WO2021093652A1 - 新型阻水方式的全干式光缆结构及其制备方法 - Google Patents

新型阻水方式的全干式光缆结构及其制备方法 Download PDF

Info

Publication number
WO2021093652A1
WO2021093652A1 PCT/CN2020/126503 CN2020126503W WO2021093652A1 WO 2021093652 A1 WO2021093652 A1 WO 2021093652A1 CN 2020126503 W CN2020126503 W CN 2020126503W WO 2021093652 A1 WO2021093652 A1 WO 2021093652A1
Authority
WO
WIPO (PCT)
Prior art keywords
outer sheath
water
optical cable
water blocking
loose tube
Prior art date
Application number
PCT/CN2020/126503
Other languages
English (en)
French (fr)
Inventor
费华青
王瑞
刘沛东
周峰
孙丽华
李伟
费津津
史惠萍
罗斌
Original Assignee
江苏亨通光电股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 江苏亨通光电股份有限公司 filed Critical 江苏亨通光电股份有限公司
Priority to BR112021017677A priority Critical patent/BR112021017677A2/pt
Publication of WO2021093652A1 publication Critical patent/WO2021093652A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/44Mechanical structures for providing tensile strength and external protection for fibres, e.g. optical transmission cables
    • G02B6/4401Optical cables
    • G02B6/4429Means specially adapted for strengthening or protecting the cables
    • G02B6/44384Means specially adapted for strengthening or protecting the cables the means comprising water blocking or hydrophobic materials
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/44Mechanical structures for providing tensile strength and external protection for fibres, e.g. optical transmission cables
    • G02B6/4401Optical cables
    • G02B6/4429Means specially adapted for strengthening or protecting the cables
    • G02B6/443Protective covering
    • G02B6/4432Protective covering with fibre reinforcements
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/44Mechanical structures for providing tensile strength and external protection for fibres, e.g. optical transmission cables
    • G02B6/4479Manufacturing methods of optical cables

Definitions

  • This application relates to the technical field of communication optical cables, in particular to a new type of water-blocking all-dry optical cable structure and a preparation method thereof.
  • the water blocking material filled in the loose tube of the optical cable in the prior art occupies a large space, which limits the diameter of the loose tube to be made smaller, which makes the diameter of the existing optical cable larger, which is not conducive to the miniaturization of the optical cable.
  • the purpose of this application includes providing a new type of water-blocking all-dry optical cable structure and its preparation method, which can at least partially solve the technical problem that the water blocking material filled in the loose tube of the existing optical cable takes up a large space and is not conducive to the miniaturization of the optical cable. .
  • the technical solutions provided by this application include:
  • the all-dry optical cable structure in a novel water-blocking manner provided in the present application includes a loose tube and an optical fiber arranged in the loose tube;
  • the outer surface of the optical fiber is coated with a water blocking coating, the water blocking coating swells with water to form a filler, the filler is filled in the loose tube, and the filler is configured to prevent the optical fiber from contacting water .
  • the loose tube is extruded by polybutylene terephthalate, polypropylene or polycarbonate;
  • the optical fibers are arranged in multiple, and the multiple optical fibers are arranged in parallel along the length direction of the optical cable.
  • the fully dry optical cable structure of the novel water blocking mode further includes a first outer sheath and a tensile element layer;
  • the first outer sheath is sheathed outside the loose tube, and the tensile element layer is sheathed between the first outer sheath and the loose tube.
  • the first outer sheath is a sleeve extruded from polyethylene or nylon
  • the tensile element layer is an aramid layer or a glass fiber layer.
  • a reinforcing monomer is embedded in the first outer sheath, and the reinforcing monomer extends along the length direction of the first outer sheath.
  • the reinforcing monomer is a reinforcing rope or a composite material filling body
  • the reinforcing monomer is a reinforcing core extruded from a fiber-reinforced composite material.
  • the plurality of reinforcing monomers are provided, and the plurality of reinforcing monomers are all embedded in the first outer sheath, and the axes on which the plurality of reinforcing monomers are located are all the same as those of the first outer sheath.
  • the axis on which the outer sheath is located is parallel, and the plurality of reinforcing monomers and the first outer sheath are of the same length.
  • the fully dry optical cable structure of the novel water blocking mode further includes a second outer sheath, a first central reinforcement and a first water blocking yarn;
  • the first central reinforcement and the first water blocking yarn are both arranged in the second outer sheath, and the first central reinforcement and the first water blocking yarn are both arranged along the second outer sheath.
  • the length of the sleeve extends;
  • the loose tube is arranged in the second outer sheath, and a plurality of the loose tube is arranged in sequence around the first central reinforcement.
  • the first central reinforcement is arranged at a position of the central axis of the second outer sheath;
  • the first central reinforcement and the second outer sheath are arranged in parallel, the first central reinforcement has a reinforcement structure made of fiber-reinforced composite material, and the first central reinforcement and the second outer sheath The sheath is the same length.
  • the plurality of loose tubes are provided, the plurality of loose tubes are provided between the first central reinforcement and the second outer sheath, and the plurality of loose tubes surround the The first central reinforcements are arranged in sequence;
  • the first water blocking yarn is arranged on one side of the first central reinforcement.
  • the first water blocking yarn is arranged next to the first central reinforcement.
  • the fully dry optical cable structure of the novel water blocking mode further includes a water blocking layer and a glass fiber layer;
  • the water blocking layer and the glass fiber layer are both disposed between the loose tube and the second outer sheath, and the water blocking layer and the glass fiber layer are sequentially disposed from the inside to the outside.
  • the fully dry optical cable structure of the novel water blocking method further includes a filling rope and a first tear rope;
  • the first tear cord is embedded in the second outer sheath and extends along the length direction of the second outer sheath;
  • the filling cord is arranged in the second outer sheath and is located on one side of the first central reinforcement member.
  • the filling rope is configured as a rope-shaped element made of polyethylene terephthalate, the filling rope and the loose tube have the same diameter, and the filling rope and the loose tube form a ring structure And set around the first central reinforcement.
  • the first tear cord is a nylon or nylon cord
  • the first tear cord is embedded in the second outer sheath
  • the first tear cord and the second outer sheath are parallel It is provided that the first tear cord and the second outer sheath have the same length.
  • the all-dry optical cable structure of the novel water blocking mode further includes a third outer sheath, a second central reinforcement and a squeeze cushion layer;
  • the second central reinforcement and the extruded cushion layer are both arranged in the third outer sheath, and the extruded cushion layer covers the outside of the second central reinforcement;
  • the loose tube is arranged between the third outer sheath and the squeeze cushion layer, and a plurality of the loose tubes are sequentially arranged around the squeeze cushion layer.
  • the extruded cushion layer is made of polyethylene material.
  • the fully dry optical cable structure of the novel water blocking mode further includes a second tear rope and a second water blocking yarn;
  • the second tear cord and the second water blocking yarn are both arranged in the third outer sheath, and the second tear cord and the second water blocking yarn are both arranged along the third outer sheath.
  • the length of the sleeve extends.
  • the second tear rope and the second water blocking yarn are both arranged parallel to the third outer sheath;
  • the length of the second tear cord and the length of the second water blocking yarn are equal to the length of the third outer sheath
  • the second tear cord is arranged next to the inner wall of the third outer sheath.
  • the water blocking coating is made of a composite material, and the composite material includes acrylic acid, sodium acrylate, and dipropylene glycol diacrylate.
  • the preparation method of a novel water-blocking all-dry optical cable structure includes:
  • Coloring the optical fiber coating the ink on the surface of the optical fiber through a coloring machine
  • the water-blocking coating is cured, and nitrogen is introduced into the curing furnace to form an oxygen-free environment, so that the optical fiber coated with the water-blocking coating passes through the curing furnace along its own length, and the water-blocking coating is cured by the curing lamp in the curing furnace;
  • extruded raw materials are extruded to form a loose tube through the extrusion mold of the extruder to form a loose tube.
  • a dry gas is passed between the loose tube and the optical fiber ;
  • the cable core is formed so that the loose tube and the filling rope are placed around the central reinforcement, and the water blocking layer is wrapped around the loose tube and the filling rope to form the cable core;
  • the outer sheath is formed, and the extruded material is extruded and formed outside the cable core by an extruder to form the outer sheath.
  • FIG. 1 is a schematic structural diagram of a fully dry optical cable structure in a novel water-blocking manner provided by an embodiment of the application;
  • FIG. 2 is a schematic structural diagram of the all-dry optical cable structure of the new water-blocking method provided by the embodiment of the application in other embodiments;
  • FIG. 3 is a schematic structural diagram of the all-dry optical cable structure of the new water-blocking method provided by the embodiment of the application in other embodiments;
  • Fig. 4 is a process flow diagram of a method for preparing a fully dry optical cable structure in a novel water-blocking manner according to an embodiment of the application.
  • Icon 100-loose tube; 200-optical fiber; 300-first outer sheath; 301-second outer sheath; 302-third outer sheath; 310-tensile element layer; 320-reinforced monomer; 400 -First central reinforcement; 401-second central reinforcement; 410-first water blocking yarn; 411-second water blocking yarn; 420-water blocking layer; 430-glass fiber layer; 440-filling rope; 450- The first tear rope; 451-the second tear rope; 500-squeeze cushion.
  • connection should be interpreted in a broad sense, for example, it can be a fixed connection or Removable connection or integral connection; it can be mechanical connection or electrical connection; it can be directly connected or indirectly connected through an intermediate medium, and it can be the internal communication between two components.
  • installation can be a fixed connection or Removable connection or integral connection; it can be mechanical connection or electrical connection; it can be directly connected or indirectly connected through an intermediate medium, and it can be the internal communication between two components.
  • Optical cables can be divided into filled optical cables, semi-dry optical cables and full dry optical cables according to different water blocking methods.
  • filled and semi-dry optical cables are mainly filled with grease in the optical fiber loose tube to achieve water resistance.
  • the ointment is often difficult to wipe off during the construction process, and at the same time it pollutes the environment and brings certain inconvenience to the construction of the optical cable.
  • the all-dry optical cable gets its name due to the absence of grease filling in the production process, which can solve many troubles in the construction process.
  • the water blocking function of the existing all-dry optical cable is mainly realized by filling the loose tube with a water blocking material, such as setting multiple water blocking yarns or filling with water blocking powder to prevent water vapor from penetrating into the loose tube.
  • the embodiments of the present application provide a new type of water-blocking all-dry optical cable structure and a preparation method thereof to solve the problem that the water blocking material filled in the loose tube of the existing optical cable occupies a large space and is not conducive to the miniaturization of the optical cable. problem.
  • this embodiment provides a new type of water-blocking all-dry optical cable structure, including a loose tube 100 and a plurality of optical fibers 200 arranged in the loose tube 100; the outer surface of the optical fiber 200 is coated There is a water-blocking coating, and the water-blocking coating swells in contact with water to form a filler.
  • the filler is filled in the loose tube 100, and the filler is configured to prevent the optical fiber 200 from contacting water.
  • the loose tube 100 can be extruded by using materials such as polybutylene terephthalate, polypropylene, or polycarbonate.
  • the loose tube 100 is sleeved outside the optical fiber 200, the optical fiber 200 is set to be multiple, and the multiple optical fibers 200 are arranged in parallel along the length of the optical cable; the outer surface of each optical fiber 200 is coated with a water-blocking coating, and the water-blocking coating is provided It is a water-soluble substance, and the water-blocking coating will quickly swell in contact with water to form a hydrogel filling.
  • the hydrogel filling prevents water vapor from penetrating further into the surface of the optical fiber 200. It should be noted that in this embodiment, multiple optical fibers 200 are used as an example for description.
  • the loose tube 100 provided in the embodiment of the present application no longer needs to be filled with water blocking yarn or water blocking powder. The reason is that on the one hand, the space occupied by the water blocking coating is very small, and the diameter of the loose tube 100 It can be done very small; on the other hand, it can effectively solve the problem of the outer diameter fluctuation of the loose tube 100 caused by the blockage of the extrusion mold due to the water blocking yarn jumping or the accumulation of water blocking powder during the processing of the conventional dry loose tube 100.
  • the loose tube 100 is provided with a design of multiple optical fibers 200 with water blocking coating on the surface. Compared with the loose tube 100 containing water blocking yarn or water blocking powder, the loose tube 100 has better coating processing performance, which can satisfy The structural design of the loose tube 100 with a smaller size can further reduce the overall size of the optical cable and increase the density of the optical fiber 200.
  • each optical fiber 200 can be coated with a water-blocking coating, or after fixing multiple optical fibers 200 together so that they are closely attached to each other to form an optical fiber bundle, only the outer surface of the optical fiber 200 The surface is coated with a water-blocking coating, thereby reducing production costs.
  • the water-blocking coating can swell in contact with water to form a filler, the filler can prevent water vapor from further penetrating into the loose tube 100.
  • the optical fiber 200 is realized.
  • the water-blocking coating occupies a small space compared to traditional filled water-blocking materials, such as water-blocking yarn and water-blocking powder. Therefore, the diameter of the loose tube 100 can be further compressed, and the volume of the optical cable can be further reduced. It is more in line with the miniaturization requirements of optical cables.
  • the all-dry optical cable structure of the novel water blocking mode provided in this embodiment further includes a first outer sheath 300 and a tensile element layer 310, wherein the first outer sheath 300 and the tensile element layer 310 An outer sheath 300 is sheathed outside the loose tube 100, and a tensile element layer 310 is sheathed between the first outer sheath 300 and the loose tube 100.
  • the first outer sheath 300 may be a sleeve extruded from polyethylene or nylon, and the tensile element layer 310 may be an aramid layer or a glass fiber layer.
  • the tensile element layer 310 is set as an aramid layer, and the tensile element layer 310 is configured to improve the tensile strength of the optical cable; the tensile element layer 310 is sleeved outside the loose tube 100, and the outer sheath is sleeved on the Pull the element layer 310 outside.
  • a reinforcing monomer 320 is embedded in the first outer sheath 300, wherein the reinforcing monomer 320 extends along the length direction of the first outer sheath 300.
  • the reinforcing monomer 320 may be a reinforcing rope or a composite material filler.
  • the reinforcing monomer 320 may be set as a reinforcing core extruded from a fiber-reinforced composite material, and the reinforcing monomer 320 may be set in multiples.
  • Each of the reinforcing monomers 320 is embedded in the first outer sheath 300, and the axes of the plurality of reinforcing monomers 320 are all arranged in parallel with the axis of the first outer sheath 300, and the reinforcing monomers 320 and the first outer sheath 300 are arranged in parallel. Set to equal length.
  • each of the reinforcing monomers 320 may be uniformly arranged in the circumferential direction of the cross-section of the optical cable.
  • each strengthening unit 320 can be symmetrical around the center of the optical cable.
  • each strengthening unit 320 can be in the circumferential direction of the cross-section of the optical cable. Spacing settings.
  • the loose tube 100, the tensile element layer 310 and the first outer sheath 300 are arranged in order from the inside to the outside to form the central tube of this embodiment.
  • the strengthening monomer 320 embedded in the first outer sheath 300 further improves the tensile strength of the optical cable. Therefore, compared with the prior art, the all-dry type optical fiber cable provided by the embodiment of the present application has The overall structure is simple, the volume is small, and the optical fiber 200 has a high density.
  • the all-dry optical cable structure of the new water blocking mode provided in this embodiment further includes a second outer sheath 301, a first central strength member 400, and a second outer sheath 301.
  • a water blocking yarn 410 wherein the first central reinforcement 400 and the first water blocking yarn 410 are both arranged in the second outer sheath 301, and the first central reinforcement 400 and the first water blocking yarn 410 are both along the second outer sheath
  • the length of the sleeve 301 extends; the loose tube 100 is arranged in the second outer sheath 301, and a plurality of loose tubes 100 are arranged in sequence around the first central reinforcement member 400.
  • the material and structure of the second outer sheath 301 in this embodiment and the first outer sheath 300 in the foregoing embodiment are set to be the same, and the second outer sheath 301 is sleeved on the loose tube 100,
  • the first central reinforcement 400 and the first water blocking yarn 410 are outside;
  • the first central reinforcement 400 is arranged at the central axis of the second outer sheath 301, and the first central reinforcement 400 and the second outer sheath 301 are arranged in parallel
  • the first central reinforcement 400 is set as a reinforcement structure made of fiber-reinforced composite materials, and the first central reinforcement 400 and the second outer sheath 301 are set to be equal in length in the length direction of the optical cable;
  • the loose tube 100 is set to be multiple A plurality of loose tubes 100 are arranged between the first central reinforcement member 400 and the second outer sheath 301, and the plurality of loose tubes 100 are sequentially arranged around the first central reinforcement member 400;
  • the first water blocking yarn 410 is arranged in Optionally,
  • each loose tube 100 may be uniformly arranged around the center of the first central reinforcement 400. It should be noted that in this embodiment, multiple loose tubes 100 are taken as an example for description. In practical applications, it is also possible to choose to provide only a single loose tube 100 in the second outer sheath 301.
  • the all-dry optical cable structure of the new water blocking method provided in this embodiment further includes a water blocking layer 420 and a glass fiber layer 430, wherein the water blocking layer 420 and the glass fiber layer 430 are both disposed on the loose tube 100 and the first Between the two outer sheaths 301, the water blocking layer 420 and the glass fiber layer 430 are sequentially arranged from the inside to the outside.
  • the water blocking layer 420 may be set as a water blocking tape, the water blocking tape is wrapped around the first central reinforcement 400, the loose tube 100 and the first water blocking yarn 410, and the glass fiber layer 430 is sheathed on the water blocking layer. Outside 420, the second outer sheath 301 is sheathed outside the glass fiber layer 430.
  • the glass fiber layer 430 is used for bearing force and has good temperature insulation and heat retention, which improves the tensile strength of the optical cable and enables the optical cable to normally operate in extreme cold or hot heat. Used in the environment, when the optical cable is bitten by an animal, the glass residue can cause damage to the animal's mouth, which can prevent the optical cable from being damaged by animals such as rodents.
  • the fully dry optical cable structure of the new water blocking method provided in this embodiment further includes a filling rope 440 and a first tear rope 450; the first tear rope 450 is embedded in the second outer sheath 301 and runs along the first The length direction of the second outer sheath 301 extends; the filling cord 440 is arranged in the second outer sheath 301 and is located on one side of the first central reinforcement 400.
  • the filling rope 440 plays a role of filling and filling the internal co-construction wrapped by the water blocking layer 420 on the one hand, and on the other hand, it can improve the tensile strength of the optical cable.
  • the filling rope 440 can be made of polyethylene terephthalate. Rope element.
  • the diameter of the filling rope 440 is set to be equal to the diameter of the loose tube 100, and the filling rope 440 and the loose tube 100 form a ring structure and are arranged around the first central reinforcement 400.
  • the first tear cord 450 is set as a nylon or nylon cord, the first tear cord 450 is embedded in the second outer sheath 301, and the first tear cord 450 and the second outer sheath 301 are arranged in parallel in the length direction of the optical cable.
  • the first tear cord 450 and the second outer sheath 301 are set to have the same length.
  • the first tear cord 450 enhances the tensile strength of the second outer sheath 301.
  • a tear opening can be formed on the second outer sheath 301 by tearing the first tear cord 450, so as to facilitate the peeling of the second outer sheath 301.
  • one or more filling ropes 440 may be provided. When multiple filling ropes 440 are provided, each filling rope 440 and the loose tube 100 can be made to surround the first center.
  • the reinforcing member 400 is arranged at intervals.
  • the all-dry optical cable structure of the novel water blocking mode provided by this embodiment is arranged from the outside to the inside through the second outer sheath 301, the glass fiber layer 430 and the water blocking layer 420.
  • the water blocking layer 420 is covered with a loose tube 100.
  • the filling rope 440, the first water blocking yarn 410 and the first central reinforcement 400 form a fully dry optical cable with a stranded structure.
  • the all-dry optical cable structure of the new water blocking mode provided in this embodiment further includes a third outer sheath 302, a second central reinforcement 401, and an extruded The cushion layer 500, in which the second central reinforcement 401 and the extruded cushion layer 500 are both arranged in the third outer sheath 302, the extruded cushion layer 500 covers the second central reinforcement 401, and the loose tube 100 is arranged in the third outer sheath 302. Between the outer sheath 302 and the extruded cushion layer 500, a plurality of loose tubes 100 are sequentially arranged around the extruded cushion layer 500.
  • a plurality of loose tubes 100 are evenly arranged around the center of the squeezed cushion layer 500 in a manner close to each other.
  • the third outer sheath 302 in this embodiment and the first outer sheath 300 and the second outer sheath 301 described above may have the same structure and material
  • the second central reinforcement in this embodiment 401 and the first central reinforcement 400 described above may have the same structure and material
  • the extruded cushion layer 500 is made of polyethylene, and the extruded cushion layer 500 is sleeved outside the second central reinforcement 401.
  • the extruded cushion layer 500 has a good cushioning and decompression effect on the loose tube 100, so that, for example, When the optical cable is subjected to a relatively large impact force in its radial direction, especially under the condition of relatively large shear force, the stability of the overall structure of the cable core can be ensured.
  • the fully dry optical cable structure of the new water blocking mode provided in this embodiment further includes a second tear cord 451 and a second water blocking yarn 411, wherein the second tear cord 451 and the second water blocking yarn 411 are both Set in the third outer sheath 302, the second tear cord 451 and the second water blocking yarn 411 both extend along the length direction of the third outer sheath 302.
  • the second tear cord 451 in this embodiment and the first tear cord 450 described above may have the same material and structure.
  • the second water blocking yarn 411 in this embodiment is the same as that described above.
  • the first water blocking yarn 410 may have the same material and structure.
  • the second tear cord 451 and the second water blocking yarn 411 are both arranged parallel to the third outer sheath 302.
  • the length of the second tear cord 451 and the first The length of the second water blocking yarn 411 is set equal to the length of the third outer sheath 302.
  • the second tear cord 451 is arranged next to the inner wall of the third outer sheath 302.
  • the second tear cord 451 can improve the tensile strength of the optical cable, and on the other hand, the second tear cord 451 can be easily removed by tearing the second tear cord 451.
  • a tear is formed in the third outer sheath 302.
  • the water-blocking yarn may be composed of industrial polyester filaments, cross-linked polyacrylic acid-based swelling materials and adhesives, wherein the cross-linked polyacrylic acid-based swelling materials may be polymer swelling water-absorbent resins.
  • the water-blocking coating is made of a composite material, and the composite material includes acrylic acid, sodium acrylate, and dipropylene glycol diacrylate.
  • the composite material includes acrylic acid, sodium acrylate and dipropylene glycol diacrylate, but not limited to other materials.
  • Acrylic acid, sodium acrylate and dipropylene glycol diacrylate are used as raw materials to form a water-soluble liquid coating with a slight acidic odor. It is cured on the optical fiber 200 to form a water-blocking coating after curing, and the water-blocking coating has a slight fragrance rose odor.
  • acrylic acid, sodium acrylate and dipropylene glycol diacrylate in different proportions, water blocking coatings with different expansion coefficients can be formed.
  • the second central reinforcement 401, the squeezed cushion layer 500, the loose tube 100 and the third outer sheath 302 are sequentially arranged from the inside to the outside.
  • a second tear rope 451 and a second water blocking yarn 411 are arranged between the cushion layer 500 and the third outer sheath 302, forming a light weight, small volume, and high density of the optical fiber 200, which is a fully dry air blown miniature Optical cables can meet the relevant requirements of the EU Construction Products Regulation (CPR, Construction Products Regulation) standards.
  • the diameter of the optical cable made of the all-dry optical cable structure of the new water-blocking method provided in this embodiment can be lower than that of the traditional all-dry optical cable in the prior art. Therefore, the all-dry optical cable structure provided in this application is compared with The traditional all-dry optical cable structure has significant advantages in terms of size miniaturization.
  • this embodiment also provides a method for preparing a completely dry optical cable structure in a novel water-blocking manner, as shown in FIG. 4, including the following steps: coloring the optical fiber 200: coating the ink with a coloring machine Coated on the surface of the optical fiber 200; coated with water-blocking paint: through the coloring machine, coat the surface of the colored optical fiber 200 with water-blocking paint; curing of the water-blocking coating: pass nitrogen into the curing furnace to form an oxygen-free environment to make the coating
  • the optical fiber 200 covered with water-blocking coating passes through the curing oven along its length, and the water-blocking coating is cured by the curing lamp in the curing oven; overmolding: the extruded raw materials are extruded and formed by the extrusion mold of the extruder.
  • a loose tube 100 is formed outside the optical fiber 200 cured by the water-blocking coating.
  • a dry gas is passed between the loose tube 100 and the optical fiber 200; the cable core is formed: the loose tube 100 and the filling rope 440 surround the center The reinforcement is placed, and the water blocking layer 420 is wrapped around the loose tube 100 and the filling rope 440 to form the cable core; outer sheath forming: the extruded material is extruded outside the cable core by an extruder to form an outer sheath set.
  • the multiple optical fibers 200 can be coated with different colors by a coloring machine to facilitate the identification of the optical fibers 200 with different functions; the coloring machine is used to complete the coating of the water-blocking coating, and the thickness of the coating is uniform Good; by blowing nitrogen into the curing furnace, an oxygen-free environment is formed to prevent the water blocking coating from being oxidized and falling off the optical fiber 200.
  • the light curing method of the curing lamp is now easier to control the curing reaction than the traditional heat curing form.
  • the light power of the curing lamp can meet various technical requirements of curing.
  • the loose tube 100 is set to be made of polyethylene terephthalate material, and the extruder extrudes the raw material to the outside of the optical fiber 200.
  • the extruder The air pressure needle at the front of the machine head injects stable dry gas into the loose tube 100 through the air regulator device to ensure the outer diameter and roundness of the loose tube 100, and the airflow can make the optical fiber 200 produce a certain amount Jitter, thereby preventing the optical fiber 200 from sticking together due to long-term contact with the inner wall of the loose tube 100.
  • the above-mentioned dry gas can be selected as air or the like.
  • the loose tube 100 and the filling rope 440 can be placed around the central reinforcement, and the reinforcement here may be the first central reinforcement 400 in the above-mentioned embodiment.
  • the outer sheath can be made of polyethylene.
  • the polyethylene material is extruded by the extrusion die of the extruder to form an outer sheath outside the cable core.
  • the outer sheath here can mean the first outer sheath 300, the second outer sheath 300, and the second outer sheath.
  • One or more of the outer sheath 301 and the third outer sheath 302 can be prepared by appropriately adjusting the process sequence or adding additional conventional process steps to prepare the all-dry optical cable provided in the above-mentioned embodiment, wherein the all-dry optical cable It can be an all-dry optical cable with a central tube structure, a all-dry optical cable with a stranded structure, or an all-dry air blown optical cable.
  • the optical cable manufactured by the method for preparing the all-dry optical cable provided in this embodiment because the made optical cable is of the all-dry type, makes the optical cable have a good lightning protection effect; the preparation method abandons the traditional powdery water-absorbing material, and more Environmental protection; the diameter of the loose tube 100 is further reduced, the volume and quality of the optical cable are reduced, the handling and laying of the optical cable are more convenient, and the construction difficulty is reduced; the density of the optical fiber 200 is high, and the degree of miniaturization is high, which can meet the EU building product regulations (CPR, Construction Products Regulation) for the requirements of relevant standards for optical cable products.
  • CPR Construction Products Regulation
  • the present application provides a novel water-blocking all-dry optical cable structure, which includes a loose tube and an optical fiber arranged in the loose tube; the outer surface of the optical fiber is coated with a water-blocking coating, which is formed by swelling with water Filler, the filler is filled in the loose tube, and the filler is configured to prevent the optical fiber from contacting water.
  • the water-blocking coating can swell in contact with water to form a filling, the filling can prevent water vapor from penetrating further into the loose tube; on the one hand, it realizes the water-blocking function and prevents the fiber from being corroded by water vapor.
  • the water-blocking coating is compared with the traditional filling The water blocking material occupies a small space, the diameter of the loose tube can be further compressed, and the volume of the optical cable can be further reduced, which meets the miniaturization requirements of the optical cable.
  • the present application provides a novel water-blocking all-dry optical cable structure and a preparation method thereof, which can at least partially solve the technical problem that the water blocking material filled in the loose tube of the existing optical cable occupies a large space and is not conducive to the miniaturization of the optical cable.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Optical Fibers, Optical Fiber Cores, And Optical Fiber Bundles (AREA)
  • Light Guides In General And Applications Therefor (AREA)
  • Insulated Conductors (AREA)

Abstract

一种新型阻水方式的全干式光缆结构及其制备方法,涉及通讯光缆的技术领域,光缆结构包括松套管(100)和设置于松套管(100)内的光纤(200);光纤(200)的外表面涂覆有阻水涂层,阻水涂层遇水膨胀形成填充物,填充物填充在松套管(100)内,填充物配置为阻止光纤(200)与水接触;由于阻水涂层能够遇水膨胀形成填充物,填充物可阻止水汽进一步渗入松套管(100)内;一方面实现了阻水功能,防止光纤(200)被水汽侵蚀,另一方面阻水涂层相对于传统填充的阻水物质占用的空间小,松套管(100)的直径可以进一步压缩,光缆体积可进一步缩小,符合光缆的微型化要求。

Description

新型阻水方式的全干式光缆结构及其制备方法
相关申请交叉引用
本申请要求于2019年11月13日提交中国专利局的申请号为CN 201911106661.1,名称为“新型阻水方式的全干式光缆结构及其制备方法”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及通讯光缆技术领域,尤其是涉及一种新型阻水方式的全干式光缆结构及其制备方法。
背景技术
现有技术中的光缆的松套管内填充的阻水物质占据的空间大,限制了将松套管直径做的更小,使得现有光缆的直径较大,不利于光缆的微型化。
公开于该背景技术部分的信息仅仅旨在加深对本申请总体背景技术的理解,而不应当被视为承认或以任何形式暗示该信息构成本领域技术人员所公知的现有技术。
发明内容
本申请的目的包括提供一种新型阻水方式的全干式光缆结构及其制备方法,能够至少部分解决现有光缆松套管内填充的阻水物质占用空间大,不利于光缆微型化的技术问题。
为解决上述技术问题,本申请提供的技术方案包括:
本申请提供的新型阻水方式的全干式光缆结构,包括松套管和设置于所述松套管内的光纤;
所述光纤的外表面涂覆有阻水涂层,所述阻水涂层遇水膨胀形成填充物,所述填充物填充在松套管内,所述填充物配置为阻止所述光纤与水接触。
可选地,所述松套管采用聚对苯二甲酸丁二醇酯、聚丙烯或聚碳酸酯挤塑成型;
所述光纤设置为多根,所述多根光纤沿光缆的长度方向平行设置。
可选地,所述新型阻水方式的全干式光缆结构还包括第一外护套和抗拉元件层;
所述第一外护套套设于所述松套管外,所述抗拉元件层套设于所述第一外护套和所述松套管之间。
可选地,其特征在于,所述第一外护套为由聚乙烯材质或尼龙挤塑成型的套管,所述抗拉元件层为芳纶层或者玻纤层。
可选地,所述第一外护套内嵌入有加强单体,所述加强单体沿所述第一外护套的长度方向延伸。
可选地,所述加强单体为加强绳或复合材料填充体;
优选地,所述加强单体为由纤维增强复合材料挤塑成型的加强芯。
可选地,所述加强单体设置为多个,所述多个加强单体均嵌入到所述第一外护套内,且所述多个加强单体所在的轴线均和所述第一外护套所在的轴线平行,所述多个加强单体和所述第一外护套等长。
可选地,所述新型阻水方式的全干式光缆结构还包括第二外护套、第一中心加强件和第一阻水纱;
所述第一中心加强件和所述第一阻水纱均设置于所述第二外护套内,所述第一中心加强件和所述第一阻水纱均沿所述第二外护套的长度方向延伸;
所述松套管设置于所述第二外护套内,多个所述松套管围绕所述第一中心加强件依次设置。
可选地,所述第一中心加强件设置在所述第二外护套的中心轴线位置处;
所述第一中心加强件和所述第二外护套平行设置,所述第一中心加强件具有由纤维增强复合材料制备的加强结构,且所述第一中心加强件和所述第二外护套等长。
可选地,所述松套管设置为多个,所述多个松套管设置在所述第一中心加强件和所述第二外护套之间,所述多个松套管围绕所述第一中心加强件依次设置;
所述第一阻水纱设置在所述第一中心加强件的一侧,优选地,所述第一阻水纱紧邻所述第一中心加强件设置。
可选地,所述新型阻水方式的全干式光缆结构还包括阻水层和玻璃纤维层;
所述阻水层和所述玻璃纤维层均设置于所述松套管和所述第二外护套之间,且所述阻水层和所述玻璃纤维层由内向外依次设置。
可选地,所述新型阻水方式的全干式光缆结构还包括填充绳和第一撕裂绳;
所述第一撕裂绳嵌入于所述第二外护套,且沿所述第二外护套的长度方向延伸;
所述填充绳设置于所述第二外护套内,且位于所述第一中心加强件的一侧。
可选地,所述填充绳设置为聚对苯二甲酸乙二醇制备的绳状元件,所述填充绳和所述松套管直径相等,所述填充绳和所述松套管组成环形结构并围绕第一中心加强件设置。
可选地,所述第一撕裂绳为锦纶或者尼龙绳,所述第一撕裂绳嵌入所述第二外护套内,所述第一撕裂绳和所述第二外护套平行设置,所述第一撕裂绳和所述第二外护套等长。
可选地,所述新型阻水方式的全干式光缆结构还包括第三外护套、第二中心加强件和挤垫层;
所述第二中心加强件和所述挤垫层均设置于所述第三外护套内,所述挤垫层包覆于所述第二中心加强件外;
所述松套管设置于所述第三外护套和所述挤垫层之间,多个所述松套管围绕所述挤垫层依次设置。
可选地,所述挤垫层有聚乙烯材料制成。
可选地,所述新型阻水方式的全干式光缆结构还包括第二撕裂绳和第二阻水纱;
所述第二撕裂绳和所述第二阻水纱均设置于所述第三外护套内,所述第二撕裂绳和所述第二阻水纱均沿所述第三外护套的长度方向延伸。
可选地,所述第二撕裂绳和所述第二阻水纱均平行于所述第三外护套设置;
所述第二撕裂绳的长度及所述第二阻水纱的长度均和所述第三外护套的长度相等;
优选地,所述第二撕裂绳紧邻所述第三外护套的内壁设置。可选地,所述阻水涂层由复合材料制成,所述复合材料包括丙烯酸、丙烯酸钠和二丙二醇二丙烯酸酯。
可选地,本申请提供的一种新型阻水方式的全干式光缆结构的制备方法,包括:
光纤着色,通过着色机将油墨涂覆在光纤的表面;
涂覆阻水涂料,通过着色机,在完成着色的光纤表层涂覆阻水涂料;
阻水涂层固化,往固化炉通入氮气,形成无氧环境,使得涂覆阻水涂料的光纤沿自身长度方向通过固化炉,通过固化炉内的固化灯对阻水涂层进行固化;
套塑,通过挤塑机的挤塑模具将挤塑原料挤塑成型于完成阻水涂层固化的光纤外,形成松套管,与此同时,在松套管和光纤之间通入干燥气体;
缆芯成型,使得松套管以及填充绳围绕中心加强件放置,将阻水层包覆在松套管和填充绳外,形成缆芯;
外护套成型,通过挤塑机将挤塑材料挤塑成型于缆芯外,形成外护套。
附图说明
为了更清楚的说明本申请具体实施方式或现有技术中的技术方案,下面将对具体实施方式或现有技术描述中所需要使用的附图作简单的介绍,显而易见的,下面描述中的附图是本申请的一些实施方式,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为本申请实施例提供的新型阻水方式的全干式光缆结构的结构示意图;
图2为本申请实施例提供的新型阻水方式的全干式光缆结构在其它实施例中的结构示意图;
图3为本申请实施例提供的新型阻水方式的全干式光缆结构在其它实施例中的结构示意图;
图4为本申请实施例提供的新型阻水方式的全干式光缆结构制备方法的工艺流程图。
图标:100-松套管;200-光纤;300-第一外护套;301-第二外护套;302-第三外护套;310-抗拉元件层;320-加强单体;400-第一中心加强件;401-第二中心加强件;410-第一阻水纱;411-第二阻水纱;420-阻水层;430-玻璃纤维层;440-填充绳;450-第一撕裂绳;451-第二撕裂绳;500-挤垫层。
具体实施方式
下面将结合附图对本申请的技术方案进行清楚、完整的描述,显然,所描述的实施例是本申请一部分实施例,而不是全部的实施例。因此,以下对在附图中提供的本申请的实施例的详细描述并非旨在限制要求保护的本申请的范围,而是仅仅表示本申请的选定实施例。基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
在本申请的描述中,需要说明的是,如出现术语“中心”、“上”、“下”、“左”、“右”、“竖直”、“水平”、“内”、“外”等,其所指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本申请和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本申请的限制。此外,如出现术语“第一”、“第二”、“第三”仅用于描述目的,而不能理解为指示或暗示相对重要性。
应注意到:相似的标号和字母在下面的附图中表示类似项,因此,一旦某一项在一个附图中被定义,则在随后的附图中不需要对其进行进一步定义和解释。
在本申请的描述中,需要说明的是,除非另有明确的规定和限定,如出现术语“安装”、“相连”、“连接”应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或一体的连接;可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通。对于本领域的普通技术人员而言,可以具体情况理解上述术语在本申请中的具体含义。
随着通讯技术的发展,对光缆性能和体积等也提出了更高的要求;目前,一种体积更小、密度更大的微型光缆逐渐成为重点的研究对象,同时光缆还要保证阻水等性能不能降低。
光缆按阻水方式的不同可分为填充式光缆、半干式光缆和全干式光缆,其中填充式和半干式光缆在光纤松套管中主要是采用填充油膏的方式来达到阻水的效果,但是油膏在施工过程中往往难以擦净,同时对环境带来污染,给光缆施工带来一定的不便。全干式光缆由于在生产过程中无油膏填充而得名,能够既解决了施工过程中诸多麻烦。
现有全干式光缆的阻水功能主要通过在松套管内填充阻水物质来实现,如设置多根阻水纱或填充满阻水粉,阻止水汽渗透到松套管内。
基于此,本申请实施例提供了一种新型阻水方式的全干式光缆结构及其制备方法,以解决现有光缆松套管内填充的阻水物质占用空间大,不利于光缆微型化的技术问题。
如图1所示,本实施例提供了一种新型阻水方式的全干式光缆结构,包括松套管100和设置于松套管100内的多根光纤200;光纤200的外表面涂覆有阻水涂层,阻水涂层遇水膨胀形成填充物,填充物填充在松套管100内,填充物配置为阻止光纤200与水接触。可选地,松套管100可通过采用聚对苯二甲酸丁二醇酯、聚丙烯或聚碳酸酯等材质挤塑成型。松套管100套设在光纤200外,光纤200设置为多根, 多根光纤200延光缆的长度方向平行设置;各光纤200的外表层均涂覆有阻水涂层,阻水涂层设置为水溶性物质,阻水涂层遇水会快速膨胀形成水凝胶填充物,水凝胶填充物阻止水汽进一步渗透到光纤200表层。需要说明的是,本实施例中以光纤200为多根为例进行说明,在实际应用中对光缆的尺寸微型化要求较高的情况下,也可以选择在松套管100内只设置单根光纤200。与现有技术中不同,在本申请实施例提供的松套管100内不再需要填充阻水纱或阻水粉,其原因在于一方面阻水涂层占据的空间很小,松套管100直径可以做的很小;另一方面,可有效解决常规干式松套管100在加工过程中由于阻水纱跳动或阻水粉堆积造成挤塑模具堵塞引起的松套管100外径波动问题,也不会因为生产过程中阻水纱断裂造成生产浪费。松套管100内设置多根表层具有阻水涂层光纤200的设计,相对于含有阻水纱或阻水粉的松套管100而言,松套管100的套塑加工性能更好,可以满足更小尺寸的松套管100结构设计,从而可以进一步减小光缆的整体尺寸,提高光纤200密度。
可选地,可以在每根光纤200的外表面涂覆阻水涂层,也可以选择在将多根光纤200固定在一起使其互相紧密贴合形成光纤束后,仅在外层的光纤200的表面涂覆阻水涂层,从而降低生产成本。
在本实施例提供的新型阻水方式的全干式光缆结构中,由于阻水涂层能够遇水膨胀形成填充物,填充物可阻止水汽进一步渗入松套管100内,一方面实现了光纤200的阻水,另一方面阻水涂层相对于传统填充的阻水物质,如阻水纱和阻水粉,占用的空间小,因此松套管100的直径可以进一步压缩,光缆体积可进一步缩小,更加符合光缆的微型化要求。
在上述技术方案的基础上,可选地,如图1所示,本实施例提供的新型阻水方式的全干式光缆结构还包括第一外护套300和抗拉元 件层310,其中第一外护套300套设于松套管100外,抗拉元件层310套设于第一外护套300和松套管100之间。
可选地,第一外护套300可以为由聚乙烯材质或尼龙挤塑成型的套管,抗拉元件层310可以为芳纶层或者玻纤层。可选地,抗拉元件层310设置为芳纶层,抗拉元件层310配置为提高光缆的抗拉强度;抗拉元件层310套设在松套管100外,外护套套设在抗拉元件层310外。
可选地,第一外护套300内嵌入有加强单体320,其中加强单体320沿第一外护套300的长度方向延伸。
可选地,加强单体320可以为加强绳或者复合材料填充体,例如,加强单体320可设置为由纤维增强复合材料挤塑成型的加强芯,加强单体320可设置为多个,多个加强单体320均嵌入到第一外护套300内,且多个加强单体320所在轴线均和第一外护套300的所在轴线平行设置,加强单体320和第一外护套300设置为等长。
可选地,当加强单体320的数量为多个时,各个加强单体320可以在光缆的截面的周向方向上均匀设置。当加强单体320的数量为偶数时,各个加强单体320可以围绕光缆的中心两两对称,当加强单体320的数量为奇数时,各个加强单体320可以在光缆的截面的周向上等间距设置。
在本实施例提供的新型阻水方式的全干式光缆结构中,通过松套管100、抗拉元件层310和第一外护套300自内向外依次设置,形成本实施例的具有中心管式结构的全干式光缆,嵌入在第一外护套300内的加强单体320进一步提高了光缆的抗拉强度,因此相较于现有技术,本申请实施例提供的全干式光缆的整体结构简单,体积小,光纤200密度高。
在上述实施例的基础上,可选地,如图2所示,本实施例提供的新型阻水方式的全干式光缆结构还包括第二外护套301、第一中心加强件400和第一阻水纱410,其中第一中心加强件400和第一阻水纱410均设置于第二外护套301内,第一中心加强件400和第一阻水纱410均沿第二外护套301的长度方向延伸;松套管100设置于第二外护套301内,多个松套管100围绕第一中心加强件400依次设置。
可选地,本实施例中的第二外护套301和上述实施例中的第一外护套300的材质和结构均设置为相同,第二外护套301套设在松套管100、第一中心加强件400和第一阻水纱410外;第一中心加强件400设置在第二外护套301的中心轴线位置处,第一中心加强件400和第二外护套301平行设置,第一中心加强件400设置为由纤维增强复合材料制备的加强结构,在光缆的长度方向上第一中心加强件400和第二外护套301设置为等长;松套管100设置为多个,多个松套管100设置在第一中心加强件400和第二外护套301之间,多个松套管100围绕第一中心加强件400依次设置;第一阻水纱410设置在第一中心加强件400的一侧,可选地,第一阻水纱410紧邻第一中心加强件400设置,第一阻水纱410可设置为一根或多根。
可选地,各个松套管100可以围绕第一中心加强件400的中心均匀设置。需要说明的是,本实施例中以松套管100为多个为例进行说明,在实际应用中,也可以选择在第二外护套301内只设置单个松套管100。
可选地,本实施例提供的新型阻水方式的全干式光缆结构还包括阻水层420和玻璃纤维层430,其中阻水层420和玻璃纤维层430均设置于松套管100和第二外护套301之间,且阻水层420和玻璃纤维层430由内向外依次设置。
具体的,阻水层420可设置为阻水带,阻水带包覆在第一中心加强件400、松套管100和第一阻水纱410外,玻璃纤维层430套设在阻水层420外,第二外护套301套设在玻璃纤维层430外。通过设置阻水层420,可以进一步提高光缆的阻水效果,玻璃纤维层430用于承力且隔温保热性好,提高了光缆的抗拉强度,且使得光缆能够正常在极寒或酷热环境内使用,在光缆遭受动物撕咬时,玻璃残渣可对动物的口腔造成损伤,可避免光缆被鼠类等动物破坏。
可选地,本实施例提供的新型阻水方式的全干式光缆结构还包括填充绳440和第一撕裂绳450;第一撕裂绳450嵌入于第二外护套301,且沿第二外护套301的长度方向延伸;填充绳440设置于第二外护套301内,且位于第一中心加强件400的一侧。
其中,填充绳440一方面起到填充填补阻水层420所包裹的内部共建作用,另一方面可提高光缆的抗拉强度,填充绳440可设置为聚对苯二甲酸乙二醇制备的绳状元件。可选地,填充绳440的直径设置为和松套管100直径相等,填充绳440和松套管100组成环形结构并围绕第一中心加强件400设置。第一撕裂绳450设置为锦纶或者尼龙绳,第一撕裂绳450嵌入第二外护套301内,第一撕裂绳450和第二外护套301平行设置,在光缆的长度方向上第一撕裂绳450和第二外护套301设置为等长,第一撕裂绳450一方面增强了第二外护套301的抗拉强度,另一方面,在光缆维修检测等需要剥开第二外保护套的情况下,可以通过撕裂第一撕裂绳450在第二外护套301上形成撕裂口,从而便于第二外护套301的开剥。
需要说明的是,在本申请其他实施例中,填充绳440可以设置为一根或多根,当设置有多根填充绳440时,可以使各填充绳440与松套管100围绕第一中心加强件400设置间隔设置。
本实施例提供的新型阻水方式的全干式光缆结构,通过第二外护套301、玻璃纤维层430和阻水层420由外向内依次设置,阻水层420内包覆有松套管100、填充绳440、第一阻水纱410和第一中心加强件400,形成一种层绞式结构的全干式光缆。
在上述实施例的基础上,可选地,如图3所示,本实施例提供的新型阻水方式的全干式光缆结构还包括第三外护套302、第二中心加强件401和挤垫层500,其中第二中心加强件401和挤垫层500均设置于第三外护套302内,挤垫层500包覆于第二中心加强件401外,松套管100设置于第三外护套302和挤垫层500之间,多个松套管100围绕挤垫层500依次设置。
可选地,多个松套管100以互相紧挨着的方式围绕挤垫层500的中心均匀设置。
其中,本实施例中的第三外护套302和上文所述的第一外护套300及第二外护套301可以具有相同的结构和材质,本实施例中的第二中心加强件401和上文所述的第一中心加强件400可以具有相同的结构和材质。可选地,挤垫层500由聚乙烯材料制成,挤垫层500套设在第二中心加强件401外,挤垫层500对松套管100具有良好的缓冲减压作用,使得例如在光缆受到在其径向上受到较大冲击力,尤其是较大剪力的情况下,能够保证缆芯整体结构的稳定性。
可选地,本实施例提供的新型阻水方式的全干式光缆结构还包括第二撕裂绳451和第二阻水纱411,其中第二撕裂绳451和第二阻水纱411均设置于第三外护套302内,第二撕裂绳451和第二阻水纱411均沿第三外护套302的长度方向延伸。可选地,本实施例中的第二撕裂绳451和上文所述的第一撕裂绳450可以具有相同的材质和结构,本实施例中的第二阻水纱411和上文所述的第一阻水纱410可以具有相同的材质和结构,第二撕裂绳451和第二阻水纱411均平行于 第三外护套302设置,第二撕裂绳451的长度、第二阻水纱411的长度均和第三外护套302的长度设置为相等。可选地,第二撕裂绳451紧邻第三外护套302的内壁设置,第二撕裂绳451一方面可提高光缆的抗拉强度,另一方面通过撕扯第二撕裂绳451便于在第三外护套302上形成撕裂口。
例如,上述阻水纱可以由阻水纱是由工业涤纶长丝、交联聚丙烯酸类膨胀材料和粘合剂组成,其中该交联聚丙烯酸类膨胀材料可以为高分子膨胀吸水树酯。
可选地,阻水涂层由复合材料制成,复合材料包括丙烯酸、丙烯酸钠和二丙二醇二丙烯酸酯。
其中,复合材料包括丙烯酸、丙烯酸钠和二丙二醇二丙烯酸酯,但不限于其它材料,以丙烯酸、丙烯酸钠和二丙二醇二丙烯酸酯为原料形成一种略带酸性气味的水溶性液态涂料,液态涂料固化在光纤200上,固化后形成阻水涂层,阻水涂层自带轻微的清香玫瑰气味。通过将丙烯酸、丙烯酸钠和二丙二醇二丙烯酸酯设置为不同配比,可形成不同膨胀系数的阻水涂料。
在本实施例提供的新型阻水方式的全干式光缆结构中,通过由内向外依次设置有第二中心加强件401、挤垫层500、松套管100和第三外护套302,挤垫层500和第三外护套302之间设置有第二撕裂绳451和第二阻水纱411,形成了一种重量轻、体积小、光纤200的密度大的全干式气吹微型光缆,可满足欧盟建筑产品法规(CPR,Construction Products Regulation)标准的相关要求。
根据本实施例提供的新型阻水方式的全干式光缆结构制成的光缆直径可以低于现有技术中的传统全干式光缆的直径,因此,本申请提供的全干式光缆结构相较于传统的全干式光缆结构在尺寸微型化方面具有显著优势。
在上述实施例的基础上,本实施例还提供了一种新型阻水方式的全干式光缆结构的制备方法,如图4所示,包括以下步骤:光纤200着色:通过着色机将油墨涂覆在光纤200的表面;涂覆阻水涂料:通过着色机,在完成着色的光纤200表层涂覆阻水涂料;阻水涂层固化:往固化炉通入氮气,形成无氧环境,使得涂覆阻水涂料的光纤200沿自身长度方向通过固化炉,通过固化炉内的固化灯对阻水涂层进行固化;套塑:通过挤塑机的挤塑模具将挤塑原料挤塑成型于完成阻水涂层固化的光纤200外,形成松套管100,与此同时,在松套管100和光纤200之间通入干燥气体;缆芯成型:使得松套管100以及填充绳440围绕中心加强件放置,将阻水层420包覆在松套管100和填充绳440外,形成缆芯;外护套成型:通过挤塑机将挤塑材料挤塑成型于缆芯外,形成外护套。
可选地,可以通过着色机将多根光纤200分别涂覆为不同的颜色,以便于对不同作用的光纤200进行识别;利用着色机完成阻水涂层的涂覆,涂层的厚度均匀性好;通过往固化炉通入氮气,形成无氧环境,避免阻水涂料被氧化从光纤200上脱落,固化灯的光固化方式现对于传统的热固化形式,更易控制固化反应的进行,通过控制固化灯的光功率可满足固化的各项技术要求。
可选地,松套管100设置为由聚对苯二甲酸乙二醇酯材质制成,挤塑机将原料挤塑成型在光纤200外部,在松套管100挤塑成型的过程中,挤塑机机头前部的气压针管通过空气稳压装置向松套管100内注入稳定的干燥气体,以保证松套管100的外径尺寸和圆整度,并且气流可使光纤200产生一定的抖动,从而防止光纤200因与松套管100内壁长时间接触而粘在一起。其中上述干燥气体可以选用为空气等。
在缆芯成型工序中,可以使得松套管100以及填充绳440围绕中心加强件放置,此处的加强件可为上述实施例中的第一中心加强件400。外护套可以为聚乙烯材质,通过挤塑机的挤塑模具将聚乙烯原料挤塑成型在缆芯外形成外护套,此处的外护套可表示第一外护套300、第二外护套301以及第三外护套302中的一个或多个,通过适当调整工序顺序或者增加额外常规的工序步骤可制备出上述实施例中提供的全干式光缆,其中该全干式光缆可以为中心管式结构的全干式光缆、层绞式结构的全干式光缆或全干式气吹光缆。
通过本实施例提供的全干式光缆的制备方法制造的光缆,由于制成的光缆为全干式,使得光缆具有良好的防雷效果;本制备方法中摒弃了传统粉末状的吸水材料,更加环保;松套管100的直径进一步缩小,光缆体积和质量都有降低,光缆的搬运和铺设都更加便捷,降低了施工难度;光纤200的密度大,微型化程度高,可满足欧盟建筑产品法规(CPR,Construction Products Regulation)中针对光缆类产品的相关标准的要求。
结合以上技术方案,本申请达到的有益效果例如包括:
本申请提供的一种新型阻水方式的全干式光缆结构,包括松套管和设置于松套管内的光纤;光纤的外表面涂覆有阻水涂层,阻水涂层遇水膨胀形成填充物,填充物填充在松套管内,填充物配置为阻止光纤与水接触。
由于阻水涂层能够遇水膨胀形成填充物,填充物可阻止水汽进一步渗入松套管内;一方面实现了阻水功能,防止光纤被水汽侵蚀,另一方面阻水涂层相对于传统填充的阻水物质占用的空间小,松套管的直径可以进一步压缩,光缆体积可进一步缩小,符合光缆的微型化要求。
最后应说明的是:以上各实施例仅用以说明本申请的技术方案,而非对其限制;尽管参照前述各实施例对本申请进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分或者全部技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本申请各实施例技术方案的范围。
工业实用性
本申请提供了一种新型阻水方式的全干式光缆结构及其制备方法,能够至少部分解决现有光缆松套管内填充的阻水物质占用空间大,不利于光缆微型化的技术问题。

Claims (20)

  1. 一种新型阻水方式的全干式光缆结构,其特征在于,包括:松套管(100)和设置于所述松套管(100)内的光纤(200);
    所述光纤(200)的外表面涂覆有阻水涂层,所述阻水涂层遇水膨胀形成填充物,所述填充物填充在松套管(100)内,所述填充物配置为阻止所述光纤(200)与水接触。
  2. 根据权利要求1所述的新型阻水方式的全干式光缆结构,其特征在于,所述松套管(100)采用聚对苯二甲酸丁二醇酯、聚丙烯或聚碳酸酯挤塑成型;
    所述光纤(200)设置为多根,所述多根光纤(200)沿光缆的长度方向平行设置。
  3. 根据权利要求1或2所述的新型阻水方式的全干式光缆结构,其特征在于,还包括第一外护套(300)和抗拉元件层(310);
    所述第一外护套(300)套设于所述松套管(100)外,所述抗拉元件层(310)套设于所述第一外护套(300)和所述松套管(100)之间。
  4. 根据权利要求3所述的新型阻水方式的全干式光缆结构,其特征在于,所述第一外护套(300)为由聚乙烯材质或尼龙挤塑成型的套管,所述抗拉元件层(310)为芳纶层或者玻纤层。
  5. 根据权利要求3或4所述的新型阻水方式的全干式光缆结构,其特征在于,所述第一外护套(300)内嵌入有加强单体(320),所述加强单体(320)沿所述第一外护套(300)的长度方向延伸。
  6. 根据权利要求5所述的新型阻水方式的全干式光缆结构,其特征在于,所述加强单体(320)为加强绳或复合材料填充体;
    优选地,所述加强单体(320)为由纤维增强复合材料挤塑成型的加强芯。
  7. 根据权利要求5或6所述的新型阻水方式的全干式光缆结构,其特征在于,所述加强单体(320)设置为多个,所述多个加强单体(320)均嵌入到所述第一外护套(300)内,且所述多个加强单体(320)所在的轴线均和所述第一外护套(300)所在的轴线平行,所述多个加强单体(320)和所述第一外护套(300)等长。
  8. 根据权利要求1所述的新型阻水方式的全干式光缆结构,其特征在于,还包括第二外护套(301)、第一中心加强件(400)和第一阻水纱(410);
    所述第一中心加强件(400)和所述第一阻水纱(410)均设置于所述第二外护套(301)内,所述第一中心加强件(400)和所述第一阻水纱(410)均沿所述第二外护套(301)的长度方向延伸;
    所述松套管(100)设置于所述第二外护套(301)内,多个所述松套管(100)围绕所述第一中心加强件(400)依次设置。
  9. 根据权利要求8所述的新型阻水方式的全干式光缆结构,其特征在于,所述第一中心加强件(400)设置在所述第二外护套(301)的中心轴线位置处;
    所述第一中心加强件(400)和所述第二外护套(301)平行设置,所述第一中心加强件(400)具有由纤维增强复合材料制备的加强结构,且所述第一中心加强件(400)和所述第二外护套(301)等长。
  10. 根据权利要求8或9所述的新型阻水方式的全干式光缆结构,其特征在于,所述松套管(100)设置为多个,所述多个松套管(100)设置在所述第一中心加强件(400)和所述第二外护套(301)之间,所述多个松套管(100)围绕所述第一中心加强件(400)依次设置;
    所述第一阻水纱(410)设置在所述第一中心加强件(400)的一侧,优选地,所述第一阻水纱(410)紧邻所述第一中心加强件(400)设置。
  11. 根据权利要求8至10中任一项所述的新型阻水方式的全干式光缆结构,其特征在于,还包括阻水层(420)和玻璃纤维层(430);
    所述阻水层(420)和所述玻璃纤维层(430)均设置于所述松套管(100)和所述第二外护套(301)之间,且所述阻水层(420)和所述玻璃纤维层(430)由内向外依次设置。
  12. 根据权利要求11所述的新型阻水方式的全干式光缆结构,其特征在于,还包括填充绳(440)和第一撕裂绳(450);
    所述第一撕裂绳(450)嵌入于所述第二外护套(301),且沿所述第二外护套(301)的长度方向延伸;
    所述填充绳(440)设置于所述第二外护套(301)内,且位于所述第一中心加强件(400)的一侧。
  13. 根据权利要求12所述的新型阻水方式的全干式光缆结构,其特征在于,所述填充绳(440)设置为聚对苯二甲酸乙二醇制备的绳状元件,所述填充绳(440)的和所述松套管(100)直径相等,所述填充绳(440)和所述松套管(100)组成环形结构并围绕第一中心加强件(400)设置。
  14. 根据权利要求12或13所述的新型阻水方式的全干式光缆结构,其特征在于,所述第一撕裂绳(450)为锦纶或者尼龙绳,所述第一撕裂绳(450)嵌入所述第二外护套(301)内,所述第一撕裂绳(450)和所述第二外护套(301)平行设置,所述第一撕裂绳(450)和所述第二外护套(301)等长。
  15. 根据权利要求1所述的新型阻水方式的全干式光缆结构,其特征在于,还包括第三外护套(302)、第二中心加强件(401)和挤垫层(500);
    所述第二中心加强件(401)和所述挤垫层(500)均设置于所述第三外护套(302)内,所述挤垫层(500)包覆于所述第二中心加强件(401)外;
    所述松套管(100)设置于所述第三外护套(302)和所述挤垫层(500)之间,多个所述松套管(100)围绕所述挤垫层(500)依次设置。
  16. 根据权利要求15所述的新型阻水方式的全干式光缆结构,其特征在于,所述挤垫层(500)有聚乙烯材料制成。
  17. 根据权利要求15或16所述的新型阻水方式的全干式光缆结构,其特征在于,还包括第二撕裂绳(451)和第二阻水纱(411);
    所述第二撕裂绳(451)和所述第二阻水纱(411)均设置于所述第三外护套(302)内,所述第二撕裂绳(451)和所述第二阻水纱(411)均沿所述第三外护套(302)的长度方向延伸。
  18. 根据权利要求17所述的新型阻水方式的全干式光缆结构,其特征在于,所述第二撕裂绳(451)和所述第二阻水纱(411)均平行于所述第三外护套(302)设置;
    所述第二撕裂绳(451)的长度及所述第二阻水纱(411)的长度均和所述第三外护套(302)的长度相等;
    优选地,所述第二撕裂绳(451)紧邻所述第三外护套(302)的内壁设置。
  19. 根据权利要求1至18中任一项所述的新型阻水方式的全干式光缆结构,其特征在于,所述阻水涂层由复合材料制成,所述复合材料包括丙烯酸、丙烯酸钠和二丙二醇二丙烯酸酯。
  20. 一种新型阻水方式的全干式光缆结构的制备方法,其特征在于,包括以下各步骤:
    光纤(200)着色,通过着色机将油墨涂覆在光纤(200)的表面;
    涂覆阻水涂料,通过着色机,在完成着色的光纤(200)表层涂覆阻水涂料;
    阻水涂层固化,往固化炉通入氮气,形成无氧环境,使得涂覆阻水涂料的光纤(200)沿自身长度方向通过固化炉,通过固化炉内的固化灯对阻水涂层进行固化;
    套塑,通过挤塑机的挤塑模具将挤塑原料挤塑成型于完成阻水涂层固化的光纤(200)外,形成松套管(100),与此同时,在松套管(100)和光纤(200)之间通入干燥气体;
    缆芯成型,使得松套管(100)以及填充绳(440)围绕中心加强件放置,将阻水层(420)包覆在松套管(100)和填充绳(440)外,形成缆芯;
    外护套成型,通过挤塑机将挤塑材料挤塑成型于缆芯外,形成外护套。
PCT/CN2020/126503 2019-11-13 2020-11-04 新型阻水方式的全干式光缆结构及其制备方法 WO2021093652A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
BR112021017677A BR112021017677A2 (pt) 2019-11-13 2020-11-04 Estrutura de cabo ótico totalmente seca de bloqueio de água e método de preparação da mesma

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201911106661.1A CN110764207A (zh) 2019-11-13 2019-11-13 新型阻水方式的全干式光缆结构及其制备方法
CN201911106661.1 2019-11-13

Publications (1)

Publication Number Publication Date
WO2021093652A1 true WO2021093652A1 (zh) 2021-05-20

Family

ID=69337759

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/126503 WO2021093652A1 (zh) 2019-11-13 2020-11-04 新型阻水方式的全干式光缆结构及其制备方法

Country Status (3)

Country Link
CN (1) CN110764207A (zh)
BR (1) BR112021017677A2 (zh)
WO (1) WO2021093652A1 (zh)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112684554A (zh) * 2020-12-18 2021-04-20 南京华信藤仓光通信有限公司 一种耐高温光纤的制造方法
CN113835172A (zh) * 2021-09-07 2021-12-24 杭州富通通信技术股份有限公司 干式带状光缆
CN114280743A (zh) * 2021-12-07 2022-04-05 杭州富通通信技术股份有限公司 矿用光缆
CN115248486A (zh) * 2022-09-22 2022-10-28 深圳市特发信息股份有限公司 一种具有松套管光单元的光缆
CN116661080A (zh) * 2023-07-28 2023-08-29 江苏中天科技股份有限公司 气吹微缆及其制备方法及缆组件

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110764207A (zh) * 2019-11-13 2020-02-07 江苏亨通光电股份有限公司 新型阻水方式的全干式光缆结构及其制备方法
CN114249995B (zh) * 2020-09-23 2022-12-13 上海飞凯材料科技股份有限公司 一种紫外固化涂料组合物及其应用
CN113504617B (zh) * 2021-05-31 2023-08-22 江苏通鼎光电科技有限公司 一种高抗压高耐冲击性能的阻水型光缆
CN113985545B (zh) * 2021-09-30 2023-09-15 富通集团(嘉善)通信技术有限公司 半干式光纤带光缆
CN114325977A (zh) * 2021-12-07 2022-04-12 富通集团(嘉善)通信技术有限公司 一种光缆
CN115047576B (zh) * 2022-08-15 2022-11-29 长飞光纤光缆股份有限公司 一种采用阻水粉的全干式套管单元及光缆

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6631229B1 (en) * 2001-09-06 2003-10-07 Fitel Usa Corp Water blocking optical fiber cable
CN102636854A (zh) * 2012-04-27 2012-08-15 江苏七宝光电集团有限公司 喷涂缆膏阻水带状光缆
CN104238005A (zh) * 2014-10-05 2014-12-24 夏建明 阻水光纤及使用该光纤的光缆
CN104267461A (zh) * 2014-10-19 2015-01-07 凌卫康 阻水光纤及使用该阻水光纤的光缆
CN104317022A (zh) * 2008-07-31 2015-01-28 康宁光缆系统有限公司 具有至少部分机械附着的粉末或粉末混合物的光纤组件
CN204389744U (zh) * 2014-10-05 2015-06-10 江苏长飞中利光纤光缆有限公司 使用阻水光纤的光缆
CN108363152A (zh) * 2018-01-26 2018-08-03 西安西古光通信有限公司 一种非金属纱镶嵌式防鼠光缆及其制作方法
CN108859052A (zh) * 2018-05-03 2018-11-23 烽火通信科技股份有限公司 干式光纤松套管生产设备、生产方法及干式光纤松套管
CN110764207A (zh) * 2019-11-13 2020-02-07 江苏亨通光电股份有限公司 新型阻水方式的全干式光缆结构及其制备方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN202057843U (zh) * 2011-04-15 2011-11-30 江苏通鼎光电股份有限公司 一种光纤束中心管式光缆
CN103992747B (zh) * 2013-02-17 2016-05-18 中国科学院上海硅酸盐研究所 一种热电器件用耐热复合粘结剂及其制备方法
CN105452925A (zh) * 2013-06-28 2016-03-30 康宁光电通信有限责任公司 用于光缆的光纤组件
CN208833975U (zh) * 2018-10-11 2019-05-07 汕头高新区奥星光通信设备有限公司 全介质干式微簇型光缆
CN109536102A (zh) * 2018-12-06 2019-03-29 中国建材检验认证集团厦门宏业有限公司 一种高密度水下环氧修补胶及其制备方法和用途

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6631229B1 (en) * 2001-09-06 2003-10-07 Fitel Usa Corp Water blocking optical fiber cable
CN104317022A (zh) * 2008-07-31 2015-01-28 康宁光缆系统有限公司 具有至少部分机械附着的粉末或粉末混合物的光纤组件
CN102636854A (zh) * 2012-04-27 2012-08-15 江苏七宝光电集团有限公司 喷涂缆膏阻水带状光缆
CN104238005A (zh) * 2014-10-05 2014-12-24 夏建明 阻水光纤及使用该光纤的光缆
CN204389744U (zh) * 2014-10-05 2015-06-10 江苏长飞中利光纤光缆有限公司 使用阻水光纤的光缆
CN104267461A (zh) * 2014-10-19 2015-01-07 凌卫康 阻水光纤及使用该阻水光纤的光缆
CN108363152A (zh) * 2018-01-26 2018-08-03 西安西古光通信有限公司 一种非金属纱镶嵌式防鼠光缆及其制作方法
CN108859052A (zh) * 2018-05-03 2018-11-23 烽火通信科技股份有限公司 干式光纤松套管生产设备、生产方法及干式光纤松套管
CN110764207A (zh) * 2019-11-13 2020-02-07 江苏亨通光电股份有限公司 新型阻水方式的全干式光缆结构及其制备方法

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112684554A (zh) * 2020-12-18 2021-04-20 南京华信藤仓光通信有限公司 一种耐高温光纤的制造方法
CN113835172A (zh) * 2021-09-07 2021-12-24 杭州富通通信技术股份有限公司 干式带状光缆
CN113835172B (zh) * 2021-09-07 2023-02-21 杭州富通通信技术股份有限公司 干式带状光缆
CN114280743A (zh) * 2021-12-07 2022-04-05 杭州富通通信技术股份有限公司 矿用光缆
CN115248486A (zh) * 2022-09-22 2022-10-28 深圳市特发信息股份有限公司 一种具有松套管光单元的光缆
CN115248486B (zh) * 2022-09-22 2023-01-10 深圳市特发信息股份有限公司 一种具有松套管光单元的光缆
CN116661080A (zh) * 2023-07-28 2023-08-29 江苏中天科技股份有限公司 气吹微缆及其制备方法及缆组件
CN116661080B (zh) * 2023-07-28 2023-11-07 江苏中天科技股份有限公司 气吹微缆及其制备方法及缆组件

Also Published As

Publication number Publication date
CN110764207A (zh) 2020-02-07
BR112021017677A2 (pt) 2022-05-24

Similar Documents

Publication Publication Date Title
WO2021093652A1 (zh) 新型阻水方式的全干式光缆结构及其制备方法
WO2017084517A1 (zh) 用于极微型气吹光缆的双层共挤方法及极微型气吹光缆
WO2011150787A1 (zh) 一种适合于气送敷设的光缆结构及其制造方法
WO2017107373A1 (zh) 一种室内外两用防鼠光缆及其制造方法
CN104020544B (zh) 一种非金属光缆及其制作方法
CN107357013A (zh) 一种骨架式光缆及制作方法
CN102568680A (zh) 一种风能电缆及制造方法
WO2020107960A1 (zh) 一种护套嵌入式掏接光缆及生产方法
KR100526506B1 (ko) 공기압 포설을 위한 광섬유 케이블
US20160313529A1 (en) Filler tubes for optical communication cable construction
WO2012024902A1 (zh) 复合纤维加强芯、其制备方法及在引入光缆中的应用
CN102360107A (zh) 中心管式全介质自承式光缆及其制造方法
CA3223526A1 (en) Micro-cable, manufacturing method therefor, and filling device
CN205121025U (zh) 一种扁平形自承式引入光纤带光缆
CN105204133A (zh) 扁平形自承式引入光纤带光缆的制备方法以及光缆
CN113866922A (zh) 一种大芯数微束管室外光缆及其工艺制造方法
CN108681014A (zh) 一种抗侧压拉远光缆
CN104765117A (zh) 低摩擦配线引入光缆及其制造工艺
CN202362508U (zh) 中心管式全介质自承式光缆
CN203688866U (zh) 小芯数8字形架空引入光缆
CN115826167A (zh) 蝶形光缆及蝶形光缆制造方法
CN204631311U (zh) 低摩擦配线引入光缆
CN114002796A (zh) 一种基于双层绞合结构缆芯的大芯光缆及其成型工艺
CN107561662A (zh) 一种树杈状室内外两用光缆及制造方法
CN210348010U (zh) 一种新型结构的气吹光缆

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20887921

Country of ref document: EP

Kind code of ref document: A1

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112021017677

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 112021017677

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20210906

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20887921

Country of ref document: EP

Kind code of ref document: A1