WO2021095192A1 - 光通信システム、光回線終端装置及び光通信制御方法 - Google Patents
光通信システム、光回線終端装置及び光通信制御方法 Download PDFInfo
- Publication number
- WO2021095192A1 WO2021095192A1 PCT/JP2019/044638 JP2019044638W WO2021095192A1 WO 2021095192 A1 WO2021095192 A1 WO 2021095192A1 JP 2019044638 W JP2019044638 W JP 2019044638W WO 2021095192 A1 WO2021095192 A1 WO 2021095192A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- optical
- unit
- transmission
- reception
- power
- Prior art date
Links
Images
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B10/00—Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
- H04B10/50—Transmitters
- H04B10/564—Power control
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B10/00—Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
- H04B10/03—Arrangements for fault recovery
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B10/00—Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
- H04B10/07—Arrangements for monitoring or testing transmission systems; Arrangements for fault measurement of transmission systems
- H04B10/075—Arrangements for monitoring or testing transmission systems; Arrangements for fault measurement of transmission systems using an in-service signal
- H04B10/079—Arrangements for monitoring or testing transmission systems; Arrangements for fault measurement of transmission systems using an in-service signal using measurements of the data signal
- H04B10/0795—Performance monitoring; Measurement of transmission parameters
- H04B10/07953—Monitoring or measuring OSNR, BER or Q
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B10/00—Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
- H04B10/07—Arrangements for monitoring or testing transmission systems; Arrangements for fault measurement of transmission systems
- H04B10/075—Arrangements for monitoring or testing transmission systems; Arrangements for fault measurement of transmission systems using an in-service signal
- H04B10/079—Arrangements for monitoring or testing transmission systems; Arrangements for fault measurement of transmission systems using an in-service signal using measurements of the data signal
- H04B10/0795—Performance monitoring; Measurement of transmission parameters
- H04B10/07955—Monitoring or measuring power
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B10/00—Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
- H04B10/27—Arrangements for networking
- H04B10/272—Star-type networks or tree-type networks
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04Q—SELECTING
- H04Q11/00—Selecting arrangements for multiplex systems
- H04Q11/0001—Selecting arrangements for multiplex systems using optical switching
- H04Q11/0062—Network aspects
- H04Q11/0067—Provisions for optical access or distribution networks, e.g. Gigabit Ethernet Passive Optical Network (GE-PON), ATM-based Passive Optical Network (A-PON), PON-Ring
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04Q—SELECTING
- H04Q11/00—Selecting arrangements for multiplex systems
- H04Q11/0001—Selecting arrangements for multiplex systems using optical switching
- H04Q11/0062—Network aspects
- H04Q2011/0079—Operation or maintenance aspects
- H04Q2011/0083—Testing; Monitoring
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04Q—SELECTING
- H04Q2213/00—Indexing scheme relating to selecting arrangements in general and for multiplex systems
- H04Q2213/1301—Optical transmission, optical switches
Definitions
- the present invention relates to an optical communication system, an optical line termination device, and an optical communication control method.
- FIG. 10 is a diagram showing a configuration example of an optical access system.
- the optical access system shown in FIG. 10 includes an optical network unit (OLT: Optical Line Terminal) 91 and an optical network unit (ONU: Optical Network Unit) 92.
- the OLT 91 belongs to the communication operator side, and the ONU 92 belongs to the service user side.
- the OLT 91 and ONU 92 function as transmitters and receivers.
- the OLT 91 is loaded with an optical transmitter / receiver.
- N units N is an integer of 2 or more
- ONU 92s are physically connected via transmission line fibers 93, 94, a branch splitter 95, and the like.
- N units of ONU 92 are described as ONU # 1 to ONU # N, respectively.
- the transmission line fibers 93 and 94 are optical fibers.
- the 10G-EPON (10 gigabit-ethernet (registered trademark) passive optical network) system intended for application to optical access systems has been standardized in IEEE802.3av.
- a maximum communication speed of about 1 Gbps / 10 Gbps (Gbps: gigabit per second) can be realized.
- FIG. 11 is a diagram showing the transmission / reception performance of the specified OLT and ONU. If the OLT or ONU receives an optical signal with a reception power equal to or less than the specified value, the communication connection is not secured and the communication service may be interrupted.
- the connection budget of the downlink is stricter than that of the uplink. Therefore, if a loss is added to the line shared by the uplink and the downlink, it is highly possible that the downlink is the cause of the disconnection.
- the up direction is from the ONU to the OLT, and the down direction is from the OLT to the ONU.
- the ONU is equipped with a photodetector (PD).
- PD photodetector
- a photodetector is a light receiving element that converts an optical signal transmitted from an OLT into an electrical signal. Photodetectors can be damaged when they receive an ultra-high power optical signal. If damaged, the ONU may not function.
- optical splitters optical fiber fusion points and the like. It is necessary to consider these points in long-term operation even on a line where there is no problem when the communication service is opened.
- the reception power in the ONU may decrease due to aged deterioration of the optical transmitter / receiver in the OLT, the optical transceiver in the ONU, the transmission line fiber fusion point, the optical splitter, and the like.
- the reception power in the ONU is lowered, the quality of the received signal is deteriorated and the communication service is interrupted in some ONU users.
- the reception sensitivity of the PD in the ONU deteriorates, the quality of the received signal also deteriorates, and the communication service is interrupted. Therefore, it is conceivable to equip the transmission unit of the OLT with a semiconductor optical amplifier (SOA). By amplifying the transmission signal by the semiconductor optical amplifier, the reception power in the ONU can be increased. As a result, while a certain ONU may recover from a communication service interruption, there may be an ONU that fails due to exceeding the allowable reception power.
- SOA semiconductor optical amplifier
- an object of the present invention is to provide an optical communication system, an optical line termination device, and an optical communication control method capable of reducing the occurrence of connection disconnection of a communication service.
- One aspect of the present invention is an optical communication system having an optical network unit connected by an optical transmission line and a plurality of optical network units, wherein the optical network unit includes the plurality of the optical network units and the optical network unit.
- the first optical transmitter / receiver that transmits / receives optical signals via the transmission path and the monitoring value that changes according to the received signal quality of the optical signal transmitted from the first optical transmitter / receiver have become values indicating deterioration.
- the optical network unit in which the reception power of the optical signal in each of the plurality of optical network units is equal to or less than the upper limit value and the monitoring value is a value indicating deterioration when the above is recognized for one or more optical network units.
- the optical network unit includes a control unit that controls to change the transmission power of the optical signal transmitted from the first optical transmission / reception unit so that the reception power of the optical signal becomes equal to or higher than the lower limit value. It is an optical communication system including a second optical transmission / reception unit that transmits / receives an optical signal via the device and the optical transmission path.
- One aspect of the present invention is an optical transmission / reception unit that transmits / receives an optical signal via a plurality of optical network units and an optical transmission path, and a monitoring that changes according to the reception signal quality of the optical signal transmitted from the optical transmission / reception unit.
- the reception power of the optical signal in each of the plurality of optical network units is equal to or less than the upper limit value, and the monitoring value deteriorates.
- An optical line including a control unit that controls to change the transmission power of the optical signal transmitted from the optical transmission / reception unit so that the reception power of the optical signal becomes equal to or higher than the lower limit value in the optical network unit having the value represented. It is a terminal device.
- One aspect of the present invention is an optical communication control method in an optical communication system having an optical line termination device connected by an optical transmission line and a plurality of optical termination devices, and is a first optical transmission / reception unit of the optical line termination device. And a transmission / reception step in which the second optical transmission / reception unit of the plurality of optical network units transmits / receives an optical signal via the optical transmission path, and a control unit of the optical network unit from the first optical transmission / reception unit.
- the plurality of the optical network units When one or more optical network units recognize that the monitoring value that changes according to the quality of the received signal in the second optical transmitter / receiver of the transmitted optical signal has become a value indicating deterioration, the plurality of the optical network units In each case, the first optical transmission / reception is such that the reception power of the optical signal is equal to or less than the upper limit value and the reception power of the optical signal is equal to or more than the lower limit value in the optical terminal unit whose monitoring value is a value indicating deterioration. It is an optical communication control method including a control step for changing the transmission power of an optical signal transmitted from a unit.
- FIG. 1 is a diagram showing a configuration example of an optical communication system 100 according to the first embodiment of the present invention.
- the optical communication system 100 is, for example, an optical access system using a PON (Passive Optical Network).
- the optical communication system 100 has an OLT (optical network unit) 1 and N units (N is an integer of 1 or more) ONU (optical network unit) 5.
- OLT optical network unit
- N is an integer of 1 or more
- ONU optical network unit
- ONU5 having an ONU number k (k is an integer of 1 or more and N or less) is also described as ONU # k.
- the OLT 1 and ONU 5 function as transmitters and receivers in an optical access system.
- the OLT 1 and the N ONUs 5 are connected via the optical transmission lines 6 and 7 and the optical splitter 8.
- the optical transmission lines 6 and 7 are, for example, single mode optical fiber (SMF).
- SMF single mode optical fiber
- the optical splitter 8 distributes the downlink optical signal transmitted through the optical transmission line 6 to the plurality of optical transmission lines 7. Further, the optical splitter 8 combines the upstream optical signals transmitted through each of the plurality of optical transmission lines 7 and outputs them to the optical transmission line 6.
- the OLT 1 includes a PON communication unit 2.
- the PON communication unit 2 is, for example, a PON package.
- the PON package is a housing in which the optical transmission / reception device 3 and the control unit 4 are mounted.
- the optical transmission / reception device 3 transmits / receives an optical signal to and from the ONU 5 according to a predetermined PON specification.
- the control unit 4 controls the optical transmission / reception device 3.
- the control unit 4 may be provided inside the optical transmission / reception device 3, or may be provided outside the PON communication unit 2.
- the control unit 4 When the control unit 4 recognizes with respect to one or more ONUs that some monitoring value that changes according to the received signal quality of the optical signal transmitted from the optical transmission / reception device 3 has become a value indicating deterioration, the downlink light
- the optical transmitter / receiver 3 is controlled so as to change the transmission power of the signal.
- the fact that the monitoring value becomes a value indicating deterioration indicates deterioration of the received signal quality in ONU5.
- the control unit 4 controls so that the reception power of the optical signal is equal to or less than the upper limit value in each of the N ONUs 5 and the reception power of the optical signal is equal to or more than the lower limit value in the ONU 5 whose monitoring value is a value indicating deterioration. I do.
- the ONU 5 includes an optical transmitter / receiver 51.
- the optical transmission / reception device 51 transmits / receives an optical signal according to the specifications of the optical transmission / reception device 3 of the OLT 1 and the PON.
- the optical transmitter / receiver 51 includes a photodetector.
- the photodetector is a light receiving element that converts an optical signal transmitted from the OLT 1 into an electric signal.
- FIG. 2 is a block diagram showing the configuration of the optical transmitter / receiver 3.
- the optical transmission / reception device 3 loaded on the OLT 1 includes an optical transmission unit 31, an optical reception unit 32, a demultiplexing unit 33, and an input / output unit 34.
- the optical transmission unit 31 and the combined demultiplexing unit 33 are connected by an optical waveguide unit 35
- the optical receiving unit 32 and the combined demultiplexing unit 33 are connected by an optical waveguide unit 36
- the combined demultiplexing unit 33 and the input / output unit 34 Is connected by an optical waveguide 37.
- the optical transmitter 31 is an optical transmitter.
- the optical transmission unit 31 converts an electric signal on which a data signal is superimposed into an optical signal.
- the optical transmission unit 31 transmits the downlink optical signal generated by this conversion to the junction / demultiplexing unit 33 via the optical waveguide unit 35.
- the optical receiving unit 32 receives an upstream optical signal from the combined demultiplexing unit 33 via the optical waveguide unit 36.
- the optical receiving unit 32 obtains a data signal superimposed on the optical signal by demodulating the received optical signal.
- the combined demultiplexing unit 33 combines and demultiplexes the optical signal transmitted from the optical transmitting unit 31 and the optical signal received by the optical receiving unit 32 via the optical waveguide units 35, 36, and 37.
- the combined demultiplexing unit 33 outputs the downlink optical signal transmitted by the optical transmitting unit 31 to the input / output unit 34 by the combined demultiplexing, and outputs the upstream optical signal received by the input / output unit 34 to the optical receiving unit 32. Output.
- the input / output unit 34 functions as an input / output end to a system including an optical transmission unit 31, an optical reception unit 32, and a demultiplexing unit 33.
- the input / output unit 34 receives the downlink optical signal transmitted by the optical transmission unit 31 from the combined / demultiplexing unit 33 via the optical waveguide unit 37.
- the input / output unit 34 outputs the downlink optical signal received from the combined / demultiplexing unit 33 to the optical transmission line 6. Further, the input / output unit 34 receives an upstream optical signal transmitted through the optical transmission line 6.
- the input / output unit 34 outputs the received upstream optical signal to the combined / demultiplexing unit 33 via the optical waveguide unit 37.
- FIG. 3 is a block diagram showing the configuration of the optical transmission unit 31.
- the optical transmitter 31 includes a light source 311, an optical modulator 312, and an SOA (semiconductor optical amplifier) 313.
- the light source 311 and the light modulator 312 are connected by the optical waveguide section 314, and the light modulator 312 and the SOA 313 are connected by the optical waveguide section 315.
- the light source 311 generates light.
- the light modulator 312 receives the light generated by the light source 311 via the optical waveguide section 314.
- the light modulator 312 modulates the light generated by the light source 311 with an electric signal on which the data signal is superimposed to generate an optical signal on which the data signal is superimposed.
- the light modulator 312 outputs the generated optical signal to the SOA 313 via the optical waveguide section 315.
- the SOA 313 amplifies the optical signal generated by the light modulator 312 and outputs the amplified optical signal.
- the optical transmission unit 31 outputs the optical signal output by the SOA 313 to the junction / demultiplexing unit 33 via the optical waveguide unit 35.
- the SOA 313 changes the gain according to the control of the control unit 4.
- the optical communication system 100 performs downlink communication as follows.
- the light source 311 of the OLT 1 generates light of the output power instructed by the control unit 4.
- the light modulator 312 modulates the light generated by the light source 311 based on the data signal of the electric signal to generate an optical signal.
- the SOA 313 receives the optical signal generated by the light modulator 312 via the optical waveguide section 315.
- the SOA 313 amplifies the received optical signal by the gain instructed by the control unit 4.
- the optical transmission unit 31 transmits the optical signal amplified by the SOA 313 to the junction / demultiplexing unit 33 via the optical waveguide unit 35.
- the combined demultiplexing unit 33 transmits an optical signal received from the optical transmission unit 31 via the optical waveguide unit 35 to the input / output unit 34 via the optical waveguide unit 37.
- the input / output unit 34 outputs the optical signal received from the demultiplexing unit 33 to the optical transmission line 6.
- the optical splitter 8 distributes the optical signal transmitted through the optical transmission line 6 to the optical transmission lines 7 connected to each of the N ONUs 5.
- the optical transmission / reception device 51 of each ONU 5 receives an optical signal transmitted through an optical transmission line 7 connected to its own device.
- the optical communication system 100 performs uplink communication as follows.
- the optical transmission / reception device 51 of each ONU 5 outputs an upstream optical signal to the optical transmission line 7 connected to the own device.
- the optical splitter 8 combines the optical signals transmitted through each optical transmission line 7 and outputs them to the optical transmission line 6.
- the input / output unit 34 of the OLT 1 receives the optical signal transmitted through the optical transmission line 6, and transmits the received optical signal to the combined / demultiplexing unit 33.
- the combined demultiplexing unit 33 receives an optical signal from the input / output unit 34, and transmits the received optical signal to the optical receiving unit 32.
- the optical receiving unit 32 converts the optical signal received from the input / output unit 34 into an electric signal and demodulates it.
- the control unit 4 of the OLT 1 controls the transmission power of the downlink optical signal by controlling one or both of the output power of the light source 311 and the gain of the SOA 313.
- the control unit 4 recognizes in some way some monitoring value that changes according to the quality of the received signal in the optical transmission / reception device 51 of each ONU 5. For example, ONU5 periodically notifies OLT1 of the monitoring value in its own device. Alternatively, the control unit 4 may inquire each ONU 5 of the monitoring value. Upon receiving the inquiry, the ONU 5 notifies the OLT 1 of the monitoring value measured for the optical transmission / reception device 51 of its own device.
- control unit 4 of the OLT 1 monitors the value of some index whose value changes in relation to the quality of the received signal in the ONU 5 for each ONU 5.
- an example of such an index is the reception power of the ONU 5 optical transmitter / receiver 51.
- the control unit 4 When the control unit 4 recognizes that the monitoring value of one or more ONU5s has fallen below a predetermined lower limit value, the control unit 4 controls the power of the downlink light signal so that the monitoring value in the ONU5 increases. Specifically, the control unit 4 controls one or both of the gain of the SOA 313 in the optical transmission unit 31 of the optical transmission / reception device 3 and the output power of the light source 311. The control unit 4 sets the optical signal so that the monitoring value is within the upper limit value and is equal to or higher than the lower limit value in all ONU5s connected to the OLT1 to which the ONU5 whose monitoring value is equal to or higher than the lower limit value is connected. Control power.
- the control unit 4 monitors the ONU 5 when it recognizes that the monitoring value of one or more ONU 5 exceeds a predetermined upper limit.
- the power of the downlink light signal is controlled so that the value decreases.
- FIG. 4 is a diagram showing information recognized by the control unit 4 of the OLT 1.
- the control unit 4 recognizes the reception power, the reception power upper limit value, and the reception power lower limit value of each ONU 5.
- Preceiving # k (t n ) is the received power of the ONU # k at time t n.
- Plim_upper # k is the upper limit of the reception power of ONU # k.
- Plim_lower # k is the lower limit of the reception power of ONU # k.
- the reception power upper limit values Plim_upper # 1 to Plim_upper # N may be all the same, some or all may be different, or may be ⁇ (infinity).
- the lower limit values of received power, Plim_lower # 1 to Plim_lower # N may be all the same, or some or all of them may be different.
- FIG. 5 is a flow diagram showing a transmission power control process in the control unit 4.
- the control unit 4 may start the transmission power control process shown in FIG. 5 periodically or at predetermined time intervals, or may start after a predetermined time has elapsed from the previous transmission power control process.
- t n be the time and N be the number of ONU5s. n and N satisfy the following equation (1). Further, the time t n satisfies the following equation (2).
- the control unit 4 at time t n, to recognize whether or not the state of the formula (3) below (step S11). That is, it is determined whether or not the received power at the time t n of some ONU # k is lower than the lower limit of the received power of the ONU # k.
- step S11: NO the control unit 4 ends the process of FIG. 5 without changing the transmission power control method of the optical transmission / reception device 3.
- step S11 when the control unit 4 recognizes that the state of the equation (3) is present (step S11: YES), the following equations (4), (5) and (6) are satisfied at time t n + 1.
- step S12 P- transmitting (t n ) is the transmission power of the optical transmitter / receiver 3 at time t n.
- the control unit 4 the formula (4) as shown in, transmit power P Transmitting MIDI optical transceiver 3 at time t n + 1 (t n + 1) is the transmission power P Transmitting MIDI optical transceiver 3 at time t n (t n)
- One or both of the light source 311 and the SOA 313 are controlled so as to change from the real number q.
- the time t received for each ONU # k in the n + 1 power P Receiving # k (t n + 1) is received power of the ONU # k at time t n P receiving # k (t n ) Changes by the real number q.
- the control unit 4 has the receiving power Preceding # k (t n + 1 ) of the ONU # k at the time t n + 1 of the ONU # k for all the ONU # k. received power lower limit value P lim_lower # greater than k, and determines the real q to be smaller than the reception power upper limit value P lim_upper # k of ONU # k. As represented by equation (5), the control unit 4 utilizes the received power P receiving # k (t n) in the ONU # k, a difference between the received power lower limit value P lim_lower # k as the control value. The control unit 4 ends the process of FIG. 5 after the process of step S12.
- the output power of the light source 311 and the gain of the SOA 313 in the PON communication unit 2 loaded in the OLT 1 can be avoided.
- the gain of SOA 313 and the output power of the light source 311 are controlled.
- the control unit of the OLT has acquired some monitoring value that changes according to the quality of the received signal in the ONU by some method.
- the ONU detects that some monitoring value that changes according to the received signal quality of its own device has become a value indicating deterioration, the detected monitoring value is notified to the OLT.
- the differences from the first embodiment will be mainly described.
- FIG. 6 is a diagram showing a configuration example of the optical communication system 100a according to the second embodiment.
- the optical communication system 100a is, for example, an optical access system using PON.
- the same parts as those of the optical communication system 100 of the first embodiment shown in FIG. 1 are designated by the same reference numerals, and the description thereof will be omitted.
- the optical communication system 100a shown in FIG. 6 differs from the optical communication system 100 shown in FIG. 1 in that it has OLT1a and ONU5a instead of OLT1 and ONU5.
- ONU5a having an ONU number k (k is an integer of 1 or more and N or less) is also described as ONU # k.
- the OLT1a and ONU5a function as transmitters and receivers in an optical access system.
- the difference between the OLT 1a shown in FIG. 6 and the OLT 1 shown in FIG. 1 is that the control unit 4a is provided instead of the control unit 4.
- the control unit 4a receives a notification of the received power below the lower limit from any ONU # i (i is an integer of 1 or more and N or less), the received signal quality of the optical signal deteriorates in the ONU # i. Recognize what you did.
- the control unit 4a inquires of another ONU # j (j is an integer of 1 or more and N or less, j ⁇ i) for the reception power.
- the control unit 4a uses the information of the received power received from each ONU5a, and by the same control as the control unit 4 of the first embodiment, the received power becomes equal to or higher than the lower limit value in the ONU5a whose received power is lower than the lower limit value. Moreover, the gain of SOA 313 or the output power of the light source 311 is controlled so that the reception power of all ONU5a is within the upper limit value.
- the ONU5a includes an optical transmitter / receiver 51a.
- the optical transmission / reception device 51a transmits / receives an optical signal according to the specifications of the optical transmission / reception device 3 of the OLT 1a and the PON.
- the optical transmitter / receiver 51 includes a photodetector.
- the ONU5a measures the reception power of the optical signal received by the optical transmission / reception device 51a.
- the optical transmission / reception device 51a of the ONU 5a may measure the reception power at a predetermined cycle.
- a measuring unit (not shown) provided outside the optical transmission / reception device 51a may measure the reception power.
- the ONU5a When the ONU5a recognizes that the received power has fallen below the lower limit value or receives a request from the OLT1a, the ONU5a transmits the received power information indicating the measured received power from the optical transmission / reception device 51a to the OLT1a by an optical signal. To do. When the ONU5a receives the request from the OLT1a, the ONU5a transmits the reception power measured at the time closest to the time when the request is received, or the reception power information indicating the reception power measured after receiving the request.
- FIG. 7 is a diagram showing information recognized by the OLT 1a and each ONU 5a.
- the OLT 1a recognizes the reception power upper limit value Plim_upper # k and the reception power lower limit value Plim_lower # k of each ONU # k. Further, each OLT # k includes the reception power Preceding # k (t n ) of the own device measured at time t n , the reception power upper limit value Plim_upper # k of the own device, and the reception power lower limit value Plim_lower of the own device. It recognizes # k.
- the reception power upper limit values Plim_upper # 1 to Plim_upper # N may be all the same, some or all may be different, or may be ⁇ (infinity). Further, the lower limit values of received power, Plim_lower # 1 to Plim_lower # N, may be all the same, or some or all of them may be different.
- FIG. 8 is a flow chart showing a transmission power control process in the control unit 4a.
- the control unit 4a may start the transmission power control process shown in FIG. 8 periodically or at predetermined time intervals, or may start after a predetermined time has elapsed from the previous transmission power control process.
- the ONU5a that recognizes the state of the above equation (3) transmits a notification of the received power to the OLT1a.
- the ONU5a sets the received power information indicating the received power Preceding # k (t n ) at the time t n in this notification.
- the control unit 4a determines whether or not the notification of the received power has been received from any ONU5a (step S21).
- step S21: NO the process of FIG. 8 is performed without changing the transmission power control method of the optical transmission / reception device 3. To finish.
- step S21 when the control unit 4a determines that the notification of the reception power has been received from one or more ONU5a (step S21: YES), the control unit 4a performs the process of step S22.
- ONU5a which has transmitted the reception power notification
- the control unit 4a acquires the received power information from the notification of the received power received from the ONU # i.
- the control unit 4a transmits a reception power notification request from the optical transmission / reception device 3 to ONU # j (j is an integer of 1 or more and N or less, j ⁇ i) other than ONU # i by an optical signal.
- the ONU # j Upon receiving the reception power notification request from the OLT 1a, the ONU # j transmits the reception power information indicating the reception power Preceding # j (t n ) measured in its own device from the optical transmission / reception device 51a to the OLT 1a by an optical signal.
- the control unit 4a of the OLT 1a receives the reception power information transmitted by the ONU # j from the optical transmission / reception device 3.
- control unit 4a When the control unit 4a receives the received power information from each ONU5a, the control unit 4a controls so as to satisfy the above equations (4), (5) and (6) as in step S12 of the first embodiment. (Step S23).
- the control unit 4a, the time t n + 1 in the transmit power P Transmitting MIDI optical transmission and reception apparatus 3a (t n + 1) is, to change from transmit power P Transmitting MIDI optical transmission and reception apparatus 3a (t n) by a real number q at time t n
- one or both of the light source 311 and the SOA 313 are controlled.
- the reception power Preceiving # k (t n + 1 ) of each ONU # k at time t n + 1 changes from the reception power Preceiving # k (t n ) of ONU # k at time t n by a real number q.
- the reception power Preceding # k (t n + 1 ) of ONU # k at time t n + 1 is larger than the lower limit value of reception power Plim_lower # k of ONU # k, and ,
- the real number q is set so as to be smaller than the reception power upper limit value Plim_upper # k of ONU # k.
- the gains of the light sources 311 and SOA313 in the PON communication unit 2 are appropriately controlled while reducing the load of the OLT1a as compared with the OLT1 of the first embodiment, and the optical transmission / reception device 3 of the OLT1a. It is possible to prevent the communication service from being interrupted while avoiding the failure of all the ONU5a under the control.
- FIG. 9 is a diagram showing a hardware configuration example of the PON communication unit 2.
- the PON communication unit 2 includes a processor 71, a storage unit 72, and a communication interface 73.
- the processor 71 is a central processing unit that performs calculations and controls.
- the processor 71 is, for example, a CPU (central processing unit).
- the storage unit 72 is a computer-readable recording medium.
- the storage unit 72 is, for example, various memories or storage devices.
- the storage unit 72 stores a program or the like for executing the processing of the control unit 4.
- the processor 71 realizes the control unit 4 by reading a program from the storage unit 72 and executing the program.
- the storage unit 72 also has a work area for the processor 71 to execute various programs. All or part of the functions of the control unit 4 may be realized by using hardware such as ASIC (Application Specific Integrated Circuit), PLD (Programmable Logic Device), and FPGA (Field Programmable Gate Array).
- the communication interface 73 corresponds to the optical transmitter / receiver 3.
- the hardware configuration of the PON communication unit 2a is also the same as the hardware configuration of the PON communication unit 2 shown in FIG.
- the storage unit 72 stores a program or the like for executing the process of the control unit 4a.
- the processor 71 realizes the control unit 4a by reading a program from the storage unit 72 and executing the program.
- the quality of the received signal may deteriorate due to aged deterioration of the optical transmission / reception device in the OLT, the optical transmission / reception device in the ONU, the transmission line fiber fusion point, the optical splitter, and the like. Therefore, it is conceivable that the SOA provided in the OLT amplifies the transmission signal to increase the reception power in the ONU and improve the reception signal quality. However, along with this, in some ONUs, the allowable reception power may be exceeded, and a failure may occur. Therefore, it is necessary to control the SOA gain appropriately. According to this embodiment, the control unit loaded on the OLT can appropriately control the gain of the light source and the SOA. Therefore, it is possible to avoid the failure of the ONU under the OLT transceiver and prevent the communication service from being interrupted.
- the PON which is a technology for constructing an optical access system, which is one of the optical communication systems, has an optical line termination device connected by an optical transmission line and a plurality of optical termination devices.
- the optical network unit is OLT1, 1a, and the optical network unit is ONU5, 5a.
- the optical network unit includes a first optical transmission / reception unit and a control unit.
- the first optical transmission / reception unit is, for example, an optical transmission / reception device 3.
- the first optical transmission / reception unit transmits / receives an optical signal via a plurality of optical termination devices and optical transmission lines.
- the control unit recognized for one or more optical termination devices that some monitoring value, which changes according to the quality of the received signal in the optical termination device of the optical signal transmitted from the first optical transmitter / receiver, became a value indicating deterioration.
- the received power of the optical signal is equal to or less than the upper limit value in each of the plurality of optical termination devices having a predetermined ratio or more such as all, and some monitoring value that changes according to the received signal quality is a value indicating deterioration.
- Control is performed to change the transmission power of the optical signal transmitted from the first optical transmitter / receiver so that the reception power of the optical signal becomes equal to or higher than the lower limit value in the apparatus.
- the optical termination device includes a second optical transmitter / receiver.
- the second optical transmission / reception unit transmits / receives an optical signal via an optical network unit and an optical transmission line.
- the second optical transmission / reception unit is, for example, optical transmission / reception devices 51, 51a.
- the first light transmission / reception unit includes a light source and an amplification unit.
- the amplification unit is, for example, SOA313.
- the amplification unit amplifies the optical signal generated by superimposing the transmission data on the light output from the light source.
- the control unit increases the transmission power of the optical signal transmitted from the first optical transmission / reception unit by controlling at least one of the output power of the light source and the gain in the amplification unit.
- a value representing the reception power of the optical signal in the second optical transmission / reception unit of the optical terminal device can be used.
- the control unit uses the difference between the reception power of the optical signal in the optical network unit and the lower limit of the reception power in the optical network unit as a control value for changing the transmission power of the optical signal transmitted from the first optical transmission / reception unit. You may use it.
- Optical waveguide 51 ... Optical transceiver, 51a ... Optical transceiver, 71 ... Processor, 72 ... Storage, 73 ... Communication Interface, 91 ... OLT, 92 ... ONU, 93 ... Transmission line fiber, 94 ... Transmission line fiber, 95 ... Branch splitter, 100 ... Optical communication system, 100a ... Optical communication system
Landscapes
- Engineering & Computer Science (AREA)
- Computer Networks & Wireless Communication (AREA)
- Physics & Mathematics (AREA)
- Electromagnetism (AREA)
- Signal Processing (AREA)
- Computing Systems (AREA)
- Optical Communication System (AREA)
- Small-Scale Networks (AREA)
Abstract
光通信システムは、光伝送路により接続される光回線終端装置と複数の光終端装置とを有する。光回線終端装置は、光送受信部と、制御部とを備える。光送受信部は、複数の光終端装置と光伝送路を介して光信号の送受信を行う。制御部は、光送受信部から送信された光信号の受信信号品質に応じて変化する監視値が劣化を表す値となったことを1以上の光終端装置について認識した場合に、複数の光終端装置それぞれにおいて光信号の受信パワーが上限値以下となり、かつ、監視値が劣化を表す値となった光終端装置において光信号の受信パワーが下限値以上となるように、光送受信部から送信する光信号の送信パワーを変化させる制御を行う。
Description
本発明は、光通信システム、光回線終端装置及び光通信制御方法に関する。
光通信システムの一つに、光アクセスシステムがある。図10は、光アクセスシステムの構成例を示す図である。図10に示す光アクセスシステムは、光回線終端装置(OLT:Optical Line Terminal)91と、光終端装置(ONU:Optical Network Unit)92とを有する。OLT91は、通信オペレータ側に属し、ONU92は、サービス利用者側に属する。OLT91及びONU92は、送受信機として機能する。OLT91には光送受信装置が装荷されている。この光送受信装置の配下には、伝送路ファイバ93、94および分岐スプリッタ95等を介してN台(Nは2以上の整数)のONU92が物理的に接続される。図10では、N台のONU92をそれぞれ、ONU#1~ONU#Nと記載している。伝送路ファイバ93、94は、光ファイバである。
光アクセスシステムへの適用が意図された10G-EPON(10gigabit-ethernet(登録商標) passive optical network)システムがIEEE802.3avで標準化されている。10G-EPONシステムでは、動作モードによって異なるが、最大で約1Gbps/10Gbps(Gbps:ギガビット毎秒)の通信速度を実現可能である。
10G-EPONシステムにおいては、OLT及びONUの送受信性能が規定されている。図11は、この規定されたOLT及びONUの送受信性能を示す図である。OLT又はONUが、規定値以下の受信パワーの光信号を受信した場合、通信接続は担保されないため、通信サービス断となる可能性がある。
図11に示すように、10G-EPONシステムにおいては、上りリンクと比較して下りリンクの接続バジェットが厳しく規定されている。従って、上りリンクと下りリンクとにより共有されている線路中に損失が加わる場合は、下りリンクが接続断の原因である可能性が高い。なお、上りは、ONUからOLTの方向であり、下りは、OLTからONUの方向である。
ONU内には、光検出器(PD)が具備されている。光検出器は、OLTから送信された光信号を電気信号に変換する受光素子である。光検出器は、超高パワーの光信号を受光した際に破損する可能性がある。破損が生じると、ONUが機能しなくなる場合がある。
また、光アクセスシステムにおいては、OLTとONU間に、経年劣化により損失が大きくなり得る点が存在している。このような点の例は、光スプリッタ、光ファイバ融着点などである。通信サービス開通時には問題がない線路においても、長期間の運用においてはこれらの点を考慮する必要がある。
Jun Sugawa,Hiroki Ikeda,"Development of OLT using Semiconductor Optical Amplifiers as Booster and Preamplifier for Loss-Budget Extension in 10.3-Gb/s PON system",in Optical Fiber Communication Conference, OSA Technical Digest (Optical Society of America, 2012), paper OTh4G.4,2012.
OLT内の光送受信装置、ONU内の光送受信装置、伝送路ファイバ融着点、光スプリッタなどの経年劣化のため、ONUにおける受信パワーが低下する場合がある。ONUにおける受信パワーが低下した場合、受信信号品質が劣化して一部のONUユーザにおいて通信サービス断が生じる。また、ONU内のPDの受信感度が劣化した場合にも同様に受信信号品質が劣化し、通信サービス断が生じる。そこで、OLTの送信部に、半導体光増幅器(SOA)を具備することが考えられる。半導体光増幅器が送信信号を増幅することによって、ONUにおける受信パワーを上げることができる。これにより、あるONUは通信サービス断から復旧する可能性がある一方で、許容受信パワーを上回ることが原因で故障するONUが存在する可能性がある。
上記事情に鑑み、本発明は、通信サービスの接続断の発生を低減することができる光通信システム、光回線終端装置及び光通信制御方法を提供することを目的としている。
本発明の一態様は、光伝送路により接続される光回線終端装置と複数の光終端装置とを有する光通信システムであって、前記光回線終端装置は、複数の前記光終端装置と前記光伝送路を介して光信号の送受信を行う第一光送受信部と、前記第一光送受信部から送信された光信号の受信信号品質に応じて変化する監視値が劣化を表す値となったことを1以上の光終端装置について認識した場合に、複数の前記光終端装置それぞれにおいて光信号の受信パワーが上限値以下となり、かつ、前記監視値が劣化を表す値となった前記光終端装置において光信号の受信パワーが下限値以上となるように、前記第一光送受信部から送信する光信号の送信パワーを変化させる制御を行う制御部とを備え、前記光終端装置は、前記光回線終端装置と前記光伝送路を介して光信号の送受信を行う第二光送受信部を備える、光通信システムである。
本発明の一態様は、複数の光終端装置と光伝送路を介して光信号の送受信を行う光送受信部と、前記光送受信部から送信された光信号の受信信号品質に応じて変化する監視値が劣化を表す値となったことを1以上の光終端装置について認識した場合に、複数の前記光終端装置それぞれにおいて光信号の受信パワーが上限値以下となり、かつ、前記監視値が劣化を表す値となった前記光終端装置において光信号の受信パワーが下限値以上となるように、前記光送受信部から送信する光信号の送信パワーを変化させる制御を行う制御部と、を備える光回線終端装置である。
本発明の一態様は、光伝送路により接続される光回線終端装置と複数の光終端装置とを有する光通信システムにおける光通信制御方法であって、前記光回線終端装置の第一光送受信部と複数の前記光終端装置の第二光送受信部とが、前記光伝送路を介して光信号の送受信を行う送受信ステップと、前記光回線終端装置の制御部が、前記第一光送受信部から送信された光信号の第二光送受信部における受信信号品質に応じて変化する監視値が劣化を表す値となったことを1以上の光終端装置について認識した場合に、複数の前記光終端装置それぞれにおいて光信号の受信パワーが上限値以下となり、かつ、前記監視値が劣化を表す値となった前記光終端装置において光信号の受信パワーが下限値以上となるように、前記第一光送受信部から送信する光信号の送信パワーを変化させる制御ステップと、を有する光通信制御方法である。
本発明により、通信サービスの接続断の発生を低減することが可能となる。
以下、図面を参照しながら本発明の実施形態を詳細に説明する。
(第1の実施形態)
図1は、本発明の第1の実施形態による光通信システム100の構成例を示す図である。光通信システム100は、例えば、PON(Passive Optical Network;受動光ネットワーク)を用いた光アクセスシステムである。光通信システム100は、OLT(光回線終端装置)1と、N台(Nは1以上の整数)のONU(光終端装置)5とを有する。本実施形態では、ONU番号がk(kは1以上N以下の整数)のONU5をONU#kとも記載する。OLT1及びONU5は、光アクセスシステムにおける送受信機として機能する。
図1は、本発明の第1の実施形態による光通信システム100の構成例を示す図である。光通信システム100は、例えば、PON(Passive Optical Network;受動光ネットワーク)を用いた光アクセスシステムである。光通信システム100は、OLT(光回線終端装置)1と、N台(Nは1以上の整数)のONU(光終端装置)5とを有する。本実施形態では、ONU番号がk(kは1以上N以下の整数)のONU5をONU#kとも記載する。OLT1及びONU5は、光アクセスシステムにおける送受信機として機能する。
OLT1と、N台のONU5とは、光伝送路6、7及び光スプリッタ8を介して接続される。光伝送路6、7は、例えば、シングルモード光ファイバ(SMF)である。光スプリッタ8は、光伝送路6を伝送した下りの光信号を複数の光伝送路7に分配する。また、光スプリッタ8は、複数の光伝送路7それぞれを伝送した上りの光信号を合波して、光伝送路6に出力する。
OLT1は、PON通信部2を備える。PON通信部2は、例えば、PONパッケージである。PONパッケージは、光送受信装置3と制御部4とを搭載した筐体である。光送受信装置3は、所定のPONの仕様に従ってONU5と光信号の送受信を行う。制御部4は、光送受信装置3の制御を行う。なお、制御部4は、光送受信装置3内に備えられてもよく、PON通信部2の外部に備えられてもよい。制御部4は、光送受信装置3から送信された光信号の受信信号品質に応じて変化するなんらかの監視値が劣化を表す値となったことを1以上のONU5について認識した場合に、下りの光信号の送信パワーを変化させるように光送受信装置3を制御する。監視値が劣化を表す値となったことは、ONU5における受信信号品質の劣化を表す。制御部4は、N台のONU5それぞれにおいて光信号の受信パワーが上限値以下となり、かつ、監視値が劣化を表す値となったONU5において光信号の受信パワーが下限値以上となるように制御を行う。
ONU5は、光送受信装置51を備える。光送受信装置51は、OLT1の光送受信装置3とPONの仕様に従って光信号の送受信を行う。光送受信装置51は、光検出器を具備する。光検出器は、OLT1から送信された光信号を電気信号に変換する受光素子である。
図2は、光送受信装置3の構成を示すブロック図である。OLT1に装荷される光送受信装置3は、光送信部31と、光受信部32と、合分波部33と、入出力部34とを備える。光送信部31と合分波部33とは光導波部35により接続され、光受信部32と合分波部33とは光導波部36により接続され、合分波部33と入出力部34とは光導波部37により接続される。
光送信部31は、光送信器である。光送信部31は、データ信号が重畳された電気信号を光信号に変換する。光送信部31は、この変換により生成された下りの光信号を、光導波部35を介して合分波部33に送信する。光受信部32は、合分波部33から光導波部36を介して上りの光信号を受信する。光受信部32は、受信した光信号を復調することにより、光信号に重畳されていたデータ信号を得る。
合分波部33は、光送信部31から送信された光信号と、光受信部32が受信する光信号とを光導波部35、36、37を介して合分波する。合分波部33は、この合分波によって、光送信部31が送信した下りの光信号を入出力部34に出力し、入出力部34が受信した上りの光信号を光受信部32に出力する。
入出力部34は、光送信部31、光受信部32及び合分波部33からなる系への入出力端として機能する。入出力部34は、光送信部31が送信した下りの光信号を、光導波部37を介して合分波部33から受信する。入出力部34は、合分波部33から受信した下りの光信号を光伝送路6へ出力する。また、入出力部34は、光伝送路6を伝送した上りの光信号を受信する。入出力部34は、受信した上りの光信号を、光導波部37を介して合分波部33に出力する。
図3は、光送信部31の構成を示すブロック図である。光送信部31は、光源311と、光変調器312と、SOA(半導体光増幅器)313とを有する。光源311と光変調器312とは光導波部314により接続され、光変調器312とSOA313とは光導波部315により接続される。
光源311は、光を発生する。光変調器312は、光源311が発生させた光を、光導波部314を介して受信する。光変調器312は、光源311が発生させた光を、データ信号が重畳された電気信号を用いて変調することにより、データ信号が重畳された光信号を生成する。光変調器312は、生成した光信号を、光導波部315を介してSOA313に出力する。SOA313は、光変調器312が生成した光信号を増幅し、増幅された光信号を出力する。光送信部31は、SOA313が出力した光信号を、光導波部35を介して合分波部33に出力する。SOA313は、制御部4の制御に従って、利得を変更する。
上記構成により、光通信システム100は、以下のように下り通信を行う。OLT1の光源311は、制御部4に指示された出力パワーの光を発生する。光変調器312は、光源311が発生させた光を、電気信号のデータ信号に基づいて変調し、光信号を生成する。SOA313は、光変調器312が生成した光信号を、光導波部315を介して受信する。SOA313は、受信した光信号を制御部4から指示された利得により増幅する。光送信部31は、SOA313が増幅した光信号を、光導波部35を介して合分波部33に送信する。合分波部33は、光導波部35を介して光送信部31から受信した光信号を、光導波部37を介して入出力部34に送信する。入出力部34は、合分波部33から受信した光信号を光伝送路6に出力する。光スプリッタ8は、光伝送路6を伝送した光信号を、N台のONU5それぞれと接続される光伝送路7に分配する。各ONU5の光送受信装置51は、自装置に接続される光伝送路7を伝送した光信号を受信する。
また、光通信システム100は、以下のように上り通信を行う。各ONU5の光送受信装置51は、自装置に接続される光伝送路7に上りの光信号を出力する。光スプリッタ8は、各光伝送路7を伝送した光信号を合波して、光伝送路6に出力する。OLT1の入出力部34は、光伝送路6を伝送した光信号を受信し、受信した光信号を合分波部33に送信する。合分波部33は、入出力部34から光信号を受信し、受信した光信号を光受信部32に送信する。光受信部32は、入出力部34から受信した光信号を電気信号に変換し、復調する。
OLT1の制御部4は、光源311の出力パワー又はSOA313の利得の一方又は両方を制御することによって下りの光信号の送信パワーを制御する。制御部4は、各ONU5の光送受信装置51における受信信号品質に応じて変化する何らかの監視値を、何らかの方法で認識する。例えば、ONU5は、定期的に、自装置における監視値をOLT1に通知する。あるいは、制御部4は、各ONU5に監視値を問い合わせてもよい。ONU5は、問い合わせを受けると、自装置の光送受信装置51について測定した監視値をOLT1に通知する。このようにして、OLT1の制御部4は、各ONU5について、ONU5における受信信号品質に関連して値が変化する何らかの指標の値を監視する。以下では、監視値が、受信信号品質の低下に応じて低化する場合を例に説明する。このような指標の一例は、ONU5の光送受信装置51における受信パワーである。
制御部4は、1以上のONU5の監視値が、予め決められた下限値を下回ったことを認識した場合、ONU5における監視値が上昇するように、下り光信号のパワーを制御する。具体的には、制御部4は、光送受信装置3が有する光送信部31内のSOA313の利得と、光源311の出力パワーとの一方又は両方を制御する。制御部4は、監視値が下限値以上となったONU5の接続先であるOLT1に接続される全てのONU5において、監視値が上限値以内、かつ、下限値以上となるように、光信号のパワーを制御する。なお、監視値が、受信信号品質の低下に応じて上昇する場合、制御部4は、1以上のONU5の監視値が、予め決められた上限を上回ったことを認識した場合に、ONU5における監視値が下降するように、下り光信号のパワーを制御する。
図4は、OLT1の制御部4が認識している情報を示す図である。制御部4は、各ONU5の受信パワー、受信パワー上限値及び受信パワー下限値を認識している。Preceiving#k(tn)は、時刻tnにおけるONU#kの受信パワーである。Plim_upper#kは、ONU#kの受信パワー上限値である。Plim_lower#kは、ONU#kの受信パワー下限値である。受信パワー上限値Plim_upper#1~Plim_upper#Nは、全て同じでもよく、一部又は全てが異なってもよく、∞(無限大)としてもよい。また、受信パワー下限値Plim_lower#1~Plim_lower#Nは、全て同じでもよく、一部又は全てが異なってもよい。
図5は、制御部4における送信パワー制御処理を示すフロー図である。例えば、制御部4は、図5に示す送信パワー制御処理を周期的に又は所定の時間ごとに開始してもよく、前回の送信パワー制御処理から所定時間経過後に開始してもよい。
時刻をtn、ONU5の台数をNとする。n及びNは、以下の式(1)を満たす。また、時刻tnは、以下の式(2)を満たす。
制御部4は、時刻tnにおいて、以下の式(3)の状態であるか否かを認識する(ステップS11)。すなわち、いずかのONU#kの時刻tnにおける受信パワーがONU#kの受信パワー下限値を下回っているか否かを判定する。
制御部4は、式(3)の状態ではないとことを認識した場合(ステップS11:NO)、光送受信装置3の送信パワーの制御方法を変更することなく、図5の処理を終了する。
一方、制御部4は、式(3)の状態であることを認識した場合(ステップS11:YES)、時刻tn+1において、以下の式(4)、式(5)及び式(6)を満たすように制御を行う(ステップS12)。Ptransmitting(tn)は、時刻tnにおける光送受信装置3の送信パワーである。
制御部4は、式(4)に示すように、時刻tn+1における光送受信装置3の送信パワーPtransmitting(tn+1)が、時刻tnにおける光送受信装置3の送信パワーPtransmitting(tn)から実数qだけ変化するように、光源311及びSOA313の一方又は両方を制御する。このとき、式(5)に示すように、時刻tn+1における各ONU#kの受信パワーPreceiving#k(tn+1)は、時刻tnにおけるONU#kの受信パワーPreceiving#k(tn)から実数qだけ変化する。制御部4は、式(5)及び式(6)に示すように、全てのONU#kについて、時刻tn+1におけるONU#kの受信パワーPreceiving#k(tn+1)が、ONU#kの受信パワー下限値Plim_lower#kより大きく、かつ、ONU#kの受信パワー上限値Plim_upper#kより小さくなるように実数qを定める。式(5)で表されるように、制御部4は、ONU#kにおける受信パワーPreceiving#k(tn)と、受信パワー下限値Plim_lower#kとの差分を制御値として利用する。制御部4は、ステップS12の処理の後、図5の処理を終了する。
上述した実施形態によれば、OLT1に装荷されたPON通信部2内の光源311の出力パワー及びSOA313の利得を適切に制御することで、OLT1の光送受信装置3配下の全ONU5の故障を回避しつつ、通信サービス断を未然に防ぐことが可能になる。つまり、OLT1のPON通信部2は、ONU5の受信パワーが所定の下限値未満となった場合に、当該ONU5の受信パワーが下限値以上となり、かつ、全ONU5の受信パワーが上限値以内となるように、SOA313の利得及び光源311の出力パワーを制御する。
(第2の実施形態)
第1の実施形態では、OLTの制御部は、何らかの方法で、ONUにおける受信信号品質に応じて変化する何らかの監視値を取得していた。本実施形態では、ONUが、自装置の受信信号品質に応じて変化する何らかの監視値が劣化を表す値となったことを検出した場合に、その検出した監視値をOLTに通知する。以下では、第1の実施形態との差分を中心に説明する。
第1の実施形態では、OLTの制御部は、何らかの方法で、ONUにおける受信信号品質に応じて変化する何らかの監視値を取得していた。本実施形態では、ONUが、自装置の受信信号品質に応じて変化する何らかの監視値が劣化を表す値となったことを検出した場合に、その検出した監視値をOLTに通知する。以下では、第1の実施形態との差分を中心に説明する。
図6は、第2の実施形態による光通信システム100aの構成例を示す図である。光通信システム100aは、例えば、PONを用いた光アクセスシステムである。同図において、図1に示す第1の実施形態の光通信システム100と同一の部分には同一の符号を付し、その説明を省略する。図6に示す光通信システム100aが、図1に示す光通信システム100と異なる点は、OLT1及びONU5に代えて、OLT1a及びONU5aを有する点である。本実施形態では、ONU番号がk(kは1以上N以下の整数)のONU5aをONU#kとも記載する。OLT1a及びONU5aは、光アクセスシステムにおける送受信機として機能する。
図6に示すOLT1aが、図1に示すOLT1と異なる点は、制御部4に代えて制御部4aを備える点である。制御部4aは、いずれかのONU#i(iは1以上N以下の整数)から、下限値を下回った受信パワーの通知を受けた場合に、ONU#iにおいて光信号の受信信号品質が劣化したことを認識する。制御部4aは、この通知を受けると、他のONU#j(jは1以上N以下の整数、j≠i)に受信パワーを問い合わせる。制御部4aは、各ONU5aから受信した受信パワーの情報を用いて、第1の実施形態の制御部4と同様の制御によって、受信パワーが下限値を下回ったONU5aにおいて受信パワーが下限値以上となり、かつ、全ONU5aの受信パワーが上限値以内となるように、SOA313の利得または光源311の出力パワーを制御する。
ONU5aは、光送受信装置51aを備える。光送受信装置51aは、OLT1aの光送受信装置3とPONの仕様に従って光信号の送受信を行う。光送受信装置51は、光検出器を具備する。ONU5aは、光送受信装置51aが受信した光信号の受信パワーを測定する。例えば、ONU5aの光送受信装置51aが、所定周期で受信パワーを測定してもよい。また、光送受信装置51aの外部に備えられた図示しない測定部が受信パワーを測定してもよい。ONU5aは、受信パワーが下限値を下回ったことを認識した場合、又は、OLT1aからの要求を受けた場合に、測定した受信パワーを示す受信パワー情報を光送受信装置51aから光信号によりOLT1aに送信する。ONU5aは、OLT1aからの要求を受けた場合、要求を受信した時刻と最も近い時刻に測定された受信パワー、又は、要求を受けてから測定した受信パワーを示す受信パワー情報を送信する。
図7は、OLT1a及び各ONU5aにおいて認識している情報を示す図である。OLT1aは、各ONU#kの受信パワー上限値Plim_upper#k及び受信パワー下限値Plim_lower#kを認識している。また、各OLT#kは、時刻tnに測定した自装置における受信パワーPreceiving#k(tn)と、自装置の受信パワー上限値Plim_upper#k及び自装置の受信パワー下限値Plim_lower#kとを認識している。なお、受信パワー上限値Plim_upper#1~Plim_upper#Nは、全て同じでもよく、一部又は全てが異なってもよく、∞(無限大)としてもよい。また、受信パワー下限値Plim_lower#1~Plim_lower#Nは、全て同じでもよく、一部又は全てが異なってもよい。
図8は、制御部4aにおける送信パワー制御処理を示すフロー図である。例えば、制御部4aは、図8に示す送信パワー制御処理を周期的に又は所定の時間ごとに開始してもよく、前回の送信パワー制御処理から所定時間経過後に開始してもよい。
時刻をtn、ONU5aの台数をNとする。第1の実施形態と同様に、n及びNは上述の式(1)を満たし、時刻tnは、上述の式(2)を満たす。
時刻tnにおいて、上記の式(3)の状態であることを認識したONU5aは、OLT1aに受信パワーの通知を送信する。ONU5aは、この通知に、時刻tnにおける受信パワーPreceiving#k(tn)を示す受信パワー情報を設定する。制御部4aは、いずれかのONU5aから受信パワーの通知を受信したか否かを判定する(ステップS21)。
制御部4aは、いずれのONU5aからも受信パワーの通知を受信していないと判定した場合(ステップS21:NO)、光送受信装置3の送信パワーの制御方法を変更することなく、図8の処理を終了する。
一方、制御部4aは、1以上のONU5aから受信パワーの通知を受信したと判定した場合(ステップS21:YES)、ステップS22の処理を行う。受信パワーの通知を送信したONU5aをONU#i(iは1以上N以下の整数)とする。制御部4aは、ONU#iから受信した受信パワーの通知から受信パワー情報を取得する。制御部4aは、ONU#i以外のONU#j(jは1以上N以下の整数、j≠i)に対して、受信パワー通知要求を光送受信装置3から光信号により送信する。OLT1aから受信パワー通知要求を受信したONU#jは、自装置において測定した受信パワーPreceiving#j(tn)を示す受信パワー情報を、光送受信装置51aから光信号によりOLT1aに送信する。OLT1aの制御部4aは、ONU#jが送信した受信パワー情報を光送受信装置3から受信する。
制御部4aは、各ONU5aから受信パワー情報を受信すると、第1の実施形態のステップS12と同様に、上記の式(4)、式(5)及び式(6)を満たすように制御を行う(ステップS23)。
すなわち、制御部4aは、時刻tn+1における光送受信装置3aの送信パワーPtransmitting(tn+1)が、時刻tnにおける光送受信装置3aの送信パワーPtransmitting(tn)から実数qだけ変化するように、光源311及びSOA313の一方又は両方を制御する。このとき、時刻tn+1における各ONU#kの受信パワーPreceiving#k(tn+1)は、時刻tnにおけるONU#kの受信パワーPreceiving#k(tn)から実数qだけ変化する。そこで、制御部4aは、全てのONU#kについて、時刻tn+1におけるONU#kの受信パワーPreceiving#k(tn+1)が、ONU#kの受信パワー下限値Plim_lower#kより大きく、かつ、ONU#kの受信パワー上限値Plim_upper#kより小さくなるように実数qを定める。制御部4aは、ステップS23の処理の後、図8の処理を終了する。
上述した実施形態によれば、第1の実施形態のOLT1よりもOLT1aの負荷を軽減しながら、PON通信部2内の光源311およびSOA313の利得を適切に制御して、OLT1aの光送受信装置3配下の全ONU5aの故障を回避しつつ、通信サービス断を未然に防ぐことが可能になる。
続いて、制御部4、4aがソフトウェア処理を行う場合のPON通信部2、2aのハードウェア構成例を説明する。図9は、PON通信部2のハードウェア構成例を示す図である。PON通信部2は、プロセッサ71、記憶部72及び通信インタフェース73を備える。プロセッサ71は、演算や制御を行う中央演算装置である。プロセッサ71は、例えば、CPU(central processing unit)である。記憶部72は、コンピュータ読み取り可能な記録媒体である。記憶部72は、例えば、各種メモリや記憶装置である。記憶部72は、制御部4の処理を実行するためのプログラムなどを記憶する。プロセッサ71は、記憶部72からプログラムを読み出して実行することにより、制御部4を実現する。記憶部72は、プロセッサ71が各種プログラムを実行する際のワークエリアなども有する。制御部4の機能の全て又は一部は、ASIC(Application Specific Integrated Circuit)やPLD(Programmable Logic Device)やFPGA(Field Programmable Gate Array)等のハードウェアを用いて実現されてもよい。通信インタフェース73は、光送受信装置3に相当する。
PON通信部2aのハードウェア構成も、図9に示すPON通信部2のハードウェア構成と同様である。但し、PON通信部2aの場合、記憶部72は、制御部4aの処理を実行するためのプログラムなどを記憶する。プロセッサ71は、記憶部72からプログラムを読み出して実行することにより、制御部4aを実現する。
PONシステムにおいては、OLT内の光送受信装置、ONU内の光送受信装置、伝送路ファイバ融着点、光スプリッタなどの経年劣化により受信信号品質が劣化することがある。そこで、OLTに具備されたSOAが送信信号を増幅することによって、ONUにおける受信パワーを上げて受信信号品質を改善することが考えられる。しかし、これに伴い、一部のONUでは、許容受信パワーを上回ってしまい、故障が発生する可能性もある。そのため、適切にSOA利得を制御する必要がある。本実施形態によれば、OLTに装荷された制御部が、光源およびSOAの利得を適切に制御することが可能となる。従って、OLTトランシーバ配下のONUの故障を回避し、通信サービス断を未然に防ぐことが可能となる。
以上説明した実施形態によれば、光通信システムの1つである光アクセスシステムの構築技術であるPONは、光伝送路により接続される光回線終端装置と複数の光終端装置とを有する。例えば、光回線終端装置は、OLT1、1aであり、光終端装置は、ONU5、5aである。光回線終端装置は、第一光送受信部と、制御部とを備える。第一光送受信部は、例えば、光送受信装置3である。第一光送受信部は、複数の光終端装置と光伝送路を介して光信号の送受信を行う。制御部は、第一光送受信部から送信された光信号の光終端装置における受信信号品質に応じて変化する何らかの監視値が劣化を表す値となったことを1以上の光終端装置について認識した場合に、全てなど所定割合以上の複数の光終端装置それぞれにおいて光信号の受信パワーが上限値以下となり、かつ、受信信号品質に応じて変化する何らかの監視値が劣化を表す値となった光終端装置において光信号の受信パワーが下限値以上となるように、第一光送受信部から送信する光信号の送信パワーを変化させる制御を行う。光終端装置は、第二光送受信部を備える。第二光送受信部は、光回線終端装置と光伝送路を介して光信号の送受信を行う。第二光送受信部は、例えば、光送受信装置51、51aである。
第一光送受信部は、光源と、増幅部とを備える。増幅部は、例えば、SOA313である。増幅部は、光源から出力される光に送信データを重畳して生成された光信号を増幅する。制御部は、光源の出力パワーと、増幅部における利得との少なくとも一方を制御することにより、第一光送受信部から送信する光信号の送信パワーを増加させる。
なお、受信信号品質に応じて変化する監視値として、光終端装置の第二光送受信部における光信号の受信パワーを表す値を用いることができる。制御部は、光終端装置における光信号の受信パワーと、光終端装置における受信パワーの下限値との差分を、第一光送受信部から送信する光信号の送信パワーを変化させるための制御値として用いてもよい。
以上、この発明の実施形態について図面を参照して詳述してきたが、具体的な構成はこれら実施形態に限られるものではなく、この発明の要旨を逸脱しない範囲の設計等も含まれる。
1…OLT, 1a…OLT, 2…PON通信部, 3…光送受信装置, 4…制御部, 4a…制御部, 5…ONU, 5a…ONU, 6…光伝送路, 7…光伝送路, 8…光スプリッタ, 31…光送信部, 32…光受信部, 33…合分波部, 34…入出力部, 35…光導波部, 36…光導波部, 37…光導波部, 311…光源, 312…光変調器, 313…半導体光増幅器, 314…光導波部, 315…光導波部, 51…光送受信装置, 51a…光送受信装置, 71…プロセッサ, 72…記憶部, 73…通信インタフェース, 91…OLT, 92…ONU, 93…伝送路ファイバ, 94…伝送路ファイバ, 95…分岐スプリッタ, 100…光通信システム, 100a…光通信システム
Claims (6)
- 光伝送路により接続される光回線終端装置と複数の光終端装置とを有する光通信システムであって、
前記光回線終端装置は、
複数の前記光終端装置と前記光伝送路を介して光信号の送受信を行う第一光送受信部と、
前記第一光送受信部から送信された光信号の受信信号品質に応じて変化する監視値が劣化を表す値となったことを1以上の光終端装置について認識した場合に、複数の前記光終端装置それぞれにおいて光信号の受信パワーが上限値以下となり、かつ、前記監視値が劣化を表す値となった前記光終端装置において光信号の受信パワーが下限値以上となるように、前記第一光送受信部から送信する光信号の送信パワーを変化させる制御を行う制御部とを備え、
前記光終端装置は、
前記光回線終端装置と前記光伝送路を介して光信号の送受信を行う第二光送受信部を備える、
光通信システム。 - 前記第一光送受信部は、
光源と、
前記光源から出力される光に送信データを重畳して生成された光信号を増幅する増幅部とを備え、
前記制御部は、前記光源の出力パワーと、前記増幅部における利得との少なくとも一方を制御することにより、前記第一光送受信部から送信される光信号の送信パワーを増加させる、
請求項1に記載の光通信システム。 - 前記監視値は、前記光終端装置における前記光信号の受信パワーを表す値である、
請求項1又は請求項2に記載の光通信システム。 - 前記制御部は、前記光終端装置における前記光信号の受信パワーと、前記光終端装置における前記受信パワーの下限値との差分を、前記第一光送受信部から送信する光信号の送信パワーを増加させるための制御値として用いる、
請求項3に記載の光通信システム。 - 複数の光回線終端装置と光伝送路を介して光信号の送受信を行う光送受信部と、
複数の光終端装置と光伝送路を介して光信号の送受信を行う光送受信部と、
前記光送受信部から送信された光信号の受信信号品質に応じて変化する監視値が劣化を表す値となったことを1以上の光終端装置について認識した場合に、複数の前記光終端装置それぞれにおいて光信号の受信パワーが上限値以下となり、かつ、前記監視値が劣化を表す値となった前記光終端装置において光信号の受信パワーが下限値以上となるように、前記光送受信部から送信する光信号の送信パワーを変化させる制御を行う制御部と、
を備える光回線終端装置。 - 光伝送路により接続される光回線終端装置と複数の光終端装置とを有する光通信システムにおける光通信制御方法であって、
前記光回線終端装置の第一光送受信部と複数の前記光終端装置の第二光送受信部とが、前記光伝送路を介して光信号の送受信を行う送受信ステップと、
前記光回線終端装置の制御部が、前記第一光送受信部から送信された光信号の第二光送受信部における受信信号品質に応じて変化する監視値が劣化を表す値となったことを1以上の光終端装置について認識した場合に、複数の前記光終端装置それぞれにおいて光信号の受信パワーが上限値以下となり、かつ、前記監視値が劣化を表す値となった前記光終端装置において光信号の受信パワーが下限値以上となるように、前記第一光送受信部から送信する光信号の送信パワーを変化させる制御ステップと、
を有する光通信制御方法。
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US17/776,263 US11949460B2 (en) | 2019-11-14 | 2019-11-14 | Optical communication system, optical line termination apparatus and optical communication control method |
JP2021555714A JP7332947B2 (ja) | 2019-11-14 | 2019-11-14 | 光通信システム、光回線終端装置及び光通信制御方法 |
PCT/JP2019/044638 WO2021095192A1 (ja) | 2019-11-14 | 2019-11-14 | 光通信システム、光回線終端装置及び光通信制御方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2019/044638 WO2021095192A1 (ja) | 2019-11-14 | 2019-11-14 | 光通信システム、光回線終端装置及び光通信制御方法 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2021095192A1 true WO2021095192A1 (ja) | 2021-05-20 |
Family
ID=75911526
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2019/044638 WO2021095192A1 (ja) | 2019-11-14 | 2019-11-14 | 光通信システム、光回線終端装置及び光通信制御方法 |
Country Status (3)
Country | Link |
---|---|
US (1) | US11949460B2 (ja) |
JP (1) | JP7332947B2 (ja) |
WO (1) | WO2021095192A1 (ja) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2023119392A1 (ja) * | 2021-12-21 | 2023-06-29 | 日本電信電話株式会社 | 光通信制御装置、受信装置、通信システム、および制御方法 |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007221517A (ja) * | 2006-02-17 | 2007-08-30 | Mitsubishi Electric Corp | Ponシステム |
JP2008172320A (ja) * | 2007-01-09 | 2008-07-24 | Nec Corp | 自己解析システム、光アクセス装置、自己解析方法、及びプログラム |
JP2009159189A (ja) * | 2007-12-26 | 2009-07-16 | Hitachi Communication Technologies Ltd | ネットワークシステム、光集線装置及び光ネットワーク装置 |
JP2012114626A (ja) * | 2010-11-24 | 2012-06-14 | Sumitomo Electric Ind Ltd | 光通信システム、ponシステムの宅側装置及び局側装置、発光パワーの制御方法 |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5225922A (en) * | 1991-11-21 | 1993-07-06 | At&T Bell Laboratories | Optical transmission system equalizer |
US5923450A (en) * | 1998-09-30 | 1999-07-13 | Alcatel Network Systems, Inc. | Optical channel regulator and method |
US7233432B2 (en) * | 2001-12-20 | 2007-06-19 | Xtera Communications, Inc. | Pre-emphasized optical communication |
JP4571054B2 (ja) * | 2005-09-30 | 2010-10-27 | 富士通株式会社 | 光波長制御方法及びそのシステム |
JP6413484B2 (ja) * | 2014-08-25 | 2018-10-31 | 沖電気工業株式会社 | 局側終端装置、光アクセスネットワーク及び通信方法 |
-
2019
- 2019-11-14 US US17/776,263 patent/US11949460B2/en active Active
- 2019-11-14 WO PCT/JP2019/044638 patent/WO2021095192A1/ja active Application Filing
- 2019-11-14 JP JP2021555714A patent/JP7332947B2/ja active Active
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007221517A (ja) * | 2006-02-17 | 2007-08-30 | Mitsubishi Electric Corp | Ponシステム |
JP2008172320A (ja) * | 2007-01-09 | 2008-07-24 | Nec Corp | 自己解析システム、光アクセス装置、自己解析方法、及びプログラム |
JP2009159189A (ja) * | 2007-12-26 | 2009-07-16 | Hitachi Communication Technologies Ltd | ネットワークシステム、光集線装置及び光ネットワーク装置 |
JP2012114626A (ja) * | 2010-11-24 | 2012-06-14 | Sumitomo Electric Ind Ltd | 光通信システム、ponシステムの宅側装置及び局側装置、発光パワーの制御方法 |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2023119392A1 (ja) * | 2021-12-21 | 2023-06-29 | 日本電信電話株式会社 | 光通信制御装置、受信装置、通信システム、および制御方法 |
Also Published As
Publication number | Publication date |
---|---|
US20220399942A1 (en) | 2022-12-15 |
JP7332947B2 (ja) | 2023-08-24 |
JPWO2021095192A1 (ja) | 2021-05-20 |
US11949460B2 (en) | 2024-04-02 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
TWI637605B (zh) | 光學組合器之能量收穫 | |
JP2022553365A (ja) | ポート検出方法、光ネットワークデバイス、および受動光ネットワークシステム | |
EP2602946B1 (en) | Single-fiber bi-directional optical module and passive optical network system | |
US8116634B2 (en) | Adaptive injection current controlled burst mode SOA for long and wide reach high speed PON | |
WO2015154389A1 (zh) | 光收发模块及其工作参数的配置方法及装置 | |
US20170272197A1 (en) | Extender For Optical Access Communication Network | |
US11342994B2 (en) | N-input receiver: RFoG OBI mitigation with retransmission | |
CN101471731A (zh) | 网络系统、光集线装置以及光网络装置 | |
US20140140701A1 (en) | Time and wavelength-shifted dynamic bidirectional system | |
JP6660439B1 (ja) | 光送受信器と光給電システム | |
US9118424B2 (en) | Optical network unit (ONU) having controllable optical output and method of controlling the optical output of an ONU | |
WO2021095192A1 (ja) | 光通信システム、光回線終端装置及び光通信制御方法 | |
US20100158526A1 (en) | Optical transceiver suitable for use in hybrid, passive optical network | |
CN101729938B (zh) | 一种无源光网络系统中消除干扰的方法、装置及系统 | |
US10404399B2 (en) | Dynamic equalization of differential path loss in an optical distribution network | |
CN101783707A (zh) | 光通信系统以及光集线装置 | |
US20080085126A1 (en) | Optical Signal Shutoff Mechanism and Associated System | |
WO2019006748A1 (zh) | 光放大装置、光通信站点和光通信系统 | |
WO2021001868A1 (ja) | 光受信装置、光伝送システム、光伝送方法及びコンピュータプログラム | |
US20230007370A1 (en) | Optical module, data center system, and data transmission method | |
US9705604B2 (en) | Communication device and wavelength adjustment method | |
CN107276673B (zh) | 一种光模块 | |
JP7299552B2 (ja) | 光通信システム及び光通信方法 | |
EP2492731B1 (en) | Optical receiving device and communication system | |
CN114978339B (zh) | 一种光通信装置、系统及相关方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 19952445 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2021555714 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 19952445 Country of ref document: EP Kind code of ref document: A1 |