was fed at 15 mL / min by the liquid feed pump.
  • the liquid that passed through the adsorption column was collected by a diaphragm pump every minute, and the ethanol concentration was calculated from the density.
  • the ethanol concentration was measured by measuring the mass of 5 mL of the recovered test solution.
  • the ethanol solution could be concentrated.
  • the ethanol concentration is saturated at a certain level and then decreases after reaching the molecular weight of water that can be adsorbed on the molecular sieve activated carbon, and then the concentration decreases relatively by continuing to send 10% by mass of ethanol. Probably because it was done. Therefore, it is suggested that the ethanol solution can be concentrated to a desired concentration by increasing the amount of molecular sieve activated carbon used, repeating the above concentration step, and the like. Further, since the concentration of the alcohol solution after concentration differs depending on which of the molecular sieve activated carbons of Examples 1 and 2 is used, the influence of the pore inlet diameter is suggested.
  • Test Example 4 An ethanol concentration test was carried out in the same manner as in Test Example 3 except that the molecular sieve activated carbons of Examples 1 and Comparative Examples 1 and 2 were used and an ethanol solution having a concentration of 95% by mass was used.
  • Test Example 5 A methanol concentration test was carried out in the same manner as in Test Example 3 except that the molecular sieve activated carbons of Examples 1 and Comparative Examples 1 and 2 were used and a methanol solution having a concentration of 95% by mass was used.
  • the pore inlet diameter of the molecular sieve activated charcoal is sufficiently large as compared with water molecules, while it is about the same or slightly smaller than the size of alcohol molecules, so that water molecules can be selectively adsorbed. Since the molecular size of alcohol having more carbon atoms than ethanol is larger than that of ethanol, it is more difficult to enter the pores of the molecular sieve activated carbon of the present invention even in comparison with ethanol. It is clear that it can be concentrated to 99% by mass or more.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Analytical Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Inorganic Chemistry (AREA)
  • Nanotechnology (AREA)
  • Health & Medical Sciences (AREA)
  • Food Science & Technology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biochemistry (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)
  • Carbon And Carbon Compounds (AREA)

Abstract

アルコール溶液中の水分子を吸着してアルコールと前記水分子とを分離するための分子篩活性炭であって、分子プローブ法により求められた入口径が0.33nm以上である細孔の総容積が、0.46nm以上の入口径を有する細孔の総容積の3倍以上である、分子篩活性炭は、蒸留工程を経ずともアルコールを効率よく濃縮できるとともに、再利用もしやすいアルコール濃縮材である。

Description

分子篩活性炭
 本発明は、分子篩活性炭に関する。
 バイオエタノールに代表されるバイオマスアルコールは、植物由来の原料から主にアルコール発酵により製造されており、カーボンニュートラルなエネルギーとして注目されている。バイオエタノールの場合を例に取ると、アルコール発酵後に回収されるエタノールの濃度は約10質量%であるため、製造されたバイオマスアルコールは、蒸留等による脱水工程が必要である。バイオマスアルコールを合成原料、燃料等に用いる場合は97質量%以上(好ましくは99質量%以上)の濃度が求められるが、特に、水とエタノールは、エタノールの濃度が高くなる(例えば95質量%以上になる)と共沸混合物を形成し、気相のエタノール濃度も液相と同じ濃度になるため、蒸留を施してもアルコール濃度をこれ以上高めることはできない。つまり、蒸留等の一般的な方法によって液相中のエタノール濃度を97質量%以上とすることは困難を極める。
 エタノール濃度をさらに高濃度にするには、ベンゼン等の第三成分を添加して共沸混合物の組成を強制的に変化させて共沸蒸留する方法が知られているが、この方法では、エタノールの濃縮に必要なエネルギーが極めて高いという難点がある。エタノールの濃縮に必要なエネルギーを低減することを目的として、蒸留後のエタノール蒸気からゼオライト等を用いて水を除去する等、気液の相平衡に依存しない分離手法により水を除去する方法も知られている(例えば、非特許文献1参照)。
Food Technol.Biotechnol.56(3)289-311(2018)
 しかしながら、蒸留後のエタノール蒸気からゼオライト等により水を除去する方法では、ゼオライトと接触させるうえでエタノール蒸気を得るために高温での加熱が必須となるため、エタノールの濃縮に必要なエネルギーを十分に低減できていない。また、固体のゼオライトを脱水に利用した場合、エタノール濃縮後には高温(例えば200℃以上)に加熱しても水を脱離させることは困難であり、再利用性に欠ける。
 上記はバイオエタノールの場合を例にとって説明しているが、他のアルコールについても同様の課題を有する。
 このため、本発明は、蒸留工程を経ずともアルコールを効率よく濃縮できるとともに、再利用もしやすいアルコール濃縮材を提供することを目的とする。
 本発明者らは、上記目的を達成すべく鋭意研究を重ねた結果、特定の細孔入口径を有する分子篩活性炭により水を吸着させることで、蒸留工程を経ずともアルコールを効率よく濃縮できることを見出した。なお、分子篩活性炭は、温和な加熱(70~80℃程度)により、吸着した水を脱離させることができるため、再利用性にも優れる。本発明者らは、このような知見に基づき、さらに研究を重ね、本発明を完成した。すなわち、本発明は、以下の構成を包含する。
 項1.アルコール溶液中の水分子を吸着してアルコールと前記水分子とを分離するための分子篩活性炭であって、分子プローブ法により求められた入口径が0.33nm以上である細孔の総容積が、0.46nm以上の入口径を有する細孔の総容積の3倍以上である、分子篩活性炭。
 項2.破砕状、ペレット状、板状、棒状、中空状、ブロック状、ハニカム状、球状、楕円球状、歪曲状又は繊維状である、項1に記載の分子篩活性炭。
 項3.前記ペレットの最大径が0.5~5.0mmであり、アスペクト比が1:1~1:5である、項2に記載の分子篩活性炭。
 項4.石炭、やし殻、天然繊維、合成繊維、合成樹脂及び木炭よりなる群から選ばれる少なくとも1種以上の材料の炭化物である、項1~3のいずれか1項に記載の分子篩活性炭。
 項5.前記アルコールが、炭素数1~6のアルコールである、項1~4のいずれか1項に記載の分子篩活性炭。
 項6.前記水分子の1/2平衡吸着時間が、前記アルコールの1/2平衡吸着時間の1/2以下である、項1~5のいずれか1項に記載の分子篩活性炭。
 項7.項1~6のいずれか1項に記載の分子篩活性炭を含有する、水分子吸着材。
 項8.項1~6のいずれか1項に記載の分子篩活性炭を含有する、アルコール濃縮材。
 項9.項7に記載の水分子吸着材又は請求項8に記載のアルコール濃縮材を備える、アルコール濃縮装置。
 項10.濃度97質量%以上のアルコールの製造方法であって、
項1~6のいずれか1項に記載の分子篩活性炭とアルコール溶液とを接触させる工程
を備える、製造方法。
 項11.アルコールの濃縮方法であって、
項1~6のいずれか1項に記載の分子篩活性炭とアルコール溶液とを接触させる工程
を備える、方法。
 本発明の分子篩活性炭は、蒸留工程を経ずともアルコールを効率よく濃縮できるとともに、再利用もしやすい材料である。このため、本発明の分子篩活性炭は、アルコール濃縮装置に好適に用いることができる。
試験例2~3のエタノール濃縮試験に用いたエタノール濃縮装置の概略図である。 試験例3のエタノール濃縮試験の結果を示す。 試験例4のエタノール濃縮試験の結果を示す。 試験例5のメタノール濃縮試験の結果を示す。
 本明細書において、「含有」は、「含む(comprise)」、「実質的にのみからなる(consist essentially of)」、及び「のみからなる(consist of)」のいずれも包含する概念である。
 また、本明細書において、数値範囲を「A~B」で示す場合、A以上B以下を意味する。
 1.分子篩活性炭
 本発明の分子篩活性炭は、アルコール溶液中の水分子を吸着してアルコールと水分子とを分離するための分子篩活性炭であって、分子プローブ法により求められた入口径が0.33nm以上である細孔の総容積が、0.46nm以上の入口径を有する細孔の総容積の3倍以上である。
 本発明において、分子プローブ法とは、分子径の異なる数種類の吸着質(プローブ分子)を用いて吸着量を測定し、分子径と細孔容積の関係から細孔径分布を求める方法をいう。プローブ分子は自身のサイズよりも小さい細孔へは侵入できないため、各プローブ分子の吸着量から算出された細孔容積は、用いたプローブ分子の分子径よりも大きな容積に対応する。各プローブ分子に対応する細孔容積は、相対圧(吸着測定時の平衡圧力を飽和蒸気圧で除じた値)が十分に高ければ(例えば、0.9程度)、吸着量とその分子の液体密度から計算でき、相対圧が低い場合も吸着等温線から、Dubinin-Astakhov式に基づいて計算される。
 特に本発明では、T.A.Braymer,et  al.,Carbon,Vol.32,445-452,1994に開示されるように、25℃、1気圧の雰囲気において分子篩活性炭にプローブ分子を吸着させ、平衡吸着後の分子篩活性炭の質量変化から、特定の入口径を有する細孔の総容積を算出することができる。例えば、0.33nm以上の入口径を有する細孔の総容積、及び、0.46nm以上の入口径を有する細孔の総容積を算出する場合は、それぞれ二酸化炭素(最小分子直径0.33nm)及びクロロホルム(最小分子直径0.46nm)を分子プローブとして使用することができる。
 以上のように、分子プローブ法により測定した場合に、本発明の分子篩活性炭は、入口径が0.33nm以上である細孔の総容積が、0.46nm以上の入口径を有する細孔の総容積の3倍以上、特に5~100倍である。0.33nm以上である細孔の総容積が、0.46nm以上の入口径を有する細孔の総容積の3倍未満である場合は、十分にアルコール溶液を濃縮することができない。
 本発明の分子篩活性炭は、アルコール溶液中のアルコール及び水分子のうち、水分子を優先的に吸着することができる。詳述すると、本発明の分子篩活性炭とアルコール溶液とを接触させた際に、水分子の吸着速度が、アルコールの吸着速度よりも顕著に大きい。これにより、水分子を優先的に吸着することができ、結果として、アルコール溶液を濃縮して濃度を高め、例えば97質量%以上、特に99質量%以上とすることができる。
 本発明の分子篩活性炭は、分子プローブ法により求められた細孔入口径を所定範囲とした場合には、分子篩活性炭の細孔入口径は水分子と比較して十分に大きい一方で、アルコール分子の大きさと比較して同程度かやや小さいため、水分子の吸着速度が、アルコール分子の吸着速度に比べてさらに顕著に大きくなり、結果として、従来の方法のように蒸留工程を経ずとも、より効率的にアルコール溶液から水分子を脱離させてアルコールを濃縮しやすくなる。なお、水の吸着速度を適度に調整して時間あたりに処理できるアルコール量をより適度な範囲とする観点からは、分子篩活性炭の細孔入口径は水分子より大きめとすることが好ましい。このため、本発明の分子篩活性炭における分子プローブ法により求められた細孔入口径は、水分子の吸着速度を、アルコール分子の吸着速度に比べてより顕著に大きくし、結果として、従来の方法のように蒸留工程を経ずとも、より効率的にアルコール溶液から水分子を脱離させてアルコールを濃縮しやすくすることから、0.33~0.46nmが好ましく、0.35~0.40nmがより好ましい。
 本発明の分子篩活性炭は、水分子は吸着するもののアルコールは吸着しにくいように、細孔入口径は、水分子は通過しやすいもののアルコールが通過しにくい大きさとすることが好ましいが、一方、アルコール溶液を効率よく濃縮する観点では、多くの水分子を吸着することができるように、細孔容積は大きいことが好ましい。このような観点から、本発明の分子篩活性炭の細孔容積は、水蒸気吸着量が100NmL/g以上が好ましく、150NmL/gがより好ましい。
 本発明の分子篩活性炭の形状は特に限定されない。例えば、本発明の分子篩活性炭は、公知の吸着材として適用可能な形状とすることができる。例えば、本発明の分子篩活性炭は、破砕状、ペレット状、板状、棒状、中空状、ブロック状、ハニカム状、球状、楕円球状、歪曲状又は繊維状等が挙げられる。アルコールを特に濃縮しやすく、加工が容易で強度も高く、充填密度も高くでき、種々の用途に適用しやすいという観点から、本発明の分子篩活性炭の形状はペレット状であることが好ましい。また、本発明の分子篩活性炭がペレット状である場合は、不必要な微粉が発生しにくいので、アルコール中の脱水工程において、装置の配管等の閉塞も起こりにくい。
 本発明の分子篩活性炭の形状がペレット状である場合、その平面視形状は、例えば、公知の吸着材として適用可能な形状とすることができる。例えば、ペレット状は、平面視で円状、楕円状、矩形状、棒状、歪曲状等のいずれであってもよい。ペレットの厚みも特に限定されない。例えば、公知の吸着材と同様とすることができ、特に、アルコール濃縮装置に適用可能な厚みであることが好ましい。
 本発明の分子篩活性炭の形状がペレット状である場合、その最大径は0.5~5.0mmが好ましい。最大径をこのように調整することで、アルコールを特に濃縮しやすく、加工が容易で強度も高く、充填密度も高くでき、種々の用途に適用しやすいうえに、配管等の閉塞も起こりにくく、アルコール濃縮装置に適用しやすい。なお、本明細書において、最大径は、本発明の分子篩活性炭を無作為に30個採取し、これらの分子篩活性炭の最大径を平均した値を意味する。
 また、本発明の分子篩活性炭の形状がペレット状である場合、そのアスペクト比1:1~1:5が好ましい。アスペクト比をこのように調整することで、アルコールを特に濃縮しやすく、加工が容易で強度も高く、充填密度も高くでき、種々の用途に適用しやすいうえに、配管等の閉塞も起こりにくく、アルコール濃縮装置に適用しやすい。なお、アスペクト比とは、1個の分子篩活性炭の最小径と最大径との比、つまり、分子篩活性炭の最大径/分子篩活性炭の最小径を意味する。アスペクト比は、分子篩活性炭を無作為に30個採取し、これらの分子篩活性炭のアスペクト比を平均した値を意味する。
 上述した本発明の分子篩活性炭の最大径及びアスペクト比において、1個の分子篩活性炭の最大径及び後述の最小径はノギスで計測する。
 本発明の分子篩活性炭を適用するアルコール溶液において、アルコールの種類は特に制限されない。このようなアルコールの具体例としては、例えば、メタノール、エタノール、n-プロピルアルコール、イソプロピルアルコール、n-ブチルアルコール、イソブチルアルコール、sec-ブチルアルコール、tert-ブチルアルコール、n-ペンチルアルコール、n-ヘキシルアルコール等の炭素数1~20のアルコールが挙げられる。これらのアルコールは、単独で用いることもでき、2種以上を組合せて用いることもできる。
 本発明の分子篩活性炭は、アルコール溶液中の水分子を吸着しつつアルコールを吸着しないことによってアルコールを濃縮するものである。このため、炭素数の大きいアルコールであれば、その分子が大きいため、本発明の分子篩活性炭の細孔入口を通りにくくなることから、本発明の分子篩活性炭に吸着されにくい。このように、アルコール溶液を濃縮しやすい観点では、炭素数の大きいアルコール(例えば、炭素数2~20、特に6~20のアルコール)であることが好ましい。
 本発明は、水分子とアルコールとを分離することが困難であったことを原点とし、蒸留工程を必須としてアルコール蒸気から水を除去している従来の方法よりもアルコールの濃縮に必要なエネルギーを低減することを目的としている観点では、水分子との分離が特に困難である炭素数の小さいアルコール(例えば、炭素数1~12、特に1~6のアルコール)に対しても、蒸留工程を行わずともアルコール溶液を濃縮できる点で特に有用である。
 本発明の分子篩活性炭では、上記したように、アルコール溶液において、水分子の吸着速度がアルコールの吸着速度よりも大きくなる。言い換えれば、本発明の分子篩活性炭では、水分子の吸着時間がアルコールの吸着時間よりも短くなる。具体的には、水分子の1/2平衡吸着時間をアルコールの1/2平衡吸着時間の1/2以下とすることができ、1/5以下が好ましく、1/10以下がより好ましい。この場合、本発明の分子篩活性炭の吸着特性は、特に水分子の吸着選択性に優れ、より効率的にアルコールを濃縮することができる。なお、下限値は特に制限はなく、小さければ小さいほどよいが、例えば、水分子の1/2平衡吸着時間をアルコールの1/2平衡吸着時間の1/10000以上とすることができる。
 本発明の分子篩活性炭において、水分子の1/2平衡吸着時間は5~600秒が好ましく、6~60秒がより好ましい。また、アルコールの1/2平衡吸着時間は1~1500秒が好ましく、10~500秒がより好ましい。これにより、水分子が速やかに本発明の分子篩活性炭に吸着するので、短時間でアルコール溶液の濃縮を行うことができる。
 本明細書において、1/2平衡吸着時間とは、吸着測定の開始を起算点として、吸着量が平衡吸着量に対して50%となるまでの時間をいう。つまり、1/2平衡吸着時間とは、吸着測定の開始を起算点として、吸着量/平衡吸着量の値が0.5となるまでの時間をいう。
 本発明の分子篩活性炭は、水分子吸着材として好適に使用できる。該水分子吸着材は、本発明の分子篩活性炭を備えるので、水分子を効率よく吸着させ、アルコール溶液を効率よく濃縮することができる。特に、本発明の分子篩活性炭を充填した容器に対してアルコール溶液を通過させた場合には、さらに効率的に、水分子を本発明の分子篩活性炭に吸着させ、アルコール溶液を濃縮することができる。
 上記のような本発明の分子篩活性炭は、アルコール溶液に含まれる水分子を脱離させてアルコール溶液を濃縮するために使用されるものであり、特に、細孔入口径が適切な範囲に調整されていることで、吸着の選択性に優れ、アルコール溶液を効率よく濃縮することができることから、アルコール濃縮材として使用することができる。したがって、本発明の分子篩活性炭は、アルコール溶液を濃縮し、例えば濃度97質量%以上(特に99質量%以上)のアルコールを製造する方法に好適に使用できる。特に、本発明の分子篩活性炭を充填した容器に対してアルコール溶液を通過させた場合には、さらに効率的に、アルコール溶液を濃縮することができる。
 上記した水分子吸着材又はアルコール濃縮材は、本発明の分子篩活性炭のみで形成されていてもよいし、他の公知の部材を組合せて形成していてもよい。
 以上のような利点を備えていることから、本発明の分子篩活性炭は、アルコール濃縮装置に好適に使用することができる。
 アルコール濃縮装置も、本発明の分子篩活性炭を備えていれば、その他の構成は、例えば、公知のアルコール濃縮装置と同様の構成とすることができる。
 本発明の分子篩活性炭を充填した容器を例えば吸着カラムとして備えている場合は、アルコール溶液を通過させる手段として送液ポンプ等を備えていることが好ましい。この際、吸着カラム中に充填される本発明の分子篩活性炭の量と1回の吸着工程で導入されるアルコール溶液の量との関係は、適宜設定することが好ましいが、濃縮後のアルコール溶液の濃度の観点から、本発明の分子篩活性炭100質量部に対して、アルコール溶液中の水の質量として、5質量部以下(例えば0.01~5質量部)が好ましい。また、アルコール溶液を通過させる際の流量(アルコール溶液の時間当たりの流量を空の吸着カラムで除じた値)は、濃縮後のアルコール溶液の濃度の観点から、SV=0.8~10h-1が好ましい。また、アルコール溶液を通過させる時間は、濃縮後のアルコール溶液の濃度の観点から、1~60分が好ましい。
 また、吸着カラム内の本発明の分子篩活性炭を通過したアルコール溶液(濃縮されたアルコール溶液)を回収する手段として、ダイヤフラムポンプ等を備えていることが好ましい。これにより、さらに効率的に、アルコール溶液を濃縮することができる。
 また、上記のようにしてアルコール溶液を濃縮した後は、吸着カラム内の本発明の分子篩活性炭に吸着された水を脱離させて、本発明の分子篩活性炭を再利用することが好ましい。この際には、50~200℃に加熱することで、本発明の分子篩活性炭に吸着された水を脱離させて、本発明の分子篩活性炭を再利用することができる。このため、上記のようにしてアルコール溶液を濃縮した後は、吸着カラム内を加熱する手段も備えることが好ましい。なお、通常、工場内には余剰の廃熱が存在しており、この廃熱は大気中や水中に排出されて廃棄されることが多いが、この廃熱を利用することで、ランニングコストをほとんどかけることなく、本発明の分子篩活性炭に吸着された水を脱離させて、本発明の分子篩活性炭を再利用することができる。つまり、上記のようにしてアルコール溶液を濃縮した後は、吸着カラム内に廃熱を流入させる廃熱流入ポンプを備えることが好ましい。なお、上記した装置の構成は、本発明を限定するものではなく、あくまでも例示に過ぎない。
 上記したアルコール濃縮装置は、例えば、化学合成や燃料等の用途に活用することが可能である。
 2.分子篩活性炭の製造方法
 本発明の分子篩活性炭の製造方法は、分子プローブ法により求められた入口径が0.33nm以上である細孔の総容積が、0.46nm以上の入口径を有する細孔の総容積の3倍以上である分子篩活性炭が得られる限りは限定されない。例えば、公知の製造方法によって、分子篩活性炭を製造することができる。
 本発明の分子篩活性炭の製造方法としては、例えば、熱収縮法、含浸法、CVD(chemical vapor deposition、化学気相成長)法等を挙げることができる。本発明の分子篩活性炭の製造方法の一例を以下に説明する。
 例えば、本発明の分子篩活性炭は、炭素前駆体を炭化して炭化物を得る炭化工程、及び、該炭化物を賦活処理する賦活工程を備える方法によって製造できる。
 炭素前駆体は、目的の分子篩活性炭を得ることができる材料であれば特に制限されない。
 炭素前駆体としては、例えば、石炭、やし殻(具体的には、パームヤシ殻、ココナッツヤシ殻など)、天然繊維(具体的には、麻、綿など)、合成繊維(具体的には、レーヨン、ポリエステルなど)、合成樹脂(具体的には、ポリアクリロニトリル、フェノール樹脂、ポリ塩化ビニリデン、ポリカーボネート、ポリビニルアルコール)、木炭等が挙げられる。これらの炭素前駆体は、単独で用いることもでき、2種以上を組合せて用いることもできる。
 細孔入口径及び必要に応じて細孔容積を所望の範囲に調整しやすいという観点から、炭素前駆体は、石炭、やし殻、合成樹脂、木炭等が好ましい。従って、本発明の分子篩活性炭は、石炭、やし殻、天然繊維、合成繊維、合成樹脂及び木炭よりなる群から選ばれる少なくとも1種以上の材料の炭化物で形成されていることが好ましく、石炭、やし殻、合成樹脂及び木炭よりなる群から選ばれる少なくとも1種以上の材料の炭化物で形成されていることがより好ましい。
 分子篩活性炭の製造方法では、原料には必要に応じて、添加剤を含むこともできる。添加剤としては、水、コールタール、無水タール、硬質ピッチ、コールタール系ピッチ、石油系ピッチ等を挙げることができる。添加剤は、単独で用いてもよいし、2種以上を組合せて用いることもできる。添加剤の使用量は、例えば、炭素前駆体100質量部に対して、1~100質量部とすることができる。添加剤を使用する場合、必要に応じて、あらかじめ原料中の酸素量を例えば、原料の総量を100質量%として1~20質量%の範囲で調節することもできる。原料中の酸素量の調節は、例えば、150~300℃で炭素前駆体と酸素とを混合することで行うことができる。
 本発明の分子篩活性炭の製造方法では、原料に対して炭化工程を行う前に成形することもできる。例えば、原料をペレット状に成形した後、炭化を行うことができる。
 原料の炭化条件は特に限定されない。例えば、酸素を含まない条件で300~900℃、より好ましくは300~800℃まで加熱して、前記炭素前駆体を炭化することができる。
 炭化時間は、用いる原料、炭化を行う設備によって適宜設定し得る。例えば、15分~20時間、好ましくは30分~10時間で炭化を行うことができる。当該炭化処理は、例えば、ロータリーキルン等の公知の製造設備を用いて行うことができる。
 上記炭化工程により、炭素前駆体の炭化物が得られる。炭化した後は、洗浄処理、乾燥処理等を行うことができる。これらの条件は、例えば、従来と同じ条件で行うことができる。
 上記の炭化処理により得られた炭化物を賦活工程にて賦活処理する。賦活処理は、公知の方法で行うことができる。例えば、水蒸気、酸素、炭酸ガス等の活性ガスによる賦活方法が適宜用いられる。賦活処理は、ロータリーキルン、流動炉等の公知の製造設備を用いることができる。例えば、水蒸気を1分間あたり10~300リットル流量で1分以上炭化物と接触させる方法により、賦活を行うことができる。
 賦活処理の温度は特に限定されない。所望の細孔入口径及び必要に応じて細孔容積に調整しやすい点で、賦活処理の温度は750~1200℃が好ましく、800~1100℃がより好ましい。活性ガスの分圧は10~100%とすることができ、30~100%とすることが好ましい。
 賦活時間は、用いる原料、賦活温度、製造設備等の条件によって適宜の範囲で調節することができ、例えば、0~48時間とすることができ、0.5~24時間とすることが好ましい。なお、賦活時間が0時間である場合、賦活処理を行わないことを意味しており、炭素前駆体として合成樹脂を用いる場合は賦活処理を行わずに本発明の分子篩活性炭を得ることも可能である。
 賦活処理の後は必要に応じて、焼成処理することができる。焼成処理は熱収縮法、含浸法、CVD法等といった公知の方法を広く採用することができる。この焼成処理をするにあたり、炭素源を使用することができる。
 前記焼成処理において、炭素源は含浸法、CVD法において使用される公知の炭素源を広く使用することができる。含浸法においては例えば、炭素源として、コールタール、無水タール、コールタール系ピッチ、石油系ピッチ、クレオソート油(特許第4893944号公報等参照)等、公知の材料を広く適用する事ができる。CVD法においては例えば、炭素源として、メタノール、エタノール等のアルコール;酢酸エチル等のエステル;アセトン、メチルエチルケトン等のケトン;ベンゼン(特表2004-530622号公報等参照)、トルエン、キシレン等の芳香族系炭化水素;ヘキサン等の炭化水素、ジメチルホルムアミド等のアミド系溶媒;エチレングリコール等の多価アルコール等の溶媒を挙げることができる。
 焼成温度は、所望の細孔入口径及び必要に応じて細孔容積に調整しやすい点で、600~900℃とすることができ、700~800℃がより好ましい。焼成時間は、焼成温度に応じて適宜決定することができ、例えば、15~240分とすることができる。
 焼成処理は、例えば、窒素雰囲気下又はアルゴン雰囲気下で行うことができる。
 以上の炭化工程及び賦活工程、並びに必要に応じて焼成処理を経ることで、本発明の分子篩活性炭を得ることができる。このようにして得られた本発明の分子篩活性炭は、必要に応じて、公知の方法等で洗浄を行うこともできる。
 特に本発明の製造方法では、賦活条件、焼成処理で使用する炭素源の種類、炭素源の使用量、焼成温度(CVD処理温度)等の1種以上の条件を適切に設定することで、本発明の分子篩活性炭を製造することができる。
 以下、実施例により本発明をより具体的に説明するが、本発明はこれら実施例の態様に限定されるものではない。
 実施例1(KP-565)
 0.05mm以下の粒度を有する石炭100質量部を回転床中、250℃の雰囲気下に置き、石炭全重量に対する酸素含有量が10質量%まで空気を流通した。次いで、石炭に水を添加しつつ硬質ピッチ25質量部、コールタール15質量部を加えて混練した。この時、均一な練合ができるように混合機外面を80℃に加温した。得られた混練物を押出し成型機に充填し、直径が2.0mmのペレット状に成型した。このように得られたペレットをロータリーキルン中で空気を排除しつつ、最終温度が800℃になるまで約5時間かけて昇温した。その後、水蒸気を1分間当り100リットルの割合で加え、30分間処理を行って賦活処理品を得た。次いで、800℃窒素雰囲気下にて、得られた賦活処理品100質量部に対しベンゼン2.0質量部を120分かけて流通せしめた。この焼成処理により、分子篩活性炭を得た。
 なお、得られた分子篩活性炭の形状をノギスで計測したところ、最大径は1.8mmであり、アスペクト比は1:2であった。
 実施例2(KP-566)
 ベンゼンを1.0質量部に変更したこと以外は実施例1と同様の方法で分子篩活性炭を得た。
 なお、得られた分子篩活性炭の形状をノギスで計測したところ、最大径は1.8mmであり、アスペクト比は1:2であった。
 比較例1(KP-567)
 ベンゼンの流通を行わなかったこと以外は実施例1と同様の方法で分子篩活性炭を得た。
 なお、得られた分子篩活性炭の形状をノギスで計測したところ、最大径は1.8mmであり、アスペクト比は1:2であった。
 比較例2(WH2c8/32)
 大阪ガスケミカル(株)製の粒状白鷺WH2c8/32(分子篩炭ではない活性炭)を使用した。
 試験例1:細孔入口径
 細孔容積は、分子プローブ法により計測した。分子径の異なる数種類のプローブ分子を用いて平衡吸着量を測定することで、細孔容積を算出した。ここで用いたプローブ分子は、二硫化炭素(0.37nm)、クロロホルム(0.46nm)の2種類とした。括弧内の数値は最小分子直径である。25℃、1気圧の雰囲気において、分子篩活性炭にプローブ分子を吸着させ、平衡吸着後の分子篩活性炭の質量変化から、細孔容積を算出した(T.A.Braymer,et  al.,Carbon,Vol.32,445-452,1994に記載される方法に準じた)。測定結果を表1に示す。この結果、実施例1及び2では細孔容積比が3以上となっているが、比較例1及び2では3未満であった。この結果から、実施例1及び2では、分子プローブ法により求められた入口径が0.33nm以上である細孔の総容積が、0.46nm以上の入口径を有する細孔の総容積の3倍以上であることが明らかであり、一方、比較例1及び2では分子プローブ法により求められた入口径が0.33nm以上である細孔の総容積が、0.46nm以上の入口径を有する細孔の総容積の3倍未満であることが示唆されている。
Figure JPOXMLDOC01-appb-T000001
 試験例2:吸着速度
 マイクロトラックベル社製自動吸着装置Belsorp-maxを用いて吸着速度を測定した。まず使用する活性炭は測定用セルに0.01g入れ、ロータリーポンプで減圧しながら150℃3時間加熱し、前処理を行った。その後、測定用セルを自動吸着装置に取り付け、水蒸気またはエタノール蒸気を導入し、吸着にかかる時間を測定した。結果を表2に示す。なお、表2において、「測定不能」は測定限界より大きいことを意味する。
Figure JPOXMLDOC01-appb-T000002
 試験例3
 図1に示すエタノール濃縮装置を用い、エタノールの濃縮試験を行った。
 まず、使用する分子篩活性炭は、使用前に水洗し、表面の微粉を除去した。次に、容積90mLの吸着カラムには、実施例1~2で得られた分子篩活性炭を53g充填した。その後、吸着カラム内を減圧し、ダイヤフラムポンプを止めて、送液ポンプにより、10質量%のエタノール溶液を15mL/分で送液した。その後、吸着カラムを通過した液を、1分ごとにダイヤフラムポンプにより回収し、その密度からエタノール濃度を計算した。なお、エタノール濃度は、回収した試験液5mLの質量を測定して行った。
 結果を図2に示す。この結果、エタノール溶液を濃縮することができた。エタノール濃度が一定程度で飽和してその後減少しているのは、分子篩活性炭に吸着できる水分子量に到達しており、その後10質量%のエタノールを送液し続けることによって、相対的に濃度が減少したためと思われる。このため、分子篩活性炭の使用量を増やしたり、上記の濃縮工程を繰り返したりすること等によって、所望の濃度にエタノール溶液を濃縮できることが示唆される。また、実施例1及び2のいずれの分子篩活性炭を使用するかによって、濃縮後のアルコール溶液の濃度が異なるため、細孔入口径による影響が示唆されている。
 試験例4
 実施例1及び比較例1~2の分子篩活性炭を用い、また、濃度95質量%のエタノール溶液を用いたこと以外は試験例3と同様に、エタノール濃縮試験を行った。
 結果を図3に示す。この結果、比較例1~2の分子篩活性炭を用いた場合は、アルコール溶液の時間を増やしたところで、97質量%以上に濃縮することはできなかった。一方、実施例1の分子篩活性炭を用いた場合は、4分以上通過させることで、最終的に99質量%以上に濃縮することができた。
 試験例5
 実施例1及び比較例1~2の分子篩活性炭を用い、また、濃度95質量%のメタノール溶液を用いたこと以外は試験例3と同様に、メタノール濃縮試験を行った。
 結果を図4に示す。エタノールより分子サイズが小さいメタノールであっても、実施例1の分子篩活性炭を用いることで濃縮することができた。このことから、既知の水とメタノールの分離方法である蒸留よりも低エネルギーで分離可能であることが示唆されている。
 以上から、細孔入口径が特定範囲にある分子篩活性炭を用いることで、エタノール溶液を99質量%以上まで、メタノールを97質量%以上まで濃縮することができた。なお、本発明は、分子篩活性炭の細孔入口径が水分子と比較して十分に大きい一方、アルコール分子の大きさと比較して同程度かやや小さいために、水分子を選択的に吸着できるところ、エタノールよりも炭素数が多いアルコールについては、分子サイズがエタノールより大きいことから、エタノールと比較しても、本発明の分子篩活性炭の細孔に入り込むことがさらに困難であることから、この場合も99質量%以上まで濃縮できることが明らかである。

Claims (11)

  1. アルコール溶液中の水分子を吸着してアルコールと前記水分子とを分離するための分子篩活性炭であって、
    分子プローブ法により求められた入口径が0.33nm以上である細孔の総容積が、0.46nm以上の入口径を有する細孔の総容積の3倍以上である、分子篩活性炭。
  2. 破砕状、ペレット状、板状、棒状、中空状、ブロック状、ハニカム状、球状、楕円球状、歪曲状又は繊維状である、請求項1に記載の分子篩活性炭。
  3. 前記ペレットの最大径が0.5~5.0mmであり、アスペクト比が1:1~1:5である、請求項2に記載の分子篩活性炭。
  4. 石炭、やし殻、天然繊維、合成繊維、合成樹脂及び木炭よりなる群から選ばれる少なくとも1種以上の材料の炭化物である、請求項1~3のいずれか1項に記載の分子篩活性炭。
  5. 前記アルコールが、炭素数1~6のアルコールである、請求項1~4のいずれか1項に記載の分子篩活性炭。
  6. 前記水分子の1/2平衡吸着時間が、前記アルコールの1/2平衡吸着時間の1/2以下である、請求項1~5のいずれか1項に記載の分子篩活性炭。
  7. 請求項1~6のいずれか1項に記載の分子篩活性炭を含有する、水分子吸着材。
  8. 請求項1~6のいずれか1項に記載の分子篩活性炭を含有する、アルコール濃縮材。
  9. 請求項7に記載の水分子吸着材又は請求項8に記載のアルコール濃縮材を備える、アルコール濃縮装置。
  10. 濃度97質量%以上のアルコールの製造方法であって、
    請求項1~6のいずれか1項に記載の分子篩活性炭とアルコール溶液とを接触させる工程
    を備える、製造方法。
  11. アルコールの濃縮方法であって、
    請求項1~6のいずれか1項に記載の分子篩活性炭とアルコール溶液とを接触させる工程
    を備える、方法。
PCT/JP2020/041963 2019-11-13 2020-11-10 分子篩活性炭 WO2021095738A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2021556107A JPWO2021095738A1 (ja) 2019-11-13 2020-11-10
US17/775,811 US20220387967A1 (en) 2019-11-13 2020-11-10 Molecular sieve activated carbon

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019205212 2019-11-13
JP2019-205212 2019-11-13

Publications (1)

Publication Number Publication Date
WO2021095738A1 true WO2021095738A1 (ja) 2021-05-20

Family

ID=75912660

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/041963 WO2021095738A1 (ja) 2019-11-13 2020-11-10 分子篩活性炭

Country Status (3)

Country Link
US (1) US20220387967A1 (ja)
JP (1) JPWO2021095738A1 (ja)
WO (1) WO2021095738A1 (ja)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60233023A (ja) * 1982-09-27 1985-11-19 カルゴン カ−ボン コ−ポレ−シヨン エタノ−ルを脱水する方法
JPH09248456A (ja) * 1996-03-18 1997-09-22 Isao Mochida 選択的吸着能を持つ分子篩活性炭素繊維およびその製造方法
JP2007242392A (ja) * 2006-03-08 2007-09-20 Honda Motor Co Ltd 固体高分子型燃料電池用膜電極構造体
JP2011162478A (ja) * 2010-02-09 2011-08-25 National Institute Of Advanced Industrial Science & Technology Etbeの製造方法
JP2019171375A (ja) * 2018-03-27 2019-10-10 大阪ガスケミカル株式会社 分子篩活性炭、吸着材及び吸着システム

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60233023A (ja) * 1982-09-27 1985-11-19 カルゴン カ−ボン コ−ポレ−シヨン エタノ−ルを脱水する方法
JPH09248456A (ja) * 1996-03-18 1997-09-22 Isao Mochida 選択的吸着能を持つ分子篩活性炭素繊維およびその製造方法
JP2007242392A (ja) * 2006-03-08 2007-09-20 Honda Motor Co Ltd 固体高分子型燃料電池用膜電極構造体
JP2011162478A (ja) * 2010-02-09 2011-08-25 National Institute Of Advanced Industrial Science & Technology Etbeの製造方法
JP2019171375A (ja) * 2018-03-27 2019-10-10 大阪ガスケミカル株式会社 分子篩活性炭、吸着材及び吸着システム

Also Published As

Publication number Publication date
JPWO2021095738A1 (ja) 2021-05-20
US20220387967A1 (en) 2022-12-08

Similar Documents

Publication Publication Date Title
Baklanova et al. Preparation of microporous sorbents from cedar nutshells and hydrolytic lignin
JP2735491B2 (ja) 微細孔活性炭とその製造方法
US5726118A (en) Activated carbon for separation of fluids by adsorption and method for its preparation
JPS5854083B2 (ja) 炭素含有吸着媒の製法
Mashhadimoslem et al. Biomass derived hierarchical porous carbon for high-performance O 2/N 2 adsorption; a new green self-activation approach
Bachrun et al. Preparation and characterization of activated carbon from sugarcane bagasse by physical activation with CO2 gas
US3960522A (en) Carbon-containing molecular sieves
Park et al. CO 2 adsorption characteristics of slit-pore shaped activated carbon prepared from cokes with high crystallinity
JPH08337412A (ja) 活性炭及びその製造方法
Wen et al. Synthesis of hierarchical porous carbon with high surface area by chemical activation of (NH4) 2C2O4 modified hydrochar for chlorobenzene adsorption
US3979330A (en) Carbon containing molecular sieves
US3960769A (en) Carbon-containing molecular sieves
Yu et al. Single and bicomponent anionic dyes adsorption equilibrium studies on magnolia-leaf-based porous carbons
CN106082172B (zh) 一种高比表面积制氮碳分子筛的制备方法
WO2021095738A1 (ja) 分子篩活性炭
JP6628885B2 (ja) 活性炭の製造方法及び活性炭及びキャニスタ
JP7311289B2 (ja) 分子篩活性炭、吸着材及び吸着システム
JP2006225231A (ja) キチン質物質を原料とする活性炭及びその製造方法
US11584652B2 (en) Process for forming a pure carbon powder
JP3224117B2 (ja) 活性炭
JPH05508107A (ja) 炭素モレキュラーシーブの製造方法
JP2008094710A (ja) 分子ふるい炭素の製造方法及び分子ふるい炭素
JP3310348B2 (ja) 分子ふるい炭素の製造方法
WO2020065930A1 (ja) 活性炭、及び該活性炭の製造方法
Farberova et al. Investigation of the conditions for obtaining active carbons medical supplies from seed fruit

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20887029

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021556107

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20887029

Country of ref document: EP

Kind code of ref document: A1