WO2021095238A1 - 空気調和装置 - Google Patents

空気調和装置 Download PDF

Info

Publication number
WO2021095238A1
WO2021095238A1 PCT/JP2019/044892 JP2019044892W WO2021095238A1 WO 2021095238 A1 WO2021095238 A1 WO 2021095238A1 JP 2019044892 W JP2019044892 W JP 2019044892W WO 2021095238 A1 WO2021095238 A1 WO 2021095238A1
Authority
WO
WIPO (PCT)
Prior art keywords
refrigerant
temperature
air conditioner
heat exchanger
space
Prior art date
Application number
PCT/JP2019/044892
Other languages
English (en)
French (fr)
Inventor
孔明 仲島
和英 山本
祥之 多田
近藤 雅一
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to EP19952846.4A priority Critical patent/EP4060257A4/en
Priority to JP2021555752A priority patent/JP7386886B2/ja
Priority to PCT/JP2019/044892 priority patent/WO2021095238A1/ja
Publication of WO2021095238A1 publication Critical patent/WO2021095238A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B49/00Arrangement or mounting of control or safety devices
    • F25B49/02Arrangement or mounting of control or safety devices for compression type machines, plants or systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B13/00Compression machines, plants or systems, with reversible cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/031Sensor arrangements
    • F25B2313/0313Pressure sensors near the outdoor heat exchanger
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/031Sensor arrangements
    • F25B2313/0314Temperature sensors near the indoor heat exchanger
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2500/00Problems to be solved
    • F25B2500/19Calculation of parameters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2500/00Problems to be solved
    • F25B2500/22Preventing, detecting or repairing leaks of refrigeration fluids
    • F25B2500/222Detecting refrigerant leaks
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/25Control of valves
    • F25B2600/2513Expansion valves

Definitions

  • the present invention relates to an air conditioner.
  • the apparatus described in Patent Document 1 includes a temperature sensor that detects the outside air temperature and a temperature sensor that detects the temperature of the air that is heat-exchanged in the user-side heat exchanger. This device calculates the degree of supercooling based on the difference in temperature detected by the two temperature sensors.
  • an object of the present invention is to provide an air conditioner capable of obtaining an operating state with high accuracy.
  • the air conditioner of the present invention includes a compressor in which a first refrigerant circulates and is annularly connected by a refrigerant pipe, an outdoor heat exchanger, an expansion valve, a refrigerant circuit including an indoor heat exchanger, and an outdoor unit. It includes a detection container arranged between the heat exchanger and the expansion valve, and a diaphragm that divides the space inside the detection container into a first space and a second space. The first space is sealed and is filled with a second refrigerant of the same type as the first refrigerant. The second space is connected to the refrigerant circuit and the first refrigerant flows into the second space.
  • the air conditioner is further arranged on the diaphragm and has a strain sensor that detects the difference between the pressure of the first refrigerant in the second space and the pressure of the second refrigerant in the first space, and an outdoor heat exchanger.
  • a temperature detector for detecting the temperature of the first refrigerant between the and the detection container is provided.
  • the air conditioner of the present invention includes a compressor in which a first refrigerant circulates and is annularly connected by a refrigerant pipe, an outdoor heat exchanger, an expansion valve, a refrigerant circuit including an indoor heat exchanger, and a room. It includes a detection container arranged between the heat exchanger and the expansion valve, and a diaphragm that divides the space inside the detection container into a first space and a second space. The first space is sealed and is filled with a second refrigerant of the same type as the first refrigerant. The second space is connected to the refrigerant circuit and the first refrigerant flows into the second space.
  • the air conditioner is further arranged on the diaphragm and has a strain sensor that detects the difference between the pressure of the first refrigerant in the second space and the pressure of the second refrigerant in the first space, and an indoor heat exchanger.
  • a temperature detector for detecting the temperature of the first refrigerant between the and the detection container is provided.
  • the operating state can be obtained with high accuracy by providing the strain sensor and the temperature detector.
  • FIG. 1 It is a figure which shows the flow of the refrigerant of the refrigerant circuit 100 of the air conditioner of a reference example, and the refrigerant circuit 100 at the time of a cooling operation of an air conditioner. It is a figure which shows the temperature sensor arranged around the outdoor heat exchanger 2 of FIG. It is a figure which shows the structure of the air conditioner of Embodiment 1, and the flow of the refrigerant of the refrigerant circuit 100 at the time of the cooling operation of an air conditioner. It is a figure which shows the arrangement of the detection container 20 of Embodiment 1. FIG. It is a figure which shows the structure of the detection container 20 of Embodiment 1. FIG. It is a ph diagram of the refrigerant circuit 100.
  • FIG. It is a figure which shows the relationship between the differential pressure ⁇ P and the supercooling degree SC for each temperature Tq in Embodiment 1.
  • FIG. It is a flowchart which shows the control procedure of the air conditioner of Embodiment 1. It is a figure which shows the structure of the air conditioner of Embodiment 1, and the flow of the refrigerant of the refrigerant circuit 100 at the time of heating operation of an air conditioner. It is a figure which shows the arrangement of the temperature sensor and the detection container 20 arranged around the outdoor heat exchanger 2 in Embodiment 2. FIG. It is a figure which shows the structure of the detection container 20 of Embodiment 2.
  • FIG. It is a figure which shows the relationship between the differential pressure ⁇ P and the supercooling degree SC for each temperature Tq in Embodiment 2.
  • FIG. It is a figure which shows the structure of the air conditioner of Embodiment 3 and the flow of the refrigerant of the refrigerant circuit 100 at the time of heating operation of an air conditioner. It is a figure which shows the arrangement and structure of the detection container 20 of Embodiment 3. It is a figure which shows the structure of the air conditioner of Embodiment 3 and the flow of the refrigerant of the refrigerant circuit 100 at the time of the cooling operation of the air conditioner. It is a figure which shows the arrangement and structure of the detection container 20 of Embodiment 4.
  • FIG. 1 is a diagram showing the configuration of the air conditioner of the reference example and the flow of the refrigerant in the refrigerant circuit 100 during the cooling operation of the air conditioner.
  • the refrigerant circuit 100 includes a compressor 1, a four-way valve 5, an outdoor heat exchanger 2, an expansion valve 3, and an indoor heat exchanger 4 connected in an annular shape by a refrigerant pipe 6.
  • the first refrigerant CA circulates in the refrigerant circuit 100.
  • the compressor 1 compresses and discharges the first refrigerant CA.
  • the four-way valve 5 switches the flow path of the first refrigerant CA.
  • the first refrigerant CA discharged from the compressor 1 flows to the outdoor heat exchanger 2.
  • the first refrigerant CA discharged from the compressor 1 flows to the indoor heat exchanger 4.
  • the outdoor heat exchanger 2 exchanges heat between the air supplied by an outdoor blower such as a fan (hereinafter, appropriately referred to as outside air) and the first refrigerant CA.
  • the outdoor heat exchanger 2 functions as a condenser during the cooling operation of the air conditioner.
  • the outdoor heat exchanger 2 functions as an evaporator during the heating operation of the air conditioner.
  • the expansion valve 3 decompresses and expands the first refrigerant CA.
  • the expansion valve 3 is composed of, for example, an electronic expansion valve or a valve capable of controlling the opening degree.
  • the indoor heat exchanger 4 exchanges heat between the air supplied by an indoor blower such as a fan and the first refrigerant CA.
  • the indoor heat exchanger 4 functions as an evaporator during the cooling operation of the air conditioner.
  • the indoor heat exchanger 4 functions as a condenser during the heating operation of the air conditioner.
  • FIG. 2 is a diagram showing a temperature sensor arranged around the outdoor heat exchanger 2 of FIG.
  • the outdoor heat exchanger 2 includes a sub heat exchanger 2a and a sub heat exchanger 2b.
  • the temperature sensor 11 is arranged in the middle of the sub heat exchanger 2a.
  • the temperature sensor 11 detects the condensation temperature CT of the first refrigerant CA flowing through the outdoor heat exchanger 2 during the cooling operation of the air conditioner.
  • the temperature sensor 12 is arranged at the outlet of the first refrigerant CA of the outdoor heat exchanger 2 during the cooling operation of the air conditioner.
  • the temperature sensor 12 detects the temperature TA of the first refrigerant CA at the outlet of the outdoor heat exchanger 2 during the cooling operation of the air conditioner.
  • the condensation temperature CT of the first refrigerant CA detected by the temperature sensor 11 and the first refrigerant at the outlet of the outdoor heat exchanger 2 detected by the temperature sensor 12 Based on the difference from the temperature TA of the CA, the degree of supercooling SC of the first refrigerant CA at the outlet of the outdoor heat exchanger 2 can be obtained.
  • the temperature sensor 12 measures the condensation temperature CT of the first refrigerant CA. I can't. As a result, the operating state of the air conditioner cannot be correctly grasped.
  • FIG. 3 is a diagram showing the configuration of the air conditioner according to the first embodiment and the flow of the refrigerant in the refrigerant circuit 100 during the cooling operation of the air conditioner.
  • FIG. 4 is a diagram showing the arrangement of the detection container 20 of the first embodiment.
  • the air conditioner includes a refrigerant circuit 100, a detection container 20 connected to the refrigerant circuit 100, and a control device 80. Since the refrigerant circuit 100 of the first embodiment is the same as the refrigerant circuit 100 of the reference example, the description will not be repeated.
  • the detection container 20 is arranged between the outdoor heat exchanger 2 and the expansion valve 3.
  • FIG. 5 is a diagram showing the configuration of the detection container 20 of the first embodiment.
  • the space inside the detection container 20 is divided into a first space R1 and a second space R2 by the diaphragm 23.
  • the diaphragm 23 is a displaceable thin film member.
  • the first space R1 is a closed space.
  • a second refrigerant CB is sealed in the first space R1.
  • the second refrigerant CB is of the same type as the first refrigerant CA that circulates in the refrigerant circuit 100.
  • the second space R2 is connected to the refrigerant circuit 100 by the refrigerant pipe 7.
  • the first refrigerant CA that circulates in the refrigerant circuit 100 flows into the second space R2.
  • the strain sensor GS is arranged on the diaphragm 23. In FIG. 5, the strain sensor GS is arranged in the second space R2, but may be arranged in the first space R1.
  • the temperature sensor KS is arranged on the diaphragm 23.
  • the temperature sensor KS constitutes the temperature detector 51.
  • the temperature sensor KS detects the temperature Tq of the first refrigerant CA between the outdoor heat exchanger 2 and the detection container 20.
  • FIG. 6 is a ph diagram of the refrigerant circuit 100.
  • LA represents an isotherm at outside air temperature.
  • LB represents the isotherm of the outlet temperature in the outdoor heat exchanger 2 (condenser).
  • LC represents an isotherm at the discharge pressure Pd of the outdoor heat exchanger 2.
  • the temperature of the second refrigerant CB enclosed in the first space R1 is higher than the outside air temperature and lower than the temperature of the first refrigerant CA discharged from the outdoor heat exchanger 2.
  • the saturation pressure P1s at the outside air temperature the saturation pressure P2s at the temperature of the first refrigerant CA discharged from the outdoor heat exchanger 2 and the pressure Pv of the second refrigerant CB sealed in the first space R1. , The following equation holds.
  • ⁇ P Pd-Pv ... (3)
  • the strain sensor GS measures the differential pressure ⁇ P.
  • the differential pressure ⁇ P changes according to the degree of supercooling SC.
  • the degree of supercooling SC becomes smaller, the second refrigerant CB in the first space R1 is warmed by the first refrigerant CA having a high temperature discharged from the outdoor heat exchanger 2, so that the Pv becomes large.
  • ⁇ P becomes smaller.
  • the degree of supercooling SC becomes large, the second refrigerant CB of the first space R1 is cooled by the first refrigerant CA having a low temperature discharged from the outdoor heat exchanger 2, so that Pv becomes small.
  • ⁇ P becomes large.
  • FIG. 7 is a diagram showing the relationship between the differential pressure ⁇ P and the supercooling degree SC for each temperature Tq in the first embodiment.
  • the relationship between the differential pressure ⁇ P and the supercooling degree SC changes depending on the temperature Tq of the first refrigerant CA between the outdoor heat exchanger 2 and the detection container 20.
  • the control device 80 overcools the temperature Tq of the first refrigerant CA detected by the temperature sensor KS, the differential pressure ⁇ P detected by the strain sensor GS, and the differential pressure ⁇ P corresponding to the predetermined refrigerant temperature Tq. Based on the relationship with the degree SC, the degree of supercooling SC of the first refrigerant CA at the outlet of the outdoor heat exchanger 2 is obtained.
  • control device 80 specifies a table of the temperature Tq of the refrigerant detected by the temperature sensor KS from the table showing the relationship between the differential pressure ⁇ P for each temperature Tq of the refrigerant and the degree of supercooling SC.
  • the control device 80 refers to the specified table to obtain the supercooling degree SC corresponding to the differential pressure ⁇ P detected by the strain sensor GS.
  • control device 80 specifies the characteristic formula of the temperature Tq of the refrigerant detected by the temperature sensor KS from the characteristic formulas representing the relationship between the differential pressure ⁇ P for each temperature Tq of the refrigerant and the degree of supercooling SC.
  • the control device 80 calculates the supercooling degree SC by substituting the differential pressure ⁇ P detected by the strain sensor GS into the specified characteristic formula.
  • the characteristic expression can be, for example, a quadratic expression. Alternatively, it may be a linear expression more simply.
  • control device 80 calculates the condensation temperature CT of the first refrigerant CA in the outdoor heat exchanger 2 according to the following equation.
  • the control device 80 controls the refrigerant circuit 100 based on the calculated supercooling degree SC and the condensation temperature CT.
  • the control device 80 controls the opening degree of the expansion valve 3 based on the condensation temperature CT of the first refrigerant CA.
  • the control device 80 determines whether or not the first refrigerant CA has leaked from the refrigerant circuit 100 based on the supercooling degree SC of the first refrigerant CA. For example, the control device 80 can determine that the first refrigerant CA is leaking from the refrigerant circuit 100 when the supercooling degree SC of the first refrigerant CA is 0.
  • FIG. 8 is a flowchart showing a control procedure of the air conditioner according to the first embodiment.
  • the temperature sensor KS detects the temperature Tq of the first refrigerant CA between the outdoor heat exchanger 2 and the detection container 20.
  • step S102 the strain sensor GS detects the differential pressure ⁇ P between the pressure Pd of the first refrigerant CA in the second space R2 of the detection container 20 and the pressure Pv of the second refrigerant CB in the first space R1. ..
  • step S103 the control device 80 obtains the supercooling degree SC of the first refrigerant CA at the outlet of the outdoor heat exchanger 2 based on the temperature Tq of the first refrigerant CA and the differential pressure ⁇ P.
  • step S104 the control device 80 calculates the condensation temperature CT of the first refrigerant CA in the outdoor heat exchanger 2 based on the temperature Tq of the first refrigerant CA and the supercooling degree SC.
  • step S105 the control device 80 determines whether or not the first refrigerant CA has leaked from the refrigerant circuit 100 based on the supercooling degree SC of the first refrigerant CA.
  • step S106 the control device 80 controls the opening degree of the expansion valve 3 based on the condensation temperature CT of the first refrigerant CA.
  • FIG. 9 is a diagram showing the configuration of the air conditioner according to the first embodiment and the flow of the refrigerant in the refrigerant circuit 100 during the heating operation of the air conditioner.
  • control device 80 operates as follows.
  • the control device 80 does not calculate the supercooling degree SC of the refrigerant. Therefore, the differential pressure ⁇ P detected by the strain sensor GS is not used by the control device 80.
  • the control device 80 uses the temperature Tq of the first refrigerant CA between the outdoor heat exchanger 2 and the detection container 20 detected by the temperature sensor KS as the evaporation temperature of the first refrigerant CA in the outdoor heat exchanger 2. get.
  • the supercooling degree SC is calculated using the differential pressure ⁇ P applied to the diaphragm 23 in the detection container 20, so that the supercooling degree SC is detected by the two temperature sensors 11 and 12 as in the reference example.
  • the degree of supercooling SC can be measured more accurately than the calculation of supercooling based on the difference in temperature.
  • the error may be large, especially when the detected temperature value is small.
  • the degree of supercooling can be correctly detected even when the operation is performed with a small amount of refrigerant sealed in the refrigerant circuit 100 and a low degree of supercooling.
  • the refrigerant leakage from the refrigerant circuit can be detected with high accuracy.
  • the temperature sensor KS and the strain sensor GS in the detection container 20, it is possible to obtain the supercooling degree SC of the first refrigerant CA with high accuracy.
  • the degree of supercooling SC of the refrigerant CA it is possible to save space in the air conditioner as compared with the case where a pressure sensor for detecting the pressure of the refrigerant is arranged around the outdoor heat exchanger 2. it can.
  • the condensation temperature CT of the first refrigerant CA is detected without using the temperature sensor 11 for measuring the condensation temperature CT of the first refrigerant CA. Can be done.
  • FIG. 10 is a diagram showing the arrangement of the temperature sensor arranged around the outdoor heat exchanger 2 and the detection container 20 in the second embodiment.
  • FIG. 11 is a diagram showing the configuration of the detection container 20 of the second embodiment.
  • the temperature sensor 10 is arranged around the outdoor heat exchanger 2.
  • the temperature sensor 10 detects the outside air temperature Ta.
  • the temperature sensor KS is not arranged on the diaphragm 23.
  • the calculation unit 19 calculates the temperature Tq of the first refrigerant CA between the outdoor heat exchanger 2 and the detection container 20 from the outside air temperature Ta detected by the temperature sensor 10 according to the following equation. To do.
  • Tq Ta + ⁇ ⁇ ⁇ ⁇ (5)
  • is determined by the specifications of the outdoor heat exchanger 2. The designer can decide arbitrarily. Alternatively, ⁇ may change according to the rotation speed of the compressor 1. For example, ⁇ may increase as the rotation speed of the compressor 1 increases.
  • FIG. 12 is a diagram showing the relationship between the differential pressure ⁇ P and the supercooling degree SC for each temperature Tq in the second embodiment.
  • the relationship between the differential pressure ⁇ P and the supercooling degree SC changes depending on the temperature Tq of the first refrigerant CA between the outdoor heat exchanger 2 and the detection container 20.
  • the control device 80 has a relationship between the temperature Tq detected by the temperature detector 52, the differential pressure ⁇ P detected by the strain sensor GS, the differential pressure ⁇ P according to the predetermined refrigerant temperature Tq, and the supercooling degree SC. Based on the above, the supercooling degree SC of the first refrigerant CA at the outlet of the outdoor heat exchanger 2 is obtained.
  • control device 80 specifies a table of the temperature Tq of the refrigerant detected by the temperature detector 52 from the table showing the relationship between the differential pressure ⁇ P for each temperature Tq of the refrigerant and the degree of supercooling SC.
  • the control device 80 refers to the specified table to obtain the supercooling degree SC corresponding to the differential pressure ⁇ P detected by the strain sensor GS.
  • control device 80 specifies the characteristic formula of the temperature Tq of the refrigerant detected by the temperature detector 52 from the characteristic formulas representing the relationship between the differential pressure ⁇ P for each temperature Tq of the refrigerant and the degree of supercooling SC. ..
  • the control device 80 calculates the supercooling degree SC by substituting the differential pressure ⁇ P detected by the strain sensor GS into the specified characteristic formula.
  • the characteristic expression can be, for example, a quadratic expression. Alternatively, it may be a linear expression more simply.
  • control device 80 calculates the condensation temperature CT of the first refrigerant CA in the outdoor heat exchanger 2 according to the following equation.
  • control device 80 controls the refrigerant circuit 100 based on the calculated supercooling degree SC and the condensation temperature CT, and the expansion valve 3 is based on the condensation temperature CT of the first refrigerant CA. Control the opening degree of.
  • FIG. 13 is a diagram showing the configuration of the air conditioner according to the third embodiment and the flow of the refrigerant in the refrigerant circuit 100 during the heating operation of the air conditioner.
  • FIG. 14 is a diagram showing the arrangement and configuration of the detection container 20 according to the third embodiment.
  • the air conditioner includes a refrigerant circuit 100, a detection container 20 connected to the refrigerant circuit 100, and a control device 80, as in the first embodiment.
  • the indoor heat exchanger 4 includes a sub heat exchanger 4a and a sub heat exchanger 4b.
  • the detection container 20 is arranged between the indoor heat exchanger 4 and the expansion valve 3.
  • the space inside the detection container 20 is divided into a first space R1 and a second space R2 by the diaphragm 23.
  • the first space R1 is a closed space.
  • a second refrigerant CB is sealed in the first space R1.
  • the second refrigerant CB is of the same type as the first refrigerant CA that circulates in the refrigerant circuit 100.
  • the second space R2 is connected to the refrigerant circuit 100 by the refrigerant pipe 7.
  • the first refrigerant CA that circulates in the refrigerant circuit 100 flows into the second space R2.
  • the strain sensor GS is arranged on the diaphragm 23.
  • the temperature sensor KS is arranged on the diaphragm 23.
  • the temperature sensor KS constitutes the temperature detector 51.
  • the temperature sensor KS detects the temperature Tq of the first refrigerant CA between the indoor heat exchanger 4 and the detection container 20.
  • a differential pressure ⁇ P between the pressure Pd of the first refrigerant CA in the second space R2 and the pressure Pv of the second refrigerant CB in the first space R1 is generated.
  • the strain sensor GS measures the differential pressure ⁇ P.
  • the control device 80 overcools the temperature Tq of the first refrigerant CA detected by the temperature sensor KS, the differential pressure ⁇ P detected by the strain sensor GS, and the differential pressure ⁇ P corresponding to the predetermined refrigerant temperature Tq. Based on the relationship with the degree SC, the degree of supercooling SC of the first refrigerant CA at the outlet of the indoor heat exchanger 4 is obtained.
  • control device 80 specifies a table of the temperature Tq of the refrigerant detected by the temperature sensor KS from the table showing the relationship between the differential pressure ⁇ P for each temperature Tq of the refrigerant and the degree of supercooling SC.
  • the control device 80 refers to the specified table to obtain the supercooling degree SC corresponding to the differential pressure ⁇ P detected by the strain sensor GS.
  • control device 80 specifies the characteristic formula of the temperature Tq of the refrigerant detected by the temperature sensor KS from the characteristic formulas representing the relationship between the differential pressure ⁇ P for each temperature Tq of the refrigerant and the degree of supercooling SC.
  • the control device 80 calculates the supercooling degree SC by substituting the differential pressure ⁇ P detected by the strain sensor GS into the specified characteristic formula.
  • the characteristic expression can be, for example, a quadratic expression. Alternatively, it may be a linear expression more simply.
  • control device 80 calculates the condensation temperature CT of the first refrigerant CA in the indoor heat exchanger 4 according to the following equation.
  • control device 80 controls the refrigerant circuit 100 based on the calculated supercooling degree SC and the condensation temperature CT, and the expansion valve 3 is based on the condensation temperature CT of the first refrigerant CA. Control the opening degree of.
  • FIG. 15 is a diagram showing the configuration of the air conditioner according to the third embodiment and the flow of the refrigerant in the refrigerant circuit 100 during the cooling operation of the air conditioner.
  • control device 80 operates as follows.
  • the control device 80 does not calculate the supercooling degree SC of the refrigerant. Therefore, the differential pressure ⁇ P detected by the strain sensor GS is not used by the control device 80.
  • the control device 80 uses the temperature Tq of the first refrigerant CA between the indoor heat exchanger 4 and the detection container 20 detected by the temperature sensor KS as the evaporation temperature of the first refrigerant CA in the indoor heat exchanger 4. get.
  • FIG. 16 is a diagram showing the arrangement and configuration of the detection container 20 according to the fourth embodiment.
  • the temperature sensor KS is not arranged on the diaphragm 23.
  • the calculation unit 39 is the first between the indoor heat exchanger 4 and the detection container 20 according to the following equation from the outside air temperature Ta detected by the temperature sensor 10 around the outdoor heat exchanger 2.
  • the temperature Tq of the refrigerant CA of the above is calculated.
  • Tq Ta + ⁇ ⁇ ⁇ ⁇ (8)
  • is determined by the specifications of the indoor heat exchanger 4. The designer can decide arbitrarily. Alternatively, ⁇ may change according to the rotation speed of the compressor 1. For example, ⁇ may increase as the rotation speed of the compressor 1 increases.
  • the temperature sensor 10 and the calculation unit 39 form the temperature detector 52.
  • the control device 80 has a relationship between the temperature Tq detected by the temperature detector 52, the differential pressure ⁇ P detected by the strain sensor GS, the differential pressure ⁇ P according to the predetermined refrigerant temperature Tq, and the supercooling degree SC. Based on the above, the supercooling degree SC of the first refrigerant CA at the outlet of the indoor heat exchanger 4 is obtained.
  • control device 80 specifies a table of the temperature Tq of the refrigerant detected by the temperature detector 52 from the table showing the relationship between the differential pressure ⁇ P for each temperature Tq of the refrigerant and the degree of supercooling SC.
  • the control device 80 refers to the specified table to obtain the supercooling degree SC corresponding to the differential pressure ⁇ P detected by the strain sensor GS.
  • control device 80 specifies the characteristic formula of the temperature Tq of the refrigerant detected by the temperature detector 52 from the characteristic formulas representing the relationship between the differential pressure ⁇ P for each temperature Tq of the refrigerant and the degree of supercooling SC. ..
  • the control device 80 calculates the supercooling degree SC by substituting the differential pressure ⁇ P detected by the strain sensor GS into the specified characteristic formula.
  • the characteristic expression can be, for example, a quadratic expression. Alternatively, it may be a linear expression more simply.
  • control device 80 calculates the condensation temperature CT of the first refrigerant CA in the indoor heat exchanger 4 according to the following equation.
  • control device 80 controls the refrigerant circuit 100 based on the calculated supercooling degree SC and the condensation temperature CT, and the expansion valve 3 is based on the condensation temperature CT of the first refrigerant CA. Control the opening degree of.
  • the detection container 20 is arranged between the outdoor heat exchanger 2 and the expansion valve 3, and in the third and fourth embodiments, the detection container 20 is the indoor heat exchanger 4. It was decided to be arranged between the expansion valve 3 and the expansion valve 3, but the present invention is not limited to this.
  • the detection container 20A may be arranged between the outdoor heat exchanger 2 and the expansion valve 3, and the detection container 20B may be arranged between the indoor heat exchanger 4 and the expansion valve 3.

Abstract

検出容器(20)は、室外熱交換器(2)と膨張弁(3)との間に配置される。ダイヤフラム(23)は、検出容器(20)の内部の空間を第1の空間(R1)と、第2の空間(R2)とに分割する。第1の空間(R1)は、密閉されて、かつ第1の冷媒(CA)と同一種類の第2の冷媒(CB)が封入される。第2の空間(R2)は、冷媒回路(100)と接続されて、かつ第1の冷媒(CA)が流入する。歪みセンサ(GS)は、ダイヤフラム(23)上に配置され、第2の空間(R2)の第1の冷媒(CA)の圧力と第1の空間(R1)の第2の冷媒(CB)の圧力との差を検出する。温度検出器(51)は、室外熱交換器(2)と検出容器(20)との間の第1の冷媒(CA)の温度を検出する。

Description

空気調和装置
 本発明は、空気調和装置に関する。
 従来から、運転状態量として過冷却度を算出することができる空気調和装置が知られている。たとえば、特許文献1に記載の装置は、外気温度を検出する温度センサと、利用側熱交換器において熱交換される空気温度を検出する温度センサを備える。この装置は、2つの温度センサによって検出された温度の差によって、過冷却度を算出する。
特開2016-99059号公報
 しかしながら、特許文献1記載の冷凍サイクル装置では、2つの温度センサによって検出された温度に誤差がある場合に、算出される過冷却度の精度が悪くなる。特に、過冷却度が小さい値のときには、2つの温度センサの検出温度の誤差によって、算出される過冷却度の精度が著しく劣化する。
 それゆえに、本発明の目的は、運転状態を高精度に求めることができる空気調和装置を提供することである。
 本発明の空気調和装置は、第1の冷媒が循環し、冷媒配管によって環状に接続された圧縮機と、室外熱交換器と、膨張弁と、室内熱交換器とを含む冷媒回路と、室外熱交換器と膨張弁との間に配置された検出容器と、検出容器の内部の空間を第1の空間と、第2の空間とに分割するダイヤフラムとを備える。第1の空間は、密閉されて、かつ第1の冷媒と同一種類の第2の冷媒が封入される。第2の空間は、冷媒回路と接続されて、かつ第1の冷媒が流入する。空気調和装置は、さらに、ダイヤフラム上に配置され、第2の空間の第1の冷媒の圧力と第1の空間の第2の冷媒の圧力との差を検出する歪みセンサと、室外熱交換器と検出容器との間の第1の冷媒の温度を検出する温度検出器とを備える。
 本発明の空気調和装置は、第1の冷媒が循環し、冷媒配管によって環状に接続された圧縮機と、室外熱交換器と、膨張弁と、室内熱交換器とを含む冷媒回路と、室内熱交換器と膨張弁との間に配置された検出容器と、検出容器の内部の空間を第1の空間と、第2の空間とに分割するダイヤフラムとを備える。第1の空間は、密閉されて、かつ第1の冷媒と同一種類の第2の冷媒が封入される。第2の空間は、冷媒回路と接続されて、かつ第1の冷媒が流入する。空気調和装置は、さらに、ダイヤフラム上に配置され、第2の空間の第1の冷媒の圧力と第1の空間の第2の冷媒の圧力との差を検出する歪みセンサと、室内熱交換器と検出容器との間の第1の冷媒の温度を検出する温度検出器とを備える。
 本発明によれば、歪みセンサと、温度検出器とを備えることによって、運転状態を高精度に求めることができる。
参考例の空気調和装置の冷媒回路100および空気調和装置の冷房運転時の冷媒回路100の冷媒の流れを表わす図である。 図1の室外熱交換器2の周辺に配置される温度センサを表わす図である。 実施の形態1の空気調和装置の構成および空気調和装置の冷房運転時の冷媒回路100の冷媒の流れを表わす図である。 実施の形態1の検出容器20の配置を表わす図である。 実施の形態1の検出容器20の構成を表わす図である。 冷媒回路100のp-h線図である。 実施の形態1における、温度Tqごとの、差圧ΔPと過冷却度SCとの関係を表わす図である。 実施の形態1の空気調和装置の制御手順を表わすフローチャートである。 実施の形態1の空気調和装置の構成および空気調和装置の暖房運転時の冷媒回路100の冷媒の流れを表わす図である。 実施の形態2における、室外熱交換器2の周辺に配置される温度センサと、検出容器20の配置を表わす図である。 実施の形態2の検出容器20の構成を表わす図である。 実施の形態2における、温度Tqごとの、差圧ΔPと過冷却度SCとの関係を表わす図である。 実施の形態3の空気調和装置の構成および空気調和装置の暖房運転時の冷媒回路100の冷媒の流れを表わす図である。 実施の形態3の検出容器20の配置および構成を表わす図である。 実施の形態3の空気調和装置の構成および空気調和装置の冷房運転時の冷媒回路100の冷媒の流れを表わす図である。 実施の形態4の検出容器20の配置および構成を表わす図である。
 以下、実施の形態について、図面を参照して説明する。
 (参考例)
 まず、参考例の空気調和装置の構成およびその課題を説明する。
 図1は、参考例の空気調和装置の構成および空気調和装置の冷房運転時の冷媒回路100の冷媒の流れを表わす図である。
 冷媒回路100は、冷媒配管6によって環状に接続された圧縮機1と、四方弁5と、室外熱交換器2と、膨張弁3と、室内熱交換器4とを備える。冷媒回路100には、第1の冷媒CAが循環する。
 圧縮機1は、第1の冷媒CAを圧縮して吐出する。
 四方弁5は、第1の冷媒CAの流路を切り替える。空気調和装置の冷房運転時には、圧縮機1から吐出された第1の冷媒CAが室外熱交換器2へ流れる。空気調和装置の暖房運転時には、圧縮機1から吐出された第1の冷媒CAが室内熱交換器4へ流れる。
 室外熱交換器2は、ファンなどの室外送風機によって供給される空気(以下、外気と適宜称する)と第1の冷媒CAとの間で熱交換を行わさせる。室外熱交換器2は、空気調和装置の冷房運転時には、凝縮器として機能する。室外熱交換器2は、空気調和装置の暖房運転時には、蒸発器として機能する。
 膨張弁3は、第1の冷媒CAを減圧して膨張させる。膨張弁3は、たとえば、電子式膨張弁などの開度の制御が可能な弁で構成されている。
 室内熱交換器4は、ファンなどの室内送風機によって供給される空気と第1の冷媒CAとの間で熱交換を行わさせる。室内熱交換器4は、空気調和装置の冷房運転時には、蒸発器として機能する。室内熱交換器4は、空気調和装置の暖房運転時には、凝縮器として機能する。
 図2は、図1の室外熱交換器2の周辺に配置される温度センサを表わす図である。
 室外熱交換器2は、サブ熱交換器2aとサブ熱交換器2bとを含む。温度センサ11は、サブ熱交換器2aの中間に配置される。温度センサ11は、空気調和装置の冷房運転時において、室外熱交換器2を流れる第1の冷媒CAの凝縮温度CTを検出する。温度センサ12は、空気調和装置の冷房運転時における室外熱交換器2の第1の冷媒CAの出口に配置される。温度センサ12は、空気調和装置の冷房運転時において、室外熱交換器2の出口における第1の冷媒CAの温度TAを検出する。
 参考例では、空気調和装置の冷房運転時において、温度センサ11によって検出された第1の冷媒CAの凝縮温度CTと、温度センサ12によって検出された室外熱交換器2の出口の第1の冷媒CAの温度TAとの差に基づいて、室外熱交換器2の出口における第1の冷媒CAの過冷却度SCを求めることができる。
 したがって、参考例では、2つの温度センサ11,12の測定誤差の影響を受ける。特に、過冷却度SCが小さい値の場合、過冷却度SCを正しく計算することができない。さらに、温度センサ11だけでなく、温度センサ12が測定する温度も液相の第1の冷媒CAの温度の場合には、温度センサ12は、第1の冷媒CAの凝縮温度CTを測定することができない。その結果、空気調和装置の運転状態を正しく把握することできない。
 実施の形態1.
 図3は、実施の形態1の空気調和装置の構成および空気調和装置の冷房運転時の冷媒回路100の冷媒の流れを表わす図である。図4は、実施の形態1の検出容器20の配置を表わす図である。
 空気調和装置は、冷媒回路100、冷媒回路100に接続される検出容器20、および制御装置80を備える。実施の形態1の冷媒回路100は、参考例の冷媒回路100と同様なので、説明を繰り替えさない。検出容器20は、室外熱交換器2と膨張弁3との間に配置される。
 図5は、実施の形態1の検出容器20の構成を表わす図である。
 検出容器20の内部の空間は、ダイヤフラム23によって、第1の空間R1と第2の空間R2とに分割される。ダイヤフラム23は、変位可能な薄膜部材である。
 第1の空間R1は、密閉された空間である。第1の空間R1には、第2の冷媒CBが封入されている。第2の冷媒CBは、冷媒回路100を循環する第1の冷媒CAと同一種類である。
 第2の空間R2は、冷媒回路100と冷媒配管7によって接続される。第2の空間R2には、冷媒回路100を循環する第1の冷媒CAが流入される。
 歪みセンサGSは、ダイヤフラム23上に配置される。図5では、歪みセンサGSは、第2の空間R2内に配置されるが、第1の空間R1に配置されるものとしてもよい。
 温度センサKSは、ダイヤフラム23上に配置される。実施の形態1において、温度センサKSは、温度検出器51を構成する。温度センサKSは、室外熱交換器2と検出容器20との間の第1の冷媒CAの温度Tqを検出する。
 (冷房運転時の動作)
 空気調和装置の冷房運転時に、凝縮器として機能する室外熱交換器2によって冷却された第1の冷媒CAが検出容器20の第2の空間R2に流入する。
 図6は、冷媒回路100のp-h線図である。
 LAは、外気温度における等温線を表わす。LBは、室外熱交換器2(凝縮器)における出口の温度の等温線を表わす。LCは、室外熱交換器2の吐出圧力Pdにおける等温線を表わす。
 第1の空間R1に封入された第2の冷媒CBの温度は、外気温度よりも高く、かつ、室外熱交換器2から吐出される第1の冷媒CAの温度以下となる。外気温度における飽和圧力P1s、室外熱交換器2から吐出される第1の冷媒CAの温度における飽和圧力P2s、および第1の空間R1に封入された第2の冷媒CBの圧力Pvの間には、以下の式が成立する。
 P1s<Pv<P2s・・・(1)
 第2の空間R2に流入される第1の冷媒CAの圧力は、室外熱交換器2から吐出される第1の冷媒CAの圧力Pdとなる。よって、以下の関係が成立する。
 Pd>Pv・・・(2)
 よって、ダイヤフラム23には、第2の空間R2の第1の冷媒CAの圧力Pdと第1の空間R1の第2の冷媒CBの圧力Pvとの差圧ΔPが生じる。
 ΔP=Pd-Pv・・・(3)
 歪みセンサGSが、差圧ΔPを測定する。
 過冷却度SCに応じて、差圧ΔPは変化する。過冷却度SCが小さくなると、室外熱交換器2から吐出された温度の高い第1の冷媒CAによって、第1の空間R1の第2の冷媒CBが暖められるので、Pvが大きくなる。その結果、ΔPは、小さくなる。過冷却度SCが大きくなると、室外熱交換器2から吐出された温度の低い第1の冷媒CAによって、第1の空間R1の第2の冷媒CBが冷やされるので、Pvが小さくなる。その結果、ΔPは、大きくなる。
 図7は、実施の形態1における、温度Tqごとの、差圧ΔPと過冷却度SCとの関係を表わす図である。
 図7に示すように、差圧ΔPと過冷却度SCとの関係は、室外熱交換器2と検出容器20との間の第1の冷媒CAの温度Tqによって変化する。
 制御装置80は、温度センサKSによって検出された第1の冷媒CAの温度Tqと、歪みセンサGSによって検出された差圧ΔPと、予め定められた冷媒温度Tqに応じた差圧ΔPと過冷却度SCとの関係とに基づいて、室外熱交換器2の出口における第1の冷媒CAの過冷却度SCを求める。
 たとえば、制御装置80は、冷媒の温度Tqごとの差圧ΔPと過冷却度SCとの関係を表わすテーブルの中から、温度センサKSによって検出された冷媒の温度Tqのテーブルを特定する。制御装置80は、特定したテーブルを参照して、歪みセンサGSによって検出された差圧ΔPに対応する過冷却度SCを求める。
 あるいは、制御装置80は、冷媒の温度Tqごとの差圧ΔPと過冷却度SCとの関係を表わす特性式の中から、温度センサKSによって検出された冷媒の温度Tqの特性式を特定する。制御装置80は、特定した特性式に歪みセンサGSによって検出された差圧ΔPを代入することによって、過冷却度SCを算出する。特性式は、たとえば、2次式とすることができる。あるいは、より簡易に1次式としてもよい。
 さらに、制御装置80は、以下の式に従って、室外熱交換器2における第1の冷媒CAの凝縮温度CTを算出する。
 CT=Tq+SC・・・(4)
 制御装置80は、算出した過冷却度SCおよび凝縮温度CTに基づいて、冷媒回路100を制御する。
 制御装置80は、第1の冷媒CAの凝縮温度CTに基づいて、膨張弁3の開度を制御する。
 制御装置80は、第1の冷媒CAの過冷却度SCに基づいて、冷媒回路100からの第1の冷媒CAの漏れの有無を判定する。たとえば、制御装置80は、第1の冷媒CAの過冷却度SCが0の場合に、冷媒回路100から第1の冷媒CAが漏れていると判定することができる。
 図8は、実施の形態1の空気調和装置の制御手順を表わすフローチャートである。
 ステップS101において、温度センサKSは、室外熱交換器2と検出容器20との間の第1の冷媒CAの温度Tqを検出する。
 ステップS102において、歪みセンサGSは、検出容器20の第2の空間R2の第1の冷媒CAの圧力Pdと第1の空間R1の第2の冷媒CBの圧力Pvとの差圧ΔPを検出する。
 ステップS103において、制御装置80は、第1の冷媒CAの温度Tqと差圧ΔPとに基づいて、室外熱交換器2の出口における第1の冷媒CAの過冷却度SCを求める。
 ステップS104において、制御装置80は、第1の冷媒CAの温度Tqと、過冷却度SCとに基づいて、室外熱交換器2における第1の冷媒CAの凝縮温度CTを算出する。
 ステップS105において、制御装置80は、第1の冷媒CAの過冷却度SCに基づいて、冷媒回路100からの第1の冷媒CAの漏れの有無を判定する。
 ステップS106において、制御装置80は、第1の冷媒CAの凝縮温度CTに基づいて、膨張弁3の開度を制御する。
 (暖房運転時の動作)
 図9は、実施の形態1の空気調和装置の構成および空気調和装置の暖房運転時の冷媒回路100の冷媒の流れを表わす図である。
 空気調和装置の暖房運転時には、制御装置80は、以下のように動作する。
 制御装置80は、冷媒の過冷却度SCを算出しない。したがって、歪みセンサGSによって検出された差圧ΔPは、制御装置80によって使用されない。
 制御装置80は、温度センサKSによって検出された室外熱交換器2と検出容器20との間の第1の冷媒CAの温度Tqを、室外熱交換器2における第1の冷媒CAの蒸発温度として取得する。
 以上のように、本実施の形態では、検出容器20内のダイヤフラム23にかかる差圧ΔPを用いて過冷却度SCを算出するので、参考例のように2つの温度センサ11,12で検出された温度の差によって過冷却を算出するよりも、過冷却度SCを精度よく測定することができる。参考例では、特に、検出された温度の値が小さいときに、誤差が大きくなる場合がある。
 本実施の形態では、冷媒回路100に封入される冷媒量が少なくして過冷却度が少ない運転をしている場合でも、過冷却度を正しく検出できる。
 本実施の形態では、過冷却度SCを精度よく計測することができるので、冷媒回路からの冷媒漏洩を精度よく検知することができる。
 本実施の形態では、検出容器20内に温度センサKSと歪みセンサGSを配置することによって、精度のよい第1の冷媒CAの過冷却度SCを求めることができるので、精度のよい第1の冷媒CAの過冷却度SCを求めるために、室外熱交換器2の周辺に冷媒の圧力を検出するための圧力センサを配置する場合などに比べて、空気調和装置の省スペース化を図ることができる。
 さらに、本実施の形態では、参考例のように、第1の冷媒CAの凝縮温度CTを測定するための温度センサ11を用いなくても、第1の冷媒CAの凝縮温度CTを検出することができる。
 実施の形態2.
 図10は、実施の形態2における、室外熱交換器2の周辺に配置される温度センサと、検出容器20の配置を表わす図である。図11は、実施の形態2の検出容器20の構成を表わす図である。
 温度センサ10は、室外熱交換器2の周辺に配置される。温度センサ10は、外気温度Taを検出する。実施の形態2では、ダイヤフラム23上に温度センサKSが配置されない。
 (冷房運転時の動作)
 実施の形態2では、演算部19は、温度センサ10によって検出された外気温度Taから以下の式に従って、室外熱交換器2と検出容器20との間の第1の冷媒CAの温度Tqを算出する。
 Tq=Ta+α・・・(5)
 ここで、αは、室外熱交換器2の仕様で決まる。設計者が任意に決定することができる。あるいは、αは、圧縮機1の回転数に応じて変化するものとしてもよい。たとえば、圧縮機1の回転数が大きくなるほど、αが大きくなるものとしてもよい。
 実施の形態2では、温度センサ10と、演算部19とが温度検出器52を構成する。
 図12は、実施の形態2における、温度Tqごとの、差圧ΔPと過冷却度SCとの関係を表わす図である。
 図12に示すように、差圧ΔPと過冷却度SCとの関係は、室外熱交換器2と検出容器20との間の第1の冷媒CAの温度Tqによって変化する。
 制御装置80は、温度検出器52によって検出された温度Tqと、歪みセンサGSによって検出された差圧ΔPと、予め定められた冷媒温度Tqに応じた差圧ΔPと過冷却度SCとの関係とに基づいて、室外熱交換器2の出口における第1の冷媒CAの過冷却度SCを求める。
 たとえば、制御装置80は、冷媒の温度Tqごとの差圧ΔPと過冷却度SCとの関係を表わすテーブルの中から、温度検出器52によって検出された冷媒の温度Tqのテーブルを特定する。制御装置80は、特定したテーブルを参照して、歪みセンサGSによって検出された差圧ΔPに対応する過冷却度SCを求める。
 あるいは、制御装置80は、冷媒の温度Tqごとの差圧ΔPと過冷却度SCとの関係を表わす特性式の中から、温度検出器52によって検出された冷媒の温度Tqの特性式を特定する。制御装置80は、特定した特性式に歪みセンサGSによって検出された差圧ΔPを代入することによって、過冷却度SCを算出する。特性式は、たとえば、2次式とすることができる。あるいは、より簡易に1次式としてもよい。
 さらに、制御装置80は、以下の式に従って、室外熱交換器2における第1の冷媒CAの凝縮温度CTを算出する。
 CT=Tq+SC・・・(6)
 実施の形態1と同様に、制御装置80は、算出した過冷却度SCおよび凝縮温度CTに基づいて、冷媒回路100を制御し、第1の冷媒CAの凝縮温度CTに基づいて、膨張弁3の開度を制御する。
 実施の形態3.
 図13は、実施の形態3の空気調和装置の構成および空気調和装置の暖房運転時の冷媒回路100の冷媒の流れを表わす図である。図14は、実施の形態3の検出容器20の配置および構成を表わす図である。
 空気調和装置は、実施の形態1と同様に、冷媒回路100、冷媒回路100に接続される検出容器20、および制御装置80を備える。室内熱交換器4は、サブ熱交換器4aとサブ熱交換器4bとを含む。
 検出容器20は、室内熱交換器4と膨張弁3との間に配置される。検出容器20の内部の空間は、ダイヤフラム23によって、第1の空間R1と第2の空間R2とに分割される。第1の空間R1は、密閉された空間である。第1の空間R1には、第2の冷媒CBが封入されている。第2の冷媒CBは、冷媒回路100を循環する第1の冷媒CAと同一種類である。第2の空間R2は、冷媒回路100と冷媒配管7によって接続される。第2の空間R2には、冷媒回路100を循環する第1の冷媒CAが流入される。
 歪みセンサGSは、ダイヤフラム23上に配置される。
 温度センサKSは、ダイヤフラム23上に配置される。実施の形態3において、温度センサKSは、温度検出器51を構成する。温度センサKSは、室内熱交換器4と検出容器20との間の第1の冷媒CAの温度Tqを検出する。
 (暖房運転時の動作)
 空気調和装置の暖房運転時に、凝縮器として機能する室内熱交換器4によって冷却された第1の冷媒CAが検出容器20の第2の空間R2に流入する。
 ダイヤフラム23には、第2の空間R2の第1の冷媒CAの圧力Pdと第1の空間R1の第2の冷媒CBの圧力Pvとの差圧ΔPが生じる。
 実施の形態1と同様に、歪みセンサGSが、差圧ΔPを測定する。
 制御装置80は、温度センサKSによって検出された第1の冷媒CAの温度Tqと、歪みセンサGSによって検出された差圧ΔPと、予め定められた冷媒温度Tqに応じた差圧ΔPと過冷却度SCとの関係とに基づいて、室内熱交換器4の出口における第1の冷媒CAの過冷却度SCを求める。
 たとえば、制御装置80は、冷媒の温度Tqごとの差圧ΔPと過冷却度SCとの関係を表わすテーブルの中から、温度センサKSによって検出された冷媒の温度Tqのテーブルを特定する。制御装置80は、特定したテーブルを参照して、歪みセンサGSによって検出された差圧ΔPに対応する過冷却度SCを求める。
 あるいは、制御装置80は、冷媒の温度Tqごとの差圧ΔPと過冷却度SCとの関係を表わす特性式の中から、温度センサKSによって検出された冷媒の温度Tqの特性式を特定する。制御装置80は、特定した特性式に歪みセンサGSによって検出された差圧ΔPを代入することによって、過冷却度SCを算出する。特性式は、たとえば、2次式とすることができる。あるいは、より簡易に1次式としてもよい。
 実施の形態1と同様に、制御装置80は、以下の式に従って、室内熱交換器4における第1の冷媒CAの凝縮温度CTを算出する。
 CT=Tq+SC・・・(7)
 実施の形態1と同様に、制御装置80は、算出した過冷却度SCおよび凝縮温度CTに基づいて、冷媒回路100を制御し、第1の冷媒CAの凝縮温度CTに基づいて、膨張弁3の開度を制御する。
 (冷房運転時の動作)
 図15は、実施の形態3の空気調和装置の構成および空気調和装置の冷房運転時の冷媒回路100の冷媒の流れを表わす図である。
 空気調和装置の冷房運転時には、制御装置80は、以下のように動作する。
 制御装置80は、冷媒の過冷却度SCを算出しない。したがって、歪みセンサGSによって検出された差圧ΔPは、制御装置80によって使用されない。
 制御装置80は、温度センサKSによって検出された室内熱交換器4と検出容器20との間の第1の冷媒CAの温度Tqを、室内熱交換器4における第1の冷媒CAの蒸発温度として取得する。
 実施の形態4.
 図16は、実施の形態4の検出容器20の配置および構成を表わす図である。実施の形態4では、ダイヤフラム23上に温度センサKSが配置されない。
 (暖房運転時の動作)
 実施の形態4では、演算部39は、室外熱交換器2の周囲の温度センサ10によって検出された外気温度Taから以下の式に従って、室内熱交換器4と検出容器20との間の第1の冷媒CAの温度Tqを算出する。
 Tq=Ta+α・・・(8)
 ここで、αは、室内熱交換器4の仕様で決まる。設計者が任意に決定することができる。あるいは、αは、圧縮機1の回転数に応じて変化するものとしてもよい。たとえば、圧縮機1の回転数が大きくなるほど、αが大きくなるものとしてもよい。
 実施の形態4では、温度センサ10と、演算部39とが温度検出器52を構成する。
 制御装置80は、温度検出器52によって検出された温度Tqと、歪みセンサGSによって検出された差圧ΔPと、予め定められた冷媒温度Tqに応じた差圧ΔPと過冷却度SCとの関係とに基づいて、室内熱交換器4の出口における第1の冷媒CAの過冷却度SCを求める。
 たとえば、制御装置80は、冷媒の温度Tqごとの差圧ΔPと過冷却度SCとの関係を表わすテーブルの中から、温度検出器52によって検出された冷媒の温度Tqのテーブルを特定する。制御装置80は、特定したテーブルを参照して、歪みセンサGSによって検出された差圧ΔPに対応する過冷却度SCを求める。
 あるいは、制御装置80は、冷媒の温度Tqごとの差圧ΔPと過冷却度SCとの関係を表わす特性式の中から、温度検出器52によって検出された冷媒の温度Tqの特性式を特定する。制御装置80は、特定した特性式に歪みセンサGSによって検出された差圧ΔPを代入することによって、過冷却度SCを算出する。特性式は、たとえば、2次式とすることができる。あるいは、より簡易に1次式としてもよい。
 さらに、制御装置80は、以下の式に従って、室内熱交換器4における第1の冷媒CAの凝縮温度CTを算出する。
 CT=Tq+SC・・・(9)
 実施の形態1と同様に、制御装置80は、算出した過冷却度SCおよび凝縮温度CTに基づいて、冷媒回路100を制御し、第1の冷媒CAの凝縮温度CTに基づいて、膨張弁3の開度を制御する。
 変形例.
 本発明は、上記の実施形態に限定されるものではない。
 (1)実施の形態1および2では、検出容器20が、室外熱交換器2と膨張弁3との間に配置され、実施の形態3および4では、検出容器20が、室内熱交換器4と膨張弁3との間に配置されることとしたが、これに限定されるものではない。検出容器20Aが、室外熱交換器2と膨張弁3との間に配置され、かつ検出容器20Bが、室内熱交換器4と膨張弁3との間に配置されるものとしてもよい。
 今回開示された実施の形態はすべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は上記した説明ではなくて請求の範囲によって示され、請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。
 1 圧縮機、2 室外熱交換器、2a,2b,4a,4b サブ熱交換器、3 膨張弁、4 室内熱交換器、6,7 冷媒配管、10,11,12,KS 温度センサ、19 演算部、20 検出容器、23 ダイヤフラム、51,52 温度検出器、R1 第1の空間、R2 第2の空間、GS 歪みセンサ、CA 第1の冷媒、CB 第2の冷媒。

Claims (17)

  1.  空気調和装置であって、
     第1の冷媒が循環し、冷媒配管によって環状に接続された圧縮機と、室外熱交換器と、膨張弁と、室内熱交換器とを含む冷媒回路と、
     前記室外熱交換器と前記膨張弁との間に配置された検出容器と、
     前記検出容器の内部の空間を第1の空間と、第2の空間とに分割するダイヤフラムとを備え、前記第1の空間は、密閉されて、かつ前記第1の冷媒と同一種類の第2の冷媒が封入され、前記第2の空間は、前記冷媒回路と接続されて、かつ前記第1の冷媒が流入し、
     前記空気調和装置は、さらに、
     前記ダイヤフラム上に配置され、前記第2の空間の前記第1の冷媒の圧力と前記第1の空間の前記第2の冷媒の圧力との差を検出する歪みセンサと、
     前記室外熱交換器と前記検出容器との間の前記第1の冷媒の温度を検出する温度検出器とを備える、空気調和装置。
  2.  前記温度検出器は、前記ダイヤフラム上に配置され、前記室外熱交換器と前記検出容器との間の前記第1の冷媒の温度を検出する温度センサを含む、請求項1記載の空気調和装置。
  3.  前記温度検出器は、
     外気の温度を検出する温度センサと、
     前記温度センサによって検出された外気の温度に予め定められた値を加算することによって、前記室外熱交換器と前記検出容器との間の前記第1の冷媒の温度を検出する演算部とを備える、請求項1記載の空気調和装置。
  4.  前記予め定められた値は、前記圧縮機の周波数に応じて変化する、請求項3記載の空気調和装置。
  5.  前記空気調和装置の冷房運転時において、前記歪みセンサによって検出された圧力の差と、前記検出された前記第1の冷媒の温度とに基づいて、前記室外熱交換器の出口における前記第1の冷媒の過冷却度を求める制御装置を備える、請求項1~4のいずれか1項に記載の空気調和装置。
  6.  前記制御装置は、前記検出された前記第1の冷媒の温度に応じて、前記圧力の差と前記過冷却度との関係を表わす式を選択し、前記選択した式に前記検出された圧力の差を代入することによって、前記過冷却度を求める、請求項5記載の空気調和装置。
  7.  前記制御装置は、前記検出された前記第1の冷媒の温度と、前記過冷却度とに基づいて、前記室外熱交換器における前記第1の冷媒の凝縮温度を求める、請求項5または6記載の空気調和装置。
  8.  前記制御装置は、前記空気調和装置の暖房運転時において、前記検出された前記第1の冷媒の温度を前記室外熱交換器における前記第1の冷媒の蒸発温度として取得する、請求項5~7のいずれか1項に記載の空気調和装置。
  9.  空気調和装置であって、
     第1の冷媒が循環し、冷媒配管によって環状に接続された圧縮機と、室外熱交換器と、膨張弁と、室内熱交換器とを含む冷媒回路と、
     前記室内熱交換器と前記膨張弁との間に配置された検出容器と、
     前記検出容器の内部の空間を第1の空間と、第2の空間とに分割するダイヤフラムとを備え、
     前記第1の空間は、密閉されて、かつ前記第1の冷媒と同一種類の第2の冷媒が封入され、前記第2の空間は、前記冷媒回路と接続されて、かつ前記第1の冷媒が流入し、
     前記空気調和装置は、さらに、
     前記ダイヤフラム上に配置され、前記第2の空間の前記第1の冷媒の圧力と前記第1の空間の前記第2の冷媒の圧力との差を検出する歪みセンサと、
     前記室内熱交換器と前記検出容器との間の前記第1の冷媒の温度を検出する温度検出器とを備える、空気調和装置。
  10.  前記温度検出器は、前記ダイヤフラム上に配置され、前記室内熱交換器と前記検出容器との間の前記第1の冷媒の温度を検出する温度センサを含む、請求項9記載の空気調和装置。
  11.  前記温度検出器は、
     外気の温度を検出する温度センサと、
     前記温度センサによって検出された外気の温度に予め定められた値を加算することによって、前記室内熱交換器と前記検出容器との間の前記第1の冷媒の温度を検出する演算部とを備える、請求項9記載の空気調和装置。
  12.  前記予め定められた値は、前記圧縮機の周波数に応じて変化する、請求項11記載の空気調和装置。
  13.  前記空気調和装置の暖房運転時において、前記歪みセンサによって検出された圧力の差と、前記検出された前記第1の冷媒の温度とに基づいて、前記室内熱交換器の出口における前記第1の冷媒の過冷却度を求める制御装置を備える、請求項9~12のいずれか1項に記載の空気調和装置。
  14.  前記制御装置は、前記検出された前記第1の冷媒の温度に応じて、前記圧力の差と前記過冷却度との関係を表わす式を選択し、前記選択した式に前記検出された圧力の差を代入することによって、前記過冷却度を求める、請求項13記載の空気著和装置。
  15.  前記制御装置は、前記検出された前記第1の冷媒の温度と、前記過冷却度とに基づいて、前記室内熱交換器における前記第1の冷媒の凝縮温度を求める、請求項13または14記載の空気調和装置。
  16.  前記制御装置は、前記空気調和装置の冷房運転時において、前記検出された前記第1の冷媒の温度を前記室外熱交換器における前記第1の冷媒の蒸発温度として取得する、請求項13~15のいずれか1項に記載の空気調和装置。
  17.  前記制御装置は、前記過冷却度が0のときに、前記冷媒回路において前記第1の冷媒が漏洩していると判定する、請求項5~7、13~15のいずれか1項に記載の空気調和装置。
PCT/JP2019/044892 2019-11-15 2019-11-15 空気調和装置 WO2021095238A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP19952846.4A EP4060257A4 (en) 2019-11-15 2019-11-15 AIR CONDITIONING DEVICE
JP2021555752A JP7386886B2 (ja) 2019-11-15 2019-11-15 空気調和装置
PCT/JP2019/044892 WO2021095238A1 (ja) 2019-11-15 2019-11-15 空気調和装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2019/044892 WO2021095238A1 (ja) 2019-11-15 2019-11-15 空気調和装置

Publications (1)

Publication Number Publication Date
WO2021095238A1 true WO2021095238A1 (ja) 2021-05-20

Family

ID=75912976

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/044892 WO2021095238A1 (ja) 2019-11-15 2019-11-15 空気調和装置

Country Status (3)

Country Link
EP (1) EP4060257A4 (ja)
JP (1) JP7386886B2 (ja)
WO (1) WO2021095238A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023032126A1 (ja) * 2021-09-02 2023-03-09 三菱電機株式会社 差圧センサ及び差圧センサを備えた冷凍サイクル装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09105567A (ja) * 1995-10-06 1997-04-22 Denso Corp 冷凍装置
JP2010007994A (ja) * 2008-06-27 2010-01-14 Daikin Ind Ltd 空気調和装置および空気調和装置の冷媒量判定方法
JP2012211723A (ja) * 2011-03-31 2012-11-01 Nakano Refrigerators Co Ltd 冷凍装置及び冷凍装置の冷媒漏れ検知方法
JP2016099059A (ja) 2014-11-21 2016-05-30 三菱電機株式会社 冷凍サイクル装置

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007085612A (ja) 2005-09-21 2007-04-05 Sanden Corp 冷媒流量測定方法及び空気調和装置
JP2008039760A (ja) 2006-07-14 2008-02-21 Denso Corp 圧力センサ
JP2008249157A (ja) * 2007-03-29 2008-10-16 Saginomiya Seisakusho Inc 可逆温度式膨張弁
MX2011002406A (es) 2008-09-05 2011-04-05 Danfoss As Metodo para calibrar un sensor de sobrecalentamiento.
JP5855284B2 (ja) 2012-12-28 2016-02-09 三菱電機株式会社 空気調和装置
JP2016211832A (ja) * 2015-04-28 2016-12-15 ダイキン工業株式会社 利用側ユニットおよび冷凍装置
WO2018159321A1 (ja) * 2017-03-02 2018-09-07 株式会社デンソー エジェクタモジュール
JP2019035534A (ja) 2017-08-11 2019-03-07 株式会社デンソー 冷凍サイクル装置
JP7031482B2 (ja) * 2018-02-08 2022-03-08 株式会社デンソー エジェクタ式冷凍サイクル、および流量調整弁

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09105567A (ja) * 1995-10-06 1997-04-22 Denso Corp 冷凍装置
JP2010007994A (ja) * 2008-06-27 2010-01-14 Daikin Ind Ltd 空気調和装置および空気調和装置の冷媒量判定方法
JP2012211723A (ja) * 2011-03-31 2012-11-01 Nakano Refrigerators Co Ltd 冷凍装置及び冷凍装置の冷媒漏れ検知方法
JP2016099059A (ja) 2014-11-21 2016-05-30 三菱電機株式会社 冷凍サイクル装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4060257A4

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023032126A1 (ja) * 2021-09-02 2023-03-09 三菱電機株式会社 差圧センサ及び差圧センサを備えた冷凍サイクル装置

Also Published As

Publication number Publication date
JP7386886B2 (ja) 2023-11-27
EP4060257A1 (en) 2022-09-21
JPWO2021095238A1 (ja) 2021-05-20
EP4060257A4 (en) 2022-11-16

Similar Documents

Publication Publication Date Title
US10775084B2 (en) System for refrigerant charge verification
US9574810B1 (en) Optimizing energy efficiency ratio feedback control for direct expansion air-conditioners and heat pumps
JP4317878B2 (ja) 空気調和機及びその冷媒量判定方法
US5214918A (en) Refrigerator and method for indicating refrigerant amount
US20040144106A1 (en) Estimating evaporator airflow in vapor compression cycle cooling equipment
JP7257782B2 (ja) 空気調和システム
US8069682B2 (en) Air conditioner that corrects refrigerant quantity determination based on refrigerant temperature
KR20050037081A (ko) 히트펌프 시스템의 과열도 제어 방법
JP5381572B2 (ja) 冷凍装置の診断方法、冷凍装置の診断装置、及び冷凍装置
Kim et al. Extension of a virtual refrigerant charge sensor
KR20180112550A (ko) 공조 장치 및 상기 공조 장치의 제어 방법
WO2021095238A1 (ja) 空気調和装置
CN113175738B (zh) 计算空调器能力能效的方法、计算机存储介质和空调器
KR102150441B1 (ko) 공기조화장치
JPH08121917A (ja) 冷媒量判定装置
JP5487831B2 (ja) 漏洩診断方法、及び漏洩診断装置
KR20040054281A (ko) 공기조화기의 운전 제어방법
JP2017075760A (ja) 空気調和機
KR100882005B1 (ko) 냉매 충전 상태 검출 장치 및 이의 제어 방법
JP2018146169A (ja) 空調機
JPH07218058A (ja) 適正冷媒量判定機能付き冷凍空調装置
CN113175734B (zh) 计算空调器能力能效的方法、计算机存储介质和空调器
JP4131509B2 (ja) 冷凍サイクル制御装置
CN219415274U (zh) 室外机和空调系统
JP7098513B2 (ja) 環境形成装置及び冷却装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19952846

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021555752

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2019952846

Country of ref document: EP

Effective date: 20220615