WO2021084632A1 - 熱硬化性樹脂フィルム、銅箔付き熱硬化性樹脂フィルム、フレキシブルプリント配線板用積層フィルムの製造方法、及びフレキシブルプリント配線板 - Google Patents

熱硬化性樹脂フィルム、銅箔付き熱硬化性樹脂フィルム、フレキシブルプリント配線板用積層フィルムの製造方法、及びフレキシブルプリント配線板 Download PDF

Info

Publication number
WO2021084632A1
WO2021084632A1 PCT/JP2019/042439 JP2019042439W WO2021084632A1 WO 2021084632 A1 WO2021084632 A1 WO 2021084632A1 JP 2019042439 W JP2019042439 W JP 2019042439W WO 2021084632 A1 WO2021084632 A1 WO 2021084632A1
Authority
WO
WIPO (PCT)
Prior art keywords
thermosetting resin
film
resin film
copper foil
flexible printed
Prior art date
Application number
PCT/JP2019/042439
Other languages
English (en)
French (fr)
Inventor
喬之 鈴川
真樹 山口
Original Assignee
昭和電工マテリアルズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 昭和電工マテリアルズ株式会社 filed Critical 昭和電工マテリアルズ株式会社
Priority to PCT/JP2019/042439 priority Critical patent/WO2021084632A1/ja
Priority to TW109137230A priority patent/TW202124150A/zh
Publication of WO2021084632A1 publication Critical patent/WO2021084632A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/03Use of materials for the substrate

Definitions

  • the present invention relates to a thermosetting resin film, a thermosetting resin film with a copper foil, a method for manufacturing a laminated film for a flexible printed wiring board, and a flexible printed wiring board.
  • Patent Document 1 discloses a wearable device including a camera, a display, a microphone, and the like in a glasses-type frame.
  • the wearable device In order to attach such a wearable device to the user's body, the wearable device is required to be flexible. Therefore, a flexible printed wiring board is often used as an internal board of a wearable device.
  • circuits In rigid printed wiring boards, circuits have been miniaturized by using circuit formation methods such as the semi-additive (SAP) method and the modified semi-additive (MSAP) method.
  • circuit width (L) / circuit spacing (S) [Hereinafter, it is simply referred to as L / S. ] Is 10 ⁇ m or less / 10 ⁇ m or less.
  • subtractive method which is the mainstream of circuit formation of the flexible printed wiring board, there is a limit to strict control of the circuit width and fine circuit formation.
  • circuit forming method such as the SAP method or the MSAP method for selectively growing a plating film to form a circuit in a flexible printed wiring board (see, for example, Patent Document 2). If a circuit forming method such as the SAP method or the MSAP method is used for the flexible printed wiring board, the circuit can be expected to be finer than the case where the subtractive method is used.
  • Patent Document 2 describes that a metal thin film is laminated on a transparent insulating resin film via a resin layer, and the structure enhances the adhesiveness between the transparent insulating resin film and the metal thin film. .. Therefore, the present inventors have laminated a heat-curable resin film with a copper foil and an insulating resin film so that the heat-curable resin film of the heat-curable resin film with a copper foil is in contact with the insulating resin film to form an insulating resin.
  • a circuit forming method such as the SAP method or the MSAP method using the laminated film thus obtained.
  • thermosetting resin film of the thermosetting resin film with copper foil has already been cured, it cannot be easily laminated on the insulating resin film.
  • thermosetting resin film in order to laminate the thermosetting resin film on the polyimide film. It turned out that it was necessary to heat above a predetermined temperature.
  • An object of the present invention is to provide a method for manufacturing a laminated film for a flexible printed wiring board and a flexible printed wiring board.
  • thermosetting resin film welded to a polyimide film at 200 ° C. or lower can solve the above problems, and complete the present invention. It came to.
  • the present invention has been completed based on such findings.
  • thermosetting resin film having a welding temperature of 200 ° C. or less as defined below for a polyimide film A thermosetting resin film having a welding temperature of 200 ° C. or less as defined below for a polyimide film. Definition of welding temperature: First, a thermosetting resin film with a copper foil is laminated on a polyimide film having a thickness of 25 ⁇ m so that the thermosetting resin film and the polyimide film are in contact with each other, and the polyimide film is on the hot plate side. Place it on the hot plate. Next, a weight of 50 g is placed on the thermosetting resin film with a copper foil and allowed to stand at a predetermined temperature for 60 seconds to form a laminated film.
  • the hot plate and the weight are removed, and the formed laminated film is allowed to cool to room temperature.
  • the polyimide film and the thermosetting resin film are peeled off, the polyimide is obtained when the thermocurable resin film is attached to 80% or more of the surface of the polyimide film. It is considered that the heat-curable resin film is welded to the film, and the lowest temperature at which the film is welded is defined as the welding temperature.
  • thermosetting resin composition containing (A) epoxy resin, (B) epoxy resin curing agent and (C) curing accelerator, and the (C) curing accelerator contains a strongly basic compound.
  • the strong basic compounds are 1,8-diazabicyclo [5.4.0] undecene-7 (DBU), 1,5-diazabicyclo [4.3.0] nonene-5 (DBN), and tetramethyl.
  • thermosetting resin film according to [3] or [4] above, which is at least one selected from the group consisting of decene-5 (MTBD). .. [6] The thermosetting according to any one of [3] to [5] above, wherein the content of the strong basic compound is 0.6 parts by mass or more with respect to 100 parts by mass of the epoxy resin (A). Sex resin film.
  • thermosetting resin film [7] The above-mentioned [3] to [6], wherein the content of the strong basic compound is 0.6 to 2.8 parts by mass with respect to 100 parts by mass of the epoxy resin (A). Thermosetting resin film. [8] The thermosetting resin film according to any one of [3] to [7] above, wherein the epoxy resin curing agent (B) contains a phenolic curing agent. [9] The thermosetting resin film according to any one of the above [1] to [8], which is used for a flexible printed wiring board. [10] A thermosetting resin film with a copper foil having a copper foil on the thermosetting resin film according to any one of the above [1] to [9].
  • (1) The polyimide film and (2) the heat-curable resin film with copper foil according to the above [10] or [11] are placed at 200 ° C. or lower so that the heat-curable resin film faces the polyimide film.
  • a method for producing a laminated film for a flexible printed wiring board which comprises a step of welding the thermosetting resin film to a polyimide film by heat-pressing with.
  • a flexible print comprising the thermosetting resin film according to any one of [1] to [9] above or the thermosetting resin film with copper foil according to [10] or [11] above. Wiring board.
  • FIG. 1 It is a schematic diagram for demonstrating the method of measuring the welding temperature defined in this invention. It is the schematic of one aspect of the manufacturing method of the laminated film for a flexible printed wiring board of this invention. It is the schematic which shows one aspect of the laminated film for a flexible printed wiring board of this invention. It is the schematic which shows another aspect of the laminated film for a flexible printed wiring board of this invention. It is a photograph which shows the state (wrinkle-free) of the polyimide film in the laminated film A for a flexible printed wiring board produced in Example 1. FIG. It is a photograph which shows the state (wrinkled) of the polyimide film in the laminated film G for a flexible printed wiring board produced in the comparative example 1. FIG.
  • the upper limit value or the lower limit value of the numerical range may be replaced with the value shown in the examples.
  • the lower limit value and the upper limit value of the numerical range are arbitrarily combined with the lower limit value or the upper limit value of the other numerical range, respectively.
  • the content of each component in the thermosetting resin composition is set in the thermosetting resin composition when a plurality of substances corresponding to each component are present, unless otherwise specified. It means the total content of the plurality of substances in existence.
  • the solid content means a residue excluding volatile components in the thermosetting resin composition.
  • the present invention also includes aspects in which the items described in the present specification are arbitrarily combined.
  • the normal temperature refers to 5 to 35 ° C, preferably 15 to 25 ° C.
  • the average primary particle size does not mean the so-called secondary particle size of agglomerated particles, but the average particle size of a single non-aggregated particle.
  • the average primary particle size is a value measured by a laser diffraction type particle size distribution meter.
  • thermosetting resin film has a welding temperature of 200 ° C. or less as defined below for the polyimide film.
  • the definition of the welding temperature will be described below with reference to FIG. 1 as appropriate.
  • a thermosetting resin film 4 with a copper foil having a copper foil 2 and a thermosetting resin film 3 is placed on a polyimide film 1 having a thickness of 25 ⁇ m so that the thermosetting resin film 3 and the polyimide film 1 are in contact with each other.
  • the polyimide films 1 are overlapped and placed on the hot plate 5 so that the polyimide film 1 is on the hot plate 5 side.
  • thermosetting resin film 4 with a copper foil and allowed to stand at a predetermined temperature for 60 seconds to form a laminated film 7.
  • the hot plate 5 and the weight 6 are removed, and the formed laminated film 7 is allowed to cool to room temperature.
  • the thermosetting resin film 3 adhered to 80% or more of the surface of the polyimide film 1. If so, it is considered that the heat-curable resin film 3 is welded to the polyimide film 1, and the lowest temperature at which the film is welded is defined as the welding temperature.
  • 80% means that the area of the portion where the surface of the polyimide film 1 cannot be seen when the surface of the polyimide film 1 is visually observed is 80% or more.
  • the welding temperature for the polyimide film is 200 ° C. or lower.
  • thermocompression bonding between the thermosetting resin film with copper foil and the polyimide film can be performed at 200 ° C. or lower, so that the polyimide film in the obtained laminated film is wrinkled. Can be effectively suppressed.
  • thermocompression bonding between a thermosetting resin film with a copper foil and a polyimide film is performed at 230 ° C. or higher, the polyimide film in the laminated film tends to have the wrinkles.
  • the temperature is 250 ° C. or higher, it becomes remarkable.
  • the reason for this is thought to be that there is a large difference in the coefficient of thermal expansion between the copper foil and the polyimide film, which have almost the same coefficient of thermal expansion at 200 ° C or lower, in the high temperature range of 230 ° C or higher. ..
  • the coefficient of thermal expansion of copper foil is about 15 ppm / ° C from 0 ° C to 300 ° C and does not change significantly, but the coefficient of thermal expansion of polyimide film is about 15 ppm / ° C from 0 ° C to 200 ° C.
  • the coefficient increases to about 28 ppm / ° C, so the difference in the coefficient of thermal expansion between the two becomes large, and the difference in the degree of expansion and contraction during thermal expansion and contraction opens, causing wrinkles to easily occur. I guess it will be.
  • the lower limit of the welding temperature of the thermosetting resin film is not particularly limited, but it is usually 140 ° C. or higher because it is practically difficult to weld the thermosetting resin film to the polyimide film at a low temperature.
  • the welding temperature of the thermosetting resin film of the present invention is preferably 140 to 200 ° C., more preferably 140 to 195 ° C., still more preferably 140 to 190 ° C., and the lower limit of the welding temperature is It may be 150 ° C., 160 ° C., or 165 ° C.
  • thermosetting resin film of the present invention is not particularly limited as long as it has the welding temperature, but from the viewpoint of setting the welding temperature to the polyimide film to 200 ° C. or lower, the (A) epoxy resin, (B). ) A thermosetting resin film containing an epoxy resin curing agent and (C) curing accelerator, wherein the (C) curing accelerator is formed from a thermosetting resin composition containing a strongly basic compound. Is preferable.
  • (A) epoxy resin, (B) epoxy resin curing agent and (C) curing accelerator are contained, and the (C) curing accelerator is contained.
  • examples thereof include a thermosetting resin film formed of a thermosetting resin composition containing a strongly basic compound.
  • each component that can be contained in the thermosetting resin composition will be described in detail.
  • the epoxy resin (A) is an epoxy resin having two or more epoxy groups in one molecule.
  • the epoxy resin (A) is classified into a glycidyl ether type epoxy resin, a glycidyl amine type epoxy resin, a glycidyl ester type epoxy resin, and the like.
  • a glycidyl ether type epoxy resin is preferable.
  • Epoxy resins are classified into various epoxy resins according to the difference in the main skeleton, and in each of the above types of epoxy resins, bisphenol A type epoxy resin, bisphenol F type epoxy resin, bisphenol S type epoxy resin and the like are further classified.
  • Bisphenol type epoxy resin alicyclic epoxy resin; aliphatic chain epoxy resin; phenol novolac type epoxy resin, cresol novolac type epoxy resin, bisphenol A novolak type epoxy resin, bisphenol F novolak type epoxy resin, etc.
  • aromatic epoxy resins are preferable, novolak type epoxy resins, naphthalene skeleton-containing epoxy resins, biphenyl type epoxy resins, and biphenyl aralkyl type epoxy resins are more preferable, and low thermal expansion resistance and resistance to heat expansion.
  • a naphthalene skeleton-containing epoxy resin, a biphenyl type epoxy resin, and a biphenyl aralkyl type epoxy resin are more preferable.
  • a dicyclopentadiene type epoxy resin is preferable.
  • the epoxy resin (A) one type may be used alone, or two or more types may be used in combination from the viewpoint of insulation reliability and heat resistance.
  • the epoxy equivalent of the epoxy resin (A) is preferably 50 to 3,000 g / eq, more preferably 80 to 2,000 g / eq, still more preferably 100 to 1,000 g / eq, and particularly preferably 200 to 400 g / eq. Is.
  • the epoxy equivalent is the mass (g / eq) of the resin per equivalent of the epoxy group, and can be measured according to the method specified in JIS K7236.
  • Examples of commercially available epoxy resins include bisphenol A type epoxy resins "jER1001", “jER828EL”, “YL980” (manufactured by Mitsubishi Chemical Corporation, “jER” is a registered trademark), and bisphenol F type epoxy. Resins “jER806H” and “YL983U” (manufactured by Mitsubishi Chemical Co., Ltd.), phenol novolac type epoxy resin “N770” (manufactured by DIC Co., Ltd.), phenol biphenyl aralkyl type epoxy resin "NC-3000H” (Made by Nippon Kayaku Co., Ltd.), "EPICLON N-660” (manufactured by DIC Co., Ltd., “EPICLON” is a registered trademark), and "HP-9900", a naphthalene skeleton-containing epoxy resin. DIC Co., Ltd.) and the like.
  • the epoxy resin (A) is an epoxy resin having two or more epoxy groups in one molecule and having a structural unit derived from an alkylene glycol having three or more carbon atoms from the viewpoint of flexibility. May be good.
  • the structural unit derived from the alkylene glycol having 3 or more carbon atoms is preferably contained in the main chain of the epoxy resin.
  • "having a structural unit derived from an alkylene glycol having 3 or more carbon atoms” may be obtained by using an alkylene glycol having 3 or more carbon atoms as a monoma, or an alkylene having 3 or more carbon atoms. It may be obtained by using a compound having a glycol skeleton.
  • the alkylene glycol having 3 or more carbon atoms an alkylene glycol having 4 or more carbon atoms is preferable.
  • the upper limit of the number of carbon atoms is not limited, but is preferably 15 or less, more preferably 10 or less, and even more preferably 8 or less.
  • the epoxy resin (A) may be, for example, a bisphenol A type epoxy resin having a structural unit derived from hexanediol in the main chain.
  • Specific examples of the epoxy resin having a structural unit derived from an alkylene glycol having 3 or more carbon atoms in the main chain include a vinyl ether compound represented by the following general formula (I) and bifunctionality represented by the following general formula (II).
  • Examples thereof include an epoxy resin obtained by reacting with a phenol compound and then epoxidizing. More specifically, after reacting the vinyl ether compound represented by the following general formula (I) with the bifunctional phenol compound represented by the following general formula (II), the terminal is epoxidized with epihalohydrin such as epichlorohydrin.
  • the epoxy resin has a structure derived from an alkylene diol represented by HO [-R 1- O] n-H (R 1 and n are the same as those in the general formula (I)), and the following. It can be said that it has a structure derived from a bifunctional phenol compound represented by the general formula (II).
  • R 1 is an aliphatic hydrocarbon group having 1 to 10 carbon atoms.
  • R 2 represents an aliphatic hydrocarbon group having 1 to 10 carbon atoms, preferably an aliphatic hydrocarbon group having 1 to 5 carbon atoms, and more preferably an aliphatic hydrocarbon group having 1 to 3 carbon atoms. It is a hydrocarbon group.
  • n represents an integer of 1 to 15, preferably an integer of 1 to 10, more preferably an integer of 1 to 5, still more preferably an integer of 1 to 3, and particularly preferably 1.
  • Examples of the aliphatic hydrocarbon group having 1 to 10 carbon atoms indicated by R 1 include a methylene group, a 1,2-dimethylene group, a 1,2-trimethylene group, a 1,3-trimethylene group and a 1,4-tetramethylene group.
  • Examples thereof include an alkylene group having 1 to 10 carbon atoms such as a group, a 1,5-pentamethylene group, a 1,6-hexamethylene group and a 1,9-nonamethylene group.
  • the alkylene group having 1 to 10 carbon atoms is preferably an alkylene group having 2 to 10 carbon atoms, more preferably an alkylene group having 2 to 7 carbon atoms, and further preferably a 1,6-hexamethylene group.
  • Examples of the aliphatic hydrocarbon group having 1 to 10 carbon atoms indicated by R 2 include a methylene group, a 1,2-dimethylene group, a 1,3-trimethylene group, a 1,4-tetramethylene group and a 1,5-penta.
  • An alkylene group having 1 to 10 carbon atoms such as a methylene group; an alkylidene group having 2 to 10 carbon atoms such as an ethylidene group, a propylidene group, an isopropylidene group, a butylidene group, an isobutylidene group, a pentylidene group and an isopentylidene group can be mentioned. ..
  • the alkylene group having 1 to 10 carbon atoms is preferably an alkylene group having 1 to 5 carbon atoms, and more preferably an alkylene group having 1 to 3 carbon atoms.
  • the alkylidene group having 2 to 10 carbon atoms is preferably an alkylidene group having 2 to 5 carbon atoms, more preferably an alkylidene group having 2 to 3 carbon atoms, and further preferably an isopropylidene group.
  • R 2 is preferably bound at the 4-position of phenol.
  • thermosetting resin composition contains (A) epoxy resin
  • the content thereof is thermosetting from the viewpoint of balance with various properties such as adhesive strength and heat resistance between copper foil and electroless plating. It is preferably 10 to 85% by mass, more preferably 30 to 80% by mass, still more preferably 45 to 75% by mass, based on the solid content of the resin composition.
  • Epoxy resin curing agent examples include a phenol-based curing agent, a cyanate ester-based curing agent, an acid anhydride-based curing agent, and the like.
  • the epoxy resin curing agent (B) preferably contains a phenolic curing agent from the viewpoint of lowering the welding temperature with respect to the polyimide film.
  • One type of epoxy resin curing agent may be used alone, or two or more types may be used in combination.
  • the phenolic curing agent is not particularly limited, and examples thereof include a cresol novolac type curing agent, a biphenyl type curing agent, a phenol novolac type curing agent, a naphthylene ether type curing agent, and a triazine skeleton-containing phenolic curing agent. Be done. Among these, a cresol novolac type curing agent, a biphenyl type curing agent, and a triazine skeleton-containing phenolic curing agent are more preferable.
  • phenolic curing agents include, for example, Phenolite KA-1160, Phenolite KA-1163, Phenolite KA-1165, EXB-9829 (all manufactured by DIC Co., Ltd., "Phenolite” is a registered trademark) and the like.
  • Cresol Novolac type curing agent Biphenyl type curing agent such as MEH-7700, MEH-7810, MEHC-7851 (all manufactured by Meiwa Kasei Co., Ltd.); Phenol Novolac type curing agent such as Phenolite TD2090 (manufactured by DIC Co., Ltd.) Examples thereof include naphthylene ether type curing agents such as EXB-6000 (manufactured by DIC Co., Ltd.); and triazine skeleton-containing phenolic curing agents such as LA3018, LA7052, LA7054, and LA1356 (manufactured by DIC Co., Ltd.).
  • the cyanate ester-based curing agent is not particularly limited, and is, for example, bisphenol A disyanate, polyphenol cyanate [oligo (3-methylene-1,5-phenylencianate)], 4,4'-methylenebis (2,6-methylenebis).
  • the acid anhydride-based curing agent is not particularly limited, and is, for example, phthalic anhydride, tetrahydrophthalic anhydride, hexahydrophthalic anhydride, methyltetrahydrophthalic anhydride, methylhexahydrophthalic anhydride, and methylnadic anhydride.
  • Examples thereof include acid anhydride, trimellitic anhydride, and pyromellitic anhydride.
  • thermosetting resin composition contains (B) epoxy resin curing agent
  • the content thereof is 100 parts by mass of (A) epoxy resin from the viewpoint of adhesive strength and heat resistance to copper foil and electroless plating.
  • 10 to 100 parts by mass is preferable, 20 to 85 parts by mass is more preferable, and 40 to 70 parts by mass is further preferable.
  • the (C) curing accelerator preferably contains a strongly basic compound, and preferably contains the strongly basic compound in a predetermined amount as described later. ..
  • a strongly basic compound having a pKa of 10 or more is preferable, a strongly basic compound having a pKa of 11 or more is more preferable, a strongly basic compound having a pKa of 11 to 16 is further preferable, and a pKa is 11 to 11 to. 14 strongly basic compounds are particularly preferred.
  • pKa is pKa in water.
  • the nitrogen-containing cyclic compound having pKa is preferable, 1,8-diazabicyclo [5.4.0] undecene-7 (DBU), 1,5-diazabicyclo [4.3.0] nonen. -5 (DBN), tetramethylguanidine (TMG), 1,4-diazabicyclo [2.2.2] octane (DABCO), 1,5,7-triazabicyclo [4.4.0] decene-5 ( More preferably, it is at least one selected from the group consisting of TBD) and 7-methyl-1,5,7-triazabicyclo [4.4.0] decene-5 (MTBD), from DBU and DBN. It is more preferable that it is at least one selected from the group.
  • a strongly basic compound is contained as a curing accelerator
  • the content thereof is preferably 0.6 parts by mass or more, and 0.8 parts by mass or more with respect to 100 parts by mass of (A) epoxy resin. It may be.
  • a thermosetting resin film having a welding temperature of 200 ° C. or less on the polyimide film can be obtained.
  • this is just an example of the method of adjusting to the welding temperature, and is not particularly limited to this method.
  • increasing the content of a curing accelerator such as a strong basic compound increases the gelation rate of the thermosetting composition. Therefore, the content of the strong basic compound is set to (A) epoxy resin.
  • thermosetting resin film is welded to the polyimide film at 200 ° C. or lower by containing 0.6 parts by mass or more of the strongly basic compound with respect to 100 parts by mass of the epoxy resin.
  • the molecular chain length of the polymer component in the thermosetting resin film formed is reduced, or the low molecular weight compound is contained. It is possible that they functioned as an adhesive component to the polyimide film, and (2) when a phenol-based curing agent was used as the (B) epoxy resin curing agent, the phenol-based curing agent and the strongly basic compound were salts.
  • the salt may have improved the adhesiveness with the polyimide film.
  • the upper limit of the content of the strongly basic compound is not particularly limited, but from the viewpoint of keeping the gelation rate of the thermosetting resin composition low, it is preferably 2.8 parts by mass or less, more preferably 2.5 parts by mass. Hereinafter, it is more preferably 2.0 parts by mass or less, particularly preferably 1.7 parts by mass or less, and most preferably 1.5 parts by mass or less, and in each case, the lower limit is considered to be 0.6 parts by mass or more. It can also be considered as 0.8 parts by mass or more.
  • the curing accelerator may contain a curing accelerator other than the strong basic compound.
  • curing accelerators include imidazoles and derivatives thereof; organophosphorus compounds such as phosphines and phosphonium salts, and adducts of tertiary phosphines and quinones; secondary amines and tertiary amines. , Quaternary ammonium salts and the like (however, the above-mentioned strongly basic compounds are excluded here).
  • the curing accelerator (C) one type may be used alone, or two or more types may be used in combination, but as described above, at least a strongly basic compound is preferably used.
  • an imidazole compound and a derivative thereof are preferable from the viewpoint of adhesive strength to the copper foil and electroless plating and flame retardancy. That is, it can be said that it is also a preferable aspect to use the strong basic compound and the imidazole compound or a derivative thereof in combination as the (C) curing accelerator.
  • the imidazole compound and its derivative include 2-methylimidazole, 2-ethyl imidazole, 2-undecyl imidazole, 2-heptadecyl imidazole, 2-phenyl imidazole, 1,2-dimethyl imidazole and 2-ethyl.
  • An imidazoline compound such as -methylimidazoline, 2-undecylimidazolin, 2-phenyl-4-methylimidazolin; an addition reaction product of the imidazole compound (preferably 1-cyanoethyl-2-phenylimidazole) and trimeritic acid; the imidazole compound.
  • Addition reaction product of and isocyanuric acid addition reaction product of the imidazole compound (preferably 2-ethyl-4-methylimidazole) and a diisocyanate compound (preferably hexamethylene diisocyanate); the imidazole compound and hydrobromic acid
  • One type of imidazole compound may be used alone, or two or more types may be used in combination.
  • thermosetting resin composition contains a curing accelerator other than the strongly basic compound
  • the content thereof is based on 100 parts by mass of the epoxy resin (A) from the viewpoint of heat resistance and storage stability. , 0.1 to 5 parts by mass, more preferably 0.1 to 3 parts by mass, further preferably 0.1 to 1 part by mass, and particularly preferably 0.1 to 0.5 parts by mass. Further, it does not have to contain a curing accelerator other than the strong basic compound.
  • the thermosetting resin composition may further contain the polymer component (D).
  • the (D) polymer component does not contain an epoxy resin.
  • the polymer component (D) one type may be used alone, or two or more types may be used in combination.
  • the polymer component (D) include at least one selected from the group consisting of (D1) crosslinked rubber particles, (D2) polyvinyl acetal resin and carboxylic acid-modified polyvinyl acetal resin. From the viewpoint of adhesive strength between the copper foil and electroless plating, it is preferable to use the component (D1) and the component (D2) in combination.
  • the crosslinked rubber particles (D1) preferably have excellent affinity with the (A) epoxy resin, and are not particularly limited, but include acrylonitrile butadiene crosslinked rubber particles, carboxylic acid-modified acrylonitrile butadiene crosslinked rubber particles, and Examples thereof include core-shell type crosslinked rubber particles.
  • the adhesive strength with the copper foil and electroless plating tends to be high.
  • the crosslinked rubber particles one type may be used alone, or two or more types may be used in combination.
  • the acrylonitrile butadiene crosslinked rubber particles are partially crosslinked to form particles when copolymerizing acrylonitrile and butadiene. Further, by copolymerizing carboxylic acids such as acrylic acid and methacrylic acid together, carboxylic acid-modified acrylonitrile-butadiene crosslinked rubber particles can be obtained.
  • the core-shell type crosslinked rubber particles are crosslinked rubber particles having a core layer and a shell layer. For example, a two-layer structure in which the outer shell layer is composed of a glassy polymer and the inner core layer is composed of a rubbery polymer; the outer shell layer is composed of a glassy polymer and the intermediate layer is composed of a rubbery polymer.
  • a three-layer structure in which the core layer is made of a glassy polymer, and the like can be mentioned.
  • the glass layer is made of, for example, a polymer of methyl methacrylate
  • the rubber-like polymer layer is made of, for example, an acrylic rubber, a butadiene rubber, or the like.
  • the size of the (D1) crosslinked rubber particles can be 50 nm to 1 ⁇ m with an average primary particle diameter.
  • the crosslinked rubber particles a commercially available product may be used.
  • the commercially available product may be in the form of "epoxy resin containing crosslinked rubber particles".
  • examples of commercially available acrylonitrile butadiene rubber (NBR) particles include the XER-91 series (manufactured by JSR Corporation).
  • commercially available core-shell type rubber particles include Staphyroid AC3832, AC3816N (manufactured by Aika Kogyo Co., Ltd., "Staffyloid” is a registered trademark), Metabrene KW-4426, W300A, W450A (manufactured by Mitsubishi Chemical Co., Ltd., "Metabrene”.
  • EXL-2655 (manufactured by Dow Chemical Japan Co., Ltd.), Paraloid EXL-2655 (manufactured by Kureha Co., Ltd., "Paraloid” is a registered trademark), which is a butadiene-alkyl methacrylate-styrene copolymer.
  • Acrylic acid ester-methacrylic acid ester copolymer, Staphyroid AC-3355, TR-2122 (manufactured by Aika Kogyo Co., Ltd., "Staffyloid” is a registered trademark), butyl acrylate-methyl methacrylate copolymer.
  • Kaneace MX series (manufactured by Kaneka Co., Ltd., "Kaneace” is a registered trademark) and the like.
  • thermosetting resin composition contains the component (D1)
  • the content thereof is 0. 5 to 25 parts by mass is preferable, 1 to 20 parts by mass is more preferable, 1 to 10 parts by mass is further preferable, and 3 to 8 parts by mass is particularly preferable.
  • the type of polyvinyl acetal resin, the amount of hydroxyl groups and the amount of acetyl groups are not particularly limited, but the degree of polymerization is preferably 1000 to 2500. When the degree of polymerization is within the above range, the heat resistance tends to be excellent.
  • the degree of polymerization of the polyvinyl acetal resin can be determined from the number average molecular weight of polyvinyl acetate, which is a raw material thereof (measured using a standard polystyrene calibration curve by gel permeation chromatography).
  • the polyvinyl acetal resin by modifying the polyvinyl acetal resin with a carboxylic acid, it can also be used as a carboxylic acid-modified polyvinyl acetal resin.
  • the coatability of the thermosetting resin composition is improved, and the adhesive strength with the copper foil and the electroless plating tends to be increased.
  • the component (D2) one type may be used alone, or two or more types may be used in combination.
  • a commercially available product may be used as the (D2) component.
  • Commercially available products include, for example, Eslek BX-1, BX-2, BX-5, BX-55, BX-7, BH-3, BH-S, KS-3Z, KS-5, KS-5Z, KS- 8. KS-23Z and the like (above, manufactured by Sekisui Chemical Co., Ltd.), electrified butyral 4000-2, 5000A, 6000C, 6000EP (above, manufactured by Denka Co., Ltd.) and the like can be used.
  • thermosetting resin composition contains the component (D2)
  • the content thereof is 0. 5 to 25 parts by mass is preferable, 1 to 20 parts by mass is more preferable, 1 to 10 parts by mass is further preferable, and 3 to 8 parts by mass is particularly preferable.
  • the thermosetting resin composition may further contain (E) a flame retardant.
  • the flame retardant (E) is not particularly limited, and examples thereof include chlorine-based flame retardants, bromine-based flame retardants, phosphorus-based flame retardants, and hydrated metal compound-based flame retardants. From the viewpoint of environmental compatibility, phosphorus-based flame retardants and hydrated metal compound-based flame retardants are preferable.
  • the flame retardant (E) one type may be used alone, or two or more types may be used in combination.
  • Examples of the chlorine-based flame retardant include chlorinated paraffin and the like.
  • Examples of the bromine-based flame retardant include brominated epoxy resins such as brominated bisphenol A type epoxy resin and brominated phenol novolac type epoxy resin; tribromophenyl maleimide, tribromophenyl acrylate, tribromophenyl methacrylate, and tetrabromobisphenol.
  • An unsaturated double-bonding group-containing brominated flame retardant such as type A dimethacrylate, pentabromobenzyl acrylate, and brominated styrene; hexabromobenzene, pentabromotoluene, ethylenebis (pentabromophenyl), ethylenebistetrabromophthalimide, 1, , 2-Dibromo-4- (1,2-dibromoethyl) cyclohexane, tetrabromocyclooctane, hexabromocyclododecane, bis (tribromophenoxy) ethane, brominated polyphenylene ether, brominated polystyrene, 2,4,6- Tris (tribromophenoxy) -1,3,5-triazine and the like can be mentioned.
  • brominated flame retardant such as type A dimethacrylate, pentabromobenzyl acrylate, and bromin
  • the phosphorus-based flame retardant is not particularly limited as long as it contains a phosphorus atom among those generally used as a flame retardant, and may be an inorganic phosphorus-based flame retardant or an organic-based flame retardant. It may be a phosphorus-based flame retardant. From the viewpoint of compatibility with the environment, one that does not contain a halogen atom can be selected. An organic phosphorus-based flame retardant may be used from the viewpoints of adhesive strength to the copper foil and electroless plating, heat resistance, glass transition temperature, coefficient of thermal expansion and flame retardancy.
  • Examples of the inorganic phosphorus-based flame retardant include red phosphorus; ammonium phosphate such as monoammonium phosphate, diammonium phosphate, triammonium phosphate, and ammonium polyphosphate; and inorganic nitrogen-containing phosphorus compounds such as phosphate amide. ; Phosphoric acid; phosphine oxide and the like.
  • Examples of the organic phosphorus-based flame retardant include aromatic phosphoric acid ester, mono-substituted phosphonic acid diester, 2-substituted phosphinic acid ester, metal salt of 2-substituted phosphinic acid, organic nitrogen-containing phosphorus compound, and cyclic organic phosphorus compound. Can be mentioned.
  • examples of the metal salt include lithium salt, sodium salt, potassium salt, calcium salt, magnesium salt, aluminum salt, titanium salt, zinc salt and the like, and may be an aluminum salt.
  • examples of the organic phosphorus-based flame retardants an aromatic phosphoric acid ester can be selected.
  • Examples of the hydrated metal compound include aluminum hydroxide and magnesium hydroxide. These may be used alone or in combination of two or more.
  • the hydrated metal compound may also correspond to the (F) inorganic filler described later, but the material capable of imparting flame retardancy shall be classified as a flame retardant.
  • thermosetting resin composition contains (E) a flame retardant
  • the content thereof is 0.5 to 5% by mass with respect to the solid content of the thermosetting resin composition from the viewpoint of flame retardancy. Is preferable, 1 to 3% by mass is more preferable, and 1.5 to 2.5% by mass is further preferable.
  • the thermosetting resin composition may further contain (F) an inorganic filler.
  • the inorganic filler (F) include silica, alumina, barium sulfate, talc, mica, kaolin, boehmite, beryllia, barium titanate, potassium titanate, strontium titanate, calcium titanate, aluminum carbonate, and magnesium hydroxide.
  • Aluminum hydroxide, aluminum borate, aluminum silicate, calcium carbonate, calcium silicate, magnesium silicate, zinc borate, zinc tinate, zinc oxide, titanium oxide, silicon carbide, silicon nitride, boron nitride, clay (baking) Clay) and glass such as short glass fibers, glass powder and hollow glass beads are mentioned, and at least one selected from the group consisting of these is preferably used.
  • glass E glass, T glass, D glass and the like are preferably mentioned.
  • silica and alumina are preferable, and silica is more preferable, from the viewpoint of reducing the coefficient of thermal expansion of the resin layer.
  • Examples of the silica include precipitated silica produced by a wet method and having a high water content, and dry silica produced by a dry method and containing almost no bound water or the like. Further, examples of the dry silica include crushed silica, fumed silica, and molten silica (molten spherical silica) depending on the manufacturing method, and among these, fumed silica and fused silica (molten spherical silica) are preferable.
  • the inorganic filler may be surface-treated with a surface treatment agent such as a silane coupling agent in order to improve moisture resistance, or may be hydrophobized in order to improve dispersibility.
  • the inorganic filler can be appropriately selected depending on the intended purpose.
  • the specific surface area is preferably 10 m 2 / g or more, more preferably 30 ⁇ 250m 2 / g, more preferably 50 ⁇ 200m 2 / g, particularly preferably 70 ⁇ 160 m 2 / g.
  • the specific surface area of the inorganic filler can be determined by a measuring method usually performed by those skilled in the art, and can be measured by, for example, the BET method.
  • the BET method is a method in which a molecule whose adsorption area is known is adsorbed on the surface of powder particles at the temperature of liquid nitrogen, and the specific surface area of the sample is obtained from the amount.
  • the most commonly used method for specific surface area analysis is the BET method using an inert gas such as nitrogen.
  • the average primary particle size of the inorganic filler is preferably 100 nm or less, more preferably 1 to 80 nm, still more preferably 1 to 50 nm, and further. It is preferably 5 to 30 nm.
  • the content thereof is preferably 20% by mass or less, more preferably 15% by mass or less, based on the solid content of the thermosetting resin composition. It is preferable, 10% by mass or less is more preferable, and 5% by mass or less is particularly preferable.
  • the content of the inorganic filler is 20% by mass or less, the thermosetting resin film tends to be able to maintain a good surface shape, and it tends to be easy to prevent deterioration of plating characteristics and insulation reliability. is there. It is also preferable that the thermosetting resin composition does not contain the (F) inorganic filler.
  • the thermosetting resin composition can further contain additives such as a leveling agent, an antioxidant, a rock denaturing agent, a thickener, and a flow conditioner, if necessary.
  • additives such as a leveling agent, an antioxidant, a rock denaturing agent, a thickener, and a flow conditioner, if necessary.
  • the content thereof is preferably 20 parts by mass or less, and even if it is 10 parts by mass or less, with respect to 100 parts by mass of the epoxy resin (A). It may be 0.1 to 5 parts by mass, or 0.1 to 3 parts by mass.
  • the thermosetting resin composition can be made into a resin varnish by adding an organic solvent to form a thermosetting resin film.
  • organic solvent include ketones such as acetone, methyl ethyl ketone, methyl isobutyl ketone and cyclohexanone; and acetate esters such as ethyl acetate, butyl acetate, cellosolve acetate, propylene glycol monomethyl ether acetate and carbitol acetate; cellosolve and methyl carbi.
  • Carbitols such as toll and butylcarbitol; aromatic hydrocarbons such as toluene and xylene; dimethylformamide, dimethylacetamide (hereinafter, also referred to as "DMAc”), N-methylpyrrolidone (hereinafter, also referred to as "NMP”).
  • DMAc dimethylformamide, dimethylacetamide
  • NMP N-methylpyrrolidone
  • Diethylene glycol dimethyl ether propylene glycol monomethyl ether and the like.
  • One type of organic solvent may be used alone, or two or more types may be used in combination.
  • the solid content concentration of the resin varnish is preferably 10 to 50% by mass, more preferably 20 to 45% by mass, from the viewpoint of solubility, mixed state, coating and drying workability of the thermosetting resin composition.
  • thermosetting resin film and thermosetting resin film with copper foil The method for producing the thermosetting resin film of the present invention and the thermosetting resin film with a copper foil is not particularly limited.
  • the heat of the present invention can be obtained by applying the resin varnish on the copper foil and drying it.
  • a so-called thermosetting resin film with a copper foil having a copper foil on the curable resin film can be formed.
  • the drying temperature is preferably 90 to 210 ° C, more preferably 120 to 200 ° C, and even more preferably 160 to 190 ° C.
  • the drying time is preferably 1 to 60 minutes, more preferably 1 to 30 minutes, and even more preferably 1 to 10 minutes.
  • thermosetting resin film of the present invention functions as a primer layer for increasing the adhesive strength between the polyimide film and the copper foil or electroless plating and enabling the formation of fine circuits. Therefore, the layer formed by the thermosetting resin film of the present invention can also be referred to as a primer layer.
  • the thickness of the thermosetting resin film is not particularly limited, but is preferably 0.5 to 6 ⁇ m, more preferably 1 to 3 ⁇ m, and even more preferably 1.5 to 2.5 ⁇ m. The same applies to the thickness of the thermosetting resin film in the thermosetting resin film with copper foil of the present invention.
  • the thickness of the copper foil in the thermosetting resin film with a copper foil of the present invention is not particularly limited, but is preferably 10 to 40 ⁇ m, more preferably 15 to 30 ⁇ m, and even more preferably 15 to 25 ⁇ m. ..
  • thermosetting resin film with copper foil of the present invention includes the aspect (A) of "thermosetting resin film / copper foil” and "thermosetting resin film / ultrathin copper foil / release layer / carrier copper foil”. (B) and the like.
  • the ultrathin copper foil / release layer / carrier copper foil in the aspect (B) may be collectively referred to as a copper foil.
  • the aspect (A) can be mainly used in the SAP method, and the aspect (B) is mainly in the MSAP method because the ultrathin copper foil remains on the thermosetting resin film and functions as a seed layer as it is. It can be used for the SAP method, or it may be used for the SAP method.
  • the thickness of the ultrathin copper foil in aspect B is usually 0.5 to 3 ⁇ m.
  • the release layer of the aspect (B) can be smoothly peeled off at the interface between the release layer and the ultrathin copper foil when the carrier copper foil is peeled off.
  • the peeling layer is not particularly limited as long as it can be smoothly peeled off at the interface between the peeling layer and the ultrathin copper foil, and known ones can be adopted.
  • the release layer may be an inorganic release layer or an organic release layer.
  • thermosetting resin film and the thermosetting resin film with copper foil of the present invention are useful for flexible printed wiring boards.
  • the circuit width (L) / circuit interval (S) is 15 ⁇ m or less / 15 ⁇ m or less (preferably 10 ⁇ m or less / 10 ⁇ m or less). It is possible to manufacture a flexible printed wiring board having the above circuit.
  • the present invention utilizes the property that the thermosetting resin film of the thermosetting resin film with copper foil of the present invention is welded to the polyimide film at 200 ° C. or lower, and the following method for manufacturing a laminated film for a flexible printed wiring board. Also provided. Specifically, (1) the polyimide film and (2) the thermosetting resin film with copper foil of the present invention are placed at 200 ° C. or lower (at the set temperature of the heat source) so that the thermosetting resin film faces the polyimide film. Yes, preferably 140 to 200 ° C., more preferably 140 to 195 ° C., still more preferably 140 to 190 ° C., and the lower limit of the temperature range may be 150 ° C.
  • the (1) polyimide film is the same as the polyimide film described in the definition of welding temperature.
  • the "laminated film for flexible printed wiring boards” may be abbreviated as “laminated film”.
  • the laminated film of the present invention suppresses the generation of wrinkles in the polyimide film, and by using the laminated film and using a circuit forming method such as the SAP method or the MSAP method, a fine circuit, particularly L / S, is used.
  • the (1) polyimide film preferably has an appropriate strength and does not cause tearing or the like.
  • a so-called aromatic polyimide in which an aromatic compound is directly linked by an imide bond is preferable from the viewpoint of film strength.
  • the polyimide film may be surface-treated to improve adhesiveness.
  • the polyimide film is not particularly limited, but for example, a known acid anhydride and a known diamine compound are reacted (polycondensed) to form a polyamic acid, and then a dehydration and cyclization reaction are carried out. It can be produced by forming a film.
  • the imidization ratio of the polyimide film is preferably 50% or more, more preferably 80% or more, still more preferably 90% or more, and particularly preferably 95% or more.
  • the imidization rate is measured by Fourier transform infrared spectroscopy (FT-IR method).
  • the acid anhydride is not particularly limited, but is, for example, an aromatic tetracarboxylic dianhydride such as pyromellitic dianhydride, biphenyltetracarboxylic dianhydride, and benzophenone tetracarboxylic dianhydride. Can be mentioned. Among these, as the acid anhydride, biphenyltetracarboxylic dianhydride is preferable.
  • the diamine compound is not particularly limited, and examples thereof include aromatic diamine compounds such as oxydianiline, p-phenylenediamine, and benzophenonediamine.
  • polyimide film a commercially available product can be used.
  • Commercially available polyimide films include, for example, Upirex R, Upirex S, Upirex SGA (manufactured by Ube Industries, Ltd., "Upilex” is a registered trademark), Kapton H, Kapton V, Kapton E, Kapton EN, and Kapton ENZT ( As mentioned above, Toray DuPont Co., Ltd., "Kapton” is a registered trademark), Apical AH, Apical NPI (above, Kaneka Co., Ltd., "Apical” is a registered trademark) and the like.
  • the thickness of the (1) polyimide film is preferably 5 to 250 ⁇ m, more preferably 10 to 175 ⁇ m, further preferably 15 to 100 ⁇ m, and particularly preferably 20 to 50 ⁇ m from the viewpoint of film handleability.
  • the thermosetting resin film with a copper foil of the present invention is as described above. Also in the laminated film of the present invention, as the thermosetting resin film with copper foil, the aspect (A) of "thermosetting resin film / copper foil”, “thermosetting resin film / ultrathin copper foil / release layer /" An aspect (B) of "carrier copper foil” and the like can be mentioned.
  • the laminated film of the present invention is not particularly limited, but from the viewpoint of industrial implementation, a method of producing by a roll-to-roll method is preferable. Further, the thermocompression bonding between (1) the polyimide film and (2) the thermosetting resin film with a copper foil of the present invention is not particularly limited, but from the viewpoint of suppressing the entry of voids and convenience. From the viewpoint, it is preferable to use the roll laminating method.
  • FIG. 2 shows a schematic view of one aspect of the method for producing a laminated film of the present invention using the roll-to-roll method and the roll laminating method.
  • thermosetting resin film with a copper foil is thermocompression-bonded to both sides of the polyimide film, but a thermosetting resin film with a copper foil may be thermocompression-bonded to only one side.
  • the polyimide film 1 is sent out from the polyimide film delivery device 8, and the thermosetting resin film 4 with copper foil is sent out from the delivery device 9 of the thermosetting resin film with copper foil.
  • the thermosetting resin film 4 with a copper foil is sent out with the thermosetting resin film 3 located on the polyimide film 1 side.
  • the polyimide film while the thermosetting resin film 3 of the thermosetting resin film with copper foil is welded on the laminate roll 11 at 200 ° C.
  • the linear velocity at the time of delivering each film is preferably 0.05 to 5 m / min, more preferably 0.1 to 4.5 m / min, still more preferably 0.1 to 4 m / min, particularly. It is preferably 0.3 to 3.5 m / min, and most preferably 0.3 to 3 m / min.
  • the surface pressure of the laminate roll 11 is preferably 0.3 to 1.2 MPa, more preferably 0.5 to 1.0 MPa.
  • Examples of the laminated film of the present invention thus obtained include laminated films having the configurations shown in FIGS. 3 and 4.
  • FIG. 3 has a configuration of "polyimide film 1 / thermosetting resin film 3 / copper foil 2”
  • FIG. 4 shows "polyimide film 1 / thermosetting resin film 3 / ultrathin copper foil 12 / release layer 13". / Carrier copper foil 14 ”.
  • the method for producing a laminated film of the present invention is not particularly limited, but it is preferable to have a step of forming a laminated film as described above and then further performing a thermosetting treatment.
  • a thermosetting treatment it is preferable to perform a thermosetting treatment at 110 to 190 ° C. for about 20 to 150 minutes.
  • the present invention also provides a flexible printed wiring board containing the thermosetting resin film of the present invention or a thermosetting resin film with a copper foil.
  • the present invention also provides a flexible printed wiring board containing a laminated film for a flexible printed wiring board obtained by the above manufacturing method.
  • L / S may be 3 ⁇ m or more / 3 ⁇ m or more, and 5 ⁇ m or more / It may be 5 ⁇ m or more, and may be 7 ⁇ m or more / 7 ⁇ m or more.
  • a fine circuit In manufacturing a flexible printed wiring board having a fine circuit, the laminated film obtained by the manufacturing method is treated with a step of forming via holes and an oxidizing roughening liquid, if necessary (hereinafter referred to as the said). After the step is referred to as desmear processing), a fine circuit can be formed by a circuit forming method such as a semi-additive (SAP) method or a modified semi-additive (MSAP) method.
  • SAP semi-additive
  • MSAP modified semi-additive
  • the copper foil of the laminated film (and the ultrathin copper foil if it has an ultrathin copper foil) is removed, and then a plating seed layer is formed by electroless plating, and a desired circuit pattern is formed on the plating seed layer.
  • a mask pattern is formed to expose a part of the plating seed layer corresponding to. After forming a metal layer by electrolytic plating on the exposed plating seed layer, the mask pattern is removed. Then, by removing the unnecessary plating seed layer by etching or the like, the flexible printed wiring board of the present invention can be obtained.
  • thermosetting resin film with copper foil the heat with copper foil having the above-mentioned aspect (B), that is, "thermosetting resin film / ultrathin copper foil / release layer / carrier copper foil”.
  • a curable resin film is used, and a laminated film having this structure is used.
  • the outermost carrier copper foil of the laminated film is peeled off together with the release layer, the ultrathin copper foil is left on the thermosetting resin film, and the ultrathin copper foil is used as a seed layer.
  • a flexible printed wiring board can be manufactured in the same manner as in the SAP method, except that the plating seed layer prepared by the SAP method is used as the seed layer prepared by the above method.
  • the present invention will be described in more detail with reference to the following examples, but these examples do not limit the present invention in any sense.
  • the gelation rate was investigated according to the following method.
  • the temperature of welding to the polyimide film was investigated according to the following method.
  • the laminated film for the flexible printed wiring board manufactured in each example the presence or absence of wrinkles was evaluated or measured according to the following method.
  • the feasibility of forming a fine circuit in each example was evaluated according to the following criteria.
  • thermosetting resin film with copper foil obtained in each example is brought into contact with the thermosetting resin film.
  • the polyimide films were placed on the hot plate so as to be on the hot plate side.
  • a weight of 50 g was placed on the thermosetting resin film with copper foil and allowed to stand at a hot plate temperature of 160 to 300 ° C. for 60 seconds to form a laminated film.
  • the hot plate and the weight were removed, and the formed laminated film was allowed to cool to room temperature.
  • the polyimide is obtained when the thermocurable resin film is attached to 80% or more of the surface of the polyimide film. It was considered that the heat-curable resin film was welded to the film, and the lowest temperature at which the film was welded was defined as the welding temperature.
  • the welding temperature was investigated by carrying out the same operation a plurality of times while increasing the hot plate temperature by 10 ° C. The results are shown in Table 1.
  • thermosetting resin composition A (resin varnish A) was prepared by blending the following components. ⁇ 100 parts by mass of naphthalene type epoxy resin “NC7000L” (manufactured by Nippon Kayaku Co., Ltd.) ⁇ 41 parts by mass of cresol novolac type phenol resin “PHENOLITE (registered trademark) KA1165” (manufactured by DIC Corporation) ⁇ Aminotriazine skeleton-containing phenol resin “ PHENOLITE (registered trademark) LA7054 "(manufactured by DIC Corporation) 18 parts by mass, 1,8-diazabicyclo [5.4.0] Undecen-7 (DBU) 0.7 parts by mass, 2-phenylimidazole 0.3 parts by mass -Carbonate-modified polyvinyl acetal resin "ESREC (registered trademark) KS-23Z” (
  • a laminated film A for flexible printed wiring board was produced by a roll-to-roll method. Specifically, a polyimide film "UPIREX (registered trademark) -SGA" (manufactured by Ube Kosan Co., Ltd.) having a thickness of 25 ⁇ m is sent out from a polyimide film sending device, and a thermosetting resin film with a copper foil is attached with a copper foil. The thermosetting resin film A was sent out. At this time, the thermosetting resin film A with a copper foil was sent out with the thermosetting resin film located on the polyimide film side.
  • UPIREX registered trademark
  • thermosetting resin film A of the thermosetting resin film A with copper foil is heat-bonded to the polyimide film with a laminate roll preset to the welding temperature of the thermosetting resin film found by the above investigation, and then 60 at 140 ° C.
  • the adhesiveness between the thermosetting resin film and the polyimide film was sufficiently enhanced by heat-curing at 185 ° C. for 60 minutes to prepare a laminated film A for a flexible printed wiring board.
  • the produced laminated film A for a flexible printed wiring board was photographed from the polyimide film side with a digital camera. The result is shown in FIG. From FIG. 5, it can be seen that no wrinkles have occurred.
  • the laminated film obtained by the above procedure is immersed in the conditioner liquid "Conditioner Neogant MV" (manufactured by Atotech Japan Co., Ltd.) at 60 ° C. for 4 minutes, washed with water, and pre-dipped. It was immersed in the liquid "Pridip Neogant MV” (manufactured by Atotech Japan Co., Ltd.) at room temperature for 1 minute.
  • the activator liquid "Activator Neogant MV” (manufactured by Atotech Japan Co., Ltd.) at 40 ° C.
  • thermosetting resin composition A resin varnish A
  • thermosetting resin composition B resin varnish B
  • thermosetting resin composition A resin varnish A
  • thermosetting resin composition C resin varnish C
  • thermosetting resin composition B (resin varnish B) of Example 2
  • 1,5-diazabicyclo [4.3.0] Nonen-5 DBU
  • a thermosetting resin composition D (resin varnish D) was prepared.
  • a plate D was produced.
  • thermosetting resin composition B (resin varnish B) of Example 2
  • the biphenyl type phenol resin "MEHC-7851” (Meiwa Kasei Co., Ltd.) was used instead of the cresol novolac type phenol resin "PHENOLITE (registered trademark) KA1165".
  • the thermosetting resin composition E (resin varnish E) was prepared by the same operation except that the blending amount of each component was changed as shown in Table 1.
  • thermosetting resin composition A resin varnish A
  • a dicyclopentadiene type epoxy resin "HP7200H” manufactured by DIC Co., Ltd.
  • the thermosetting resin composition F was prepared by performing the same operation except that the blending amount of each component was changed as shown in Table 1.
  • a plate F was produced.
  • thermosetting resin composition A resin varnish A
  • thermosetting resin composition G resin varnish G
  • a thermosetting resin film G with a copper foil and a laminated film G for a flexible printed wiring board were produced by performing the same operation as in Example 1 except for the above.
  • the produced laminated film G for a flexible printed wiring board was photographed from the polyimide film side. The result is shown in FIG. From FIG. 6, it can be seen that wrinkles are generated.
  • thermosetting resin composition A (resin varnish A) of Example 1
  • the same operation was carried out except that the blending amount of DBU was changed from 0.7 parts by mass to 0.3 parts by mass.
  • a thermosetting resin composition H (resin varnish H) was prepared.
  • a thermosetting resin film H with a copper foil and a laminated film H for a flexible printed wiring board were produced by performing the same operation as in Example 1 except for the above.
  • Table 1 since the welding temperature of the thermosetting resin film to the polyimide film was high, a high temperature was required when producing the laminated film H for the flexible printed wiring board, and as a result, for the flexible printed wiring board. Wrinkles were generated on the polyimide film in the laminated film H.
  • thermosetting resin composition A (resin varnish A) of Example 1
  • the same operation was carried out except that the blending amount of DBU was changed from 0.7 parts by mass to 0.5 parts by mass.
  • a thermosetting resin composition I (resin varnish I) was prepared.
  • a thermosetting resin film I with a copper foil and a laminated film I for a flexible printed wiring board were produced by performing the same operation as in Example 1 except for the above.
  • Table 1 since the welding temperature of the thermosetting resin film to the polyimide film was high, a high temperature was required when producing the laminated film I for the flexible printed wiring board, and as a result, for the flexible printed wiring board. Wrinkles were generated on the polyimide film in the laminated film I.
  • thermosetting resin composition A (resin varnish A) of Example 1
  • DBU was not used, and the amount of 2-phenylimidazole, which is also (C) a curing accelerator, was increased accordingly.
  • a thermosetting resin composition J (resin varnish J) by carrying out the same operation.
  • a thermosetting resin film J with a copper foil and a laminated film J for a flexible printed wiring board were produced by performing the same operation as in Example 1 except for the above.
  • Table 1 since the welding temperature of the thermosetting resin film to the polyimide film was high, a high temperature was required when producing the laminated film J for the flexible printed wiring board, and as a result, for the flexible printed wiring board.
  • the heat-curable resin film of the present invention By using the heat-curable resin film of the present invention and the heat-curable resin film with copper foil, fine circuits can be formed even in a flexible printed wiring board. Therefore, for example, a watch type, a spectacle type, a ring type, and a shoe. It is useful as an internal board (flexible printed wiring board) of a wearable device or the like equipped with a camera, a display, a microphone, or the like on a frame such as a mold, a pocket mold, or a pendant mold.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Laminated Bodies (AREA)

Abstract

フレキシブルプリント配線板においてL/S=15μm以下/15μm以下の微細回路の形成を可能にする熱硬化性樹脂フィルム又は銅箔付き熱硬化性樹脂フィルム、並びにこれらを用いたフレキシブルプリント配線板用積層フィルムの製造方法、及びフレキシブルプリント配線板を提供する。前記熱硬化性樹脂フィルムは、具体的には、ポリイミドフィルムに対する下記定義の溶着温度が200℃以下の熱硬化性樹脂フィルムである。

Description

熱硬化性樹脂フィルム、銅箔付き熱硬化性樹脂フィルム、フレキシブルプリント配線板用積層フィルムの製造方法、及びフレキシブルプリント配線板
 本発明は、熱硬化性樹脂フィルム、銅箔付き熱硬化性樹脂フィルム、フレキシブルプリント配線板用積層フィルムの製造方法、及びフレキシブルプリント配線板に関する。
 ユビキタスコンピューティングにおいて、ウェアラブルコンピュータはエンドユーザーが直接接する端末として大きな意味をもつ。例えば特許文献1には、メガネ型のフレームに、カメラ、ディスプレイ、マイク等を備えたウェアラブルデバイスが開示されている。このようなウェアラブルデバイスをユーザーの体へ装着するためには、ウェアラブルデバイスに柔軟性が求められる。このため、ウェアラブルデバイスの内部基板としてフレキシブルプリント配線板が用いられることが多い。
 リジッドプリント配線板では、セミアディティブ(SAP)法又はモディファイドセミアディティブ(MSAP)法等の回路形成方法の利用によって回路の微細化が進んでおり、近年では回路幅(L)/回路間隔(S)[以下、単にL/Sと記載する。]が10μm以下/10μm以下の回路形成も達成されている。その一方で、前記フレキシブルプリント配線板の回路形成の主流であるサブトラクティブ法では、回路幅の厳密な制御及び微細な回路形成に限界があるため、フレキシブルプリント配線板の回路の微細化は進んでおらず、現在、L/S=30μm/30μm程度の回路の形成がなされるに留まっており、一部、微細化も検討されているものの、L/S=15μm以下/15μm以下の微細回路の形成には至っていないのが実情である。これは、サブトラクティブ法における回路形成は銅のエッチングによってなされるが、該エッチングが銅の厚さ方向のみならず幅方向にも進行するため、回路の断面形状が矩形にならずに台形となること等が起因している。
 そこで、フレキシブルプリント配線板においても、選択的にめっき膜を成長させて回路形成するSAP法又はMSAP法等の回路形成方法を利用することも検討されている(例えば、特許文献2参照)。フレキシブルプリント配線板においてSAP法又はMSAP法等の回路形成方法を利用すれば、サブトラクティブ法を利用する場合よりも回路の微細化が期待できる。
特開2015-149552号公報 特開2017-204538号公報
 特許文献2には、透明絶縁樹脂フィルム上に樹脂層を介して金属薄膜を積層することが記載されており、当該構成にすることで透明絶縁樹脂フィルムと金属薄膜との接着性を高めている。
 そこで本発明者等は、銅箔付き熱硬化性樹脂フィルムと絶縁樹脂フィルムとを、銅箔付き熱硬化性樹脂フィルムの熱硬化性樹脂フィルムが絶縁樹脂フィルムと接するように積層することによって絶縁樹脂フィルムと銅箔との接着性を確保し、こうして得られる積層フィルムを用いてSAP法又はMSAP法等の回路形成方法によって微細回路を形成することについて検討を始めた。そうしたところ、銅箔付き熱硬化性樹脂フィルムの熱硬化性樹脂フィルムは既に硬化しているため、絶縁樹脂フィルムに容易にはラミネートできず、例えばポリイミドフィルムに熱硬化性樹脂フィルムをラミネートするには所定温度以上に加熱する必要があることが判明した。
 本発明者等はさらに検討を進めたところ、銅箔付き熱硬化性樹脂フィルムを所定温度以上にまで加熱した場合、得られる積層フィルム中のポリイミドフィルムに皺が発生し易いことが判明した。目視にて確認すると、必ずしも大きな皺ではなく、単なる模様に見える程度の皺であることもある。しかし、たとえそのような皺であっても、積層フィルム中のポリイミドフィルムに存在しているだけで、L/S=15μm以下/15μm以下の微細回路の形成を困難にさせる傾向にあることが判明した(比較例参照)。
 本発明は、こうした事情に鑑み、フレキシブルプリント配線板においてL/S=15μm以下/15μm以下の微細回路の形成を可能にする熱硬化性樹脂フィルム又は銅箔付き熱硬化性樹脂フィルム、並びにこれらを用いたフレキシブルプリント配線板用積層フィルムの製造方法、及びフレキシブルプリント配線板を提供することを課題とする。
 本発明者らは、上記の課題を解決すべく鋭意研究した結果、200℃以下でポリイミドフィルムに溶着する熱硬化性樹脂フィルムであれば前記課題を解決し得ることを見出し、本発明を完成するに至った。本発明は、係る知見に基づいて完成したものである。
 本発明は下記[1]~[15]に関する。
[1]ポリイミドフィルムに対する下記定義の溶着温度が200℃以下である、熱硬化性樹脂フィルム。
溶着温度の定義:まず、厚み25μmのポリイミドフィルム上に、銅箔付き熱硬化性樹脂フィルムを熱硬化性樹脂フィルムと前記ポリイミドフィルムとが接するように重ね合わせ、前記ポリイミドフィルムが熱板側になるように熱板上に載せる。次いで、前記銅箔付き熱硬化性樹脂フィルムの上に50gの重りを載せて所定温度にて60秒静置して積層フィルムを形成する。その後、熱板及び重りを取り外し、形成された積層フィルムを常温まで放冷する。得られた積層フィルムについて、前記ポリイミドフィルムと前記熱硬化性樹脂フィルムとを引き剥がしたときに、前記ポリイミドフィルムの表面の80%以上に前記熱硬化性樹脂フィルムが付着している場合に、ポリイミドフィルムに対して熱硬化性樹脂フィルムが溶着したとみなし、溶着した最低温度を溶着温度とする。
[2]前記溶着温度が140~200℃である、上記[1]に記載の熱硬化性樹脂フィルム。
[3](A)エポキシ樹脂、(B)エポキシ樹脂硬化剤及び(C)硬化促進剤を含有し、前記(C)硬化促進剤が強塩基性化合物を含有する熱硬化性樹脂組成物から形成されてなる、上記[1]又は[2]に記載の熱硬化性樹脂フィルム。
[4]前記強塩基性化合物のpKaが10以上である、上記[3]に記載の熱硬化性樹脂フィルム。
[5]前記強塩基性化合物が、1,8-ジアザビシクロ[5.4.0]ウンデセン-7(DBU)、1,5-ジアザビシクロ[4.3.0]ノネン-5(DBN)、テトラメチルグアニジン(TMG)、1,4-ジアザビシクロ[2.2.2]オクタン(DABCO)、1,5,7-トリアザビシクロ[4.4.0]デセン-5(TBD)及び7-メチル-1,5,7-トリアザビシクロ[4.4.0]デセン-5(MTBD)からなる群から選択される少なくとも1種である、上記[3]又は[4]に記載の熱硬化性樹脂フィルム。
[6]前記強塩基性化合物の含有量が、前記(A)エポキシ樹脂100質量部に対して0.6質量部以上である、上記[3]~[5]のいずれかに記載の熱硬化性樹脂フィルム。
[7]前記強塩基性化合物の含有量が、前記(A)エポキシ樹脂100質量部に対して0.6~2.8質量部である、上記[3]~[6]のいずれかに記載の熱硬化性樹脂フィルム。
[8]前記(B)エポキシ樹脂硬化剤がフェノール系硬化剤を含有する、上記[3]~[7]のいずれかに記載の熱硬化性樹脂フィルム。
[9]フレキシブルプリント配線板用である、上記[1]~[8]のいずれかに記載の熱硬化性樹脂フィルム。
[10]上記[1]~[9]のいずれかに記載の熱硬化性樹脂フィルム上に銅箔を有する、銅箔付き熱硬化性樹脂フィルム。
[11]フレキシブルプリント配線板用である、上記[10]に記載の銅箔付き熱硬化性樹脂フィルム。
[12](1)ポリイミドフィルムと、(2)上記[10]又は[11]に記載の銅箔付き熱硬化性樹脂フィルムとを、熱硬化性樹脂フィルムがポリイミドフィルムと向かい合うように200℃以下で熱圧着することによって、前記熱硬化性樹脂フィルムをポリイミドフィルムへ溶着させる工程を有する、フレキシブルプリント配線板用積層フィルムの製造方法。
[13]上記[1]~[9]のいずれかに記載の熱硬化性樹脂フィルム又は上記[10]もしくは[11]に記載の銅箔付き熱硬化性樹脂フィルムを含有してなる、フレキシブルプリント配線板。
[14]上記[12]に記載の製造方法によって得られるフレキシブルプリント配線板用積層フィルムを含有してなる、フレキシブルプリント配線板。
[15]回路幅(L)/回路間隔(S)が15μm以下/15μm以下の回路を有する、上記[13]又は[14]に記載のフレキシブルプリント配線板。
 本発明により、L/S=15μm以下/15μm以下の微細回路が形成されたフレキシブルプリント配線板を製造することを可能にする熱硬化性樹脂フィルム及び銅箔付き熱硬化性樹脂フィルムを提供することができる。
本発明で定義する溶着温度の測定方法を説明するための概略図である。 本発明のフレキシブルプリント配線板用積層フィルムの製造方法の一態様の概略図である。 本発明のフレキシブルプリント配線板用積層フィルムの一態様を示す概略図である。 本発明のフレキシブルプリント配線板用積層フィルムの別の一態様を示す概略図である。 実施例1で作製したフレキシブルプリント配線板用積層フィルムA中のポリイミドフィルムの様子(皺なし)を示す写真である。 比較例1で作製したフレキシブルプリント配線板用積層フィルムG中のポリイミドフィルムの様子(皺あり)を示す写真である。 実施例1で作製したフレキシブルプリント配線板AのL/S=8μm/8μmの回路の走査型電子顕微鏡(SEM)写真である。右下の線は1目盛り分が20μmであり、10目盛り分で200μmとなっている。
 本明細書中に記載されている数値範囲において、その数値範囲の上限値又は下限値は、実施例に示されている値に置き換えてもよい。また、数値範囲の下限値及び上限値は、それぞれ他の数値範囲の下限値又は上限値と任意に組み合わせられる。
 さらに、本明細書において、熱硬化性樹脂組成物中の各成分の含有量は、各成分に該当する物質が複数種存在する場合には、特に断らない限り、熱硬化性樹脂組成物中に存在する当該複数種の物質の合計の含有量を意味する。また、固形分とは、熱硬化性樹脂組成物中の揮発性の成分を除いた残分を意味する。
 本明細書における記載事項を任意に組み合わせた態様も本発明に含まれる。
 なお、本明細書において、常温とは5~35℃を指し、好ましくは15~25℃である。また、本明細書において、平均一次粒子径とは、凝集した粒子のいわゆる二次粒子径ではなく、凝集していない単体での平均粒子径を指す。平均一次粒子径は、レーザー回折式粒度分布計で測定した値である。
[熱硬化性樹脂フィルム]
 本発明の熱硬化性樹脂フィルムは、ポリイミドフィルムに対する下記定義の溶着温度が200℃以下である。溶着温度の定義について、適宜、図1を参照しながら以下に説明する。
(溶着温度の定義)
 まず、厚み25μmのポリイミドフィルム1上に、銅箔2と熱硬化性樹脂フィルム3を有する銅箔付き熱硬化性樹脂フィルム4を、熱硬化性樹脂フィルム3と前記ポリイミドフィルム1とが接するように重ね合わせ、前記ポリイミドフィルム1が熱板5側になるように熱板5上に載せる。次いで、前記銅箔付き熱硬化性樹脂フィルム4の上に50gの重り6を載せて所定温度にて60秒静置して積層フィルム7を形成する。その後、熱板5及び重り6を取り外し、形成された積層フィルム7を常温まで放冷する。得られた積層フィルム7について、前記ポリイミドフィルム1と前記熱硬化性樹脂フィルム3とを引き剥がしたときに、前記ポリイミドフィルム1の表面の80%以上に前記熱硬化性樹脂フィルム3が付着している場合に、ポリイミドフィルム1に対して熱硬化性樹脂フィルム3が溶着したとみなし、溶着した最低温度を溶着温度とする。
 80%というのは、ポリイミドフィルム1の表面を目視したときに、ポリイミドフィルム1の表面が見えない部分の面積が80%以上ということである。
 本発明の熱硬化性樹脂フィルムにおいて、ポリイミドフィルムに対する溶着温度は200℃以下である。溶着温度が200℃以下であることによって、銅箔付き熱硬化性樹脂フィルムとポリイミドフィルムとの熱圧着を200℃以下で実施することができるため、得られる積層フィルム中のポリイミドフィルムに皺が発生することを効果的に抑制できる。前述の通り、その皺は必ずしも大きな皺というわけではなく、目視にて確認すると、単なる模様に見える程度の皺であることもある。しかし、たとえそのような皺であっても、積層フィルム中のポリイミドフィルムに存在しているだけで、フレキシブルプリント配線板においてL/S=15μm以下/15μm以下の微細回路の形成が困難になる。そのため、フレキシブルプリント配線板用の微細回路の形成のためには、皺の発生を抑制しながら積層フィルムを形成することが重要である。
 例えば、銅箔付き熱硬化性樹脂フィルムとポリイミドフィルムとの熱圧着を230℃以上で実施すると、積層フィルム中のポリイミドフィルムに前記皺が発生する傾向にある。特に250℃以上であるとそれが顕著になる。このようになる原因としては、200℃以下であればほぼ同等の熱膨張係数を有する銅箔とポリイミドフィルムとが、230℃以上という高温域においては熱膨張係数に大きく差が開くことが考えられる。例えば、銅箔の熱膨張係数は0℃から300℃まで15ppm/℃程度であって大きく変わらないが、ポリイミドフィルムの熱膨張係数は、0℃から200℃までは15ppm/℃程度であるが、250℃では28ppm/℃程度にまで増大するため、両者の熱膨張係数の差が大きくなり、熱膨張時及び熱収縮時に膨張及び収縮の程度に差が開き、皺が発生し易くなることが原因であろうと推察する。
 熱硬化性樹脂フィルムの溶着温度の下限値に特に制限はないが、ポリイミドフィルムへ低温で溶着させるのは現実的には困難であるため、通常、140℃以上となる。
 以上の観点から、本発明の熱硬化性樹脂フィルムの溶着温度は、好ましくは140~200℃、より好ましくは140~195℃、さらに好ましくは140~190℃であり、前記溶着温度の下限値は150℃であってもよく、160℃であってもよく、165℃であってもよい。
 本発明の熱硬化性樹脂フィルムは、前記溶着温度を有するものであれば特に制限されるものではないが、ポリイミドフィルムに対する溶着温度を200℃以下とする観点から、(A)エポキシ樹脂、(B)エポキシ樹脂硬化剤及び(C)硬化促進剤を含有し、前記(C)硬化促進剤が強塩基性化合物を含有する熱硬化性樹脂組成物から形成されてなる熱硬化性樹脂フィルムであることが好ましい。換言すると、本発明の熱硬化性樹脂フィルムの具体的な一態様として、(A)エポキシ樹脂、(B)エポキシ樹脂硬化剤及び(C)硬化促進剤を含有し、前記(C)硬化促進剤が強塩基性化合物を含有する熱硬化性樹脂組成物から形成されてなる熱硬化性樹脂フィルムが挙げられる。
 以下、前記熱硬化性樹脂組成物が含有し得る各成分について詳述する。
<(A)エポキシ樹脂>
 (A)エポキシ樹脂は、1分子中に2個以上のエポキシ基を有するエポキシ樹脂である。ここで、(A)エポキシ樹脂は、グリシジルエーテルタイプのエポキシ樹脂、グリシジルアミンタイプのエポキシ樹脂、グリシジルエステルタイプのエポキシ樹脂等に分類される。これらの中でも、グリシジルエーテルタイプのエポキシ樹脂が好ましい。
 (A)エポキシ樹脂は、主骨格の違いによっても種々のエポキシ樹脂に分類され、上記それぞれのタイプのエポキシ樹脂において、さらに、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、ビスフェノールS型エポキシ樹脂等のビスフェノール型エポキシ樹脂;脂環式エポキシ樹脂;脂肪族鎖状エポキシ樹脂;フェノールノボラック型エポキシ樹脂、クレゾールノボラック型エポキシ樹脂、ビスフェノールAノボラック型エポキシ樹脂、ビスフェノールFノボラック型エポキシ樹脂等のノボラック型エポキシ樹脂;フェノールアラルキル型エポキシ樹脂;スチルベン型エポキシ樹脂;ジシクロペンタジエン型エポキシ樹脂;ナフトールノボラック型エポキシ樹脂、ナフトールアラルキル型エポキシ樹脂等のナフタレン骨格含有型エポキシ樹脂;ビフェニル型エポキシ樹脂;ビフェニルアラルキル型エポキシ樹脂;キシリレン型エポキシ樹脂;ジヒドロアントラセン型エポキシ樹脂;ジシクロペンタジエン型エポキシ樹脂などに分類される。
 これらの中でも、耐熱性の観点からは、芳香族系エポキシ樹脂が好ましく、ノボラック型エポキシ樹脂、ナフタレン骨格含有型エポキシ樹脂、ビフェニル型エポキシ樹脂、ビフェニルアラルキル型エポキシ樹脂がより好ましく、低熱膨張性、耐デスミア性等の観点から、ナフタレン骨格含有型エポキシ樹脂、ビフェニル型エポキシ樹脂、ビフェニルアラルキル型エポキシ樹脂がさらに好ましい。また、銅箔及び無電解めっきとの接着強度の観点からは、ジシクロペンタジエン型エポキシ樹脂が好ましい。
 (A)エポキシ樹脂は、1種を単独で使用してもよいし、絶縁信頼性及び耐熱性の観点から、2種以上を併用してもよい。
 (A)エポキシ樹脂のエポキシ当量は、好ましくは50~3,000g/eq、より好ましくは80~2,000g/eq、さらに好ましくは100~1,000g/eq、特に好ましくは200~400g/eqである。ここで、エポキシ当量は、1当量のエポキシ基あたりの樹脂の質量(g/eq)であり、JIS K 7236に規定された方法に従って測定することができる。具体的には、自動滴定装置「GT-200型」(株式会社三菱ケミカルアナリテック製)を用いて、200mlビーカーにエポキシ樹脂2gを秤量し、メチルエチルケトン90mlを滴下し、超音波洗浄器溶解後、氷酢酸10ml及び臭化セチルトリメチルアンモニウム1.5gを添加し、0.1mol/Lの過塩素酸/酢酸溶液で滴定することにより求められる。
 (A)エポキシ樹脂の市販品としては、例えば、ビスフェノールA型エポキシ樹脂である「jER1001」、「jER828EL」、「YL980」(三菱ケミカル株式会社製、「jER」は登録商標)、ビスフェノールF型エポキシ樹脂である、「jER806H」、「YL983U」(以上、三菱ケミカル株式会社製)、フェノールノボラック型エポキシ樹脂である「N770」(DIC株式会社製)、フェノールビフェニルアラルキル型エポキシ樹脂である「NC-3000H」(日本化薬株式会社製)、クレゾールノボラック型エポキシ樹脂である「EPICLON N-660」(DIC株式会社製、「EPICLON」は登録商標)、ナフタレン骨格含有エポキシ樹脂である「HP-9900」(DIC株式会社製)等が挙げられる。
 ここで、(A)エポキシ樹脂としては、柔軟性の観点から、1分子中に2個以上のエポキシ基を有すると共に、炭素数3以上のアルキレングリコールに由来する構造単位を有するエポキシ樹脂であってもよい。該炭素数3以上のアルキレングリコールに由来する構造単位は、エポキシ樹脂の主鎖に有していることが好ましい。
 なお、「炭素数3以上のアルキレングリコールに由来する構造単位を有する」とは、炭素数3以上のアルキレングリコールをモノマとして用いて得られたものであってもよいし、炭素数3以上のアルキレングリコール骨格を有する化合物を用いて得られたものであってもよい。
 炭素数3以上のアルキレングリコールとしては、炭素数4以上のアルキレングリコールが好ましい。炭素数の上限は、限定されないが、15以下が好ましく、10以下がより好ましく、8以下がさらに好ましい。(A)エポキシ樹脂としては、例えば、ヘキサンジオールに由来する構造単位を主鎖中に有するビスフェノールA型エポキシ樹脂であってもよい。
 炭素数3以上のアルキレングリコールに由来する構造単位を主鎖に有するエポキシ樹脂の具体例として、例えば、下記一般式(I)で示されるビニルエーテル化合物と下記一般式(II)で示される2官能性フェノール化合物とを反応させた後にエポキシ化して得られるエポキシ樹脂が挙げられる。より詳細には、下記一般式(I)で示されるビニルエーテル化合物と下記一般式(II)で示される2官能性フェノール化合物とを反応させた後、エピクロロヒドリン等のエピハロヒドリンによって末端をエポキシ化することによって製造できる。当該エポキシ樹脂は、HO[-R-O]n-H(R及びnは、一般式(I)中のものと同じである。)で表されるアルキレンジオールに由来する構造と、下記一般式(II)で示される2官能性フェノール化合物に由来する構造とを有するとも言える。
Figure JPOXMLDOC01-appb-C000001
 一般式(I)中、Rは、炭素数1~10の脂肪族炭化水素基である。一般式(II)中、Rは、炭素数1~10の脂肪族炭化水素基を示し、好ましくは炭素数1~5の脂肪族炭化水素基、より好ましくは炭素数1~3の脂肪族炭化水素基である。また、nは1~15の整数を表し、好ましくは1~10の整数、より好ましくは1~5の整数、さらに好ましくは1~3の整数、特に好ましくは1である。
 Rが示す炭素数1~10の脂肪族炭化水素基としては、例えば、メチレン基、1,2-ジメチレン基、1,2-トリメチレン基、1,3-トリメチレン基、1,4-テトラメチレン基、1,5-ペンタメチレン基、1,6-ヘキサメチレン基、1,9-ノナメチレン基等の炭素数1~10のアルキレン基などが挙げられる。該炭素数1~10のアルキレン基としては、好ましくは炭素数2~10のアルキレン基、より好ましくは炭素数2~7のアルキレン基であり、さらに好ましくは1,6-ヘキサメチレン基である。
 Rが示す炭素数1~10の脂肪族炭化水素基としては、例えば、メチレン基、1,2-ジメチレン基、1,3-トリメチレン基、1,4-テトラメチレン基、1,5-ペンタメチレン基等の炭素数1~10のアルキレン基;エチリデン基、プロピリデン基、イソプロピリデン基、ブチリデン基、イソブチリデン基、ペンチリデン基、イソペンチリデン基等の炭素数2~10のアルキリデン基などが挙げられる。該炭素数1~10のアルキレン基としては、好ましくは炭素数1~5のアルキレン基、より好ましくは炭素数1~3のアルキレン基である。該炭素数2~10のアルキリデン基としては、好ましくは炭素数2~5のアルキリデン基、より好ましくは炭素数2~3のアルキリデン基、さらに好ましくはイソプロピリデン基である。
 Rは、フェノールの4位で結合していることが好ましい。
 前記熱硬化性樹脂組成物が(A)エポキシ樹脂を含有する場合、その含有量は、銅箔及び無電解めっきとの接着強度及び耐熱性等の諸特性とのバランスの観点から、熱硬化性樹脂組成物の固形分に対して、10~85質量%が好ましく、30~80質量%がより好ましく、45~75質量%がさらに好ましい。
<(B)エポキシ樹脂硬化剤>
 (B)エポキシ樹脂硬化剤としては、例えば、フェノール系硬化剤、シアネートエステル系硬化剤、酸無水物系硬化剤等が挙げられる。これらの中でも、ポリイミドフィルムに対する溶着温度低下の観点から、(B)エポキシ樹脂硬化剤はフェノール系硬化剤を含有することが好ましい。(B)エポキシ樹脂硬化剤は、1種を単独で使用してもよいし、2種以上を併用してもよい。
 前記フェノール系硬化剤としては、特に制限されないが、例えば、クレゾールノボラック型硬化剤、ビフェニル型硬化剤、フェノールノボラック型硬化剤、ナフチレンエーテル型硬化剤、トリアジン骨格含有フェノール系硬化剤等が好ましく挙げられる。これらの中でも、クレゾールノボラック型硬化剤、ビフェニル型硬化剤、トリアジン骨格含有フェノール系硬化剤がより好ましい。
 フェノール系硬化剤の市販品としては、例えば、フェノライトKA-1160、フェノライトKA-1163、フェノライトKA-1165、EXB-9829(以上、DIC株式会社製、「フェノライト」は登録商標)等のクレゾールノボラック型硬化剤;MEH-7700、MEH-7810、MEHC-7851(以上、明和化成株式会社製)等のビフェニル型硬化剤;フェノライトTD2090(DIC株式会社製)等のフェノールノボラック型硬化剤;EXB-6000(DIC株式会社製)等のナフチレンエーテル型硬化剤;LA3018、LA7052、LA7054、LA1356(以上、DIC株式会社製)等のトリアジン骨格含有フェノール系硬化剤などが挙げられる。
 前記シアネートエステル系硬化剤としては、特に制限はないが、例えば、ビスフェノールAジシアネート、ポリフェノールシアネート〔オリゴ(3-メチレン-1,5-フェニレンシアネート)〕、4,4’-メチレンビス(2,6-ジメチルフェニルシアネート)、4,4’-エチリデンジフェニルジシアネート、ヘキサフルオロビスフェノールAジシアネート、2,2-ビス(4-シアネート)フェニルプロパン、1,1-ビス(4-シアネートフェニルメタン)、ビス(4-シアネート-3,5-ジメチルフェニル)メタン、1,3-ビス(4-シアネートフェニル-1-(メチルエチリデン))ベンゼン、ビス(4-シアネートフェニル)チオエーテル、ビス(4-シアネートフェニル)エーテル等が挙げられる。
 前記酸無水物系硬化剤としては、特に制限はないが、例えば、無水フタル酸、テトラヒドロ無水フタル酸、ヘキサヒドロ無水フタル酸、メチルテトラヒドロ無水フタル酸、メチルヘキサヒドロ無水フタル酸、メチルナジック酸無水物、水素化メチルナジック酸無水物、トリアルキルテトラヒドロ無水フタル酸、ドデセニル無水コハク酸、5-(2,5-ジオキソテトラヒドロ-3-フラニル)-3-メチル-3-シクロヘキセン-1,2-ジカルボン酸無水物、無水トリメリット酸、無水ピロメリット酸等が挙げられる。
 前記熱硬化性樹脂組成物が(B)エポキシ樹脂硬化剤を含有する場合、その含有量は、銅箔及び無電解めっきとの接着強度及び耐熱性の観点から、(A)エポキシ樹脂100質量部に対して、10~100質量部が好ましく、20~85質量部がより好ましく、40~70質量部がさらに好ましい。
<(C)硬化促進剤>
 ポリイミドフィルムに対する溶着温度を200℃とする観点から、(C)硬化促進剤は強塩基性化合物を含有することが好ましく、また、該強塩基性化合物を後述する様に所定量含有させることが好ましい。
 強塩基性化合物としては、pKaが10以上の強塩基性化合物が好ましく、pKaが11以上の強塩基性化合物がより好ましく、pKaが11~16の強塩基性化合物がさらに好ましく、pKaが11~14の強塩基性化合物が特に好ましい。なお、本発明において、pKaは水中でのpKaである。強塩基性化合物としては、前記pKaを有する含窒素環状化合物が好ましく、1,8-ジアザビシクロ[5.4.0]ウンデセン-7(DBU)、1,5-ジアザビシクロ[4.3.0]ノネン-5(DBN)、テトラメチルグアニジン(TMG)、1,4-ジアザビシクロ[2.2.2]オクタン(DABCO)、1,5,7-トリアザビシクロ[4.4.0]デセン-5(TBD)及び7-メチル-1,5,7-トリアザビシクロ[4.4.0]デセン-5(MTBD)からなる群から選択される少なくとも1種であることがより好ましく、DBU及びDBNからなる群から選択される少なくとも1種であることがさらに好ましい。
 (C)硬化促進剤として強塩基性化合物を含有する場合、その含有量は、(A)エポキシ樹脂100質量部に対して、好ましくは0.6質量部以上であり、0.8質量部以上であってもよい。(A)エポキシ樹脂100質量部に対して強塩基性化合物を0.6質量部以上含有することによって、ポリイミドフィルムに対する溶着温度が200℃以下の熱硬化性樹脂フィルムを得ることができる。但し、これはあくまで前記溶着温度に調整する方法の一例であって、特にこの方法に制限されるものではない。
 なお、一般的には、強塩基性化合物等の硬化促進剤の含有量を増やすことで熱硬化性組成物のゲル化速度が大きくなるため、強塩基性化合物の含有量を(A)エポキシ樹脂100質量部に対して0.6質量部以上にすることは避けるものであるが、本発明では敢えて増やしてみたところ、ポリイミドフィルムに対する溶着温度の低下という効果が得られた。
 (A)エポキシ樹脂100質量部に対して強塩基性化合物を0.6質量部以上含有することによって、得られる熱硬化性樹脂フィルムが200℃以下でポリイミドフィルムに溶着するようになる理由は明らかにはなっていないが、次の可能性があると推測する。例えば、(1)強塩基性化合物を前記所定量含有することによって、形成される熱硬化性樹脂フィルム中のポリマー成分の分子鎖長が小さくなったり、低分子化合物が含まれたりすることによって、それらがポリイミドフィルムに対する接着成分として機能した可能性、及び、(2)前記(B)エポキシ樹脂硬化剤としてフェノール系硬化剤を使用した場合には、フェノール系硬化剤と強塩基性化合物とが塩を形成し、該塩がポリイミドフィルムとの接着性を向上させた可能性等が考えられる。
 強塩基性化合物の含有量の上限値に特に制限はないが、熱硬化性樹脂組成物のゲル化速度を低く保つ観点から、好ましくは2.8質量部以下、より好ましくは2.5質量部以下、さらに好ましくは2.0質量部以下、特に好ましくは1.7質量部以下、最も好ましくは1.5質量部以下であり、いずれの場合も、下限を0.6質量部以上として考えることができるし、0.8質量部以上として考えることもできる。
 (C)硬化促進剤としては、前記強塩基性化合物以外の硬化促進剤を含有していてもよい。そのような硬化促進剤としては、例えば、イミダゾール類及びその誘導体;ホスフィン類及びホスホニウム塩、第三級ホスフィンとキノン類との付加物等の有機リン系化合物;第二級アミン、第三級アミン、第四級アンモニウム塩など(但し、ここでは前記強塩基性化合物を除く。)が挙げられる。(C)硬化促進剤としては、1種を単独で使用してもよいし、2種以上を併用してもよいが、前述の通り、少なくとも強塩基性化合物を使用することが好ましい。
 前記強塩基性化合物以外の硬化促進剤としては、例えば、銅箔及び無電解めっきとの接着強度並びに難燃性の観点から、イミダゾール化合物及びその誘導体が好ましい。つまり、(C)硬化促進剤として、前記強塩基性化合物と、イミダゾール化合物又はその誘導体と、を併用することも、好ましい一態様と言える。
 イミダゾール化合物及びその誘導体の具体例としては、例えば、2-メチルイミダゾール、2-エチルイミダゾール、2-ウンデシルイミダゾール、2-ヘプタデシルイミダゾール、2-フェニルイミダゾール、1,2-ジメチルイミダゾール、2-エチル-1-メチルイミダゾール、1,2-ジエチルイミダゾール、1-エチル-2-メチルイミダゾール、2-エチル-4-メチルイミダゾール、4-エチル-2-メチルイミダゾール、1-イソブチル-2-メチルイミダゾール、2-フェニル-4-メチルイミダゾール、1-ベンジル-2-フェニルイミダゾール、1-シアノエチル-2-メチルイミダゾール、1-シアノエチル-2-エチルイミダゾール、1-シアノエチル-2-フェニルイミダゾール、1-シアノエチル-2-エチル-4-メチルイミダゾール、2-フェニル-4,5-ジヒドロキシメチルイミダゾール、2-フェニル-4-メチル-5-ヒドロキシメチルイミダゾール、2,3-ジヒドロ-1H-ピロロ[1,2-a]ベンズイミダゾール、2,4-ジアミノ-6-[2’-メチルイミダゾリル-(1’)]エチル-s-トリアジン、2,4-ジアミノ-6-[2’-ウンデシルイミダゾリル-(1’)]エチル-s-トリアジン、2,4-ジアミノ-6-[2’-エチル-4’-メチルイミダゾリル-(1’)]エチル-s-トリアジン等のイミダゾール化合物;2-メチルイミダゾリン、2-エチル-4-メチルイミダゾリン、2-ウンデシルイミダゾリン、2-フェニル-4-メチルイミダゾリン等のイミダゾリン化合物;前記イミダゾール化合物(好ましくは1-シアノエチル-2-フェニルイミダゾール)とトリメリト酸との付加反応物;前記イミダゾール化合物とイソシアヌル酸との付加反応物;前記イミダゾール化合物(好ましくは2-エチル-4-メチルイミダゾール)とジイソシアネート化合物(好ましくは、ヘキサメチレンジイソシアネート)との付加反応物;前記イミダゾール化合物と臭化水素酸との付加反応物などが挙げられる。イミダゾール化合物は、1種を単独で使用してもよいし、2種以上を併用してもよい。
 前記熱硬化性樹脂組成物が前記強塩基性化合物以外の硬化促進剤を含有する場合、その含有量は、耐熱性及び保存安定性等の観点から、(A)エポキシ樹脂100質量部に対して、0.1~5質量部が好ましく、0.1~3質量部がより好ましく、0.1~1質量部がさらに好ましく、0.1~0.5質量部が特に好ましい。また、前記強塩基性化合物以外の硬化促進剤を含有していなくてもよい。
<(D)高分子成分>
 前記熱硬化性樹脂組成物は、さらに、(D)高分子成分を含有していてもよい。但し、該(D)高分子成分にはエポキシ樹脂は含まれない。(D)高分子成分は、1種を単独で使用してもよいし、2種以上を併用してもよい。
 (D)高分子成分としては、例えば、(D1)架橋ゴム粒子、(D2)ポリビニルアセタール樹脂及びカルボン酸変性ポリビニルアセタール樹脂からなる群から選択される少なくとも1種、などが挙げられる。銅箔及び無電解めっきとの接着強度の観点から、該(D1)成分と(D2)成分とを併用することが好ましい。
((D1)架橋ゴム粒子)
 (D1)架橋ゴム粒子としては、(A)エポキシ樹脂との親和性に優れたものが好ましく、特に制限されるものではないが、アクリロニトリルブタジエン架橋ゴム粒子及びカルボン酸変性アクリロニトリルブタジエン架橋ゴム粒子、並びにコアシェル型の架橋ゴム粒子等が挙げられる。(D1)成分を使用することによって、銅箔及び無電解めっきとの接着強度が高くなる傾向にある。
 (D1)架橋ゴム粒子は、1種を単独で使用してもよいし、2種以上を併用してもよい。
 前記アクリロニトリルブタジエン架橋ゴム粒子は、アクリロニトリルとブタジエンを共重合させるにあたり、部分的に架橋させて粒子状にしたものである。また、アクリル酸、メタクリル酸等のカルボン酸を併せて共重合することにより、カルボン酸変性アクリロニトリルブタジエン架橋ゴム粒子を得ることができる。
 前記コアシェル型の架橋ゴム粒子は、コア層とシェル層とを有する架橋ゴム粒子である。例えば、外層のシェル層がガラス状ポリマーで構成され、内層のコア層がゴム状ポリマーで構成される2層構造;外層のシェル層がガラス状ポリマーで構成され、中間層がゴム状ポリマーで構成され、コア層がガラス状ポリマーで構成される3層構造、のもの等が挙げられる。前記ガラス層は、例えば、メタクリル酸メチルの重合物等で構成され、前記ゴム状ポリマー層は、例えば、アクリル系ゴム、ブタジエン系ゴム等で構成される。
 (D1)架橋ゴム粒子の大きさは、平均一次粒子径で、50nm~1μmにすることができる。
 (D1)架橋ゴム粒子としては、市販品を使用してもよい。該市販品としては、「架橋ゴム粒子を含有するエポキシ樹脂」という形態であってもよい。
 アクリロニトリルブタジエンゴム(NBR)粒子の市販品としては、XER-91シリーズ(JSR株式会社製)等が挙げられる。
 コアシェル型ゴム粒子の市販品としては、スタフィロイドAC3832、AC3816N(以上、アイカ工業株式会社製、「スタフィロイド」は登録商標)、メタブレンKW-4426、W300A、W450A(三菱ケミカル株式会社製、「メタブレン」は登録商標)、EXL-2655(ダウ・ケミカル日本株式会社製)、ブタジエン-メタクリル酸アルキル-スチレン共重合物である、パラロイドEXL-2655(株式会社クレハ製、「パラロイド」は登録商標)、アクリル酸エステル-メタクリル酸エステル共重合体である、スタフィロイドAC-3355、TR-2122(アイカ工業株式会社製、「スタフィロイド」は登録商標)、アクリル酸ブチル・メタクリル酸メチル共重合物である、カネエースMXシリーズ(株式会社カネカ製、「カネエース」は登録商標)等が挙げられる。
 前記熱硬化性樹脂組成物が(D1)成分を含有する場合、その含有量は、銅箔及び無電解めっきとの接着強度の観点から、(A)エポキシ樹脂100質量部に対して、0.5~25質量部が好ましく、1~20質量部がより好ましく、1~10質量部がさらに好ましく、3~8質量部が特に好ましい。
 ((D2)ポリビニルアセタール樹脂、カルボン酸変性ポリビニルアセタール樹脂)
 ポリビニルアセタール樹脂の種類、水酸基量及びアセチル基量に特に制限はないが、重合度は1000~2500が好ましい。重合度が前記範囲であれば、耐熱性に優れる傾向にある。ここでポリビニルアセタール樹脂の重合度は、その原料であるポリ酢酸ビニルの数平均分子量(ゲルパーミエーションクロマトグラフィによる標準ポリスチレンの検量線を用いて測定する)から求めることができる。また、ポリビニルアセタール樹脂をカルボン酸で変性することにより、カルボン酸変性ポリビニルアセタール樹脂として用いることもできる。(D2)成分を使用することによって、熱硬化性樹脂組成物の塗工性が良好となり、また、銅箔及び無電解めっきとの接着強度が高くなる傾向にある。
 (D2)成分は、1種を単独で使用してもよいし、2種以上を併用してもよい。
 (D2)成分としては市販品を使用してもよい。市販品としては、例えば、エスレックBX-1、BX-2、BX-5、BX-55、BX-7、BH-3、BH-S、KS-3Z、KS-5、KS-5Z、KS-8、KS-23Z等(以上、積水化学工業株式会社製)、電化ブチラール4000-2、5000A、6000C、6000EP(以上、デンカ株式会社製)等を使用することができる。
 前記熱硬化性樹脂組成物が(D2)成分を含有する場合、その含有量は、銅箔及び無電解めっきとの接着強度の観点から、(A)エポキシ樹脂100質量部に対して、0.5~25質量部が好ましく、1~20質量部がより好ましく、1~10質量部がさらに好ましく、3~8質量部が特に好ましい。
<(E)難燃剤>
 前記熱硬化性樹脂組成物は、さらに、(E)難燃剤を含有していてもよい。
 (E)難燃剤としては、特に制限されるものではないが、例えば、塩素系難燃剤、臭素系難燃剤、リン系難燃剤、水和金属化合物系難燃剤等が挙げられる。環境への適合性の観点からは、リン系難燃剤、水和金属化合物系難燃剤が好ましい。
 該(E)難燃剤としては、1種を単独で使用してもよいし、2種以上を併用してもよい。
 前記塩素系難燃剤としては、例えば、塩素化パラフィン等が挙げられる。
 前記臭素系難燃剤としては、例えば、臭素化ビスフェノールA型エポキシ樹脂、臭素化フェノールノボラック型エポキシ樹脂等の臭素化エポキシ樹脂;トリブロモフェニルマレイミド、トリブロモフェニルアクリレート、トリブロモフェニルメタクリレート、テトラブロモビスフェノールA型ジメタクリレート、ペンタブロモベンジルアクリレート、臭素化スチレン等の不飽和二重結合基含有臭素化難燃剤;ヘキサブロモベンゼン、ペンタブロモトルエン、エチレンビス(ペンタブロモフェニル)、エチレンビステトラブロモフタルイミド、1,2-ジブロモ-4-(1,2-ジブロモエチル)シクロヘキサン、テトラブロモシクロオクタン、ヘキサブロモシクロドデカン、ビス(トリブロモフェノキシ)エタン、臭素化ポリフェニレンエーテル、臭素化ポリスチレン、2,4,6-トリス(トリブロモフェノキシ)-1,3,5-トリアジンなどが挙げられる。
 前記リン系難燃剤としては、一般的に難燃剤として使用されるもののうち、リン原子を含有するものであれば特に制限はなく、無機系のリン系難燃剤であってもよいし、有機系のリン系難燃剤であってもよい。なお、環境への適合性の観点から、ハロゲン原子を含有しないものを選択できる。銅箔及び無電解めっきとの接着強度、耐熱性、ガラス転移温度、熱膨張係数及び難燃性の観点から、有機系のリン系難燃剤であってもよい。
 無機系のリン系難燃剤としては、例えば、赤リン;リン酸一アンモニウム、リン酸二アンモニウム、リン酸三アンモニウム、ポリリン酸アンモニウム等のリン酸アンモニウム;リン酸アミド等の無機系含窒素リン化合物;リン酸;ホスフィンオキシドなどが挙げられる。
 有機系のリン系難燃剤としては、例えば、芳香族リン酸エステル、1置換ホスホン酸ジエステル、2置換ホスフィン酸エステル、2置換ホスフィン酸の金属塩、有機系含窒素リン化合物、環状有機リン化合物等が挙げられる。ここで、金属塩としては、リチウム塩、ナトリウム塩、カリウム塩、カルシウム塩、マグネシウム塩、アルミニウム塩、チタン塩、亜鉛塩等が挙げられ、アルミニウム塩であってもよい。また、有機系のリン系難燃剤の中では、芳香族リン酸エステルを選択できる。
 前記水和金属化合物としては、例えば、水酸化アルミニウム、水酸化マグネシウム等が挙げられる。これらは1種を単独で用いてもよく、2種以上を併用してもよい。該水和金属化合物は後述の(F)無機充填材にも該当し得るが、難燃性を付与し得る材料は難燃剤に分類することとする。
 前記熱硬化性樹脂組成物が(E)難燃剤を含有する場合、その含有量は、難燃性の観点から、熱硬化性樹脂組成物の固形分に対して、0.5~5質量%が好ましく、1~3質量%がより好ましく、1.5~2.5質量%がさらに好ましい。
<(F)無機充填材>
 前記熱硬化性樹脂組成物は、さらに、(F)無機充填材を含有していてもよい。
 (F)無機充填材としては、例えば、シリカ、アルミナ、硫酸バリウム、タルク、マイカ、カオリン、ベーマイト、ベリリア、チタン酸バリウム、チタン酸カリウム、チタン酸ストロンチウム、チタン酸カルシウム、炭酸アルミニウム、水酸化マグネシウム、水酸化アルミニウム、ホウ酸アルミニウム、ケイ酸アルミニウム、炭酸カルシウム、ケイ酸カルシウム、ケイ酸マグネシウム、ホウ酸亜鉛、スズ酸亜鉛、酸化亜鉛、酸化チタン、炭化ケイ素、窒化ケイ素、窒化ホウ素、クレー(焼成クレー)、並びに、ガラス短繊維、ガラス粉及び中空ガラスビーズ等のガラスなどが挙げられ、これらからなる群から選択される少なくとも1種が好ましく使用される。ガラスとしては、Eガラス、Tガラス、Dガラス等が好ましく挙げられる。これらの中でも、樹脂層の熱膨張率低減の観点から、シリカ、アルミナが好ましく、シリカがより好ましい。
 前記シリカとしては、例えば、湿式法で製造され含水率の高い沈降シリカと、乾式法で製造され結合水等をほとんど含まない乾式法シリカが挙げられる。乾式法シリカとしては、さらに、製造法の違いにより破砕シリカ、フュームドシリカ、溶融シリカ(溶融球状シリカ)が挙げられ、これらの中でも、フュームドシリカ、溶融シリカ(溶融球状シリカ)が好ましい。
 無機充填材は、耐湿性を向上させるためにシランカップリング剤等の表面処理剤で表面処理されていてもよく、分散性を向上させるために疎水性化処理されていてもよい。
 (F)無機充填材は、目的に応じて適宜選択できる。微細回路を形成する観点から、例えば、比表面積は、好ましくは10m/g以上、より好ましくは30~250m/g、さらに好ましくは50~200m/g、特に好ましくは70~160m/gである。無機充填材の比表面積は、当業者が通常行う測定方法で求めることができ、例えば、BET法により測定することができる。BET法は、粉体粒子表面に、吸着占有面積の分かった分子を液体窒素の温度で吸着させ、その量から試料の比表面積を求める方法である。比表面積分析で、最もよく利用されているのが、窒素等の不活性気体によるBET法である。
 めっきプロセスにおける粗化処理後の表面形状を小さくする観点から、例えば、無機充填材の平均一次粒子径は100nm以下であることが好ましく、より好ましくは1~80nm、さらに好ましくは1~50nm、さらに好ましくは5~30nmである。
 平均一次粒子径が100nm以下の無機充填材の市販品としては、例えば、AEROSIL R972(比表面積=110±20m/g、平均一次粒子径=約16nm)、AEROSIL R202(比表面積=100±20m/g、平均一次粒子径=約14nm)[以上、日本アエロジル株式会社製、「AEROSIL」は登録商標];PL-1(比表面積=181m/g、平均一次粒子径=15nm)、PL-7(比表面積=36m/g、平均一次粒子径=75nm)[以上、扶桑化学工業株式会社製];AL-A06(比表面積=55m/g、平均一次粒子径=31nm)[CIKナノテック株式会社製]等がある。
 前記熱硬化性樹脂組成物が(F)無機充填材を含有する場合、その含有量は、熱硬化性樹脂組成物の固形分に対して、20質量%以下が好ましく、15質量%以下がより好ましく、10質量%以下がさらに好ましく、5質量%以下が特に好ましい。無機充填材の含有量が20質量%以下であれば、熱硬化性樹脂フィルムが良好な表面形状を維持することができる傾向にあり、且つ、めっき特性及び絶縁信頼性の低下を防ぎ易い傾向にある。
 なお、熱硬化性樹脂組成物は、(F)無機充填材を含有していない態様も好ましい。
<その他の成分>
 前記熱硬化性樹脂組成物は、必要に応じて、さらに、レベリング剤、酸化防止剤、揺変性付与剤、増粘剤、流動調整剤等の添加剤をさらに含有することができる。
 前記熱硬化性樹脂組成物がその他の成分を含有する場合、その含有量は、(A)エポキシ樹脂100質量部に対して、それぞれ、20質量部以下が好ましく、10質量部以下であってもよく、0.1~5質量部であってもよく、0.1~3質量部であってもよい。
<有機溶剤>
 熱硬化性樹脂組成物は、有機溶剤を含有させて樹脂ワニスにしてから熱硬化性樹脂フィルムを形成することができる。該有機溶剤としては、例えば、アセトン、メチルエチルケトン、メチルイソブチルケトン、シクロヘキサノン等のケトン類;酢酸エチル、酢酸ブチル、セロソルブアセテート、プロピレングリコールモノメチルエーテルアセテート、カルビトールアセテート等の酢酸エステル類;セロソルブ、メチルカルビトール、ブチルカルビトール等のカルビトール類;トルエン、キシレン等の芳香族炭化水素類;ジメチルホルムアミド、ジメチルアセトアミド(以下、「DMAc」ともいう)、N-メチルピロリドン(以下、「NMP」ともいう)、ジエチレングリコールジメチルエーテル、プロピレングリコールモノメチルエーテルなどが挙げられる。有機溶剤は1種を単独で使用してもよいし、2種以上を併用してもよい。
 前記樹脂ワニスの固形分濃度としては、熱硬化性樹脂組成物の溶解性、混合状態、塗布及び乾燥の作業性の観点から、10~50質量%が好ましく、20~45質量%がより好ましい。
(熱硬化性樹脂フィルム及び銅箔付き熱硬化性樹脂フィルムの製造方法)
 本発明の熱硬化性樹脂フィルム及び銅箔付き熱硬化性樹脂フィルムの製造方法に特に制限はないが、例えば、前記樹脂ワニスを銅箔上に塗工して乾燥させることにより、本発明の熱硬化性樹脂フィルム上に銅箔を有する、いわゆる銅箔付き熱硬化性樹脂フィルムを形成することができる。前記乾燥温度は、好ましくは90~210℃、より好ましくは120~200℃、さらに好ましくは160~190℃である。乾燥時間は、好ましくは1~60分、より好ましくは1~30分、さらに好ましくは1~10分である。
 本発明の熱硬化性樹脂フィルムは、ポリイミドフィルムと銅箔又は無電解めっきとの接着強度を高め、且つ微細回路の形成を可能とするためのプライマー層として機能するものである。よって、本発明の熱硬化性樹脂フィルムによって形成される層をプライマー層と称することもできる。
(厚み)
 熱硬化性樹脂フィルムの厚みは、特に制限されるものではないが、好ましくは0.5~6μm、より好ましくは1~3μm、さらに好ましくは1.5~2.5μmである。本発明の銅箔付き熱硬化性樹脂フィルムにおける熱硬化性樹脂フィルムの厚みについても同様である。
 また、本発明の銅箔付き熱硬化性樹脂フィルムにおける銅箔の厚みは、特に制限されるものではないが、好ましくは10~40μm、より好ましくは15~30μm、さらに好ましくは15~25μmである。
 なお、本発明の銅箔付き熱硬化性樹脂フィルムとしては、「熱硬化性樹脂フィルム/銅箔」という態様(A)、「熱硬化性樹脂フィルム/極薄銅箔/剥離層/キャリア銅箔」という態様(B)等が挙げられる。本明細書では、態様(B)における極薄銅箔/剥離層/キャリア銅箔をまとめて銅箔と称することがある。
 前記態様(A)は主にSAP法に利用することができ、前記態様(B)は、極薄銅箔が熱硬化性樹脂フィルム上に残ってそのままシード層として機能するため、主にMSAP法に利用することができるし、SAP法に利用してもよい。態様Bにおける極薄銅箔の厚みは、通常、0.5~3μmである。なお、前記態様(B)の剥離層は、キャリア銅箔を剥離する際に、剥離層と極薄銅箔との界面にて円滑に剥がすことを可能とするものである。該剥離層は、剥離層と極薄銅箔との界面にて円滑に剥がし得るものであれば特に制限はなく、公知のものを採用することができる。該剥離層は、無機系剥離層であってもよいし、有機系剥離層であってもよい。
[用途]
 本発明の熱硬化性樹脂フィルム及び銅箔付き熱硬化性樹脂フィルムはいずれも、フレキシブルプリント配線板用として有用である。本発明の熱硬化性樹脂フィルム及び銅箔付き熱硬化性樹脂フィルムを用いることで、特に、回路幅(L)/回路間隔(S)が15μm以下/15μm以下(好ましくは10μm以下/10μm以下)の回路を有するフレキシブルプリント配線板を製造することが可能となる。
[フレキシブルプリント配線板用積層フィルムの製造方法]
 本発明は、本発明の銅箔付き熱硬化性樹脂フィルムの熱硬化性樹脂フィルムが200℃以下でポリイミドフィルムへ溶着するという特性を利用して、以下のフレキシブルプリント配線板用積層フィルムの製造方法も提供する。
 具体的には、(1)ポリイミドフィルムと、(2)本発明の銅箔付き熱硬化性樹脂フィルムとを、熱硬化性樹脂フィルムがポリイミドフィルムと向かい合うように200℃以下(熱源の設定温度であり、好ましくは140~200℃、より好ましくは140~195℃、さらに好ましくは140~190℃であり、前記温度範囲の下限値は150℃であってもよく、160℃であってもよく、165℃であってもよい。)で熱圧着することによって、前記熱硬化性樹脂フィルムをポリイミドフィルムへ溶着させる工程を有する、フレキシブルプリント配線板用積層フィルムの製造方法である。該(1)ポリイミドフィルムは、前記溶着温度の定義中に記載のポリイミドフィルムと同じである。
 以下、「フレキシブルプリント配線板用積層フィルム」を「積層フィルム」と略称することがある。
 本発明の積層フィルムは、ポリイミドフィルムにおける皺の発生が抑制されたものであり、該積層フィルムを用いてSAP法又はMSAP法等の回路形成方法を利用することによって、微細回路、特にL/S=15μm以下/15μm以下(好ましくは10μm以下/10μm以下)の回路を有するフレキシブルプリント配線板の製造が可能となる。
 前記(1)ポリイミドフィルムとしては、適度な強度を有し、破れ等を引き起こさないものが好ましい。例えば、芳香族化合物が直接イミド結合で連結された、いわゆる芳香族ポリイミドが、フィルム強度の観点から好ましい。該ポリイミドフィルムは、表面処理がなされて接着性を高めたものであってもよい。
 (1)ポリイミドフィルムは、特に制限されるものではないが、例えば、公知の酸無水物と公知のジアミン化合物とを反応(重縮合)させてポリアミック酸を形成し、次いで脱水及び環化反応をさせてフィルム化することによって製造できる。ポリイミドフィルムのイミド化率は、好ましくは50%以上、より好ましくは80%以上、さらに好ましくは90%以上、特に好ましくは95%以上である。該イミド化率は、フーリエ変換赤外分光法(FT-IR法)によって測定したものである。
 前記酸無水物としては、特に制限されるものではないが、例えば、ピロメリット酸二無水物、ビフェニルテトラカルボン酸二無水物、ベンゾフェノンテトラカルボン酸二無水物等の芳香族テトラカルボン酸二無水物が挙げられる。これらの中でも、酸無水物としては、ビフェニルテトラカルボン酸二無水物が好ましい。
 前記ジアミン化合物としては、特に制限されるものではないが、例えば、オキシジアニリン、p-フェニレンジアミン、ベンゾフェノンジアミン等の芳香族ジアミン化合物が挙げられる。
 (1)ポリイミドフィルムとしては市販品を使用することができる。ポリイミドフィルムの市販品としては、例えば、ユーピレックスR、ユーピレックスS、ユーピレックスSGA(以上、宇部興産株式会社製、「ユーピレックス」は登録商標)、カプトンH、カプトンV、カプトンE、カプトンEN、カプトンENZT(以上、東レ・デュポン株式会社製、「カプトン」は登録商標)、アピカルAH、アピカルNPI(以上、株式会社カネカ製、「アピカル」は登録商標)等が挙げられる。
 前記(1)ポリイミドフィルムの厚みは、フィルム取り扱い性の観点から、5~250μmが好ましく、10~175μmがより好ましく、15~100μmがさらに好ましく、20~50μmが特に好ましい。
 前記(2)本発明の銅箔付き熱硬化性樹脂フィルムは、前述の説明の通りである。本発明の積層フィルムにおいても、銅箔付き熱硬化性樹脂フィルムとしては、「熱硬化性樹脂フィルム/銅箔」という態様(A)、「熱硬化性樹脂フィルム/極薄銅箔/剥離層/キャリア銅箔」という態様(B)等が挙げられる。
 本発明の積層フィルムは、特に制限されるものではないが、工業的に実施するという観点からは、ロールツーロール法によって製造する方法が好ましい。
 また、前記(1)ポリイミドフィルムと(2)本発明の銅箔付き熱硬化性樹脂フィルムとの熱圧着は、特に制限されるものではないが、ボイドが入り込むことを抑制する観点及び簡便性の観点から、ロールラミネート法を利用することが好ましい。
 図2に、ロールツーロール法及びロールラミネート法を利用した本発明の積層フィルムの製造方法の一態様の概略図を示す。図2は、ポリイミドフィルムの両面に銅箔付き熱硬化性樹脂フィルムを熱圧着する図になっているが、片面にのみ銅箔付き熱硬化性樹脂フィルムを熱圧着する態様であってもよい。ポリイミドフィルムの送出装置8からポリイミドフィルム1を送り出し、銅箔付き熱硬化性樹脂フィルムの送出装置9から銅箔付き熱硬化性樹脂フィルム4を送り出す。このとき、銅箔付き熱硬化性樹脂フィルム4は、熱硬化性樹脂フィルム3がポリイミドフィルム1側に位置する状態で送り出される。それぞれのフィルムがフリーロール10を経た後、200℃以下(好ましくは前述の温度範囲)のラミネートロール11にて、銅箔付き熱硬化性樹脂フィルムの熱硬化性樹脂フィルム3が溶着しながらポリイミドフィルム1へラミネートされ、本発明の積層フィルム7が形成される。
 なお、各フィルムを送出する際の線速は、それぞれ、好ましくは0.05~5m/分、より好ましくは0.1~4.5m/分、さらに好ましくは0.1~4m/分、特に好ましくは0.3~3.5m/分、最も好ましくは0.3~3m/分である。
 また、ラミネートロール11による面圧は、好ましくは0.3~1.2MPa、より好ましくは0.5~1.0MPaである。
 こうして得られる本発明の積層フィルムとしては、例えば、図3及び図4に示す様な構成を有する積層フィルム等が挙げられる。図3は、「ポリイミドフィルム1/熱硬化性樹脂フィルム3/銅箔2」という構成からなり、図4は、「ポリイミドフィルム1/熱硬化性樹脂フィルム3/極薄銅箔12/剥離層13/キャリア銅箔14」という構成からなる。
 本発明の積層フィルムの製造方法では、特に制限されるものではないが、上記のようにして積層フィルムを形成した後、さらに、熱硬化処理する工程を有することが好ましい。例えば、110~190℃で20~150分間程度の熱硬化処理を施すことが好ましい。
[フレキシブルプリント配線板]
 本発明は、本発明の熱硬化性樹脂フィルム又は銅箔付き熱硬化性樹脂フィルムを含有してなるフレキシブルプリント配線板も提供する。また、本発明は、前記製造方法によって得られるフレキシブルプリント配線板用積層フィルムを含有してなるフレキシブルプリント配線板も提供する。本発明のフレキシブルプリント配線板は、微細回路、特にL/S=15μm以下/15μm以下(好ましくは10μm以下/10μm以下)の回路を有するものとすることができる。L/Sは微細となるほど好ましいが、現状における微細化の限度を考慮すると、本発明のフレキシブルプリント配線板の回路においては、L/S=3μm以上/3μm以上であってもよく、5μm以上/5μm以上であってもよく、7μm以上/7μm以上であってもよい。
 微細回路を有するフレキシブルプリント配線板を製造するにあたり、前記製造方法によって得られた積層フィルムについて、必要に応じて、ビアホールを形成する工程、及び、酸化性粗化液を用いて処理(以下、該工程をデスミア処理と称する)を経た後、セミアディティブ(SAP)法又はモディファイドセミアディティブ(MSAP)法等の回路形成方法によって、微細回路を形成することができる。
 以下に、SAP法を利用する具体的な方法について簡単に説明する。
 まず、積層フィルムが有する銅箔(極薄銅箔を有する場合には該極薄銅箔も)を除去してから、無電解めっきによりめっきシード層を形成し、その上に、所望の回路パターンに対応してめっきシード層の一部を露出させるマスクパターンを形成する。露出しためっきシード層上に、電解めっきにより金属層を形成した後、マスクパターンを除去する。その後、不要なめっきシード層をエッチング等により除去することにより、本発明のフレキシブルプリント配線板が得られる。
 次に、MSAP法を利用する具体的な方法について簡単に説明する。
 まず、MSAP法においては、銅箔付き熱硬化性樹脂フィルムとして、前記態様(B)、つまり「熱硬化性樹脂フィルム/極薄銅箔/剥離層/キャリア銅箔」という構成の銅箔付き熱硬化性樹脂フィルムを用い、該構成を有する積層フィルムを利用する。
 積層フィルムが有する最外層のキャリア銅箔を剥離層と共に剥離除去し、極薄銅箔は熱硬化性樹脂フィルム上に残し、該極薄銅箔をシード層として利用する。SAP法にて作製しためっきシード層を前記方法によって作製したシード層とすること以外は、SPA法と同様にしてフレキシブルプリント配線板を製造することができる。
 次に、下記の実施例により本発明をさらに詳しく説明するが、これらの実施例は本発明をいかなる意味においても制限するものではない。
 なお、各例で調製した樹脂ワニスを用いて、下記方法に従ってゲル化速度を調査した。
 また、各例で製造した銅箔付き熱硬化性樹脂フィルムを用いて、下記方法に従ってポリイミドフィルムに溶着する温度を調査した。
 さらに、各例で製造したフレキシブルプリント配線板用積層フィルムを用い、下記方法に従って、皺の発生有無について評価又は測定した。また、各例における微細回路の形成可否について、下記基準に従って評価した。
[評価方法]
(1.ゲル化速度の評価方法-ゲルタイムの測定)
 樹脂ワニス0.5gを170℃の熱板上に置き、ストップウォッチを始動し、竹串を用いて樹脂ワニスを1秒間2回転の速度でかき混ぜた。竹串を約3cm引き上げると、未硬化の状態では樹脂ワニスは竹串の先から糸状に垂れ下がるが、硬化が進むと樹脂ワニスの粘性が失われていき、糸状に垂れ下がらずに破断するため、この破断を終点として判断し、破断するようになるまでに要した時間(単位:秒)をゲルタイムとした。
 なお、成形性の観点から、ゲルタイムは70秒以上であることが好ましい。
 結果を表1に示す。
(2.溶着温度の調査方法)
 厚み25μmのポリイミドフィルム「ユーピレックス(登録商標)-SGA」(宇部興産株式会社製)上に、各例で得た銅箔付き熱硬化性樹脂フィルムを熱硬化性樹脂フィルムと前記ポリイミドフィルムとが接するように重ね合わせ、前記ポリイミドフィルムが熱板側になるように熱板上に載せた。次いで、前記銅箔付き熱硬化性樹脂フィルムの上に50gの重りを載せて熱板温度160~300℃の範囲にて60秒静置して積層フィルムを形成した。
 その後、熱板及び重りを取り外し、形成された積層フィルムを常温まで放冷した。得られた積層フィルムについて、前記ポリイミドフィルムと前記熱硬化性樹脂フィルムとを引き剥がしたときに、前記ポリイミドフィルムの表面の80%以上に前記熱硬化性樹脂フィルムが付着していた場合に、ポリイミドフィルムに対して熱硬化性樹脂フィルムが溶着したとみなし、溶着した最低温度を溶着温度とした。なお、前記熱板温度を10℃ずつ上昇させながら複数回同様の操作を実施することによって、溶着温度を調査した。
 結果を表1に示す。
(3.皺の発生有無の評価方法)
 各例で作製した積層フィルムについて、ポリイミドフィルム側から目視で観察し、下記評価基準に従って評価した。結果を表1に示す。
A:何も観察されない。
C:縞々の模様が観察される。
(4.微細回路の形成可否)
 各例において、微細回路の形成可否について下記評価基準に従って評価した。
A:L/S=8μm/8μmの回路を形成できた。
C:L/S=8μm/8μmの回路を形成できなかった。
[実施例1]
(1)熱硬化性樹脂組成物A(樹脂ワニスA)の調製
 下記成分を配合することにより、熱硬化性樹脂組成物A(樹脂ワニスA)を調製した。
・ナフタレン型エポキシ樹脂「NC7000L」(日本化薬株式会社製)100質量部
・クレゾールノボラック型フェノール樹脂「PHENOLITE(登録商標)KA1165」(DIC株式会社製)41質量部
・アミノトリアジン骨格含有フェノール樹脂「PHENOLITE(登録商標)LA7054」(DIC株式会社製)18質量部
・1,8-ジアザビシクロ[5.4.0]ウンデセン-7(DBU)0.7質量部
・2-フェニルイミダゾール0.3質量部
・カルボン酸変性ポリビニルアセタール樹脂「エスレック(登録商標)KS-23Z」(積水化学工業株式会社製)4.7質量部
・流動調整剤「モダフロー」(CBC株式会社製)0.6質量部
・メチルエチルケトン(有機溶剤)231質量部
(2)銅箔付き熱硬化性樹脂フィルムAの作製
 極薄銅箔/剥離層/キャリア銅箔[極薄銅箔の厚み:1.5μm、キャリア銅箔の厚み:18μm]の構成を有する銅箔「Micro Thin MT18EX」(三井金属工業株式会社製)上に、ダイコ-ターを用いて樹脂ワニスAを塗布し、180℃で2分間乾燥させ、前記銅箔上に厚み2μmの熱硬化性樹脂層を形成した。
(3)フレキシブルプリント配線板用積層フィルムAの作製
 図2が示す様に、ロールツーロール法によってフレキシブルプリント配線板用積層フィルムAを作製した。
 具体的には、ポリイミドフィルムの送出装置から厚み25μmのポリイミドフィルム「ユーピレックス(登録商標)-SGA」(宇部興産株式会社製)を送り出し、銅箔付き熱硬化性樹脂フィルムの送出装置から銅箔付き熱硬化性樹脂フィルムAを送り出した。このとき、銅箔付き熱硬化性樹脂フィルムAは、熱硬化性樹脂フィルムがポリイミドフィルム側に位置する状態で送り出した。
 前記調査によって判明した熱硬化性樹脂フィルムの溶着温度に予め設定したラミネートロールにて、銅箔付き熱硬化性樹脂フィルムAの熱硬化性樹脂フィルムをポリイミドフィルムへ熱圧着させ、次いで140℃で60分熱硬化させ、さらに185℃で60分熱硬化させることにより熱硬化性樹脂フィルムとポリイミドフィルムの密着性を十分に高め、フレキシブルプリント配線板用積層フィルムAを作製した。
 作製したフレキシブルプリント配線板用積層フィルムAについて、ポリイミドフィルム側からデジタルカメラによって写真撮影を行った。その結果を図5に示す。図5から、皺が発生していないことが分かる。
(4)フレキシブルプリント配線板Aの作製
(4-1.ビアホールを形成する工程)
 フレキシブルプリント配線板用積層フィルムAの熱硬化性樹脂フィルム上に、レーザー法を用いて、ビアホールを形成した。レーザーには、UVレーザー装置(イー・エス・アイ・ジャパン株式会社製、商品名:5335esi)を使用した。
(4-2.デスミア処理工程)
 試料全体をデスミア処理液に浸漬することによって、レーザー穴あけによって生じたスミアを除去した。
 該デスミア処理は、まず、コンディショナー〔ローム・アンド・ハース電子材料株式会社製、商品名、MLBコンディショナー211〕を用いた膨潤液に60℃で5分間浸漬し、続いてプロモータ〔ローム・アンド・ハース電子材料株式会社製:商品名:MLBプロモータ213〕を用いたデスミア液に70℃で1分間浸漬し、最後に、表面に残ったマンガンを除去するために、中和液〔ダウ・ケミカル日本株式会社製、商品名:MLBニュートライザ216-2〕に40℃で5分間浸漬し、還元、除去した。
(4-3.SAP法による微細回路の形成)
 キャリア銅箔を剥離層と共に剥離した後、熱硬化性樹脂フィルム上に残った極薄銅箔を塩化第二鉄溶液によってエッチング除去し、以下の手順に従ってSAP法にて回路形成を行った。
 まず、無電解めっきの前処理として、コンディショナー液「コンディショナーネオガントMV」(アトテックジャパン株式会社製)に、上記手順で得られた積層フィルムを60℃で4分間浸漬した後、水洗し、プリディップ液「プリディップネオガントMV」(アトテックジャパン株式会社製)に室温にて1分間浸漬した。次に、アクチベータ液である「アクチベータネオガントMV」(アトテックジャパン株式会社製)に、40℃で4分間浸漬処理した後、リデューサ液である「リデューサネオガントMV」(アトテックジャパン株式会社製)に、30℃で3分間浸漬処理した後、水洗し、無電解銅めっき液である「プリントガントMV TP1」(アトテックジャパン株式会社製)に34℃で20分間浸漬し、無電解めっき処理を行い、熱硬化性樹脂フィルムの表面上厚さ0.5μmのシード層を形成した。この際、ビアホールにもシード層が形成されている。
 次に、該シード層の表面にめっきレジストをパターニングした後、電解めっきを行った。その後、めっきレジストと不要部のシード層を除去することによって、L/S=8μm/8μmの回路を有するフレキシブルプリント配線板Aを作製した。該フレキシブルプリント配線板AのL/S=8μm/8μmの回路の走査型電子顕微鏡(SEM)写真を図7に示す。
[実施例2]
 実施例1の熱硬化性樹脂組成物A(樹脂ワニスA)の調製において、DBUの配合量を0.7質量部から1.0質量部に変更したこと以外は同様に操作を行うことによって、熱硬化性樹脂組成物B(樹脂ワニスB)を調製した。
 それ以外は実施例1と同様に操作を行うことによって銅箔付き熱硬化性樹脂フィルムB及びフレキシブルプリント配線板用積層フィルムBを作製し、L/S=8μm/8μmの回路を有するフレキシブルプリント配線板Bを作製した。
[実施例3]
 実施例1の熱硬化性樹脂組成物A(樹脂ワニスA)の調製において、DBUの配合量を0.7質量部から1.3質量部に変更したこと以外は同様に操作を行うことによって、熱硬化性樹脂組成物C(樹脂ワニスC)を調製した。
 それ以外は実施例1と同様に操作を行うことによって銅箔付き熱硬化性樹脂フィルムC及びフレキシブルプリント配線板用積層フィルムCを作製し、L/S=8μm/8μmの回路を有するフレキシブルプリント配線板Cを作製した。
[実施例4]
 実施例2の熱硬化性樹脂組成物B(樹脂ワニスB)の調製において、DBUの代わりに1,5-ジアザビシクロ[4.3.0]ノネン-5(DBN)を使用したこと以外は同様に操作を行うことによって、熱硬化性樹脂組成物D(樹脂ワニスD)を調製した。
 それ以外は実施例2と同様に操作を行うことによって銅箔付き熱硬化性樹脂フィルムD及びフレキシブルプリント配線板用積層フィルムDを作製し、L/S=8μm/8μmの回路を有するフレキシブルプリント配線板Dを作製した。
[実施例5]
 実施例2の熱硬化性樹脂組成物B(樹脂ワニスB)の調製において、クレゾールノボラック型フェノール樹脂「PHENOLITE(登録商標)KA1165」の代わりにビフェニル型フェノール樹脂「MEHC-7851」(明和化成株式会社製)を使用し、且つ、各成分の配合量を表1に記載の通りに変更したこと以外は同様に操作を行うことによって、熱硬化性樹脂組成物E(樹脂ワニスE)を調製した。
 それ以外は実施例2と同様に操作を行うことによって銅箔付き熱硬化性樹脂フィルムE及びフレキシブルプリント配線板用積層フィルムEを作製し、L/S=8μm/8μmの回路を有するフレキシブルプリント配線板Eを作製した。
[実施例6]
 実施例1の熱硬化性樹脂組成物A(樹脂ワニスA)の調製において、ナフタレン型エポキシ樹脂「NC7000L」の代わりにジシクロペンタジエン型エポキシ樹脂「HP7200H」(DIC株式会社製)を使用し、且つ、各成分の配合量を表1に記載の通りに変更したこと以外は同様に操作を行うことによって、熱硬化性樹脂組成物F(樹脂ワニスF)を調製した。
 それ以外は実施例1と同様に操作を行うことによって銅箔付き熱硬化性樹脂フィルムF及びフレキシブルプリント配線板用積層フィルムFを作製し、L/S=8μm/8μmの回路を有するフレキシブルプリント配線板Fを作製した。
[比較例1]
 実施例1の熱硬化性樹脂組成物A(樹脂ワニスA)の調製において、DBUの配合量を0.7質量部から0.15質量部に変更したこと以外は同様に操作を行うことによって、熱硬化性樹脂組成物G(樹脂ワニスG)を調製した。
 それ以外は実施例1と同様に操作を行うことによって銅箔付き熱硬化性樹脂フィルムG及びフレキシブルプリント配線板用積層フィルムGを作製した。作製したフレキシブルプリント配線板用積層フィルムGについて、ポリイミドフィルム側から写真撮影を行った。その結果を図6に示す。図6から、皺が発生していることが分かる。表1に示す様に、熱硬化性樹脂フィルムのポリイミドフィルムに対する溶着温度が高かったため、フレキシブルプリント配線板用積層フィルムGの作製の際に高温が必要となり、その結果、銅箔とポリイミドフィルムとの熱膨張率に差が出たことに起因して、フレキシブルプリント配線板用積層フィルムG中のポリイミドフィルムに皺が発生したものと考える。このフレキシブルプリント配線板用積層フィルムGを用いて実施例1と同様にしてフレキシブルプリント配線板の作製を試みたところ、L/S=8μm/8μmの回路はパターン倒れしており、SAP法を利用した微細回路の形成はできなかった。
[比較例2]
 実施例1の熱硬化性樹脂組成物A(樹脂ワニスA)の調製において、DBUの配合量を0.7質量部から0.3質量部に変更したこと以外は同様に操作を行うことによって、熱硬化性樹脂組成物H(樹脂ワニスH)を調製した。
 それ以外は実施例1と同様に操作を行うことによって銅箔付き熱硬化性樹脂フィルムH及びフレキシブルプリント配線板用積層フィルムHを作製した。
 しかし、表1に示す様に、熱硬化性樹脂フィルムのポリイミドフィルムに対する溶着温度が高かったため、フレキシブルプリント配線板用積層フィルムHの作製の際に高温が必要となり、その結果、フレキシブルプリント配線板用積層フィルムH中のポリイミドフィルムに皺が発生した。このフレキシブルプリント配線板用積層フィルムHを用いて実施例1と同様にしてフレキシブルプリント配線板の作製を試みたところ、L/S=8μm/8μmの回路はパターン倒れしており、SAP法を利用した微細回路の形成はできなかった。
[比較例3]
 実施例1の熱硬化性樹脂組成物A(樹脂ワニスA)の調製において、DBUの配合量を0.7質量部から0.5質量部に変更したこと以外は同様に操作を行うことによって、熱硬化性樹脂組成物I(樹脂ワニスI)を調製した。
 それ以外は実施例1と同様に操作を行うことによって銅箔付き熱硬化性樹脂フィルムI及びフレキシブルプリント配線板用積層フィルムIを作製した。
 しかし、表1に示す様に、熱硬化性樹脂フィルムのポリイミドフィルムに対する溶着温度が高かったため、フレキシブルプリント配線板用積層フィルムIの作製の際に高温が必要となり、その結果、フレキシブルプリント配線板用積層フィルムI中のポリイミドフィルムに皺が発生した。このフレキシブルプリント配線板用積層フィルムIを用いて実施例1と同様にしてフレキシブルプリント配線板の作製を試みたところ、L/S=8μm/8μmの回路はパターン倒れしており、SAP法を利用した微細回路の形成はできなかった。
[比較例4]
 実施例1の熱硬化性樹脂組成物A(樹脂ワニスA)の調製において、DBUを使用せず、その分、同じく(C)硬化促進剤である2-フェニルイミダゾールの配合量を増やしたこと以外は同様に操作を行うことによって、熱硬化性樹脂組成物J(樹脂ワニスJ)を調製した。
 それ以外は実施例1と同様に操作を行うことによって銅箔付き熱硬化性樹脂フィルムJ及びフレキシブルプリント配線板用積層フィルムJを作製した。
 しかし、表1に示す様に、熱硬化性樹脂フィルムのポリイミドフィルムに対する溶着温度が高かったため、フレキシブルプリント配線板用積層フィルムJの作製の際に高温が必要となり、その結果、フレキシブルプリント配線板用積層フィルムJ中のポリイミドフィルムに皺が発生した。このフレキシブルプリント配線板用積層フィルムJを用いて実施例1と同様にしてフレキシブルプリント配線板の作製を試みたところ、L/S=8μm/8μmの回路はパターン倒れしており、SAP法を利用した微細回路の形成はできなかった。
Figure JPOXMLDOC01-appb-T000002
 表1から、ポリイミドフィルムに対する熱硬化性樹脂フィルムの溶着温度が200℃以下である実施例1~6では、積層フィルム中のポリイミドフィルムに皺が発生しておらず、L/S=8μm/8μmの回路を有するフレキシブルプリント配線板を製造することができた。
 一方、ポリイミドフィルムに対する熱硬化性樹脂フィルムの溶着温度が200℃を超えた比較例1~4では、積層フィルム中のポリイミドフィルムに皺が発生し、SAP法を利用したところでL/S=8μm/8μmの回路を有するフレキシブルプリント配線板を製造することができなかった。
 本発明の熱硬化性樹脂フィルム及び銅箔付き熱硬化性樹脂フィルムを用いることにより、フレキシブルプリント配線板においても微細回路の形成が可能となるため、例えば、腕時計型、眼鏡型、指輪型、靴型、懐中型又はペンダント型等のフレームに、カメラ、ディスプレイ又はマイク等を備えたウェアラブルデバイス等の内部基板(フレキシブルプリント配線板)などとして有用である。
1  ポリイミドフィルム
2  銅箔
3  熱硬化性樹脂フィルム
4  銅箔付き熱硬化性樹脂フィルム
5  熱板
6  重り
7  積層フィルム
8  ポリイミドフィルムの送出装置
9  銅箔付き熱硬化性樹脂フィルムの送出装置
10 フリーロール
11 ラミネートロール
12 極薄銅箔
13 剥離層
14 キャリア銅箔
 

Claims (15)

  1.  ポリイミドフィルムに対する下記定義の溶着温度が200℃以下である、熱硬化性樹脂フィルム。
    溶着温度の定義:まず、厚み25μmのポリイミドフィルム上に、銅箔付き熱硬化性樹脂フィルムを熱硬化性樹脂フィルムと前記ポリイミドフィルムとが接するように重ね合わせ、前記ポリイミドフィルムが熱板側になるように熱板上に載せる。次いで、前記銅箔付き熱硬化性樹脂フィルムの上に50gの重りを載せて所定温度にて60秒静置して積層フィルムを形成する。その後、熱板及び重りを取り外し、形成された積層フィルムを常温まで放冷する。得られた積層フィルムについて、前記ポリイミドフィルムと前記熱硬化性樹脂フィルムとを引き剥がしたときに、前記ポリイミドフィルムの表面の80%以上に前記熱硬化性樹脂フィルムが付着している場合に、ポリイミドフィルムに対して熱硬化性樹脂フィルムが溶着したとみなし、溶着した最低温度を溶着温度とする。
  2.  前記溶着温度が140~200℃である、請求項1に記載の熱硬化性樹脂フィルム。
  3.  (A)エポキシ樹脂、(B)エポキシ樹脂硬化剤及び(C)硬化促進剤を含有し、前記(C)硬化促進剤が強塩基性化合物を含有する熱硬化性樹脂組成物から形成されてなる、請求項1又は2に記載の熱硬化性樹脂フィルム。
  4.  前記強塩基性化合物のpKaが10以上である、請求項3に記載の熱硬化性樹脂フィルム。
  5.  前記強塩基性化合物が、1,8-ジアザビシクロ[5.4.0]ウンデセン-7(DBU)、1,5-ジアザビシクロ[4.3.0]ノネン-5(DBN)、テトラメチルグアニジン(TMG)、1,4-ジアザビシクロ[2.2.2]オクタン(DABCO)、1,5,7-トリアザビシクロ[4.4.0]デセン-5(TBD)及び7-メチル-1,5,7-トリアザビシクロ[4.4.0]デセン-5(MTBD)からなる群から選択される少なくとも1種である、請求項3又は4に記載の熱硬化性樹脂フィルム。
  6.  前記強塩基性化合物の含有量が、前記(A)エポキシ樹脂100質量部に対して0.6質量部以上である、請求項3~5のいずれか1項に記載の熱硬化性樹脂フィルム。
  7.  前記強塩基性化合物の含有量が、前記(A)エポキシ樹脂100質量部に対して0.6~2.8質量部である、請求項3~6のいずれか1項に記載の熱硬化性樹脂フィルム。
  8.  前記(B)エポキシ樹脂硬化剤がフェノール系硬化剤を含有する、請求項3~7のいずれか1項に記載の熱硬化性樹脂フィルム。
  9.  フレキシブルプリント配線板用である、請求項1~8のいずれか1項に記載の熱硬化性樹脂フィルム。
  10.  請求項1~9のいずれか1項に記載の熱硬化性樹脂フィルム上に銅箔を有する、銅箔付き熱硬化性樹脂フィルム。
  11.  フレキシブルプリント配線板用である、請求項10に記載の銅箔付き熱硬化性樹脂フィルム。
  12.  (1)ポリイミドフィルムと、(2)請求項10又は11に記載の銅箔付き熱硬化性樹脂フィルムとを、熱硬化性樹脂フィルムがポリイミドフィルムと向かい合うように200℃以下で熱圧着することによって、前記熱硬化性樹脂フィルムをポリイミドフィルムへ溶着させる工程を有する、フレキシブルプリント配線板用積層フィルムの製造方法。
  13.  請求項1~9のいずれか1項に記載の熱硬化性樹脂フィルム又は請求項10もしくは11に記載の銅箔付き熱硬化性樹脂フィルムを含有してなる、フレキシブルプリント配線板。
  14.  請求項12に記載の製造方法によって得られるフレキシブルプリント配線板用積層フィルムを含有してなる、フレキシブルプリント配線板。
  15.  回路幅(L)/回路間隔(S)が15μm以下/15μm以下の回路を有する、請求項13又は14に記載のフレキシブルプリント配線板。
PCT/JP2019/042439 2019-10-29 2019-10-29 熱硬化性樹脂フィルム、銅箔付き熱硬化性樹脂フィルム、フレキシブルプリント配線板用積層フィルムの製造方法、及びフレキシブルプリント配線板 WO2021084632A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2019/042439 WO2021084632A1 (ja) 2019-10-29 2019-10-29 熱硬化性樹脂フィルム、銅箔付き熱硬化性樹脂フィルム、フレキシブルプリント配線板用積層フィルムの製造方法、及びフレキシブルプリント配線板
TW109137230A TW202124150A (zh) 2019-10-29 2020-10-27 熱硬化性樹脂薄膜、附有銅箔之熱硬化性樹脂薄膜、可撓性印刷線路板用積層薄膜的製造方法、及可撓性印刷線路板

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2019/042439 WO2021084632A1 (ja) 2019-10-29 2019-10-29 熱硬化性樹脂フィルム、銅箔付き熱硬化性樹脂フィルム、フレキシブルプリント配線板用積層フィルムの製造方法、及びフレキシブルプリント配線板

Publications (1)

Publication Number Publication Date
WO2021084632A1 true WO2021084632A1 (ja) 2021-05-06

Family

ID=75714940

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/042439 WO2021084632A1 (ja) 2019-10-29 2019-10-29 熱硬化性樹脂フィルム、銅箔付き熱硬化性樹脂フィルム、フレキシブルプリント配線板用積層フィルムの製造方法、及びフレキシブルプリント配線板

Country Status (2)

Country Link
TW (1) TW202124150A (ja)
WO (1) WO2021084632A1 (ja)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000290471A (ja) * 1999-04-08 2000-10-17 Nitto Denko Corp 封止用樹脂組成物
JP2002235061A (ja) * 2001-02-08 2002-08-23 Nitto Denko Corp 熱反応性接着剤組成物および熱反応性接着フィルム
JP2004075769A (ja) * 2002-08-13 2004-03-11 Shin Etsu Chem Co Ltd エポキシ樹脂組成物
JP2005252094A (ja) * 2004-03-05 2005-09-15 Nitto Denko Corp レーザーダイシング・ダイボンド用粘着シート及びこれを用いた半導体装置の製造方法
JP2006002040A (ja) * 2004-06-17 2006-01-05 Hitachi Chem Co Ltd 封止用エポキシ樹脂成形材料及び電子部品装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000290471A (ja) * 1999-04-08 2000-10-17 Nitto Denko Corp 封止用樹脂組成物
JP2002235061A (ja) * 2001-02-08 2002-08-23 Nitto Denko Corp 熱反応性接着剤組成物および熱反応性接着フィルム
JP2004075769A (ja) * 2002-08-13 2004-03-11 Shin Etsu Chem Co Ltd エポキシ樹脂組成物
JP2005252094A (ja) * 2004-03-05 2005-09-15 Nitto Denko Corp レーザーダイシング・ダイボンド用粘着シート及びこれを用いた半導体装置の製造方法
JP2006002040A (ja) * 2004-06-17 2006-01-05 Hitachi Chem Co Ltd 封止用エポキシ樹脂成形材料及び電子部品装置

Also Published As

Publication number Publication date
TW202124150A (zh) 2021-07-01

Similar Documents

Publication Publication Date Title
JP5149917B2 (ja) 熱硬化性樹脂組成物、並びにこれを用いたプリプレグ、積層板及び多層プリント配線板
KR101489175B1 (ko) 수지 조성물
JP5195454B2 (ja) 樹脂組成物
TWI699399B (zh) 樹脂組成物
WO2010110433A1 (ja) 熱硬化性樹脂組成物、並びにこれを用いたプリプレグ、支持体付絶縁フィルム、積層板及びプリント配線板
WO2007032424A1 (ja) 樹脂組成物、シート状成形体、プリプレグ、硬化体、積層板、および多層積層板
JP6467774B2 (ja) プリント配線板の製造方法
JP6156020B2 (ja) 樹脂組成物
JP6119441B2 (ja) 樹脂組成物
JP6545924B2 (ja) 粗化硬化体、積層体、プリント配線板及び半導体装置
JP2017008204A (ja) 樹脂組成物
JP2017059779A (ja) プリント配線板の製造方法
JP6534986B2 (ja) 樹脂組成物
JP6596811B2 (ja) 熱硬化性樹脂組成物、これを用いるプリプレグ、樹脂付フィルム、積層板、多層プリント配線板及び半導体パッケージ
TWI697521B (zh) 樹脂組成物
JP2021072324A (ja) フレキシブルプリント配線板用積層フィルムの製造方法及びフレキシブルプリント配線板
JP5904256B2 (ja) 樹脂組成物
JP3810954B2 (ja) 難燃性接着剤組成物、フレキシブル銅張積層板、カバーレイおよび接着剤フィルム
JP6477494B2 (ja) 接着層付き離型ポリイミドフィルム、接着層付き離型ポリイミドフィルム付き積層板、積層板、接着層付き離型ポリイミドフィルム付き単層又は多層配線板、及び多層配線板の製造方法
JP6623632B2 (ja) 絶縁樹脂フィルム及び多層プリント配線板
JP6269401B2 (ja) 表面処理無機充填材、該無機充填材の製造方法、および該無機充填材を含有する樹脂組成物
WO2021084632A1 (ja) 熱硬化性樹脂フィルム、銅箔付き熱硬化性樹脂フィルム、フレキシブルプリント配線板用積層フィルムの製造方法、及びフレキシブルプリント配線板
JP2011246406A (ja) 有機けい素化合物
JP5644823B2 (ja) 樹脂組成物
JP2013075440A (ja) 積層体の製造方法及び積層構造体

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19950974

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 28/07/2022).

NENP Non-entry into the national phase

Ref country code: JP

122 Ep: pct application non-entry in european phase

Ref document number: 19950974

Country of ref document: EP

Kind code of ref document: A1