WO2021093309A1 - 自动识别触发类型的方法、装置及示波器 - Google Patents

自动识别触发类型的方法、装置及示波器 Download PDF

Info

Publication number
WO2021093309A1
WO2021093309A1 PCT/CN2020/093159 CN2020093159W WO2021093309A1 WO 2021093309 A1 WO2021093309 A1 WO 2021093309A1 CN 2020093159 W CN2020093159 W CN 2020093159W WO 2021093309 A1 WO2021093309 A1 WO 2021093309A1
Authority
WO
WIPO (PCT)
Prior art keywords
signal
triggered
trigger
change information
edge slope
Prior art date
Application number
PCT/CN2020/093159
Other languages
English (en)
French (fr)
Inventor
索世昌
蒋文裕
王悦
王铁军
李维森
Original Assignee
北京普源精电科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京普源精电科技有限公司 filed Critical 北京普源精电科技有限公司
Priority to EP20887962.7A priority Critical patent/EP4060352A4/en
Priority to JP2022528126A priority patent/JP7220834B2/ja
Priority to US17/776,340 priority patent/US11906551B2/en
Publication of WO2021093309A1 publication Critical patent/WO2021093309A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R13/00Arrangements for displaying electric variables or waveforms
    • G01R13/02Arrangements for displaying electric variables or waveforms for displaying measured electric variables in digital form
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R13/00Arrangements for displaying electric variables or waveforms
    • G01R13/02Arrangements for displaying electric variables or waveforms for displaying measured electric variables in digital form
    • G01R13/0218Circuits therefor
    • G01R13/0254Circuits therefor for triggering, synchronisation

Definitions

  • This application relates to the technical field of oscilloscopes, such as a method, device and oscilloscope for automatically identifying trigger types.
  • the trigger of the oscilloscope means that the user sets the conditions according to the requirements. When a certain waveform in the oscilloscope sample data stream meets the set conditions, the oscilloscope will capture the waveform and its adjacent parts in real time.
  • the conditions set by the user are called trigger conditions.
  • the function of the trigger is to capture the event of interest and display the waveform stably.
  • the trigger types of oscilloscopes are diverse, and the parameter setting process is more complicated. This makes users who are not familiar with oscilloscopes or have no operating experience can not choose the trigger type reasonably according to the characteristics of the signal, which leads to more time-consuming in the signal debugging process.
  • the current oscilloscope has AUTO (automatic trigger) function.
  • the AUTO function means that the user manually presses the "auto" key of the oscilloscope, and then the oscilloscope automatically adjusts the horizontal and vertical scales according to the amplitude and frequency of the current signal, so that the waveform can cover the entire screen as much as possible in the vertical direction and in the horizontal direction
  • One or two cycles are displayed on the top, and the trigger type is set to edge trigger at the same time, and a better observation effect is finally achieved.
  • the more suitable trigger type is not the edge trigger.
  • the AUTO function in the related technology can only identify and configure the trigger type of the edge trigger. Therefore, a new trigger type identification method is urgently needed.
  • This application proposes a method, device and oscilloscope for automatically identifying the trigger type. According to preset rules, a trigger type that can stably trigger the signal to be triggered is obtained for the user to select or automatically select the trigger.
  • this application provides a method for automatically identifying trigger types, including:
  • characteristic parameter data of the signal to be triggered includes at least one of bus protocol matching information and change information of at least one characteristic parameter
  • a trigger type that can stably trigger the signal to be triggered is determined.
  • this application also provides a device for automatically identifying the trigger type, including:
  • the acquiring unit is set to acquire the signal to be triggered
  • the feature extraction unit is configured to calculate feature parameter data of the signal to be triggered in real time, and the feature parameter data includes at least one of bus protocol matching information and change information of at least one feature parameter;
  • the trigger type analysis unit is configured to determine the trigger type that can stably trigger the signal to be triggered according to the characteristic parameter data.
  • the present application provides an oscilloscope, including a memory and a processor, the memory is configured to store a program, and the processor is configured to execute the program to realize the automatic identification trigger as described in any one of the first aspect Type of method.
  • FIG. 1 is a flowchart of a method for automatically identifying a trigger type according to an embodiment of this application
  • FIG. 2 is a schematic diagram of the maximum value and the minimum value of a signal to be triggered according to an embodiment of the application;
  • FIG. 3 is a schematic diagram of rise time and fall time provided by an embodiment of the application.
  • FIG. 4 is a schematic diagram of a pulse signal and a signal to be triggered provided by an embodiment of the application;
  • FIG. 5 is a schematic diagram of generating a sampling pulse signal according to a minimum pulse width according to an embodiment of the application
  • FIG. 6 is a schematic diagram of calculating the number of sampling pulses in the same edge interval provided by an embodiment of the application.
  • FIG. 7 is a schematic structural diagram of an apparatus for automatically identifying a trigger type according to an embodiment of the application.
  • the method for automatically identifying the trigger type analyzes the waveform data sampled by an ADC (analog to digital converter) in real time, that is, analyzes and calculates the bus protocol matching information of the signal to be triggered and the change of at least one characteristic parameter According to the characteristic parameter data such as at least one of the information, according to the characteristic parameter data of the signal to be triggered, the trigger type that can stably trigger the signal to be triggered is determined, so as to better observe and test the signal to be triggered.
  • ADC analog to digital converter
  • FIG. 1 it is a flowchart of a method for automatically identifying a trigger type according to an embodiment of this application.
  • the method includes steps S11 to S13.
  • step S11 a signal to be triggered is acquired.
  • Step S11 is executed to obtain the to-be-triggered signal output by the ADC of the oscilloscope.
  • the analog front end of the oscilloscope amplifies or attenuates the original analog signal, and then through the high-speed ADC for acquisition, quantization and encoding, the analog signal is converted into a digital signal for output.
  • step S12 the characteristic parameter data of the signal to be triggered is calculated in real time.
  • the characteristic parameter data includes at least one of bus protocol matching information and change information of at least one characteristic parameter.
  • the change information of characteristic parameters includes, but is not limited to, peak-to-peak change information, edge slope change information, frequency change information, pulse width change information, and envelope change information.
  • the connections of all the maximum values of the signal to be triggered and the connections of all the minimum values are the envelope signals of the signal to be triggered.
  • the bus protocol matching information is the information of the type of bus protocol that is identified by analyzing the data format of the signal to be triggered and other information. The match between the signal to be triggered and the bus protocol indicates that the signal to be triggered is transmitted by the bus corresponding to the bus protocol. Analyze and calculate the characteristic parameter data of the signal to be triggered, so as to select a relatively suitable trigger type for subsequent triggering.
  • a trigger type that can stably trigger the signal to be triggered is determined.
  • sequence of various trigger types can be pre-designed fixed sequence that users cannot modify, or a configuration system can be set for users to set the sequence of various trigger types; it can also be based on the characteristics of the signal to be triggered To automatically sort the determined trigger types according to their trigger effects.
  • the determined trigger types are multiple, and after determining the multiple trigger types that can stably trigger the signal to be triggered according to the characteristic parameter data, the method further includes:
  • the determined trigger types are multiple, and after determining the multiple trigger types that can stably trigger the signal to be triggered according to the characteristic parameter data, the method further includes:
  • the calculated characteristic parameter data of the signal to be triggered may be at least one.
  • the calculated characteristic parameter data of the signal to be triggered includes at least one of bus protocol matching information and change information of at least one characteristic parameter, wherein the change information of at least one characteristic parameter is peak-to-peak change information, At least one of edge slope change information, frequency change information, pulse width change information, and envelope change information.
  • the calculation process of the edge slope change information of the signal to be triggered includes step A11 to step A12.
  • A11 Detect the edge slope of the signal to be triggered.
  • the edge slope includes the rising edge slope and the falling edge slope.
  • the process of detecting the edge slope of the signal to be triggered includes:
  • A111 Detect the maximum and minimum values of the signal to be triggered in real time; when the maximum and minimum values are detected without major changes within the first preset time, determine the maximum and minimum values of the current record, which is the current pending signal.
  • the maximum value and the minimum value of the trigger signal are denoted as V max and V min respectively . See FIG. 2, which shows a schematic diagram of the maximum value V max and the minimum value V min of the signal to be triggered. A reasonable threshold and vertical gear can be set through V max and V min.
  • the current maximum and minimum values are latched; the latched maximum and minimum values are respectively compared with the newly identified maximum and minimum values.
  • the value is compared, and when the difference between the newly recognized maximum value and the latched maximum value is greater than the preset first threshold value, the latched maximum value is replaced with the newly recognized maximum value; in the latched minimum value In the case where the difference from the newly recognized minimum value is greater than the preset second threshold value, the latched minimum value is replaced with the newly recognized minimum value.
  • the first preset time may be 100ms or even 1s. In the first preset time, such as 100ms or 1s, if there is no change in the maximum value and minimum value of the latch, it is determined that the current latch value is to be triggered The maximum and minimum values of the signal.
  • the sampling is actually real-time and uninterrupted. Therefore, the detection of the maximum and minimum values of the signal to be triggered is also real-time and uninterrupted.
  • the calculation process of the peak-to-peak change information is to calculate the maximum value and the minimum value of the peak-to-peak value of the signal to be triggered, and determine whether the difference between the maximum value and the minimum value of the peak-to-peak value is greater than the preset peak-to-peak change threshold.
  • the process of detecting the maximum value and the minimum value of the peak-to-peak value is similar to the process of detecting the maximum value and the minimum value of the signal to be triggered, and will not be repeated in this embodiment.
  • A112 Calculate the difference between the maximum value and the minimum value of the signal to be triggered, and multiply the difference by the preset first coefficient and add the minimum value to obtain the low threshold.
  • the first coefficient is greater than zero and less than one.
  • A113 Multiply the difference between the maximum value and the minimum value of the signal to be triggered by the preset second coefficient and add the minimum value to obtain the high threshold.
  • the second coefficient is greater than the first coefficient and less than one.
  • the first coefficient is 0.2
  • the second coefficient is 0.8.
  • the low threshold V cmpl V min +0.2*(V max -V min ).
  • the high threshold V cmph V min +0.8*(V max -V min ).
  • A114 Calculate the slope of rising edge and falling edge.
  • A12 Determine whether the difference between the maximum value and the minimum value of the edge slope within the first time is greater than the preset edge slope change threshold.
  • the edge slope change threshold includes the rising edge slope change threshold and the falling edge slope change threshold.
  • the difference between the maximum value and the minimum value of the rising edge slope is calculated, and the difference between the maximum value and the minimum value of the falling edge slope is calculated.
  • the process of detecting the maximum value and the minimum value of the rising edge slope or the falling edge slope is similar to the process of detecting the maximum value and the minimum value of the signal to be triggered, and will not be repeated in this embodiment.
  • the calculation process of the frequency change information of the signal to be triggered includes step A21 to step A22.
  • A21 Detect the frequency of the signal to be triggered.
  • the frequency of the signal to be triggered can be calculated using the frequency measurement method or the weekly measurement method.
  • the number of rising edges of the signal to be triggered is detected, and in the case of the number of rising edges ⁇ 2, the frequency of the signal to be triggered is calculated by the frequency measurement method; the number of rising edges is In the case of 0 or 1, use the weekly measurement method to calculate the frequency of the signal to be triggered.
  • A22 Determine whether the difference between the maximum value and the minimum value of the frequency of the signal to be triggered within the second time is greater than the preset frequency change threshold.
  • the difference between the maximum value and the minimum value of the frequency of the signal to be triggered is less than or equal to the preset frequency change threshold, it is determined that the frequency of the signal to be triggered does not change.
  • the calculation process of the pulse width change information of the signal to be triggered includes step A31 to step A33.
  • A31 Generate a pulse signal corresponding to the signal to be triggered.
  • the process of generating a pulse signal corresponding to the signal to be triggered includes:
  • A311 Detect the maximum and minimum values of the signal to be triggered.
  • Step A311 is consistent with step A111, and will not be repeated in this embodiment.
  • A312 Calculate the average value of the maximum and minimum values of the signal to be triggered.
  • the average value V cmp represents the middle position of the waveform of the signal to be triggered.
  • A313 Based on the average value, generate a pulse signal corresponding to the signal to be triggered.
  • a binary signal corresponding to the signal to be triggered that is, a pulse signal
  • V cmp the threshold level
  • a binary signal corresponding to the signal to be triggered that is, a pulse signal
  • a pulse signal is generated according to the threshold level.
  • a point greater than the average value in the to-be-triggered signal corresponds to a high level
  • a point less than the average value in the to-be-triggered signal corresponds to a low level
  • A32 Detect the pulse width of the pulse signal.
  • the maximum value and the minimum value of the pulse width in the signal to be triggered are detected.
  • A33 Determine whether the difference between the maximum value and the minimum value of the pulse width of the pulse signal in the third time is greater than the preset first pulse width change threshold.
  • the maximum value and the minimum value of the pulse width within the third time are equal or the difference is small; when the signal to be triggered is a non-periodic signal, then the maximum value of the pulse width in a period of time The difference from the minimum value is large.
  • the calculation process of the envelope change information of the signal to be triggered includes step A41 to step A43.
  • A41 Determine whether the signal to be triggered is a modulated signal. In the case that the signal to be triggered is a modulated signal, generate a pulse signal corresponding to the modulated wave.
  • the change value of the maximum value and the minimum value of the signal to be triggered within a period of time is detected, and the change value of the maximum value is greater than the preset change threshold, or the change value of the minimum value is greater than the preset change threshold.
  • the signal to be triggered is an AM (Amplitude Modulation) modulation signal.
  • the cycle time width of the signal to be triggered search for the maximum and minimum values in the group, connect all the maximum values and all the minimum values respectively, and the obtained upper and lower waveforms are the waiting waveforms.
  • the envelope signal of the trigger signal is also the modulation wave.
  • the peak-to-peak value of the modulating wave is calculated, and then a comparison threshold level is set according to the peak-to-peak value, and the comparison threshold level is ensured to be in the middle of the amplitude of the modulating wave, and then the pulse signal corresponding to the modulating wave is obtained.
  • A42 Detect the pulse width and period of the pulse signal
  • detecting the time between two adjacent rising edges is the period of the modulating wave; detecting the time between the rising edge and the next falling edge to get the positive pulse width; detecting the falling edge
  • the negative pulse width can be obtained from the time between the edge and the next rising edge.
  • the pulse width of the detected pulse signal refers to the positive pulse width.
  • A43 Determine whether the difference between the maximum value and the minimum value of the pulse width of the pulse signal in the fourth period is greater than the preset second pulse width change threshold, and determine whether the maximum value and the minimum value of the modulation wave period in the fifth period are Whether the difference is greater than the preset period change threshold.
  • the calculation process of the bus protocol matching information of the signal to be triggered includes step A51 to step A52.
  • A51 When the signal to be triggered exists in at least two channels, determine whether the signal to be triggered in each of the two or more channels is a clock signal, and the signal to be triggered in each channel is a clock In the case of a signal, a preset matching rule is used to determine whether the signal to be triggered matches the bus protocol with the associated clock.
  • the bus itself with a clock is classified into one category, such as serial peripheral interface (Serial Peripheral Interface, SPI) and integrated circuit bus (Inter-Integrated Circuit, IIC), etc.
  • SPI Serial Peripheral Interface
  • IIC Inter-Integrated Circuit
  • the trigger signal matches the IIC bus protocol, and the corresponding trigger type that can stably trigger the signal to be triggered is the IIC bus trigger.
  • the SPI bus determine whether the number of data transmitted in one frame of the trigger signal is an integer multiple of 8 bits, and when the number of data transmitted in one frame of the trigger signal is an integer multiple of 8 bits, determine the signal to be triggered and the SPI If the bus protocol matches, the corresponding trigger type that can stably trigger the signal to be triggered is SPI bus trigger.
  • A52 When only one channel has the signal to be triggered, use the preset matching rules to determine whether the signal to be triggered matches the bus protocol without the associated clock
  • using a preset matching rule to determine whether the signal to be triggered matches the bus without the associated clock includes:
  • A521 Calculate the symbol rate of the signal to be triggered.
  • the buses without a clock signal themselves are classified into one category, such as RS232, Local Interconnect Network (LIN), Controller Area Network (CAN), and Universal Asynchronous Transceiver Transmitter (Universal Asynchronous Receiver/Transmitter, UART), etc.
  • A522 Calculate the data sampling interval according to the symbol rate.
  • A523 Use the data sampling interval to sample to get the signal to be triggered.
  • A524 Use the preset matching rules to determine whether the signal to be triggered by sampling at the data sampling interval matches the bus protocol without the associated clock.
  • the trigger type that can stably trigger the signal to be triggered is RS232 bus trigger; in the case of judging that the signal to be triggered matches the LIN bus protocol, confirm that the signal to be triggered can be stably triggered
  • the trigger type of is LIN bus trigger; in the case of judging that the signal to be triggered matches the CAN bus protocol, it is determined that the trigger type that can stably trigger the signal to be triggered is CAN bus trigger.
  • the idle level of the RS232 bus is low, and the idle level of the UART bus is high.
  • the duration of the idle level is relatively long. Therefore, it is possible to determine which bus protocol is matched by judging the polarity of the pulse with the maximum width. Exemplarily, if the polarity of the pulse with the maximum width is negative, it matches the RS232 bus protocol.
  • the data format of the bus is start + data (optional parity bit) + end bit, and count the start + data (optional parity bit) + end bit data bits between two idle levels If the number of data bits is less than or equal to 10, it is determined that it may match the RS232 and UART bus protocols. If the number of data bits is greater than 10, it is determined that it does not match the RS232 bus protocol or the UART. The bus protocol matches.
  • determining the trigger type that can stably trigger the signal to be triggered includes: determining the trigger type that can stably trigger the signal to be triggered according to different content of the information included in the characteristic parameter data.
  • the calculated characteristic parameter data of the signal to be triggered includes peak-to-peak value change information, edge slope change information, frequency change information, pulse width change information, and envelope change information. According to these characteristic parameter data, it is determined that it can be stable
  • the process of triggering the trigger type of the signal to be triggered may be:
  • the frequency change information is that the difference between the maximum and minimum values of the frequency is less than or equal to the preset frequency change threshold
  • the peak-to-peak change information is that the difference between the maximum and minimum peak-to-peak values is less than or equal to the preset peak-to-peak value.
  • the change threshold, and the edge slope change information is that the difference between the maximum value and the minimum value of the rising edge slope is less than or equal to the preset rising edge slope change threshold, and the difference between the maximum value and the minimum value of the falling edge slope is less than or equal to the preset value
  • the signal to be triggered is considered to be a single periodic signal, and the trigger type that can stably trigger the signal to be triggered is determined to be edge trigger.
  • the peak-to-peak change information is that the difference between the maximum and minimum peak-to-peak values is less than or equal to the preset peak-to-peak value.
  • Change threshold and meet the edge slope change information that the difference between the maximum value and the minimum value of the rising edge slope is greater than the preset rising edge slope change threshold, and the edge slope change information is that the difference between the maximum value and the minimum value of the falling edge slope is greater than
  • the trigger type that can stably trigger the signal to be triggered is edge trigger and slope trigger, and display it. At this time, if you want to find abnormal edge signals, you can select slope trigger , If you don’t care about the slope feature, you can choose edge trigger.
  • the peak-to-peak change information is that the difference between the maximum and minimum peak-to-peak values is less than or equal to the preset peak-to-peak change threshold.
  • the edge slope change information is that the difference between the maximum value and the minimum value of the rising edge slope is greater than the preset rising edge slope change threshold
  • the edge slope change information is that the difference between the maximum value and the minimum value of the falling edge slope is greater than the preset.
  • the peak-to-peak change information is that the difference between the maximum and minimum peak-to-peak values is less than or equal to the preset peak-to-peak change threshold.
  • the edge slope change information is that the difference between the maximum value and the minimum value of the rising edge slope is less than or equal to the preset rising edge slope change threshold, and the difference between the maximum value and the minimum value of the falling edge slope is less than or equal to the preset falling edge slope change
  • the threshold and the pulse width change information indicate that the difference between the maximum value and the minimum value of the pulse width is greater than the preset first pulse width change threshold, and the trigger type that can stably trigger the signal to be triggered is determined to be pulse width trigger.
  • the peak-to-peak change information is that the difference between the maximum and minimum peak-to-peak values is less than or equal to the preset peak-to-peak change threshold.
  • the edge slope change information is that the difference between the maximum value and the minimum value of the rising edge slope is less than or equal to the preset rising edge slope change threshold, and the difference between the maximum value and the minimum value of the falling edge slope is less than or equal to the preset falling edge slope.
  • the peak-to-peak change information is that the difference between the maximum and minimum peak-to-peak values is greater than the preset peak-to-peak change threshold.
  • the envelope change information is that the difference between the maximum value and the minimum value of the pulse width is less than or equal to the preset second pulse width change threshold, and the difference between the maximum value and the minimum value of the period is less than or equal to the preset period change.
  • the peak-to-peak change information is that the difference between the maximum and minimum peak-to-peak values is greater than the preset peak-to-peak change threshold.
  • the envelope change information is that the difference between the maximum and minimum pulse width is greater than the preset second pulse width change threshold, and the envelope change information is that the difference between the maximum and minimum period of the period is greater than the preset
  • the trigger type that can stably trigger the signal to be triggered is over-amplitude trigger, and there are occasional undershoots in the signal to be triggered.
  • the trigger type that can stably trigger the signal to be triggered is runt trigger.
  • FIG. 7 a schematic structural diagram of an apparatus for automatically identifying a trigger type provided by an embodiment of this application, including:
  • the acquiring unit 71 is configured to acquire the signal to be triggered.
  • the feature extraction unit 72 is configured to calculate feature data of the signal to be triggered in real time, and the feature parameter data includes at least one of bus protocol matching information and change information of at least one feature parameter.
  • the trigger type analysis unit 73 is configured to determine the trigger type that can stably trigger the signal to be triggered based on the calculated characteristic parameter data.
  • the device further includes:
  • the display unit is configured to display at least one of the multiple trigger types that can stably trigger the signal to be triggered.
  • the device further includes:
  • the automatic trigger unit is configured to select a trigger type from the multiple trigger types to trigger the signal to be triggered.
  • the change information of the at least one characteristic parameter is:
  • At least one of peak-to-peak change information, edge slope change information, frequency change information, pulse width change information, and envelope change information are included in At least one of peak-to-peak change information, edge slope change information, frequency change information, pulse width change information, and envelope change information.
  • the characteristic parameter data includes edge slope change information
  • the process of the feature extraction unit calculating the edge slope change information of the signal to be triggered includes:
  • Detecting an edge slope of the signal to be triggered where the edge slope includes a rising edge slope and a falling edge slope;
  • the edge slope change threshold includes a rising edge slope change threshold and a falling edge slope change threshold.
  • the characteristic parameter data includes frequency change information
  • the process of calculating the frequency change information of the signal to be triggered by the characteristic extraction unit includes:
  • the characteristic parameter data includes pulse width change information
  • the process of calculating the pulse width change information of the signal to be triggered by the characteristic extraction unit includes:
  • the characteristic parameter data includes envelope change information
  • the process of calculating the envelope change information of the signal to be triggered by the characteristic extraction unit includes:
  • the feature parameter data includes the bus protocol matching information
  • the process of the feature extraction unit calculating the bus protocol matching information of the signal to be triggered includes:
  • the signal to be triggered exists in at least two channels, it is determined whether the signal to be triggered in each of the two or more channels is a clock signal, and the signal to be triggered in each channel is a clock signal. In this case, use a preset matching rule to determine whether the signal to be triggered matches the bus protocol with the associated clock;
  • a preset matching rule is used to determine whether the signal to be triggered matches the bus protocol without the associated clock.
  • the trigger type analysis unit is configured to determine a trigger type that can stably trigger the signal to be triggered according to different contents of the information included in the characteristic parameter data.
  • This embodiment provides an oscilloscope, including a memory and a processor, the memory is set to store a program, the processor can call the program stored in the memory, and the program is used for:
  • characteristic parameter data of the signal to be triggered includes at least one of bus protocol matching information and change information of at least one characteristic parameter
  • a trigger type that can stably trigger the signal to be triggered is determined.
  • the hardware structure of the oscilloscope may include: at least one processor, at least one memory, and at least one communication bus; and the processor and the memory communicate with each other through the communication bus.
  • the processor may be a CPU (Central Processing Unit, central processing unit), or an ASIC (Application Specific Integrated Circuit, specific integrated circuit), or at least one integrated circuit configured to implement the embodiments of the present application Wait.
  • CPU Central Processing Unit
  • ASIC Application Specific Integrated Circuit, specific integrated circuit
  • the memory includes at least one type of readable storage medium.
  • the readable storage medium may be NVM (non-volatile memory, non-volatile memory) such as flash memory, hard disk, multimedia card, and card-type memory.
  • the readable storage medium may also be a high-speed RAM (random access memory, random access memory) memory.
  • the oscilloscope may also include a user interface, and the user interface may include at least one of an input unit (such as a keyboard), a voice input device (such as a device with a voice recognition function including a microphone), and a voice output device (such as audio, earphones, etc.) .
  • the user interface may also include at least one of a standard wired interface and a wireless interface.
  • the oscilloscope may also include a display, which may also be called a display screen or a display unit. In some embodiments, it may be an LED display, a liquid crystal display, a touch-sensitive liquid crystal display, an OLED (Organic Light-Emitting Diode, organic light-emitting diode) display, etc.
  • the display is set to display waveform information and set to display a visualized user interface.
  • the oscilloscope further includes a touch sensor.
  • the area provided by the touch sensor for the user to perform touch operations is called the touch area.
  • the touch sensor may be a resistive touch sensor, a capacitive touch sensor, or the like.
  • the touch sensor includes not only a contact type touch sensor, but also a proximity type touch sensor and the like.
  • the touch sensor may be a single sensor, or may be, for example, a plurality of sensors arranged in an array. The user can input information by touching the touch area.
  • the area of the display of the oscilloscope can be the same as or different from the area of the touch sensor.
  • the display and the touch sensor are stacked to form a touch display screen. The device detects the touch operation triggered by the user based on the touch screen.
  • the device embodiments described above are merely illustrative, wherein the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units. Some or all of the modules can be selected according to actual needs to achieve the objectives of the solutions of the embodiments. Those of ordinary skill in the art can understand and implement it without creative work.
  • the above technical solution provides a method, a device and an oscilloscope for automatically identifying a trigger type.
  • the method includes analyzing characteristic parameter data of a signal to be triggered.
  • the characteristic parameter data includes at least one of bus protocol matching information and change information of at least one characteristic parameter.
  • a trigger type that can stably trigger the signal to be triggered is obtained for the user to select or automatically select the trigger.
  • the method for identifying the trigger type provided by the present application can identify the trigger type that is more suitable for the current signal to be triggered according to at least one of the bus protocol matching information of the signal to be triggered and the change information of at least one characteristic parameter, and thus better Observe and test the signal to be triggered.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Dc Digital Transmission (AREA)

Abstract

本申请实施例提供了一种自动识别触发类型的方法、装置及示波器,属于示波器领域,方法包括分析待触发信号的特征参数数据,该特征参数数据包括总线协议匹配信息和至少一个特征参数的变化信息中的至少一种,得到能够稳定触发该待触发信号的触发类型,以供用户选择或自动选择触发。

Description

自动识别触发类型的方法、装置及示波器
本申请要求在2019年11月15日提交中国专利局、申请号为201911118740.4的中国专利申请的优先权,该申请的全部内容通过引用结合在本申请中。
技术领域
本申请涉及示波器技术领域,例如一种自动识别触发类型的方法、装置及示波器。
背景技术
示波器的触发指的是用户按照需求设置条件,当示波器采样数据流中的某个波形满足设定的条件时,示波器实时捕获该波形和其相邻部分。用户设定的条件称为触发条件。触发的作用是捕获感兴趣的事件,以及稳定显示波形。示波器的触发类型多样,参数设置过程也都较为复杂,这使得对示波器不熟悉或没有操作经验的用户,不能根据信号的特征合理的选择触发类型,导致在信号调试过程中耗时较多。
目前的示波器具备AUTO(自动触发)功能。AUTO功能就是用户手动按一下示波器的“auto”键,之后示波器根据当前信号的幅度和频率,自动调节水平档位和垂直档位,使波形能够在垂直方向上尽量布满整个屏幕,在水平方向上显示一个或两个周期,同时将触发类型设置为边沿触发,最终达到比较好的观察效果。对于某些信号,更加适合的触发类型不是边沿触发,但是,相关技术中的AUTO功能只能针对边沿触发的触发类型进行识别并配置,因此,现在亟需一种新的触发类型识别方式。
发明内容
本申请提出一种自动识别触发类型的方法、装置及示波器,根据预先设置的规则,得到能稳定触发待触发信号的触发类型,以供用户选择或自动选择触 发。
第一方面,本申请提供一种自动识别触发类型的方法,包括:
获取待触发信号;
实时计算所述待触发信号的特征参数数据,所述特征参数数据包括总线协议匹配信息和至少一个特征参数的变化信息中的至少一种;
根据所述特征参数数据,确定能稳定触发所述待触发信号的触发类型。
第二方面,本申请还提供一种自动识别触发类型的装置,包括:
获取单元,设置为获取待触发信号;
特征提取单元,设置为实时计算所述待触发信号的特征参数数据,所述特征参数数据包括总线协议匹配信息和至少一个特征参数的变化信息中的至少一种;
触发类型分析单元,设置为根据所述特征参数数据,确定能稳定触发所述待触发信号的触发类型。
第三方面,本申请提供一种示波器,包括存储器和处理器,所述存储器设置为存储程序,所述处理器设置为执行所述程序,实现如第一方面中任意一种所述自动识别触发类型的方法。
附图说明
图1为本申请一实施例提供的一种自动识别触发类型的方法的流程图;
图2为本申请一实施例提供的待触发信号的最大值和最小值的示意图;
图3为本申请一实施例提供的上升时间和下降时间的示意图;
图4为本申请一实施例提供的脉冲信号与待触发信号的示意图;
图5为本申请一实施例提供的根据最小脉宽生成采样脉冲信号的示意图;
图6为本申请一实施例提供的计算同沿区间内采样脉冲个数的示意图;
图7为本申请一实施例提供的一种自动识别触发类型的装置的结构示意图。
具体实施方式
本申请提供的自动识别触发类型的方法,实时分析ADC(analog to digital converter,模数转换器)采样后的波形数据,即分析计算得到待触发信号的总线协议匹配信息和至少一个特征参数的变化信息中的至少一种等特征参数数据,根据分析得到的待触发信号的特征参数数据,确定能够将待触发信号稳定触发的触发类型,进而更好的观察和测试待触发信号。
参见图1,为本申请一实施例提供的一种自动识别触发类型的方法的流程图,该方法包括步骤S11至步骤S13。
在步骤S11中,获取待触发信号。
执行步骤S11,获取示波器的ADC输出的待触发信号。示波器的模拟前端对原始的模拟信号进行放大或衰减预处理,然后再经过高速ADC进行采集、量化以及编码将模拟信号转换成数字信号输出。
在步骤S12中,实时计算待触发信号的特征参数数据。
特征参数数据包括总线协议匹配信息和至少一个特征参数的变化信息中的至少一种。在本申请中,特征参数的变化信息包括但不限峰峰值变化信息、边沿斜率变化信息、频率变化信息、脉宽变化信息和包络变化信息。待触发信号的所有最大值的连线,和所有最小值的连线为待触发信号的包络信号。总线协议匹配信息为通过分析待触发信号的数据格式等信息,识别出的与哪类总线协议匹配的信息。待触发信号与总线协议匹配表示待触发信号由与该总线协议对应的总线传输。对待触发信号的特征参数数据进行分析计算,以便后续选择相对合适的触发类型进行触发。
在步骤S13中,根据计算得到的特征参数数据,确定能稳定触发待触发信号的触发类型。确定的能稳定触发待触发信号的触发类型可以有多个,在确定能稳定触发待触发信号的多个触发类型之后,可以直接显示确定出的能稳定触发待触发信号的所有触发类型,以供用户选择;或者,预先设置各种触发类型 的先后顺序,这样在确定能稳定触发待触发信号的多个触发类型后,根据各种触发类型的先后顺序,从能稳定触发待触发信号中的所有触发类型中,选择排序最靠前的触发类型对待触发信号进行触发。需要说明的是,各种触发类型的先后顺序,可以是预先设计用户无法修改的固定顺序,也可以设置配置系统,供用户设置各种触发类型的先后顺序;也可以是根据待触发信号的特性,将所确定的触发类型根据其触发效果进行自动排序。
在一实施例中,确定的所述触发类型为多个,在根据所述特征参数数据,确定能稳定触发所述待触发信号的多个触发类型之后,还包括:
显示所述能稳定触发所述待触发信号的所述多个触发类型中的至少一个触发类型。
在一实施例中,确定的所述触发类型为多个,在根据所述特征参数数据,确定能稳定触发所述待触发信号的多个触发类型之后,还包括:
从所述多个触发类型中,选择一个触发类型对所述待触发信号进行触发。
计算得到的待触发信号的特征参数数据可以是至少一个。在一个实施例中,计算得到的待触发信号的特征参数数据包括总线协议匹配信息和至少一个特征参数的变化信息中的至少一种,其中,至少一个特征参数的变化信息为峰峰值变化信息、边沿斜率变化信息、频率变化信息、脉宽变化信息和包络变化信息中的至少一个。通过多个特征参数数据进行统筹分析,更加准确全面的分析出能稳定触发待触发信号的触发类型。
下面详细介绍各种特征参数数据的计算过程:
(1)待触发信号的边沿斜率变化信息的计算过程,包括步骤A11至步骤A12。
A11:检测待触发信号的边沿斜率。边沿斜率包括上升沿斜率和下降沿斜率。
在一个实施例中,检测待触发信号的边沿斜率过程包括:
A111:实时检测待触发信号的最大值和最小值;在检测到最大值和最小值在第一预设时间内没有大的变化的情况下,确定当前记录的最大值和最小值,就是当前待触发信号的最大值和最小值,分别记为V max和V min,参见图2,示出了待触发信号的最大值V max和最小值V min的示意图。通过V max和V min可以设置合理的阈值和垂直档位。
示例性的,在待触发信号的最大值和最小值的查找过程中,将当前的最大值和最小值进行锁存;将锁存的最大值和最小值分别与新识别到的最大值和最小值进行比较,在新识别的最大值与锁存的最大值的差值大于预设的第一阈值的情况下,将锁存的最大值替换为新识别的最大值;在锁存的最小值与新识别的最小值的差值大于预设的第二阈值的情况下,将锁存的最小值替换为新识别的最小值。所述第一预设时间可以是100ms甚至1s,在第一预设时间内,例如100ms或者1s内,锁存的最大值和最小值均没有变化的情况下,确定当前锁存值为待触发信号的最大值和最小值。
需要说明的是,实际上采样是实时的、不间断的,因此,待触发信号的最大值和最小值的检测也是实时的、不间断的进行的。
峰峰值变化信息的计算过程为:计算待触发信号的峰峰值的最大值和最小值,判断峰峰值的最大值与最小值的差值是否大于预设峰峰值变化阈值。检测峰峰值的最大值和最小值过程,与检测待触发信号的最大值和最小值的过程类似,本实施例不再赘述。
A112:计算待触发信号的最大值与最小值的差值,并将差值乘以预设的第一系数后加上最小值,得到低阈值。
第一系数大于零且小于1。
A113:将待触发信号的最大值与最小值的差值乘以预设的第二系数后加上最小值,得到高阈值。
第二系数大于第一系数且小于1。示例性的,第一系数为0.2,第二系数为 0.8。低阈值V cmpl=V min+0.2*(V max-V min)。高阈值V cmph=V min+0.8*(V max-V min)。
A114:计算上升沿斜率和下降沿斜率。
参见图3,记录上升沿阶段从低阈值V cmpl到高阈值V cmph之间对应的时间为上升时间Th,对应的上升沿斜率=(V cmph-V cmpl)/Th。记录下降沿阶段从高阈值V cmph到低阈值V cmpl之间对应的时间为下降时间Tl,对应的下降沿斜率=(V cmph-V cmpl)/Tl。需要说明的是,计算上升沿斜率和下降沿斜率也是实时的、不间断的进行的。
A12:判断第一时间内边沿斜率的最大值与最小值的差值是否大于预设的边沿斜率变化阈值,边沿斜率变化阈值包括上升沿斜率变化阈值和下降沿斜率变化阈值。
示例性的,计算上升沿斜率的最大值和最小值的差值,且计算下降沿斜率的最大值和最小值的差值。检测上升沿斜率或下降沿斜率的最大值和最小值过程,与检测待触发信号的最大值和最小值的过程类似,本实施例不再赘述。
判断第一时间内上升沿斜率的最大值与最小值的差值,是否大于预设的上升沿斜率变化阈值。以及判断一段时间内下降沿斜率的最大值与最小值的差值,是否大于预设的下降沿斜率变化阈值。
(2)待触发信号的频率变化信息的计算过程,包括步骤A21至步骤A22。
A21:检测待触发信号的频率。
可以利用测频法或测周法计算待触发信号的频率。示例性的,在第二预设时间内,检测待触发信号的上升沿个数,在上升沿个数≥2的情况下,利用测频法计算得到待触发信号的频率;在上升沿个数为0或1的情况下,用测周法计算得到待触发信号的频率。
A22:判断第二时间内待触发信号的频率的最大值与最小值的差值是否大于预设的频率变化阈值。
在第二时间内,待触发信号的频率的最大值与最小值的差值小于或等于预设的频率变化阈值,则确定待触发信号的频率不发生变化。
(3)待触发信号的脉宽变化信息的计算过程,包括步骤A31至步骤A33。
A31:生成与待触发信号对应的脉冲信号。
在一个实施例中,生成与待触发信号对应的脉冲信号的过程包括:
A311:检测待触发信号的最大值和最小值。
步骤A311与步骤A111一致,本实施例不再赘述。
A312:计算待触发信号的最大值和最小值的平均值。
待触发信号的最大值和最小值的平均值V cmp=0.5*(V max+V min)。平均值V cmp表示待触发信号的波形的中间位置。
A313:依据平均值,生成与待触发信号对应的脉冲信号。
将平均值V cmp作为阈值电平,根据阈值电平生成与待触发信号对应的二值信号,即脉冲信号。示例性的,参见图4所示,确定待触发信号中大于平均值的点对应高电平,并确定待触发信号中小于平均值的点对应低电平,进而生成相应的脉冲信号。
A32:检测脉冲信号的脉宽。
示例性的,根据生成的脉冲信号,检测待触发信号中的脉宽的最大值和最小值。
A33:判断第三时间内脉冲信号的脉宽的最大值与最小值的差值是否大于预设的第一脉宽变化阈值。
在待触发信号是周期信号的情况下,那么第三时间内脉宽的最大值和最小值相等或相差很小;在待触发信号是非周期信号的情况下,那么一段时间内脉宽的最大值和最小值的差值很大。通过此特点,分析待触发信号是否是周期信号。
(4)待触发信号的包络变化信息的计算过程,包括步骤A41至步骤A43。
A41:判断待触发信号是否为调制信号,在待触发信号是调制信号的情况下,生成与调制波对应的脉冲信号。
在一个实施例中,检测待触发信号在一段时间内最大值的变化值和最小值的变化值,在最大值的变化值大于预设变化阈值,或最小值的变化值大于预设变化阈值的情况下,确定待触发信号为AM(Amplitude Modulation,调幅)调制信号。以待触发信号的周期时间宽度进行分组,搜索组内的最大值和最小值,分别将所有的最大值进行连线,所有的最小值进行连线,所得到的上、下两个波形就是待触发信号的包络信号也就是调制波。计算得到调制波的峰峰值,然后根据峰峰值设定一个比较阈值电平,并保证比较阈值电平位于调制波的幅度中间位置,进而得到与调制波对应的脉冲信号。
A42:检测脉冲信号的脉宽和周期;
基于调制波对应的脉冲信号,检测相邻的两个上升沿之间的时间就是调制波的周期;检测上升沿到相邻的下一个下降沿之间的时间就可以得到正脉宽;检测下降沿到相邻的下一个上升沿之间的时间就可以得到负脉宽。在本实施例中检测脉冲信号的脉宽指的是正脉宽。
A43:判断第四时间内脉冲信号的脉宽的最大值与最小值的差值是否大于预设的第二脉宽变化阈值,且判断第五时间内调制波的周期的最大值与最小值的差值是否大于预设的周期变化阈值。
(5)待触发信号的总线协议匹配信息的计算过程,包括步骤A51至步骤A52。
A51:在至少两路通道存在所述待触发信号的情况下,判断所述两路以上通道中的每个通道的待触发信号是否为时钟信号,在所述每个通道的待触发信号是时钟信号的情况下,利用预先设置的匹配规则,判断所述待触发信号是否与带有随路时钟的总线协议匹配。
在本实施例中,将总线本身就带有时钟的总线归为一类,例如串行外设接口(Serial Peripheral Interface,SPI)和集成电路总线(Inter-Integrated Circuit,IIC)等。对于IIC总线,判断待触发信号是否符合IIC起始条件、结束条件、数据传输格式,空闲状态时时钟总线和数据总线是否为高电平,以及一帧内数据传输的数据个数是否为9bits的整数倍。在触发信号符合IIC起始条件、结束条件、数据传输格式,空闲状态时时钟总线和数据总线为高电平,以及一帧内数据传输的数据个数为9bits的整数倍的情况下,确定待触发信号与IIC总线协议匹配,相应的确定能稳定触发待触发信号的触发类型为IIC总线触发。
对于SPI总线,判断触发信号一帧内数据传输的数据个数是否为8bits的整数倍,在触发信号一帧内数据传输的数据个数为8bits的整数倍的情况下,确定待触发信号与SPI总线协议匹配,相应的确定能稳定触发待触发信号的触发类型为SPI总线触发。
需要说明的是对于时钟信号并不进行后续触发类型的判断。
A52:在仅一路通道存在所述待触发信号的情况下,利用预先设置的匹配规则,判断待触发信号是否与不带随路时钟的总线协议匹配
在一个实施例中,利用预先设置的匹配规则,判断待触发信号是否与不带随路时钟的总线匹配包括:
A521::计算所述待触发信号的码元速率。
在本实施例中,将总线自身不带时钟信号的总线归为一类,如RS232、局域互联网络(Local Interconnect Network,LIN)和控制器局域网络(Controller Area Network,CAN),通用异步收发传输器(Universal Asynchronous Receiver/Transmitter,UART)等。计算待触发信号的码元速率为:实时检测待触发信号中的最小脉宽,根据该最小脉宽,生成采样脉冲信号,如图5所示。在待触发信号找到一个同沿区间Trr,并记录在此区间内采样脉冲的个数Ns,如图6。然后计算平均值T=Trr/Ns,得到相对准确的码元速率f=1/T。
A522:根据码元速率计算得到数据采样间隔。
A523:利用数据采样间隔采样得到待触发信号。
A524:利用预先设置的匹配规则,判断利用数据采样间隔采样得到待触发信号是否与不带随路时钟的总线协议匹配。
在判断待触发信号与RS232总线协议匹配的情况下,确定能稳定触发待触发信号的触发类型为RS232总线触发;在判断待触发信号与LIN总线协议匹配的情况下,确定能稳定触发待触发信号的触发类型为LIN总线触发;在判断待触发信号为与CAN总线协议匹配的情况下,确定能稳定触发待触发信号的触发类型为CAN总线触发。
RS232总线的空闲电平为低电平,UART总线的空闲电平为高电平。空闲电平的持续时间相对比较长,因此,可以通过判断最大宽度的脉冲极性来确定与哪个总线协议匹配。示例性的,最大宽度的脉冲极性为负极性,则与RS232总线协议匹配。总线的数据格式为起始+数据(可选的奇偶校验位)+结束位,统计两个空闲电平之间的起始+数据(可选的奇偶校验位)+结束位的数据位个数,在数据位个数小于或等于10的情况下,确定可能与RS232和UART总线协议匹配,在数据位个数大于10的情况下,确定既不与RS232总线协议匹配,也不与UART总线协议匹配。
根据特征参数数据,确定能稳定触发所述待触发信号的触发类型包括:根据特征参数数据包括的信息的不同内容,确定能稳定触发待触发信号的触发类型。在一个实施例中,计算得到的待触发信号的特征参数数据包括峰峰值变化信息、边沿斜率变化信息、频率变化信息、脉宽变化信息和包络变化信息,根据这些特征参数数据,确定能稳定触发所述待触发信号的触发类型的过程可以为:
1、在频率变化信息为频率的最大值与最小值的差值小于或等于预设的频率变化阈值,峰峰值变化信息为峰峰值的最大值与最小值的差值小于或等于预设 峰峰值变化阈值,以及边沿斜率变化信息为上升沿斜率的最大值与最小值的差值小于或等于预设上升沿斜率变化阈值,且下降沿斜率的最大值与最小值的差值小于或等于预设下降沿斜率变化阈值的情况下,认为待触发信号为单一的周期信号,确定能稳定触发待触发信号的触发类型为边沿触发。
2、在频率变化信息为频率的最大值与最小值的差值小于或等于预设的频率变化阈值,峰峰值变化信息为峰峰值的最大值与最小值的差值小于或等于预设峰峰值变化阈值,以及满足边沿斜率变化信息为上升沿斜率的最大值与最小值的差值大于预设上升沿斜率变化阈值,和边沿斜率变化信息为下降沿斜率的最大值与最小值的差值大于预设下降沿斜率变化阈值中的至少之一的情况下,确定能稳定触发待触发信号的触发类型为边沿触发和斜率触发,并进行显示,此时用户如果要查找异常边沿信号可以选择斜率触发,如果不关注斜率特征可以选择边沿触发。
3、在频率变化信息为频率的最大值与最小值的差值大于预设的频率变化阈值,峰峰值变化信息为峰峰值的最大值与最小值的差值小于或等于预设峰峰值变化阈值,以及满足边沿斜率变化信息为上升沿斜率的最大值与最小值的差值大于预设上升沿斜率变化阈值,和边沿斜率变化信息为下降沿斜率的最大值与最小值的差值大于预设下降沿斜率变化阈值中至少之一的情况下,确定能稳定触发待触发信号的触发类型为斜率触发和边沿触发,并进行显示,此时用户如果要查找异常边沿信号可以选择斜率触发,如果不关注斜率特征,由于待触发信号可能是扫描信号,边沿触发更适合稳定触发。
4、在频率变化信息为频率的最大值与最小值的差值大于预设的频率变化阈值,峰峰值变化信息为峰峰值的最大值与最小值的差值小于或等于预设峰峰值变化阈值,边沿斜率变化信息为上升沿斜率的最大值与最小值的差值小于或等于预设上升沿斜率变化阈值,下降沿斜率的最大值与最小值的差值小于或等于预设下降沿斜率变化阈值,以及脉宽变化信息为脉宽的最大值与最小值的差值大于预设的第一脉宽变化阈值的情况下,确定能稳定触发待触发信号的触发类 型为脉宽触发。
5、在频率变化信息为频率的最大值与最小值的差值大于预设的频率变化阈值,峰峰值变化信息为峰峰值的最大值与最小值的差值小于或等于预设峰峰值变化阈值,边沿斜率变化信息为上升沿斜率的最大值与最小值的差值小于或等于预设上升沿斜率变化阈值,以及下降沿斜率的最大值与最小值的差值小于或等于预设下降沿斜率变化阈值,且待触发信号满足burst特征的情况下,确定能稳定触发待触发信号的触发类型为超时触发和第N边触发。
6、在频率变化信息为频率的最大值与最小值的差值小于或等于预设的频率变化阈值,峰峰值变化信息为峰峰值的最大值与最小值的差值大于预设峰峰值变化阈值,以及包络变化信息为脉宽的最大值与最小值的差值小于或等于预设的第二脉宽变化阈值,且周期的最大值与最小值的差值小于或等于预设的周期变化阈值的情况下,确定能稳定触发待触发信号的触发类型为脉宽触发。
7、在频率变化信息为频率的最大值与最小值的差值小于或等于预设的频率变化阈值,峰峰值变化信息为峰峰值的最大值与最小值的差值大于预设峰峰值变化阈值,以及满足包络变化信息为脉宽的最大值与最小值的差值大于预设的第二脉宽变化阈值,和包络变化信息为周期的最大值与最小值的差值大于预设的周期变化阈值中的至少之一的情况下,在待触发信号中存在偶发性的过冲时,确定能稳定触发待触发信号的触发类型为超幅触发,在待触发信号中存在偶发性的欠幅时,确定能稳定触发待触发信号的触发类型为欠幅触发。
8、在频率变化信息为频率的最大值与最小值的差值大于预设的频率阈值,峰峰值变化信息为峰峰值的最大值与最小值的差值大于预设峰峰值变化阈值的情况下,确定能稳定触发待触发信号的触发类型为边沿触发。
对于前述的各方法实施例,为了简单描述,故将其都表述为一系列的动作组合,但是本领域技术人员应该知悉,本申请并不受所描述的动作顺序的限制,因为依据本申请,某些步骤可以采用其他顺序或者同时进行。
下述为本申请装置实施例,可以用于执行本申请方法实施例。对于本申请装置实施例中未披露的细节,请参照本申请方法实施例。
参见图7,为本申请一实施例提供的一种自动识别触发类型的装置的结构示意图,包括:
获取单元71,设置为获取待触发信号。
特征提取单元72,设置为实时计算待触发信号的特征数据,特征参数数据包括总线协议匹配信息和至少一个特征参数的变化信息中的至少一种。
触发类型分析单元73,设置为根据计算得到的特征参数数据,确定能稳定触发待触发信号的触发类型。
在一实施例中,所述触发类型分析单元确定的所述触发类型为多个,所述装置还包括:
显示单元,设置为显示所述能稳定触发所述待触发信号的所述多个触发类型中的至少一个。
在一实施例中,所述触发类型分析单元确定的所述触发类型为多个,所述装置还包括:
自动触发单元,设置为从所述多个触发类型中,选择一个触发类型对所述待触发信号进行触发。
在一实施例中,所述至少一个特征参数的变化信息为:
峰峰值变化信息、边沿斜率变化信息、频率变化信息、脉宽变化信息和包络变化信息中的至少一个。
在一实施例中,所述特征参数数据包括边沿斜率变化信息,所述特征提取单元计算所述待触发信号的边沿斜率变化信息的过程,包括:
检测所述待触发信号的边沿斜率,所述边沿斜率包括上升沿斜率和下降沿斜率;
判断第一时间内所述边沿斜率的最大值与最小值的差值是否大于预设的边沿斜率变化阈值,所述边沿斜率变化阈值包括上升沿斜率变化阈值和下降沿斜率变化阈值。
在一实施例中,所述特征参数数据包括频率变化信息,所述特征提取单元计算所述待触发信号的频率变化信息的过程,包括:
检测所述待触发信号的频率;
判断第二时间内所述待触发信号的频率的最大值与最小值的差值是否大于预设的频率变化阈值。
在一实施例中,所述特征参数数据包括脉宽变化信息,所述特征提取单元计算所述待触发信号的脉宽变化信息的过程,包括:
生成与所述待触发信号对应的脉冲信号;
检测所述脉冲信号的脉宽;
判断第三时间内所述脉冲信号的脉宽的最大值与最小值的差值是否大于预设的第一脉宽变化阈值。
在一实施例中,所述特征参数数据包括包络变化信息,所述特征提取单元计算所述待触发信号的包络变化信息的过程,包括:
判断所述待触发信号是否为调制信号,在所述待触发信号是调制信号的情况下,生成与调制波对应的脉冲信号;
检测所述脉冲信号的脉宽和周期;
判断第四时间内所述脉冲信号的脉宽的最大值与最小值的差值是否大于预设的第二脉宽变化阈值,且判断第五时间内所述调制波的周期的最大值与最小值的差值是否大于预设的周期变化阈值。
在一实施例中,所述特征参数数据包括所述总线协议匹配信息,所述特征提取单元计算所述待触发信号的总线协议匹配信息的过程,包括:
在至少两路通道存在所述待触发信号的情况下,判断所述两路以上通道中的每个通道的待触发信号是否为时钟信号,在所述每个通道的待触发信号是时钟信号的情况下,利用预先设置的匹配规则,判断所述待触发信号是否与带有随路时钟的总线协议匹配;
在仅一路通道存在所述待触发信号的情况下,利用预先设置的匹配规则,判断所述待触发信号是否与不带随路时钟的总线协议匹配。
在一实施例中,所述触发类型分析单元,设置为根据所述特征参数数据包括的信息的不同内容,确定能稳定触发所述待触发信号的触发类型。
本实施例提供一种示波器,包括存储器和处理器,存储器设置为存储程序,处理器可调用存储器存储的程序,程序用于:
获取待触发信号;
实时计算所述待触发信号的特征参数数据,所述特征参数数据包括总线协议匹配信息和至少一个特征参数的变化信息中的至少一种;
根据所述特征参数数据,确定能稳定触发所述待触发信号的触发类型。
所述程序的细化功能和扩展功能可参照上文描述。
示波器的硬件结构可以包括:至少一个处理器,至少一个存储器和至少一个通信总线;且处理器、存储器通过通信总线完成相互间的通信。
处理器在一些实施例中可以是一个CPU(Central Processing Unit,中央处理器),或者是ASIC(Application Specific Integrated Circuit,特定集成电路),或者是被配置成实施本申请实施例的至少一个集成电路等。
存储器包括至少一种类型的可读存储介质。可读存储介质可以为如闪存、硬盘、多媒体卡、卡型存储器等NVM(non-volatile memory,非易失性存储器)。可读存储介质还可以是高速RAM(random access memory,随机存取存储器)存储器。
该示波器还可以包括用户接口,用户接口可以包括输入单元(比如键盘)、语音输入装置(比如包含麦克风的具有语音识别功能的设备)和语音输出装置(比如音响、耳机等)中的至少之一。示例性的,用户接口还可以包括标准的有线接口和无线接口中的至少之一。
该示波器还可以包括显示器,显示器也可以称为显示屏或显示单元。在一些实施例中可以是LED显示器、液晶显示器、触控式液晶显示器以及OLED(Organic Light-Emitting Diode,有机发光二极管)显示器等。显示器设置为显示波形信息以及设置为显示可视化的用户界面。
示例性的,该示波器还包括可以触摸传感器。触摸传感器所提供的供用户进行触摸操作的区域称为触控区域。此外,触摸传感器可以为电阻式触摸传感器、电容式触摸传感器等。而且,触摸传感器不仅包括接触式的触摸传感器,也可包括接近式的触摸传感器等。此外,触摸传感器可以为单个传感器,也可以为例如阵列布置的多个传感器。用户可以通过触摸触控区域输入信息。
此外,该示波器的显示器的面积可以与触摸传感器的面积相同,也可以不同。示例性的,将显示器与触摸传感器层叠设置,以形成触摸显示屏。该装置基于触摸显示屏侦测用户触发的触控操作。
以上所描述的装置实施例仅仅是示意性的,其中所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元。可以根据实际的需要选择其中的部分或者全部模块来实现本实施例方案的目的。本领域普通技术人员在不付出创造性劳动的情况下,即可以理解并实施。
在本文中,诸如第一和第二等之类的关系术语仅仅用来将一个实体或者操作与另一个实体或操作区分开来,而不一定要求或者暗示这些实体或操作之间存在任何这种实际的关系或者顺序。而且,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、 物品或者设备不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者设备所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括所述要素的过程、方法、物品或者设备中还存在另外的相同要素。
上述技术方案提供的一种自动识别触发类型的方法、装置及示波器,方法包括分析待触发信号的特征参数数据,该特征参数数据包括总线协议匹配信息和至少一个特征参数的变化信息中的至少一种,得到能够稳定触发该待触发信号的触发类型,以供用户选择或自动选择触发。本申请提供的识别触发类型的方法,可以根据待触发信号的总线协议匹配信息和至少一个特征参数的变化信息中的至少一种,识别出比较适合当前待触发信号的触发类型,进而更好的观察和测试待触发信号。

Claims (21)

  1. 一种自动识别触发类型的方法,包括:
    获取待触发信号;
    实时计算所述待触发信号的特征参数数据,所述特征参数数据包括总线协议匹配信息和至少一个特征参数的变化信息中的至少一种;
    根据所述特征参数数据,确定能稳定触发所述待触发信号的触发类型。
  2. 根据权利要求1所述的方法,确定的所述触发类型为多个,在根据所述特征参数数据,确定能稳定触发所述待触发信号的多个触发类型之后,还包括:
    显示所述能稳定触发所述待触发信号的所述多个触发类型中的至少一个触发类型。
  3. 根据权利要求1所述的方法,确定的所述触发类型为多个,在根据所述特征参数数据,确定能稳定触发所述待触发信号的多个触发类型之后,还包括:
    从所述多个触发类型中,选择一个触发类型对所述待触发信号进行触发。
  4. 根据权利要求1所述的方法,其中,所述至少一个特征参数的变化信息为:
    峰峰值变化信息、边沿斜率变化信息、频率变化信息、脉宽变化信息和包络变化信息中的至少一个。
  5. 根据权利要求1所述的方法,其中,所述特征参数数据包括边沿斜率变化信息,计算所述待触发信号的边沿斜率变化信息的过程,包括:
    检测所述待触发信号的边沿斜率,所述边沿斜率包括上升沿斜率和下降沿斜率;
    判断第一时间内所述边沿斜率的最大值与最小值的差值是否大于预设的边沿斜率变化阈值,所述边沿斜率变化阈值包括上升沿斜率变化阈值和下降沿斜率变化阈值。
  6. 根据权利要求1所述的方法,其中,所述特征参数数据包括频率变化信息,计算所述待触发信号的频率变化信息的过程,包括:
    检测所述待触发信号的频率;
    判断第二时间内所述待触发信号的频率的最大值与最小值的差值是否大于预设的频率变化阈值。
  7. 根据权利要求1所述的方法,其中,所述特征参数数据包括脉宽变化信息,计算所述待触发信号的脉宽变化信息的过程,包括:
    生成与所述待触发信号对应的脉冲信号;
    检测所述脉冲信号的脉宽;
    判断第三时间内所述脉冲信号的脉宽的最大值与最小值的差值是否大于预设的第一脉宽变化阈值。
  8. 根据权利要求1所述的方法,其中,所述特征参数数据包括包络变化信息,计算所述待触发信号的包络变化信息的过程,包括:
    判断所述待触发信号是否为调制信号,在所述待触发信号为调制信号的情况下,生成与调制波对应的脉冲信号;
    检测所述脉冲信号的脉宽和周期;
    判断第四时间内所述脉冲信号的脉宽的最大值与最小值的差值是否大于预设的第二脉宽变化阈值,且判断第五时间内所述调制波的周期的最大值与最小值的差值是否大于预设的周期变化阈值。
  9. 根据权利要求1所述的方法,其中,所述特征参数数据包括所述总线协议匹配信息,计算所述待触发信号的总线协议匹配信息的过程,包括:
    在至少两路通道存在所述待触发信号的情况下,判断所述两路以上通道中的每个通道的待触发信号是否为时钟信号,在所述每个通道的待触发信号是时钟信号的情况下,利用预先设置的匹配规则,判断所述待触发信号是否与带有随路时钟的总线协议匹配;
    在仅一路通道存在所述待触发信号的情况下,利用预先设置的匹配规则,判断所述待触发信号是否与不带随路时钟的总线协议匹配。
  10. 根据权利要求1~9中任意一项所述的方法,其中,根据所述特征参数数据,确定能稳定触发所述待触发信号的触发类型包括:
    根据所述特征参数数据包括的信息的不同内容,确定能稳定触发所述待触发信号的触发类型。
  11. 一种自动识别触发类型的装置,包括:
    获取单元,设置为获取待触发信号;
    特征提取单元,设置为实时计算所述待触发信号的特征参数数据,所述特征参数数据包括总线协议匹配信息和至少一个特征参数的变化信息中的至少一种;
    触发类型分析单元,设置为根据所述特征参数数据,确定能稳定触发所述待触发信号的触发类型。
  12. 根据权利要求11所述的装置,所述触发类型分析单元确定的所述触发类型为多个,所述装置还包括:
    显示单元,设置为显示所述能稳定触发所述待触发信号的所述多个触发类型中的至少一个触发类型。
  13. 根据权利要求11所述的装置,所述触发类型分析单元确定的所述触发类型为多个,所述装置还包括:
    自动触发单元,设置为从所述多个触发类型中,选择一个触发类型对所述待触发信号进行触发。
  14. 根据权利要求11所述的装置,其中,所述至少一个特征参数的变化信息为:
    峰峰值变化信息、边沿斜率变化信息、频率变化信息、脉宽变化信息和包络变化信息中的至少一个。
  15. 根据权利要求11所述的装置,其中,所述特征参数数据包括边沿斜率变化信息,所述特征提取单元计算所述待触发信号的边沿斜率变化信息的过程,包括:
    检测所述待触发信号的边沿斜率,所述边沿斜率包括上升沿斜率和下降沿斜率;
    判断第一时间内所述边沿斜率的最大值与最小值的差值是否大于预设的边沿斜率变化阈值,所述边沿斜率变化阈值包括上升沿斜率变化阈值和下降沿斜率变化阈值。
  16. 根据权利要求11所述的装置,其中,所述特征参数数据包括频率变化信息,所述特征提取单元计算所述待触发信号的频率变化信息的过程,包括:
    检测所述待触发信号的频率;
    判断第二时间内所述待触发信号的频率的最大值与最小值的差值是否大于预设的频率变化阈值。
  17. 根据权利要求11所述的装置,其中,所述特征参数数据包括脉宽变化信息,所述特征提取单元计算所述待触发信号的脉宽变化信息的过程,包括:
    生成与所述待触发信号对应的脉冲信号;
    检测所述脉冲信号的脉宽;
    判断第三时间内所述脉冲信号的脉宽的最大值与最小值的差值是否大于预设的第一脉宽变化阈值。
  18. 根据权利要求11所述的装置,其中,所述特征参数数据包括包络变化信息,所述特征提取单元计算所述待触发信号的包络变化信息的过程,包括:
    判断所述待触发信号是否为调制信号,在所述待触发信号是调制信号的情况下,生成与调制波对应的脉冲信号;
    检测所述脉冲信号的脉宽和周期;
    判断第四时间内所述脉冲信号的脉宽的最大值与最小值的差值是否大于预设的第二脉宽变化阈值,且判断第五时间内所述调制波的周期的最大值与最小值的差值是否大于预设的周期变化阈值。
  19. 根据权利要求11所述的装置,其中,所述特征参数数据包括所述总线协议匹配信息,所述特征提取单元计算所述待触发信号的总线协议匹配信息的过程,包括:
    在至少两路通道存在所述待触发信号的情况下,判断所述两路以上通道中 的每个通道的待触发信号是否为时钟信号,在所述每个通道的待触发信号是时钟信号的情况下,利用预先设置的匹配规则,判断所述待触发信号是否与带有随路时钟的总线协议匹配;
    在仅一路通道存在所述待触发信号的情况下,利用预先设置的匹配规则,判断所述待触发信号是否与不带随路时钟的总线协议匹配。
  20. 根据权利要求11所述的装置,其中,所述触发类型分析单元,设置为根据所述特征参数数据包括的信息的不同内容,确定能稳定触发所述待触发信号的触发类型。
  21. 一种示波器,包括存储器和处理器,所述存储器设置为存储程序,所述处理器设置为执行所述程序,实现如权利要求1~10中任一项所述自动识别触发类型的方法。
PCT/CN2020/093159 2019-11-15 2020-05-29 自动识别触发类型的方法、装置及示波器 WO2021093309A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP20887962.7A EP4060352A4 (en) 2019-11-15 2020-05-29 AUTOMATIC TRIGGER TYPE IDENTIFICATION METHOD AND APPARATUS AND OSCILLOSCOPE
JP2022528126A JP7220834B2 (ja) 2019-11-15 2020-05-29 トリガタイプを自動的に識別する方法、装置及びオシロスコープ
US17/776,340 US11906551B2 (en) 2019-11-15 2020-05-29 Automatic trigger type identification method, device, and oscilloscope

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201911118740.4A CN110763888B (zh) 2019-11-15 2019-11-15 自动识别触发类型的方法、装置及示波器
CN201911118740.4 2019-11-15

Publications (1)

Publication Number Publication Date
WO2021093309A1 true WO2021093309A1 (zh) 2021-05-20

Family

ID=69337934

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/093159 WO2021093309A1 (zh) 2019-11-15 2020-05-29 自动识别触发类型的方法、装置及示波器

Country Status (5)

Country Link
US (1) US11906551B2 (zh)
EP (1) EP4060352A4 (zh)
JP (1) JP7220834B2 (zh)
CN (1) CN110763888B (zh)
WO (1) WO2021093309A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114679606A (zh) * 2022-04-02 2022-06-28 哈尔滨工业大学 一种基于Burst特征的视频流量识别方法、系统、电子设备及存储介质

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110763888B (zh) * 2019-11-15 2021-12-07 北京普源精电科技有限公司 自动识别触发类型的方法、装置及示波器
CN111929481B (zh) * 2020-09-21 2021-06-22 深圳市鼎阳科技股份有限公司 一种示波器放大区域的显示方法及示波器
CN114509589A (zh) * 2020-11-17 2022-05-17 北京普源精电科技有限公司 示波器的触发系统、触发方法、示波器以及存储介质
CN112433901A (zh) * 2020-12-04 2021-03-02 昆易电子科技(上海)有限公司 一种用于车辆总线触发性功能测试的方法和系统
CN113219363B (zh) * 2021-03-25 2022-06-10 合肥联宝信息技术有限公司 一种电源噪声测试方法、装置及存储介质

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101937019A (zh) * 2009-03-13 2011-01-05 特克特朗尼克公司 测试和测量触发的图形起动
CN105608040A (zh) * 2015-12-21 2016-05-25 中国电子科技集团公司第四十一研究所 一种用fpga实现通用串行总线触发与解码的方法
EP3182140A1 (en) * 2015-12-14 2017-06-21 Rohde & Schwarz GmbH & Co. KG Measuring device and method with automated trigger function
CN110763888A (zh) * 2019-11-15 2020-02-07 北京普源精电科技有限公司 自动识别触发类型的方法、装置及示波器

Family Cites Families (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5214784A (en) 1988-11-28 1993-05-25 Tektronix, Inc. Sequence of events detector for serial digital data which selectively outputs match signal in the series which defines detected sequence
US5495168A (en) * 1994-09-12 1996-02-27 Fluke Corporation Method of signal analysis employing histograms to establish stable, scaled displays in oscilloscopes
EP0740161A3 (en) 1995-04-27 1998-07-29 Fluke Corporation Digital oscilloscope with trigger qualification based on pattern recognition
US5686846A (en) * 1996-06-07 1997-11-11 Hewlett-Packard Company Time duration trigger
US6026350A (en) * 1996-08-30 2000-02-15 Hewlett Packard Company Self-framing serial trigger for an oscilloscope or the like
EP0971237A3 (en) * 1998-07-10 2000-09-13 Tektronix, Inc. A simple digital storage oscilloscope user interface
US7013430B2 (en) * 2002-01-25 2006-03-14 Agilent Technologies, Inc. Rapid graphical analysis of waveforms using a pointing device
US6892150B2 (en) * 2002-05-24 2005-05-10 Tektronix, Inc. Combined analog and DSP trigger system for a digital storage oscilloscope
CN1787427A (zh) * 2004-12-10 2006-06-14 大唐移动通信设备有限公司 利用随路时钟信号调整接收数据延迟不一致的方法
CN101013142A (zh) * 2006-12-29 2007-08-08 徐红启 一种便携式通用数字存储示波器
CN201110865Y (zh) * 2007-08-14 2008-09-03 王悦 一种数字存储示波器
US8024141B2 (en) * 2009-09-04 2011-09-20 Tektronix, Inc. Test and measurement instrument and method for providing post-acquisition trigger control and presentation
CN102053184B (zh) * 2009-11-10 2014-06-25 北京普源精电科技有限公司 一种具有高波形捕获率的数字示波器及其控制方法
CN102053187B (zh) * 2009-11-10 2013-11-27 北京普源精电科技有限公司 一种具有触发装置的数字示波器
US9207263B2 (en) * 2010-01-07 2015-12-08 Tektronix, Inc. Dynamic oscilloscope triggering
US9164131B2 (en) 2010-05-13 2015-10-20 Tektronix, Inc. Signal recognition and triggering using computer vision techniques
CN101859395A (zh) * 2010-05-14 2010-10-13 中兴通讯股份有限公司 信息传输的实现方法和系统、主控设备、以及智能卡
CN103713171B (zh) * 2012-10-08 2017-08-25 北京普源精电科技有限公司 一种具有延迟触发功能的示波器
US10235339B2 (en) * 2013-02-19 2019-03-19 Keysight Technologies, Inc. Digital measurement instrument triggered by signal pattern
US9268321B2 (en) * 2014-06-24 2016-02-23 Keysight Technologies, Inc. Digital tiggering using finite state machines
US10365300B2 (en) * 2016-02-05 2019-07-30 Tektronix, Inc. Trigger on final occurrence
US10261111B1 (en) * 2016-08-12 2019-04-16 Keysight Technologies, Inc. Oscilloscope with digital search triggering
US10656183B2 (en) * 2017-06-21 2020-05-19 Tektronix, Inc. Enabling a trigger in a test and measurement instrument
US10547490B1 (en) * 2018-08-03 2020-01-28 Rohde & Schwarz Gmbh & Co. Kg Digital triggering system as well as method for processing data
US11016123B2 (en) * 2018-10-24 2021-05-25 Keysight Technologies, Inc. Multi-channel triggering apparatus and method
CN109521239A (zh) * 2018-11-09 2019-03-26 中电科仪器仪表有限公司 一种示波器中arinc429总线协议分析与触发系统及方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101937019A (zh) * 2009-03-13 2011-01-05 特克特朗尼克公司 测试和测量触发的图形起动
EP3182140A1 (en) * 2015-12-14 2017-06-21 Rohde & Schwarz GmbH & Co. KG Measuring device and method with automated trigger function
CN105608040A (zh) * 2015-12-21 2016-05-25 中国电子科技集团公司第四十一研究所 一种用fpga实现通用串行总线触发与解码的方法
CN110763888A (zh) * 2019-11-15 2020-02-07 北京普源精电科技有限公司 自动识别触发类型的方法、装置及示波器

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4060352A4

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114679606A (zh) * 2022-04-02 2022-06-28 哈尔滨工业大学 一种基于Burst特征的视频流量识别方法、系统、电子设备及存储介质

Also Published As

Publication number Publication date
CN110763888B (zh) 2021-12-07
EP4060352A4 (en) 2024-01-03
JP2022548416A (ja) 2022-11-18
EP4060352A1 (en) 2022-09-21
US11906551B2 (en) 2024-02-20
JP7220834B2 (ja) 2023-02-10
CN110763888A (zh) 2020-02-07
US20220397588A1 (en) 2022-12-15

Similar Documents

Publication Publication Date Title
WO2021093309A1 (zh) 自动识别触发类型的方法、装置及示波器
US10481573B2 (en) Multi-channel digital trigger with combined feature matching and associated methods
US9785281B2 (en) Acoustic touch sensitive testing
CN108139820A (zh) 具有动态协议选择来与数字化仪通信的触控笔
US20090245339A1 (en) Apparatus and method for analyzing a signal under test
US8810546B1 (en) Touchscreen panel frequency response determination
US10261111B1 (en) Oscilloscope with digital search triggering
US20170285902A1 (en) Modifying Settings of an Electronic Test or Measurement Instrument
CN111710347B (zh) 音频数据分析方法、电子设备及存储介质
US9933884B2 (en) Correcting coordinate jitter in touch screen displays due to forceful touches
CN106125978B (zh) 触摸时间获取方法和系统、触摸图形显示方法和系统
CN109147643B (zh) 上升/下降沿的鉴别方法、装置、显示面板及存储介质
JP5290213B2 (ja) 誤り率測定装置及び方法
CN109065145B (zh) 心电数据处理方法、装置及存储介质
US11086448B2 (en) Parallel analysis of different sampling rates in a touch screen controller
CN111027344B (zh) 一种显示方法及装置
TW201508559A (zh) 輸入裝置及控制單元
TWI475475B (zh) 指令輸入方法、可攜式電子裝置、電腦可讀記錄媒體
TWI252035B (en) Method and device for detecting resolution of display device
TW200933160A (en) Automatic signal identifying method and signal skew measurement method
TW200916794A (en) System and method for automatically measuring waveforms
CN114088605A (zh) 血细胞分类方法及相关设备
US10114503B1 (en) Method and apparatus for processing data based on touch events on a touch sensitive device
KR101531841B1 (ko) 정전용량 터치센서에서 효과적인 노이즈 레벨 측정 방법 및 노이즈 레벨 측정 모듈
CN203858268U (zh) 示波器接口转接装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20887962

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022528126

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2020887962

Country of ref document: EP

Effective date: 20220615