WO2021085170A1 - モータ駆動システム - Google Patents

モータ駆動システム Download PDF

Info

Publication number
WO2021085170A1
WO2021085170A1 PCT/JP2020/039047 JP2020039047W WO2021085170A1 WO 2021085170 A1 WO2021085170 A1 WO 2021085170A1 JP 2020039047 W JP2020039047 W JP 2020039047W WO 2021085170 A1 WO2021085170 A1 WO 2021085170A1
Authority
WO
WIPO (PCT)
Prior art keywords
actuator
control calculation
information
calculation unit
communication
Prior art date
Application number
PCT/JP2020/039047
Other languages
English (en)
French (fr)
Inventor
弘貴 富澤
Original Assignee
株式会社デンソー
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社デンソー filed Critical 株式会社デンソー
Priority to CN202080075778.2A priority Critical patent/CN114641424B/zh
Publication of WO2021085170A1 publication Critical patent/WO2021085170A1/ja
Priority to US17/660,814 priority patent/US12084126B2/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D5/00Power-assisted or power-driven steering
    • B62D5/04Power-assisted or power-driven steering electrical, e.g. using an electric servo-motor connected to, or forming part of, the steering gear
    • B62D5/0457Power-assisted or power-driven steering electrical, e.g. using an electric servo-motor connected to, or forming part of, the steering gear characterised by control features of the drive means as such
    • B62D5/0481Power-assisted or power-driven steering electrical, e.g. using an electric servo-motor connected to, or forming part of, the steering gear characterised by control features of the drive means as such monitoring the steering system, e.g. failures
    • B62D5/0493Power-assisted or power-driven steering electrical, e.g. using an electric servo-motor connected to, or forming part of, the steering gear characterised by control features of the drive means as such monitoring the steering system, e.g. failures detecting processor errors, e.g. plausibility of steering direction
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D5/00Power-assisted or power-driven steering
    • B62D5/04Power-assisted or power-driven steering electrical, e.g. using an electric servo-motor connected to, or forming part of, the steering gear
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D5/00Power-assisted or power-driven steering
    • B62D5/04Power-assisted or power-driven steering electrical, e.g. using an electric servo-motor connected to, or forming part of, the steering gear
    • B62D5/0457Power-assisted or power-driven steering electrical, e.g. using an electric servo-motor connected to, or forming part of, the steering gear characterised by control features of the drive means as such
    • B62D5/046Controlling the motor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D5/00Power-assisted or power-driven steering
    • B62D5/04Power-assisted or power-driven steering electrical, e.g. using an electric servo-motor connected to, or forming part of, the steering gear
    • B62D5/0457Power-assisted or power-driven steering electrical, e.g. using an electric servo-motor connected to, or forming part of, the steering gear characterised by control features of the drive means as such
    • B62D5/046Controlling the motor
    • B62D5/0463Controlling the motor calculating assisting torque from the motor based on driver input
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D5/00Power-assisted or power-driven steering
    • B62D5/04Power-assisted or power-driven steering electrical, e.g. using an electric servo-motor connected to, or forming part of, the steering gear
    • B62D5/0457Power-assisted or power-driven steering electrical, e.g. using an electric servo-motor connected to, or forming part of, the steering gear characterised by control features of the drive means as such
    • B62D5/0481Power-assisted or power-driven steering electrical, e.g. using an electric servo-motor connected to, or forming part of, the steering gear characterised by control features of the drive means as such monitoring the steering system, e.g. failures
    • B62D5/0484Power-assisted or power-driven steering electrical, e.g. using an electric servo-motor connected to, or forming part of, the steering gear characterised by control features of the drive means as such monitoring the steering system, e.g. failures for reaction to failures, e.g. limp home
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D5/00Power-assisted or power-driven steering
    • B62D5/04Power-assisted or power-driven steering electrical, e.g. using an electric servo-motor connected to, or forming part of, the steering gear
    • B62D5/0457Power-assisted or power-driven steering electrical, e.g. using an electric servo-motor connected to, or forming part of, the steering gear characterised by control features of the drive means as such
    • B62D5/0481Power-assisted or power-driven steering electrical, e.g. using an electric servo-motor connected to, or forming part of, the steering gear characterised by control features of the drive means as such monitoring the steering system, e.g. failures
    • B62D5/0487Power-assisted or power-driven steering electrical, e.g. using an electric servo-motor connected to, or forming part of, the steering gear characterised by control features of the drive means as such monitoring the steering system, e.g. failures detecting motor faults
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P29/00Arrangements for regulating or controlling electric motors, appropriate for both AC and DC motors
    • H02P29/02Providing protection against overload without automatic interruption of supply
    • H02P29/024Detecting a fault condition, e.g. short circuit, locked rotor, open circuit or loss of load
    • H02P29/028Detecting a fault condition, e.g. short circuit, locked rotor, open circuit or loss of load the motor continuing operation despite the fault condition, e.g. eliminating, compensating for or remedying the fault
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P5/00Arrangements specially adapted for regulating or controlling the speed or torque of two or more electric motors
    • H02P5/46Arrangements specially adapted for regulating or controlling the speed or torque of two or more electric motors for speed regulation of two or more dynamo-electric motors in relation to one another
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D5/00Power-assisted or power-driven steering
    • B62D5/04Power-assisted or power-driven steering electrical, e.g. using an electric servo-motor connected to, or forming part of, the steering gear
    • B62D5/0457Power-assisted or power-driven steering electrical, e.g. using an electric servo-motor connected to, or forming part of, the steering gear characterised by control features of the drive means as such
    • B62D5/0481Power-assisted or power-driven steering electrical, e.g. using an electric servo-motor connected to, or forming part of, the steering gear characterised by control features of the drive means as such monitoring the steering system, e.g. failures

Definitions

  • This disclosure relates to a motor drive system.
  • the one including the “reaction ECU” and the “steering reaction force motor” of Patent Document 1 is generally referred to as the "first actuator", and includes the “steering ECU” and the “steering motor”. Is generalized as “second actuator”. Further, the “reaction ECU” and “steering reaction force motor” of Patent Document 1 are referred to as “control calculation unit of the first actuator” and “motor drive unit of the first actuator”. The “steering ECU” and “steering motor” of Patent Document 1 are referred to as “control calculation unit of the second actuator” and “motor driving unit of the second actuator”.
  • the "first actuator” and the “second actuator” in the present specification may be actuators for any purpose.
  • the term “actuator” refers to a drive device in which a motor drive unit outputs torque not only by a mechanical element driven by an external drive signal but also by a drive signal generated by a control calculation unit inside the motor. means.
  • the control calculation unit and the motor drive unit in the actuator may be physically integrated or may be separately configured via a signal line.
  • An object of the present disclosure is to provide a motor drive system that guarantees information transmission / reception by a normal control calculation unit in the event of a failure or communication interruption of another control calculation unit.
  • the present disclosure is a motor drive system including a plurality of actuators including a first actuator and a second actuator, each of which functions as a motor that outputs torque.
  • the first actuator and the second actuator each have a plurality of redundantly provided control calculation units and a plurality of redundantly provided motor drive units.
  • the plurality of control calculation units perform calculations related to motor drive control.
  • the plurality of motor drive units drive and output torque based on the drive signals generated by the corresponding control calculation units.
  • the motor drive unit is composed of an inverter that supplies voltage, a multi-phase winding wound around a stator, a rotor having a permanent magnet, and the like.
  • a rotor or the like may be provided in common in a plurality of motor drive units.
  • the unit of the combination of the control calculation unit and the motor drive unit corresponding to each other in each actuator is defined as "system".
  • the control calculation units of the systems of the first actuator and the second actuator which are paired with each other, transmit and receive information to each other by communication between the actuators.
  • the control calculation units of a plurality of systems in the same actuator transmit and receive information to and from each other by inter-system communication.
  • the control calculation unit is paired with one of the control calculation units in the other actuator, or the control calculation unit of another system in the same actuator fails, or the communication between actuators or the communication between systems is interrupted.
  • the state in which normal information cannot be sent or received is defined as an "in-system communication error state".
  • each normal control calculation unit receives information that it could not transmit and information for inter-actuator communication received from other control calculation units, in addition to the information that it transmits in the normal state. It is also sent as "alternative information”.
  • the control calculation unit that has received the information including the alternative information continues the motor drive control using at least a part of the received information.
  • FIG. 1 is an overall configuration diagram of a motor drive system according to an embodiment applied to a steering-by-wire system.
  • FIG. 2 is a schematic view of the motor drive system of FIG.
  • FIG. 3 is a diagram showing transmission of alternative information when a failure occurs.
  • FIG. 4 is a normal communication configuration diagram according to each embodiment.
  • FIG. 5 is a communication configuration diagram of alternative information at the time of failure of the control calculation unit A1 according to the first and second embodiments.
  • FIG. 6 is a communication configuration diagram of alternative information when communication between A1-B1 is interrupted according to the first embodiment.
  • FIG. 1 is an overall configuration diagram of a motor drive system according to an embodiment applied to a steering-by-wire system.
  • FIG. 2 is a schematic view of the motor drive system of FIG.
  • FIG. 3 is a diagram showing transmission of alternative information when a failure occurs.
  • FIG. 4 is a normal communication configuration diagram according to each embodiment.
  • FIG. 5 is a communication configuration diagram of alternative information at the time of failure
  • FIG. 7 is a communication configuration diagram of alternative information when communication between A1-B1 is interrupted according to the second embodiment.
  • FIG. 8 is a communication configuration diagram of alternative information at the time of failure of the control calculation unit A1 according to the third embodiment.
  • FIG. 9 is a communication configuration diagram of alternative information when communication between A1-B1 is interrupted according to the third embodiment.
  • FIG. 10 is a schematic view of the motor drive system according to the fourth embodiment.
  • FIG. 11 is a schematic view of the motor drive system according to the fifth embodiment.
  • FIG. 12A is a diagram illustrating a connection mode of communication between the four actuators.
  • FIG. 12B is a diagram illustrating the above connection form.
  • FIG. 12C is a diagram illustrating the above connection form.
  • FIG. 12D is a diagram illustrating the above connection form.
  • FIG. 13 is a schematic view of the motor drive system according to the sixth embodiment.
  • the motor drive system of each embodiment includes a plurality of actuators, each of which functions as a motor that outputs torque.
  • Each actuator has a plurality of redundantly provided control calculation units and a plurality of redundantly provided motor drive units.
  • the unit of the combination of the control calculation unit and the motor drive unit corresponding to each other in each actuator is defined as "system".
  • first to third embodiments are variations relating to the communication configuration of "alternative information" (the meaning of which will be described later) in the "in-system communication abnormal state”.
  • fourth to sixth embodiments are variations relating to the number of actuators or the number of systems of the system, and the same reference numerals are given to substantially the same configurations as those of the above-described embodiments, and the description thereof will be omitted.
  • the above 1st to 6th embodiments are collectively referred to as "the present embodiment".
  • FIG. 1 shows a motor drive system 801 applied to a vehicle steering system 90.
  • the first actuator 10 is used as a reaction force actuator
  • the second actuator 10 is used as a steering actuator.
  • the steering mechanism of the steer-by-wire system 90 includes a steering wheel 91, a steering shaft 93, a steering torque sensor 94, a first actuator 10, and the like.
  • the steering mechanism of the steer-by-wire system 90 includes a rack 97, a knuckle arm 98, a second actuator 20, and the like, and the wheels 99 are steered by the steering torque output by the second actuator 20. Wheel 99 shows only one side, and the wheel on the other side is not shown.
  • the motor drive system 801 includes a first actuator 10 and a second actuator 20.
  • Act means “actuator”.
  • the first actuator 10 functions as a motor that outputs a reaction force torque corresponding to the steering torque of the driver and the road surface reaction force. By rotating the steering wheel 91 so that the first actuator 10 applies a reaction force, an appropriate steering feeling is given to the driver.
  • the second actuator 20 functions as a motor that outputs a steering torque for steering the wheels 99. When the second actuator 20 appropriately steers the wheels 99, the vehicle is deflected in the direction intended by the driver.
  • Each actuator 10 and 20 has a redundant configuration of two systems. That is, the first actuator 10 has two redundantly provided control calculation units 161 and 162, and two redundantly provided motor drive units 171 and 172.
  • the second actuator 20 has two redundantly provided control calculation units 261 and 262, and two redundantly provided motor drive units 271 and 272.
  • first system and “second system”.
  • first system may function as the main (or master) and the second system may function as the sub (or slave).
  • first system and the second system may have an equal relationship.
  • “1” is added to the end of the code for the elements of the first system, and "2" is added to the end of the code for the elements of the second system.
  • the control calculation units 161 and 162 are specifically composed of a microcomputer and an ASIC, and perform calculations related to motor drive control.
  • the control calculation units 161 and 162 may also execute controls other than the motor drive control, but the present specification does not refer to other controls. As will be described later, when the control calculation unit "stops the motor drive control", it does not matter whether or not other controls are stopped.
  • control calculation units 161 and 162 include a CPU, ROM, RAM, I / O (not shown), a bus line connecting these configurations, and the like.
  • the control calculation units 161, 162 are subjected to software processing by executing a program stored in advance in a physical memory device such as a ROM (that is, a readable non-temporary tangible recording medium) by a CPU, or by a dedicated electronic circuit. Execute control by hardware processing.
  • the motor drive units 171 and 172 drive based on the drive signals generated by the corresponding control calculation units 161 and 162, and output torque.
  • the motor drive units 171 and 172 are composed of an inverter that supplies a voltage, a multi-phase winding wound around a stator, a rotor having a permanent magnet, and the like.
  • the two motor drive units 171 and 172 cooperate to output torque.
  • the motor drive units 171 and 172 may be configured as a double-winding motor in which two systems of multi-phase windings are wound around a common stator.
  • the arrows from the control calculation unit 161 to the motor drive unit 171 and the arrows from the control calculation unit 162 to the motor drive unit 172 indicate the drive signals of each system.
  • the drive signal is an inverter switching pulse signal, and is typically a PWM signal or the like.
  • the control calculation units 161 and 162 of the first actuator 10 acquire the steering torque Ts and the road surface reaction force detected by the steering torque sensor 94, and generate a drive signal based on the information.
  • the control calculation units 261 and 262 of the steering actuator 20 acquire the steering angle or steering angle ⁇ t, the rack stroke Xr, and the like, and generate a drive signal based on the information.
  • the term "actuator” is used as a unit drive device including a plurality of control calculation units and a plurality of motor drive units.
  • Patent Document 1 Patent No. 48487157
  • the actuator of the present embodiment may be a so-called “mechatronics-integrated” motor, in which a control calculation unit and a motor drive unit may be physically integrated.
  • the control calculation unit and the motor drive unit may be separately configured via a signal line.
  • the first system of the first actuator 10 and the first system of the second actuator 20 form a pair with each other. Further, the second system of the first actuator 10 and the second system of the second actuator 20 form a pair with each other.
  • the control calculation units of the systems paired with each other transmit and receive information to and from each other by the inter-actuator communication CL1 and CL2.
  • the second character "L" of the symbol for inter-actuator communication is derived from "local communication".
  • the "information transmitted to and received from each other" by the communication between the actuators includes at least the abnormality information of the actuators 10 and 20.
  • Abnormalities of the control calculation unit include data abnormalities, arithmetic processing abnormalities, internal communication abnormalities, synchronization abnormalities, and the like.
  • the abnormality of the motor drive unit includes an abnormality of the switching element of the inverter, a short circuit of the relay provided in the circuit, an open failure, a disconnection failure of the motor winding, and the like. When these failures occur, the actuators 10 and 20 transmit and receive the information to and from each other.
  • FIG. 2 shows a simplified schematic diagram of the motor drive system 801 of FIG.
  • the first actuator 10 and the second actuator 20 of the present embodiment may be motors for any purpose.
  • FIG. 2 generally shows the configuration of a “motor drive system 801 including two actuators 10 and 20 having a two-system redundant configuration”.
  • Each configuration diagram of the fourth to sixth embodiments is also described with reference to FIG.
  • a broken line frame is shown in the first system and the second system of the actuators 10 and 20, and the reference numerals are given as “1st system 101, 201” and “2nd system 102, 202”.
  • the system code may be omitted as appropriate in places that are obvious from the context.
  • the first actuator 10 is redundantly provided with the control calculation unit 161 of the first system 101 and the control calculation unit 162 of the second system 102, and the motor drive unit 171 and the second system 102 of the first system 101.
  • the motor drive unit 172 of the above is provided redundantly.
  • the second actuator 20 is redundantly provided with the control calculation unit 261 of the first system 201 and the control calculation unit 262 of the second system 202, and the motor drive unit 271 and the second system 202 of the first system 201.
  • the motor drive unit 272 of the above is provided redundantly.
  • the control calculation unit 161 of the first system 101 information If11 is redundantly input to the control calculation unit 161 of the first system 101, and information If12 is redundantly input to the control calculation unit 162 of the second system 102.
  • the information If21 is redundantly input to the control calculation unit 261 of the first system 201, and the information If22 is redundantly input to the control calculation unit 262 of the second system 202.
  • control calculation unit 161 of the first system 101 and the control calculation unit 162 of the second system 102 in the same first actuator 10 mutually transmit and receive information by the inter-system communication CM1.
  • the control calculation unit 261 of the first system 201 and the control calculation unit 262 of the second system 202 in the same second actuator 20 transmit and receive information to and from each other by the inter-system communication CM2.
  • the second character "M" of the symbol for inter-system communication is derived from "communication between microcomputers".
  • the information transmitted to each other by the inter-system communication CM1 and CM2 includes, for example, an input value from the outside, a current command value calculated by the control calculation unit, a current limit value, an actual current to be fed back, and the like.
  • abnormal signals of each system are transmitted and received to each other.
  • the first system 101 of the first actuator 10 and the first system 201 of the second actuator 20 form a pair with each other
  • the second system 102 of the first actuator 10 and the second system 202 of the second actuator 20 are paired with each other. That is, it is assumed that the systems having the same number form a pair with each other.
  • the terms “first system” and “second system” are only assigned for convenience, and it is up to you which of the two systems is the “first system” and which is the “second system”. Is.
  • the "first system of the first actuator” and the “second system of the second actuator” form a pair
  • the control calculation units of the systems paired with each other in the first actuator 10 and the second actuator 20 transmit and receive information to each other by inter-actuator communication. Therefore, the control calculation units 161 and 261 of the first system of the actuators 10 and 20 transmit and receive information to and from each other by the inter-actuator communication CL1. The control calculation units 162 and 262 of the second system of the actuators 10 and 20 transmit and receive information to and from each other by the inter-actuator communication CL2.
  • the operation of the motor drive system 801 when a failure occurs in the first system of the first actuator 10 in the motor drive system 801 of FIG. 2 will be described.
  • the control information to be transmitted from the control calculation unit 161 of the first system of the first actuator 10 to the control calculation unit 261 of the second system of the second actuator 20 may become an abnormal value.
  • the control calculation unit 261 of the second system may not be able to properly continue the motor drive control.
  • each normal control calculation unit in addition to the information transmitted by itself at the normal time, the information that cannot be transmitted by itself, and the actuators received from other control calculation units.
  • Information for communication is also transmitted as "alternative information".
  • the control calculation unit that has received the information including the alternative information continues the motor drive control using at least a part of the received information.
  • alternative information is transmitted from the control calculation unit 162 of the second system of the first actuator 10 to the control calculation unit 262 of the second system of the second actuator 20 by the interactuator communication CL2, and further, the second actuator.
  • Alternative information is transmitted from the control calculation unit 262 of the second system of 20 to the control calculation unit 261 of the first system of the second actuator 20 by the inter-system communication CM2.
  • the control calculation unit 261 of the first system of the second actuator 20 that has received the information including the alternative information can continue the motor drive control by using at least a part of the received information.
  • control calculation unit 161, 162, 261, and 262 are indicated by the following symbols.
  • Control calculation unit 161 of the first system of the first actuator 10 "Control calculation unit A1”
  • Control calculation unit 162 of the second system of the first actuator 10 "Control calculation unit A2”
  • Control calculation unit 261 of the first system of the second actuator 20 "Control calculation unit B1”
  • Control calculation unit 262 of the second system of the second actuator 20 "Control calculation unit B2"
  • the first actuator 10 is “A”
  • the second actuator 20 is “B”
  • the first system is “1”
  • the second system is “2”
  • the characters are arranged in the order of the actuator and the system.
  • control calculation unit may be omitted, and symbols such as “A1” and “A2” may be used alone.
  • the acronym of information communicated by inter-system communication between A1-A2 and B1-B2 during normal operation is “M”
  • information communicated by actuator-to-actuator communication between A1-B1 and A2-B2 during normal operation is written as "L”.
  • MA1 is information about the control calculation unit A1 communicated by inter-system communication in the normal state
  • LA1 is information about the control calculation unit A1 communicated by inter-actuator communication in the normal state.
  • 4 to 9 show the actuator-to-actuator communication CL1, CL2, the inter-system communication CM1, CM2, and the input information If11, If12, If21, and If22 to each control calculation unit shown in FIGS. 2 and 3. Omit.
  • each embodiment when each embodiment is normal, its own information is obtained by inter-system communication between A1-A2 and B1-B2, and inter-actuator communication between A1-B1 and A2-B2. Is sent and received in both directions. For example, between A1 and B1, its own information LA1 is transmitted from A1 to B1, and its own information LB1 is transmitted from B1 to A1.
  • the control calculation units A1, A2, B1, and B2 perform motor drive control using the information received by the inter-system communication and the inter-actuator communication in addition to the input information If11, If12, If21, and If22 from the input unit.
  • the own information and the alternative information are transmitted together in FIGS. 5 to 9 and the corresponding sentences, describe in the format of "own information + alternative information".
  • the alternative information in the figure is surrounded by a one-dot chain line, a two-dot chain line, and a broken line ellipse.
  • the information for inter-actuator communication (LA1 or the like) is transmitted by both inter-actuator communication and inter-system communication.
  • information for inter-system communication (MA1 etc.) is transmitted only by inter-system communication.
  • alternative information LB1 is transmitted from B1 to B2 and from B2 to A2 as in FIG. Further, "MA2 + LB1" including the alternative information LB1 which is "information for inter-actuator communication received by A2 from another control calculation unit B2" is transmitted from A2 to A1.
  • the information that the normal control calculation unit notifies the failure and the control information used for the drive control of the motor are used.
  • the transmission and reception of information is guaranteed.
  • the control calculation unit that has received the information including the alternative information can appropriately continue the motor drive control.
  • the information LA1 and LB1 that should be originally used are transmitted as substitute information without omission when the communication is interrupted, the same control as in the normal state becomes possible.
  • the delay becomes large because the information is transmitted over a maximum of three communications. Further, there is room for improvement in that the transmission / reception information from B2 to B1 differs between when A1 fails and when communication between A1 and B1 is interrupted, resulting in lack of unified control. Therefore, in the following second and third embodiments, a communication configuration for reducing the delay is provided as compared with the first embodiment.
  • the information to be communicated as alternative information is limited to "information of the adjacent control calculation unit that is directly communicating". That is, in the in-system communication abnormal state, each normal control calculation unit transmits only the information received from the control calculation unit that is directly communicating among the information received by itself to other control calculation units as alternative information. ..
  • the communication configuration at the time of A1 failure in the second embodiment is shown in FIG. 5 as in the first embodiment, and thus the description thereof will be omitted.
  • the difference from FIG. 6 is shown by a square frame.
  • the transmission of the alternative information LA1 from A1 to A2 and from A2 to B2 is the same as in FIG. However, "MB2 + LA2" is transmitted from B2 to B1 using only "information LA2 received from the control calculation unit A2 with which B2 is directly communicating" as alternative information, not LA1.
  • the delay is smaller than that in the first embodiment, and the motor drive control can be appropriately continued with the communication configuration in which the amount of information is reduced. Further, the transmission / reception information from B2 to B1 matches at the time of A1 failure and at the time of communication interruption between A1 and B1, and the uniformity of control is good.
  • each normal control calculation unit multiplies the information for communication between the actuators of a plurality of systems by a predetermined ratio according to each system and adds the information. It is transmitted to another control calculation unit as alternative information.
  • the “integrated alternative information LA MIX , LB MIX ” shown in FIGS. 8 and 9 uses the coefficients ⁇ and ⁇ (0 ⁇ ⁇ ⁇ 1, 0 ⁇ ⁇ ⁇ 1) in the following equations (1a) and (1a). It is represented by 1b). The values of ⁇ and ⁇ are set based on the contribution of the first system and the second system in the motor drive control.
  • LA MIX LA2 ⁇ ⁇ + LA1 ⁇ (1- ⁇ ) ⁇ ⁇ ⁇ (1a)
  • LB MIX LB2 ⁇ ⁇ + LB1 ⁇ (1- ⁇ ) ⁇ ⁇ ⁇ (1b)
  • the transmission of the alternative information LB1 from B1 to B2 is the same as in FIGS. 7 and 8. However, from B2 to A2, the integrated information LB MIX of LB2 and LB1 is transmitted as alternative information instead of "own information LB2 + alternative information LB1". Next, "MA2 + LB MIX "including the alternative information LB MIX , which is "information for inter-actuator communication received by A2 from another control calculation unit B2", is transmitted from A2 to A1.
  • the transmission / reception amount of the communication between the actuators can be suppressed to the same level as the transmission / reception amount of only "own information" in the normal state. Therefore, the motor drive control can be appropriately continued with a communication configuration in which the amount of information is further reduced in the communication abnormal state in the system.
  • the motor drive system 804 of the fourth embodiment shown in FIG. 10 includes three actuators 10, 20, and 30 having a redundant two-system configuration. That is, the motor drive system 804 includes a third actuator 30 as an "additional actuator" in addition to the first and second actuators 10 and 20. For example, the motor drive system 804 is applied to a steer-by-wire system including two steering actuators that independently steer the left and right steering wheels and one reaction force actuator.
  • the third actuator 30 is redundantly provided with the control calculation unit 361 of the first system 301 and the control calculation unit 362 of the second system 302. Further, the motor drive unit 371 of the first system 301 and the motor drive unit 372 of the second system 302 are redundantly provided. Further, the inter-system communication CM3 in the third actuator 30 transmits and receives information to and from the control calculation unit 361 of the first system 301 and the control calculation unit 362 of the second system 302.
  • the control calculation unit 361 of the first system 301 of the third actuator 30 mutually informs the control calculation units 161 and 261 of the first system of the first actuator 10 and the second actuator 20 by the inter-actuator communication CL1 of the first system. To send and receive.
  • the control calculation unit 362 of the second system 302 of the third actuator 30 mutually informs the control calculation units 162 and 262 of the second system of the first actuator 10 and the second actuator 20 by the inter-actuator communication CL2 of the second system. To send and receive.
  • the communication configuration of the alternative information may conform to any of the first to third embodiments, and the same effects as described above can be obtained for each.
  • the motor drive system 805 of the fifth embodiment shown in FIG. 11 includes four actuators 10, 20, 30, and 40. That is, the motor drive system 805 includes a third actuator 30 and a fourth actuator 40 as "additional actuators". For example, the motor drive system 805 is applied to a steering system including four steering actuators that independently steer the left, right, front and rear steering wheels.
  • the configurations of the first and second actuators 10 and 20 conform to the first embodiment.
  • the control calculation unit 361 of the first system 301, the control calculation unit 362 of the second system 302, and the motor drive unit 371 of the first system 301 and the motor drive unit 372 of the second system 302 are used. Each is provided redundantly.
  • the control calculation unit 461 of the first system 401, the control calculation unit 462 of the second system 402, and the motor drive unit 471 of the first system 401 and the motor drive unit 472 of the second system 402 are redundant, respectively. It is provided as a target.
  • inter-system communication CM3 in the third actuator 30 transmits and receives information to and from the control calculation unit 361 of the first system 301 and the control calculation unit 362 of the second system 302.
  • the inter-system communication CM4 in the fourth actuator 40 transmits and receives information to and from the control calculation unit 461 of the first system 401 and the control calculation unit 462 of the second system 402.
  • control calculation units 161, 261, 361, and 461 of the first system of the actuators 10, 20, 30, and 40 mutually transmit and receive information by the inter-actuator communication CL1 of the first system.
  • the control calculation units 162, 262, 362, and 462 of the second system of the actuators 10, 20, 30, and 40 mutually transmit and receive information by the inter-actuator communication CL2 of the second system.
  • 12A-12D illustrate a motor drive system with four actuators 10, 20, 30, 40.
  • the blocks of the actuators 10, 20, 30, and 40 represent the control calculation unit of the same system.
  • FIG. 12A shows a simplified connection form in the motor drive system 805 of FIG.
  • the control calculation units of the four actuators 10, 20, 30, and 40 are connected in a ring shape.
  • the control calculation unit of the first actuator 10 and the control calculation unit of the fourth actuator 40, and the control calculation unit of the second actuator 20 and the control calculation unit of the third actuator 30 are the control calculation units of other actuators. It is possible to communicate via.
  • FIG. 12B shows a series type connection form.
  • the control calculation units of the actuators 10, 20, 30, and 40 can communicate with the control calculation units of all the actuators via at least the control calculation units of other actuators.
  • FIG. 12C shows a star-shaped connection form.
  • the control calculation unit of the first actuator 10 at the center in this example directly communicates with the control calculation unit of all the other actuators.
  • the control calculation units of the other actuators can communicate with each other via the control calculation unit of the first actuator 10.
  • FIG. 12D shows a mesh type connection form.
  • the control calculation units of the actuators 10, 20, 30, and 40 communicate directly with the control calculation units of all the other actuators.
  • connection form The merits and demerits of each connection form are well-known technologies in the field of communication technology, so explanations will be omitted.
  • the connection form of the actuator-to-actuator communication between the three or more actuators can be appropriately set by the above-mentioned basic form or a combination thereof.
  • the motor drive system 806 of the sixth embodiment shown in FIG. 13 includes two actuators 10T and 20T having a redundant three-system configuration.
  • the control calculation unit 163 and the motor drive unit 173 of the third system 103 are further redundantly provided.
  • the control calculation unit 263 and the motor drive unit 273 of the third system 203 are further redundantly provided.
  • the control calculation units 161, 162, and 163 of the three systems transmit and receive information to and from each other.
  • the control calculation units 261, 262, and 263 of the three systems transmit and receive information to and from each other.
  • the control calculation units 163 and 263 of the third system of the first and second actuators 10T and 20T transmit and receive information to and from each other by the inter-actuator communication CL3.
  • each normal control calculation unit transmits alternative information in the in-system communication abnormal state.
  • the two actuators may have a redundant configuration of four or more systems.
  • the same technical idea can be extended to a motor drive system including three or more actuators having a redundant configuration of three or more systems in combination with the fourth and fifth embodiments.
  • connection form (topology) of the inter-system communication of three or more systems may be interpreted by replacing the inter-actuator communication connection form shown in FIGS. 12A to 12D with the inter-system communication. That is, in the case of the ring type or the series type, the control calculation unit of each system can communicate with the control calculation unit of all systems at least via the control calculation unit of another system. In the case of the star type, the control calculation unit of one system directly communicates with the control calculation unit of all the other systems. In the case of the mesh type, the control calculation unit of each system directly communicates with the control calculation unit of all other systems. As described above, the connection form of communication between three or more systems can be appropriately set by the above-mentioned basic form or a combination thereof.
  • the motor drive system of the present disclosure is a two-actuator automatic steering system that independently steers the left and right steering wheels of an automatically driving vehicle. May be applied to. Further, it may be applied to a twin motor type electric power steering system including two steering assist motors.
  • the motor drive system of the present disclosure is not limited to vehicles, and may be applied to other vehicles, general machines, and the like.
  • information to the control calculation unit is redundantly input by each actuator.
  • information to the control calculation unit may be redundantly input by only one actuator. Further, if there is no system request, redundant input of information may not be performed in any system.
  • the motor drive system of the present disclosure includes two or more actuators having a redundant configuration for outputting torque, and through communication between the actuators, the stop or continuation of the motor drive control by the control calculation unit of each actuator is switched for each system. It is a thing. However, in addition to the actuator subject to this control, other electrically actuators or hydraulic or pneumatic actuators that operate independently may exist in the entire system.
  • control calculation unit and its method described in the present disclosure are provided by a dedicated computer provided by configuring a processor and memory programmed to perform one or more functions embodied by a computer program. It may be realized. Alternatively, the control calculation unit and its method described in the present disclosure may be realized by a dedicated computer provided by configuring a processor with one or more dedicated hardware logic circuits. Alternatively, the control calculation unit and its method described in the present disclosure are a combination of a processor and memory programmed to execute one or more functions and a processor composed of one or more hardware logic circuits. It may be realized by one or more dedicated computers configured by. Further, the computer program may be stored in a computer-readable non-transitional tangible recording medium as an instruction executed by the computer.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Power Engineering (AREA)
  • Power Steering Mechanism (AREA)
  • Steering Control In Accordance With Driving Conditions (AREA)
  • Safety Devices In Control Systems (AREA)

Abstract

第1、第2アクチュエータは、複数の制御演算部、及びモータ駆動部を有する。いずれかの制御演算部に対し他方のアクチュエータにおける対をなす制御演算部もしくは同じアクチュエータ内の他系統の制御演算部の故障、又は、アクチュエータ間通信もしくは系統間通信の通信途絶により、当該制御演算部が正常な情報を送受信不能となった状態を「システム内通信異常状態」と定義する。システム内通信異常状態において、正常な各制御演算部は、正常時に自身が送信する情報に加え、自身が送信できなかった情報、及び、他の制御演算部から受信したアクチュエータ間通信用の情報を「代替情報」として併せて送信する。代替情報を含む情報を受信した制御演算部は、受信した情報の少なくとも一部を用いてモータ駆動制御を継続する。

Description

モータ駆動システム 関連出願の相互参照
 本出願は、2019年10月31日に出願された特許出願番号2019-199400号に基づくものであり、ここにその記載内容を援用する。
 本開示は、モータ駆動システムに関する。
 従来、一般にモータが駆動されるモータ駆動システムにおいて、モータ駆動に関する演算を行う制御演算部や、制御演算部が生成した駆動信号に基づいて駆動するモータ駆動部が冗長的に複数設けられた構成が知られている。例えば特許文献1に開示された制御システムのフェールセーフ制御装置では、2個のECUのうち1個が失陥すると、失陥したECUを停止し、正常な1個のECUで制御を続行する。また、2個のモータのうち1個が失陥すると、失陥したモータを停止し、正常な1個のモータを用いて制御を続行する。
特許第4848717号公報
 特許文献1に開示された実施例3の装置は、それぞれが操舵反力モータの駆動を制御する2個の反力ECU-(A)、(D)、及び、それぞれが転舵モータの駆動を制御する2個の転舵ECU-(B)、(C)を備える。例えば1個の反力ECU-(A)の失陥時には、反力ECU-(A)を停止し、正常な1個の反力ECU-(D)及び2個の転舵ECU-(B)、(C)、操舵反力モータ及び転舵モータの駆動制御を続行する。
 本明細書では、特許文献1の「反力ECU」及び「操舵反力モータ」を含むものを一般化して「第1アクチュエータ」といい、「転舵ECU」及び「転舵モータ」を含むものを一般化して「第2アクチュエータ」という。また、特許文献1の「反力ECU」及び「操舵反力モータ」を「第1アクチュエータの制御演算部」及び「第1アクチュエータのモータ駆動部」という。特許文献1の「転舵ECU」及び「転舵モータ」を「第2アクチュエータの制御演算部」及び「第2アクチュエータのモータ駆動部」という。
 すなわち、本明細書における「第1アクチュエータ」及び「第2アクチュエータ」は、どのような用途のアクチュエータであってもよい。また、「アクチュエータ」の用語は、外部からの駆動信号により駆動される機械的要素のみでなく、自身の内部に有する制御演算部が生成した駆動信号によってモータ駆動部がトルクを出力する駆動装置を意味する。なお、アクチュエータ内の制御演算部とモータ駆動部とは物理的に一体に構成されてもよく、信号線を介して別体に構成されてもよい。
 ここで、特許文献1の従来技術において「第1アクチュエータの一方の制御演算部」である反力ECU-(A)と、「第2アクチュエータの一方の制御演算部」である転舵ECU-(B)とが対をなして情報を互いに送受信し、また、「同じアクチュエータ内の複数系統の制御演算部」である反力ECU-(A)、(D)間、転舵ECU-(B)、(C)でも情報を互いに送受信する構成を想定する。いずれかの制御演算部が故障した場合や、アクチュエータ間通信もしくは系統間通信の通信が途絶した場合、正常な制御演算部に送信されるべき情報が異常値になる可能性がある。そのため、正常な制御演算部による情報送受信が担保されず、モータ駆動制御を適切に継続できなくおそれがある。
 さらに、従来技術において、全てのECU間で故障情報や制御情報の通信を行う構成を想定する。この構成では、一つのバスで通信すると情報量が過多となる。また、複数のバスを設けようとすると入出力端子数が増大する。この傾向は、連携するアクチュエータや系統が三つ以上の場合にはより顕著になる。
 本開示の目的は、他の制御演算部の故障又は通信途絶のとき、正常な制御演算部による情報送受信を担保するモータ駆動システムを提供することにある。
 本開示は、それぞれがトルクを出力するモータとして機能する第1アクチュエータ及び第2アクチュエータを含む複数のアクチュエータを備えるモータ駆動システムである。
 第1アクチュエータ及び第2アクチュエータは、それぞれ、冗長的に設けられた複数の制御演算部、及び、冗長的に設けられた複数のモータ駆動部を有する。複数の制御演算部は、モータ駆動制御に関する演算を行う。複数のモータ駆動部は、対応する制御演算部が生成した駆動信号に基づいて駆動しトルクを出力する。例えば多相ブラシレスモータでは、モータ駆動部は、電圧を供給するインバータ、ステータに巻回された多相巻線、永久磁石を有するロータ等により構成される。なお、多重巻線モータのように、複数のモータ駆動部においてロータ等が共通に設けられてもよい。
 各アクチュエータ内で互いに対応する制御演算部とモータ駆動部との組み合わせの単位を「系統」と定義する。第1アクチュエータ及び第2アクチュエータにおける、互いに対をなす系統の制御演算部同士は、アクチュエータ間通信により相互に情報を送受信する。各アクチュエータにおいて、同じアクチュエータ内の複数系統の制御演算部は、系統間通信により相互に情報を送受信する。
 いずれかの制御演算部に対し他方のアクチュエータにおける対をなす制御演算部もしくは同じアクチュエータ内の他系統の制御演算部の故障、又は、アクチュエータ間通信もしくは系統間通信の通信途絶により、当該制御演算部が正常な情報を送受信不能となった状態を「システム内通信異常状態」と定義する。システム内通信異常状態において、正常な各制御演算部は、正常時に自身が送信する情報に加え、自身が送信できなかった情報、及び、他の制御演算部から受信したアクチュエータ間通信用の情報を「代替情報」として併せて送信する。代替情報を含む情報を受信した制御演算部は、受信した情報の少なくとも一部を用いてモータ駆動制御を継続する。
 本開示では、システム内通信異常状態において本来の通信経路で情報を送受信できない場合であっても、正常な制御演算部が故障を通知する情報やモータの駆動制御に用いる制御情報を代替情報として送受信することで、情報の送受信が担保される。これにより、代替情報を含む情報を受信した制御演算部は、モータ駆動制御を適切に継続することができる。
 本開示についての上記目的及びその他の目的、特徴や利点は、添付の図面を参照しながら下記の詳細な記述により、より明確になる。その図面は、
図1は、ステアバイワイヤシステムに適用される実施形態でのモータ駆動システムの全体構成図であり、 図2は、図1のモータ駆動システムの模式図であり、 図3は、故障発生時における代替情報の送信を示す図であり、 図4は、各実施形態による正常時の通信構成図であり、 図5は、第1、第2実施形態による制御演算部A1故障時の代替情報の通信構成図であり、 図6は、第1実施形態によるA1-B1間通信途絶時の代替情報の通信構成図であり、 図7は、第2実施形態によるA1-B1間通信途絶時の代替情報の通信構成図であり、 図8は、第3実施形態による制御演算部A1故障時の代替情報の通信構成図であり、 図9は、第3実施形態によるA1-B1間通信途絶時の代替情報の通信構成図であり、 図10は、第4実施形態によるモータ駆動システムの模式図であり、 図11は、第5実施形態によるモータ駆動システムの模式図であり、 図12Aは、四つのアクチュエータ間での通信の接続形態を説明する図であり、 図12Bは、同上の接続形態を説明する図であり、 図12Cは、同上の接続形態を説明する図であり、 図12Dは、同上の接続形態を説明する図であり、 図13は、第6実施形態によるモータ駆動システムの模式図である。
 以下、本開示のモータ駆動システムの複数の実施形態を図面に基づいて説明する。各実施形態のモータ駆動システムは、それぞれがトルクを出力するモータとして機能する複数のアクチュエータを備える。各アクチュエータは、冗長的に設けられた複数の制御演算部、及び、冗長的に設けられた複数のモータ駆動部を有する。各アクチュエータ内で互いに対応する制御演算部とモータ駆動部との組み合わせの単位を「系統」と定義する。
 以下の第1~第3実施形態は、「システム内通信異常状態」における「代替情報」(その意味は後述する)の通信構成に関するバリエーションである。また、第4~第6実施形態は、システムのアクチュエータ数又は系統数に関するバリエーションであり、前述の実施形態と実質的に同一の構成には同一の符号を付して説明を省略する。以上の第1~第6実施形態を包括して「本実施形態」という。
 [第1~第3実施形態]
 図1に、車両のステアバイワイヤシステム90に適用されるモータ駆動システム801を示す。車両の操舵機構と転舵機構とが機械的に分離したステアバイワイヤシステム90において、第1アクチュエータ10は反力アクチュエータとして用いられ、第2アクチュエータ10は転舵アクチュエータとして用いられる。ステアバイワイヤシステム90の操舵機構は、ハンドル91、ステアリングシャフト93、操舵トルクセンサ94、及び第1アクチュエータ10等を含む。ステアバイワイヤシステム90の転舵機構は、ラック97、ナックルアーム98、及び第2アクチュエータ20等を含み、第2アクチュエータ20が出力する転舵トルクにより車輪99を転舵させる。車輪99は片側のみを図示し、反対側の車輪の図示を省略する。
 モータ駆動システム801は、第1アクチュエータ10と第2アクチュエータ20とを備えている。以下の図中、「Act」は「アクチュエータ」を意味する。第1アクチュエータ10は、ドライバの操舵トルク及び路面反力に応じた反力トルクを出力するモータとして機能する。第1アクチュエータ10が反力を付与するようにハンドル91を回転させることで、ドライバに適切な操舵フィーリングを与える。第2アクチュエータ20は、車輪99を転舵させる転舵トルクを出力するモータとして機能する。第2アクチュエータ20が適切に車輪99を転舵させることで、ドライバが意図した方向へ車両が偏向される。
 各アクチュエータ10、20は二系統の冗長構成となっている。つまり、第1アクチュエータ10は、冗長的に設けられた二つの制御演算部161、162、及び、冗長的に設けられた二つのモータ駆動部171、172を有している。第2アクチュエータ20は、冗長的に設けられた二つの制御演算部261、262、及び、冗長的に設けられた二つのモータ駆動部271、272を有している。
 以下、各アクチュエータの二つの系統を「第1系統」及び「第2系統」と表す。例えば第1系統と第2系統との間に主従関係があり、第1系統がメイン(又はマスター)、第2系統がサブ(又はスレーブ)として機能してもよい。或いは、第1系統と第2系統とが対等の関係であってもよい。第1系統の要素には符号の末尾に「1」を付し、第2系統の要素には符号の末尾に「2」を付す。
 各アクチュエータ10、20の基本的構成は同様であるため、一方の説明で足りる点に関しては、代表として第1アクチュエータ10の構成要素により説明する。第2アクチュエータ20については、対応する符号を読み替えて解釈可能である。制御演算部161、162は、具体的にはマイコンやASICにより構成され、モータ駆動制御に関する演算を行う。なお、制御演算部161、162は、モータ駆動制御以外の制御をあわせて実行してもよいが、本明細書では他の制御について言及しない。後述するように制御演算部が「モータ駆動制御を停止」したとき、他の制御を停止するか否かは問題としない。
 詳しくは、制御演算部161、162は、図示しないCPU、ROM、RAM、I/O、及び、これらの構成を接続するバスライン等を備えている。制御演算部161、162は、ROM等の実体的なメモリ装置(すなわち、読み出し可能非一時的有形記録媒体)に予め記憶されたプログラムをCPUで実行することによるソフトウェア処理や、専用の電子回路によるハードウェア処理による制御を実行する。
 モータ駆動部171、172は、対応する制御演算部161、162が生成した駆動信号に基づいて駆動し、トルクを出力する。例えば多相ブラシレスモータでは、モータ駆動部171、172は、電圧を供給するインバータ、ステータに巻回された多相巻線、永久磁石を有するロータ等により構成される。二系統のモータ駆動部171、172は、協働してトルクを出力する。例えばモータ駆動部171、172は、二系統の多相巻線が共通のステータに巻回された二重巻線モータとして構成されてもよい。
 図中、制御演算部161からモータ駆動部171への矢印、及び、制御演算部162からモータ駆動部172への矢印は、各系統の駆動信号を示す。多相ブラシレスモータの場合、駆動信号はインバータのスイッチングパルス信号であり、代表的にはPWM信号等である。第1アクチュエータ10の制御演算部161、162は、操舵トルクセンサ94が検出した操舵トルクTs及び路面反力等を取得し、それらの情報に基づいて駆動信号を生成する。転舵アクチュエータ20の制御演算部261、262は、操舵角又は転舵角θtやラックストロークXr等を取得し、それらの情報に基づいて駆動信号を生成する。
 このように、本明細書では、複数の制御演算部と複数のモータ駆動部とを含む一単位の駆動装置として「アクチュエータ」の用語を用いる。例えば特許文献1(特許第4848717号公報)では、駆動信号を演算するECUとは別に、機械的要素であるモータ本体部分のみをアクチュエータとして扱っており、本明細書とは用語の解釈が異なる。本実施形態のアクチュエータは、いわゆる「機電一体式」のモータとして、制御演算部とモータ駆動部とが物理的に一体に構成されてもよい。或いは、いわゆる「機電別体式」のモータとして、制御演算部とモータ駆動部とが信号線を介して別体に構成されてもよい。
 第1アクチュエータ10の第1系統と、第2アクチュエータ20の第1系統とは互いに対をなす。また、第1アクチュエータ10の第2系統と、第2アクチュエータ20の第2系統とは互いに対をなす。第1アクチュエータ及び第2アクチュエータにおける、互いに対をなす系統の制御演算部同士は、アクチュエータ間通信CL1、CL2により相互に情報を送受信する。なお、アクチュエータ間通信の記号の2文字目の「L」は「ローカル通信」に由来する。
 アクチュエータ間通信により「相互に送受信される情報」には、少なくとも各アクチュエータ10、20の異常情報が含まれる。制御演算部の異常には、データの異常、演算処理の異常、内部通信異常、同期異常等が含まれる。モータ駆動部の異常には、インバータのスイッチング素子等の異常、及び、回路に設けられたリレーのショート、オープン故障やモータ巻線の断線故障等が含まれる。これらの故障が発生したとき、各アクチュエータ10、20は、その情報を相互に送受信する。
 図2に、図1のモータ駆動システム801を簡略化した模式図として示す。図1では、具体的な適用例としてステアバイワイヤシステムを示したが、本実施形態の第1アクチュエータ10及び第2アクチュエータ20は、どのような用途のモータであってもよい。図2では一般に「二系統冗長構成の二つのアクチュエータ10、20を備えたモータ駆動システム801」の構成を示す。第4~第6実施形態の各構成図も図2に従って記載する。図2では、各アクチュエータ10、20の第1系統及び第2系統に破線枠を示し、「第1系統101、201」、「第2系統102、202」の符号を付す。ただし、以下の説明中、文脈から自明な箇所等では、系統の符号を適宜省略する場合がある。
 図1の説明と一部重複するが、各アクチュエータ10、20の構成をあらためて記す。第1アクチュエータ10は、第1系統101の制御演算部161及び第2系統102の制御演算部162が冗長的に設けられており、また、第1系統101のモータ駆動部171及び第2系統102のモータ駆動部172が冗長的に設けられている。第2アクチュエータ20は、第1系統201の制御演算部261及び第2系統202の制御演算部262が冗長的に設けられており、また、第1系統201のモータ駆動部271及び第2系統202のモータ駆動部272が冗長的に設けられている。
 図2の構成では、各アクチュエータ10、20において、操舵トルクTsの信号、操舵角又は転舵角θtやラックストロークXrのフィードバック信号等の情報が各系統の制御演算部へ冗長的に入力される。つまり、一つの情報信号が分岐されて各系統の制御演算部へ入力されるのでなく、第1系統専用に生成された情報信号が第1系統に入力され、第2系統専用に生成された情報信号が第2系統に入力される。
 例えば第1アクチュエータ10について、第1系統101の制御演算部161へは情報If11、第2系統102の制御演算部162へは情報If12が冗長的に入力される。また、第2アクチュエータ20について、第1系統201の制御演算部261へは情報If21、第2系統202の制御演算部262へは情報If22が冗長的に入力される。これにより、一方の系統の制御演算部の入力部が故障した場合、他方の系統の制御演算部が正しい情報を取得することができる。
 また、同じ第1アクチュエータ10内の第1系統101の制御演算部161と第2系統102の制御演算部162とは、系統間通信CM1により相互に情報を送受信する。同じ第2アクチュエータ20内の第1系統201の制御演算部261と第2系統202の制御演算部262とは、系統間通信CM2により、相互に情報を送受信する。なお、系統間通信の記号の2文字目の「M」は「マイコン間通信」に由来する。系統間通信CM1、CM2により相互に送信される情報には、例えば、外部からの入力値、制御演算部が演算した電流指令値、電流制限値、フィードバックされる実電流等が含まれる。また、各系統の異常信号が相互に送受信される。
 上述の通り、第1アクチュエータ10の第1系統101と第2アクチュエータ20の第1系統201とは互いに対をなし、第1アクチュエータ10の第2系統102と第2アクチュエータ20の第2系統202とは互いに対をなす。つまり、同一番号の系統同士が互いに対をなすものとする。ただし、「第1系統」及び「第2系統」の用語は便宜上割り振られているに過ぎず、二つの系統のどちらを「第1系統」とし、どちらを「第2系統」とするかは自由である。システムによっては、「第1アクチュエータの第1系統」と「第2アクチュエータの第2系統」とが対をなし、「第1アクチュエータの第2系統」と「第2アクチュエータの第1系統」とが対をなすようにしてもよい。
 第1アクチュエータ10及び第2アクチュエータ20における、互いに対をなす系統の制御演算部同士は、アクチュエータ間通信により相互に情報を送受信する。したがって、各アクチュエータ10、20の第1系統の制御演算部161、261同士は、アクチュエータ間通信CL1により相互に情報を送受信する。各アクチュエータ10、20の第2系統の制御演算部162、262同士は、アクチュエータ間通信CL2により相互に情報を送受信する。
 次に図3を参照し、図2のモータ駆動システム801において第1アクチュエータ10の第1系統で故障が発生した場合のモータ駆動システム801の動作について説明する。このとき、本来、正常時であれば第1アクチュエータ10の第1系統の制御演算部161から第2アクチュエータ20の第2系統の制御演算部261に送信されるべき制御情報が異常値になる可能性がある。そのため、例えば第2系統の制御演算部261がモータ駆動制御を適切に継続できなくなるおそれがある。
 以下、いずれかの制御演算部に対し他方のアクチュエータにおける対をなす制御演算部もしくは同じアクチュエータ内の他系統の制御演算部の故障、又は、アクチュエータ間通信もしくは系統間通信の通信途絶により、いずれかの制御演算部が正常な情報を送受信不能となった状態を「システム内通信異常状態」と定義する。
 本実施形態では、システム内通信異常状態において、正常な各制御演算部は、正常時に自身が送信する情報に加え、自身が送信できなかった情報、及び、他の制御演算部から受信したアクチュエータ間通信用の情報を「代替情報」として併せて送信する。代替情報を含む情報を受信した制御演算部は、受信した情報の少なくとも一部を用いてモータ駆動制御を継続する。
 図3の例では、第1アクチュエータ10の第2系統の制御演算部162からアクチュエータ間通信CL2により第2アクチュエータ20の第2系統の制御演算部262に代替情報を送信し、さらに、第2アクチュエータ20の第2系統の制御演算部262から系統間通信CM2により第2アクチュエータ20の第1系統の制御演算部261に代替情報を送信する。代替情報を含む情報を受信した第2アクチュエータ20の第1系統の制御演算部261は、受信した情報の少なくとも一部を用いてモータ駆動制御を継続可能となる。
 続いて図4~図9を参照し、システム内通信異常状態における代替情報の通信構成のバリエーションを第1~第3実施形態として説明する。ここで、説明の便宜上、四つの制御演算部161、162、261、262を次の記号で表示する。
 「第1アクチュエータ10の第1系統の制御演算部161」=「制御演算部A1」
 「第1アクチュエータ10の第2系統の制御演算部162」=「制御演算部A2」
 「第2アクチュエータ20の第1系統の制御演算部261」=「制御演算部B1」
 「第2アクチュエータ20の第2系統の制御演算部262」=「制御演算部B2」
 つまり、第1アクチュエータ10を「A」、第2アクチュエータ20を「B」とし、第1系統を「1」、第2系統を「2」として、アクチュエータ、系統の順に文字を並べて表す。以下の文中、「制御演算部」の記載を省略し、「A1」、「A2」等の記号を単独で用いる場合もある。
 また、正常時にA1-A2間、B1-B2間の系統間通信により通信される情報の頭文字を「M」、正常時にA1-B1間、A2-B2間のアクチュエータ間通信により通信される情報の頭文字を「L」と記す。例えば「MA1」は、正常時に系統間通信により通信される制御演算部A1に関する情報であり、「LA1」は、正常時にアクチュエータ間通信により通信される制御演算部A1に関する情報である。なお、図4~図9では、図2、図3に示すアクチュエータ間通信CL1、CL2、系統間通信CM1、CM2、及び、各制御演算部への入力情報If11、If12、If21、If22の図示を省略する。
 図4に示すように、各実施形態の正常時には、A1-A2間、B1-B2間の系統間通信、及び、A1-B1間、A2-B2間のアクチュエータ間通信により、いずれも自身の情報が双方向に送受信される。例えばA1-B1間では、A1からB1に自身の情報LA1が送信され、B1からA1に自身の情報LB1が送信される。こうして各制御演算部A1、A2、B1、B2は、入力部からの入力情報If11、If12、If21、If22に加え、系統間通信及びアクチュエータ間通信により受信した情報を用いてモータ駆動制御を行う。
 次に、システム内通信異常状態の類型として、<X>いずれかの制御演算部の故障時、及び、<Y>アクチュエータ間通信の通信途絶時における第1~第3実施形態の代替情報の通信構成について順に説明する。類型<X>の具体例として制御演算部A1の故障時、類型<Y>の具体例としてアクチュエータ間通信A1-B1間の通信途絶時における代替情報の通信構成を図示する。図5、図8では、故障した制御演算部A1を破線枠で示し、制御演算部A1が関与する通信を破線矢印で示す。図6、図7、図9では、途絶した通信を破線矢印で示す。
 図5~図9及び対応する文中において、自身の情報と代替情報とが併せて送信される場合、「自身の情報+代替情報」の形式で記載する。また、図中の代替情報を一点鎖線、二点鎖線、破線の楕円で囲む。代替情報のうち、アクチュエータ間通信用情報(LA1等)は、アクチュエータ間通信及び系統間通信の両方で送信される。一方、系統間通信用情報(MA1等)は系統間通信でしか送信されない。さらに、代替情報に加えて「故障を通知する情報」の通信も必要である。
 (第1実施形態)
 第1実施形態の通信構成では、極力、元の情報が使用される。図5に示す類型<X>のA1故障時には、B2からB1に、「B2が他の制御演算部A2から受信したアクチュエータ間通信用の情報」である代替情報LA2を併せた「MB2+LA2」が送信される。また、B1からB2に、「B1が送信できなかった情報」である代替情報LB1を併せた「MB1+LB1」が送信される。次いでB2からA2に、「B2が他の制御演算部B1から受信したアクチュエータ間通信用の情報」である代替情報LB1を併せた「LB2+LB1」が送信される。
 図6に示す類型<Y>のA1-B1間通信途絶時には、A1からA2に、「A1が送信できなかった情報」である代替情報LA1を併せた「MA1+LA1」が送信される。次いでA2からB2に、「A2が他の制御演算部A1から受信したアクチュエータ間通信用の情報」である代替情報LA1を併せた「LA2+LA1」が送信される。次いでB2からB1に、「B2が他の制御演算部A2から受信したアクチュエータ間通信用の情報」である代替情報LA1を併せた「MB2+LA1」が送信される。
 また、B1からB2、及び、B2からA2へは、図5と同様に代替情報LB1が送信される。さらにA2からA1に、「A2が他の制御演算部B2から受信したアクチュエータ間通信用の情報」である代替情報LB1を併せた「MA2+LB1」が送信される。
 このように本実施形態では、システム内通信異常状態において本来の通信経路で情報を送受信できない場合であっても、正常な制御演算部が故障を通知する情報やモータの駆動制御に用いる制御情報を代替情報として送受信することで、情報の送受信が担保される。これにより、代替情報を含む情報を受信した制御演算部は、モータ駆動制御を適切に継続することができる。特に第1実施形態の利点としては、元々使用されるべき情報LA1、LB1が通信途絶時に代替情報として漏れなく送信されるため、正常時と同様の制御が可能となる。
 (第2実施形態)
 ただし、第1実施形態では、最大3通信に跨がって情報が伝達されるため遅延が大きくなる。また、A1故障時とA1-B1間通信途絶時とでB2からB1への送受信情報が異なり、制御の統一性に欠けるという点に改善の余地がある。そこで次の第2、第3実施形態では、第1実施形態に対し、遅延を小さくするための通信構成が提供される。
 そのうち第2実施形態では、代替情報として通信する情報を、「直接通信している隣の制御演算部の情報」までに制限する。つまり、システム内通信異常状態において、正常な各制御演算部は、自身が受信した情報のうち、直接通信している制御演算部から受信した情報のみを代替情報として他の制御演算部に送信する。
 第2実施形態でのA1故障時における通信構成は、第1実施形態と同じく図5に示されるため説明を省略する。図7に示すA1-B1間通信途絶時の通信構成において、図6との相違点を四角枠で示す。A1からA2、及び、A2からB2への代替情報LA1の送信は図6と同様である。ただし、B2からB1へはLA1ではなく、「B2が直接通信している制御演算部A2から受信した情報LA2」のみを代替情報として「MB2+LA2」が送信される。
 また、B1からB2、及び、B2からA2への代替情報LB1の送信は図6と同様である。ただし、A2からA1へはLB1ではなく、「A2が直接通信している制御演算部B2から受信した情報LB2」のみを代替情報として「MA2+LB2」が送信される。
 第2実施形態では、代替情報が最大2通信までしか跨がないため第1実施形態に比べて遅延が小さくなり、情報量を低減した通信構成でモータ駆動制御を適切に継続することができる。また、A1故障時とA1-B1間通信途絶時とでB2からB1への送受信情報が一致し、制御の統一性が良い。
 (第3実施形態)
 次に第3実施形態では、システム内通信異常状態において、正常な各制御演算部は、複数系統のアクチュエータ間通信用の情報に、各系統に応じた所定の比率を乗じて足し合わせた情報を代替情報として他の制御演算部に送信する。図8、図9に示される「統合された代替情報LAMIX、LBMIX」は、係数α、β(0≦α≦1、0≦β≦1)を用いて、下式(1a)、(1b)で表される。α、βの値は、モータ駆動制御における第1系統及び第2系統の寄与度等に基づいて設定される。例えばα=β=0.5のとき、二系統の情報の平均値が統合情報となる。
  LAMIX=LA2×α+LA1×(1-α) ・・・(1a)
  LBMIX=LB2×β+LB1×(1-β) ・・・(1b)
 図8に示すA1故障時の通信構成において、図5との相違点を四角枠で示す。B2からB1への代替情報LA2の送信、及び、B1からB2への代替情報LB1の送信は図5と同様である。ただし、B2からA2へは、「自身の情報LB2+代替情報LB1」でなく、LB2とLB1との統合情報LBMIXが代替情報として送信される。
 図9に示す類型<Y>のA1-B1間通信途絶時の通信構成において、図7、図8との相違点を四角枠で示す。A1からA2への代替情報LA1の送信は図7、図8と同様である。ただし、A2からB2へは、「自身の情報LA2+代替情報LA1」ではなく、LA2とLA1との統合情報LAMIXが代替情報として送信される。次いでB2からB1に、「B2が他の制御演算部A2から受信したアクチュエータ間通信用の情報」である代替情報LAMIXを併せた「MB2+LAMIX」が送信される。
 また、B1からB2への代替情報LB1の送信は図7、図8と同様である。ただし、B2からA2へは、「自身の情報LB2+代替情報LB1」ではなく、LB2とLB1との統合情報LBMIXが代替情報として送信される。次いでA2からA1に、「A2が他の制御演算部B2から受信したアクチュエータ間通信用の情報」である代替情報LBMIXを併せた「MA2+LBMIX」が送信される。
 第3実施形態では、第2実施形態と同様の効果に加え、アクチュエータ間通信の送受信量を、正常時における「自身の情報」のみの送受信量と同等に抑えることができる。したがって、システム内通信異常状態において、より情報量を低減した通信構成でモータ駆動制御を適切に継続することができる。
 [第4~第6実施形態]
 次に、第1~第3実施形態に対しアクチュエータ数又は系統数の異なる第4~第6実施形態のモータ駆動システムについて、図2と同様の模式図を参照して説明する。第4~第6実施形態において各制御演算部への情報が冗長的に入力される点は第1~第3実施形態に準ずるものとし、各図における図示を省略する。また、該当する符号が多数の場合等には符号の記載を適宜省略する。なお、第4~第6実施形態にのみ用いられる符号は、[符号の説明]の欄の符号、及び、特許請求の範囲の参照符号としては記載しない。
 (第4実施形態)
 図10に示す第4実施形態のモータ駆動システム804は、冗長二系統構成の三つのアクチュエータ10、20、30を備えている。つまり、モータ駆動システム804は、第1、第2アクチュエータ10、20に加え、「追加のアクチュエータ」としての第3アクチュエータ30を備えている。例えばモータ駆動システム804は、左右の転舵輪を独立して転舵させる二つの転舵アクチュエータと、一つの反力アクチュエータとを備えたステアバイワイヤシステムに適用される。
 第1アクチュエータ10及び第2アクチュエータ20と同様に、第3アクチュエータ30は、第1系統301の制御演算部361及び第2系統302の制御演算部362が冗長的に設けられている。また、第1系統301のモータ駆動部371及び第2系統302のモータ駆動部372が冗長的に設けられている。また、第3アクチュエータ30内の系統間通信CM3により、第1系統301の制御演算部361と第2系統302の制御演算部362とは相互に情報を送受信する。
 第3アクチュエータ30の第1系統301の制御演算部361は、第1系統のアクチュエータ間通信CL1により、第1アクチュエータ10及び第2アクチュエータ20の第1系統の制御演算部161、261と相互に情報を送受信する。第3アクチュエータ30の第2系統302の制御演算部362は、第2系統のアクチュエータ間通信CL2により、第1アクチュエータ10及び第2アクチュエータ20の第2系統の制御演算部162、262と相互に情報を送受信する。
 三つのアクチュエータ10、20、30のうちいずれかのアクチュエータにおけるいずれかの系統で故障が発生したとき、又は、いずれかの系統のアクチュエータ間通信もしくは系統間通信の通信途絶により、いずれかの制御演算部が正常な情報を送受信不能となった状態を想定する。二系統構成の「システム内通信異常状態」の定義における「他方のアクチュエータ」を「自アクチュエータ以外のいずれかのアクチュエータ」と解釈すると、この状態は「システム内通信異常状態」に該当する。システム内通信異常状態において、各アクチュエータ10、20、30の正常な各制御演算部は代替情報を送信する。代替情報を含む情報を受信した制御演算部は、受信した情報の少なくとも一部を用いてモータ駆動制御を継続する。なお、代替情報の通信構成は第1~第3実施形態のいずれに準じてもよく、それぞれ上記と同様の効果が得られる。
 (第5実施形態)
 図11に示す第5実施形態のモータ駆動システム805は、四つのアクチュエータ10、20、30、40を備えている。つまり、モータ駆動システム805は、第3アクチュエータ30及び第4アクチュエータ40を「追加のアクチュエータ」として備えている。例えばモータ駆動システム805は、左右前後の転舵輪を独立して転舵させる四つの転舵アクチュエータを備えた転舵システムに適用される。
 第1、第2アクチュエータ10、20の構成は第1実施形態に準ずる。同様に第3アクチュエータ30は、第1系統301の制御演算部361及び第2系統302の制御演算部362、並びに、第1系統301のモータ駆動部371及び第2系統302のモータ駆動部372がそれぞれ冗長的に設けられている。第4アクチュエータ40は、第1系統401の制御演算部461及び第2系統402の制御演算部462、並びに、第1系統401のモータ駆動部471及び第2系統402のモータ駆動部472がそれぞれ冗長的に設けられている。
 また、第3アクチュエータ30内の系統間通信CM3により、第1系統301の制御演算部361と第2系統302の制御演算部362とは相互に情報を送受信する。第4アクチュエータ40内の系統間通信CM4により、第1系統401の制御演算部461と第2系統402の制御演算部462とは相互に情報を送受信する。
 また、各アクチュエータ10、20、30、40の第1系統の制御演算部161、261、361、461は、第1系統のアクチュエータ間通信CL1により相互に情報を送受信する。各アクチュエータ10、20、30、40の第2系統の制御演算部162、262、362、462は、第2系統のアクチュエータ間通信CL2により相互に情報を送受信する。
 四つのアクチュエータ10、20、30、40のうちいずれかのアクチュエータにおけるいずれかの系統で故障が発生したとき、又は、いずれかの系統のアクチュエータ間通信もしくは系統間通信の通信途絶により、いずれかの制御演算部が正常な情報を送受信不能となった状態を想定する。このシステム内通信異常状態において、各アクチュエータ10、20、30、40の正常な各制御演算部は代替情報を送信する。
 ここで図12A~図12Dを参照し、アクチュエータ間通信の接続形態(トポロジー)について説明する。図12A~図12Dでは、四つのアクチュエータ10、20、30、40を備えるモータ駆動システムを例示する。図12A~図12Dにおいて各アクチュエータ10、20、30、40のブロックは同系統の制御演算部を表す。
 図12Aに、図11のモータ駆動システム805における接続形態を簡略化して示す。四つのアクチュエータ10、20、30、40の制御演算部は、リング型に接続されている。この例では、第1アクチュエータ10の制御演算部と第4アクチュエータ40の制御演算部、及び、第2アクチュエータ20の制御演算部と第3アクチュエータ30の制御演算部は、他のアクチュエータの制御演算部を介して通信可能である。図12Bに直列型の接続形態を示す。各アクチュエータ10、20、30、40の制御演算部は、少なくとも他のアクチュエータの制御演算部を介して全てのアクチュエータの制御演算部と通信可能である。
 図12Cにスター型の接続形態を示す。この例で中心にある第1アクチュエータ10の制御演算部は、他の全てのアクチュエータの制御演算部と直接通信する。他のアクチュエータの制御演算部同士は、第1アクチュエータ10の制御演算部を介して通信可能である。図12Dにメッシュ型の接続形態を示す。各アクチュエータ10、20、30、40の制御演算部は、他の全てのアクチュエータの制御演算部と直接通信する。
 各接続形態のメリット、デメリットは通信技術分野における周知技術であるため、説明を省略する。なお、アクチュエータが三つの場合、リング型とメッシュ型とは混同し、直列型とスター型とは混同する。このように、三つ以上のアクチュエータ間におけるアクチュエータ間通信の接続形態は、上記の基本形やそれらの組み合わせにより、適宜設定可能である。
 (第6実施形態)
 図13に示す第6実施形態のモータ駆動システム806は、冗長三系統構成の二つのアクチュエータ10T、20Tを備えている。第1アクチュエータ10Tは、第1実施形態と同様の二系統構成に加え、第3系統103の制御演算部163及びモータ駆動部173がさらに冗長的に設けられている。第2アクチュエータ20Tは、第1実施形態と同様の二系統構成に加え、第3系統203の制御演算部263及びモータ駆動部273がさらに冗長的に設けられている。
 第1アクチュエータ10T内の系統間通信CM1により、三系統の制御演算部161、162、163は相互に情報を送受信する。第2アクチュエータ20T内の系統間通信CM2により、三系統の制御演算部261、262、263は相互に情報を送受信する。また、第1、第2アクチュエータ10T、20Tの第3系統の制御演算部163、263同士は、アクチュエータ間通信CL3により相互に情報を送受信する。
 この構成でも上記実施形態と同様に、システム内通信異常状態において、正常な各制御演算部は代替情報を送信する。第6実施形態の変形例として、二つのアクチュエータは四系統以上の冗長構成であってもよい。また、第4、第5実施形態と組み合わせ、三系統以上の冗長構成のアクチュエータを三つ以上備えるモータ駆動システムにも同様の技術的思想が拡張可能である。
 また、三系統以上の系統間通信の接続形態(トポロジー)は、図12A~図12Dに示すアクチュエータ間通信の接続形態を系統間通信に置き換えて解釈すればよい。すなわち、リング型又は直列型の場合、各系統の制御演算部は、少なくとも他系統の制御演算部を介して全ての系統の制御演算部と通信可能である。スター型の場合、一つ系統の制御演算部が、他の全ての系統の制御演算部と直接通信する。メッシュ型の場合、各系統の制御演算部は、他の全ての系統の制御演算部と直接通信する。このように、三系統以上の系統間通信の接続形態は、上記の基本形やそれらの組み合わせにより、適宜設定可能である。
 (その他の実施形態)
 (a)車両のステアバイワイヤシステムとは別の二アクチュエータシステムの適用例として、本開示のモータ駆動システムは、自動運転車両の左右の転舵輪を独立して転舵する二アクチュエータの自動転舵システムに適用されてもよい。また、2台の操舵アシストモータを備えたツインモータ式の電動パワーステアリングシステムに適用されてもよい。その他、本開示のモータ駆動システムは、車両に限らず、他の乗り物や一般機械等に適用されてもよい。
 (b)上記実施形態では、各アクチュエータで制御演算部への情報が冗長的に入力される。しかし他の実施形態では、一方のアクチュエータのみで制御演算部への情報が冗長的に入力されてもよい。また、システムの要求がない場合、いずれの系統でも情報の冗長入力が行われなくてもよい。
 (c)本開示のモータ駆動システムは、トルクを出力する冗長構成のアクチュエータを二つ以上備え、アクチュエータ間の通信を通じて、各アクチュエータの制御演算部によるモータ駆動制御の停止又は継続を系統単位で切り替えるものである。ただし、この制御の対象となるアクチュエータ以外に、独立して動作する他の電気アクチュエータや油圧又はエア圧のアクチュエータがシステム全体の中に存在してもよい。
 以上、本開示は上記実施形態になんら限定されるものではなく、その趣旨を逸脱しない範囲において種々の形態で実施可能である。
 本開示に記載の制御演算部及びその手法は、コンピュータプログラムにより具体化された一つ乃至は複数の機能を実行するようにプログラムされたプロセッサ及びメモリを構成することによって提供された専用コンピュータにより、実現されてもよい。あるいは、本開示に記載の制御演算部及びその手法は、一つ以上の専用ハードウェア論理回路によってプロセッサを構成することによって提供された専用コンピュータにより、実現されてもよい。もしくは、本開示に記載の制御演算部及びその手法は、一つ乃至は複数の機能を実行するようにプログラムされたプロセッサ及びメモリと一つ以上のハードウェア論理回路によって構成されたプロセッサとの組み合わせにより構成された一つ以上の専用コンピュータにより、実現されてもよい。また、コンピュータプログラムは、コンピュータにより実行されるインストラクションとして、コンピュータ読み取り可能な非遷移有形記録媒体に記憶されていてもよい。
 本開示は実施形態に準拠して記述された。しかしながら、本開示は当該実施形態および構造に限定されるものではない。本開示は、様々な変形例および均等の範囲内の変形をも包含する。また、様々な組み合わせおよび形態、さらには、それらに一要素のみ、それ以上、あるいはそれ以下、を含む他の組み合わせおよび形態も本開示の範疇および思想範囲に入るものである。

Claims (6)

  1.  それぞれがトルクを出力するモータとして機能する第1アクチュエータ(10)及び第2アクチュエータ(20)を含む複数のアクチュエータを備えるモータ駆動システムであって、
     前記第1アクチュエータ及び前記第2アクチュエータは、それぞれ、モータ駆動制御に関する演算を行う、冗長的に設けられた複数の制御演算部(161、162、261、262)、及び、対応する前記制御演算部が生成した駆動信号に基づいて駆動しトルクを出力する、冗長的に設けられた複数のモータ駆動部(171、172、271、272)を有し、
     各前記アクチュエータ内で互いに対応する前記制御演算部と前記モータ駆動部との組み合わせの単位を系統と定義すると、
     前記第1アクチュエータ及び前記第2アクチュエータにおける、互いに対をなす系統の前記制御演算部同士は、アクチュエータ間通信により相互に情報を送受信し、
     各前記アクチュエータにおいて、同じ前記アクチュエータ内の複数系統の前記制御演算部は、系統間通信により相互に情報を送受信し、
     いずれかの前記制御演算部に対し他方の前記アクチュエータにおける対をなす前記制御演算部もしくは同じアクチュエータ内の他系統の前記制御演算部の故障、又は、前記アクチュエータ間通信もしくは前記系統間通信の通信途絶により、当該制御演算部が正常な情報を送受信不能となった状態をシステム内通信異常状態と定義すると、
     前記システム内通信異常状態において、正常な各前記制御演算部は、正常時に自身が送信する情報に加え、自身が送信できなかった情報、及び、他の前記制御演算部から受信した前記アクチュエータ間通信用の情報を代替情報として併せて送信し、前記代替情報を含む情報を受信した前記制御演算部は、受信した情報の少なくとも一部を用いてモータ駆動制御を継続するモータ駆動システム。
  2.  前記システム内通信異常状態において、正常な各前記制御演算部は、
     自身が受信した情報のうち、直接通信している制御演算部から受信した情報のみを前記代替情報として他の前記制御演算部に送信する請求項1に記載のモータ駆動システム。
  3.  前記システム内通信異常状態において、正常な各前記制御演算部は、
     複数系統の前記アクチュエータ間通信用の情報に、各系統に応じた所定の比率を乗じて足し合わせた情報を前記代替情報として他の前記制御演算部に送信する請求項1または2に記載のモータ駆動システム。
  4.  前記第1アクチュエータ及び前記第2アクチュエータの少なくとも一方において、複数系統の前記制御演算部への情報が冗長的に入力される請求項1~3のいずれか一項に記載のモータ駆動システム。
  5.  前記第1アクチュエータ及び前記第2アクチュエータに加え、
     モータ駆動制御に関する演算を行う冗長的に設けられた複数の制御演算部(361、362、461、462)、及び、対応する前記制御演算部が生成した駆動信号に基づき駆動しトルクを出力する冗長的に設けられた複数のモータ駆動部(371、372、471、472)を有する一つ以上の追加のアクチュエータ(30、40)をさらに備え、
     前記追加のアクチュエータの前記制御演算部は、前記アクチュエータ間通信により他の前記アクチュエータの前記制御演算部と相互に情報を送受信し、
     前記システム内通信異常状態の定義における他方の前記アクチュエータを、自アクチュエータ以外のいずれかの前記アクチュエータと解釈すると、
     前記システム内通信異常状態において、正常な各前記制御演算部は前記代替情報を送信し、前記代替情報を含む情報を受信した前記制御演算部は、受信した情報の少なくとも一部を用いてモータ駆動制御を継続する請求項1~4のいずれか一項に記載のモータ駆動システム。
  6.  少なくとも一つの前記アクチュエータにおいて、
     複数の前記制御演算部又は複数の前記モータ駆動部は、三系統以上が冗長的に設けられている請求項1~5のいずれか一項に記載のモータ駆動システム。
PCT/JP2020/039047 2019-10-31 2020-10-16 モータ駆動システム WO2021085170A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202080075778.2A CN114641424B (zh) 2019-10-31 2020-10-16 马达驱动系统
US17/660,814 US12084126B2 (en) 2019-10-31 2022-04-26 Motor drive system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019-199400 2019-10-31
JP2019199400A JP7172952B2 (ja) 2019-10-31 2019-10-31 モータ駆動システム

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/660,814 Continuation US12084126B2 (en) 2019-10-31 2022-04-26 Motor drive system

Publications (1)

Publication Number Publication Date
WO2021085170A1 true WO2021085170A1 (ja) 2021-05-06

Family

ID=75712327

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/039047 WO2021085170A1 (ja) 2019-10-31 2020-10-16 モータ駆動システム

Country Status (4)

Country Link
US (1) US12084126B2 (ja)
JP (1) JP7172952B2 (ja)
CN (1) CN114641424B (ja)
WO (1) WO2021085170A1 (ja)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003264992A (ja) * 2002-03-07 2003-09-19 Mitsubishi Heavy Ind Ltd 多重制御冗長電動機、多重制御アクチュエータ及びそれの冗長制御方法
WO2017122329A1 (ja) * 2016-01-14 2017-07-20 三菱電機株式会社 電動パワーステアリング装置
JP2018129995A (ja) * 2017-02-10 2018-08-16 株式会社デンソー 回転電機制御装置、および、これを用いた電動パワーステアリング装置

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004338563A (ja) * 2003-05-15 2004-12-02 Toyoda Mach Works Ltd 車両用操舵装置
JP4534845B2 (ja) * 2005-04-08 2010-09-01 日産自動車株式会社 操舵制御装置
JP4848717B2 (ja) 2005-09-28 2011-12-28 日産自動車株式会社 制御システムのフェールセーフ制御装置
JP5239245B2 (ja) 2007-07-27 2013-07-17 日産自動車株式会社 車両用操舵制御装置
JP5257050B2 (ja) * 2008-12-19 2013-08-07 日本精工株式会社 電動パワーステアリング装置
JP5793106B2 (ja) * 2012-04-26 2015-10-14 日立オートモティブシステムズステアリング株式会社 パワーステアリング装置およびパワーステアリング装置の制御装置
JP6474220B2 (ja) * 2014-09-30 2019-02-27 日本電産テクノモータ株式会社 モータ駆動装置
US10322748B2 (en) * 2016-09-23 2019-06-18 Jtekt Corporation Motor controller and steering device
JP7027808B2 (ja) * 2016-11-11 2022-03-02 株式会社デンソー 回転電機制御装置、および、これを用いた電動パワーステアリング装置
JP6812788B2 (ja) * 2016-12-27 2021-01-13 株式会社ジェイテクト 操舵制御装置
WO2018173561A1 (ja) * 2017-03-23 2018-09-27 日立オートモティブシステムズ株式会社 車両制御装置
JP6530775B2 (ja) * 2017-03-24 2019-06-12 株式会社Subaru 車両の制御装置、サーバ、車両のモータ制御システム、及び車両のモータ制御方法
JP6973151B2 (ja) * 2018-02-14 2021-11-24 トヨタ自動車株式会社 モータの制御装置
JP6981354B2 (ja) * 2018-04-23 2021-12-15 トヨタ自動車株式会社 操舵システム
CA3055662A1 (en) * 2019-09-16 2021-03-16 Neutron Automotive Controls Inc. Redundant brushless direct current motor control system and related methods

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003264992A (ja) * 2002-03-07 2003-09-19 Mitsubishi Heavy Ind Ltd 多重制御冗長電動機、多重制御アクチュエータ及びそれの冗長制御方法
WO2017122329A1 (ja) * 2016-01-14 2017-07-20 三菱電機株式会社 電動パワーステアリング装置
JP2018129995A (ja) * 2017-02-10 2018-08-16 株式会社デンソー 回転電機制御装置、および、これを用いた電動パワーステアリング装置

Also Published As

Publication number Publication date
US12084126B2 (en) 2024-09-10
JP2021070443A (ja) 2021-05-06
US20220250677A1 (en) 2022-08-11
CN114641424B (zh) 2024-04-05
JP7172952B2 (ja) 2022-11-16
CN114641424A (zh) 2022-06-17

Similar Documents

Publication Publication Date Title
WO2018147402A1 (ja) 回転電機制御装置、および、これを用いた電動パワーステアリング装置
WO2021085228A1 (ja) モータ駆動システム
CN114630785B (zh) 马达驱动系统
JP5930058B2 (ja) ステアリング制御装置、ステアリング制御方法
WO2021095644A1 (ja) モータ駆動システム
JP2020171103A (ja) 回転電機制御装置、および、これを用いた電動パワーステアリング装置
CN109562779B (zh) 电动助力转向装置
CN110753653A (zh) 电动助力转向装置及搭载该电动助力转向装置的车辆
US11770089B2 (en) Rotary electric machine control device
JP6898807B2 (ja) 車両の制御装置
WO2021085170A1 (ja) モータ駆動システム
KR102662631B1 (ko) Sbw 조향 시스템 및 그 페일 세이프 제어방법
JP6051911B2 (ja) ステアリング制御装置、ステアリング制御方法
JP6717104B2 (ja) 電子制御装置
JP7549746B2 (ja) 電動パワーステアリング装置、電動パワーステアリング装置の制御方法及び操舵制御装置
US20240317306A1 (en) Controlling steer-by-wire steering apparatus
US20230202553A1 (en) Rudder system
KR20240114173A (ko) 조향 제어 장치

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20881087

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20881087

Country of ref document: EP

Kind code of ref document: A1