WO2021090549A1 - 制御装置、プログラム、制御方法及び飛行体 - Google Patents
制御装置、プログラム、制御方法及び飛行体 Download PDFInfo
- Publication number
- WO2021090549A1 WO2021090549A1 PCT/JP2020/031353 JP2020031353W WO2021090549A1 WO 2021090549 A1 WO2021090549 A1 WO 2021090549A1 JP 2020031353 W JP2020031353 W JP 2020031353W WO 2021090549 A1 WO2021090549 A1 WO 2021090549A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- cell
- target area
- control unit
- haps
- flying object
- Prior art date
Links
- 238000000034 method Methods 0.000 title claims description 47
- 238000004891 communication Methods 0.000 claims abstract description 140
- 230000008569 process Effects 0.000 claims description 34
- 230000009467 reduction Effects 0.000 claims description 18
- 238000012545 processing Methods 0.000 description 8
- 230000015572 biosynthetic process Effects 0.000 description 6
- 230000008859 change Effects 0.000 description 6
- 238000010586 diagram Methods 0.000 description 4
- 230000005540 biological transmission Effects 0.000 description 3
- 230000006870 function Effects 0.000 description 3
- 239000005437 stratosphere Substances 0.000 description 3
- 230000002411 adverse Effects 0.000 description 2
- 238000003491 array Methods 0.000 description 2
- 230000010365 information processing Effects 0.000 description 2
- 238000010295 mobile communication Methods 0.000 description 2
- 229910000831 Steel Inorganic materials 0.000 description 1
- 230000001133 acceleration Effects 0.000 description 1
- 230000004913 activation Effects 0.000 description 1
- 208000027744 congestion Diseases 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- 238000012423 maintenance Methods 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 230000003068 static effect Effects 0.000 description 1
- 239000010959 steel Substances 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B7/00—Radio transmission systems, i.e. using radiation field
- H04B7/14—Relay systems
- H04B7/15—Active relay systems
- H04B7/185—Space-based or airborne stations; Stations for satellite systems
- H04B7/18502—Airborne stations
- H04B7/18504—Aircraft used as relay or high altitude atmospheric platform
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B64—AIRCRAFT; AVIATION; COSMONAUTICS
- B64U—UNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
- B64U10/00—Type of UAV
- B64U10/25—Fixed-wing aircraft
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W24/00—Supervisory, monitoring or testing arrangements
- H04W24/02—Arrangements for optimising operational condition
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W36/00—Hand-off or reselection arrangements
- H04W36/24—Reselection being triggered by specific parameters
- H04W36/32—Reselection being triggered by specific parameters by location or mobility data, e.g. speed data
- H04W36/322—Reselection being triggered by specific parameters by location or mobility data, e.g. speed data by location data
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B64—AIRCRAFT; AVIATION; COSMONAUTICS
- B64U—UNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
- B64U2101/00—UAVs specially adapted for particular uses or applications
- B64U2101/20—UAVs specially adapted for particular uses or applications for use as communications relays, e.g. high-altitude platforms
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B64—AIRCRAFT; AVIATION; COSMONAUTICS
- B64U—UNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
- B64U2201/00—UAVs characterised by their flight controls
- B64U2201/10—UAVs characterised by their flight controls autonomous, i.e. by navigating independently from ground or air stations, e.g. by using inertial navigation systems [INS]
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B64—AIRCRAFT; AVIATION; COSMONAUTICS
- B64U—UNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
- B64U2201/00—UAVs characterised by their flight controls
- B64U2201/10—UAVs characterised by their flight controls autonomous, i.e. by navigating independently from ground or air stations, e.g. by using inertial navigation systems [INS]
- B64U2201/102—UAVs characterised by their flight controls autonomous, i.e. by navigating independently from ground or air stations, e.g. by using inertial navigation systems [INS] adapted for flying in formations
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B64—AIRCRAFT; AVIATION; COSMONAUTICS
- B64U—UNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
- B64U2201/00—UAVs characterised by their flight controls
- B64U2201/20—Remote controls
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B64—AIRCRAFT; AVIATION; COSMONAUTICS
- B64U—UNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
- B64U50/00—Propulsion; Power supply
- B64U50/30—Supply or distribution of electrical power
- B64U50/31—Supply or distribution of electrical power generated by photovoltaics
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W16/00—Network planning, e.g. coverage or traffic planning tools; Network deployment, e.g. resource partitioning or cells structures
- H04W16/24—Cell structures
- H04W16/28—Cell structures using beam steering
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W16/00—Network planning, e.g. coverage or traffic planning tools; Network deployment, e.g. resource partitioning or cells structures
- H04W16/24—Cell structures
- H04W16/32—Hierarchical cell structures
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W84/00—Network topologies
- H04W84/02—Hierarchically pre-organised networks, e.g. paging networks, cellular networks, WLAN [Wireless Local Area Network] or WLL [Wireless Local Loop]
- H04W84/04—Large scale networks; Deep hierarchical networks
- H04W84/06—Airborne or Satellite Networks
Definitions
- the present invention relates to a control device, a program, a control method, and an air vehicle.
- Patent Document 1 Japanese Unexamined Patent Publication No. 2002-21146
- a control device for controlling an air vehicle having an antenna for forming a cell on the ground and providing a wireless communication service to a user terminal in the cell.
- the control device may include an alternation control unit that controls the alternation of the first air vehicle that covers the target area on the ground by the first cell and the second air vehicle. After the second flying object forms the second cell in a part of the target area, the alternation control unit continuously expands the second cell to cover the target area by the second cell.
- the second aircraft may be controlled to spread continuously.
- the alternation control unit moves toward a position corresponding to the position of the first flying object.
- the second flying object may be controlled so as to continuously expand the coverage of the target area by the second cell by continuously expanding the second cell.
- the first flying object continuously reduces the first cell while maintaining a state in which the first cell and the second cell partially overlap, and the alternation control unit continuously reduces the first cell.
- the first air vehicle and the second air vehicle may be controlled so that the second air vehicle continuously expands the second cell.
- the alternation control unit causes the first flying object to continuously expand the first cell by beamforming, and the second flying object to continuously expand the second cell by beamforming.
- the first air vehicle and the second air vehicle may be controlled.
- the second flying object forms the second cell in the first portion on the outer edge side of the target area, and from the first portion, the first portion on the outer edge side of the target area.
- the second flying object is controlled so that the second cell is continuously expanded toward the second portion facing the portion, and the first flying body is transferred from the first portion to the second
- the first air vehicle may be controlled so as to continuously shrink the first cell towards the portion.
- the alternation control unit In the alternation control unit, the user terminal in the first cell in the overlapping portion where the first cell and the second cell overlap in the target area is transferred to the second cell.
- the first air vehicle may be controlled so that the first air vehicle shrinks the first cell so that the first cell is out of the overlapping portion.
- the alternation control unit performs the first flying object at a speed at which the fluctuation of the number of user terminals for switching the connection destination from the first cell to the second cell per unit time is within a predetermined range. May control the first air vehicle and the second air vehicle so that the first cell is reduced and the second air vehicle expands the second cell.
- the alternation control unit changes the connection destination from the first cell to the second cell from the communication management device while executing the reduction of the first cell and the expansion of the second cell. You may get it.
- the shift control unit continuously specifies the number per unit time of the user terminal that switches the connection destination from the first cell to the second cell, and continuously specifies the number per unit time. However, when it is likely to exceed a predetermined upper limit, at least one of the reduction speed of the first cell and the expansion speed of the second cell may be slowed down. When the number per unit time that is continuously specified is likely to fall below a predetermined lower limit, the shift control unit determines the reduction speed of the first cell and the expansion speed of the second cell. At least one of these may be made faster.
- the reduction speed of the first cell and the expansion speed of the second cell in the area where the communication by the user terminal is more congested in the target area can be determined by the communication by the user terminal.
- the first air vehicle and the second air vehicle may be controlled so as to be slower than the reduction speed of the first cell and the expansion speed of the second cell in a less congested area.
- the shift control unit may acquire, for example, the communication traffic of the communication by the user terminal in each part of the target area from the communication management device.
- the reduction speed of the first cell and the expansion speed of the second cell in the area where the communication traffic is higher are the reduction speed of the first cell and the expansion speed of the first cell in the area where the communication traffic is less.
- the first air vehicle and the second air vehicle may be controlled so as to be slower than the expansion speed of the second cell.
- the alternation control unit keeps a state in which each of the plurality of subcells constituting the first cell and each of the plurality of subcells constituting the second cell partially overlap, and the first one.
- the first cell is such that the vehicle continuously reduces each of the plurality of subcells of the first cell and the second cell continuously expands the plurality of subcells of the second cell.
- One air vehicle and the second air vehicle may be controlled.
- the second air vehicle continuously expands the second cell while the first air vehicle covers the entire target area by the first cell.
- the first air vehicle and the second air vehicle may be controlled.
- the second flying object forms the second cell in the first portion inside the target area, and the second cell is directed from the first portion toward the outside of the target area.
- the second air vehicle may be controlled so as to continuously expand the cell of.
- the strength of the radio wave received from the second cell by the user terminal located in the overlapping portion where the first cell and the second cell overlap in the target area is the first.
- the first air vehicle and the second air vehicle may be controlled so as to be stronger than the radio wave intensity received from the cell.
- the alternation control unit causes the second flying object to increase the radio wave output intensity so that the radio wave intensity received from the second cell by the user terminal is higher than the radio wave intensity received from the first cell.
- the second air vehicle may be controlled so as to be stronger.
- the alternation control unit causes the first flying object to weaken the radio wave output intensity so that the radio wave intensity received from the second cell by the user terminal is higher than the radio wave intensity received from the first cell.
- the first flying object may be controlled so as to be strong.
- the alternation control unit has a strength calculated in advance so that the strength of the radio wave received from the second cell is stronger than the strength of the radio wave received from the first cell.
- the first air vehicle and the second air vehicle may be controlled so that the air vehicle outputs radio waves.
- the shift control unit acquires the reception radio wave condition by the user terminal in the portion where the first cell and the second cell overlap from the communication management device, and receives the reception radio wave strength from the first cell.
- the strength of the radio wave received from the second cell is stronger than that of the second cell
- the strength of the radio wave received from the second cell is increased by adjusting the second air vehicle to increase the radio wave output strength. It may be made stronger than the strength of the received radio wave from the first cell.
- the first air vehicle covers the entire target area by a plurality of subcells constituting the first cell, and each of the second air vehicle covers the entire target area.
- the first cell is formed by forming the second cell composed of a plurality of subcells included in each of the plurality of subcells of one cell, and the plurality of subcells of the second cell are continuously expanded.
- One air vehicle and the second air vehicle may be controlled.
- the control device transmits the cell identification information of the second cell to the first air vehicle to cause the first air vehicle to set the second cell as an adjacent cell. It may have a part.
- the setting control unit causes the second flying object to set the first cell as an adjacent cell. Good.
- the alternation control unit after the second cell covers the entire target area by continuously expanding the second cell, the first flying object forms the first cell.
- the first air vehicle and the second air vehicle may be controlled so as to stop.
- a program for causing the computer to function as the control device is provided.
- a control method for controlling an air vehicle having an antenna for forming a cell on the ground and providing a wireless communication service to a user terminal in the cell may include an alternation control step of controlling the alternation of the first air vehicle covering the target area on the ground with the first cell and the second air vehicle.
- the alternation control stage after the second flying object forms the second cell in a part of the target area, the coverage range of the target area by the second cell is expanded by continuously expanding the second cell.
- the second aircraft may be controlled to spread continuously.
- an air vehicle having an antenna for forming a cell on the ground and providing a wireless communication service to a user terminal in the cell.
- the flying object may include an alternation control unit that performs an alternation process of altering the cover of the target area with another air vehicle covering the target area on the ground by the first cell. After forming the second cell in a part of the target area, the alternation control unit continuously expands the second cell to continuously expand the coverage range of the target area by the second cell. May be controlled.
- an air vehicle having an antenna for forming a cell on the ground and providing a wireless communication service to a user terminal in the cell.
- the air vehicle may include a shift control unit that performs a shift process of replacing the cover of the target area with another air vehicle when the target area on the ground is covered by the first cell.
- the alternation control unit continuously expands the first cell while other aircraft form a second cell in a part of the target area and move toward a position corresponding to the position of the own aircraft.
- the antenna may be controlled so as to continuously reduce the first cell.
- An example of HAPS100 is shown schematically.
- An example of the flow of the shift control process by the control device 300 is schematically shown.
- An example of the flow of the shift control process by the control device 300 is schematically shown.
- An example of the flow of the shift control process by the control device 300 is schematically shown.
- Another example of the flow of the shift control process by the control device 300 is schematically shown.
- Another example of the flow of the shift control process by the control device 300 is schematically shown.
- Another example of the flow of the shift control process by the control device 300 is schematically shown.
- Another example of the flow of the shift control process by the control device 300 is schematically shown.
- Another example of the flow of the shift control process by the control device 300 is schematically shown.
- An example of the functional configuration of the control device 300 is schematically shown.
- An example of the functional configuration of the control device 130 included in the HAPS 100 is schematically shown.
- An example of the hardware configuration of the computer 1200 functioning as the control device 130 or the control device 300 is
- FIG. 1 schematically shows an example of HAPS (High Altitude Platform Station) 100.
- the HAPS 100 may be an example of an air vehicle having an antenna for forming a cell 120 on the ground and providing a wireless communication service to a user terminal 30 in the cell 120.
- the HAPS 100 includes an airframe 102, a central portion 104, a propeller 106, a pod 108, and a solar cell panel 110.
- a control device 130 (not shown) is arranged in the central portion 104.
- the electric power generated by the solar cell panel 110 is stored in one or more batteries arranged in at least one of the airframe 102, the central portion 104, and the pod 108.
- the electric power stored in the battery is used by each configuration included in the HAPS 100.
- the control device 130 controls the flight of the HAPS 100.
- the control device 130 controls the flight of the HAPS 100, for example, by controlling the rotation of the propeller 106. Further, the control device 130 may control the flight of the HAPS 100 by changing the angles of flaps and elevators (not shown).
- the control device 130 may include various sensors such as a positioning sensor such as a GPS sensor, a gyro sensor, and an acceleration sensor to manage the position, moving direction, and moving speed of the HAPS 100.
- control device 130 controls the communication of the HAPS 100.
- the control device 130 uses the FL (Feeder Link) antenna 112 and the SL (Service Link) antenna 114 to provide a wireless communication service to the user terminal 30 on the ground.
- the HAPS 100 may fly in the stratosphere and provide wireless communication services to user terminals 30 on the ground.
- the FL antenna 112 is an antenna for a feeder link.
- the control device 130 forms a feeder link with the gateway 22 on the ground by the FL antenna 112.
- the control device 130 may access the network 20 via the gateway 22.
- the SL antenna 114 is an antenna for service link.
- the SL antenna 114 may be an antenna having a lower directivity than the FL antenna 112.
- the control device 130 forms the cell 120 on the ground by the SL antenna 114.
- the SL antenna 114 may be a multi-beam antenna.
- the cell 120 may be a multi-cell.
- the user terminal 30 may be any terminal as long as it can communicate with the HAPS 100.
- the user terminal 30 is a mobile phone such as a smartphone.
- the user terminal 30 may be a tablet terminal, a PC (Personal Computer), or the like.
- the user terminal 30 may be a so-called IoT (Internet of Thing) device.
- the user terminal 30 may include anything corresponding to the so-called IoT (Internet of Everything).
- the HAPS 100 provides a wireless communication service to the user terminal 30, for example, by relaying communication between the user terminal 30 and the network 20.
- the network 20 includes a mobile communication network.
- the mobile communication network complies with any of the 3G (3rd Generation) communication method, the LTE (Long Term Evolution) communication method, the 5G (5th Generation) communication method, and the 6G (6th Generation) communication method or later. May be good.
- the network 20 may include the Internet.
- the HAPS 100 transmits, for example, the data received from the user terminal 30 in the cell 120 to the network 20. Further, when the HAPS 100 receives the data addressed to the user terminal 30 in the cell 120 via the network 20, for example, the HAPS 100 transmits the data to the user terminal 30.
- the HAPS 100 may access the network 20 via a communication satellite (not shown).
- the HAPS 100 has an antenna for communicating with a communication satellite.
- the HAPS 100 may be controlled by the control device 300.
- the HAPS 100 operates according to the instructions transmitted by the control device 300 via the network 20 and the gateway 22, for example. Further, the HAPS 100 operates according to an instruction transmitted via a communication satellite by, for example, the control device 300.
- the control device 300 controls the HAPS 100 by transmitting an instruction.
- the control device 300 may have the HAPS 100 swivel over the target area 40 so that the cell 120 covers the target area 40 on the ground. In order for the HAPS 100 to cover the target area 40, turning over the target area 40 may be described as a fixed point flight.
- the HAPS 100 maintains the feeder link with the gateway 22 by adjusting the directivity direction of the FL antenna 112 while flying over the target area 40 in a circular orbit, and adjusts the directivity direction of the SL antenna 114. This keeps the cell 120 covering the target area 40.
- the control device 300 may cover each of the plurality of target areas by causing the HAPS 100 to make a fixed point flight for each of the plurality of target areas.
- the communication performed by the user terminal 30 via the HAPS 100 may be managed by the communication management device 400.
- the communication management device 400 is arranged, for example, in the core network of the telecommunications carrier.
- the communication management device 400 may provide the communication information regarding the communication performed by the user terminal 30 via the HAPS 100 to the outside.
- the communication information includes the radio wave condition received by the user terminal 30.
- the communication management device 400 refers to, for example, the Measurement Report (sometimes referred to as MR) transmitted to the HAPS 100 by the user terminal 30, so that the source of the radio wave received by the user terminal 30 and the reception can be received. You may obtain the signal strength.
- the communication management device 400 may refer to the MR by, for example, receiving the MR received by the HAPS 100 from the user terminal 30 from the HAPS 100.
- the communication management device 400 When the communication management device 400 is arranged in the RAN (Radio Access Network) and is a repeater type, the communication management device 400 may directly refer to the MR. Further, the communication information includes, for example, communication traffic of communication executed by the user terminal 30 via the HAPS 100. The communication management device 400 may transmit communication information to the control device 300 via the network 20. The control device 300 and the communication management device 400 may be integrated. That is, the control device 300 may function as the communication management device 400.
- the control device 300 may function as the communication management device 400.
- the control device 300 executes a shift control process in which the HAPS 100 covering the target area 40 is replaced with another HAPS 100.
- the control device 300 replaces the HAPS 100 with another HAPS 100, for example, when performing maintenance on the HAPS 100 covering the target area 40. Further, the control device 300 replaces the HAPS 100 covering the target area 40 with another HAPS 100 at an arbitrary timing according to the instruction of the operator.
- the service can be provided to a specific area semi-permanently unless there is a failure.
- HAPS100 it is necessary to replace it with another HAPS100 on a regular basis because of the life of the battery and the aircraft.
- switching it is necessary to switch cells so as not to adversely affect the user terminal 30 on the ground.
- the radio wave of the HAPS 100 to be replaced is stopped and then a new radio wave emission of the HAPS 100 is started, the service cannot be used temporarily due to the radio wave interruption of the user terminal 30 on the ground, and communication is performed all at once when the radio wave emission is started. Therefore, there is a risk of congestion due to an excessive load on the network.
- the second HAPS 100 is the target area.
- the coverage range of the target area 40 by the second cell 120 is formed by forming the second cell 120 in a part of the 40 and continuously expanding the second cell 120 while approaching the position corresponding to the first HAPS 100.
- the second HAPS 100 is controlled so as to continuously spread.
- the first HAPS 100 continuously reduces the first cell 120 while maintaining a state in which the first cell 120 and the second cell 120 partially overlap, and the second HAPS 100
- the first HAPS 100 and the second HAPS 100 may be controlled so that the second cell 120 is continuously expanded.
- HAPS100 the HAPS on the alternate side
- HAPS200 the cell formed by HAPS100
- cell 120 the cell formed by HAPS200
- cell 220 the cell formed by HAPS100
- the control device 300 controls the HAPS 100 and the HAPS 200 so as to alternate between the HAPS 100 and the HAPS 200, for example, by appropriately transmitting an instruction to the HAPS 100 and the HAPS 200.
- the control device 300 may transmit a necessary instruction to each of the HAPS 100 and the HAPS 200 at a necessary timing. Further, the control device 300 may transmit a series of instructions required for the shift control to the HAPS 100 and the HAPS 200 in advance. In this case, HAPS100 and HAPS200 operate according to a series of received instructions.
- a case where the control device 300 appropriately transmits an instruction will be described mainly by taking as an example.
- the control device 300 grasps the positions of the HAPS 100 and the HAPS 200 by periodically receiving the position information from each of the HAPS 100 and the HAPS 200. First, the control device 300 causes the HAPS 100 to set the cell 220 of the HAPS 200 as an adjacent cell as the cell setting of the HAPS 100.
- control device 300 causes the HAPS 200 to set the cell 120 of the HAPS 100 as an adjacent cell as the cell setting of the HAPS 200.
- the cell setting of the HAPS200 may be set by an operator or the like on the ground before the HAPS200 takes off.
- each of the HAPS 100 and the HAPS 200 set each other's cells as adjacent cells, it is possible to enable smooth cell selection and handover from the cell 120 to the cell 220.
- the control device 300 transmits an instruction to the HAPS 200 to move to a position corresponding to the HAPS 100.
- the position corresponding to the HAPS 100 may be arbitrarily determined. For example, a position above the HAPS 100 is defined as a position corresponding to the HAPS 100.
- the HAPS 200 starts moving to the position corresponding to the HAPS 100 according to the received instruction.
- the control device 300 causes the HAPS 200 to form a cell 220 in a part of the target area 40 when the distance between the HAPS 200 and the position corresponding to the HAPS 100 is within a predetermined distance.
- the control device 300 may cause the HAPS 200 to form a cell 220 on a part of the outer edge side of the target area 40.
- the control device 300 instructs the HAPS 200, for example, the position where the cell 220 is formed and the size of the cell 220.
- the HAPS 200 operates to form a cell 220 of the indicated size at the indicated position.
- the control device 300 may transmit parameters necessary for forming the cell 220 to the HAPS 200. For example, the control device 300 instructs the HAPS 200 of the beam irradiation direction and the beam width.
- the HAPS 200 adjusts the beam of the SL antenna 114 according to the received parameters.
- the HAPS 100 and the HAPS 100 and the like so that the radio wave intensity received from the cell 220 by the user terminal 30 at the portion where the cell 120 and the cell 220 overlap are stronger than the radio wave intensity received from the cell 120 by the user terminal 30.
- Controls HAPS200 The control device 300 causes the HAPS 200 to increase the radio wave output intensity, or causes the HAPS 100 to decrease the radio wave output intensity, for example.
- the control device 300 controls the HAPS 100 and the HAPS 200 so that the HAPS 100 and the HAPS 200 output radio waves with a strength calculated in advance so that the received radio wave intensity from the cell 220 becomes stronger than the received radio wave intensity from the cell 120, for example. To do. Further, for example, the control device 300 acquires the reception radio wave condition by the user terminal 30 from the communication management device 400 in the portion where the cell 120 and the cell 220 overlap, and the reception radio wave strength from the cell 120 is higher than that of the cell 220. When the strength is stronger than the strength of the radio wave received from the cell 120, the strength of the radio wave received from the cell 220 is made stronger than the strength of the radio wave received from the cell 120 by making adjustments such as increasing the radio wave output strength of the HAPS 200.
- the user terminal 30 By controlling the strength of the radio wave received from the cell 220 by the user terminal 30 to be stronger than the strength of the radio wave received from the cell 120 in the overlapping portion where the cell 120 and the cell 220 overlap, the user terminal 30 in the portion concerned Cell selection and handover can be realized to switch the connection of the user terminal 30 from cell 120 to cell 220.
- the control device 300 maintains a state in which the cell 120 and the cell 220 partially overlap each other, and the HAPS 200 continuously expands the cell 220 to obtain a target area by the cell 220.
- the HAPS 100 and HAPS 200 are controlled so that the coverage of the 40 is continuously expanded and the HAPS 100 continuously narrows the coverage of the target area 40 by the cell 120 by continuously reducing the cell 120.
- the control device 300 continuously expands the cell 220 from the first portion on the outer edge side of the target area 40 forming the cell 220 toward the second portion on the outer edge side of the target area 40 facing the first portion.
- the HAPS 200 may be controlled so as to continuously reduce the cell 120 from the first portion to the second portion.
- the control device 300 may reduce the cell 120 to the HAPS 100 while confirming that the user terminal 30 located at the overlapping portion where the cell 120 and the cell 220 overlap has switched the connection destination from the cell 120 to the cell 220. For example, in the control device 300, all of the user terminals 30 located in the cell 120 in the overlapping portion where the cell 120 and the cell 220 overlap in the target area 40 have switched the connection destination to the cell 220 by cell selection or handover. Later, the HAPS 100 shrinks the cell 120 so that the cell 120 is out of the overlap.
- the control device 300 may control the HAPS 100 so as to stop the formation of the cell 120 after the entire target area 40 is covered by the cell 220. After the control device 300 confirms that the connection destinations of all the user terminals 30 in the target area 40 are switched from the cell 120 to the cell 220 after the entire target area 40 is covered by the cell 220, the control device 300 of the cell 120 The HAPS 100 may be controlled to stop the formation.
- control device 300 controls the HAPS 100 so as to move to a predetermined position on the ground.
- the predetermined position may be arbitrarily determined, and for example, equipment for maintaining the HAPS 100, the vicinity of a hangar for storing the HAPS 100, and the like can be set.
- the user terminal 30 located in the cell 120 stops the formation of the cell 120 in the HAPS 100 after switching the connection destination from the cell 120 to the cell 220.
- the user terminal 30 can receive the service provided by the HAPS 200 following the service provided by the HAPS 100. That is, according to the control device 300 according to the present embodiment, it is possible to suppress a temporary service interruption and a temporary deterioration of service quality that occur in the user terminal 30.
- control device 300 may allow the HAPS 200 to expand the cell 220 from a portion of the inside of the target area 40.
- 6 and 7 schematically show another example of the flow of the shift control process by the control device 300.
- the points different from those in FIGS. 2 to 5 will be mainly described.
- 6 and 7 show an example in which the HAPS 200 forms a cell 220 inside the target area 40 and expands the cell 220 after the HAPS 200 has moved above the HAPS 100.
- the control device 300 causes the HAPS 200 to form the cell 220 in a part of the inside of the target area 40 in a state where the HAPS 100 covers the entire target area 40 by the cell 120. Then, the control device 300 continuously expands the cell 220 to the HAPS 200 in a state where the HAPS 100 covers the entire target area 40 by the cell 120. In the control device 300, the strength of the radio wave received from the cell 220 by the user terminal 30 located in the overlapping portion where the cell 120 and the cell 220 overlap in the target area 40 becomes stronger than the strength of the radio wave received from the cell 120. As such, HAPS100 and HAPS200 are controlled.
- the control device 300 controls the HAPS 100 and the HAPS 200 so that, for example, the radio wave intensity received from the cell 220 by the user terminal 30 is stronger than the radio wave intensity received from the cell 120 so as to output the radio wave with a pre-calculated intensity. To do. Further, for example, the control device 300 acquires the reception radio wave condition by the user terminal 30 from the communication management device 400 in the portion where the cell 120 and the cell 220 overlap, and the reception radio wave strength from the cell 120 is higher than that of the cell 220. When it is stronger than the received radio wave strength from the cell 120, the radio wave strength received from the cell 220 by the user terminal 30 is made stronger than the received radio wave strength from the cell 120 by making adjustments such as making the HAPS 200 strengthen the radio wave output strength. To.
- the control device 300 may control the HAPS 100 so as to stop the formation of the cell 120 after the entire target area 40 is covered by the cell 220. After the control device 300 confirms that the connection destinations of all the user terminals 30 in the target area 40 are switched from the cell 120 to the cell 220 after the entire target area 40 is covered by the cell 220, the control device 300 of the cell 120 The HAPS 100 may be controlled to stop the formation. Then, the control device 300 controls the HAPS 100 so as to move to a predetermined position on the ground.
- FIG. 8 schematically shows another example of the flow of the shift control process by the control device 300.
- the flow of the shift control process in the case where the HAPS 100 forms the cell 120 composed of the plurality of subcells 121 and the HAPS 200 forms the cell 220 composed of the plurality of subcells 221 will be described.
- a part different from the examples shown in FIGS. 2 to 5 will be mainly described.
- the control device 300 controls the HAPS 200 so that each of the plurality of subcells 221 is formed on a part of the outer edge side of the area covered by each of the plurality of subcells 121. Then, in the control device 300, the HAPS 100 continuously reduces each of the plurality of subcells 121 while maintaining a state in which each of the plurality of subcells 121 and each of the plurality of subcells 221 partially overlap, and the HAPS200 The HAPS 100 and HAPS 200 are controlled so as to expand each of the plurality of subcells 221.
- FIG. 9 schematically shows another example of the flow of the shift control process by the control device 300.
- the flow of the shift control process in the case where the HAPS 100 forms the cell 120 composed of the plurality of subcells 121 and the HAPS 200 forms the cell 220 composed of the plurality of subcells 221 will be described.
- a part different from the examples shown in FIGS. 6 and 7 will be mainly described.
- each of the plurality of subcells 221 is included in a part of the inside of the area covered by each of the plurality of subcells 121.
- the HAPS200 is controlled so as to form.
- the control device 300 controls the HAPS 200 so as to continuously expand each of the plurality of subcells 221.
- FIG. 10 schematically shows an example of the functional configuration of the control device 300.
- the control device 300 includes an instruction receiving unit 312, a communication information acquisition unit 314, an aircraft communication unit 320, and a control unit 330.
- the instruction reception unit 312 receives various instructions.
- the instruction receiving unit 312 receives, for example, an instruction for designating the target area 40. Further, the instruction receiving unit 312 receives, for example, an instruction for designating the trajectory on which the HAPS 100 flies at a fixed point. Further, the instruction receiving unit 312 receives, for example, an instruction for designating a position for forming the cell 120.
- the instruction receiving unit 312 may receive an instruction input via the operation unit included in the control device 300. Further, the instruction receiving unit 312 may receive an instruction received via the network 20 via the communication unit included in the control device 300.
- the communication information acquisition unit 314 acquires communication information related to communication in the wireless communication service provided to the user terminal 30 by the cell 120 formed by the HAPS 100.
- the communication information acquisition unit 314 acquires, for example, the reception radio wave condition by the user terminal 30. Further, the communication information acquisition unit 314 acquires, for example, information regarding communication traffic.
- the communication information acquisition unit 314 may receive communication information from the communication management device 400.
- the aircraft communication unit 320 communicates with the HAPS 100.
- the aircraft communication unit 320 may communicate with the HAPS 100 via the network 20 and the gateway 22.
- the aircraft communication unit 320 may communicate with the HAPS 100 via a communication satellite.
- the aircraft communication unit 320 transmits, for example, the instruction received by the instruction reception unit 312 to the HAPS 100. Further, the aircraft communication unit 320 receives various information from, for example, the HAPS 100. The aircraft communication unit 320 receives, for example, the position information of the HAPS 100 from the HAPS 100.
- the control unit 330 executes various controls.
- the control unit 330 makes various settings on the HAPS 100 via, for example, the aircraft communication unit 320.
- the control unit 330 transmits the cell identification information of the cell 120 of the second HAPS 100 to the first HAPS 100, thereby causing the first HAPS 100 to be replaced.
- the control unit 330 causes the second HAPS 100 to set the first cell 120 as an adjacent cell by transmitting the cell identification information of the cell 120 of the first HAPS 100 to the second HAPS 100.
- the control unit 330 may be an example of a setting control unit.
- the control unit 330 may execute the alternation control process of the HAPS 100.
- the control unit 330 may be an example of an alternate control unit.
- the control unit 330 may control the HAPS 100 by transmitting various instructions to the HAPS 100 via the aircraft communication unit 320.
- the control unit 330 may transmit a plurality of instructions to the HAPS 100 at the respective timings, or may collectively transmit the plurality of instructions to the HAPS 100.
- the control unit 330 may control the alternation between the first HAPS 100 covering the target area 40 on the ground and the second HAPS 100 by the first cell 120.
- the control unit 330 causes the second HAPS 100, which is moving toward the position corresponding to the position of the first HAPS 100, to form the second cell 120 in a part of the target area 40, and then the second cell 120.
- the second HAPS 100 is controlled so that the coverage of the target area 40 by the second cell 120 is continuously expanded by continuously expanding the cell 120 of the cell 120.
- the control unit 330 moves the second cell 120 toward the position corresponding to the position of the first HAPS 100.
- the second HAPS 100 may be controlled so as to continuously expand the coverage of the target area 40 by the second cell 120 by continuously expanding.
- the first HAPS 100 continuously reduces the first cell 120 while maintaining a state in which the first cell 120 and the second cell 120 partially overlap, and the second HAPS 100
- the first HAPS 100 and the second HAPS 100 may be controlled so that the second cell 120 is continuously expanded.
- the control unit 330 may control the first HAPS 100 so that the first HAPS 100 continuously expands the first cell 120 by beamforming.
- the control unit 330 transmits, for example, an instruction to the first HAPS 100 to continuously expand the first cell 120 by beamforming to the first HAPS 100. Further, the control unit 330 may transmit, for example, a beamforming control parameter for continuously expanding the first cell 120 to the first HAPS 100.
- the control unit 330 determines the direction and width of the beam from, for example, the position of the target area 40 and the position and flight direction of the first HAPS 100, and controls beamforming to realize the direction and width of the beam. Generate parameters and send them to the first HAPS100.
- the control unit 330 may control the second HAPS 100 so that the second HAPS 100 continuously shrinks the second cell 120 by beamforming.
- the control unit 330 transmits, for example, an instruction to the second HAPS 100 to continuously reduce the second cell 120 by beamforming to the second HAPS 100. Further, the control unit 330 may transmit, for example, a beamforming control parameter for continuously reducing the second cell 120 to the second HAPS 100.
- the control unit 330 determines the direction and width of the beam from, for example, the position of the target area 40 and the position and flight direction of the second HAPS 100, and controls beamforming to realize the direction and width of the beam. Generate parameters and send them to the second HAPS100.
- the second HAPS 100 forms a second cell 120 in the first portion on the outer edge side of the target area 40, and the first portion faces the first portion on the outer edge side of the target area 40.
- the second HAPS 100 may be controlled to continuously expand the second cell 120 towards the second portion.
- the control unit 330 may control the first HAPS 100 so that the first HAPS 100 continuously reduces the first cell 120 from the first portion to the second portion.
- the user terminal 30 located in the first cell 120 in the overlapping portion where the first cell 120 and the second cell 220 overlap in the target area 40 connects to the second cell. After switching to 120, the first cell 120 may be reduced to the first HAPS 100 so that the first cell 120 is out of the overlap.
- the control unit 330 has a speed at which the fluctuation of the number of user terminals 30 for switching the connection destination from the first cell 120 to the second cell 120 per unit time is within a predetermined range, and the first HAPS 100 is the first.
- the first HAPS 100 and the second HAPS 100 may be controlled so that the cell 120 of 1 is reduced and the second HAPS 100 expands the second cell 120.
- the control unit 330 acquires communication information about the switching status of the connection destination from the first cell 120 to the second cell 120 while executing the reduction of the first cell 120 and the expansion of the second cell 120. Obtained from the communication management device 400 via unit 314. Then, the control unit 330 continuously specifies the number of user terminals 30 that switch the connection destination from the first cell 120 to the second cell 120 per unit time.
- the control unit 330 determines the reduction speed of the first cell 120 and the expansion speed of the second cell 120. At least one of these may be slowed down. Further, when the number per unit time that is continuously specified is likely to fall below a predetermined lower limit, the control unit 330 reduces the reduction speed of the first cell 120 and the expansion speed of the second cell 120. At least one of and may be made faster. As a result, it is possible to prevent the number of user terminals 30 that switch the connection destination from the first cell 120 to the second cell 120 at the same time from becoming extremely large or small, and the communication environment is disturbed. Can be suppressed.
- the reduction speed of the first cell 120 and the expansion speed of the second cell 120 in the area where the communication by the user terminal 30 is more congested in the target area 40 are higher than the communication by the user terminal 30.
- the first HAPS 100 and the second HAPS 100 may be controlled so as to be slower than the reduction speed of the first cell 120 and the expansion speed of the second cell 120 in the uncrowded area.
- the control unit 330 acquires the communication traffic of the communication by the user terminal 30 in each part of the target area 40 from the communication management device 400 via the communication information acquisition unit 314.
- the control unit 330 determines that the reduction speed of the first cell 120 and the expansion speed of the second cell 120 in the area with more communication traffic are the reduction speed and the expansion speed of the first cell 120 in the area with less communication traffic.
- the first HAPS 100 and the second HAPS 100 are controlled so as to be slower than the expansion speed of the second cell 120.
- the control unit 330 may control the first HAPS 100 so that the first HAPS 100 stops forming the first cell 120 after the entire target area 40 is covered by the second cell 120.
- the control unit 330 may determine the timing of executing the alternation control process between the first HAPS 100 and the second HAPS 100 based on various situations. For example, the control unit 330 changes the communication traffic in the target area 40 covered by the first HAPS 100 to be replaced in one day based on the communication information acquired by the communication information acquisition unit 314 from the communication management device 400. Check and select a time zone with less communication traffic as the time zone for executing the shift control process.
- the control unit 330 may determine the timing to execute the shift control process according to the type of the target area 40 covered by the first HAPS 100 to be replaced. For example, when the target area 40 is an important area in the city center, the control unit 330 sets the timing of executing the shift control process at night, and when the target area 40 is not an important area, executes the shift control process without any time limit. Decide when to do it.
- the control unit 330 When the first cell 120 is composed of a plurality of subcells 121, the control unit 330 includes each of the plurality of subcells 121 constituting the first cell 120 and the plurality of subcells 121 constituting the second cell 120.
- the first HAPS 100 continuously shrinks each of the plurality of subcells 121 of the first cell 120, and the second HAPS 100 is a plurality of the second cell 120, while maintaining a state in which each of them partially overlaps with each other.
- the first HAPS 100 and the second HAPS 100 may be controlled so as to continuously expand each of the subcells 121.
- the control unit 330 first so that the second HAPS 100 continuously expands the second cell 120 while the first HAPS 100 covers the entire target area 40 by the first cell 120.
- HAPS100 and a second HAPS100 may be controlled.
- the second HAPS 100 forms the second cell 120 in the first portion inside the target area 40, and the second cell 120 is continuously moved from the first portion toward the outside of the target area.
- the second HAPS 100 may be controlled to expand.
- the strength of the radio wave received from the second cell 120 by the user terminal 30 located in the overlapping portion where the first cell 120 and the second cell 120 overlap in the target area 40 is the first.
- the first HAPS 100 and the second HAPS 100 may be controlled so as to be stronger than the radio wave intensity received from the cell 120.
- the control unit 330 covers the entire target area 40 by the plurality of subcells 121 in which the first HAPS 100 constitutes the first cell 120.
- the second HAPS 100 forms a second cell 120 composed of a plurality of subcells 121, each of which is included in each of the plurality of subcells 121 of the first cell 120, and a plurality of the second cells 120.
- the first HAPS 100 and the second HAPS 100 may be controlled so as to continuously expand the subcell 121 of the above.
- FIG. 11 schematically shows an example of the functional configuration of the control device 130 included in the HAPS 100.
- the control device 130 includes a wireless communication unit 132 and a control unit 140.
- the wireless communication unit 132 executes various communications.
- the wireless communication unit 132 may form a feeder link with the gateway 22 on the ground by using the FL antenna 112.
- the wireless communication unit 132 may access the network 20 via the gateway 22.
- the wireless communication unit 132 communicates with the control device 300 and the communication management device 400 via, for example, the gateway 22 and the network 20.
- the wireless communication unit 132 may form the cell 120 on the ground by using the SL antenna 114.
- the wireless communication unit 132 may form a service link with the user terminal 30 and communicate with the user terminal 30.
- the wireless communication unit 132 may execute communication with a communication satellite.
- the control unit 140 controls the flight of the HAPS 100. Further, the control unit 140 controls the communication by the wireless communication unit 132. The control unit 140 may control the flight and communication of the HAPS 100 according to the instruction from the control device 300.
- the control unit 140 has a communication information acquisition unit 142 and an alternate control unit 144.
- the communication information acquisition unit 142 acquires communication information related to communication in the wireless communication service provided to the user terminal 30 by the cell 120 formed by the HAPS 100.
- the communication information acquisition unit 142 acquires, for example, the reception radio wave condition by the user terminal 30. Further, the communication information acquisition unit 142 acquires, for example, information about communication traffic.
- the communication information acquisition unit 142 may acquire communication information from the communication management device 400 via the wireless communication unit 132.
- the change control unit 144 controls the change with another HAPS100.
- the shift control unit 144 for example, has a wireless communication unit 132 while its own aircraft (the HAPS 100 on which the alternation control unit 144 is mounted may be referred to as its own aircraft) flies over the target area 40 on the ground at a fixed point.
- its own aircraft the HAPS 100 on which the alternation control unit 144 is mounted may be referred to as its own aircraft
- a shift control process for replacing the cover of the target area 40 with another HAPS 100 is executed.
- another HAPS 100 forms a second cell 120 in a part of the target area 40, and continuously expands the second cell 120 while moving toward a position corresponding to the position of the own machine. In order to do so, the player is controlled so as to continuously reduce the first cell 120.
- the alternation control unit 144 may control the SL antenna 114 so as to continuously reduce the first cell 120 by beamforming.
- another HAPS 100 forms a second cell 120 in the first portion on the outer edge side of the target area 40, and the second portion faces the first portion on the outer edge side of the target area 40 from the first portion. You may control your machine to continuously shrink the first cell 120 from the first part to the second part as the second cell 120 is continuously expanded toward the part. ..
- the alternation control unit 144 may control its own machine so as to continuously reduce the first cell 120 while maintaining a state in which the first cell 120 and the second cell 120 partially overlap. ..
- the user terminal 30 located in the first cell 120 in the overlapping portion where the first cell 120 and the second cell 120 overlap in the target area 40 is moved to the second cell 120.
- the own machine may be controlled to reduce the first cell 120 so that the first cell 120 is removed from the overlapping portion.
- the alternation control unit 144 changes the number of user terminals 30 for switching the connection destination from the first cell 120 to the second cell 120 per unit time at a speed within a predetermined range, and the first cell 120. You may control your own machine to reduce.
- the shift control unit 144 has a reduction speed of the first cell 120 in the area where the communication by the user terminal 30 is more congested among the target areas 40, and the first cell 120 in the area where the communication by the user terminal 30 is less congested. You may control your own machine so that it becomes slower than the reduction speed of the cell 120 of.
- the alternation control unit 144 may control its own machine so that the formation of the first cell 120 is stopped after the second cell 120 covers the entire target area 40.
- the shift control unit 144 may execute various controls according to the instructions of the control device 300, for example. Further, the shift control unit 144 may execute various controls while communicating with another HAPS 100. The own machine and another HAPS 100 may communicate with each other via the gateway 22 and the network 20, via a communication satellite, or via a control device 300.
- the change control unit 144 may execute the change process of changing the cover of the target area 40 with another HAPS 100 covering the target area 40 on the ground by the first cell 120.
- the alternation control unit 144 forms, for example, a second cell 120 in a part of the target area 40, and then continuously expands the second cell 120 to cover the target area 40 by the second cell 120. You may control your own machine so as to continuously spread.
- the alternation control unit 144 uses the second cell 120 by continuously expanding the second cell 120 while moving toward a position corresponding to the position of the other HAPS 100. You may control your own machine so as to continuously expand the coverage range of the target area 40. The alternation control unit 144 may control the SL antenna 114 so as to continuously expand the second cell 120 by beamforming.
- the alternation control unit 144 may control its own machine so as to continuously expand the second cell 120 while maintaining a state in which the first cell 120 and the second cell 120 partially overlap. ..
- the alternation control unit 144 forms a second cell 120 in the first portion on the outer edge side of the target area 40, and from the first portion toward the second portion facing the first portion on the outer edge side of the target area 40. You may control your own machine so as to continuously expand the second cell 120.
- the alternation control unit 144 changes the number of user terminals 30 for switching the connection destination from the first cell 120 to the second cell 120 per unit time at a speed within a predetermined range, and the second cell 120. You may control your own machine so as to continuously expand.
- the shift control unit 144 has the expansion speed of the second cell 120 in the area where the communication by the user terminal 30 is more congested in the target area 40, and the second cell 120 in the area where the communication by the user terminal 30 is less congested. You may control your own machine so that it becomes slower than the expansion speed of the cell 120 of.
- the alternation control unit 144 may control its own machine so as to continuously expand the second cell 120 while the other HAPS 100 covers the entire target area 40 by the first cell 120. ..
- the alternation control unit 144 forms the second cell 120 in the first portion inside the target area 40, and continuously expands the second cell 120 from the first portion toward the outside of the target area 40. You may control your own machine.
- the strength of the radio wave received from the second cell 120 by the user terminal 30 located in the overlapping portion where the first cell 120 and the second cell 120 overlap in the target area 40 is the second.
- the own machine may be controlled so as to be stronger than the strength of the received radio wave from the cell 120 of 1.
- FIG. 12 schematically shows an example of the hardware configuration of the computer 1200 functioning as the control device 130 or the control device 300.
- a program installed on the computer 1200 causes the computer 1200 to function as one or more "parts" of the device according to the present embodiment, or causes the computer 1200 to perform an operation associated with the device according to the present embodiment or the one or more.
- a plurality of "parts" can be executed and / or a computer 1200 can be made to execute a process according to the present embodiment or a stage of the process.
- Such a program may be executed by the CPU 1212 to cause the computer 1200 to perform a specific operation associated with some or all of the blocks of the flowcharts and block diagrams described herein.
- the computer 1200 includes a CPU 1212, a RAM 1214, and a graphic controller 1216, which are connected to each other by a host controller 1210.
- the computer 1200 also includes input / output units such as a communication interface 1222, a storage device 1224, a DVD drive and an IC card drive, which are connected to the host controller 1210 via the input / output controller 1220.
- the storage device 1224 may be a hard disk drive, a solid state drive, or the like.
- the computer 1200 also includes a legacy I / O unit such as a ROM 1230 and a keyboard, which are connected to the I / O controller 1220 via an I / O chip 1240.
- the CPU 1212 operates according to the programs stored in the ROM 1230 and the RAM 1214, thereby controlling each unit.
- the graphic controller 1216 acquires the image data generated by the CPU 1212 in a frame buffer or the like provided in the RAM 1214 or itself so that the image data is displayed on the display device 1218.
- the communication interface 1222 communicates with other electronic devices via the network.
- the storage device 1224 stores programs and data used by the CPU 1212 in the computer 1200.
- the DVD drive reads a program or data from a DVD-ROM or the like and provides it to the storage device 1224.
- the IC card drive reads the program and data from the IC card and / or writes the program and data to the IC card.
- the ROM 1230 stores a boot program or the like executed by the computer 1200 at the time of activation and / or a program depending on the hardware of the computer 1200.
- the input / output chip 1240 may also connect various input / output units to the input / output controller 1220 via a USB port, a parallel port, a serial port, a keyboard port, a mouse port, and the like.
- the program is provided by a computer-readable storage medium such as a DVD-ROM or IC card.
- the program is read from a computer-readable storage medium, installed in a storage device 1224, RAM 1214, or ROM 1230, which is also an example of a computer-readable storage medium, and executed by the CPU 1212.
- the information processing described in these programs is read by the computer 1200 and provides a link between the program and the various types of hardware resources described above.
- the device or method may be configured to implement the operation or processing of information in accordance with the use of the computer 1200.
- the CPU 1212 executes a communication program loaded in the RAM 1214, and performs communication processing on the communication interface 1222 based on the processing described in the communication program. You may order.
- the communication interface 1222 reads the transmission data stored in the transmission buffer area provided in the recording medium such as the RAM 1214, the storage device 1224, the DVD-ROM, or the IC card, and the read transmission data. Is transmitted to the network, or the received data received from the network is written in the reception buffer area or the like provided on the recording medium.
- the CPU 1212 makes the RAM 1214 read all or necessary parts of the file or the database stored in the external recording medium such as the storage device 1224, the DVD drive (DVD-ROM), the IC card, etc. Various types of processing may be performed on the data. The CPU 1212 may then write back the processed data to an external recording medium.
- the external recording medium such as the storage device 1224, the DVD drive (DVD-ROM), the IC card, etc.
- the CPU 1212 describes various types of operations, information processing, conditional judgment, conditional branching, unconditional branching, and information retrieval described in various parts of the present disclosure with respect to the data read from the RAM 1214. Various types of processing may be performed, including / replacement, etc., and the results are written back to the RAM 1214. Further, the CPU 1212 may search for information in a file, a database, or the like in the recording medium. For example, when a plurality of entries each having an attribute value of the first attribute associated with the attribute value of the second attribute are stored in the recording medium, the CPU 1212 is the first of the plurality of entries. The attribute value of the attribute of is searched for the entry that matches the specified condition, the attribute value of the second attribute stored in the entry is read, and the first attribute that satisfies the predetermined condition is selected. You may get the attribute value of the associated second attribute.
- the program or software module described above may be stored on a computer 1200 or in a computer-readable storage medium near the computer 1200.
- a recording medium such as a hard disk or RAM provided in a dedicated communication network or a server system connected to the Internet can be used as a computer-readable storage medium, whereby the program can be transferred to the computer 1200 via the network.
- the blocks in the flowchart and the block diagram in the present embodiment may represent the stage of the process in which the operation is executed or the "part" of the device having a role of executing the operation.
- Specific stages and “parts” are supplied with dedicated circuits, programmable circuits supplied with computer-readable instructions stored on computer-readable storage media, and / or computer-readable instructions stored on computer-readable storage media. It may be implemented by the processor.
- Dedicated circuits may include digital and / or analog hardware circuits, and may include integrated circuits (ICs) and / or discrete circuits.
- Programmable circuits include logical products, logical sums, exclusive logical sums, negative logical products, negative logical sums, and other logical operations, such as, for example, field programmable gate arrays (FPGAs), programmable logic arrays (PLAs), and the like. , Flip-flops, registers, and reconfigurable hardware circuits, including memory elements.
- the computer-readable storage medium may include any tangible device capable of storing instructions executed by the appropriate device, so that the computer-readable storage medium having the instructions stored therein is in a flow chart or block diagram. It will be equipped with a product that contains instructions that can be executed to create means for performing the specified operation.
- Examples of the computer-readable storage medium may include an electronic storage medium, a magnetic storage medium, an optical storage medium, an electromagnetic storage medium, a semiconductor storage medium, and the like. More specific examples of computer-readable storage media include floppy (registered trademark) disks, diskettes, hard disks, random access memory (RAM), read-only memory (ROM), and erasable programmable read-only memory (EPROM or flash memory).
- EEPROM Electrically Erasable Programmable Read Only Memory
- SRAM Static Random Access Memory
- CD-ROM Compact Disc Read Only Memory
- DVD Digital Versatile Disc
- Blu-ray® Disc Memory Stick
- Integrated circuit card etc.
- Computer-readable instructions are assembler instructions, instruction set architecture (ISA) instructions, machine instructions, machine-dependent instructions, microcode, firmware instructions, state-setting data, or object-oriented programming such as Smalltalk, JAVA®, C ++, etc. Contains either source code or object code written in any combination of one or more programming languages, including languages and traditional procedural programming languages such as the "C" programming language or similar programming languages. Good.
- Computer-readable instructions are used to generate means for a general-purpose computer, a special-purpose computer, or the processor of another programmable data processing device, or a programmable circuit, to perform an operation specified in a flowchart or block diagram.
Landscapes
- Engineering & Computer Science (AREA)
- Computer Networks & Wireless Communication (AREA)
- Signal Processing (AREA)
- Aviation & Aerospace Engineering (AREA)
- Mechanical Engineering (AREA)
- Remote Sensing (AREA)
- Physics & Mathematics (AREA)
- Astronomy & Astrophysics (AREA)
- General Physics & Mathematics (AREA)
- Mobile Radio Communication Systems (AREA)
Abstract
地上にセルを形成してセル内のユーザ端末に無線通信サービスを提供するためのアンテナを有する飛行体を制御する制御装置であって、第1のセルによって地上の対象エリアをカバーしている第1の飛行体と、第2の飛行体との交代を制御する交代制御部を備え、交代制御部は、第2の飛行体が、対象エリアの一部に第2のセルを形成した後、第2のセルを連続的に拡大することによって第2のセルによる対象エリアのカバー範囲を連続的に広げるように、第2の飛行体を制御する、制御装置を提供する。
Description
本発明は、制御装置、プログラム、制御方法及び飛行体に関する。
成層圏プラットフォームを提供すべく、アンテナを有し、成層圏を飛行する飛行体が知られていた(例えば、特許文献1参照)。
[先行技術文献]
[特許文献]
[特許文献1]特開2002-211496号公報
[先行技術文献]
[特許文献]
[特許文献1]特開2002-211496号公報
飛行体の交代を適切に実行可能な技術を提供することが望ましい。
本発明の第1の態様によれば、地上にセルを形成してセル内のユーザ端末に無線通信サービスを提供するためのアンテナを有する飛行体を制御する制御装置が提供される。制御装置は、第1のセルによって地上の対象エリアをカバーしている第1の飛行体と、第2の飛行体との交代を制御する交代制御部を備えてよい。交代制御部は、第2の飛行体が、対象エリアの一部に第2のセルを形成した後、第2のセルを連続的に拡大することによって第2のセルによる対象エリアのカバー範囲を連続的に広げるように、第2の飛行体を制御してよい。
上記交代制御部は、上記第2の飛行体が、上記対象エリアの一部に上記第2のセルを形成した後、上記第1の飛行体の位置に対応する位置に向けて移動しながら上記第2のセルを連続的に拡大することによって上記第2のセルによる上記対象エリアのカバー範囲を連続的に広げるように、上記第2の飛行体を制御してよい。上記交代制御部は、上記第1のセルと上記第2のセルとが一部重複している状態を保ちながら、上記第1の飛行体が上記第1のセルを連続的に縮小し、上記第2の飛行体が上記第2のセルを連続的に拡大するように、上記第1の飛行体及び上記第2の飛行体を制御してよい。上記交代制御部は、上記第1の飛行体がビームフォーミングによって上記第1のセルを連続的に拡大し、上記第2の飛行体がビームフォーミングによって上記第2のセルを連続的に拡大するように、上記第1の飛行体及び上記第2の飛行体を制御してよい。上記交代制御部は、上記第2の飛行体が、上記対象エリアの外縁側の第1部分に上記第2のセルを形成し、上記第1部分から、上記対象エリアの外縁側の上記第1部分と対向する第2部分に向けて上記第2のセルを連続的に拡大するように、上記第2の飛行体を制御し、上記第1の飛行体が、上記第1部分から上記第2部分に向けて上記第1のセルを連続的に縮小するように、上記第1の飛行体を制御してよい。
上記交代制御部は、上記対象エリア内における上記第1のセルと上記第2のセルとが重複する重複部分において上記第1のセルに在圏しているユーザ端末が、上記第2のセルに接続先を切り替えた後に、上記第1のセルが上記重複部分から外れるように上記第1の飛行体が上記第1のセルを縮小するように、上記第1の飛行体を制御してよい。上記交代制御部は、上記第1のセルから上記第2のセルに接続先を切り替えるユーザ端末の単位時間当たりの数の変動が予め定められた範囲内となる速度で、上記第1の飛行体が上記第1のセルを縮小し、上記第2の飛行体が上記第2のセルを拡大するように、上記第1の飛行体及び上記第2の飛行体を制御してよい。上記交代制御部は、上記第1のセルの縮小及び上記第2のセルの拡大を実行させながら、上記第1のセルから上記第2のセルへの接続先の切り替え状況を、通信管理装置から取得してよい。上記交代制御部は、上記第1のセルから上記第2のセルに接続先を切り替える上記ユーザ端末の単位時間当たりの数を継続的に特定し、継続的に特定している単位時間当たりの数が、予め定められた上限数を超えそうな場合に、上記第1のセルの縮小速度と上記第2のセルの拡大速度との少なくともいずれかを遅くさせてよい。上記交代制御部は、継続的に特定している単位時間当たりの数が予め定められた下限数を下回りそうな場合に、上記第1のセルの縮小速度と上記第2のセルの拡大速度との少なくともいずれかを速くさせてよい。上記交代制御部は、上記対象エリアのうち、上記ユーザ端末による通信がより混雑しているエリアにおける上記第1のセルの縮小速度及び上記第2のセルの拡大速度が、上記ユーザ端末による通信がより混雑していないエリアにおける上記第1のセルの縮小速度及び上記第2のセルの拡大速度よりも遅くなるように、上記第1の飛行体及び上記第2の飛行体を制御してよい。上記交代制御部は、例えば、上記対象エリアの各部分における、上記ユーザ端末による通信の通信トラフィックを、通信管理装置から取得してよい。上記交代制御部は、通信トラフィックがより多いエリアにおける上記第1のセルの縮小速度及び上記第2のセルの拡大速度が、通信トラフィックがより少ないエリアにおける上記第1のセルの縮小速度及び上記第2のセルの拡大速度よりも遅くなるように、上記第1の飛行体及び上記第2の飛行体を制御してよい。上記交代制御部は、上記第1のセルを構成する複数のサブセルのそれぞれと上記第2のセルを構成する複数のサブセルのそれぞれとが一部重複している状態を保ちながら、上記第1の飛行体が上記第1のセルの上記複数のサブセルのそれぞれを連続的に縮小し、上記第2の飛行体が上記第2のセルの上記複数のサブセルを連続的に拡大するように、上記第1の飛行体及び上記第2の飛行体を制御してよい。
上記交代制御部は、上記第1の飛行体が上記第1のセルによって上記対象エリアの全体をカバーしている状態で、上記第2の飛行体が上記第2のセルを連続的に拡大するように、上記第1の飛行体及び上記第2の飛行体を制御してよい。上記交代制御部は、上記第2の飛行体が、上記対象エリアの内側の第1部分に上記第2のセルを形成し、上記第1部分から上記対象エリアの外側方向に向けて上記第2のセルを連続的に拡大するように、上記第2の飛行体を制御してよい。上記交代制御部は、上記対象エリア内における上記第1のセルと上記第2のセルとが重複する重複部分内に位置するユーザ端末による、上記第2のセルからの受信電波強度が上記第1のセルからの受信電波強度よりも強くなるように、上記第1の飛行体及び上記第2の飛行体を制御してよい。上記交代制御部は、上記第2の飛行体に電波出力強度を強めさせることによって、上記ユーザ端末による、上記第2のセルからの受信電波強度が上記第1のセルからの受信電波強度よりも強くなるように、上記第2の飛行体を制御してよい。上記交代制御部は、上記第1の飛行体に電波出力強度を弱めさせることによって、上記ユーザ端末による、上記第2のセルからの受信電波強度が上記第1のセルからの受信電波強度よりも強くなるように、上記第1の飛行体を制御してよい。上記交代制御部は、上記第2のセルからの受信電波強度が上記第1のセルからの受信電波強度よりも強くなるように予め計算された強度で上記第1の飛行体及び上記第2の飛行体が電波を出力するように、上記第1の飛行体及び上記第2の飛行体を制御してよい。上記交代制御部は、上記第1のセルと上記第2のセルとが重複する部分における、上記ユーザ端末による受信電波状況を通信管理装置から取得して、上記第1のセルからの受信電波強度の方が上記第2のセルからの受信電波強度よりも強い場合、上記第2の飛行体に、電波出力強度を強めさせる調整を行うことによって、上記第2のセルからの受信電波強度が上記第1のセルからの受信電波強度よりも強くなるようにしてよい。上記交代制御部は、上記第1の飛行体が上記第1のセルを構成する複数のサブセルによって上記対象エリアの全体をカバーしている状態で、上記第2の飛行体が、それぞれが上記第1のセルの上記複数のサブセルのそれぞれに含まれる複数のサブセルにより構成される上記第2のセルを形成し、上記第2のセルの上記複数のサブセルを連続的に拡大するように、上記第1の飛行体及び上記第2の飛行体を制御してよい。
上記制御装置は、上記第1の飛行体に対して上記第2のセルのセル識別情報を送信することにより、上記第1の飛行体に、上記第2のセルを隣接セルとして設定させる設定制御部を備えてよい。上記設定制御部は、上記第2の飛行体に対して上記第1のセルのセル識別情報を送信することにより、上記第2の飛行体に、上記第1のセルを隣接セルとして設定させてよい。上記交代制御部は、上記第2のセルを連続的に拡大することによって上記第2のセルが上記対象エリアの全体をカバーした後、上記第1の飛行体が上記第1のセルの形成を停止するように、上記第1の飛行体及び上記第2の飛行体を制御してよい。
本発明の第2の態様によれば、コンピュータを、上記制御装置として機能させるためのプログラムが提供される。
本発明の第3の態様によれば、地上にセルを形成してセル内のユーザ端末に無線通信サービスを提供するためのアンテナを有する飛行体を制御する制御方法が提供される。制御方法は、第1のセルによって地上の対象エリアをカバーしている第1の飛行体と、第2の飛行体との交代を制御する交代制御段階を備えてよい。交代制御段階は、第2の飛行体が、対象エリアの一部に第2のセルを形成した後、第2のセルを連続的に拡大することによって第2のセルによる対象エリアのカバー範囲を連続的に広げるように、第2の飛行体を制御してよい。
本発明の第4の態様によれば、地上にセルを形成してセル内のユーザ端末に無線通信サービスを提供するためのアンテナを有する飛行体が提供される。飛行体は、第1のセルによって地上の対象エリアをカバーしている他の飛行体と対象エリアのカバーを交代する交代処理を実行する交代制御部を備えてよい。交代制御部は、対象エリアの一部に第2のセルを形成した後、第2のセルを連続的に拡大することによって第2のセルによる対象エリアのカバー範囲を連続的に広げるようにアンテナを制御してよい。
本発明の第5の態様によれば、地上にセルを形成してセル内のユーザ端末に無線通信サービスを提供するためのアンテナを有する飛行体が提供される。飛行体は、第1のセルによって地上の対象エリアをカバーしているときに、対象エリアのカバーを他の飛行体と交代する交代処理を実行する交代制御部を備えてよい。交代制御部は、他の飛行体が対象エリアの一部に第2のセルを形成し、自機の位置に対応する位置に向けて移動しながら第1のセルを連続的に拡大するのに合わせて、第1のセルを連続的に縮小するようにアンテナを制御してよい。
なお、上記の発明の概要は、本発明の必要な特徴の全てを列挙したものではない。また、これらの特徴群のサブコンビネーションもまた、発明となりうる。
以下、発明の実施の形態を通じて本発明を説明するが、以下の実施形態は請求の範囲にかかる発明を限定するものではない。また、実施形態の中で説明されている特徴の組み合わせの全てが発明の解決手段に必須であるとは限らない。
図1は、HAPS(High Altitude Platform Station)100の一例を概略的に示す。HAPS100は、地上にセル120を形成してセル120内のユーザ端末30に無線通信サービスを提供するためのアンテナを有する飛行体の一例であってよい。
HAPS100は、機体102、中央部104、プロペラ106、ポッド108、及び太陽電池パネル110を備える。中央部104の中には、不図示の制御装置130が配置される。
太陽電池パネル110によって発電された電力は、機体102、中央部104、及びポッド108の少なくともいずれかに配置された1又は複数のバッテリに蓄電される。バッテリに蓄電された電力は、HAPS100が備える各構成によって利用される。
制御装置130は、HAPS100の飛行を制御する。制御装置130は、例えば、プロペラ106の回転を制御することによってHAPS100の飛行を制御する。また、制御装置130は、不図示のフラップやエレベータの角度を変更することによってHAPS100の飛行を制御してもよい。制御装置130は、GPSセンサ等の測位センサ、ジャイロセンサ、及び加速度センサ等の各種センサを備えて、HAPS100の位置、移動方向、及び移動速度を管理してよい。
また、制御装置130は、HAPS100の通信を制御する。制御装置130は、FL(Feeder Link)アンテナ112及びSL(Service Link)アンテナ114を用いて、地上のユーザ端末30に対して無線通信サービスを提供する。HAPS100は、成層圏を飛行して地上のユーザ端末30に無線通信サービスを提供してよい。
FLアンテナ112は、フィーダリンク用のアンテナである。制御装置130は、FLアンテナ112によって、地上のゲートウェイ22との間でフィーダリンクを形成する。制御装置130は、ゲートウェイ22を介して、ネットワーク20にアクセスしてよい。
SLアンテナ114は、サービスリンク用のアンテナである。SLアンテナ114は、FLアンテナ112よりも指向性が低いアンテナであってよい。制御装置130は、SLアンテナ114によって、地上にセル120を形成する。SLアンテナ114は、マルチビームアンテナであってもよい。セル120は、マルチセルであってもよい。
ユーザ端末30は、HAPS100と通信可能な通信端末であればどのような端末であってもよい。例えば、ユーザ端末30は、スマートフォン等の携帯電話である。ユーザ端末30は、タブレット端末及びPC(Personal Computer)等であってもよい。ユーザ端末30は、いわゆるIoT(Internet of Thing)デバイスであってもよい。ユーザ端末30は、いわゆるIoE(Internet of Everything)に該当するあらゆるものを含み得る。
HAPS100は、例えば、ユーザ端末30とネットワーク20との通信を中継することによって、ユーザ端末30に無線通信サービスを提供する。ネットワーク20は、移動体通信ネットワークを含む。移動体通信ネットワークは、3G(3rd Generation)通信方式、LTE(Long Term Evolution)通信方式、5G(5th Generation)通信方式、及び6G(6th Generation)通信方式以降の通信方式のいずれに準拠していてもよい。ネットワーク20は、インターネットを含んでもよい。
HAPS100は、例えば、セル120内のユーザ端末30から受信したデータをネットワーク20に送信する。また、HAPS100は、例えば、ネットワーク20を介して、セル120内のユーザ端末30宛のデータを受信した場合に、当該データをユーザ端末30に送信する。
HAPS100は、不図示の通信衛星を介してネットワーク20にアクセスしてもよい。この場合、HAPS100は、通信衛星と通信するためのアンテナを有する。
HAPS100は、制御装置300によって制御されてよい。HAPS100は、例えば、制御装置300によってネットワーク20及びゲートウェイ22を介して送信された指示に従って動作する。また、HAPS100は、例えば、制御装置300によって通信衛星を介して送信された指示に従って動作する。
制御装置300は、指示を送信することによってHAPS100を制御する。制御装置300は、セル120によって地上の対象エリア40をカバーさせるべく、HAPS100に、対象エリア40の上空を旋回させてよい。HAPS100が対象エリア40をカバーすべく、対象エリア40の上空を旋回することを定点飛行と記載する場合がある。HAPS100は、例えば、対象エリア40の上空を円軌道で飛行しつつ、FLアンテナ112の指向方向を調整することによってゲートウェイ22との間のフィーダリンクを維持し、SLアンテナ114の指向方向を調整することによってセル120による対象エリア40のカバーを維持する。制御装置300は、複数の対象エリアのそれぞれに対して、HAPS100に定点飛行をさせることにより、複数の対象エリアのそれぞれをカバーさせてよい。
ユーザ端末30によってHAPS100を介して行われる通信は、通信管理装置400によって管理されてよい。通信管理装置400は、例えば、通信事業者のコアネットワーク内に配置される。通信管理装置400は、ユーザ端末30によってHAPS100を介して行われる通信に関する通信情報を外部に提供してよい。通信情報は、ユーザ端末30による受信電波状況を含む。通信管理装置400は、例えば、ユーザ端末30によってHAPS100に対して送信されるMeasurement Report(MRと記載する場合がある。)を参照することにより、ユーザ端末30が受信する電波の発信元と、受信電波強度とを取得してよい。通信管理装置400は、例えば、HAPS100から、HAPS100がユーザ端末30から受信したMRを受信することによって、MRを参照してよい。通信管理装置400がRAN(Radio Access Network)に配置され、リピータータイプである場合、通信管理装置400は、MRを直接参照してよい。また、通信情報は、例えば、ユーザ端末30によってHAPS100を介して実行される通信の通信トラフィックを含む。通信管理装置400は、通信情報を、ネットワーク20を介して制御装置300に送信してよい。なお、制御装置300と通信管理装置400とは一体であってもよい。すなわち、制御装置300が、通信管理装置400として機能してもよい。
本実施形態に係る制御装置300は、対象エリア40をカバーしているHAPS100を、他のHAPS100と交代させる交代制御処理を実行する。制御装置300は、例えば、対象エリア40をカバーしているHAPS100のメンテナンスを実施する場合に、当該HAPS100を他のHAPS100と交代させる。また、制御装置300は、オペレータの指示に従って、任意のタイミングで、対象エリア40をカバーしているHAPS100を他のHAPS100と交代させる。
従来の無線通信サービスにおいては、鉄塔やビルの屋上等に無線基地局を設置し、安定した電源供給があれば、故障等が無い限り半永久的に特定のエリアに対してサービスを提供することができるが、HAPS100の場合、バッテリや機体の寿命等があるため、定期的に他のHAPS100と交代させる必要がある。交代するにあたり、地上のユーザ端末30へ悪影響を及ぼさない様にセル切り替えを行う必要がある。例えば、交代対象のHAPS100の電波を停止後、新たなHAPS100の電波発射を開始する場合、地上のユーザ端末30が電波断により一時的にサービスが利用できなくなり、また、電波発射開始時に一斉に通信が発生するため、ネットワークの過剰な負荷による輻輳等が発生する恐れがある。
本実施形態に係る制御装置300は、例えば、第1のセル120によって対象エリア40をカバーしている第1のHAPS100と、第2のHAPS100とを交代させる場合に、第2のHAPS100が対象エリア40の一部に第2のセル120を形成し、第1のHAPS100に対応する位置に近づきながら第2のセル120を連続的に拡大することによって第2のセル120による対象エリア40のカバー範囲を連続的に広げるように、第2のHAPS100を制御する。制御装置300は、第1のセル120と第2のセル120とが一部重複している状態を保ちながら、第1のHAPS100が第1のセル120を連続的に縮小し、第2のHAPS100が第2のセル120を連続的に拡大するように、第1のHAPS100及び第2のHAPS100を制御してよい。
図2から図5は、制御装置300による交代制御処理の流れの一例を概略的に示す。ここでは、区別のため、交代される側のHAPSをHAPS100、交代する側のHAPSをHAPS200とし、HAPS100によって形成されるセルをセル120、HAPS200によって形成されるセルをセル220としている。
制御装置300は、例えば、HAPS100及びHAPS200に適宜指示を送信することによって、HAPS100とHAPS200を交代させるように、HAPS100及びHAPS200を制御する。制御装置300は、必要なタイミングで、必要な指示をHAPS100及びHAPS200のそれぞれに対して送信してよい。また、制御装置300は、交代制御に要する一連の指示を事前にHAPS100及びHAPS200に送信してもよい。この場合、HAPS100及びHAPS200は、受信した一連の指示に従って動作する。ここでは、制御装置300が適宜指示を送信する場合を主に例に挙げて説明する。
制御装置300は、HAPS100及びHAPS200のそれぞれから定期的に位置情報を受信することによって、HAPS100及びHAPS200の位置を把握する。制御装置300は、まず、HAPS100に、HAPS100のセル設定として、HAPS200のセル220を、隣接セルとして設定させる。
また、制御装置300は、HAPS200に、HAPS200のセル設定として、HAPS100のセル120を、隣接セルとして設定させる。なお、HAPS200のセル設定は、HAPS200が離陸する前に、地上のオペレータ等によって設定されてもよい。
このように、HAPS100及びHAPS200のそれぞれに、隣接セルとして互いのセルを設定させることによって、セル120からセル220へのスムーズなセルリセレクション及びハンドオーバを可能とすることができる。
制御装置300は、まず、HAPS100に対応する位置に移動するように、HAPS200に対して指示を送信する。HAPS100に対応する位置は、任意に定められてよい。例えば、HAPS100に対応する位置として、HAPS100の上方の位置が定められる。HAPS200は受信した指示に従って、HAPS100に対応する位置への移動を開始する。
制御装置300は、HAPS200とHAPS100に対応する位置との距離が予め定められた距離以内になったことに応じて、HAPS200に、対象エリア40の一部にセル220を形成させる。制御装置300は、HAPS200に、対象エリア40の外縁側の一部にセル220を形成させてよい。制御装置300は、例えば、セル220を形成する位置と、セル220の大きさとをHAPS200に指示する。HAPS200は、指示された位置に、指示された大きさのセル220を形成するように動作する。なお、制御装置300は、セル220を形成するために必要なパラメータをHAPS200に送信してもよい。例えば、制御装置300は、ビームの照射方向とビームの幅とをHAPS200に指示する。HAPS200は、受信したパラメータに従って、SLアンテナ114のビームを調整する。
制御装置300は、セル120とセル220とが重複する部分における、ユーザ端末30によるセル220からの受信電波強度が、ユーザ端末30によるセル120からの受信電波強度よりも強くなるように、HAPS100及びHAPS200を制御する。制御装置300は、例えば、HAPS200に電波出力強度を強めさせたり、HAPS100に電波出力強度を弱めさせたりする。
制御装置300は、例えば、セル220からの受信電波強度がセル120からの受信電波強度よりも強くなるように予め計算された強度でHAPS100及びHAPS200が電波を出力するように、HAPS100及びHAPS200を制御する。また、制御装置300は、例えば、セル120とセル220とが重複する部分における、ユーザ端末30による受信電波状況を通信管理装置400から取得して、セル120からの受信電波強度の方がセル220からの受信電波強度よりも強い場合、HAPS200に、電波出力強度を強めさせる等の調整を行うことによって、セル220からの受信電波強度がセル120からの受信電波強度よりも強くなるようにする。
セル120とセル220とが重複する重複部分における、ユーザ端末30によるセル220からの受信電波強度がセル120からの受信電波強度よりも強くなるように制御することによって、当該部分におけるユーザ端末30のセルリセレクションやハンドオーバを実現させて、ユーザ端末30の接続をセル120からセル220に切り替えさせることができる。
制御装置300は、図3及び図4に示すように、セル120とセル220とが一部重複している状態を保ちながら、HAPS200がセル220を連続的に拡大することによってセル220による対象エリア40のカバー範囲を連続的に広げ、HAPS100がセル120を連続的に縮小することによってセル120による対象エリア40のカバー範囲を連続的に狭めるように、HAPS100及びHAPS200を制御する。制御装置300は、セル220を形成した対象エリア40の外縁側の第1部分から、対象エリア40の外縁側の当該第1部分とは対向する第2部分に向けてセル220を連続的に拡大するようにHAPS200を制御し、第1部分から第2部分に向けてセル120を連続的に縮小するようにHAPS100を制御してよい。
制御装置300は、セル120とセル220とが重複する重複部分に位置するユーザ端末30が接続先をセル120からセル220に切り替えたことを確認しながら、HAPS100にセル120を縮小させてよい。例えば、制御装置300は、対象エリア40におけるセル120とセル220とが重複する重複部分においてセル120に在圏しているユーザ端末30のすべてがセルリセレクション又はハンドオーバによって接続先をセル220に切り替えた後に、セル120が当該重複部分から外れるように、HAPS100にセル120を縮小させる。
制御装置300は、図5に示すように、セル220によって対象エリア40の全体がカバーされた後に、セル120の形成を停止するようにHAPS100を制御してよい。制御装置300は、セル220によって対象エリア40の全体がカバーされた後、対象エリア40内のすべてのユーザ端末30の接続先がセル120からセル220に切り替わったことを確認した後に、セル120の形成を停止するようにHAPS100を制御してよい。
そして、制御装置300は、地上の予め定められた位置に移動するように、HAPS100を制御する。当該予め定められた位置は任意に定められてよく、例えば、HAPS100をメンテナンスするための設備や、HAPS100を格納するための格納庫の付近等が設定され得る。
このような交代処理を実行することにより、セル120に在圏しているユーザ端末30が、接続先をセル120からセル220に切り替えた後に、HAPS100にセル120の形成を停止させることになり、ユーザ端末30はHAPS100によるサービスに引き続いてHAPS200によるサービスを受けることができる。すなわち、本実施形態に係る制御装置300によれば、ユーザ端末30に発生する一時的なサービス断や一時的なサービス品質の劣化を抑制することができる。
図2から図5では、対象エリア40の外縁側の一部からセル220を拡大させる例を説明したが、これに限らない。制御装置300は、HAPS200に、対象エリア40の内側の一部からセル220を拡大させてもよい。
図6及び図7は、制御装置300による交代制御処理の流れの他の一例を概略的に示す。ここでは、図2から図5とは異なる点を主に説明する。図6及び図7では、HAPS200がHAPS100の上方まで移動した後で、HAPS200が対象エリア40の内側にセル220を形成してセル220を拡大していく例を示す。
制御装置300は、HAPS100がセル120によって対象エリア40の全体をカバーしている状態で、HAPS200に、対象エリア40の内側の一部にセル220を形成させる。そして、制御装置300は、HAPS100がセル120によって対象エリア40の全体をカバーしている状態で、HAPS200にセル220を連続的に拡大させる。制御装置300は、対象エリア40内におけるセル120とセル220とが重複する重複部分内に位置するユーザ端末30による、セル220からの受信電波強度が、セル120からの受信電波強度よりも強くなるように、HAPS100及びHAPS200を制御する。
制御装置300は、例えば、ユーザ端末30によるセル220からの受信電波強度がセル120からの受信電波強度よりも強くなるように予め計算された強度で電波を出力するように、HAPS100及びHAPS200を制御する。また、制御装置300は、例えば、セル120とセル220とが重複する部分における、ユーザ端末30による受信電波状況を通信管理装置400から取得して、セル120からの受信電波強度の方がセル220からの受信電波強度よりも強い場合、HAPS200に電波出力強度を強めさせる等の調整を行うことによって、ユーザ端末30によるセル220からの受信電波強度がセル120からの受信電波強度よりも強くなるようにする。
制御装置300は、セル220によって対象エリア40の全体がカバーされた後に、セル120の形成を停止するようにHAPS100を制御してよい。制御装置300は、セル220によって対象エリア40の全体がカバーされた後、対象エリア40内のすべてのユーザ端末30の接続先がセル120からセル220に切り替わったことを確認した後に、セル120の形成を停止するようにHAPS100を制御してよい。そして、制御装置300は、地上の予め定められた位置に移動するように、HAPS100を制御する。
図8は、制御装置300による交代制御処理の流れの他の一例を概略的に示す。図8では、HAPS100が複数のサブセル121によって構成されるセル120を形成しており、HAPS200に複数のサブセル221によって構成されるセル220を形成させる場合の交代制御処理の流れを説明する。ここでは、図2から図5に示した例とは異なる部分を主に説明する。
制御装置300は、まず、複数のサブセル121のそれぞれがカバーしているエリアの外縁側の一部に、複数のサブセル221のそれぞれを形成するように、HAPS200を制御する。そして、制御装置300は、複数のサブセル121のそれぞれと複数のサブセル221のそれぞれとが一部重複している状態を保ちながら、HAPS100が複数のサブセル121のそれぞれを連続的に縮小し、HAPS200が複数のサブセル221のそれぞれを拡大するように、HAPS100及びHAPS200を制御する。
図9は、制御装置300による交代制御処理の流れの他の一例を概略的に示す。図9では、HAPS100が複数のサブセル121によって構成されるセル120を形成しており、HAPS200に複数のサブセル221によって構成されるセル220を形成させる場合の交代制御処理の流れを説明する。ここでは、図6及び図7に示した例とは異なる部分を主に説明する。
制御装置300は、HAPS100が複数のサブセル121によって対象エリア40の全体をカバーしている状態で、複数のサブセル121のそれぞれがカバーしているエリアの内側の一部に、複数のサブセル221のそれぞれを形成するように、HAPS200を制御する。そして、制御装置300は、複数のサブセル221のそれぞれを連続的に拡大するように、HAPS200を制御する。
図10は、制御装置300の機能構成の一例を概略的に示す。制御装置300は、指示受付部312、通信情報取得部314、飛行体通信部320、及び制御部330を備える。
指示受付部312は、各種指示を受け付ける。指示受付部312は、例えば、対象エリア40を指定する指示を受け付ける。また、指示受付部312は、例えば、HAPS100が定点飛行する軌道を指定する指示を受け付ける。また、指示受付部312は、例えば、セル120を形成する位置を指定する指示を受け付ける。
指示受付部312は、制御装置300が備える操作部を介して入力された指示を受け付けてよい。また、指示受付部312は、制御装置300が備える通信部を介して、ネットワーク20を介して受信した指示を受け付けてもよい。
通信情報取得部314は、HAPS100が形成しているセル120によってユーザ端末30に提供される無線通信サービスにおける通信に関する通信情報を取得する。通信情報取得部314は、例えば、ユーザ端末30による受信電波状況を取得する。また、通信情報取得部314は、例えば、通信トラフィックに関する情報を取得する。通信情報取得部314は、通信管理装置400から通信情報を受信してよい。
飛行体通信部320は、HAPS100と通信する。飛行体通信部320は、ネットワーク20及びゲートウェイ22を介して、HAPS100と通信してよい。飛行体通信部320は、通信衛星を介してHAPS100と通信してもよい。
飛行体通信部320は、例えば、指示受付部312が受け付けた指示をHAPS100に送信する。また、飛行体通信部320は、例えば、HAPS100から各種情報を受信する。飛行体通信部320は、例えば、HAPS100からHAPS100の位置情報を受信する。
制御部330は、各種制御を実行する。制御部330は、例えば、飛行体通信部320を介して、HAPS100に各種設定を行う。制御部330は、例えば、第1のHAPS100と第2のHAPS100との交代を行う場合に、第1のHAPS100に対して、第2のHAPS100のセル120のセル識別情報を送信することにより、第1のHAPS100に、第2のセル120を隣接セルとして設定させる。また、制御部330は、第2のHAPS100に対して、第1のHAPS100のセル120のセル識別情報を送信することにより、第2のHAPS100に、第1のセル120を隣接セルとして設定させる。制御部330は、設定制御部の一例であってよい。
制御部330は、HAPS100の交代制御処理を実行してよい。制御部330は、交代制御部の一例であってよい。制御部330は、飛行体通信部320を介して各種指示をHAPS100に送信することにより、HAPS100を制御してよい。制御部330は、複数の指示をそれぞれのタイミングにあわせてHAPS100に送信してよく、また、複数の指示をまとめてHAPS100に送信してもよい。
制御部330は、第1のセル120によって地上の対象エリア40をカバーしている第1のHAPS100と、第2のHAPS100との交代を制御してよい。例えば、制御部330は、第1のHAPS100の位置に対応する位置に向けて移動している第2のHAPS100に、対象エリア40の一部に第2のセル120を形成させた後、第2のセル120を連続的に拡大することによって第2のセル120による対象エリア40のカバー範囲を連続的に広げるように、第2のHAPS100を制御する。
制御部330は、第2のHAPS100が、対象エリア40の一部に第2のセル120を形成した後、第1のHAPS100の位置に対応する位置に向けて移動しながら第2のセル120を連続的に拡大することによって第2のセル120による対象エリア40のカバー範囲を連続的に広げるように第2のHAPS100を制御してよい。制御部330は、第1のセル120と第2のセル120とが一部重複している状態を保ちながら、第1のHAPS100が第1のセル120を連続的に縮小し、第2のHAPS100が第2のセル120を連続的に拡大するように、第1のHAPS100及び第2のHAPS100を制御してよい。
制御部330は、第1のHAPS100がビームフォーミングによって第1のセル120を連続的に拡大するように第1のHAPS100を制御してよい。制御部330は、例えば、第1のHAPS100に対して、ビームフォーミングによって第1のセル120を連続的に拡大する指示を第1のHAPS100に送信する。また、制御部330は、例えば、第1のHAPS100に対して、第1のセル120を連続的に拡大させるためのビームフォーミングの制御パラメータを送信してもよい。制御部330は、例えば、対象エリア40の位置と第1のHAPS100の位置及び飛行方向とから、ビームの方向及び幅を決定して、当該ビームの方向及び幅を実現させるためのビームフォーミングの制御パラメータを生成して、第1のHAPS100に送信する。
制御部330は、第2のHAPS100がビームフォーミングによって第2のセル120を連続的に縮小するように第2のHAPS100を制御してよい。制御部330は、例えば、第2のHAPS100に対して、ビームフォーミングによって第2のセル120を連続的に縮小する指示を第2のHAPS100に送信する。また、制御部330は、例えば、第2のHAPS100に対して、第2のセル120を連続的に縮小させるためのビームフォーミングの制御パラメータを送信してもよい。制御部330は、例えば、対象エリア40の位置と第2のHAPS100の位置及び飛行方向とから、ビームの方向及び幅を決定して、当該ビームの方向及び幅を実現させるためのビームフォーミングの制御パラメータを生成して、第2のHAPS100に送信する。
制御部330は、第2のHAPS100が、対象エリア40の外縁側の第1部分に第2のセル120を形成し、第1部分から、対象エリア40の外縁側の第1部分と対向する第2部分に向けて第2のセル120を連続的に拡大するように、第2のHAPS100を制御してよい。また、制御部330は、第1のHAPS100が、第1部分から第2部分に向けて第1のセル120を連続的に縮小するように、第1のHAPS100を制御してよい。制御部330は、対象エリア40における第1のセル120と第2のセル220とが重複する重複部分において第1のセル120に在圏しているユーザ端末30が、接続先を第2のセル120に切り替えた後に、第1のセル120が重複部分から外れるように第1のHAPS100に第1のセル120を縮小させてよい。
制御部330は、第1のセル120から第2のセル120に接続先を切り替えるユーザ端末30の単位時間当たりの数の変動が予め定められた範囲内となる速度で、第1のHAPS100が第1のセル120を縮小し、第2のHAPS100が第2のセル120を拡大するように、第1のHAPS100及び第2のHAPS100を制御してもよい。制御部330は、例えば、第1のセル120の縮小及び第2のセル120の拡大を実行させながら、第1のセル120から第2のセル120への接続先の切り替え状況を、通信情報取得部314を介して通信管理装置400から取得する。そして、制御部330は、第1のセル120から第2のセル120に接続先を切り替えるユーザ端末30の単位時間当たりの数を継続的に特定する。制御部330は、継続的に特定している単位時間当たりの数が、予め定められた上限数を超えそうな場合に、第1のセル120の縮小速度と第2のセル120の拡大速度との少なくともいずれかを遅くさせてよい。また、制御部330は、継続的に特定している単位時間当たりの数が予め定められた下限数を下回りそうな場合に、第1のセル120の縮小速度と第2のセル120の拡大速度との少なくともいずれかを速くさせてよい。これにより、同時期に第1のセル120から第2のセル120に接続先を切り替えるユーザ端末30の数が、極端に多くなったり少なくなったりすることを防止でき、通信環境が乱れてしまうことを抑制することができる。
制御部330は、対象エリア40のうち、ユーザ端末30による通信がより混雑しているエリアにおける第1のセル120の縮小速度及び第2のセル120の拡大速度が、ユーザ端末30による通信がより混雑していないエリアにおける第1のセル120の縮小速度及び第2のセル120の拡大速度よりも遅くなるように、第1のHAPS100及び第2のHAPS100を制御してもよい。制御部330は、例えば、対象エリア40の各部分における、ユーザ端末30による通信の通信トラフィックを、通信情報取得部314を介して通信管理装置400から取得する。そして、制御部330は、通信トラフィックがより多いエリアにおける第1のセル120の縮小速度及び第2のセル120の拡大速度が、通信トラフィックがより少ないエリアにおける第1のセル120の縮小速度及び第2のセル120の拡大速度よりも遅くなるように、第1のHAPS100及び第2のHAPS100を制御する。これにより、通信が混雑しているにも関わらず接続先の切り替えが多発することによって通信環境に悪影響を与えてユーザ体感が低下してしまうことを抑制することができ、通信環境への影響が少ないタイミングで速やかにHAPS100の交代を実現することができる。
制御部330は、第2のセル120によって対象エリア40の全体がカバーされた後に、第1のHAPS100が第1のセル120の形成を停止するように第1のHAPS100を制御してよい。
制御部330は、第1のHAPS100と第2のHAPS100との交代制御処理を実行するタイミングを各種状況に基づいて決定してもよい。例えば、制御部330は、通信情報取得部314が通信管理装置400から取得した通信情報に基づいて、交代対象の第1のHAPS100がカバーしている対象エリア40における通信トラフィックの1日における変動状況を確認して、交代制御処理を実行する時間帯として、通信トラフィックがより少ない時間帯を選択する。
制御部330は、交代対象の第1のHAPS100がカバーしている対象エリア40の種類に応じて、交代制御処理を実行するタイミングを決定してもよい。例えば、制御部330は、対象エリア40が都心の重要エリアである場合、交代制御処理を実行するタイミングを夜間とし、対象エリア40が重要エリアでない場合には、時間的制限なく交代制御処理を実行するタイミングを決定する。
第1のセル120が複数のサブセル121によって構成されている場合、制御部330は、第1のセル120を構成する複数のサブセル121のそれぞれと、第2のセル120を構成する複数のサブセル121のそれぞれとが一部重複する状態を保ちながら、第1のHAPS100が第1のセル120の複数のサブセル121のそれぞれを連続的に縮小し、第2のHAPS100が第2のセル120の複数のサブセル121のそれぞれを連続的に拡大するように、第1のHAPS100及び第2のHAPS100を制御してよい。
制御部330は、第1のHAPS100が第1のセル120によって対象エリア40の全体をカバーしている状態で、第2のHAPS100が第2のセル120を連続的に拡大するように、第1のHAPS100及び第2のHAPS100を制御してもよい。
制御部330は、第2のHAPS100が対象エリア40の内側の第1部分に第2のセル120を形成し、第1部分から対象エリアの外側方向に向けて第2のセル120を連続的に拡大するように、第2のHAPS100を制御してよい。制御部330は、対象エリア40内における第1のセル120と第2のセル120とが重複する重複部分内に位置するユーザ端末30による、第2のセル120からの受信電波強度が第1のセル120からの受信電波強度よりも強くなるように、第1のHAPS100及び第2のHAPS100を制御してよい。
第1のセル120が複数のサブセル121によって構成されている場合、制御部330は、第1のHAPS100が第1のセル120を構成する複数のサブセル121によって対象エリア40の全体をカバーしている状態で、第2のHAPS100が、それぞれが第1のセル120の複数のサブセル121のそれぞれに含まれる複数のサブセル121により構成される第2のセル120を形成し、第2のセル120の複数のサブセル121を連続的に拡大するように、第1のHAPS100及び第2のHAPS100を制御してよい。
図11は、HAPS100が有する制御装置130の機能構成の一例を概略的に示す。制御装置130は、無線通信部132及び制御部140を備える。
無線通信部132は、各種通信を実行する。無線通信部132は、FLアンテナ112を用いて、地上のゲートウェイ22との間でフィーダリンクを形成してよい。無線通信部132は、ゲートウェイ22を介して、ネットワーク20にアクセスしてよい。無線通信部132は、例えば、ゲートウェイ22及びネットワーク20を介して、制御装置300及び通信管理装置400と通信する。
無線通信部132は、SLアンテナ114を用いて、地上にセル120を形成してよい。無線通信部132は、ユーザ端末30との間でサービスリンクを形成して、ユーザ端末30と通信してよい。無線通信部132は、通信衛星との通信を実行してもよい。
制御部140は、HAPS100の飛行を制御する。また、制御部140は、無線通信部132による通信を制御する。制御部140は、制御装置300からの指示に従って、HAPS100の飛行及び通信を制御してよい。
制御部140は、通信情報取得部142及び交代制御部144を有する。通信情報取得部142は、HAPS100が形成しているセル120によってユーザ端末30に提供される無線通信サービスにおける通信に関する通信情報を取得する。通信情報取得部142は、例えば、ユーザ端末30による受信電波状況を取得する。また、通信情報取得部142は、例えば、通信トラフィックに関する情報を取得する。通信情報取得部142は、無線通信部132を介して通信管理装置400から通信情報を取得してよい。
交代制御部144は、他のHAPS100との交代を制御する。交代制御部144は、例えば、自機(交代制御部144が搭載されているHAPS100を自機と記載する場合がある。)が地上の対象エリア40の上空を定点飛行しながら、無線通信部132が形成する第1のセル120によって対象エリア40をカバーしているときに、当該対象エリア40のカバーを他のHAPS100と交代する交代制御処理を実行する。
交代制御部144は、他のHAPS100が対象エリア40の一部に第2のセル120を形成し、自機の位置に対応する位置に向けて移動しながら第2のセル120を連続的に拡大するのに合わせて、第1のセル120を連続的に縮小するように自機を制御する。交代制御部144は、ビームフォーミングによって第1のセル120を連続的に縮小するようにSLアンテナ114を制御してよい。
交代制御部144は、他のHAPS100が対象エリア40の外縁側の第1部分に第2のセル120を形成し、第1部分から、対象エリア40の外縁側の第1部分と対向する第2部分に向けて第2のセル120を連続的に拡大するのに合わせて、第1部分から第2部分に向けて第1のセル120を連続的に縮小するように自機を制御してよい。
交代制御部144は、第1のセル120と第2のセル120とが一部重複している状態を保ちながら、第1のセル120を連続的に縮小するように自機を制御してよい。交代制御部144は、対象エリア40における第1のセル120と第2のセル120とが重複する重複部分において第1のセル120に在圏しているユーザ端末30が、第2のセル120に接続先を切り替えた後に、第1のセル120が重複部分から外れるように第1のセル120を縮小するよう自機を制御してよい。
交代制御部144は、第1のセル120から第2のセル120に接続先を切り替えるユーザ端末30の単位時間当たりの数の変動が予め定められた範囲内となる速度で、第1のセル120を縮小するよう自機を制御してよい。交代制御部144は、対象エリア40のうち、ユーザ端末30による通信がより混雑しているエリアにおける第1のセル120の縮小速度が、ユーザ端末30による通信がより混雑していないエリアにおける第1のセル120の縮小速度よりも遅くなるように自機を制御してもよい。交代制御部144は、第2のセル120が対象エリア40の全体をカバーした後、第1のセル120の形成を停止するように自機を制御してよい。
交代制御部144は、例えば、制御装置300の指示に従って、各種制御を実行してよい。また、交代制御部144は、他のHAPS100と通信しながら、各種制御を実行してもよい。自機と他のHAPS100とは、ゲートウェイ22及びネットワーク20を介したり、通信衛星を介したり、制御装置300を介したりすることによって通信してよい。
交代制御部144は、第1のセル120によって地上の対象エリア40をカバーしている他のHAPS100と、対象エリア40のカバーを交代する交代処理を実行してもよい。交代制御部144は、例えば、対象エリア40の一部に第2のセル120を形成した後、第2のセル120を連続的に拡大することによって第2のセル120による対象エリア40のカバー範囲を連続的に広げるように自機を制御してよい。
交代制御部144は、第2のセル120を形成した後、他のHAPS100の位置に対応する位置に向けて移動しながら第2のセル120を連続的に拡大することによって第2のセル120による対象エリア40のカバー範囲を連続的に広げるように自機を制御してよい。交代制御部144は、ビームフォーミングによって第2のセル120を連続的に拡大するようにSLアンテナ114を制御してよい。
交代制御部144は、第1のセル120と第2のセル120とが一部重複している状態を保ちながら、第2のセル120を連続的に拡大するように自機を制御してよい。交代制御部144は、対象エリア40の外縁側の第1部分に第2のセル120を形成し、第1部分から、対象エリア40の外縁側の第1部分に対向する第2部分に向けて第2のセル120を連続的に拡大するように自機を制御してよい。
交代制御部144は、第1のセル120から第2のセル120に接続先を切り替えるユーザ端末30の単位時間当たりの数の変動が予め定められた範囲内となる速度で、第2のセル120を連続的に拡大するように自機を制御してよい。交代制御部144は、対象エリア40のうち、ユーザ端末30による通信がより混雑しているエリアにおける第2のセル120の拡大速度が、ユーザ端末30による通信がより混雑していないエリアにおける第2のセル120の拡大速度よりも遅くなるように自機を制御してもよい。
交代制御部144は、他のHAPS100が第1のセル120によって対象エリア40の全体をカバーしている状態で、第2のセル120を連続的に拡大するように自機を制御してもよい。交代制御部144は、対象エリア40の内側の第1部分に第2のセル120を形成し、第1部分から対象エリア40の外側方向に向けて第2のセル120を連続的に拡大するように自機を制御してよい。交代制御部144は、対象エリア40内における第1のセル120と第2のセル120とが重複する重複部分内に位置するユーザ端末30による、第2のセル120からの受信電波強度が、第1のセル120からの受信電波強度よりも強くなるように自機を制御してよい。
図12は、制御装置130又は制御装置300として機能するコンピュータ1200のハードウェア構成の一例を概略的に示す。コンピュータ1200にインストールされたプログラムは、コンピュータ1200を、本実施形態に係る装置の1又は複数の「部」として機能させ、又はコンピュータ1200に、本実施形態に係る装置に関連付けられるオペレーション又は当該1又は複数の「部」を実行させることができ、及び/又はコンピュータ1200に、本実施形態に係るプロセス又は当該プロセスの段階を実行させることができる。そのようなプログラムは、コンピュータ1200に、本明細書に記載のフローチャート及びブロック図のブロックのうちのいくつか又はすべてに関連付けられた特定のオペレーションを実行させるべく、CPU1212によって実行されてよい。
本実施形態によるコンピュータ1200は、CPU1212、RAM1214、及びグラフィックコントローラ1216を含み、それらはホストコントローラ1210によって相互に接続されている。コンピュータ1200はまた、通信インタフェース1222、記憶装置1224、DVDドライブ及びICカードドライブのような入出力ユニットを含み、それらは入出力コントローラ1220を介してホストコントローラ1210に接続されている。記憶装置1224は、ハードディスクドライブ及びソリッドステートドライブ等であってよい。コンピュータ1200はまた、ROM1230及びキーボードのようなレガシの入出力ユニットを含み、それらは入出力チップ1240を介して入出力コントローラ1220に接続されている。
CPU1212は、ROM1230及びRAM1214内に格納されたプログラムに従い動作し、それにより各ユニットを制御する。グラフィックコントローラ1216は、RAM1214内に提供されるフレームバッファ等又はそれ自体の中に、CPU1212によって生成されるイメージデータを取得し、イメージデータがディスプレイデバイス1218上に表示されるようにする。
通信インタフェース1222は、ネットワークを介して他の電子デバイスと通信する。記憶装置1224は、コンピュータ1200内のCPU1212によって使用されるプログラム及びデータを格納する。DVDドライブは、プログラム又はデータをDVD-ROM等から読み取り、記憶装置1224に提供する。ICカードドライブは、プログラム及びデータをICカードから読み取り、及び/又はプログラム及びデータをICカードに書き込む。
ROM1230はその中に、アクティブ化時にコンピュータ1200によって実行されるブートプログラム等、及び/又はコンピュータ1200のハードウェアに依存するプログラムを格納する。入出力チップ1240はまた、様々な入出力ユニットをUSBポート、パラレルポート、シリアルポート、キーボードポート、マウスポート等を介して、入出力コントローラ1220に接続してよい。
プログラムは、DVD-ROM又はICカードのようなコンピュータ可読記憶媒体によって提供される。プログラムは、コンピュータ可読記憶媒体から読み取られ、コンピュータ可読記憶媒体の例でもある記憶装置1224、RAM1214、又はROM1230にインストールされ、CPU1212によって実行される。これらのプログラム内に記述される情報処理は、コンピュータ1200に読み取られ、プログラムと、上記様々なタイプのハードウェアリソースとの間の連携をもたらす。装置又は方法が、コンピュータ1200の使用に従い情報のオペレーション又は処理を実現することによって構成されてよい。
例えば、通信がコンピュータ1200及び外部デバイス間で実行される場合、CPU1212は、RAM1214にロードされた通信プログラムを実行し、通信プログラムに記述された処理に基づいて、通信インタフェース1222に対し、通信処理を命令してよい。通信インタフェース1222は、CPU1212の制御の下、RAM1214、記憶装置1224、DVD-ROM又はICカードのような記録媒体内に提供される送信バッファ領域に格納された送信データを読み取り、読み取られた送信データをネットワークに送信し、又はネットワークから受信した受信データを記録媒体上に提供される受信バッファ領域等に書き込む。
また、CPU1212は、記憶装置1224、DVDドライブ(DVD-ROM)、ICカード等のような外部記録媒体に格納されたファイル又はデータベースの全部又は必要な部分がRAM1214に読み取られるようにし、RAM1214上のデータに対し様々なタイプの処理を実行してよい。CPU1212は次に、処理されたデータを外部記録媒体にライトバックしてよい。
様々なタイプのプログラム、データ、テーブル、及びデータベースのような様々なタイプの情報が記録媒体に格納され、情報処理を受けてよい。CPU1212は、RAM1214から読み取られたデータに対し、本開示の随所に記載され、プログラムの命令シーケンスによって指定される様々なタイプのオペレーション、情報処理、条件判断、条件分岐、無条件分岐、情報の検索/置換等を含む、様々なタイプの処理を実行してよく、結果をRAM1214に対しライトバックする。また、CPU1212は、記録媒体内のファイル、データベース等における情報を検索してよい。例えば、各々が第2の属性の属性値に関連付けられた第1の属性の属性値を有する複数のエントリが記録媒体内に格納される場合、CPU1212は、当該複数のエントリの中から、第1の属性の属性値が指定されている条件に一致するエントリを検索し、当該エントリ内に格納された第2の属性の属性値を読み取り、それにより予め定められた条件を満たす第1の属性に関連付けられた第2の属性の属性値を取得してよい。
上で説明したプログラム又はソフトウエアモジュールは、コンピュータ1200上又はコンピュータ1200近傍のコンピュータ可読記憶媒体に格納されてよい。また、専用通信ネットワーク又はインターネットに接続されたサーバシステム内に提供されるハードディスク又はRAMのような記録媒体が、コンピュータ可読記憶媒体として使用可能であり、それによりプログラムを、ネットワークを介してコンピュータ1200に提供する。
本実施形態におけるフローチャート及びブロック図におけるブロックは、オペレーションが実行されるプロセスの段階又はオペレーションを実行する役割を持つ装置の「部」を表わしてよい。特定の段階及び「部」が、専用回路、コンピュータ可読記憶媒体上に格納されるコンピュータ可読命令と共に供給されるプログラマブル回路、及び/又はコンピュータ可読記憶媒体上に格納されるコンピュータ可読命令と共に供給されるプロセッサによって実装されてよい。専用回路は、デジタル及び/又はアナログハードウェア回路を含んでよく、集積回路(IC)及び/又はディスクリート回路を含んでよい。プログラマブル回路は、例えば、フィールドプログラマブルゲートアレイ(FPGA)、及びプログラマブルロジックアレイ(PLA)等のような、論理積、論理和、排他的論理和、否定論理積、否定論理和、及び他の論理演算、フリップフロップ、レジスタ、並びにメモリエレメントを含む、再構成可能なハードウェア回路を含んでよい。
コンピュータ可読記憶媒体は、適切なデバイスによって実行される命令を格納可能な任意の有形なデバイスを含んでよく、その結果、そこに格納される命令を有するコンピュータ可読記憶媒体は、フローチャート又はブロック図で指定されたオペレーションを実行するための手段を作成すべく実行され得る命令を含む、製品を備えることになる。コンピュータ可読記憶媒体の例としては、電子記憶媒体、磁気記憶媒体、光記憶媒体、電磁記憶媒体、半導体記憶媒体等が含まれてよい。コンピュータ可読記憶媒体のより具体的な例としては、フロッピー(登録商標)ディスク、ディスケット、ハードディスク、ランダムアクセスメモリ(RAM)、リードオンリメモリ(ROM)、消去可能プログラマブルリードオンリメモリ(EPROM又はフラッシュメモリ)、電気的消去可能プログラマブルリードオンリメモリ(EEPROM)、静的ランダムアクセスメモリ(SRAM)、コンパクトディスクリードオンリメモリ(CD-ROM)、デジタル多用途ディスク(DVD)、ブルーレイ(登録商標)ディスク、メモリスティック、集積回路カード等が含まれてよい。
コンピュータ可読命令は、アセンブラ命令、命令セットアーキテクチャ(ISA)命令、マシン命令、マシン依存命令、マイクロコード、ファームウェア命令、状態設定データ、又はSmalltalk、JAVA(登録商標)、C++等のようなオブジェクト指向プログラミング言語、及び「C」プログラミング言語又は同様のプログラミング言語のような従来の手続型プログラミング言語を含む、1又は複数のプログラミング言語の任意の組み合わせで記述されたソースコード又はオブジェクトコードのいずれかを含んでよい。
コンピュータ可読命令は、汎用コンピュータ、特殊目的のコンピュータ、若しくは他のプログラム可能なデータ処理装置のプロセッサ、又はプログラマブル回路が、フローチャート又はブロック図で指定されたオペレーションを実行するための手段を生成するために当該コンピュータ可読命令を実行すべく、ローカルに又はローカルエリアネットワーク(LAN)、インターネット等のようなワイドエリアネットワーク(WAN)を介して、汎用コンピュータ、特殊目的のコンピュータ、若しくは他のプログラム可能なデータ処理装置のプロセッサ、又はプログラマブル回路に提供されてよい。プロセッサの例としては、コンピュータプロセッサ、処理ユニット、マイクロプロセッサ、デジタル信号プロセッサ、コントローラ、マイクロコントローラ等を含む。
以上、本発明を実施の形態を用いて説明したが、本発明の技術的範囲は上記実施の形態に記載の範囲には限定されない。上記実施の形態に、多様な変更または改良を加えることが可能であることが当業者に明らかである。その様な変更または改良を加えた形態も本発明の技術的範囲に含まれ得ることが、請求の範囲の記載から明らかである。
請求の範囲、明細書、および図面中において示した装置、システム、プログラム、および方法における動作、手順、ステップ、および段階などの各処理の実行順序は、特段「より前に」、「先立って」などと明示しておらず、また、前の処理の出力を後の処理で用いるのでない限り、任意の順序で実現しうることに留意すべきである。請求の範囲、明細書、および図面中の動作フローに関して、便宜上「まず、」、「次に、」などを用いて説明したとしても、この順で実施することが必須であることを意味するものではない。
20 ネットワーク、22 ゲートウェイ、30 ユーザ端末、40 対象エリア、100 HAPS、102 機体、104 中央部、106 プロペラ、108 ポッド、110 太陽電池パネル、112 FLアンテナ、114 SLアンテナ、120 セル、121 サブセル、200 HAPS、220 セル、221 サブセル、300 制御装置、312 指示受付部、314 通信情報取得部、320 飛行体通信部、330 制御部、400 通信管理装置、1200 コンピュータ、1210 ホストコントローラ、1212 CPU、1214 RAM、1216 グラフィックコントローラ、1218 ディスプレイデバイス、1220 入出力コントローラ、1222 通信インタフェース、1224 記憶装置、1230 ROM、1240 入出力チップ
Claims (20)
- 地上にセルを形成して前記セル内のユーザ端末に無線通信サービスを提供するためのアンテナを有する飛行体を制御する制御装置であって、
第1のセルによって地上の対象エリアをカバーしている第1の飛行体と、第2の飛行体との交代を制御する交代制御部を備え、
前記交代制御部は、前記第2の飛行体が、前記対象エリアの一部に第2のセルを形成した後、前記第2のセルを連続的に拡大することによって前記第2のセルによる前記対象エリアのカバー範囲を連続的に広げるように、前記第2の飛行体を制御する、
制御装置。 - 前記交代制御部は、前記第2の飛行体が、前記対象エリアの一部に前記第2のセルを形成した後、前記第1の飛行体の位置に対応する位置に向けて移動しながら前記第2のセルを連続的に拡大することによって前記第2のセルによる前記対象エリアのカバー範囲を連続的に広げるように、前記第2の飛行体を制御する、請求項1に記載の制御装置。
- 前記交代制御部は、前記第1のセルと前記第2のセルとが一部重複している状態を保ちながら、前記第1の飛行体が前記第1のセルを連続的に縮小し、前記第2の飛行体が前記第2のセルを連続的に拡大するように、前記第1の飛行体及び前記第2の飛行体を制御する、請求項1又は2に記載の制御装置。
- 前記交代制御部は、前記第1の飛行体がビームフォーミングによって前記第1のセルを連続的に拡大し、前記第2の飛行体がビームフォーミングによって前記第2のセルを連続的に拡大するように、前記第1の飛行体及び前記第2の飛行体を制御する、請求項3に記載の制御装置。
- 前記交代制御部は、前記第2の飛行体が、前記対象エリアの外縁側の第1部分に前記第2のセルを形成し、前記第1部分から、前記対象エリアの外縁側の前記第1部分と対向する第2部分に向けて前記第2のセルを連続的に拡大するように、前記第2の飛行体を制御し、前記第1の飛行体が、前記第1部分から前記第2部分に向けて前記第1のセルを連続的に縮小するように、前記第1の飛行体を制御する、請求項3又は4に記載の制御装置。
- 前記交代制御部は、前記対象エリア内における前記第1のセルと前記第2のセルとが重複する重複部分において前記第1のセルに在圏しているユーザ端末が、前記第2のセルに接続先を切り替えた後に、前記第1のセルが前記重複部分から外れるように前記第1の飛行体が前記第1のセルを縮小するように、前記第1の飛行体を制御する、請求項5に記載の制御装置。
- 前記交代制御部は、前記第1のセルから前記第2のセルに接続先を切り替えるユーザ端末の単位時間当たりの数の変動が予め定められた範囲内となる速度で、前記第1の飛行体が前記第1のセルを縮小し、前記第2の飛行体が前記第2のセルを拡大するように、前記第1の飛行体及び前記第2の飛行体を制御する、請求項6に記載の制御装置。
- 前記交代制御部は、前記対象エリアのうち、前記ユーザ端末による通信がより混雑しているエリアにおける前記第1のセルの縮小速度及び前記第2のセルの拡大速度が、前記ユーザ端末による通信がより混雑していないエリアにおける前記第1のセルの縮小速度及び前記第2のセルの拡大速度よりも遅くなるように、前記第1の飛行体及び前記第2の飛行体を制御する、請求項6に記載の制御装置。
- 前記交代制御部は、前記第1のセルを構成する複数のサブセルのそれぞれと前記第2のセルを構成する複数のサブセルのそれぞれとが一部重複している状態を保ちながら、前記第1の飛行体が前記第1のセルの前記複数のサブセルのそれぞれを連続的に縮小し、前記第2の飛行体が前記第2のセルの前記複数のサブセルを連続的に拡大するように、前記第1の飛行体及び前記第2の飛行体を制御する、請求項2から8のいずれか一項に記載の制御装置。
- 前記交代制御部は、前記第1の飛行体が前記第1のセルによって前記対象エリアの全体をカバーしている状態で、前記第2の飛行体が前記第2のセルを連続的に拡大するように、前記第1の飛行体及び前記第2の飛行体を制御する、請求項1に記載の制御装置。
- 前記交代制御部は、前記第2の飛行体が、前記対象エリアの内側の第1部分に前記第2のセルを形成し、前記第1部分から前記対象エリアの外側方向に向けて前記第2のセルを連続的に拡大するように、前記第2の飛行体を制御する、請求項10に記載の制御装置。
- 前記交代制御部は、前記対象エリア内における前記第1のセルと前記第2のセルとが重複する重複部分内に位置するユーザ端末による、前記第2のセルからの受信電波強度が前記第1のセルからの受信電波強度よりも強くなるように、前記第1の飛行体及び前記第2の飛行体を制御する、請求項10又は11に記載の制御装置。
- 前記交代制御部は、前記第1の飛行体が前記第1のセルを構成する複数のサブセルによって前記対象エリアの全体をカバーしている状態で、前記第2の飛行体が、それぞれが前記第1のセルの前記複数のサブセルのそれぞれに含まれる複数のサブセルにより構成される前記第2のセルを形成し、前記第2のセルの前記複数のサブセルを連続的に拡大するように、前記第1の飛行体及び前記第2の飛行体を制御する、請求項10から12のいずれか一項に記載の制御装置。
- 前記第1の飛行体に対して前記第2のセルのセル識別情報を送信することにより、前記第1の飛行体に、前記第2のセルを隣接セルとして設定させる設定制御部
を備える、請求項1から13のいずれか一項に記載の制御装置。 - 前記設定制御部は、前記第2の飛行体に対して前記第1のセルのセル識別情報を送信することにより、前記第2の飛行体に、前記第1のセルを隣接セルとして設定させる、請求項14に記載の制御装置。
- 前記交代制御部は、前記第2のセルを連続的に拡大することによって前記第2のセルが前記対象エリアの全体をカバーした後、前記第1の飛行体が前記第1のセルの形成を停止するように、前記第1の飛行体及び前記第2の飛行体を制御する、請求項1から15のいずれか一項に記載の制御装置。
- コンピュータを、請求項1から16のいずれか一項に記載の制御装置として機能させるためのプログラム。
- 地上にセルを形成して前記セル内のユーザ端末に無線通信サービスを提供するためのアンテナを有する飛行体を制御する制御方法であって、
第1のセルによって地上の対象エリアをカバーしている第1の飛行体と、第2の飛行体との交代を制御する交代制御段階を備え、
前記交代制御段階は、前記第2の飛行体が、前記対象エリアの一部に第2のセルを形成した後、前記第2のセルを連続的に拡大することによって前記第2のセルによる前記対象エリアのカバー範囲を連続的に広げるように、前記第2の飛行体を制御する、
制御方法。 - 地上にセルを形成して前記セル内のユーザ端末に無線通信サービスを提供するためのアンテナを有する飛行体であって、
第1のセルによって地上の対象エリアをカバーしている他の飛行体と前記対象エリアのカバーを交代する交代処理を実行する交代制御部
を備え、
前記交代制御部は、前記対象エリアの一部に第2のセルを形成した後、前記第2のセルを連続的に拡大することによって前記第2のセルによる前記対象エリアのカバー範囲を連続的に広げるように前記アンテナを制御する、飛行体。 - 地上にセルを形成して前記セル内のユーザ端末に無線通信サービスを提供するためのアンテナを有する飛行体であって、
第1のセルによって地上の対象エリアをカバーしているときに、前記対象エリアのカバーを他の飛行体と交代する交代処理を実行する交代制御部
を備え、
前記交代制御部は、前記他の飛行体が前記対象エリアの一部に第2のセルを形成し、自機の位置に対応する位置に向けて移動しながら前記第1のセルを連続的に拡大するのに合わせて、前記第1のセルを連続的に縮小するように前記アンテナを制御する、飛行体。
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP20884975.2A EP4056470A4 (en) | 2019-11-07 | 2020-08-19 | CONTROL DEVICE, PROGRAM, CONTROL METHOD AND FLYING VEHICLE |
US17/713,236 US20220232397A1 (en) | 2019-11-07 | 2022-04-05 | Control apparatus, computer readable storage medium, control method, and flying object |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2019-202493 | 2019-11-07 | ||
JP2019202493A JP7187423B2 (ja) | 2019-11-07 | 2019-11-07 | 制御装置、プログラム、及び制御方法 |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US17/713,236 Continuation US20220232397A1 (en) | 2019-11-07 | 2022-04-05 | Control apparatus, computer readable storage medium, control method, and flying object |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2021090549A1 true WO2021090549A1 (ja) | 2021-05-14 |
Family
ID=75848341
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2020/031353 WO2021090549A1 (ja) | 2019-11-07 | 2020-08-19 | 制御装置、プログラム、制御方法及び飛行体 |
Country Status (4)
Country | Link |
---|---|
US (1) | US20220232397A1 (ja) |
EP (1) | EP4056470A4 (ja) |
JP (1) | JP7187423B2 (ja) |
WO (1) | WO2021090549A1 (ja) |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002211496A (ja) | 2001-01-17 | 2002-07-31 | Honda Motor Co Ltd | 成層圏プラットフォーム |
JP2004088654A (ja) * | 2002-08-28 | 2004-03-18 | Telecommunication Advancement Organization Of Japan | 成層圏プラットフォームを用いた移動通信システム及びハンドオーバ制御方法 |
JP2012114512A (ja) * | 2010-11-19 | 2012-06-14 | Hitachi Ltd | 無線通信システム及び無線通信方法 |
US20160156406A1 (en) * | 2014-08-18 | 2016-06-02 | Sunlight Photonics Inc. | Distributed airborne wireless communication services |
JP2017521962A (ja) * | 2014-07-22 | 2017-08-03 | アルカテル−ルーセント | 第1のドローン基地局、第2のドローン基地局、制御装置、および第1のドローン基地局を第2のドローン基地局と置換する方法 |
CN108242951A (zh) * | 2016-12-27 | 2018-07-03 | 华为技术有限公司 | 用于高空平台电台协作覆盖的方法、装置和系统 |
Family Cites Families (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5678184A (en) * | 1995-04-28 | 1997-10-14 | Motorola, Inc. | Method of pre-computation of candidate handoff cell list for cellular communications |
US10111044B2 (en) * | 2015-05-29 | 2018-10-23 | Verity Studios Ag | Methods and systems for scheduling the transmission of localization signals and operating self-localizing apparatus |
US10020872B2 (en) * | 2016-10-11 | 2018-07-10 | T-Mobile Usa, Inc. | UAV for cellular communication |
JP6692868B2 (ja) * | 2018-09-11 | 2020-05-13 | Hapsモバイル株式会社 | 制御装置、プログラム、制御方法及び飛行体 |
JP6667588B1 (ja) * | 2018-09-18 | 2020-03-18 | Hapsモバイル株式会社 | 制御装置、プログラム、制御方法及び飛行体 |
CN109495952B (zh) * | 2018-11-14 | 2020-04-24 | 北京航空航天大学 | 一种蜂窝和无人机一体化网络的选择方法及装置 |
US11166175B2 (en) * | 2018-11-30 | 2021-11-02 | T-Mobile Usa, Inc. | UAV modular redundant communications |
US11475689B2 (en) * | 2020-01-06 | 2022-10-18 | X Development Llc | Fish biomass, shape, size, or health determination |
US11075817B1 (en) * | 2020-05-08 | 2021-07-27 | International Business Machines Corporation | Context aware network capacity augmentation using a flying device |
-
2019
- 2019-11-07 JP JP2019202493A patent/JP7187423B2/ja active Active
-
2020
- 2020-08-19 WO PCT/JP2020/031353 patent/WO2021090549A1/ja unknown
- 2020-08-19 EP EP20884975.2A patent/EP4056470A4/en active Pending
-
2022
- 2022-04-05 US US17/713,236 patent/US20220232397A1/en active Pending
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002211496A (ja) | 2001-01-17 | 2002-07-31 | Honda Motor Co Ltd | 成層圏プラットフォーム |
JP2004088654A (ja) * | 2002-08-28 | 2004-03-18 | Telecommunication Advancement Organization Of Japan | 成層圏プラットフォームを用いた移動通信システム及びハンドオーバ制御方法 |
JP2012114512A (ja) * | 2010-11-19 | 2012-06-14 | Hitachi Ltd | 無線通信システム及び無線通信方法 |
JP2017521962A (ja) * | 2014-07-22 | 2017-08-03 | アルカテル−ルーセント | 第1のドローン基地局、第2のドローン基地局、制御装置、および第1のドローン基地局を第2のドローン基地局と置換する方法 |
US20160156406A1 (en) * | 2014-08-18 | 2016-06-02 | Sunlight Photonics Inc. | Distributed airborne wireless communication services |
CN108242951A (zh) * | 2016-12-27 | 2018-07-03 | 华为技术有限公司 | 用于高空平台电台协作覆盖的方法、装置和系统 |
Non-Patent Citations (1)
Title |
---|
See also references of EP4056470A4 |
Also Published As
Publication number | Publication date |
---|---|
JP7187423B2 (ja) | 2022-12-12 |
US20220232397A1 (en) | 2022-07-21 |
EP4056470A1 (en) | 2022-09-14 |
EP4056470A4 (en) | 2023-12-13 |
JP2021077973A (ja) | 2021-05-20 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2019244784A1 (ja) | 無線通信サービスを提供する飛行体の編隊飛行及び通信エリア等制御 | |
WO2021095315A1 (ja) | 飛行体、制御装置、プログラム、及び制御方法 | |
WO2021240980A1 (ja) | 制御装置、システム、プログラム及び制御方法 | |
JP2020198481A (ja) | 無線通信システム、プログラム、システム及び通信方法 | |
WO2021090549A1 (ja) | 制御装置、プログラム、制御方法及び飛行体 | |
WO2021181718A1 (ja) | 管理装置、プログラム、システム及び制御方法 | |
JP6868054B2 (ja) | 制御装置、プログラム、システム、及び制御方法 | |
US20210218465A1 (en) | Base station device, program, control device, and control method | |
WO2022153922A1 (ja) | 制御装置、プログラム、システム及び制御方法 | |
JP7069099B2 (ja) | システム、制御装置、プログラム、及び制御方法 | |
JP2022101358A (ja) | 飛行体、通信管理システム、制御システム、及び制御方法 | |
WO2020079936A1 (ja) | 基地局装置、プログラム、制御装置及び制御方法 | |
JP6896789B2 (ja) | 制御装置、プログラム、システム、及び制御方法 | |
JP7566645B2 (ja) | 制御装置、プログラム、システム、及び制御方法 | |
JP7297173B1 (ja) | 通信制御装置、プログラム、飛行体、及び通信制御方法 | |
WO2022138392A1 (ja) | 基地局装置、プログラム、システム及び制御方法 | |
JP7144583B1 (ja) | 制御装置、プログラム、システム、及び制御方法 | |
JP7260460B2 (ja) | システム、通信制御装置、プログラム、及び制御方法 | |
WO2021235096A1 (ja) | システム、通信装置、プログラム及び制御方法 | |
WO2021084854A1 (ja) | 基地局装置、システム、プログラム、飛行体、方法、管理装置、及び管理方法 | |
JP7541476B2 (ja) | 管理装置、プログラム、システム及び管理方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 20884975 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
ENP | Entry into the national phase |
Ref document number: 2020884975 Country of ref document: EP Effective date: 20220607 |