WO2021084689A1 - 情報処理システム、情報処理装置、情報処理方法および記録媒体 - Google Patents

情報処理システム、情報処理装置、情報処理方法および記録媒体 Download PDF

Info

Publication number
WO2021084689A1
WO2021084689A1 PCT/JP2019/042807 JP2019042807W WO2021084689A1 WO 2021084689 A1 WO2021084689 A1 WO 2021084689A1 JP 2019042807 W JP2019042807 W JP 2019042807W WO 2021084689 A1 WO2021084689 A1 WO 2021084689A1
Authority
WO
WIPO (PCT)
Prior art keywords
foot
sensor device
information processing
sensing data
unit
Prior art date
Application number
PCT/JP2019/042807
Other languages
English (en)
French (fr)
Inventor
謙一郎 福司
裕明 中野
竹村 俊徳
中原 謙太郎
帆夏 北家
逸美 加藤
晃 亀井
晨暉 黄
梶谷 浩司
シンイ オウ
康一 森川
広志 奥田
Original Assignee
日本電気株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電気株式会社 filed Critical 日本電気株式会社
Priority to PCT/JP2019/042807 priority Critical patent/WO2021084689A1/ja
Priority to JP2021553988A priority patent/JPWO2021084689A5/ja
Priority to US17/769,827 priority patent/US20220391010A1/en
Publication of WO2021084689A1 publication Critical patent/WO2021084689A1/ja

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/103Detecting, measuring or recording devices for testing the shape, pattern, colour, size or movement of the body or parts thereof, for diagnostic purposes
    • A61B5/11Measuring movement of the entire body or parts thereof, e.g. head or hand tremor, mobility of a limb
    • A61B5/112Gait analysis
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/011Arrangements for interaction with the human body, e.g. for user immersion in virtual reality
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/68Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient
    • A61B5/6801Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient specially adapted to be attached to or worn on the body surface
    • A61B5/6802Sensor mounted on worn items
    • A61B5/6804Garments; Clothes
    • A61B5/6807Footwear
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B2562/00Details of sensors; Constructional details of sensor housings or probes; Accessories for sensors
    • A61B2562/02Details of sensors specially adapted for in-vivo measurements
    • A61B2562/0219Inertial sensors, e.g. accelerometers, gyroscopes, tilt switches

Definitions

  • the present invention relates to an information processing system, an information processing device, an information processing method and a recording medium.
  • the motion analysis device described in Patent Document 1 uses an inertial measurement unit attached to the waist of the user, and uses a first period including the user's right foot contact period and a second period including the user's left foot contact period. Judge as a period.
  • An example of an object of the present invention is to provide an information processing system, an information processing device, an information processing method, and a recording medium capable of solving the above problems.
  • the information processing system is based on the acquisition unit that acquires the sensing data by the sensor device used for the foot and the movement of the foot calculated by using the sensing data.
  • a determination unit for determining the attachment state of the sensor device to the foot is provided.
  • the information processing device is based on the acquisition unit that acquires the sensing data by the sensor device used for the foot and the movement of the foot calculated by using the sensing data.
  • a determination unit for determining the attachment state of the sensor device to the foot is provided.
  • the information processing method is based on the step of acquiring the sensing data by the sensor device used for the foot and the movement of the foot calculated by using the sensing data. It includes a step of determining the state of attachment of the device to the foot.
  • the recording medium is based on the step of acquiring the sensing data by the sensor device used for the foot on the computer and the movement of the foot calculated by using the sensing data. It is a recording medium in which a program for determining a step of determining a state in which the sensor device is attached to the foot and a program for executing the process are recorded.
  • the mounting state of the sensor can be determined.
  • FIG. 1 is a schematic configuration diagram showing an example of an apparatus configuration of an information processing system according to an embodiment.
  • the information processing system 1 includes a sensor device 100 and an information processing device 200.
  • Information processing system 1 is a system that measures and analyzes the movement of a person's foot such as gait. Further, the information processing system 1 determines the attached state of the sensor (sensor device 100) used for measuring the movement of the foot. If the sensor is not properly attached, the sensing data (sensor measurement value) will be inappropriate, and the result of the calculation using the sensing data will also be inappropriate. On the other hand, when the information processing system 1 determines the mounting state of the sensor, it is possible to prevent the sensing data and the calculation result from becoming inappropriate.
  • the sensor device 100 is provided on the shoes worn by the person to be analyzed by the information processing system 1.
  • a hole for fitting the sensor device 100 may be provided on the upper surface of the shoe body under the insole of the shoe.
  • the worker who installs the sensor device 100 on the shoe once removes the insole from the shoe, inserts the sensor device 100 into this hole, and re-lays the insole in the shoe.
  • the insole of the shoe (for example, the back side of the insole) may be provided with a hole for fitting the sensor device 100.
  • the worker who installs the sensor device 100 on the shoe once removes the insole from the shoe, inserts the sensor device 100 into the hole of the insole, and re-lays the insole in the shoe.
  • the sensor device 100 includes, for example, an IMU (Internal Measurement Unit), and measures the movement of the sensor device 100 itself, such as measuring the three-axis acceleration and the three-axis angular velocity of the sensor device 100 itself. Further, the sensor device 100 is configured to include a communication device, and transmits sensing data to the information processing device 200.
  • IMU Internal Measurement Unit
  • the movement of the sensor device 100 itself measured by the sensor device 100 can be regarded as the movement of the shoes provided with the sensor device 100. Further, the movement of the sensor device 100 itself measured by the sensor device 100 can be regarded as the movement of the foot of the person to be analyzed by the information processing system 1.
  • the target person of the analysis by the information processing system 1 is also simply referred to as the target person.
  • the subject's feet are also simply referred to as feet.
  • the shoes provided with the sensor device 100 are referred to as shoes 810. Of one pair of shoes 810, the shoes for the left foot are referred to as the left foot shoes 811 and the shoes for the right foot are referred to as the right foot shoes 812. In the following, a case where the sensor device 100 is provided in each of the left foot shoe 811 and the right foot shoe 812 will be described as an example.
  • the sensor device 100 provided on the left foot shoe 811 is referred to as a sensor device 101.
  • the sensor device 100 provided on the right foot shoe 812 is referred to as a sensor device 102.
  • the installation method of the sensor device 100 is not limited to the method provided on the shoes, and any installation method capable of measuring the movement of the foot may be used.
  • the sensor device 100 may be fixed to the foot with a band.
  • the information processing device 200 acquires the sensing data from the sensor device 100.
  • the information processing device 200 analyzes the movement of the foot of the subject using the obtained sensing data. Further, the information processing device 200 determines the mounting state of the sensor device 100 using the obtained sensing data.
  • the information processing device 200 is configured by using, for example, a smartphone.
  • the information processing device 200 is configured by using a portable device such as a smartphone, and when the subject carries the information processing device 200, the information processing device 200 continues to be located near the sensor device 100.
  • the information processing device 200 and the sensor device 100 can communicate with each other relatively easily, for example, the information processing device 200 and the sensor device 100 communicate with each other by short-range wireless communication.
  • the information processing device 200 may be configured by using a device other than a smartphone, such as by using a personal computer (PC).
  • PC personal computer
  • FIG. 2 is a schematic block diagram showing an example of the functional configuration of the information processing device 200.
  • the information processing device 200 includes a communication unit 210, a display unit 220, an operation input unit 230, a storage unit 280, and a control unit 290.
  • the control unit 290 includes an acquisition unit 291, a calculation unit 292, a determination unit 293, and a coordinate system setting unit 294.
  • the communication unit 210 communicates with another device.
  • the communication unit 210 communicates with the sensor device 100 and receives the sensing data from the sensor device 100.
  • the communication method of the communication unit 210 is not limited to a specific method, as long as it can communicate with the sensor device 100.
  • the display unit 220 includes a display screen such as a liquid crystal panel or an LED (Light Emitting Diode) panel, and displays various images. For example, the display unit 220 displays the analysis result obtained by the information processing device 200 analyzing the sensing data of the sensor device 100.
  • a display screen such as a liquid crystal panel or an LED (Light Emitting Diode) panel
  • the display unit 220 corresponds to the example of the alarm output unit.
  • the display unit 220 displays an alarm message indicating that the mounting state of the sensor device 100 is inappropriate.
  • the method of outputting the alarm by the information processing device 200 is not limited to the method of displaying the alarm message.
  • the information processing apparatus 200 may include a speaker and output an alarm sound, an alarm message voice, or a combination thereof in addition to or instead of displaying an alarm message.
  • the operation input unit 230 includes an input device such as a touch sensor that constitutes a touch panel provided on the display screen of the display unit 220, and accepts user operations. For example, the operation input unit 230 receives a user operation instructing the sensor device 100 to analyze the sensing data.
  • an input device such as a touch sensor that constitutes a touch panel provided on the display screen of the display unit 220, and accepts user operations. For example, the operation input unit 230 receives a user operation instructing the sensor device 100 to analyze the sensing data.
  • the storage unit 280 stores various data.
  • the storage unit 280 is configured by using the storage device included in the information processing device 200.
  • the control unit 290 controls each unit of the information processing device 200 to perform various processes.
  • the function of the control unit 290 is executed by, for example, a CPU (Central Processing Unit) included in the information processing device 200 reading a program from the storage unit 280 and executing the program.
  • the acquisition unit 291 acquires the sensing data by the sensor device 100. Specifically, the acquisition unit 291 extracts sensing data from the received data received by the communication unit 210 from the sensor device 100.
  • the calculation unit 292 calculates the movement of the foot of the subject during walking by using the sensing data obtained by the sensor device 100. For example, the calculation unit 292 calculates the locus of the foot during walking based on the acceleration of the foot during walking indicated by the sensing data by the sensor device 100. For example, the calculation unit 292 integrates the foot acceleration vector shown in the sensing data to calculate the foot velocity vector, calculates the foot velocity vector, and calculates the foot locus.
  • the calculation unit 292 may extract the horizontal component of the foot acceleration based on the angular velocity shown in the sensing data.
  • the components of the horizontal plane referred to here are, for example, the X coordinate component and the Y coordinate component in FIG. 3 described later.
  • the calculation unit 292 may calculate the offset in the sensing data and make a correction to remove the offset.
  • the offset here is a steady deviation between the actual value and the measured value, and is also called a bias.
  • the offset value appears in the sensing data when the sensor device 100 is stationary, for example.
  • the calculation unit 292 may perform a process of correcting the drift by the integral calculation.
  • An existing correction method can be used as a method in which the calculation unit 292 corrects the bias and a method in which the calculation unit 292 corrects the drift.
  • FIG. 3 is a diagram showing an example of setting a coordinate system for interpreting sensing data by the sensor device 100.
  • the X-axis is set in the left-right direction when viewed from the subject, and the right direction is positive.
  • the Y-axis is set in the front-back direction when viewed from the subject, and the forward direction is positive.
  • the Z axis is set in the vertical direction, and the upward direction is positive.
  • FIG. 4 is a diagram showing an example of the locus of the left foot of the subject.
  • FIG. 4 shows an example in which the subject walks forward using the coordinate system described with reference to FIG. Therefore,
  • FIG. 4 shows an example in which the subject walks in the positive direction of the Y-axis.
  • the X-axis indicates the left-right direction of the subject, and the right direction is positive.
  • the line L11 shows an example of the trajectory of the left foot from the point P11 where the heel leaves the ground to the point P12 where the heel touches the ground again.
  • the arrow B11 is an arrow from the point P11 to the point P12.
  • the direction of the arrow B11 is approximately the same as the positive direction of the Y coordinate, which is the traveling direction of walking. Comparing the line L11 with the arrow B11, the line L11 bulges to the left with respect to the arrow B11.
  • the arrow B12 is an arrow showing an example of the deviation of the line L11 with respect to the arrow B11, and is oriented to the left (negative direction of the X coordinate).
  • the locus of the left foot during walking has a large deviation to the left with respect to the traveling direction, and then the deviation becomes small.
  • the locus of the left foot during walking becomes a shape like an arc swelling to the left like the line L11.
  • the locus during walking has a large deviation to the right with respect to the traveling direction, and then this deviation becomes small.
  • the locus of the right foot during walking becomes a shape like an arc that bulges to the right.
  • Such a movement in which the foot shifts to the left or right so that the locus of the foot during walking becomes a shape like an arc is called a circulation movement.
  • the left and right feet have different directions of left and right deviation of the locus during walking.
  • the left foot shifts to the left, and the right foot shifts to the right.
  • the calculation unit 292 includes the deviation of the foot in the lateral direction with respect to the traveling direction in walking.
  • the determination unit 293 determines the attachment state of the sensor device 100 to the foot based on the movement of the foot calculated using the sensing data by the sensor device 100.
  • the sensor device 100 is provided on the shoe 810, and when the subject wears the shoe 810, the sensor device 100 is attached to the foot.
  • the determination unit 293 determines any one or more of the following.
  • (1) Vertical orientation of the sensor device 100 For example, the determination unit 293 determines the vertical orientation of the sensor device 100 based on the gravitational acceleration detected by the sensor device 100.
  • the determination unit 293 determines the left-right orientation of the sensor device 100 based on the up-down orientation and the front-back orientation of the sensor device 100.
  • the determination unit 293 determines the left and right sides of the foot to which the sensor device 100 is attached, based on the swirling motion in the locus of the foot during walking calculated by the calculation unit 292.
  • the determination unit 293 determines that the sensor device 100 is attached to the left foot.
  • the determination unit 293 determines that the sensor device 100 is attached to the right foot.
  • the determination unit 293 may determine the appropriateness of the state in which the sensor device 100 is attached to the foot. Specifically, the determination unit 293 determines whether or not the above (1) to (4) match the assumed orientation and the left and right of the foot. That is, the direction to be attached to the sensor device 100 and the left and right sides of the foot are predetermined, and the determination unit 293 determines whether or not the sensor device 100 is attached as determined.
  • the determination unit 293 controls the display unit 220 to determine the determination result.
  • An alarm message indicating the above may be displayed.
  • the judgment unit 293 displays an alarm message indicating the correction content such as "Please replace the sensor of the left shoe and the sensor of the right shoe” or "Please reattach the sensor of the left shoe upside down". It may be displayed on 220.
  • the determination unit 293 displays the content of the detected defect and a message to automatically correct it in addition to or instead of the alarm message. It may be displayed on the unit 220.
  • the determination unit 293 causes the display unit 220 to display a message such as "Since it is detected that the sensor of the left shoe is attached upside down, the calculation is performed by reversing the sensor measurement value upside down.” It may be.
  • the coordinate system setting unit 294 sets a coordinate system for interpreting the sensing data by the sensor device 100 based on the state of attachment of the sensor device 100 to the foot. For example, the coordinate system setting unit 294 may perform coordinate transformation such as affine transformation on the sensing data by the sensor device 100 to match the value of the sensing data with a predetermined coordinate system.
  • the coordinate system setting unit 294 sets the left and right of the foot to which the sensor device 100 is attached according to the determination results of the above (1) to (4) by the determination unit 293, and also sets the left and right of the foot to which the sensor device 100 is attached. Set the coordinates.
  • the X coordinate corresponds to the left and right coordinates, and the rightward direction is positive.
  • the Y coordinate corresponds to the example of the front and rear coordinates, and the forward direction is positive.
  • the Z coordinate corresponds to the example of the upper and lower coordinates, and the upward direction is positive.
  • the coordinate system setting unit 294 may set the coordinate system in the same manner as in the case of FIG. However, the coordinate system setting unit 294 is not essential to the information processing device 200.
  • the information processing device 200 does not include the coordinate system setting unit 294, the user of the information processing system 1 (for example, the target person) so that the display unit 220 displays an alarm message and corrects the attachment of the sensor device 100 as described above. ).
  • FIG. 5 is a flowchart showing an example of a procedure in which the information processing device 200 determines the left and right sides of the foot to which the sensor device 100 is attached.
  • the acquisition unit 291 acquires the sensing data by the sensor device 100 (step S101).
  • the calculation unit 292 calculates the direction of the bouncing operation (step S102). Specifically, as described above, the calculation unit 292 calculates the deviation of the foot trajectory calculated from the sensing data in the left-right direction. Next, the determination unit 293 determines whether the sensor device 100 is attached to the left or right foot based on the calculation result by the calculation unit 292 (step S103).
  • the display unit 220 displays the determination result according to the control of the determination unit 293 (step S104). For example, when the determination unit 293 determines that the left and right sides of the foot to which the sensor device 100 is attached are not appropriate, the display unit 220 may display an alarm message as described above. After step S104, the information processing apparatus 200 ends the process of FIG.
  • the shape of the sensor device 100 may be shaped so that the sensor device 100 can be mounted in an appropriate orientation.
  • FIG. 6 is a diagram showing an example of the shape of the sensor device 100 when the sensor device 100 is viewed from the lower surface side.
  • the lower surface side of the sensor device 100 is the side that becomes the ground side when the sensor device 100 is attached to the shoe in an appropriate orientation.
  • the vertical and horizontal lengths of the sensor device 100 are different.
  • the vertical direction in this case is the vertical direction in the figure.
  • the horizontal direction is the horizontal direction in the figure.
  • the vertical length of the sensor device 100 may be 40 mm (mm), and the horizontal length may be 29 mm.
  • a hole corresponding to the shape of the sensor device 100 is provided in the shoe 810, and when the sensor device 100 is fitted into this hole, the vertical and horizontal lengths are different, so that it is possible to prevent the sensor device 100 from being erroneously fitted in the vertical and horizontal directions.
  • a diagonal notch shape is provided at the lower right of the sensor device 100.
  • a hole corresponding to the shape of the sensor device 100 is provided in the shoe 810, and when the sensor device 100 is fitted into the hole, the notch shape allows the sensor device 100 to be fitted in an appropriate orientation in the front-rear direction and the left-right direction. There is expected.
  • the lower surface of the sensor device 100 shown in FIG. 6 may be provided with a display prompting the user to attach the sensor device 100 with this surface facing downward. As described above, attaching the sensor device 100 to the shoe may be fitting the sensor device 100 into the hole of the shoe. Further, the lower surface of the sensor device 100 shown in FIG. 6 may be provided with an indication as to whether it is attached to the left shoe or the right shoe.
  • FIG. 7 is a diagram showing an example of the shape of the sensor device 100 when the sensor device 100 is viewed from the upper surface side.
  • the upper surface side of the sensor device 100 is the side that becomes the empty side when the sensor device 100 is attached to the shoe in an appropriate orientation.
  • the shape of the sensor device 100 in the example of FIG. 7 is a shape obtained by turning over the sensor device 100 in the example of FIG.
  • FIG. 8 is a diagram showing an example of the shape of the sensor device 100 when the sensor device 100 is viewed from the side surface side.
  • the thickness of the sensor device 100 may be, for example, 7 mm.
  • the acquisition unit 291 acquires the sensing data by the sensor device 100.
  • the determination unit 293 determines the attachment state of the sensor device 100 to the foot based on the movement of the foot calculated using the sensing data. In this way, according to the information processing device 200, it is possible to determine the mounting state of the sensor device 100. Further, according to the information processing device 200, it is possible to determine whether or not the mounting state of the sensor device 100 is appropriate, and if it is determined that the mounting state of the sensor device 100 is not appropriate, the user (for example, for example, corrects the mounting of the sensor device 100. Can be encouraged to the target person). Alternatively, according to the information processing device 200, it is possible to set the coordinates for interpreting the sensing data according to the mounting state of the sensor device 100.
  • the calculation unit 292 calculates the movement of the foot during walking by using the sensing data obtained by the sensor device 100.
  • the mounting state of the sensor device 100 can be determined by comparing the walking traveling direction with the sensing data. For example, it is possible to determine whether or not the forward direction set in the sensor device 100 and the forward direction in walking match by referring to the acceleration component in the front-rear direction in the sensing data.
  • the calculation unit 292 calculates the locus of the foot during walking based on the acceleration of the foot during walking indicated by the sensing data by the sensor device 100.
  • the orientation of the sensor device 100 can be determined based on the calculated foot trajectory.
  • the direction of the foot locus can be determined to be the forward direction of the subject.
  • it is possible to determine whether the foot to which the sensor device 100 is attached is the left foot or the right foot, based on the direction of the turning operation described above.
  • the determination unit 293 determines the appropriateness of the mounting state of the sensor device 100. According to the information processing device 200, when it is determined that the mounting state of the sensor device 100 is not appropriate, a countermeasure such as outputting an alarm or displaying a message prompting the user to mount the sensor device 100 is taken. Can be done.
  • the display unit 220 displays an alarm message when the determination unit 293 determines that the mounting state of the sensor device 100 is inappropriate.
  • the information processing device 200 it is possible to notify the user (for example, the target person) of the possibility that the sensing data and the calculation result of the information processing device 200 are not appropriate by outputting an alarm such as displaying an alarm message. Further, according to the information processing device 200, the user can be urged to properly reattach the sensor device 100 by outputting an alarm such as displaying an alarm message.
  • the movement of the foot calculated by the calculation unit 292 includes a lateral deviation of the foot with respect to the traveling direction in walking. According to the information processing device 200, it is possible to determine whether the foot to which the sensor device 100 is attached is the left foot or the right foot, based on whether the foot is shifted to the right or to the left.
  • the coordinate system setting unit 294 sets a coordinate system for interpreting the sensing data by the sensor device 100 based on the state of attachment of the sensor device 100 to the foot. As a result, it is expected that the information processing apparatus 200 can appropriately process the sensing data and obtain an appropriate calculation result.
  • FIG. 9 is a diagram showing an example of the configuration of the information processing system according to the embodiment.
  • the information processing system 310 shown in FIG. 9 includes an acquisition unit 311 and a determination unit 312. With such a configuration, the acquisition unit 311 acquires the sensing data by the sensor device used for the foot. The determination unit 312 determines the attachment state of the sensor device to the foot based on the movement of the foot calculated using the sensing data.
  • the information processing system 310 it is possible to determine the state of attachment of the sensor device to the foot. Further, according to the information processing system 310, it is possible to determine whether or not the attachment state of the sensor device to the foot is appropriate, and if it is determined that the attachment state of the sensor device is not appropriate, the user is asked to correct the attachment of the sensor device. Can be prompted. Alternatively, according to the information processing system 310, it is possible to set the coordinates for interpreting the sensing data according to the attachment state of the sensor device to the foot.
  • FIG. 10 is a diagram showing an example of the configuration of the information processing apparatus according to the embodiment.
  • the information processing device 320 shown in FIG. 10 includes an acquisition unit 321 and a determination unit 322. With this configuration, the acquisition unit 321 acquires sensing data from the sensor device used for the foot. The determination unit 322 determines the attachment state of the sensor device to the foot based on the movement of the foot calculated using the sensing data.
  • the information processing device 320 it is possible to determine the state of attachment of the sensor device to the foot. Further, according to the information processing device 320, it is possible to determine whether or not the attachment state of the sensor device to the foot is appropriate, and if it is determined that the attachment state of the sensor device is not appropriate, the user is asked to correct the attachment of the sensor device. Can be prompted. Alternatively, according to the information processing device 320, it is possible to set the coordinates for interpreting the sensing data according to the attachment state of the sensor device to the foot.
  • FIG. 11 is a diagram showing an example of a processing procedure in the information processing method according to the embodiment.
  • the sensor device is attached to the foot based on the step of acquiring the sensing data by the sensor device used for the foot (step S201) and the movement of the foot calculated using the sensing data.
  • the step (step S202) of determining the state is included.
  • the state of attachment of the sensor device to the foot can be determined. Further, according to the information processing method of FIG. 11, it can be determined whether or not the attachment state of the sensor device to the foot is appropriate, and if it is determined that the attachment state of the sensor device is not appropriate, the attachment of the sensor device is corrected. You can urge the user. Alternatively, according to the information processing method of FIG. 11, it is possible to set the coordinates for interpreting the sensing data according to the attachment state of the sensor device to the foot.
  • FIG. 12 is a schematic block diagram showing the configuration of a computer according to at least one embodiment.
  • the computer 700 includes a CPU 710, a main storage device 720, an auxiliary storage device 730, and an interface 740. Any one or more of the above-mentioned information processing apparatus 200, information processing system 310, and information processing apparatus 320 may be mounted on the computer 700. In that case, the operation of each of the above-mentioned processing units is stored in the auxiliary storage device 730 in the form of a program.
  • the CPU 710 reads the program from the auxiliary storage device 730, expands it to the main storage device 720, and executes the above processing according to the program.
  • the CPU 710 secures a storage area corresponding to each of the above-mentioned storage units in the main storage device 720 according to the program. Communication between each device and other devices is executed by having the interface 740 have a communication function and performing communication according to the control of the CPU 710.
  • the operations of the control unit 290 and each unit thereof are stored in the auxiliary storage device 730 in the form of a program.
  • the CPU 710 reads the program from the auxiliary storage device 730, expands it to the main storage device 720, and executes the above processing according to the program. Further, the CPU 710 secures a storage area corresponding to the storage unit 280 in the main storage device 720 according to the program.
  • the communication performed by the communication unit 210 is executed by having the interface 740 have a communication function and performing communication according to the control of the CPU 710.
  • the function of the display unit 220 is executed by displaying an image on the display screen according to the control of the CPU 710 when the interface 740 includes a display screen.
  • the function of the operation input unit 230 is executed when the interface 740 includes an input device and accepts a user operation.
  • the operations of the acquisition unit 311 and the determination unit 312 are stored in the auxiliary storage device 730 in the form of a program.
  • the CPU 710 reads the program from the auxiliary storage device 730, expands it to the main storage device 720, and executes the above processing according to the program.
  • the operations of the acquisition unit 321 and the determination unit 322 are stored in the auxiliary storage device 730 in the form of a program.
  • the CPU 710 reads the program from the auxiliary storage device 730, expands it to the main storage device 720, and executes the above processing according to the program.
  • a program for realizing all or a part of the functions of the information processing device 200, the information processing system 310, and the information processing device 320 was recorded on a computer-readable recording medium and recorded on the recording medium.
  • the processing of each part may be performed by loading the program into the computer system and executing it.
  • the term "computer system” as used herein includes hardware such as an OS (operating system) and peripheral devices.
  • the "computer-readable recording medium” refers to a storage device such as a flexible disk, a magneto-optical disk, a portable medium such as a ROM or a CD-ROM, or a hard disk built in a computer system.
  • the above-mentioned program may be a program for realizing a part of the above-mentioned functions, and may be a program for realizing the above-mentioned functions in combination with a program already recorded in the computer system.
  • the embodiment of the present invention may be applied to an information processing system, an information processing device, an information processing method, and a recording medium.
  • 1,310 Information processing system 100 Sensor device 200, 320 Information processing device 210 Communication unit 220 Display unit 230 Operation input unit 280 Storage unit 290 Control unit 291, 311 and 321 Acquisition unit 292 Calculation unit 293, 312, 322 Judgment unit 294 Coordinates System setting part 810 shoes 811 left foot shoes 812 right foot shoes

Landscapes

  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Physics & Mathematics (AREA)
  • General Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Animal Behavior & Ethology (AREA)
  • Biophysics (AREA)
  • Pathology (AREA)
  • Veterinary Medicine (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Medical Informatics (AREA)
  • Molecular Biology (AREA)
  • Surgery (AREA)
  • Public Health (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Human Computer Interaction (AREA)
  • Physiology (AREA)
  • Dentistry (AREA)
  • Oral & Maxillofacial Surgery (AREA)
  • Measurement Of The Respiration, Hearing Ability, Form, And Blood Characteristics Of Living Organisms (AREA)

Abstract

情報処理システムが、足に用いられるセンサ装置によるセンシングデータを取得する取得部と、前記センシングデータを用いて算出される前記足の動きに基づいて、前記センサ装置の前記足への取り付け状態を判定する判定部と、を備える。

Description

情報処理システム、情報処理装置、情報処理方法および記録媒体
 本発明は、情報処理システム、情報処理装置、情報処理方法および記録媒体に関する。
 足の動きを把握するための技術が提案されている。
 例えば、特許文献1に記載の運動解析装置は、使用者の腰に取り付けられる慣性計測ユニットを用いて、使用者の右足接地期間を含む第1期間と、使用者の左足接地期間を含む第2期間との判定を行う。
日本国特開2016-32611号公報
 センサを用いて足の動きを測定する際、センサが適切に取り付けられていないと、得られるデータも適切でないものになってしまうことが考えられる。
 本発明の目的の一例は、上記の問題を解決することができる情報処理システム、情報処理装置、情報処理方法および記録媒体を提供することである。
 本発明の第1の態様によれば、情報処理システムは、足に用いられるセンサ装置によるセンシングデータを取得する取得部と、前記センシングデータを用いて算出される前記足の動きに基づいて、前記センサ装置の前記足への取り付け状態を判定する判定部と、を備える。
 本発明の第2の態様によれば、情報処理装置は、足に用いられるセンサ装置によるセンシングデータを取得する取得部と、前記センシングデータを用いて算出される前記足の動きに基づいて、前記センサ装置の前記足への取り付け状態を判定する判定部と、を備える。
 本発明の第3の態様によれば、情報処理方法は、足に用いられるセンサ装置によるセンシングデータを取得する工程と、前記センシングデータを用いて算出される前記足の動きに基づいて、前記センサ装置の前記足への取り付け状態を判定する工程と、を含む。
 本発明の第3の態様によれば、記録媒体は、コンピュータに、足に用いられるセンサ装置によるセンシングデータを取得する工程と、前記センシングデータを用いて算出される前記足の動きに基づいて、前記センサ装置の前記足への取り付け状態を判定する工程と、を実行させるためのプログラムを記録した記録媒体である。
 上記した情報処理システム、情報処理装置、情報処理方法および記録媒体によれば、センサの取り付け状態を判定することができる。
実施形態に係る情報処理システムの装置構成の例を示す概略構成図である。 実施形態に係る情報処理装置の機能構成の例を示す概略ブロック図である。 実施形態に係るセンサ装置によるセンシングデータを解釈するための座標系の設定例を示す図である。 対象者の左足の軌跡の例を示す図である。 実施形態に係る情報処理装置が、センサ装置が取り付けられている足の左右を判定する処理の手順の例を示すフローチャートである。 実施形態に係るセンサ装置を下面側から見た場合のセンサ装置の形状の例を示す図である。 実施形態に係るセンサ装置を上面側から見た場合のセンサ装置の形状の例を示す図である。 実施形態に係るセンサ装置を側面側から見た場合のセンサ装置の形状の例を示す図である。 実施形態に係る情報処理システムの構成の例を示す図である。 実施形態に係る情報処理装置の構成の例を示す図である。 実施形態に係る情報処理方法における処理の手順の例を示す図である。 少なくとも1つの実施形態に係るコンピュータの構成を示す概略ブロック図である。
 以下、本発明の実施形態を説明するが、以下の実施形態は請求の範囲にかかる発明を限定するものではない。また、実施形態の中で説明されている特徴の組み合わせの全てが発明の解決手段に必須であるとは限らない。
 図1は、実施形態に係る情報処理システムの装置構成の例を示す概略構成図である。図1に示す構成で、情報処理システム1は、センサ装置100と、情報処理装置200とを備える。
 情報処理システム1は、歩容(Gait)など人の足の動きを測定し解析するシステムである。また、情報処理システム1は、足の動きの測定に用いるセンサ(センサ装置100)の取り付け状態を判定する。センサが適切に取り付けられていない場合、センシングデータ(センサ測定値)も適切でないものとなり、さらには、センシングデータを用いた演算の結果も適切でないものとなると考えられる。これに対し、情報処理システム1が、センサの取り付け状態を判定することで、センシングデータおよび演算結果が適切でないものとなることを回避し得る。
 センサ装置100は、情報処理システム1による解析の対象者が履く靴に設けられる。例えば、靴の中敷きの下の靴本体上面に、センサ装置100をはめ込むための穴が設けられていてもよい。センサ装置100を靴に設置する作業者は、一旦、靴から中敷きを外し、センサ装置100をこの穴にはめ込み、中敷きを靴の中に敷き直す。
 あるいは、靴の中敷き(例えば、中敷きの裏面側)に、センサ装置100をはめ込むための穴が設けられていてもよい。センサ装置100を靴に設置する作業者は、一旦、靴から中敷きを外し、センサ装置100をこの中敷きの穴にはめ込み、中敷きを靴の中に敷き直す。
 センサ装置100は、例えばIMU(Internal Measurement Unit、慣性計測装置)を含んで構成され、センサ装置100自らの3軸加速度および3軸角速度を測定するなど、センサ装置100自らの動きを測定する。また、センサ装置100は、通信装置を備えて構成され、センシングデータを情報処理装置200へ送信する。
 センサ装置100が測定するセンサ装置100自らの動きは、センサ装置100が設けられている靴の動きと見做すことができる。さらには、センサ装置100が測定するセンサ装置100自らの動きは、情報処理システム1による解析の対象者の足の動きと見做すことができる。
 情報処理システム1による解析の対象者を単に対象者とも称する。対象者の足を単に足とも称する。
 センサ装置100が設けられる靴を靴810と称する。1足の靴810のうち、左足用の靴を左足靴811と称し、右足用の靴を右足靴812と称する。
 以下では、センサ装置100が、左足靴811、右足靴812それぞれに設けられる場合を例に説明する。左足靴811に設けられるセンサ装置100をセンサ装置101と称する。右足靴812に設けられるセンサ装置100をセンサ装置102と称する。
 ただし、情報処理システム1が足の動きを簡易的に測定する場合など、センサ装置100が、左足靴811および右足靴812のうち何れか一方のみに設けられていてもよい。
 また、センサ装置100の設置方法は、靴に設けられる方法に限定されず、足の動きを測定可能な設置方法であればよい。例えば、センサ装置100がバンドで足に固定されていてもよい。
 情報処理装置200は、センサ装置100によるセンシングデータを取得する。情報処理装置200は、得られたセンシングデータを用いて対象者の足の動きを解析する。また、情報処理装置200は、得られたセンシングデータを用いてセンサ装置100の取り付け状態を判定する。
 情報処理装置200は、例えばスマートフォンを用いて構成される。情報処理装置200が、スマートフォンなど携帯型の機器を用いて構成され、対象者が情報処理装置200を携帯することで、情報処理装置200は、センサ装置100の近くに位置し続ける。これにより、情報処理装置200とセンサ装置100とが例えば近距離無線通信にて通信を行うなど、情報処理装置200とセンサ装置100との通信が比較的容易に行える。
 ただし、情報処理装置200が、パソコン(Personal Computer、PC)を用いて構成されるなど、スマートフォン以外の機器を用いて構成されていてもよい。
 図2は、情報処理装置200の機能構成の例を示す概略ブロック図である。図2に示す構成で、情報処理装置200は、通信部210と、表示部220と、操作入力部230と、記憶部280と、制御部290とを備える。制御部290は、取得部291と、算出部292と、判定部293と、座標系設定部294とを備える。
 通信部210は、他の装置と通信を行う。特に、通信部210は、センサ装置100と通信を行い、センサ装置100からのセンシングデータを受信する。
 通信部210の通信方式は、特定の方式に限定されず、センサ装置100と通信可能であればよい。
 表示部220は、例えば液晶パネルまたはLED(Light Emitting Diode、発光ダイオード)パネル等の表示画面を備え、各種画像を表示する。例えば、表示部220は、情報処理装置200がセンサ装置100のセンシングデータを解析した解析結果を表示する。
 また、表示部220は、警報出力部の例に該当する。情報処理装置200が、センサ装置100の取付け状態が不適切であると判定した場合、表示部220は、センサ装置100の取付け状態が不適切であることを示す警報メッセージを表示する。
 ただし、情報処理装置200が警報を出力する方法は、警報メッセージを表示する方法に限定されない。例えば、情報処理装置200がスピーカを備え、警報メッセージの表示に加えて、あるいは代えて、警報音または警報メッセージ音声、あるいはそれらの組み合わせを出力するようにしてもよい。
 操作入力部230は、例えば表示部220の表示画面に設けられたタッチパネルを構成するタッチセンサなどの入力デバイスを備え、ユーザ操作を受け付ける。例えば、操作入力部230は、センサ装置100によるセンシングデータの解析を指示するユーザ操作を受け付ける。
 記憶部280は、各種データを記憶する。記憶部280は、情報処理装置200が備える記憶デバイスを用いて構成される。
 制御部290は、情報処理装置200の各部を制御して各種処理を行う。制御部290の機能は、例えば情報処理装置200が備えるCPU(Central Processing Unit、中央処理装置)が、記憶部280からプログラムを読み出して実行することで実行される。
 取得部291は、センサ装置100によるセンシングデータを取得する。具体的には、取得部291は、通信部210がセンサ装置100から受信する受信データからセンシングデータを抽出する。
 算出部292は、センサ装置100によるセンシングデータを用いて対象者の歩行時の足の動きを算出する。
 例えば、算出部292は、センサ装置100によるセンシングデータが示す歩行時の足の加速度に基づいて、歩行時の足の軌跡を算出する。例えば、算出部292は、センシングデータに示される足の加速度ベクトルを積分して足の速度ベクトルを算出し、足の速度ベクトルを算出して足の軌跡を算出する。
 その際、足の上下移動の影響を軽減させるために、算出部292が、センシングデータに示される角速度に基づいて、足の加速度のうち水平面の成分を抽出するようにしてもよい。ここでいう水平面の成分は、例えば、後述する図3におけるX座標成分及びY座標成分である。
 また、算出部292が、センシングデータにおけるオフセットを算出し、オフセットを除去する補正を行うようにしてもよい。ここでいうオフセットは、実際値と測定値との定常的なずれであり、バイアスとも呼ばれる。オフセット値は、例えばセンサ装置100が静止しているときのセンシングデータに現れる。
 また、算出部292が、積分演算によるドリフトを補正する処理を行うようにしてもよい。
 算出部292がバイアスを補正する方法、および、算出部292がドリフトを補正する方法として、既存の補正方法を用いることができる。
 算出部292が算出する足の軌跡に基づいて、センサ装置100が左右どちらの足に取り付けられているかを判定することができる。図3および図4を参照して、この点について説明する。
 図3は、センサ装置100によるセンシングデータを解釈するための座標系の設定例を示す図である。
 図3の例では、対象者から見て左右方向にX軸が設定され、右向きが正になっている。また、対象者から見て前後方向にY軸が設定され、前向きが正になっている。また、上下方向にZ軸が設定され、上向きが正になっている。
 図4は、対象者の左足の軌跡の例を示す図である。
 図4は、図3を参照して説明した座標系を用いて、対象者が前へ向かって歩く場合の例を示している。したがって、図4は、対象者がY軸の正の向きに歩く場合の例を示している。X軸は、対象者の左右方向を示し、右向きが正になっている。
 線L11は、点P11で踵が地面から離れてから、点P12で再び踵が地面につくまでの、左足の軌跡の例を示している。矢印B11は、点P11から点P12へと向かう矢印である。矢印B11の向きは、歩行の進行方向であるY座標の正の向きとおよそ一致している。
 線L11と矢印B11とを比較すると、線L11は、矢印B11に対して左に膨らんでいる。矢印B12は、矢印B11に対する線L11のずれの例を示す矢印であり、左向き(X座標の負の向き)になっている。
 このように、歩行時の左足の軌跡は、進行方向に対して左側へのずれが大きくなった後、このずれが小さくなっていく。これにより、歩行時の左足の軌跡は、線L11のように、左に膨らむ円弧のような形状となる。
 右足の場合は、歩行時の軌跡は、進行方向に対して右側へのずれが大きくなった後、このずれが小さくなっていく。これにより、歩行時の右足の軌跡は、右に膨らむ円弧のような形状となる。このように、歩行時の足の軌跡が円弧のような形状になるように、足が左右にずれる動作を、ぶん回し(Circumduction)動作と称する。
 上記のように、左足と右足とでは、歩行時の軌跡の左右のずれの向きが異なる。左足の場合は左にずれ、右足の場合は右にずれる。このずれの向きを判定することで、センサ装置100が左右どちらの足に取り付けられているかを判定することができる。
 そこで、算出部292は、足の動きを算出する際、歩行における進行方向に対する横方向への足のずれを含んで算出する。次に説明する判定部293が、この算出結果を用いて、センサ装置100が左右どちらの足に取り付けられているかを判定する。
 判定部293は、センサ装置100によるセンシングデータを用いて算出される足の動きに基づいて、センサ装置100の足への取り付け状態を判定する。上記のように、センサ装置100は靴810に設けられており、対象者が靴810を履くことで、センサ装置100が足に取り付けられる。
 例えば、判定部293は、以下のうち何れか1つ以上を判定する。
(1) センサ装置100の上下の向き:
 例えば、判定部293は、センサ装置100が検出する重力加速度に基づいて、センサ装置100の上下の向きを判定する。
(2) センサ装置100の前後の向き:
 例えば、判定部293は、算出部292が算出する歩行時の足の軌跡に基づいて、歩行における進行方向を前向きと判定する。
(3) センサ装置100の左右の向き:
 例えば、判定部293は、センサ装置100の上下の向きおよび前後の向きに基づいて、センサ装置100の左右の向きを判定する。
(4) センサ装置100が取り付けられた足の左右:
 例えば、判定部293は、算出部292が算出する歩行時の足の軌跡におけるぶん回し動作に基づいて、センサ装置100が取り付けられた足の左右を判定する。ぶん回し動作によって足の軌跡が、進行方向に対して左側に膨らんでいる場合、判定部293は、センサ装置100が左足に取り付けられていると判定する。一方、ぶん回し動作によって足の軌跡が、進行方向に対して右側に膨らんでいる場合、判定部293は、センサ装置100が右足に取り付けられていると判定する。
 判定部293が、センサ装置100の足への取り付け状態の適切性を判定するようにしてもよい。具体的には、判定部293は、上記の(1)から(4)が、想定されている向きおよび足の左右と一致するか否かを判定する。すなわち、センサ装置100と取り付けるべき向きおよび足の左右が予め定められており、判定部293は、センサ装置100が、定められたとおりに取り付けられているか否かを判定する。
 上記の(1)から(4)のうち何れか1つ以上が、想定されている向きおよび足の左右と一致しないと判定した場合、判定部293が、表示部220を制御して、判定結果を示す警報メッセージを表示させるようにしてもよい。
 例えば、判定部293が、「左靴のセンサと右靴のセンサを入れ替えて下さい」、あるいは、「左靴のセンサを上下逆向きに付け直して下さい」といった修正内容を示す警報メッセージを表示部220に表示させるようにしてもよい。
 また、次に説明する座標系設定部294が座標系を設定する場合、判定部293が、警報メッセージに加えて、あるいは代えて、検出した不具合の内容、および、自動修正する旨のメッセージを表示部220に表示させるようにしてもよい。例えば、判定部293が、「左靴のセンサが上下逆向きに付けられていることを検出したため、センサ測定値の上下を逆にして計算を行います」といったメッセージを表示部220に表示させるようにしてもよい。
 座標系設定部294は、センサ装置100の足への取り付け状態に基づいて、センサ装置100によるセンシングデータを解釈するための座標系を設定する。例えば、座標系設定部294が、センサ装置100によるセンシングデータに対してアフィン変換等の座標変換を行って、センシングデータの値を所定の座標系に合わせるようにしてもよい。
 座標系設定部294は、例えば、判定部293による上記(1)から(4)の判定結果に従って、センサ装置100が取り付けられている足の左右を設定し、また、上下、前後、左右の各座標を設定する。
 上述した図3の例では、X座標が左右の座標に該当し、右向きが正になっている。Y座標は、前後の座標の例に該当し、前向きが正になっている。Z座標は上下の座標の例に該当し、上向きが正になっている。座標系設定部294が、図3の場合と同様に座標系を設定するようにしてもよい。
 ただし、座標系設定部294は、情報処理装置200に必須ではない。情報処理装置200が座標系設定部294を備えない場合、上述したように表示部220が警報メッセージを表示して、センサ装置100の取り付けを修正するよう、情報処理システム1のユーザ(例えば対象者)に促す。
 次に図5を参照して、情報処理装置200の動作について説明する。
 図5は、情報処理装置200が、センサ装置100が取り付けられている足の左右を判定する処理の手順の例を示すフローチャートである。
 図5の処理で、取得部291は、センサ装置100によるセンシングデータを取得する(ステップS101)。
 次に、算出部292は、ぶん回し動作の方向を計算する(ステップS102)。具体的には、算出部292は、上述したように、センシングデータから算出される足の軌跡の、左右方向のずれを算出する。
 次に、判定部293は、算出部292による算出結果に基づいて、センサ装置100が左右どちらの足に取り付けられているかを判定する(ステップS103)。
 そして、表示部220は、判定部293の制御に従って、判定結果を表示する(ステップS104)。例えば、判定部293が、センサ装置100が取り付けられている足の左右が適切でないと判定した場合に、表示部220が、上述したように警報メッセージを表示するようにしてもよい。
 ステップS104の後、情報処理装置200は、図5の処理を終了する。
 センサ装置100の形状を、センサ装置100が適切な向きに取り付けられるような形状にしてもよい。
 図6は、センサ装置100を下面側から見た場合のセンサ装置100の形状の例を示す図である。センサ装置100の下面側は、センサ装置100が適切な向きで靴に取り付けられたときに地面側となる側である。
 図6の例で、センサ装置100の縦横の長さが異なっている。この場合の縦は、図の上下方向である。横は、図の左右方向である。例えば、センサ装置100の縦の長さを40ミリメートル(mm)とし、横の長さを29ミリメートルとしてもよい。センサ装置100の形状に応じた穴が靴810に設けられ、センサ装置100がこの穴にはめ込まれるときに、縦横の長さが異なることで、縦横を誤ってはめ込まれることを防止できる。
 また、図6でセンサ装置100の右下に斜めの切り欠き形状が設けられている。センサ装置100の形状に応じた穴が靴810に設けられ、センサ装置100がこの穴にはめ込まれるときに、この切り欠き形状によって、センサ装置100が、前後および左右について適切な向きにはめ込まれることが期待される。
 図6に示されるセンサ装置100の下面に、この面を下向きにして靴に取り付けるように促す表示を設けるようにしてもよい。上記のように、靴にセンサ装置100を靴に取り付けることは、センサ装置100を靴の穴にはめ込むことであってもよい。
 また、図6に示されるセンサ装置100の下面に、左靴、右靴のいずれに取り付けるかの表示を設けるようにしてもよい。
 図7は、センサ装置100を上面側から見た場合のセンサ装置100の形状の例を示す図である。センサ装置100の上面側は、センサ装置100が適切な向きで靴に取り付けられたときに空(そら)側となる側である。
 図7の例におけるセンサ装置100の形状は、図6の例におけるセンサ装置100を裏返した形状になっている。
 図6および図7の例のように、センサ装置100の上面の表示と下面の表示とを異なる表示にすることで、センサ装置100が上下逆に靴に取り付けられる可能性を低減させることができる。
 図8は、センサ装置100を側面側から見た場合のセンサ装置100の形状の例を示す図である。
 図8の例で、センサ装置100の厚さを、例えば7ミリメートルとしてもよい。センサ装置100の厚さを比較的薄くすることで、センサ装置100が装着された靴810を履いた対象者が違和感を感じる可能性を低減させることができる。
 以上のように、取得部291は、センサ装置100によるセンシングデータを取得する。判定部293は、センシングデータを用いて算出される足の動きに基づいて、センサ装置100の足への取り付け状態を判定する。
 このように、情報処理装置200によれば、センサ装置100の取り付け状態を判定することができる。さらには、情報処理装置200によれば、センサ装置100の取り付け状態が適切か否かを判定することができ、適切でないと判定された場合は、センサ装置100の取り付けを修正するようユーザ(例えば対象者)に促すことができる。あるいは、情報処理装置200によれば、センサ装置100の取り付け状況に応じて、センシングデータの解釈のための座標を設定するといった対応が可能となる。
 また、算出部292は、センサ装置100によるセンシングデータを用いて歩行時の足の動きを算出する。
 情報処理装置200によれば、歩行の進行方向とセンシングデータとを比較することで、センサ装置100の取り付け状態を判定することができる。例えば、センシングデータにおける前後方向の加速度成分を参照して、センサ装置100に設定されている前向きと、歩行における前向きとが一致してるか否かを判定することができる。
 また、算出部292は、センサ装置100によるセンシングデータが示す歩行時の足の加速度に基づいて、歩行時の足の軌跡を算出する。
 情報処理装置200によれば、算出される足の軌跡に基づいて、センサ装置100の向きを判定することができる。例えば、足の軌跡の向きを対象者の前向きと判定することができる。また、情報処理装置200によれば、上述したぶん回し動作の向きに基づいて、センサ装置100取り付けられている足が左足か右足かを判定することができる。
 また、判定部293は、センサ装置100の取り付け状態の適切性を判定する。
 情報処理装置200によれば、センサ装置100の取り付け状態が適切でないと判定された場合、警報を出力する、または、センサ装置100の取り付けをユーザに促すメッセージを表示する等の対応策を講じることができる。
 また、表示部220は、判定部293が、センサ装置100の取付け状態が不適切であると判定した場合、警報メッセージを表示する。
 情報処理装置200によれば、警報メッセージの表示など警報の出力によって、センシングデータおよび情報処理装置200の算出結果が適切でない可能性をユーザ(例えば対象者)に通知することができる。また、情報処理装置200によれば、警報メッセージの表示など警報の出力によって、センサ装置100を適切に取り付け直すようユーザに促すことができる。
 また、算出部292が算出する足の動きは、歩行における進行方向に対する横方向への足のずれを含む。
 情報処理装置200によれば、足が右にずれているか左にずれているかに基づいて、センサ装置100取り付けられている足が左足か右足かを判定することができる。
 また、座標系設定部294は、センサ装置100の足への取り付け状態に基づいて、センサ装置100によるセンシングデータを解釈するための座標系を設定する。
 これにより、情報処理装置200では、センシングデータを適切に処理でき、適切な計算結果を得られると期待される。
 図9は、実施形態に係る情報処理システムの構成の例を示す図である。図9に示す情報処理システム310は、取得部311と、判定部312とを備える。
 かかる構成で、取得部311は、足に用いられるセンサ装置によるセンシングデータを取得する。判定部312は、センシングデータを用いて算出される足の動きに基づいて、センサ装置の足への取り付け状態を判定する。
 情報処理システム310によれば、センサ装置の足への取り付け状態を判定することができる。さらには、情報処理システム310によれば、センサ装置の足への取り付け状態が適切か否かを判定することができ、適切でないと判定された場合は、センサ装置の取り付けを修正するようユーザに促すことができる。あるいは、情報処理システム310によれば、センサ装置の足への取り付け状況に応じて、センシングデータの解釈のための座標を設定するといった対応が可能となる。
 図10は、実施形態に係る情報処理装置の構成の例を示す図である。図10に示す情報処理装置320は、取得部321と、判定部322とを備える。
 かかる構成で、取得部321は、足に用いられるセンサ装置によるセンシングデータを取得する。判定部322は、センシングデータを用いて算出される足の動きに基づいて、センサ装置の足への取り付け状態を判定する。
 情報処理装置320によれば、センサ装置の足への取り付け状態を判定することができる。さらには、情報処理装置320によれば、センサ装置の足への取り付け状態が適切か否かを判定することができ、適切でないと判定された場合は、センサ装置の取り付けを修正するようユーザに促すことができる。あるいは、情報処理装置320によれば、センサ装置の足への取り付け状況に応じて、センシングデータの解釈のための座標を設定するといった対応が可能となる。
 図11は、実施形態に係る情報処理方法における処理の手順の例を示す図である。図11に示す情報処理方法は、足に用いられるセンサ装置によるセンシングデータを取得する工程(ステップS201)と、センシングデータを用いて算出される足の動きに基づいて、センサ装置の足への取り付け状態を判定する工程(ステップS202)とを含む。
 図11の情報処理方法によれば、センサ装置の足への取り付け状態を判定することができる。さらには、図11の情報処理方法によれば、センサ装置の足への取り付け状態が適切か否かを判定することができ、適切でないと判定された場合は、センサ装置の取り付けを修正するようユーザに促すことができる。あるいは、図11の情報処理方法によれば、センサ装置の足への取り付け状況に応じて、センシングデータの解釈のための座標を設定するといった対応が可能となる。
 図12は、少なくとも1つの実施形態に係るコンピュータの構成を示す概略ブロック図である。
 図12に示す構成で、コンピュータ700は、CPU710と、主記憶装置720と、補助記憶装置730と、インタフェース740とを備える。
 上記の情報処理装置200、情報処理システム310、および、情報処理装置320のうち何れか1つ以上が、コンピュータ700に実装されてもよい。その場合、上述した各処理部の動作は、プログラムの形式で補助記憶装置730に記憶されている。CPU710は、プログラムを補助記憶装置730から読み出して主記憶装置720に展開し、当該プログラムに従って上記処理を実行する。また、CPU710は、プログラムに従って、上述した各記憶部に対応する記憶領域を主記憶装置720に確保する。各装置と他の装置との通信は、インタフェース740が通信機能を有し、CPU710の制御に従って通信を行うことで実行される。
 情報処理装置200がコンピュータ700に実装される場合、制御部290およびその各部の動作は、プログラムの形式で補助記憶装置730に記憶されている。CPU710は、プログラムを補助記憶装置730から読み出して主記憶装置720に展開し、当該プログラムに従って上記処理を実行する。
 また、CPU710は、プログラムに従って、記憶部280に対応する記憶領域を主記憶装置720に確保する。通信部210が行う通信は、インタフェース740が通信機能を有し、CPU710の制御に従って通信を行うことで実行される。表示部220の機能は、インタフェース740が表示画面を備え、CPU710の制御に従って表示画面に画像を表示することで実行される。操作入力部230の機能は、インタフェース740が入力デバイスを備えてユーザ操作を受け付けることで実行される。
 情報処理システム310がコンピュータ700に実装される場合、取得部311および判定部312の動作は、プログラムの形式で補助記憶装置730に記憶されている。CPU710は、プログラムを補助記憶装置730から読み出して主記憶装置720に展開し、当該プログラムに従って上記処理を実行する。
 情報処理装置320がコンピュータ700に実装される場合、取得部321および判定部322の動作は、プログラムの形式で補助記憶装置730に記憶されている。CPU710は、プログラムを補助記憶装置730から読み出して主記憶装置720に展開し、当該プログラムに従って上記処理を実行する。
 なお、情報処理装置200、情報処理システム310、および、情報処理装置320の全部または一部の機能を実現するためのプログラムをコンピュータ読み取り可能な記録媒体に記録して、この記録媒体に記録されたプログラムをコンピュータシステムに読み込ませ、実行することにより各部の処理を行ってもよい。ここでいう「コンピュータシステム」とは、OS(オペレーティングシステム)や周辺機器等のハードウェアを含む。
 「コンピュータ読み取り可能な記録媒体」とは、フレキシブルディスク、光磁気ディスク、ROM、CD-ROM等の可搬媒体、コンピュータシステムに内蔵されるハードディスク等の記憶装置のことをいう。また上記プログラムは、前述した機能の一部を実現するためのものであっても良く、さらに前述した機能をコンピュータシステムにすでに記録されているプログラムとの組み合わせで実現できるものであっても良い。
 以上、本発明の実施形態について図面を参照して詳述してきたが、具体的な構成はこの実施形態に限られるものではなく、この発明の要旨を逸脱しない範囲の設計変更等も含まれる。
 本発明の実施形態は、情報処理システム、情報処理装置、情報処理方法および記録媒体に適用してもよい。
 1、310 情報処理システム
 100 センサ装置
 200、320 情報処理装置
 210 通信部
 220 表示部
 230 操作入力部
 280 記憶部
 290 制御部
 291、311、321 取得部
 292 算出部
 293、312、322 判定部
 294 座標系設定部
 810 靴
 811 左足靴
 812 右足靴

Claims (10)

  1.  足に用いられるセンサ装置によるセンシングデータを取得する取得部と、
     前記センシングデータを用いて算出される前記足の動きに基づいて、前記センサ装置の前記足への取り付け状態を判定する判定部と、
     を備える情報処理システム。
  2.  前記センシングデータを用いて歩行時の前記足の動きを算出する算出部
     をさらに備える、
     請求項1に記載の情報処理システム。
  3.  前記算出部は、前記センシングデータが示す前記歩行時の前記足の加速度に基づいて、前記歩行時の前記足の軌跡を算出する、
     請求項2に記載の情報処理システム。
  4.  前記判定部は、取り付け状態の適切性を判定する、
     請求項1から3の何れか一項に記載の情報処理システム。
  5.  前記判定部が、前記取付け状態が不適切であると判定した場合、警報を出力する警報出力部
     をさらに備える、請求項4に記載の情報処理システム。
  6.  前記足の動きは、歩行における進行方向に対する横方向への前記足のずれを含む、
     請求項1から5の何れか一項に記載の情報処理システム。
  7.  前記センサ装置の前記足への取り付け状態に基づいて、前記センシングデータを解釈するための座標系を設定する座標系設定部
     をさらに備える、請求項1から6の何れか一項に記載の情報処理システム。
  8.  足に用いられるセンサ装置によるセンシングデータを取得する取得部と、
     前記センシングデータを用いて算出される前記足の動きに基づいて、前記センサ装置の前記足への取り付け状態を判定する判定部と、
     を備える情報処理装置。
  9.  足に用いられるセンサ装置によるセンシングデータを取得する工程と、
     前記センシングデータを用いて算出される前記足の動きに基づいて、前記センサ装置の前記足への取り付け状態を判定する工程と、
     を含む情報処理方法。
  10.  コンピュータに、
     足に用いられるセンサ装置によるセンシングデータを取得する工程と、
     前記センシングデータを用いて算出される前記足の動きに基づいて、前記センサ装置の前記足への取り付け状態を判定する工程と、
     を実行させるためのプログラムを記録した記録媒体。
PCT/JP2019/042807 2019-10-31 2019-10-31 情報処理システム、情報処理装置、情報処理方法および記録媒体 WO2021084689A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
PCT/JP2019/042807 WO2021084689A1 (ja) 2019-10-31 2019-10-31 情報処理システム、情報処理装置、情報処理方法および記録媒体
JP2021553988A JPWO2021084689A5 (ja) 2019-10-31 情報処理システム、情報処理装置、情報処理方法およびプログラム
US17/769,827 US20220391010A1 (en) 2019-10-31 2019-10-31 Information processing system, information processing device, information processing method, and recording medium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2019/042807 WO2021084689A1 (ja) 2019-10-31 2019-10-31 情報処理システム、情報処理装置、情報処理方法および記録媒体

Publications (1)

Publication Number Publication Date
WO2021084689A1 true WO2021084689A1 (ja) 2021-05-06

Family

ID=75714991

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/042807 WO2021084689A1 (ja) 2019-10-31 2019-10-31 情報処理システム、情報処理装置、情報処理方法および記録媒体

Country Status (2)

Country Link
US (1) US20220391010A1 (ja)
WO (1) WO2021084689A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023170948A1 (ja) * 2022-03-11 2023-09-14 日本電気株式会社 歩容計測装置、計測装置、歩容計測システム、歩容計測方法、および記録媒体

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008307207A (ja) * 2007-06-14 2008-12-25 Advanced Telecommunication Research Institute International 動作計測装置
WO2014156534A1 (ja) * 2013-03-28 2014-10-02 ビッグローブ株式会社 情報処理装置、装着状態検出方法
JP2014202598A (ja) * 2013-04-04 2014-10-27 富士通株式会社 端末装置及び位置検出プログラム
JP2019198532A (ja) * 2018-05-17 2019-11-21 パナソニック インテレクチュアル プロパティ コーポレーション オブアメリカPanasonic Intellectual Property Corporation of America 検知方法、検知装置及び検知システム

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4291093B2 (ja) * 2003-09-11 2009-07-08 本田技研工業株式会社 2足歩行移動体の関節モーメント推定方法
JP4686681B2 (ja) * 2004-10-05 2011-05-25 国立大学法人東京工業大学 歩行介助システム

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008307207A (ja) * 2007-06-14 2008-12-25 Advanced Telecommunication Research Institute International 動作計測装置
WO2014156534A1 (ja) * 2013-03-28 2014-10-02 ビッグローブ株式会社 情報処理装置、装着状態検出方法
JP2014202598A (ja) * 2013-04-04 2014-10-27 富士通株式会社 端末装置及び位置検出プログラム
JP2019198532A (ja) * 2018-05-17 2019-11-21 パナソニック インテレクチュアル プロパティ コーポレーション オブアメリカPanasonic Intellectual Property Corporation of America 検知方法、検知装置及び検知システム

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023170948A1 (ja) * 2022-03-11 2023-09-14 日本電気株式会社 歩容計測装置、計測装置、歩容計測システム、歩容計測方法、および記録媒体

Also Published As

Publication number Publication date
US20220391010A1 (en) 2022-12-08
JPWO2021084689A1 (ja) 2021-05-06

Similar Documents

Publication Publication Date Title
CN108351690B (zh) 信息处理装置、信息处理系统和信息处理方法
JP5724237B2 (ja) 歩行変化判定装置
WO2014181606A1 (ja) 歩行姿勢計およびプログラム
JP5655674B2 (ja) ヘッドマウントディスプレイ及びこれに用いられるプログラム
JP6648515B2 (ja) 電子機器及びその角速度取得方法、角速度取得プログラム
JP2011149709A (ja) 歩幅推測方法、移動軌跡算出方法及び歩幅推測装置
JP2012205816A (ja) 歩行姿勢判定装置
CN105841695B (zh) 信息处理装置、信息处理方法以及记录介质
WO2013145223A1 (ja) 画像認識装置、画像認識方法、画像認識プログラム、及び記録媒体
JP5413345B2 (ja) 移動軌跡算出方法及び移動軌跡算出装置
JP7418029B2 (ja) 誘導支援装置及び履物
WO2021084689A1 (ja) 情報処理システム、情報処理装置、情報処理方法および記録媒体
JP2018068396A (ja) 運動解析装置、運動解析システム、及び運動解析方法
CN107073323B (zh) 运动信息测定装置和运动辅助方法
US20220183588A1 (en) Gait cycle determination system, gait cycle determination method, and program storage medium
JP2015014587A (ja) 情報処理装置、位置決定方法及び位置決定プログラム
JP2013181900A (ja) 姿勢算出方法、位置算出方法及び姿勢算出装置
JP6792690B1 (ja) ウェアラブルデバイス及びそれを作動させる方法
JPWO2018051540A1 (ja) 移動測定装置
JP2018169333A (ja) 身体向推定装置および身体向推定プログラム
JP2018075301A (ja) 歩行訓練システム
JP2011117945A5 (ja)
JP2014059315A (ja) 電子機器
WO2021084690A1 (ja) 情報処理システム、情報処理装置、インソール、情報処理方法および記録媒体
JP6776970B2 (ja) 視線検出装置、視線検出方法及び視線検出プログラム

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19950760

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021553988

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19950760

Country of ref document: EP

Kind code of ref document: A1