WO2021088319A1 - 一种合成甘油二酯的方法 - Google Patents

一种合成甘油二酯的方法 Download PDF

Info

Publication number
WO2021088319A1
WO2021088319A1 PCT/CN2020/085883 CN2020085883W WO2021088319A1 WO 2021088319 A1 WO2021088319 A1 WO 2021088319A1 CN 2020085883 W CN2020085883 W CN 2020085883W WO 2021088319 A1 WO2021088319 A1 WO 2021088319A1
Authority
WO
WIPO (PCT)
Prior art keywords
lipase
fatty acid
glycerol
reaction
partial glyceride
Prior art date
Application number
PCT/CN2020/085883
Other languages
English (en)
French (fr)
Inventor
王永华
刘萱
杨博
王卫飞
蓝东明
罗日明
Original Assignee
华南理工大学
广东粤膳特医营养科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华南理工大学, 广东粤膳特医营养科技有限公司 filed Critical 华南理工大学
Priority to US17/639,703 priority Critical patent/US20220282290A1/en
Publication of WO2021088319A1 publication Critical patent/WO2021088319A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P7/00Preparation of oxygen-containing organic compounds
    • C12P7/64Fats; Fatty oils; Ester-type waxes; Higher fatty acids, i.e. having at least seven carbon atoms in an unbroken chain bound to a carboxyl group; Oxidised oils or fats
    • C12P7/6436Fatty acid esters
    • C12P7/6445Glycerides
    • C12P7/6454Glycerides by esterification
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/14Hydrolases (3)
    • C12N9/16Hydrolases (3) acting on ester bonds (3.1)
    • C12N9/18Carboxylic ester hydrolases (3.1.1)
    • C12N9/20Triglyceride splitting, e.g. by means of lipase
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12RINDEXING SCHEME ASSOCIATED WITH SUBCLASSES C12C - C12Q, RELATING TO MICROORGANISMS
    • C12R2001/00Microorganisms ; Processes using microorganisms
    • C12R2001/01Bacteria or Actinomycetales ; using bacteria or Actinomycetales
    • C12R2001/07Bacillus
    • C12R2001/10Bacillus licheniformis
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12RINDEXING SCHEME ASSOCIATED WITH SUBCLASSES C12C - C12Q, RELATING TO MICROORGANISMS
    • C12R2001/00Microorganisms ; Processes using microorganisms
    • C12R2001/645Fungi ; Processes using fungi
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y301/00Hydrolases acting on ester bonds (3.1)
    • C12Y301/01Carboxylic ester hydrolases (3.1.1)
    • C12Y301/01034Lipoprotein lipase (3.1.1.34)

Definitions

  • the invention relates to a method for synthesizing diglycerides.
  • DAG Diglyceride
  • 1,2-DAG 1,3-DAG according to the position of the vacant hydroxyl group. Because the metabolic pathway of diglycerides is completely different from that of triglycerides, DAG has the functions of lowering blood lipids, relieving diabetes and its complications, and inhibiting the accumulation of fat. It is a healthy and safe functional oil.
  • Diglycerides can be prepared by a variety of processes, including hydrolysis, esterification, and glycerollysis.
  • the hydrolysis method uses refined animal and vegetable oils as raw materials to select sn-1,3-specific lipases to hydrolyze animal and vegetable oils, and obtain DAG-rich samples by controlling the degree of hydrolysis.
  • the degree of hydrolysis is difficult to control, a large amount of by-product fatty acids are produced, and the DAG content is low.
  • Glycerolysis to prepare diglycerides refers to the use of lipase to catalyze the reaction of triglycerides and glycerol to obtain DAG. This method is affected by factors such as the solvent and the type of enzyme preparation, and has the problem of low conversion rate.
  • the esterification method is a commonly used method for the preparation of diglycerides in the industry. It uses free fatty acids and glycerol as raw materials and uses lipase to catalyze the synthesis of diglycerides.
  • the purity of DAG prepared by partial glycerol lipase can reach more than 90% after separation and purification.
  • the products are diglyceride (DAG), glycerol monoglyceride (MAG) and fatty acid (FFA).
  • DAG diglyceride
  • MAG glycerol monoglyceride
  • FFA fatty acid
  • the partial glyceride lipase catalyzes the esterification reaction to prepare diglycerides with low efficiency, and generally requires a longer reaction time, which severely restricts the prospects for industrial application.
  • Monoglyceride lipase generally has strong hydrolysis activity.
  • Patent CN102965404A discloses a method for preparing high-purity diglycerides, using glycerol and fatty acid esterification reaction, and then using monoglyceride lipase to convert the esterified product to monoglyceride.
  • the ester is hydrolyzed, and the DAG content reaches 98% after molecular distillation separation and purification.
  • the esterification activity of monoglyceride lipase is generally weak, especially the esterification activity of long-chain fatty acids is extremely low, and there is no report that it can be used to catalyze the esterification of long-chain fatty acids to prepare glycerides.
  • the purpose of the present invention is to provide a rapid and efficient method for synthesizing diglycerides in view of the deficiencies in the prior art.
  • the method adds a certain amount of monoglycerides to the reaction system of partial glyceride lipase catalyzed by long-chain fatty acids to prepare diglycerides.
  • Glyceride lipase has been found to increase the catalytic efficiency of partial glyceride lipase without changing the equilibrium point of the esterification reaction, and significantly shorten the time required for the esterification reaction to reach equilibrium.
  • a method for synthesizing diglycerides A fatty acid donor, glycerol, partial glyceride lipase, and monoglyceride lipase are mixed with water, and then subjected to esterification reaction, and further separated and purified to obtain diglyceride.
  • the partial glyceride lipase is a partial glyceride lipase derived from one or a mixture of Malassezia Lipase SMG1 and Lipase G 50 , and the monoglyceride lipase is derived from marine lichen Lipase_GMGL of Bacillus.
  • the added amount of the partial glyceride lipase is 120-240 U/g based on the total mass of the reaction mixture; the added amount of the monoglyceride lipase is 60-240 U/g based on the total mass of the reaction mixture.
  • the molar ratio of the fatty acid donor to glycerol is 1:(0.3-10); the mass ratio of the glycerol to water is (10-30):1.
  • the molar ratio of the fatty acid donor to the glycerol is 1: (3 to 4); the mass ratio of the glycerin to water is (14.2 to 28.4):1.
  • the fatty acid donor is one or a mixture of two or more of fatty acids, fatty acid lower alkyl esters, or raw materials containing fatty acids and fatty acid lower alkyl esters.
  • the fatty acid is one or a mixture of two or more fatty acids having 6-22 carbon atoms.
  • the fatty acid lower alkyl ester is one or a mixture of two of methyl ester, ethyl ester, propyl ester, butyl ester, and pentyl ester.
  • the esterification reaction time is 8-24h, more preferably, the esterification reaction time is 12 ⁇ 2h.
  • the temperature of the esterification reaction is 10-60°C, and the pH is 4-10.
  • the temperature of the esterification reaction is 20-50°C, and the pH is 6-8.
  • the temperature of the esterification reaction is 30-40°C.
  • the present invention has the following advantages:
  • the present invention relates to the use of partial glyceride lipase and monoglyceride lipase in an enzyme reaction to synthesize diglycerides.
  • the synthesis rate of diglycerides is much higher than when any enzyme is used alone, the synthesis time is shortened by more than half, and more than 45.50% of diglycerides are obtained after the esterification reaction, because the product is basically no
  • Fig. 1 is a graph showing the influence of Lipase G 50 and Lipase GMGL on the content of DAG in the catalytic synthesis of Example 1.
  • Fig. 2 is a graph showing the influence of Lipase SMG1 and Lipase GMGL on the content of DAG in the catalytic synthesis of Example 2.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Engineering & Computer Science (AREA)
  • Zoology (AREA)
  • Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Health & Medical Sciences (AREA)
  • Microbiology (AREA)
  • Biochemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • Biotechnology (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Medicinal Chemistry (AREA)
  • Molecular Biology (AREA)
  • Biomedical Technology (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)
  • Fats And Perfumes (AREA)

Abstract

本发明公开了一种合成甘油二酯的方法,将脂肪酸供体与甘油、偏甘油酯脂肪酶、单甘油酯脂肪酶加水混合后,进行酯化反应,反应时间8-24h,进一步分离纯化得到甘油二酯。本发明利用单甘油酯脂肪酶在酯化反应中促进偏甘油酯脂肪酶的反应效率,以提高合成甘油二酯的速率,相比于单酶,合成时间缩短了一半以上,而且酯化反应后得到45.50%以上的甘油二酯,因产物基本没有甘油三酯的生成,经分子蒸馏纯化后,DAG含量达98%以上。

Description

一种合成甘油二酯的方法 技术领域
本发明涉及一种甘油二酯的合成方法。
背景技术
甘油二酯(DAG)是甘油上的两个羟基与脂肪酸酯化的产物,是油脂的一种天然组分,也是油脂代谢的中间产物。天然存在的DAG有两种,根据空位羟基的位置不同分为1,2-DAG与1,3-DAG两种异构体。因甘油二酯的代谢途径与甘油三酯截然不同,DAG具有降低血脂、缓解糖尿病及其并发症、抑制脂肪的积累功能,是一种健康、安全的功能性油脂。
甘油二酯可以通过多种工艺制备,主要有水解法、酯化法、甘油解法。水解法是以精炼动植物油为原料选用sn-1,3位专一性脂肪酶对动植物油脂进行水解反应,通过控制水解程度得到富含DAG的样品。但水解程度难以控制,会产生大量的副产物脂肪酸,而且DAG含量偏低。甘油解制备甘油二酯是指用脂肪酶催化甘油三酯与甘油反应获得DAG。此方法受溶剂、酶制剂的类型等因素的影响,存在转化率低的问题。
酯化法是目前工业上制备甘油二酯常用的方法,是以游离脂肪酸和甘油为原料,利用脂肪酶催化合成甘油二酯。而采用偏甘油脂肪酶制得的DAG经分离纯化后纯度可以达到90%以上。产物有甘油二酯(DAG)、甘油单甘脂(MAG)和脂肪酸(FFA)。但是,偏甘油酯脂肪酶催化酯化反应制备甘油二酯的效率较低,一般需要较长的反应时间,严重制约了工业化应用前景。单甘油酯脂肪酶一般具有较强的水解活力,专利CN102965404A公开了一种制备高纯度的甘油二酯,利用甘油和脂肪酸酯化反应,再将酯化产物用单甘油酯脂肪酶将单甘酯水解,经分子蒸馏分离纯化后DAG含量达到98%。但是,单甘油酯脂肪酶的酯化活力一般较弱,特别是对长链脂肪酸的酯化活力极低,目前尚未有可以用于催化长链脂肪酸酯化制备甘油酯的报导。
发明内容
本发明的目的在于针对现有技术存在的不足,提供一种快速高效合成甘油二酯的方法,该方法在偏甘油酯脂肪酶催化长链脂肪酸制备甘油二酯的反应体系中添加一定量的单甘油酯脂肪酶,发现在不改变酯化反应平衡点的同时,可以提高偏甘油酯脂肪酶的催化效率,显著地缩短酯化反应达到平衡所需的时间。
本发明目的通过以下技术方案实现:
一种合成甘油二酯的方法,将脂肪酸供体与甘油、偏甘油酯脂肪酶、单甘油酯脂肪酶加水混合后,进行酯化反应,进一步分离纯化,得到甘油二酯。
[根据细则91更正 22.04.2020] 
优选地,所述偏甘油酯脂肪酶为偏甘油酯脂肪酶来源于马拉色霉菌Lipase SMG1和Lipase G 50中的一种或两种的混合,所述单甘油酯脂肪酶为来源于海洋地衣芽孢杆菌的Lipase_GMGL。
优选地,所述偏甘油酯脂肪酶的添加量为基于反应混合物总质量的120~240U/g;所述单甘油酯脂肪酶的添加量为基于反应混合物总质量的60~240U/g。
优选地,所述脂肪酸供体与甘油的摩尔比1:(0.3~10);所述甘油与水的质量比为(10~30):1。
优选地,所述脂肪酸供体与甘油的摩尔比1:(3~4);所述甘油与水的质量比为(14.2~28.4):1。
优选地,所述的脂肪酸供体为脂肪酸、脂肪酸低碳烷基酯或是含有脂肪酸、脂肪酸低碳烷基酯的原料中的一种或两种以上的混合。
优选地,所述脂肪酸为具有6~22个碳原子的脂肪酸中的一种或两种以上的混合物。
所述脂肪酸低碳烷基酯为甲酯、乙酯、丙酯、丁酯、戊酯中的一种或两种的混合物。
优选地,酯化反应时间8-24h,更优选地,酯化反应时间12±2h。
优选地,所述酯化反应的温度为10~60℃,pH为4~10。
优选地,所述酯化反应的温度为20~50℃,pH为6~8。
优选地,所述酯化反应的温度为30~40℃。
本发明与现有技术相比,具有如下优点:
本发明涉及将偏甘油酯脂肪酶和单甘油酯脂肪酶一起用于酶反应来合成甘油二酯。当两种酶一起使用时甘油二酯的合成速率远远高于任何一种酶单独使用时,合成时间缩短了一半以上,而且酯化反应后得到45.50%以上的甘油二酯,因产物基本没有甘油三酯的生成,经分子蒸馏纯化后,DAG含量高达98%以上。
附图说明
图1为实施例1中Lipase G 50和Lipase GMGL对催化合成DAG含量影响图。
图2为实施例2中Lipase SMG1和Lipase GMGL对催化合成DAG含量影响图。
具体实施方式
[根据细则91更正 22.04.2020] 
实施例1
取4.3210g脂肪酸和5.6790g甘油(摩尔比为1:4)和0.4g的pH为7.5的磷酸缓冲溶液,加入具塞三角瓶中混合均匀,并置于转速为500rpm的恒温磁力搅拌器上35℃预热10min,预热结束后加入240U/g的偏甘油酯脂肪酶Lipase G 50(基于反应物总质量,购自日本天野酶制剂公司),同时添加240U/g的单甘油酯脂肪酶GMGL,控制反应温度为35℃,反应12小时,酯化产物DAG含量为49.50%,经分子蒸馏分离进一步分离纯化,DAG含量高达98.07%。
[根据细则91更正 22.04.2020] 
实施例2 
取4.3210g脂肪酸和5.6790g甘油(摩尔比为1:4)和0.4g的pH为7.5磷酸缓冲溶液,加入具塞三角瓶中混合均匀,并置于转速为500rpm的恒温磁力搅拌器上35℃预热10min,预热结束后加入240U/g的偏甘油酯脂肪酶SMG1(基于反应物总质量),同时添加240U/g的单甘油酯脂肪酶GMGL,控制反应温度为35℃;反应12小时,酯化产物DAG含量为50.04%,经分子蒸馏分离进一步分离纯化,DAG含量高达98.30%。
[根据细则91更正 22.04.2020] 
实施例3
取4.3210g脂肪酸和5.6790g甘油(摩尔比为1:4)和0.2g的pH 为7.5的磷酸缓冲溶液,加入具塞三角瓶中混合均匀,并置于转速为500rpm的恒温磁力搅拌器上35℃预热10min,预热结束后加入240U/g的偏甘油酯脂肪酶Lipase G 50(基于反应物总质量),同时添加240U/g的单甘油酯脂肪酶GMGL,控制反应温度为35℃,反应12小时,酯化产物DAG含量为45.50%,经分子蒸馏分离进一步分离纯化。
[根据细则91更正 22.04.2020] 
实施例4 
取4.3210g脂肪酸和5.6790g甘油(摩尔比为1:4)和0.2g的pH为7.5的磷酸缓冲溶液,加入具塞三角瓶中混合均匀,并置于转速为500rpm的恒温磁力搅拌器上35℃预热10min,预热结束后加入240U/g的偏甘油酯脂肪酶SMG1(基于反应物总质量),同时添加240U/g的单甘油酯脂肪酶GMGL,控制反应温度为35℃;反应12小时,酯化产物DAG含量为46.01%,经分子蒸馏分离进一步分离纯化。
[根据细则91更正 22.04.2020] 
实施例5 
取4.3210g脂肪酸和5.6790g甘油(摩尔比为1:4)和0.4g的pH为7.5的磷酸缓冲溶液,加入具塞三角瓶中混合均匀,并置于转速为500rpm的恒温磁力搅拌器上35℃预热10min,预热结束后加入240U/g的偏甘油酯脂肪酶Lipase G 50(基于反应物总质量),同时添加60U/g的单甘油酯脂肪酶GMGL,控制反应温度为35℃,反应12小时,酯化产物DAG含量为48.11%,经分子蒸馏分离进一步分离纯化。
[根据细则91更正 22.04.2020] 
实施例6 
取4.3210g脂肪酸和5.6790g甘油(摩尔比为1:4)和0.4g的pH为7.5的磷酸缓冲溶液,加入具塞三角瓶中混合均匀,并置于转速为500rpm的恒温磁力搅拌器上35℃预热10min,预热结束后加入240U/g的偏甘油酯脂肪酶SMG1(基于反应物总质量),同时添加60U/g的单甘油酯脂肪酶GMGL,控制反应温度为35℃;反应12小时,酯化产物DAG含量为49.01%,经分子蒸馏分离进一步分离纯化。
[根据细则91更正 22.04.2020] 
实施例7 
取5.0360g脂肪酸和4.9640g甘油(摩尔比为1:3)和0.4g的pH为7.5的磷酸缓冲溶液,加入具塞三角瓶中混合均匀,并置于转速为500rpm的恒温磁力搅拌器上35℃预热10min,预热结束后加 入240U/g的偏甘油酯脂肪酶Lipase G 50(基于反应物总质量),同时添加240U/g的单甘油酯脂肪酶GMGL,控制反应温度为35℃,反应12小时,酯化产物DAG含量为46.91%,经分子蒸馏分离进一步分离纯化。
[根据细则91更正 22.04.2020] 
实施例8
取5.0360g脂肪酸和4.9640g甘油(摩尔比为1:3)的pH为7.5的磷酸缓冲溶液,加入具塞三角瓶中混合均匀,并置于转速为500rpm的恒温磁力搅拌器上35℃预热10min,预热结束后加入240U/g的偏甘油酯脂肪酶SMG1(基于反应物总质量),同时添加240U/g的单甘油酯脂肪酶GMGL,控制反应温度为35℃;反应12小时,酯化产物DAG含量为46.10%,经分子蒸馏分离进一步分离纯化。
[根据细则91更正 22.04.2020] 
对比实施例1 
取4.3210g脂肪酸和5.6790g甘油(摩尔比为1:4)和0.4g的pH为7.5的磷酸缓冲溶液,加入具塞三角瓶中混合均匀,并置于转速为500rpm的恒温磁力搅拌器上35℃预热10min,预热结束后加入240U/g的偏甘油酯脂肪酶Lipase G 50(基于反应物总质量),控制反应温度为35℃,反应12小时,酯化产物DAG含量为39.30%,经分子蒸馏分离进一步分离纯化。
[根据细则91更正 22.04.2020] 
对比实施例2 
取4.3210g脂肪酸和5.6790g甘油(摩尔比为1:4)和0.4g的pH为7.5的磷酸缓冲溶液,加入具塞三角瓶中混合均匀,并置于转速为500rpm的恒温磁力搅拌器上35℃预热10min,预热结束后加入240U/g的偏甘油酯脂肪酶GMGL(基于反应物总质量),控制反应温度为35℃,反应12小时后,发现基本不合成DAG。
[根据细则91更正 22.04.2020] 
对比实施例3 
取4.3210g脂肪酸和5.6790g甘油(摩尔比为1:4)和0.4g的pH为7.5的磷酸缓冲溶液,加入具塞三角瓶中混合均匀,并置于转速为500rpm的恒温磁力搅拌器上35℃预热10min,预热结束后加入240U/g的偏甘油酯脂肪酶SMG1(基于反应物总质量),控制反应温度为35℃,反应12小时后,酯化产物DAG含量为37.42%,经分子 蒸馏进一步分离纯化。
[根据细则91更正 22.04.2020] 
对比实施例4 
取4.3210g脂肪酸和5.6790g甘油(摩尔比为1:4)和0.2g的pH为7.5的磷酸缓冲溶液,加入具塞三角瓶中混合均匀,并置于转速为500rpm的恒温磁力搅拌器上35℃预热10min,预热结束后加入240U/g的偏甘油酯脂肪酶Lipase G 50(基于反应物总质量),控制反应温度为35℃,反应12小时,酯化产物DAG含量为35.20%,经分子蒸馏分离进一步分离纯化。
[根据细则91更正 22.04.2020] 
对比实施例5
取4.3210g脂肪酸和5.6790g甘油(摩尔比为1:4)和0.2g的pH为7.5的磷酸缓冲溶液,加入具塞三角瓶中混合均匀,并置于转速为500rpm的恒温磁力搅拌器上35℃预热10min,预热结束后加入240U/g的偏甘油酯脂肪酶SMG1(基于反应物总质量),控制反应温度为35℃,反应12小时后,酯化产物DAG含量为35.02%,经分子蒸馏进一步分离纯化。
[根据细则91更正 22.04.2020] 
对比实施例6 
取5.0360g脂肪酸和4.9640g甘油(摩尔比为1:3)和0.4g的pH为7.5的磷酸缓冲溶液,加入具塞三角瓶中混合均匀,并置于转速为500rpm的恒温磁力搅拌器上35℃预热10min,预热结束后加入240U/g的偏甘油酯脂肪酶Lipase G 50(基于反应物总质量),控制反应温度为35℃,反应12小时,酯化产物DAG含量为36.30%,经分子蒸馏分离进一步分离纯化。
[根据细则91更正 22.04.2020] 
对比实施例7
取5.0360g脂肪酸和4.9640g甘油(摩尔比为1:3)和0.4g的pH为7.5的磷酸缓冲溶液,加入具塞三角瓶中混合均匀,并置于转速为500rpm的恒温磁力搅拌器上35℃预热10min,预热结束后加入240U/g的偏甘油酯脂肪酶SMG1(基于反应物总质量),控制反应温度为35℃,反应12小时后,酯化产物DAG含量为35.42%,经分子蒸馏进一步分离纯化。

Claims (10)

  1. 一种合成甘油二酯的方法,其特征在于:将脂肪酸供体与甘油、偏甘油酯脂肪酶、单甘油酯脂肪酶加水混合后,进行酯化反应,反应结束后进一步分离纯化,得到甘油二酯。
  2. 根据权利要求1所述的方法,其特征在于,所述偏甘油酯脂肪酶为偏甘油酯脂肪酶来源于马拉色霉菌Lipase SMG1和Lipase G 50中的一种或两种的混合,所述单甘油酯脂肪酶为来源于海洋地衣芽孢杆菌的LipaseGMGL。
  3. 根据权利要求2所述的方法,其特征在于,所述偏甘油酯脂肪酶的添加量为基于反应混合物总质量的120~240U/g;所述单甘油酯脂肪酶的添加量为基于反应混合物总质量的60~240U/g。
  4. 根据权利要求1~3任意一项所述的制备方法,其特征在于,所述脂肪酸供体与甘油的摩尔比1:(0.3~10);所述甘油与水的质量比为(10~30):1。
  5. 根据权利要求4所述的制备方法,其特征在于,所述脂肪酸供体与甘油的摩尔比1:(3~4);所述甘油与水的质量比为(14.2~28.4):1。
  6. 根据权利要求4所述的制备方法,其特征在于,所述的脂肪酸供体为脂肪酸、脂肪酸低碳烷基酯或是含有脂肪酸、脂肪酸低碳烷基酯的原料中的一种或两种以上的混合。
  7. 根据权利要求4所述的制备方法,其特征在于,
    所述脂肪酸为具有6~22个碳原子的脂肪酸中的一种或两种以上的混合物;
    所述脂肪酸低碳烷基酯为甲酯、乙酯、丙酯、丁酯、戊酯中的一种或两种的混合物。
  8. 根据权利要求4所述的方法,其特征在于,所述酯化反应的温度为10~60℃,反应时间8-24h,pH为4~10。
  9. 根据权利要求8所述的方法,其特征在于,所述酯化反应的温度为20~50℃,酯化反应时间12±2h,pH为6~8。
  10. 根据权利要求9所述的方法,其特征在于,所述酯化反应的温度为30~40℃。
PCT/CN2020/085883 2019-11-06 2020-04-21 一种合成甘油二酯的方法 WO2021088319A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/639,703 US20220282290A1 (en) 2019-11-06 2020-04-21 Method for Synthesizing Diglyceride

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201911074797.9 2019-11-06
CN201911074797.9A CN110777170B (zh) 2019-11-06 2019-11-06 一种合成甘油二酯的方法

Publications (1)

Publication Number Publication Date
WO2021088319A1 true WO2021088319A1 (zh) 2021-05-14

Family

ID=69389392

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/085883 WO2021088319A1 (zh) 2019-11-06 2020-04-21 一种合成甘油二酯的方法

Country Status (3)

Country Link
US (1) US20220282290A1 (zh)
CN (1) CN110777170B (zh)
WO (1) WO2021088319A1 (zh)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110777170B (zh) * 2019-11-06 2020-09-15 华南理工大学 一种合成甘油二酯的方法
CN111802478A (zh) * 2020-06-08 2020-10-23 华南理工大学 一种烘焙油脂及其制备方法和应用
CN112322670B (zh) * 2020-11-06 2021-10-15 华南理工大学 甘油二酯的合成方法
CN114645034B (zh) * 2020-12-18 2024-02-09 江苏禾丰粮油工业有限公司 一种合成高纯度甘油二酯的酶及其制备方法与应用
CN114868807B (zh) * 2021-02-05 2024-03-12 广东粤膳特医营养科技有限公司 脂质组合物及其制备方法、应用
CN113957104A (zh) * 2021-04-25 2022-01-21 江南大学 一种酶法制备甘油二酯的方法
CN114788545B (zh) * 2022-03-09 2023-09-01 华南理工大学 一种富含甘油二酯的巧克力及其制备方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62287A (ja) * 1985-06-25 1987-01-06 Amano Pharmaceut Co Ltd 酵素による油脂の精製法
CN1884564A (zh) * 2006-05-31 2006-12-27 东莞新宝精化有限公司 全酶法生产甘油二酯的方法
CN102965404A (zh) * 2012-11-13 2013-03-13 华南理工大学 一种高纯度甘油二酯的制备方法
CN103060086A (zh) * 2012-12-17 2013-04-24 华南理工大学 一种去除油脂中偏甘油酯的方法
CN110777170A (zh) * 2019-11-06 2020-02-11 华南理工大学 一种合成甘油二酯的方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102676592A (zh) * 2012-02-29 2012-09-19 华南理工大学 脂肪酶smg1在单脂肪酸甘油酯制备中的应用

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62287A (ja) * 1985-06-25 1987-01-06 Amano Pharmaceut Co Ltd 酵素による油脂の精製法
CN1884564A (zh) * 2006-05-31 2006-12-27 东莞新宝精化有限公司 全酶法生产甘油二酯的方法
CN102965404A (zh) * 2012-11-13 2013-03-13 华南理工大学 一种高纯度甘油二酯的制备方法
CN103060086A (zh) * 2012-12-17 2013-04-24 华南理工大学 一种去除油脂中偏甘油酯的方法
CN110777170A (zh) * 2019-11-06 2020-02-11 华南理工大学 一种合成甘油二酯的方法

Also Published As

Publication number Publication date
CN110777170A (zh) 2020-02-11
CN110777170B (zh) 2020-09-15
US20220282290A1 (en) 2022-09-08

Similar Documents

Publication Publication Date Title
WO2021088319A1 (zh) 一种合成甘油二酯的方法
JP7213184B2 (ja) グリセリドの形態におけるn-3脂肪酸の酵素的濃縮
EP2602308B1 (en) Lipase-catalysed esterification of marine oil
US8178326B2 (en) Producing esters of fatty acid and C1-C3 alkyl alcohols
EP1966387B1 (en) Process for the production of diacylglycerol
US11208672B2 (en) Method for enzymatic deacidification of polyunsaturated fatty acid-rich oil
JP2006506483A5 (zh)
CN112322670B (zh) 甘油二酯的合成方法
JP3970669B2 (ja) 共役脂肪酸含有モノグリセリドおよびその製造方法
US6040161A (en) Low SAFA oils
JP2015527060A (ja) 脂肪酸の短鎖エステル化におけるリパーゼ
JP2007070486A (ja) グリセリド及びその製造方法
WO2018086529A1 (zh) 一种酶法制备丁酸甘油酯的方法
JPH08294394A (ja) ジグリセリドの製造法
JP4335196B2 (ja) 共役脂肪酸含有モノグリセリドおよびその製造方法
Agapay et al. Process evaluation of solvent‐free lipase‐catalyzed esterification schemes in the synthesis of structured triglycerides from oleic and palmitic acids
US11396667B2 (en) Enzymatic method for preparation of lecithin polyunsaturated fatty acids (PUFAs)
JP4310387B2 (ja) ω−3系高度不飽和脂肪酸含有部分グリセリド組成物及びその製造方法
CN113957104A (zh) 一种酶法制备甘油二酯的方法
US20130053592A1 (en) Fatty acids as co-catalysts in preparation of glycerides from ethyl esters
JP2002088392A (ja) 油脂類のエステル交換方法
JP5782130B2 (ja) ジアシルグリセロール富化な油又は油脂の製造プロセス
KR100693150B1 (ko) 재구성된 트리글리세라이드 지질을 포함하는 식품 보충물조성물
JP3764793B2 (ja) ジグリセリド類の製造方法
JP2008278781A (ja) 2位よりも1,3位のdha含有率が高いトリアシルグリセロールの製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20885050

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 10/10/2022)

122 Ep: pct application non-entry in european phase

Ref document number: 20885050

Country of ref document: EP

Kind code of ref document: A1