JP2015014587A - 情報処理装置、位置決定方法及び位置決定プログラム - Google Patents

情報処理装置、位置決定方法及び位置決定プログラム Download PDF

Info

Publication number
JP2015014587A
JP2015014587A JP2014012571A JP2014012571A JP2015014587A JP 2015014587 A JP2015014587 A JP 2015014587A JP 2014012571 A JP2014012571 A JP 2014012571A JP 2014012571 A JP2014012571 A JP 2014012571A JP 2015014587 A JP2015014587 A JP 2015014587A
Authority
JP
Japan
Prior art keywords
walking state
human
walking
information
processing apparatus
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2014012571A
Other languages
English (en)
Inventor
吉澤 史男
Fumio Yoshizawa
史男 吉澤
塚本 武雄
Takeo Tsukamoto
武雄 塚本
啓佑 小西
Keisuke Konishi
啓佑 小西
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ricoh Co Ltd
Original Assignee
Ricoh Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ricoh Co Ltd filed Critical Ricoh Co Ltd
Priority to JP2014012571A priority Critical patent/JP2015014587A/ja
Priority to US14/295,467 priority patent/US20140364979A1/en
Publication of JP2015014587A publication Critical patent/JP2015014587A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C22/00Measuring distance traversed on the ground by vehicles, persons, animals or other moving solid bodies, e.g. using odometers, using pedometers
    • G01C22/006Pedometers
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C21/00Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00
    • G01C21/10Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 by using measurements of speed or acceleration
    • G01C21/12Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 by using measurements of speed or acceleration executed aboard the object being navigated; Dead reckoning
    • G01C21/16Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 by using measurements of speed or acceleration executed aboard the object being navigated; Dead reckoning by integrating acceleration or speed, i.e. inertial navigation
    • G01C21/165Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 by using measurements of speed or acceleration executed aboard the object being navigated; Dead reckoning by integrating acceleration or speed, i.e. inertial navigation combined with non-inertial navigation instruments
    • G01C21/1654Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 by using measurements of speed or acceleration executed aboard the object being navigated; Dead reckoning by integrating acceleration or speed, i.e. inertial navigation combined with non-inertial navigation instruments with electromagnetic compass
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C21/00Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00
    • G01C21/20Instruments for performing navigational calculations
    • G01C21/206Instruments for performing navigational calculations specially adapted for indoor navigation

Landscapes

  • Engineering & Computer Science (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Electromagnetism (AREA)
  • Navigation (AREA)
  • Traffic Control Systems (AREA)

Abstract

【課題】自律航法による測位誤差の補正を高品質に行なうことを課題とする。【解決手段】情報処理装置は、記憶部と、推定部と、判定部と、決定部とを有する。記憶部は、歩行状態の情報と、該歩行状態が発生する位置を表す第1位置とを対応付けて記憶する。推定部は、人間の歩行に応じて測定される測定情報に基づいて歩行状態を推定する。判定部は、歩行状態が推定された場合に、測定情報に基づく自律航法により算出された位置を表す第2位置の近傍に、推定された歩行状態に対応付けられた第1位置が存在するか否かを判定する。決定部は、第2位置の近傍に第1位置が存在すると判定された場合に、第1位置を人間の現在位置として決定する。【選択図】図2

Description

本発明は、情報処理装置、位置決定方法及び位置決定プログラムに関する。
従来、歩行者向けの測位技術としては、歩行者が所有する携帯端末に搭載された自律航法の機能を利用したものがある。自律航法は、一つの様態として、移動を開始する位置をもとに、歩行者の移動方向や移動距離を反映していくことにより測位するものである。このため、自律航法は、測位が繰り返されるほど誤差が蓄積していく可能性がある。
そこで、最近では、測位誤差を補正するためのマップマッチングが行なわれることがある。マップマッチングは、一つの様態として、歩行者の測位で利用される各種センサの値や、歩行者周辺の地図情報等をもとに、歩行者の位置を推定するものである。例えば、地磁気センサの値から歩行者の進行方向を求め、進行方向が急変したときに、地図情報を用いて、現在地に近傍の交差点や曲がり角の位置を歩行者の現在位置とするマップマッチングがある。また、例えば、気圧センサの値から歩行者の標高を求め、標高が急変したときに、地図情報を用いて、現在地に近傍の階段やエレベータの位置を歩行者の現在位置とするマップマッチングがある。
しかしながら、上述した従来技術は、自律航法による測位誤差の補正を高品質に行なうことができないという問題がある。従来技術では、歩行者の右折、左折、上昇、下降等の移動方向の変化に伴い、自律航法での測位による位置の周辺に存在する、変化が生じる場所を、歩行者の現在位置としている。この結果、従来技術は、歩行者の移動方向が変化しなければ、自律航法による測位誤差を補正することはないため、自律航法による測位誤差の補正を高品質に行なうことができない。
本発明は、上記に鑑みてなされたものであって、自律航法による測位誤差の補正を高品質に行なうことが可能である情報処理装置、位置決定方法及び位置決定プログラムを提供することを目的とする。
上述した課題を解決し、目的を達成するため、本発明に係る情報処理装置は、歩行状態の情報と、該歩行状態が発生する位置を表す第1位置とを対応付けて記憶する記憶部と、人間の歩行に応じて測定される測定情報に基づいて前記歩行状態を推定する推定部と、前記歩行状態が推定された場合に、前記測定情報に基づく自律航法により算出された位置を表す第2位置の近傍に、推定された前記歩行状態に対応付けられた前記第1位置が存在するか否かを判定する判定部と、前記第2位置の近傍に前記第1位置が存在すると判定された場合に、前記第1位置を人間の現在位置として決定する決定部とを有する。
本発明の一つの様態によれば、自律航法による測位誤差の補正を高品質に行なうことができるという効果を奏する。
図1は、実施の形態1に係る情報処理装置の適用例を説明する図である。 図2は、実施の形態1に係る情報処理装置の構成例を示す機能ブロック図である。 図3は、加速度及び角速度の方向の例を説明する図である。 図4は、地磁気センサによって出力される角度の例を説明する図である。 図5は、測定情報の波形を説明するための経路の例を示す図である。 図6は、測定情報の波形の例を示す図である。 図7は、人間の歩行動作によって現れる波形モデルの例を示す図である。 図8は、加速度と歩幅との関係を説明する図である。 図9は、第2位置の算出イメージの例を示す図である。 図10は、対応情報の例を示す図である。 図11は、人間が歩行動作を行なうフロアの例を示す図である。 図12は、所定の歩行状態によって現れる波形モデルの例を示す図である。 図13は、実施の形態1に係る位置決定処理の流れの例を示すフローチャートである。 図14は、実施の形態1に係る測位の実施結果の例を説明する図である。 図15は、実施の形態1に係る測位の実施結果の例を説明する図である。 図16は、実施の形態1に係る測位の実施結果の例を説明する図である。
以下に添付図面を参照して、本発明に係る情報処理装置、位置決定方法及び位置決定プログラムの実施の形態を説明する。なお、以下の実施の形態により本発明が限定されるものではない。
(実施の形態1)
[情報処理装置の適用例]
図1を用いて、実施の形態1に係る情報処理装置の適用例について説明する。図1は、実施の形態1に係る情報処理装置の適用例を説明する図である。
図1に示すように、情報処理装置は、位置特定の対象となる被験者(人間)に装着される情報機器である。装着箇所は、例えば、人間の身体の重心となる腹部に装着する。これにより、人間の身体の重心にかかる加速度や角速度を高精度に測定できる。但し、情報処理装置の上記装着箇所は一例であり、厳密に指定するものではなく、測定したい身体情報の内容により異なる。
[実施の形態1に係る装置構成]
次に、図2を用いて、実施の形態1に係る情報処理装置の構成を説明する。図2は、実施の形態1に係る情報処理装置の構成例を示す機能ブロック図である。
図2に示すように、情報処理装置100は、測定部110と、自律航法部120と、第2位置導出部130と、対応情報記憶部140と、第1位置導出部150と、出力部160とを有する。
測定部110は、測定情報を測定する。かかる測定部110は、加速度センサ111と、角速度センサ112と、地磁気センサ113と、気圧センサ114とを有する。加速度センサ111は、測定情報の一つとして、情報処理装置100にかかる加速度を測定する。より具体的には、加速度センサ111は、情報処理装置100にかかる加速度を定期的に測定し、測定した加速度のX成分、Y成分及びZ成分を数値として第1位置導出部150に対して出力する。角速度センサ112は、測定情報の一つとして、情報処理装置100の角速度を測定する。より具体的には、角速度センサ112は、情報処理装置100の角速度を定期的に測定し、測定した角速度のピッチ成分、ロール成分及びヨー成分を数値として第1位置導出部150に対して出力する。
図3は、加速度及び角速度の方向の例を説明する図である。図3に示すように、加速度のX成分は被験者の前後方向であるX方向、Y成分は被験者の左右方向であるY方向、Z成分は被験者の上下方向であるZ方向に相当する。また、角速度のピッチ方向はX方向の軸、ロール方向はY方向の軸、ヨー方向はZ方向の軸それぞれの方向を中心として回転する方向に相当する。
地磁気センサ113は、測定情報の一つとして、情報処理装置100に近傍の地磁気を測定する。より具体的には、地磁気センサ113は、情報処理装置100に近傍の地磁気を定期的に測定し、該情報処理装置100の向きを、真北をゼロとする角度で第2位置導出部130に対して出力する。図4は、地磁気センサ113によって出力される角度の例を説明する図である。図4に示すように、地磁気センサ113によって出力される角度(情報処理装置100の向き)は、0度である真北と情報処理装置100のX方向との成す角度となる。本実施の形態では、人間の腹部に情報処理装置100を固定しているので、真北と情報処理装置100のX方向との成す角度から人間の向きがわかる。
気圧センサ114は、測定情報の一つとして、情報処理装置100に近傍の気圧を測定する。より具体的には、気圧センサ114は、情報処理装置100に近傍の気圧を定期的に測定し、測定した気圧に応じた標高を表す数値を、第2位置導出部130に対して出力する。
ここで、測定部110によって測定された測定情報の波形について説明する。図5は、測定情報の波形を説明するための経路の例を示す図である。図6は、測定情報の波形の例を示す図である。例えば、図5に示すように、情報処理装置100を装着した人間が、「椅子から立ち上がり(立席動作)、真東の方向、真南の方向、真西の方向、真北の方向の順に歩行動作を行ない、椅子に座る(着席動作)」といった動作を行なう。このような動作が行なわれたときの加速度センサ111、角速度センサ112、地磁気センサ113及び気圧センサ114それぞれによって測定された測定情報の出力波形は、図6に示したものとなる。
図6に示すように、人間が椅子に座っている間(0s〜1s,25s〜26s)は、加速度センサ111は固定値を出力し、角速度センサ112はゼロを出力している。すなわち、人間が椅子に座っている間は、人間の重心が動いていないために、加速度センサ111は固定値を出力し、角速度センサ112はゼロを出力する。かかる加速度センサ111からは、重力加速度のX成分、Y成分、Z成分のみが出力されている。また、人間が歩いている間(4s〜22s)は、加速度センサ111と角速度センサ112との出力波形に周期性が現れる。すなわち、人間が歩いている間は、人間の身体の重心が規則的に動いていることを表している。なお、図6において、歩行動作は、平坦な場所を歩行する「平坦歩行動作」としている。また、地磁気センサ113の出力波形は、真北を0度としているため徐々に高くなるが、元々座っていた椅子の場所に戻るときに当初の値と同一になる。また、気圧センサ114の出力波形は、人間の歩行する場所は平坦であるため、人間が着座している状態から立席した分だけ高い標高を表す値となる。
図2の説明に戻り、自律航法部120は、加速度センサ111や角速度センサ112によって測定された測定情報の出力波形から、人間の歩幅を推定する。かかる自律航法部120は、メモリ121と、メモリ122と、演算器123とを有する。メモリ121は、加速度センサ111によって測定された加速度の測定情報(数値)と、角速度センサ112によって測定された角速度の測定情報(数値)とを一時的に記憶する。メモリ121への測定情報の格納は、演算器123によって実行される。メモリ122は、人間の歩行動作によって現れる波形のモデル(以下、「波形モデル」と呼ぶ)を記憶する。
図7は、人間の歩行動作によって現れる波形モデルの例を示す図である。図7に示すように、メモリ122は、加速度の測定情報(X方向、Y方向及びZ方向)から推定される歩行動作のうち、移動方向に関連する波形モデルを記憶する。加えて、メモリ122は、角速度の測定情報(ピッチ方向、ロール方向及びヨー方向)から推定される歩行動作のうち、移動方向に関連する波形モデルを記憶する。
演算器123は、測定情報をもとに人間の歩幅を推定する。より具体的には、演算器123は、加速度センサ111によって測定された加速度の数値と、角速度センサ112によって測定された角速度の数値とを受け付ける。そして、演算器123は、加速度の数値と、角速度の数値とをメモリ121に一時的に保存し、それぞれの出力波形を再現する。続いて、演算器123は、メモリ122に記憶された波形モデルを参照し、再現したそれぞれの出力波形に類似した波形が存在するか否かを判定する。図6及び図7を用いて例を挙げると、演算器123は、図6に示した4s〜22sの期間における出力波形と、図7に示した波形モデルとで類似した波形が存在するので、人間が歩行動作をしているものとみなして、該歩行動作での歩幅を求める。歩幅の求め方については、一つの様態として、以下のように、加速度と歩幅との関係から求める手法が挙げられる。
図8は、加速度と歩幅との関係を説明する図である。図8に示すように、「Z方向の加速度振幅」と、「歩幅」との間には、一次相関があることが一般に知られている。これにより、演算器123は、図8に示す一次相関を用いて、人間の歩行動作による「Z方向の加速度振幅」から「歩幅」を求める。そして、演算器123は、求めた歩幅を第2位置導出部130に対して出力する。なお、歩幅の求め方については上記手法に限定されるものではない。
第2位置導出部130は、人間の現在位置を推定する。かかる第2位置導出部130は、メモリ131と、演算器132とを有する。メモリ131は、地図情報を記憶する。演算器132は、演算器123によって出力された人間の歩幅や、地磁気センサ113によって測定された情報処理装置100の向き、気圧センサ114によって測定された情報処理装置100の標高から、人間の現在位置を推定する。
より具体的には、演算器132は、演算器123によって出力された人間の歩幅と、地磁気センサ113によって測定された情報処理装置100の向きと、気圧センサ114によって測定された情報処理装置100の標高とを受け付ける。そして、演算器132は、歩幅から人間の移動量を求めるとともに、情報処理装置100の向き及び標高の変化量から人間の進行方向を求めることにより、移動ベクトルを生成する。続いて、演算器132は、前回の時点で推定された位置に、生成した移動ベクトルを加えることにより、新たな現在位置を推定する。その後、演算器132は、推定した現在位置を第1位置導出部150に対して出力する。なお、演算器132によって推定される現在位置は、「第2位置」の一例である。
図9は、第2位置の算出イメージの例を示す図である。図9に示すように、演算器132は、前回の時点で推定された位置(前回の第2位置)に、歩幅、向き及び標高から求めた移動ベクトルを加え、人間の現在位置(新たな第2位置)を求める。図9の例では、7つ前に推定した位置(7つ前の第2位置)から、人間の最新の現在位置(新しい第2位置)の推定までのイメージを表している。
但し、演算器132による位置の推定では、マップマッチングを採用しても良い。具体的には、演算器132は、推定した現在位置の周辺の地図情報をメモリ131から読み出し、人間の向き若しくは標高が急変し得る箇所を探索する。人間の向き若しくは標高が急変し得る箇所は、例えば、十字路や曲がり角、階段、坂道、エレベータ等が存在する箇所である。そして、演算器132は、人間の向き若しくは標高が急変し得る箇所が現在位置の周辺に検出された場合に、該現在位置を破棄し、検出された箇所を新たな現在位置として決定する。
対応情報記憶部140は、人間の歩行状態の情報と、第1位置とを対応付けて記憶する。かかる対応情報記憶部140は、メモリ141を有する。メモリ141は、人間の歩行状態の情報と、該歩行状態が発生する位置を表す第1位置とを対応付けて記憶する。人間の歩行状態とは、例えば、「跨ぎ」、「躓き」、「横歩き」、「屈み歩き」等の所定の歩行状態を指す。「跨ぎ」は、敷居やバンプ等が存在する場所で発生する歩行状態である。「躓き」は、床に配設されたコンセント等が存在する場所で発生する歩行状態である。「横歩き」は、細い通路等で発生する歩行状態である。「屈み歩き」は、天井の低い通路等で発生する歩行状態である。なお、所定の歩行状態は、上記の例に限られるものではない。
図10は、対応情報の例を示す図である。また、図11は、人間が歩行動作を行なうフロアの例を示す図である。図10に示すように、対応情報は、歩行状態の情報と、該歩行状態が発生する位置とが対応付けられた情報となる。このような対応情報は、図11に示すフロア図等から生成される。例えば、図11に示すように、位置Fと位置Gとは、細い通路となっている。これにより、図10に示すように、対応情報は、歩行状態(歩行状態の情報)「横歩き」と、発生する位置「位置Fの座標」、「位置Gの座標」とが対応付けられた情報となる。すなわち、「位置Fの座標」や「位置Gの座標」のあたりでは、歩行状態が「横歩き」になる場合があることがわかる。なお、位置A〜位置Jは、「第1位置」の一例である。
上述したように、所定の歩行状態については上記の例に限られるものではない。但し、所定の歩行状態をどのようにして決定するかは、以下の2点に注目することで効率良く実証結果を得ることができる。
1点目は、人間が歩行する通路に設置された、歩行において障害物となり得るものに注目することである。但し、人間の歩行が困難な大型の障害物が置かれている箇所は、人間が歩行する通路として適切ではないため注目しない。つまり、人間による歩行(歩行による通過)が可能である障害物のみに注目する。このような障害物が存在する箇所においては、人間が障害物を通過する際に、「跨ぎ」や「躓き」等といった歩行状態になることが考えられる。
2点目は、人間が歩行する通路の幅や高さ等といった構造の変化に注目することである。構造が変化する箇所では、歩行状態も変化することが考えられる。例えば、人間が自身の肩幅よりも狭い通路に進入する際は、「横歩き」といった歩行状態になることが考えられる。また、例えば、人間が自身の背丈よりも低い天井が存在する通路に進入する際は、「屈み歩き」といった歩行状態になることが考えられる。これら2点に注目することで、好適な対応情報を生成することができる。
第1位置導出部150は、歩行状態を推定し、推定した歩行状態をもとに人間の現在位置を決定する。かかる第1位置導出部150は、メモリ151と、メモリ152と、演算器153とを有する。メモリ151は、加速度センサ111によって測定された加速度の測定情報(数値)と、角速度センサ112によって測定された角速度の測定情報(数値)とを一時的に記憶する。メモリ151への測定情報の格納は、演算器153によって実行される。メモリ152は、所定の歩行状態によって表れる波形モデルを記憶する。
図12は、所定の歩行状態によって現れる波形モデルの例を示す図である。図12に示すように、メモリ152は、加速度の測定情報(X方向、Y方向及びZ方向)から推定される歩行動作のうち、所定の歩行状態に関連する波形モデルを記憶する。加えて、メモリ152は、角速度の測定情報(ピッチ方向、ロール方向及びヨー方向)から推定される歩行動作のうち、所定の歩行状態に関連する波形モデルを記憶する。つまり、メモリ152には、メモリ122に記憶された人間の移動方向に関する波形モデルとは異なる、人間の歩行状態に関する波形モデルが記憶される。詳細には、メモリ152に記憶される波形モデルは、メモリ122に記憶された波形モデルと比較して、より細かい形状が表現された波形モデルとなっている。例えば、メモリ152に記憶される波形モデルは、後述するように人間の所定の歩行状態を推定する際に利用されるため、振幅や、立ち上がり・立ち下がり速度、オーバーシュート、アンダーシュート、リンギングの有無等といった形状が表現された波形モデルとなっている。
演算器153は、人間の歩行状態を推定し、第2位置の近傍に、推定した歩行状態に対応する第1位置が存在する場合に、該第1位置を人間の現在位置として決定する。演算器153は、「推定部」、「判定部」、「決定部」の一例である。より具体的には、演算器153は、加速度センサ111によって測定された加速度の数値と、角速度センサ112によって測定された角速度の数値とを受け付ける。また、演算器153は、演算器132によって推定された人間の現在位置(第2位置)を受け付ける。そして、演算器153は、加速度の数値と、角速度の数値とをメモリ151に一時的に保存し、それぞれの出力波形を再現する。
続いて、演算器153は、メモリ152に記憶された波形モデルを参照し、再現したそれぞれの出力波形に類似した波形が存在するか否かを判定する。このとき、演算器153は、再現したそれぞれの出力波形に類似した波形モデルが存在すると判定した場合に、人間が歩行動作をしているものとみなす。ここで、演算器153は、人間が歩行動作をしていることに加えて、所定の歩行状態まで推定することができる。すなわち、演算器123においても人間が歩行していることを検出していたが、演算器153では、人間が歩行していることに加えて、人間の所定の歩行状態をさらに推定している。なお、演算器153は、再現したそれぞれの出力波形に類似した波形モデルが存在しないと判定した場合に、演算器132から受け付けた人間の現在位置(第2位置)を出力部160に対して出力する。すなわち、メモリ152に記憶された波形モデルに類似した出力波形が存在しない場合には、所定の歩行状態が推定されず、人間の歩行状態が通常の歩行状態であるから、後述するような所定の歩行状態に応じた現在位置の決定を行なわない。
その後、演算器153は、メモリ141に記憶された対応情報を参照し、推定した歩行状態(歩行状態の情報)に対応する位置の座標(第1位置)を取得する。そして、演算器153は、演算器132から受け付けた人間の現在位置(第2位置)の近傍に、推定した歩行状態に対応する位置座標(第1位置)が存在するか否かを判定する。このとき、演算器153は、第2位置の近傍に第1位置が存在すると判定した場合に、該第1位置を人間の新たな現在位置として決定する。すなわち、人間の歩行状態において、さらに所定の歩行状態が検出された場合には、自律航法から求められた人間の現在位置ではなく、所定の歩行状態に応じた現在位置を採用する。続いて、演算器153は、決定した人間の現在位置(第1位置)を出力部160に対して出力する。
なお、演算器153は、第2位置の近傍に第1位置が存在しないと判定した場合に、該第2位置を人間の現在位置として、出力部160に対して出力する。所定の歩行状態が推定されているにもかかわらず、第2位置の近傍に、所定の歩行状態に対応する第1位置が存在しない要因は、測定情報に誤差が発生した場合や、所定の歩行状態の発生し得ない箇所で人間が所定の歩行状態に対応する動作を行なった場合である。よって、このような場合は、第2位置を人間の現在位置とすれば良い。
出力部160は、情報処理装置100によって実行された処理の処理結果を出力する。かかる出力部160は、送信機161を有する。送信機161は、人間の現在位置を送信する。より具体的には、送信機161は、演算器153から人間の現在位置を受け付ける。そして、送信機161は、受け付けた人間の現在位置を、無線通信等により外部装置に対して送信する。無線通信の方式は、例えば、Bluetooth(登録商標)やWi‐Fi(Wireless Fidelity,登録商標)等を採用する。なお、送信機161によって送信される人間の現在位置は、第1位置若しくは第2位置の何れかとなる。
[実施の形態1に係る位置決定処理フロー]
次に、図13を用いて、実施の形態1に係る位置決定処理の流れについて説明する。図13は、実施の形態1に係る位置決定処理の流れの例を示すフローチャートである。
図13に示すように、加速度センサ111、角速度センサ112、地磁気センサ113及び気圧センサ114は、情報処理装置100の加速度、角速度、地磁気及び気圧の各種測定情報を測定する(ステップS101)。演算器123は、測定された加速度及び角速度の出力波形と、人間の歩行動作のうち移動方向に関連する波形モデルとを比較する(ステップS102)。このとき、演算器123は、出力波形と波形モデルとで類似する箇所を検出した場合に(ステップS103:Yes)、加速度と歩幅との一次相関等により、人間の歩幅を求める(ステップS104)。一方、演算器123によって出力波形と波形モデルとで類似する箇所が検出されない場合には(ステップS103:No)、ステップS101の処理が再度実行される。
演算器132は、演算器123によって求められた歩幅から人間の移動量を求め、地磁気センサ113及び気圧センサ114によって測定された情報処理装置100の向き及び標高の変化量から人間の進行方向を求める。そして、演算器132は、求めた移動量と進行方向とから移動ベクトルを生成し、前回の時点で推定された位置に、生成した移動ベクトルを加えることにより、新たな第2位置を算出する(ステップS105)。また、演算器132は、算出した第2位置の周辺の地図情報をメモリ131から読み出し、人間の向き若しくは標高が急変し得る箇所が存在するか否かを判定する(ステップS106)。
このとき、演算器132は、人間の向き若しくは標高が急変し得る箇所が存在すると判定した場合に(ステップS106:Yes)、算出した第2位置を、人間の向き若しくは標高が急変し得る箇所の位置に更新し、該箇所を新たな第2位置とする(ステップS107)。一方、演算器132によって、人間の向き若しくは標高が急変し得る箇所が存在しないと判定された場合には(ステップS106:No)、第2位置がさらに更新されることなくステップS108の処理が実行される。
演算器153は、測定された加速度及び角速度の出力波形と、人間の歩行動作のうち所定の歩行状態に関連する波形モデルとを比較する(ステップS108)。このとき、演算器153は、出力波形と波形モデルとで類似する箇所を検出した場合に(ステップS109:Yes)、人間の所定の歩行状態を推定する(ステップS110)。そして、演算器153は、対応情報を参照し、演算器132によって算出された第2位置の近傍に、推定した歩行状態に対応する第1位置が存在するか否かを判定する(ステップS111)。ここで、演算器153は、第2位置の近傍に第1位置が存在すると判定した場合に(ステップS111:Yes)、該第1位置を人間の現在位置として決定する(ステップS112)。送信機161は、演算器153によって決定された人間の現在位置である第1位置を、無線通信等により外部装置に対して送信する(ステップS113)。
また、演算器153は、出力波形と波形モデルとで類似する箇所を検出できない場合に(ステップS109:No)、演算器132によって算出された第2位置を人間の現在位置として決定する(ステップS114)。また、演算器153は、第2位置の近傍に第1位置が存在しないと判定した場合に(ステップS111:No)、演算器132によって算出された第2位置を人間の現在位置として決定する(ステップS114)。これにより、送信機161は、演算器153によって決定された人間の現在位置である第2位置を、無線通信等により外部装置に対して送信する(ステップS113)。
[実施の形態1に係る測位の実施結果]
次に、図14〜図16を用いて、実施の形態1に係る測位の実施結果について説明する。例えば、情報処理装置100を装着した人間が、図14に示す軌跡で歩行した場合を説明する。すなわち、図14に示す矢印線は、情報処理装置100を装着した人間が歩行した軌跡を表す。例えば、人間は、歩行開始から3秒後に「位置H」を通過し、歩行開始から7秒後に「位置G」を通過し、歩行開始から10秒後に「位置F」を通過する。同様に、人間は、歩行開始から12秒後に「位置D」を通過し、歩行開始から16秒後に「位置E」を通過し、歩行開始から23秒後に「位置C」を通過する。
図15は、図14に示した軌跡上を人間が歩行している最中に、各種センサによって測定された情報の例を表したものである。具体的には、加速度センサ111によって測定された加速度の数値と、角速度センサ112によって測定された角速度の数値と、地磁気センサ113によって測定された情報処理装置100の向きと、気圧センサ114によって測定された情報処理装置100の標高を表している。図12に示した波形モデルと比較すると、歩行開始から3秒後の波形は「跨ぎ」の波形モデルに類似しており、7秒後から10秒後までの波形は「横歩き」の波形モデルに類似していることがわかる。また、12秒後から16秒後までの波形は「屈み歩き」の波形モデルに類似しており、23秒後の波形は「躓き」の波形モデルに類似していることがわかる。これらから、情報処理装置100の演算器153は、メモリ152に記憶された波形モデルを参照して、歩行開始から3秒後に「跨ぎ」の歩行状態を推定し、7秒後から10秒後までは「横歩き」の歩行状態を推定する。また、情報処理装置100の演算器153は、メモリ152に記憶された波形モデルを参照して、12秒後から16秒後までは「屈み歩き」の歩行状態を推定し、23秒後は「躓き」の歩行状態を推定する。
図16は、図14に示した軌跡を人間が歩行した際に、送信機161によって送信された位置の軌跡の例を表したものである。図16に示した例では、軌跡が不連続となっている箇所が散見されるが、これらは、演算器153によって、人間の位置が第2位置から第1位置へ置き換えられた痕跡である。例えば、歩行開始から3秒後、7秒後、10秒後、12秒後、16秒後、23秒後の第2位置は、それぞれ、「位置h」、「位置g」、「位置f」、「位置d」、「位置e」、「位置c」である。これらの第2位置は、演算器153によって「跨ぎ」、「横歩き」、「屈み歩き」、「躓き」等の歩行状態が推定される。そして、「位置h」、「位置g」、「位置f」、「位置d」、「位置e」、「位置c」は、対応情報記憶部140に記憶された対応情報(図10参照)に基づいて、「位置H」、「位置G」、「位置F」、「位置D」、「位置E」、「位置C」に置き換えられる。
[実施の形態1による効果]
情報処理装置100は、自律航法により推定した人間の位置を、人間の移動方向に関する歩行状態に応じて更新するとともに、人間の所定の歩行状態に応じてさらに更新し、人間の現在位置を決定する。この結果、情報処理装置100は、自律航法による測位誤差の補正を高品質に行なうことができる。換言すると、情報処理装置100は、自律航法により推定した人間の位置を、人間の移動方向に関する歩行状態に応じて更新するマップマッチングに加えて、さらに所定の歩行状態に応じて更新するマップマッチングを実行するので、自律航法による測位誤差の補正を高品質に行なうことができる。
(実施の形態2)
さて、これまで本発明に係る情報処理装置100の実施の形態について説明したが、上述した実施の形態以外にも種々の異なる形態にて実施されて良いものである。そこで、(1)情報処理装置の適用、(2)構成、(3)プログラム、について異なる実施の形態を説明する。
(1)情報処理装置の適用
上記実施の形態では、情報処理装置100を、人間の腹部に装着する場合を説明した。情報処理装置100の適用については、上記の適用例に限られるものではない。具体的には、人間の位置を決定するための情報を外部から取得して位置決定処理を実行するようにしても良い。例えば、測定部110を外部に配設し、外部に配設された測定部110から測定情報を受け付けて、位置決定処理を実行する情報機器として実現しても良い。このとき、波形モデルや対応情報等についても、外部の記憶装置に記憶させるようにして適宜取得しても良い。
(2)構成
また、上記文書中や図面中等で示した処理手順、制御手順、具体的名称、各種のデータやパラメタ等を含む情報は、特記する場合を除いて任意に変更することができる。また、図示した装置の各構成要素は、機能概念的なものであり、必ずしも物理的に図示の如く構成されていることを要しない。すなわち、装置の分散又は統合の具体的形態は、図示のものに限られず、その全部又は一部を各種の負担や使用状況等に応じて、任意の単位で機能的又は物理的に、分散又は統合することができる。例えば、対応情報は、図示したものに限られるわけではなく、人間が歩行する場所に応じて異なる。
(3)プログラム
また、情報処理装置100で実行される位置決定プログラムは、一つの様態として、インストール可能な形式又は実行可能な形式のファイルでCD−ROM、フレキシブルディスク(FD)、CD−R、DVD(Digital Versatile Disk)等のコンピュータで読み取り可能な記録媒体に記録されて提供される。また、情報処理装置100で実行される位置決定プログラムを、インターネット等のネットワークに接続されたコンピュータ上に格納し、ネットワーク経由でダウンロードさせることにより提供するようにしても良い。また、情報処理装置100で実行される位置決定プログラムをインターネット等のネットワーク経由で提供又は配布するように構成しても良い。また、位置決定プログラムを、ROM等に予め組み込んで提供するように構成しても良い。
情報処理装置100で実行される位置決定プログラムは、上述した各部(対応情報記憶部140、第1位置導出部150)を含むモジュール構成となっており、実際のハードウェアとしてはCPU(プロセッサ)が記憶媒体から位置決定プログラムを読み出して実行することにより、上記各部が主記憶装置上にロードされ、対応情報記憶部140、第1位置導出部150が主記憶装置上に生成されるようになっている。
100 情報処理装置
110 測定部
111 加速度センサ
112 角速度センサ
113 地磁気センサ
114 気圧センサ
120 自律航法部
121 メモリ
122 メモリ
123 演算器
130 第2位置導出部
131 メモリ
132 演算器
140 対応情報記憶部
141 メモリ
150 第1位置導出部
151 メモリ
152 メモリ
153 演算器
160 出力部
161 送信機
特許第5059932号公報 特開2007−093433号公報

Claims (7)

  1. 歩行状態の情報と、該歩行状態が発生する位置を表す第1位置とを対応付けて記憶する記憶部と、
    人間の歩行に応じて測定される測定情報に基づいて前記歩行状態を推定する推定部と、
    前記歩行状態が推定された場合に、前記測定情報に基づく自律航法により算出された位置を表す第2位置の近傍に、推定された前記歩行状態に対応付けられた前記第1位置が存在するか否かを判定する判定部と、
    前記第2位置の近傍に前記第1位置が存在すると判定された場合に、前記第1位置を人間の現在位置として決定する決定部と
    を有することを特徴とする情報処理装置。
  2. 前記記憶部は、人間の歩行の障害となる障害物に関連する前記歩行状態を記憶することを特徴とする請求項1に記載の情報処理装置。
  3. 前記記憶部は、人間が歩行する通路の構造に関連する前記歩行状態を記憶することを特徴とする請求項1又は2に記載の情報処理装置。
  4. 前記推定部は、前記測定情報が、予め決定された前記歩行状態に対応する測定情報のモデルと類似する場合に、類似するモデルに対応付けられた前記歩行状態を、人間の前記歩行状態とすることを特徴とする請求項1〜3の何れか一つに記載の情報処理装置。
  5. 前記測定情報は、加速度及び角速度の少なくとも一つであって、
    前記推定部は、人間の歩行に応じて測定される加速度及び角速度の少なくとも一方が、予め決定された前記歩行状態に対応する加速度及び角速度の少なくとも一方のモデルと類似する場合に、類似するモデルに対応付けられた前記歩行状態を、人間の前記歩行状態とすることを特徴とする請求項4に記載の情報処理装置。
  6. 人間の歩行に応じて測定される測定情報に基づいて、人間の歩行状態を推定する推定ステップと、
    前記歩行状態が推定された場合に、前記歩行状態の情報と、該歩行状態が発生する位置を表す第1位置とが対応付けられた対応情報をもとに、前記測定情報に基づく自律航法により算出された位置を表す第2位置の近傍に、推定された前記歩行状態に対応する前記第1位置が存在するか否かを判定する判定ステップと、
    前記第2位置の近傍に前記第1位置が存在すると判定された場合に、前記第1位置を人間の現在位置として決定する決定ステップと
    を含むことを特徴とする位置決定方法。
  7. 人間の歩行に応じて測定される測定情報に基づいて、人間の歩行状態を推定する推定ステップと、
    前記歩行状態が推定された場合に、前記歩行状態の情報と、該歩行状態が発生する位置を表す第1位置とが対応付けられた対応情報をもとに、前記測定情報に基づく自律航法により算出された位置を表す第2位置の近傍に、推定された前記歩行状態に対応する前記第1位置が存在するか否かを判定する判定ステップと、
    前記第2位置の近傍に前記第1位置が存在すると判定された場合に、前記第1位置を人間の現在位置として決定する決定ステップと
    をコンピュータに実行させるための位置決定プログラム。
JP2014012571A 2013-06-06 2014-01-27 情報処理装置、位置決定方法及び位置決定プログラム Pending JP2015014587A (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2014012571A JP2015014587A (ja) 2013-06-06 2014-01-27 情報処理装置、位置決定方法及び位置決定プログラム
US14/295,467 US20140364979A1 (en) 2013-06-06 2014-06-04 Information processing apparatus, location determining method, and recording medium containing location determining program

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2013120069 2013-06-06
JP2013120069 2013-06-06
JP2014012571A JP2015014587A (ja) 2013-06-06 2014-01-27 情報処理装置、位置決定方法及び位置決定プログラム

Publications (1)

Publication Number Publication Date
JP2015014587A true JP2015014587A (ja) 2015-01-22

Family

ID=52006100

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014012571A Pending JP2015014587A (ja) 2013-06-06 2014-01-27 情報処理装置、位置決定方法及び位置決定プログラム

Country Status (2)

Country Link
US (1) US20140364979A1 (ja)
JP (1) JP2015014587A (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016161313A (ja) * 2015-02-27 2016-09-05 株式会社日立アドバンストシステムズ 測位システム
JP2021071290A (ja) * 2019-10-29 2021-05-06 サイトセンシング株式会社 速度・位置推定装置および速度・位置推定方法

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11036238B2 (en) 2015-10-15 2021-06-15 Harman International Industries, Incorporated Positioning system based on geofencing framework
US9805592B2 (en) * 2013-10-07 2017-10-31 Savari, Inc. Methods of tracking pedestrian heading angle using smart phones data for pedestrian safety applications
CN105783917B (zh) * 2014-12-18 2019-05-07 阿里巴巴集团控股有限公司 基于地磁的移动终端定位方法及其装置
CN113218395B (zh) 2017-06-23 2024-06-11 北京方位捷讯科技有限公司 行人步行轨迹检测方法、装置及系统

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10113343A (ja) * 1996-07-03 1998-05-06 Hitachi Ltd 動作及び行動の認識方法及び装置及びシステム
JP2002139340A (ja) * 2000-10-30 2002-05-17 Atr Media Integration & Communications Res Lab 歩行航行装置およびそれを用いたナビゲーションシステム
JP2009229204A (ja) * 2008-03-21 2009-10-08 Sumitomo Electric Ind Ltd 位置特定装置、コンピュータプログラム及び位置特定方法
US20130102334A1 (en) * 2011-10-21 2013-04-25 Qualcomm Incorporated Egress based map region classification
US20130124081A1 (en) * 2011-11-14 2013-05-16 Microsoft Corporation Device Positioning Via Device-Sensed Data Evaluation
JP2013160566A (ja) * 2012-02-02 2013-08-19 Yokosuka Telecom Research Park:Kk 測位装置及び測位プログラム

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6323807B1 (en) * 2000-02-17 2001-11-27 Mitsubishi Electric Research Laboratories, Inc. Indoor navigation with wearable passive sensors
US20020184653A1 (en) * 2001-02-02 2002-12-05 Pierce Matthew D. Services based on position location using broadcast digital television signals
US9167991B2 (en) * 2010-09-30 2015-10-27 Fitbit, Inc. Portable monitoring devices and methods of operating same
JP5059933B2 (ja) * 2010-12-02 2012-10-31 株式会社エヌ・ティ・ティ・ドコモ 移動端末、システム及び方法
JP5824936B2 (ja) * 2011-07-25 2015-12-02 富士通株式会社 携帯型電子機器、危険報知方法及びプログラム
US20130046505A1 (en) * 2011-08-15 2013-02-21 Qualcomm Incorporated Methods and apparatuses for use in classifying a motion state of a mobile device
US10330491B2 (en) * 2011-10-10 2019-06-25 Texas Instruments Incorporated Robust step detection using low cost MEMS accelerometer in mobile applications, and processing methods, apparatus and systems
US9291461B2 (en) * 2012-03-12 2016-03-22 Google Inc. Location correction
US9310462B2 (en) * 2012-09-07 2016-04-12 Microsoft Technology Licensing, Llc Locating a mobile computing device in an indoor environment
US8934921B2 (en) * 2012-12-14 2015-01-13 Apple Inc. Location determination using fingerprint data
US9031573B2 (en) * 2012-12-31 2015-05-12 Qualcomm Incorporated Context-based parameter maps for position determination
US9544740B2 (en) * 2013-01-18 2017-01-10 Nokia Technologies Oy Method, apparatus and computer program product for orienting a smartphone display and estimating direction of travel of a pedestrian
US20150161715A1 (en) * 2013-03-07 2015-06-11 Google Inc. Using indoor maps to direct consumers to sale items, shopping lists, or other specific locations in a store, retail establishment, or other geographic area

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10113343A (ja) * 1996-07-03 1998-05-06 Hitachi Ltd 動作及び行動の認識方法及び装置及びシステム
JP2002139340A (ja) * 2000-10-30 2002-05-17 Atr Media Integration & Communications Res Lab 歩行航行装置およびそれを用いたナビゲーションシステム
JP2009229204A (ja) * 2008-03-21 2009-10-08 Sumitomo Electric Ind Ltd 位置特定装置、コンピュータプログラム及び位置特定方法
US20130102334A1 (en) * 2011-10-21 2013-04-25 Qualcomm Incorporated Egress based map region classification
US20130124081A1 (en) * 2011-11-14 2013-05-16 Microsoft Corporation Device Positioning Via Device-Sensed Data Evaluation
JP2013160566A (ja) * 2012-02-02 2013-08-19 Yokosuka Telecom Research Park:Kk 測位装置及び測位プログラム

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016161313A (ja) * 2015-02-27 2016-09-05 株式会社日立アドバンストシステムズ 測位システム
JP2021071290A (ja) * 2019-10-29 2021-05-06 サイトセンシング株式会社 速度・位置推定装置および速度・位置推定方法

Also Published As

Publication number Publication date
US20140364979A1 (en) 2014-12-11

Similar Documents

Publication Publication Date Title
JP2015014587A (ja) 情報処理装置、位置決定方法及び位置決定プログラム
JP5509991B2 (ja) 可搬型携帯端末及び移動形状算出プログラム
JP5849319B2 (ja) 移動経路推定システム、移動経路推定装置及び移動経路推定方法
JP5695436B2 (ja) 遊脚期の加速度データを用いて歩行者の進行方向を決定する携帯端末、プログラム及び方法
KR20150074124A (ko) 모바일 디바이스들의 맵-지원 센서-기반 포지셔닝
US20210093918A1 (en) Detecting the end of hiking activities on a wearable device
WO2015182304A1 (ja) 情報処理装置、情報処理方法及びコンピュータプログラム
KR20150058704A (ko) 보행자의 이동 방향 추정 방법, 상기 방법을 기록한 컴퓨터 판독 가능 저장매체 및 보행자 이동 방향 추정 장치.
KR20110068340A (ko) 관성 센서 기반의 실내 측위 장치 및 그 방법
US20190323842A1 (en) Information processing apparatus, information processing method, and computer-readable recording medium recording information processing program
JP5294983B2 (ja) 加速度センサ及び地磁気センサを用いて歩行者の進行方向を決定する携帯端末、プログラム及び方法
JP6657753B2 (ja) 加速度補正プログラム、路面状態評価プログラム、加速度補正方法および加速度補正装置
JP5072105B2 (ja) 加速度センサ及び地磁気センサを用いて歩行者の進行方向を決定する携帯端末、プログラム及び方法
JP5082001B2 (ja) 物体の進行方向検知方法、位置検知方法、進行方向検知装置、位置検知装置、移動動態認識方法及び移動動態認識装置
JP2012212234A (ja) 自律測位に用いる重力ベクトルを補正する携帯装置、プログラム及び方法
JP2015224932A (ja) 情報処理装置、情報処理方法及びコンピュータプログラム
JP2009229399A (ja) 加速度センサ及び地磁気センサを用いて歩行者の進行方向を決定する携帯端末、プログラム及び方法
JP5957906B2 (ja) 検出装置、検出プログラム、及び検出方法
JP7400922B2 (ja) 測位装置、測位方法及び測位プログラム
KR102581198B1 (ko) 신발 모델을 이용한 보행 항법 장치 및 그 방법
JP2016158699A (ja) 着地位置評価方法、及び着地位置評価装置
JP6384194B2 (ja) 情報処理装置、情報処理方法及び情報処理プログラム
TWI422824B (zh) 人體運動特徵辨識與定位方法
Kao et al. Step-length estimation using wrist-worn accelerometer and GPS
EP3999813B1 (en) Apparatus and associated methods for step length estimation

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170110

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20171016

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20171107

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20180508