WO2021083344A1 - 气雾生成装置及控制方法 - Google Patents

气雾生成装置及控制方法 Download PDF

Info

Publication number
WO2021083344A1
WO2021083344A1 PCT/CN2020/125358 CN2020125358W WO2021083344A1 WO 2021083344 A1 WO2021083344 A1 WO 2021083344A1 CN 2020125358 W CN2020125358 W CN 2020125358W WO 2021083344 A1 WO2021083344 A1 WO 2021083344A1
Authority
WO
WIPO (PCT)
Prior art keywords
oscillator
frequency
voltage
transistor
generating device
Prior art date
Application number
PCT/CN2020/125358
Other languages
English (en)
French (fr)
Inventor
刘神辉
徐中立
李永海
Original Assignee
深圳市合元科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市合元科技有限公司 filed Critical 深圳市合元科技有限公司
Priority to EP20880872.5A priority Critical patent/EP4052599A4/en
Priority to US17/755,443 priority patent/US20240008544A1/en
Publication of WO2021083344A1 publication Critical patent/WO2021083344A1/zh

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A24TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
    • A24FSMOKERS' REQUISITES; MATCH BOXES; SIMULATED SMOKING DEVICES
    • A24F40/00Electrically operated smoking devices; Component parts thereof; Manufacture thereof; Maintenance or testing thereof; Charging means specially adapted therefor
    • A24F40/50Control or monitoring
    • AHUMAN NECESSITIES
    • A24TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
    • A24FSMOKERS' REQUISITES; MATCH BOXES; SIMULATED SMOKING DEVICES
    • A24F40/00Electrically operated smoking devices; Component parts thereof; Manufacture thereof; Maintenance or testing thereof; Charging means specially adapted therefor
    • A24F40/40Constructional details, e.g. connection of cartridges and battery parts
    • A24F40/46Shape or structure of electric heating means
    • A24F40/465Shape or structure of electric heating means specially adapted for induction heating
    • AHUMAN NECESSITIES
    • A24TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
    • A24FSMOKERS' REQUISITES; MATCH BOXES; SIMULATED SMOKING DEVICES
    • A24F40/00Electrically operated smoking devices; Component parts thereof; Manufacture thereof; Maintenance or testing thereof; Charging means specially adapted therefor
    • A24F40/50Control or monitoring
    • A24F40/51Arrangement of sensors
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/4815Resonant converters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/4815Resonant converters
    • H02M7/4818Resonant converters with means for adaptation of resonance frequency, e.g. by modification of capacitance or inductance of resonance circuits
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/53Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M7/537Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters
    • H02M7/538Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters in a push-pull configuration
    • H02M7/53803Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters in a push-pull configuration with automatic control of output voltage or current
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/53Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M7/537Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters
    • H02M7/539Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters with automatic control of output wave form or frequency
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03BGENERATION OF OSCILLATIONS, DIRECTLY OR BY FREQUENCY-CHANGING, BY CIRCUITS EMPLOYING ACTIVE ELEMENTS WHICH OPERATE IN A NON-SWITCHING MANNER; GENERATION OF NOISE BY SUCH CIRCUITS
    • H03B5/00Generation of oscillations using amplifier with regenerative feedback from output to input
    • H03B5/08Generation of oscillations using amplifier with regenerative feedback from output to input with frequency-determining element comprising lumped inductance and capacitance
    • H03B5/12Generation of oscillations using amplifier with regenerative feedback from output to input with frequency-determining element comprising lumped inductance and capacitance active element in amplifier being semiconductor device
    • H03B5/1206Generation of oscillations using amplifier with regenerative feedback from output to input with frequency-determining element comprising lumped inductance and capacitance active element in amplifier being semiconductor device using multiple transistors for amplification
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03BGENERATION OF OSCILLATIONS, DIRECTLY OR BY FREQUENCY-CHANGING, BY CIRCUITS EMPLOYING ACTIVE ELEMENTS WHICH OPERATE IN A NON-SWITCHING MANNER; GENERATION OF NOISE BY SUCH CIRCUITS
    • H03B5/00Generation of oscillations using amplifier with regenerative feedback from output to input
    • H03B5/08Generation of oscillations using amplifier with regenerative feedback from output to input with frequency-determining element comprising lumped inductance and capacitance
    • H03B5/12Generation of oscillations using amplifier with regenerative feedback from output to input with frequency-determining element comprising lumped inductance and capacitance active element in amplifier being semiconductor device
    • H03B5/1228Generation of oscillations using amplifier with regenerative feedback from output to input with frequency-determining element comprising lumped inductance and capacitance active element in amplifier being semiconductor device the amplifier comprising one or more field effect transistors
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B6/00Heating by electric, magnetic or electromagnetic fields
    • H05B6/02Induction heating
    • H05B6/06Control, e.g. of temperature, of power
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B6/00Heating by electric, magnetic or electromagnetic fields
    • H05B6/02Induction heating
    • H05B6/10Induction heating apparatus, other than furnaces, for specific applications
    • H05B6/105Induction heating apparatus, other than furnaces, for specific applications using a susceptor
    • H05B6/108Induction heating apparatus, other than furnaces, for specific applications using a susceptor for heating a fluid
    • AHUMAN NECESSITIES
    • A24TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
    • A24FSMOKERS' REQUISITES; MATCH BOXES; SIMULATED SMOKING DEVICES
    • A24F40/00Electrically operated smoking devices; Component parts thereof; Manufacture thereof; Maintenance or testing thereof; Charging means specially adapted therefor
    • A24F40/20Devices using solid inhalable precursors
    • AHUMAN NECESSITIES
    • A24TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
    • A24FSMOKERS' REQUISITES; MATCH BOXES; SIMULATED SMOKING DEVICES
    • A24F40/00Electrically operated smoking devices; Component parts thereof; Manufacture thereof; Maintenance or testing thereof; Charging means specially adapted therefor
    • A24F40/50Control or monitoring
    • A24F40/57Temperature control

Definitions

  • the embodiments of the present application relate to the field of heating non-combustion smoking appliances, and in particular to an aerosol generating device and a control method.
  • Tobacco products e.g., cigarettes, cigars, etc.
  • tobacco-burning products e.g., cigarettes, cigars, etc.
  • People are trying to replace these tobacco-burning products by manufacturing products that release compounds without burning.
  • an example of this type of product is a heating device that releases compounds by heating rather than burning materials to form an aerosol for ingestion.
  • the material may be tobacco or other non-tobacco products, which may or may not contain nicotine.
  • Patent No. 201580007754.2 proposes an electromagnetic induction heating device for special cigarette products; it uses a DC/AC inverter to convert the DC output from the power supply into AC Supply to the induction coil, specifically through the induction coil and the capacitor forming an LC oscillation mode to form an alternating current, so that the coil generates an alternating magnetic field to induce the susceptor to generate heat and heat the cigarette product.
  • the frequency of the DC/AC inverter is different from the oscillation frequency of the LC oscillation composed of the induction coil and the capacitor, which makes the drive at a non-resonant frequency a larger Power loss.
  • an embodiment of the present application provides an aerosol generating device that can adaptively adjust the driving frequency to reduce loss.
  • An aerosol generating device configured to heat a smokable material to generate an aerosol, includes:
  • LC oscillator including a first capacitor and an inductance coil in series;
  • a power supply configured to provide a pulse voltage to the LC oscillator, so that the inductance coil of the LC oscillator generates a changing magnetic field
  • the susceptor is configured to be penetrated by the changing magnetic field to generate heat, thereby heating the smokable material received in the cavity;
  • a frequency detection module configured to detect the oscillation frequency of the LC oscillator
  • the controller is configured to adjust the frequency of the pulse voltage provided by the power supply to the LC oscillator according to the detection result of the frequency detection module.
  • the controller adjusts the frequency of the pulse voltage provided by the power supply to the LC oscillator to be the same as or substantially close to the oscillation frequency of the LC oscillator detected by the frequency detection module.
  • the frequency of the pulse voltage provided by the power supply to the LC oscillator is in the range of 80KHz to 400KHz; more preferably, it is in the range of 200KHz to 300KHz.
  • the oscillation frequency of the LC oscillator is between 80KHz and 400KHz; more preferably, it is between 200KHz and 300KHz.
  • the frequency detection module is configured to detect the oscillation frequency of the LC oscillator by monitoring changes in the voltage or current of the LC oscillator.
  • the frequency detection module includes:
  • a voltage detection unit for detecting the voltage value of the detectable position of the LC oscillator
  • the frequency detection module further detects the oscillation frequency of the LC oscillator according to the detected change period of the voltage value.
  • the frequency detection module is configured to detect the oscillation frequency of the LC oscillator according to the time difference between the two changes of the voltage value of the detectable position to the threshold value.
  • the threshold is 0V
  • the voltage detection unit includes a zero-crossing comparator.
  • the frequency detection module includes:
  • a rectifier diode the input end of the rectifier diode is connected to the detectable position of the LC oscillator;
  • the frequency detection module further includes a current detection unit for detecting the current at the output terminal of the rectifier diode, and derives the oscillation frequency of the LC oscillator according to the detection result of the current detection unit.
  • the current detection unit includes:
  • the first end of the first voltage dividing resistor is connected to the output end of the rectifier diode
  • the first end of the second voltage dividing resistor is connected to the second end of the first voltage dividing resistor, and the second end is grounded;
  • the second capacitor is connected in parallel with the second voltage dividing resistor
  • the current detection unit is configured to detect the current at the output end of the rectifier diode according to the voltage across the first voltage dividing resistor or the second voltage dividing resistor.
  • the frequency detection module is configured to detect the oscillation frequency of the LC oscillator by monitoring the change of the magnetic field generated by the inductance coil in the LC oscillator.
  • the frequency detection module includes a Hall sensor for sensing the magnetic field generated by the inductance coil.
  • Pulse generator used to generate pulse signals
  • the power supply is configured to provide a pulse voltage to the LC oscillator at the same frequency as the frequency of the pulse signal;
  • the controller is configured to control the frequency of the pulse signal generated by the pulse generator according to the detection result of the frequency detection module, and then adjust the frequency of the pulse voltage provided by the power supply to the LC oscillator.
  • the pulse generator is configured to generate the pulse signal through pulse frequency modulation.
  • the power supply includes a DC cell for providing a DC voltage
  • the aerosol generating device further includes:
  • a transistor switch used for the DC cell to provide voltage to the LC oscillator The controller controls the frequency at which the transistor switch is turned off or on, and then adjusts the amount of power that the DC cell provides to the LC oscillator. The frequency of the pulse voltage.
  • the transistor switch includes a first transistor and a second transistor; the first transistor and the second transistor are configured to alternately switch to provide a pulse voltage to the LC oscillator, thereby adjusting the LC oscillation
  • the frequency of the positive process and the negative process of the device among them,
  • the forward process includes charging the capacitor and forming a current through the induction coil in a positive direction;
  • the negative process includes discharging the capacitor and thereby passing the current through the coil in the negative direction.
  • the first transistor and the second transistor are configured to switch when the voltage of the LC oscillator changes to 0V.
  • the transistor switch includes a first switch group and a second switch group configured to be alternately turned on at the same frequency as the pulse voltage; wherein,
  • the first switch group includes a first transistor and a second transistor
  • the second switch group includes a third transistor and a fourth transistor
  • a first end of the first transistor is connected to the voltage output end of the direct current cell, and a second end is connected to the first end of the LC oscillator;
  • the first end of the second transistor is connected to the second end of the LC oscillator, and the second end is grounded;
  • the first end of the third transistor is connected to the voltage output end of the DC cell, and the second end is connected to the second end of the LC oscillator;
  • the first end of the fourth transistor is connected to the first end of the LC oscillator, and the second end is grounded.
  • the power supply includes a DC cell for providing a DC voltage
  • the aerosol generating device further includes:
  • the transistor switch driver is configured to control the transistor switch to be turned on at the same frequency as the frequency of the pulse signal.
  • the power supply voltage provided by the DC cell is in the range of 2.5V to 9.0V;
  • the amperage of the power supply current provided by the DC cell is in the range of 2.5A to 20A.
  • another aerosol generating device which is configured to heat a smokable material including a susceptor to generate an aerosol, including:
  • the LC oscillator includes a first capacitor and an inductance coil connected in series; when at least a part of the smokeable material is received in the cavity, the inductive coil is inductively coupled with the susceptor of the smokeable material;
  • a power supply configured to provide a pulse voltage to the LC oscillator, so that the inductance coil of the LC oscillator generates a changing magnetic field
  • a frequency detection module configured to detect the oscillation frequency of the LC oscillator
  • the controller is configured to control the frequency of the pulse voltage provided by the power supply to the LC oscillator according to the detection result of the frequency detection module.
  • An implementation also proposes a method for operating the above aerosol generating device, which includes the following steps:
  • the power supply When at least a part of the smokable material is received in the aerosol generating device, the power supply provides a pulse voltage to the LC oscillator to cause the susceptor to generate heat;
  • the oscillation frequency of the LC oscillator is detected, and the frequency of the pulse voltage supplied by the power supply to the LC oscillator is adjusted according to the detection result.
  • the aerosol generating device adopting the above embodiment has been tested on the oscillation frequency of the LC oscillator, and continuously corrected the frequency of the power supply to the LC oscillator according to the detection result, so that it can continuously adjust the matching of the frequency for self-adaptation. Adjust the driving frequency so that the two are as close to resonance as possible, thereby reducing power loss.
  • an aerosol generating device which is configured to heat a smokable material including a susceptor to generate an aerosol, including:
  • An induction coil configured to inductively couple with the susceptor when at least a part of the smokeable material is received in the cavity
  • the power supply is configured to provide an alternating current with a frequency between 80KHz and 400KHz to the inductance coil.
  • the power supply is configured to provide an alternating current with a frequency of 200KHz to 300KHz to the inductance coil.
  • a capacitor used to form an LC oscillator in series with the inductance coil
  • the power supply includes:
  • the direct current cell is configured to provide the LC oscillator with a pulse voltage of the frequency to oscillate the LC oscillator, thereby forming the alternating current.
  • it further includes: a transistor switch for the DC cell to provide voltage to the LC oscillator, the transistor switch is configured to be turned on according to the frequency, thereby forming a pulse provided to the LC oscillator Voltage.
  • the transistor switch includes a first transistor and a second transistor; wherein,
  • a first end of the first transistor is connected to the voltage output end of the direct current cell, and a second end is connected to the first end of the LC oscillator;
  • the first end of the second transistor is connected to the second end of the LC oscillator, and the second end is grounded;
  • the first transistor and the second transistor are configured to be turned on alternately according to the frequency.
  • the transistor switch includes a first switch group and a second switch group configured to be turned on alternately according to the frequency; wherein,
  • the first switch group includes a first transistor and a second transistor
  • the second switch group includes a third transistor and a fourth transistor
  • the first end of the first transistor is connected to the voltage output end of the DC cell, and the second end is connected to the first end of the LC oscillator;
  • the first end of the second transistor is connected to the second end of the LC oscillator, and the second end is grounded;
  • the first end of the third transistor is connected to the voltage output end of the DC cell, and the second end is connected to the second end of the LC oscillator;
  • the first end of the fourth transistor is connected to the first end of the LC oscillator, and the second end is grounded.
  • the transistor switch driver is configured to control the transistor switch to be turned on according to the frequency.
  • a temperature sensor for sensing the temperature of the susceptor
  • the controller is further configured to interrupt the alternating current supplied to the inductor coil through the power supply when the temperature of the susceptor is equal to or exceed a preset threshold temperature, and when the temperature of the susceptor is lower than the preset temperature again When the threshold temperature is set, the power supply is restored to provide the alternating current to the inductance coil.
  • another aerosol generating device which is configured to heat a smokable material to generate an aerosol, including:
  • the inductance coil is configured to generate a changing magnetic field under the supply of alternating current
  • the power supply is configured to provide an alternating current with a frequency of 80KHz to 400KHz to the inductance coil;
  • the susceptor at least partially extends into the cavity and is configured to be penetrated by the changing magnetic field to generate heat, thereby heating the smokable material received in the cavity.
  • the embodiment of the application adopts the aerosol generating device of the above embodiment, adopts the alternating current in the above selected frequency range to be supplied to the inductance coil, and reduces the power loss within an optional range.
  • Fig. 1 is a schematic diagram of an aerosol generating device provided by an embodiment
  • Fig. 2 is a block diagram of a circuit of an embodiment of the aerosol generating device of Fig. 1;
  • FIG. 3 is an embodiment of the basic components of the circuit of Figure 2;
  • FIG. 4 is a representative waveform diagram of the pulse signal output by the PFM unit of FIG. 3;
  • FIG. 5 is a representative waveform diagram of a driving signal output by the half-bridge driver of FIG. 3;
  • FIG. 6 is a representative waveform diagram of another driving signal output by the half-bridge driver of FIG. 3;
  • FIG. 7 is a representative oscillation waveform diagram of the voltage at point a of the LC oscillator of FIG. 3;
  • FIG. 8 is a schematic diagram of an embodiment of the voltage detection unit of FIG. 3;
  • FIG. 9 is a schematic diagram of another embodiment of the voltage detection unit of FIG. 3;
  • Fig. 10 is another embodiment of the basic components of the circuit of Fig. 2;
  • FIG. 11 is a schematic diagram of the current of the LC oscillator of FIG. 10 in a conducting state
  • FIG. 12 is a schematic diagram of the current of the LC oscillator of FIG. 10 in another ON state
  • FIG. 13 is a schematic diagram of an oscillator according to another embodiment
  • Fig. 14 is a schematic diagram of an aerosol generating device provided by another embodiment.
  • Fig. 1 The structure of the aerosol generating device proposed in an embodiment of the present application can be seen in Fig. 1, and includes:
  • Chamber the smokeable material A is removably received in the chamber
  • Inductance coil L used to generate a changing magnetic field under alternating current
  • the susceptor 30 is inductively coupled to the inductance coil L, and is penetrated by the changing magnetic field to generate heat, and then heats the smokable material A, such as a cigarette, so as to volatilize at least one component of the smokable material A to form a form for smoking Aerosol
  • the cell 10 is a rechargeable DC cell
  • the circuit 20 is suitably electrically connected to the rechargeable battery core 10 for converting the direct current output by the battery core 10 into an alternating current having a suitable frequency and then supplying it to the inductance coil L;
  • the inductor coil L may include a cylindrical inductor coil wound in a spiral shape, as shown in FIG. 1.
  • the cylindrical inductor coil L wound in a spiral shape may have a radius r ranging from about 5 mm to about 10 mm, and in particular, the radius r may be about 7 mm.
  • the length of the spirally wound cylindrical inductor coil L may be in the range of about 8 mm to about 14 mm, and the number of turns of the inductor coil L may be in the range of about 8 turns to 15 turns.
  • the internal volume may be in the range of about 0.15 cm3 to about 1.10 cm3.
  • the circuit 20 may also include a resistor R connected in series with the LC oscillator 24 to form the LCR damped oscillator shown in FIG. 13; thereby, the Q factor (quality factor) of the LC oscillator 24 can be improved, Thereby reducing the power loss in the selectable range.
  • the alternating current output from the DC/AC conversion module 21 The frequency of the current and/or the oscillation frequency of the LC oscillator 24 are controlled to be between 80KHz and 400KHz in implementation; more specifically, the frequency may be in the range of about 200KHz to 300KHz.
  • the oscillation frequency of the LC oscillator 24 is the frequency during the oscillation operation, which will be affected by other parameters of the circuit 20, and may even be interfered by the changing signal; in the implementation, the DC/AC The frequency of the alternating current output by the conversion module 21 is the same or substantially close to the oscillation frequency of the LC oscillator 24, and the actual oscillation frequency is not required to be consistent with the natural resonance frequency of the LC oscillator 24.
  • the DC power supply voltage provided by the cell 10 is in the range of about 2.5V to about 9.0V, and the amperage of the DC current that the cell 10 can provide is in the range of about 2.5A to about 20A.
  • the susceptor 30 may have a length of about 12 mm, a width of about 4 mm, and a thickness of about 50 microns, and may be made of grade 430 stainless steel (SS430).
  • the susceptor 30 may have a length of about 12 mm, a width of about 5 mm, and a thickness of about 50 microns, and may be made of grade 430 stainless steel (SS430).
  • the susceptor 30 can also be configured into a cylindrical shape, and its internal space is used to receive the smokable material A when in use, and by heating the outer circumference of the smokable material A , Generate aerosol for inhalation.
  • These susceptors can also be made of grade 420 stainless steel (SS420) and alloy materials containing iron and nickel (such as permalloy).
  • the aerosol generating device further includes a temperature sensor (not shown in the figure) for detecting the temperature of the susceptor 30; the MCU controller 22 It is further configured to, when it is determined that the temperature of the susceptor 30 is equal to or exceed the preset threshold temperature, interrupt the power to generate the alternating current through the DC/AC conversion module 21, and restore when the temperature of the susceptor 30 is lower than the preset threshold temperature again
  • the DC/AC conversion module 21 generates alternating current power.
  • the power transmission to the susceptor 30 can also be optimized by controlling the frequency of the switching voltage.
  • the aerosol generating device proposed by another implementation disclosed in this application has a structure as shown in FIG. 14 and includes:
  • the smokable material A is removably received in the cavity 40a;
  • Inductance coil L used to generate a changing magnetic field under alternating current
  • the battery core 10a is a rechargeable direct current battery, which can output direct current;
  • the circuit 20a is suitably electrically connected to the rechargeable battery core 10a, and is used to convert the direct current output from the battery core 10a into an alternating current having a suitable frequency and then supply it to the inductance coil L.
  • the smokable material A used in conjunction with the aerosol generating device is produced and prepared so that the susceptor members 30a/30b are inserted or doped inside; in implementation, the susceptor members 30a can be evenly distributed on the smokable material
  • the aerosol generating device itself does not include a susceptor that is electromagnetically coupled to the inductance coil L to generate heat, and the susceptor member 30a/30b is placed in the smokable material A, when the smokable material A is received in the chamber
  • these susceptor members 30a/30b are penetrated by the alternating magnetic field generated by the inductor coil L to generate heat, thereby heating the smokable material A to generate an aerosol for smoking.
  • FIGS. 2 to 3 the structure and basic components of the above circuit 20 in a preferred embodiment can be seen in FIGS. 2 to 3 ,include:
  • the DC/AC conversion module 21 is used to convert the DC current drawn from the battery core 10 into an alternating current with a suitable frequency range and then supply it to the inductor coil L; specifically, in implementation, the DC/AC conversion module 21 includes:
  • the capacitor C is used in series with the inductance coil L to form the LC oscillator 24; through the LC oscillation method, a sinusoidal or cosine alternating current is generated to the inductance coil L.
  • the natural resonant frequency of the LC oscillator 24 in use will change with the temperature of the susceptor 30.
  • the frequency at which the LC oscillator 24 resonates can be known; where L1 is similar to that composed of the susceptor 30 and the inductor L
  • C is the capacitance value of the capacitor C; and corresponding to a given electronic device, the capacitance value C is basically constant, so the frequency f is basically related to the change of Ll.
  • Ll L+Ls; where L is the inductance value of the inductor coil L itself, and Ls is the real-time inductance of the susceptor 30 acting as the iron core in the working state; in implementation, the inductance value of the inductor coil L itself is basically constant, while the susceptor 30 The real-time inductance Ls is changing.
  • the calculation of real-time inductance Ls is mainly based on physical factors including the length of the air gap between the susceptor 30 and the inductor L (which will cause leakage inductance), the number of coil turns, the length of the magnetic circuit, and the susceptor 30 acting as an iron core.
  • the real-time inductance Ls of the susceptor 30 is basically related to the change of the relative permeability ⁇ r.
  • the relative permeability ⁇ r of the susceptor 30 has a temperature correlation.
  • the physical parameter ratio for measuring this correlation is the permeability temperature coefficient ⁇ ⁇ or the magnetic susceptibility ⁇ .
  • ⁇ r1 is the magnetic permeability when the temperature is T1
  • ⁇ r2 is the magnetic permeability when the temperature is T2.
  • the influencing factors of the LC resonance frequency also have some small influencing factors, such as changes in the overall circuit load, changes in the LC frequency selection loop, and external power supply voltage, humidity and other factors that cause internal related component parameters. Changes etc.
  • the circuit 20 further includes: a frequency detection module 23 for detecting the oscillation frequency of the LC oscillator 24;
  • the MCU controller 22 adjusts the frequency of the alternating current supplied by the DC/AC conversion module 21 to the LC oscillator 24 according to the oscillation frequency of the LC oscillator 24 detected by the frequency detection module 23; specifically, in one embodiment, the supply The frequency of the alternating current to the LC oscillator 24 is the same as or substantially close to the oscillation frequency of the LC oscillator 24.
  • the aerosol generating device adopting the above embodiment has been tested on the oscillation frequency of the LC oscillator 24, and continuously corrected the frequency of the power supply to the LC oscillator 24, so that it can continuously adjust the matching of the frequency for self-adaptive adjustment.
  • the driving frequency makes the two as close as possible to complete resonance, thereby reducing power loss.
  • the DC/AC conversion module 21 adopts a combination of a pulse generator 211 and a half-bridge drive; specifically, in the preferred implementation of FIG. 3
  • the middle DC/AC conversion module 21 also includes:
  • the pulse generator 211 is used to generate a pulse signal with a desired frequency.
  • the frequency of the pulse signal and the frequency of the alternating current supplied to the LC oscillator 24 required by the MCU controller 22 to control the DC/AC conversion module 21 are identical;
  • the half-bridge driving unit 212 is used to pulse the DC voltage output by the cell 10 to the LC oscillator 24, so that the LC oscillator 24 oscillates to form an alternating current through the inductor L; of course, the pulse voltage is The frequency is the same as the frequency of the pulse signal of the pulse generator 211.
  • the pulse generator 211 includes a PFM unit 2111 for pulse frequency modulation.
  • the PFM unit 2111 is a relatively optional pulse modulation method, and the frequency of the modulation signal can be It varies with the amplitude of the control signal of the MCU controller 22, but its duty cycle remains unchanged. Therefore, in implementation, the frequency of the alternating current output by the half-bridge driving unit 212 is further adjusted according to the frequency of the output modulation signal.
  • the current output signal of the pulse frequency modulated electronic device of the PFM unit 2111 is usually a 2.5-5V low-voltage square wave signal with a modulated frequency change, which can be seen in FIG. 4.
  • the half-bridge driving unit 212 includes a half-bridge sub-unit 2122 composed of a first transistor Q1 and a second transistor Q2;
  • the half-bridge driving unit 212 further includes:
  • the half-bridge driver 2121 is used for driving the first transistor Q1 and the second transistor Q2 to turn on alternately according to the pulse frequency according to the signal output by the PFM unit 2111, thereby commutation of the LC oscillator 24.
  • the half-bridge driver 2121 used to drive the half-bridge in an implementation can output two drive signals based on the signal output by the PFM unit 2111, which respectively include the control signal shown in FIG. 5 A first driving signal m for turning off or turning on a transistor Q1, and a second driving signal n for controlling turning off or on of the second transistor Q2 shown in FIG. 6.
  • the frequency of the first driving signal m and the second driving signal n are the same, and both are equal to the frequency of the pulse output by the PFM unit 2111; and according to some industry standards of electronic devices, the high voltage output of the standard half-bridge driver 2121
  • the voltage value of the level signal is 12V;
  • the difference between the first drive signal m and the second drive signal n is that the time period of high level is different, when the first drive signal m is high level, the second drive signal n is low level Therefore, the respective high-level times are staggered, so that the first transistor Q1 and the second transistor Q2 are controlled to be turned on alternately according to the pulse frequency.
  • the voltage of the cell 10 is provided to the LC oscillator 24 according to a certain pulse frequency, and an alternating positive process and a negative process are formed in the LC oscillator 24, thereby commutating and oscillating, so that the inductor L is in Working under sine or cosine alternating current produces an alternating magnetic field.
  • the positive process includes charging the capacitor C and forming a current through the inductor L in the positive direction
  • the negative process includes discharging the capacitor C and thereby forming a negative current through the inductor L.
  • the first transistor Q1 and the second transistor Q2 are described using N-MOS transistors as an example in the figure.
  • the gate of the first transistor Q1 and the second transistor Q2 of the half-bridge driver 2121 are used for connection.
  • a signal output terminal is connected to receive the first driving signal m; the drain is connected to the cell 10, and the source is connected to the LC oscillator 24, thereby selectively turning on the drain and the source according to the first driving signal m, thereby The DC current is drawn from the cell 10 and output to the LC oscillator 24.
  • the gate of the second transistor Q2 is connected to the second signal output terminal of the half-bridge driver 2121 for receiving the second driving signal n; the drain is connected to the LC oscillator 24, and the source is grounded, so as to select according to the second driving signal n
  • the drain and source are turned on. Based on the different high level periods of the first driving signal m and the second driving signal n, the first transistor Q1 and the second transistor Q2 in the half-bridge driving unit 212 can be turned on alternately, so that the current direction of the LC oscillator 24 Continuously alternate changes, and then form oscillations.
  • first transistor Q1 and the second transistor Q2 of the above N-MOS transistor as an example can also be replaced with P-MOS, triode, etc. with the same function.
  • the frequency detection module 23 Based on the detection of the frequency of the LC oscillator 24, it can be realized by detecting the change of the voltage or current signal of the LC oscillator 24 during the oscillation process; for example, in the embodiment shown in FIG. 3, the frequency detection module 23 adopts A voltage detection unit 231 for detecting a detectable position between the capacitor C and the inductor L, such as the voltage value of the point a, so that the operating frequency of the LC oscillator 24 can be obtained according to the detected voltage value of the point a.
  • the most convenient zero-crossing detection circuit is adopted as the voltage detection unit 231 in an implementation for illustration.
  • the zero-crossing detection circuit is a circuit that is often used to detect when the waveform changes from a positive half cycle to a negative half cycle through a zero potential in AC.
  • the oscillating frequency of the LC oscillator 24 is periodic. Of course, as the battery cell 10 continues to discharge, the amount of electricity is continuously reduced. The overall amplitude and frequency of the LC oscillator 24 will also have a certain attenuation change over time; and the point a In one implementation, the electric potential may have a certain periodic oscillating waveform that decays with time as shown in FIG. 7. In FIG.
  • the MCU controller 22 controls the frequency of the modulation signal output by the PFM unit 212 according to the detected frequency f, so that the two basically tend to be consistent.
  • the zero-crossing detection circuit used above can be implemented with a universal electronic device zero-crossing comparator, as shown in Figure 8.
  • the installation and connection of the zero-crossing comparator F is to sample The input terminal "+” is connected to the detectable position a of the LC oscillator 24, the reference input terminal "-” is grounded, and the output terminal out is connected to the MCU controller 22; then the ground voltage of the reference input terminal is 0, when the sampling input terminal When the voltage value received by "+" is also 0, signal output is performed to the MCU controller 22 to realize frequency detection.
  • the timing of alternate switching of the first transistor Q1 and the second transistor Q2 is configured to be performed when the zero-crossing comparator F detects that the voltage or current of the LC oscillator 24 changes to 0V, which can effectively avoid The heat loss of the first transistor Q1 and the second transistor Q2 itself.
  • the frequency detection module 23 can be implemented by using another example of the voltage detection unit 231a shown in FIG. 9, and the voltage detection unit 231a includes: a rectifier diode D, a first voltage dividing resistor R1, and a second voltage dividing resistor R1. Piezoresistor R2;
  • the first end of the connected rectifier diode D is connected to the position a between the capacitor C1 and the inductor L in the LC oscillator 24, and the second end is connected to the first end of the first voltage divider R1;
  • the second end of the first voltage dividing resistor R1 is connected to the first end of the second voltage dividing resistor R2;
  • the second end of the second voltage dividing resistor R2 is grounded.
  • the alternating current of the LC oscillator 24 is filtered and rectified by the rectifier diode D and then output to the voltage divider circuit composed of the first voltage dividing resistor R1 and the second voltage dividing resistor R2.
  • the sampling pin detects the voltage at point b between the first voltage dividing resistor R1 and the second voltage dividing resistor R2, that is, the voltage to the ground at both ends of the second voltage dividing resistor R2.
  • the voltage detection unit 231a also includes a second capacitor C2 connected in parallel with the second voltage dividing resistor R2.
  • the second capacitor C2 is used for filtering to filter the pulse voltage across the second voltage dividing resistor R2 into direct current. The voltage thus facilitates continuous detection.
  • an electric meter device that can measure the voltage at point b can be added between the point b and the MCU controller 22 for implementation.
  • the sine wave is rectified and then output to the voltage divider circuit with two voltage dividing resistors, and the sine wave DC sampling voltage is obtained at point b.
  • the sampling voltage changes with the different frequencies of the LC oscillator 24, and is fed back to the MCU.
  • the MCU can learn the operating frequency of the LC oscillator 24 according to the feedback voltage value, thereby adjusting the frequency of the pulses output by the PFM unit 2111, and finally It is ensured that the LC oscillator 24 is as close to complete resonance as possible.
  • the DC/AC conversion module 21 can also be implemented by a full-bridge drive unit 212a in a full-bridge drive mode, and its structure includes:
  • a full bridge 2122a composed of four transistors for oscillating the LC oscillator 24, and a full bridge driver 2121a for driving the full bridge 2122a to alternately conduct commutation to the LC oscillator 24.
  • the signal control of the full-bridge driver 2121a is similar to the aforementioned half-bridge driver 2112, and a driving signal is generated according to the pulse frequency signal output by the PFM unit 2111.
  • the on or off of the first transistor Q1 and the fourth transistor Q4 are synchronized; and the on or off of the second transistor Q2 and the third transistor Q3 are also synchronized, and The first transistor Q1 and the fourth transistor Q4 are turned on or off alternately.
  • the current direction of the LC oscillator 24 is shown by the arrow in FIG. 11;
  • the current direction of the LC oscillator 24 is shown by the arrow in Figure 12; thus, by controlling the alternate conduction of the full bridge 2122a, the LC oscillation can be controlled
  • the commutation of the converter 24 causes the LC oscillator 24 to oscillate.
  • the point where the voltage detection unit 231 is used to detect the voltage of the LC oscillator 24 and then the oscillation frequency can be performed at point c in FIG. 10, and the specific implementation of the voltage detection unit 231 can be Use the same implementation as the content described above.
  • a more suitable frequency detection module 23 is for example a Hall sensor with Hall effect. In the structural installation design, it is within the range of the magnetic field generated by the inductance coil L.
  • the Hall sensor can be The change of the magnetic field at the location generates a sensing signal linearly related to the intensity of the magnetic field, and the MCU controller 22 can obtain the oscillation frequency of the LC oscillator 24 according to the change of the sensing signal.
  • devices such as mutual inductance that can respond to the magnetic field generated in the inductance coil L can also be used, and then the oscillation frequency of the LC oscillator 24 can be obtained by detecting the change in the magnetic field of the inductance coil L.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • General Induction Heating (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Abstract

一种电磁感应加热式的气雾生成装置及控制方法,用于加热可抽吸材料(A)生成气溶胶,包括:LC振荡器(24),其电感线圈(L)与感受器(30)感应耦合;用于为向LC振荡器(24)提供脉冲电压的电源;感受器(30),被变化的磁场穿透而发热,进而加热可抽吸材料(A);用于检测LC振荡器(24)的振荡频率的频率检测模块(23);控制器(22)根据频率检测模块(23)的检测结果调整电源提供给LC振荡器(24)的脉冲电压的频率。经过对LC振荡器(24)的振荡频率进行实时检测,并根据检测结果不断的修正给LC振荡器(24)供电的频率,从而不断调整频率的匹配性以自适应调节驱动频率使两者尽可能接近谐振,从而降低功率损耗。

Description

气雾生成装置及控制方法
本申请要求于2019年10月31日提交中国专利局,申请号为201911056471.3,发明名称为“气雾生成装置及控制方法”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请实施例涉及加热不燃烧烟具领域,尤其涉及一种气雾生成装置及控制方法。
背景技术
烟制品(例如,香烟、雪茄等)在使用过程中燃烧烟草以产生烟草烟雾。人们试图通过制造在不燃烧的情况下释放化合物的产品来替代这些燃烧烟草的制品。
此类产品的示例为加热装置,其通过加热而不是燃烧材料来释放化合物,形成供吸食的气溶胶。例如,该材料可为烟草或其他非烟草产品,这些非烟草产品可包含或可不包含尼古丁。
对于以上加热装置的一个现有技术的实施例中,201580007754.2号专利提出了一种电磁感应式加热特制烟支制品的感应加热装置;其采用DC/AC逆变器将电源输出的直流转变为交流供应至感应线圈,具体是通过感应线圈与电容器组成LC振荡的方式形成交流,从而使线圈产生交变磁场诱导感受器发热加热烟支制品。而对于以上现有技术实施例的感应加热装置,DC/AC逆变的频率,与由感应线圈和电容组成的LC振荡的振荡频率会存在差距,使得在非谐振频率下进行驱动时产生较大的功率损耗。
发明内容
为了解决现有技术中的感应加热式装置的逆变输出和LC振荡器的频率差造成损耗的问题,本申请实施例提供一种可以自适应调节驱动频率降低损耗的气雾生成装置。
本申请一实施例的气雾生成装置,被配置为加热可抽吸材料生成气溶胶,包括:
腔室,用于接收所述可抽吸材料的至少一部分;
LC振荡器,包括串联的第一电容和电感线圈;
电源,被配置为向所述LC振荡器提供脉冲电压,以使所述LC振荡器的电感线圈产生变化的磁场;
感受器,被配置为被所述变化的磁场穿透而发热,进而对接收在所述腔室内的可抽吸材料进行加热;
频率检测模块,被配置为检测所述LC振荡器的振荡频率;
控制器,被配置为根据所述频率检测模块的检测结果调整所述电源提供给所述LC振荡器的脉冲电压的频率。
在优选实施中,所述控制器调整所述电源提供给所述LC振荡器的脉冲电压的频率,与所述频率检测模块检测的所述LC振荡器的振荡频率相同或基本接近。
在一个实施例中,所述电源提供给所述LC振荡器的脉冲电压的频率介于80KHz~400KHz;更加优选的是介于200KHz~300KHz范围。
在一个实施例中,所述LC振荡器的振荡频率介于80KHz~400KHz;更加优选的是介于200KHz~300KHz范围。
在优选实施中,所述频率检测模块被配置成通过监控所述LC振荡器的电压或电流的变化,进而检测所述LC振荡器的振荡频率。
在优选实施中,所述频率检测模块包括:
电压检测单元,用于检测所述LC振荡器的可检测位置的电压值;
所述频率检测模块根据检测的所述电压值的变化周期,进而检测所述LC振荡器的振荡频率。
在优选实施中,所述频率检测模块被配置为根据所述可检测位置的电压值两次变化至阈值的时间差,进而检测所述LC振荡器的振荡频率。
在优选实施中,所述阈值为0V;
和/或,所述电压检测单元包括过零比较器。
在优选实施中,所述频率检测模块包括:
整流二极管,该整流二极管的输入端与所述LC振荡器的可检测位置连接;
所述频率检测模块还包括用于检测所述整流二极管的输出端的电流的电流检测单元,并根据所述电流检测单元的检测结果进而推导所述LC振荡器的振荡频率。
在优选实施中,所述电流检测单元包括:
第一分压电阻、第二分压电阻和第二电容;其中,
所述第一分压电阻的第一端与所述整流二极管的输出端连接;
所述第二分压电阻的第一端与第一分压电阻的第二端连接、第二端接地;
所述第二电容与第二分压电阻并联;
所述电流检测单元被配置为根据所述第一分压电阻或第二分压电阻两端的电压,进而检测所述整流二极管的输出端的电流。
在优选实施中,所述频率检测模块被配置成通过监测所述LC振荡器中电感线圈产生的磁场的变化,进而检测所述LC振荡器的振荡频率。
在优选实施中,所述频率检测模块包括用于感测所述电感线圈产生的磁场的霍尔传感器。
在优选实施中,还包括:
脉冲发生器,用于产生脉冲信号;
所述电源被配置为按照与该脉冲信号的频率相同的频率向所述LC振荡器提供脉冲电压;
所述控制器被配置为根据所述频率检测模块的检测结果控制脉冲发生器产生的所述脉冲信号的频率,进而调整所述电源提供给所述LC振荡器的脉冲电压的频率。
在优选实施中,所述脉冲发生器被配置为通过脉冲频调制产生所述脉冲信号。
在优选实施中,所述电源包括用于提供直流电压的直流电芯;
所述气雾生成装置还包括:
用于所述直流电芯向所述LC振荡器提供电压的晶体管开关,所述控制器通过控制该晶体管开关的断开或导通的频率,进而调整所述直流电芯提供给所述LC振荡器的脉冲电压的频率。
在优选实施中,所述晶体管开关包括第一晶体管和第二晶体管;所述第一晶体管和第二晶体管被配置为交替地切换以向所述LC振荡器提供脉冲电压,进而调节所述LC振荡器的正向过程和负向过程的频率;其中,
所述正向过程包括使所述电容充电并形成通过所述感应线圈在正方向的电流;
所述负向过程包括使所述电容放电并由此通过所述线圈在负方向的电流。
在优选实施中,所述第一晶体管和第二晶体管被配置为当所述LC振荡器的电压变化至0V时切换。
在优选实施中,所述晶体管开关包括被配置为按照与所述脉冲电压的频率相同的频率交替导通的第一开关组和第二开关组;其中,
所述第一开关组包括第一晶体管和第二晶体管;
所述第二开关组包括第三晶体管和第四晶体管;
所述第一晶体管的第一端与所述直流电芯的电压输出端连接、第二端与所述LC振荡器的第一端连接;
所述第二晶体管的第一端与所述LC振荡器的第二端连接、第二端接地;
所述第三晶体管的第一端与所述直流电芯的电压输出端连接、第二端与所述LC振荡器的第二端连接;
所述第四晶体管的第一端与所述LC振荡器的第一端连接、第二端接地。
在优选实施中,所述电源包括用于提供直流电压的直流电芯;
所述气雾生成装置还包括:
用于所述直流电芯向所述LC振荡器提供电压的晶体管开关;
晶体管开关驱动器,被配置为控制所述晶体管开关按照与所述脉冲信号的频率相同的频率导通。
在优选实施中,所述直流电芯提供的供电电压在2.5V~9.0V的范围内;
和/或,所述直流电芯提供的供电电流的安培数在2.5A~20A的范围内。
在一个实施例中还提出又一种气雾生成装置,被配置为加热包括感受器的可抽吸材料生成气溶胶,包括:
腔室,用于接收所述可抽吸材料的至少一部分;
LC振荡器,包括串联的第一电容和电感线圈;当所述可抽吸材料的至少一部分接收在所述腔室内时,所述电感线圈与可抽吸材料的感受器感应耦合;
电源,被配置为向所述LC振荡器提供脉冲电压,以使所述LC振荡器的电感线圈产生变化的磁场;
频率检测模块,被配置为检测所述LC振荡器的振荡频率;
控制器,被配置为根据所述频率检测模块的检测结果控制所述电源提供给所述LC振荡器的脉冲电压的频率。
一个实施中还提出一种用于操作以上的气雾生成装置的方法,包括如下步骤:
当所述可抽吸材料接收的至少一部分接收在气雾生成装置内由使所述电源向所述LC振荡器提供脉冲电压,以使所述感受器发热;
检测所述LC振荡器的振荡频率,并根据该检测结果调整所述电源提供给所述LC振荡器的脉冲电压的频率。
采用以上实施例的气雾生成装置经过对LC振荡器的振荡频率进行实施检测,并根据检测结果不断的修正给LC振荡器供电的频率,从而使自身能不断调整频率的匹配性,以自适应调节驱动频率使两者尽可能接近谐振,从而降低功率损耗。
在一个实施例中还提出一种气雾生成装置,被配置为加热包括感受器的可 抽吸材料生成气溶胶,包括:
腔室,用于接收所述可抽吸材料的至少一部分;
电感线圈,被配置为当所述可抽吸材料的至少一部分接收在所述腔室内时与感受器感应耦合;
电源,被配置为向所述电感线圈提供频率介于80KHz~400KHz的交变电流。
在优选实施中,所述电源被配置为向所述电感线圈提供频率介于200KHz到300KHz的交变电流。
在优选实施中,还包括:
电容,用于与所述电感线圈串联形成LC振荡器;
所述电源包括:
直流电芯,被配置为通过向所述LC振荡器提供所述频率的脉冲电压以使所述LC振荡器振荡,从而形成所述交变电流。
在优选实施中,还包括:用于所述直流电芯向所述LC振荡器提供电压的晶体管开关,该晶体管开关被配置为按照所述频率导通,进而形成向所述LC振荡器提供的脉冲电压。
在优选实施中,所述晶体管开关包括第一晶体管和第二晶体管;其中,
所述第一晶体管的第一端与所述直流电芯的电压输出端连接、第二端与所述LC振荡器的第一端连接;
所述第二晶体管的第一端与所述LC振荡器的第二端连接、第二端接地;
所述第一晶体管和第二晶体管被配置为按照所述频率交替导通。
在优选实施中,所述晶体管开关包括被配置为按照所述频率交替导通的第一开关组和第二开关组;其中,
所述第一开关组包括第一晶体管和第二晶体管;
所述第二开关组包括第三晶体管和第四晶体管;
所述第一晶体管的第一端与所述直流电芯的电压输出端连接、第二端与所 述LC振荡器的第一端连接;
所述第二晶体管的第一端与所述LC振荡器的第二端连接、第二端接地;
所述第三晶体管的第一端与所述直流电芯的电压输出端连接、第二端与所述LC振荡器的第二端连接;
所述第四晶体管的第一端与所述LC振荡器的第一端连接、第二端接地。
在优选实施中,还包括:
晶体管开关驱动器,被配置为控制所述晶体管开关按照所述频率导通。
在优选实施中,还包括:
温度传感器,用于感测所述感受器的温度;
所述控制器还被配置为当所述感受器的温度等于或超过预设阈值温度时,中断通过所述电源向所述电感线圈提供的交变电流,并当所述感受器的温度再次低于预设阈值温度时,恢复通过所述电源向所述电感线圈提供交变电流。
在一个实施例中还提出又一种气雾生成装置,被配置为加热可抽吸材料生成气溶胶,包括:
腔室,用于接收所述可抽吸材料的至少一部分;
电感线圈,被配置为在交变电流的供应下产生变化的磁场;
电源,被配置为向所述电感线圈提供频率介于80KHz~400KHz的交变电流;
感受器,至少部分延伸至所述腔室内,并被配置为被变化磁场穿透而发热,进而对接收在所述腔室内的可抽吸材料进行加热。
本申请实施例采用以上实施例的气雾生成装置,采用在以上选定的频率范围的交变电流供应至电感线圈,在可选的范围内降低功率损耗。
附图说明
一个或多个实施例通过与之对应的附图中的图片进行示例性说明,这些示例性说明并不构成对实施例的限定,附图中具有相同参考数字标号的元件表示为类似的元件,除非有特别申明,附图中的图不构成比例限制。
图1是一实施例提供的气雾生成装置的示意图;
图2是图1的气雾生成装置中一实施例的电路的框图;
图3是图2的电路的基本组件的一个实施例;
图4是图3的PFM单元输出的脉冲信号的一个代表性波形图;
图5是图3的半桥驱动器输出的一个驱动信号的代表性波形图;
图6是图3的半桥驱动器输出的另一个驱动信号的代表性波形图;
图7是图3的LC振荡器的a点位的电压的代表性振荡波形图;
图8是图3的电压检测单元一个实施例的示意图;
图9是图3的电压检测单元又一个实施例的示意图;
图10是图2的电路的基本组件的又一个实施例;
图11是图10在一个导通状态下LC振荡器的电流示意图;
图12是图10在又一个导通状态下的LC振荡器的电流示意图;
图13是又一实施例的振荡器的示意图;
图14是又一实施例提供的气雾生成装置的示意图。
具体实施方式
为了便于理解本申请,下面结合附图和具体实施方式,对本申请进行更详细的说明。
本申请的一个实施例提出的气雾生成装置,其构造可以参见图1所示,包括:
腔室,可抽吸材料A可移除地接收在腔室室内;
电感线圈L,用于在交变电流下产生变化磁场;
感受器30,与电感线圈L感应耦合,并被变化磁场穿透而发热,进而对可抽吸材料A例如烟支进行加热,进而使可抽吸材料A的至少一种成分挥发,形成供抽吸的气溶胶;
电芯10,为可充电的直流电芯;
电路20,通过适当的电连接到可充电的电芯10,用于从将电芯10输出的直流,转变成具有适合频率的交流再供应到电感线圈L;
根据产品使用中的设置,电感线圈L可以包括绕成螺旋状的圆柱形电感器线圈,如图1中所示。绕成螺旋状的圆柱形电感线圈L可以具有范围在大约5mm到大约10mm内的半径r,并特别地半径r可以大约为7mm。绕成螺旋状的圆柱形电感线圈L的长度可以在大约8mm到大约14mm的范围内,电感线圈L的匝数大约8匝到15匝的范围内。相应地,内体积可能在大约0.15cm3至大约1.10cm3的范围内。
在更加优选的实施中,电路20还可以包括用于与LC振荡器24串联的电阻R,组成图13所示的LCR阻尼振荡器;进而可以提高LC振荡器24的Q因素(品质因素),从而在可选的范围内降低功率损耗。
为了使LC振荡器24的振荡频率与交变电流的频率能尽可能具有更低的功率损耗和使LC振荡器24接近于谐振,在一个实施例中,DC/AC转换模块21输出的交变电流的频率和/或LC振荡器24的振荡频率在实施中控制介于80KHz~400KHz;更具体地,所述频率可以在大约200KHz到300KHz的范围。
在实施中,LC振荡器24的振荡频率是在振荡工作时的频率,它会受到电路20其他参数的影响,甚至可能是受变化信号的干扰;在实施中,通过以上方式最终使DC/AC转换模块21输出的交变电流的频率相同或者基本接近LC振荡器24的振荡频率即可,而不要求实际振荡频率与LC振荡器24的固有谐振频率一致。
在一个优选的实施例中,电芯10提供的直流供电电压在约2.5V至约9.0V的范围内,电芯10可提供的直流电流的安培数在约2.5A至约20A的范围内。
在一个优选的实施例中,感受器30可以具有大约12毫米的长度,大约4毫米的宽度和大约50微米的厚度,并且可以由等级430的不锈钢(SS430)制成。作为替代性实施例,感受器30可以具有大约12毫米的长度,大约5毫米的宽度和大约50微米的厚度,并且可以由等级430的不锈钢(SS430)制成。在又一个优选的实施例中,感受器30还可以被构造成圆筒状的形状,在使用时其内部 空间用于接收可抽吸材料A,并通过对可抽吸材料A的外周加热的方式,生成供吸食的气溶胶。这些感受器还可以由等级420的不锈钢(SS420)、以及含有铁镍的合金材料(比如坡莫合金)制成。
在又一个优选实施方式中,为了保证感受器30的温度处于在合适的加热温度范围,气雾生成装置还包括温度传感器(图中未示出),用于检测感受器30的温度;MCU控制器22进一步被配置为当确定感受器30的温度等于或超过预设阈值温度时,中断通过DC/AC转换模块21生成交变电流的功率,并当感受器30的温度再次低于预设阈值温度时,恢复DC/AC转换模块21生成交变电流的功率。当然,还可以通过控制切换电压的频率进而优化至感受器30的功率传输。
本申请公开的又一个实施提出的气雾生成装置,其构造如图14所示,包括:
腔室40a,可抽吸材料A可移除地接收于腔室40a内;
电感线圈L,用于在交变电流下产生变化磁场;
电芯10a,为可充电的直流电芯,可以输出直流电流;
电路20a,通过适当的电连接到可充电的电芯10a,用于从将电芯10a输出的直流电流,转变成具有适合频率的交变电流再供应到电感线圈L。
与该气雾生成装置配合使用的可抽吸材料A在生产制备时,使其内部置入或者掺杂有感受器构件30a/30b;在实施中,感受器构件30a可以呈均匀分布在可抽吸材料A内的颗粒30a、或者沿可抽吸材料A的轴向延伸的针状或销或薄片30b的形式。在该实施例中,气雾生成装置自身不包括与电感线圈L电磁耦合而发热的感受器,而将感受器构件30a/30b置于可抽吸材料A内,当可抽吸材料A接收在腔室室40a内时,这些感受器构件30a/30b被电感线圈L产生的交变磁场穿透而发热,从而加热可抽吸材料A生成供吸食的气溶胶。
为了使提供到电感线圈L的工作能在适合的所设定的合适的选频下进行工作,以上由电路20在一个优选的实施方式中的结构和基本组件可以参见图2至图3所示,包括:
DC/AC转换模块21,用于将从电芯10汲取的直流电流,转变成具有适合频率范围的交变电流再供应到电感线圈L;具体在实施中,DC/AC转换模块21包 括:
电容C,用于与电感线圈L串联,组成LC振荡器24;通过LC振荡的方式产生正旋或余弦的交变电流给电感线圈L。
使用中LC振荡器24的固有谐振频率会随着感受器30的温度而发生变化,具体根据公式可知LC振荡器24谐振时的频率;其中,式中Ll为由感受器30与电感线圈L组成的类似于铁芯线圈的电感值,C为电容C的电容值;而对应给定的电子器件,电容值C是基本恒定不变的,因而频率f基本与Ll的变化相关。
而基于含有铁芯的电感的计算方式:
Ll=L+Ls;其中,L为电感线圈L自身的电感值,Ls是充当铁芯的感受器30在工作状态中的实时电感;实施中,电感线圈L自身的电感值基本恒定,而感受器30的实时电感Ls是变化的。
进一步根据物理学基础,实时电感Ls的计算主要基于物理量因素包括感受器30与电感线圈L之间存在的气隙(会产生漏电感)长度、线圈匝数、磁路长度、充当铁芯的感受器30的截面积、感受器30的相对磁导率μr。但对于气雾生成装置给定之后,感受器30的实时电感Ls基本与相对磁导率μr的变化相关。
进一步根据物理学基础,感受器30的相对磁导率μr具有温度的相关关系,比如衡量这一相关关系的物理参数比有磁导温度系数αμ或磁化率χ。
具体比如磁导温度系数αμ其计算公式为αμ=(μr2-μr1)/μr1(T2-T1),通常用于表示温度在T1~T2范围内变化时,相应磁导率的相对变化量;式中μr1是温度为T1时的磁导率,μr2是温度为T2时的磁导率。
又比如磁化率χ与感受器30的相对磁导率μr的关联公式为:μr=1+χ;而根据居里外斯定律,铁磁性的感受器30的磁化率χ具有与温度呈反比的关系,即工作中相对磁导率μr受感受器30的温度影响而变化。
当然,LC谐振频率的影响因素除了以上主要描述的温度之外,还存在一些小的影响因素,比如整个电路负载变化、LC选频回路变化以及外部的电源电压、湿度等因素引起内部相关元件参数变化等。
因而在更加优选的实施中,电路20还包括:频率检测模块23,用于检测 LC振荡器24的振荡频率;
MCU控制器22,根据频率检测模块23所检测的LC振荡器24的振荡频率,调整DC/AC转换模块21供应到LC振荡器24的交变电流的频率;具体在一个实施例中是使供应到LC振荡器24的交变电流的频率与LC振荡器24的振荡频率相同或基本接近。
采用以上实施例的气雾生成装置经过对LC振荡器24的振荡频率的实施检测,并不断的修正给LC振荡器24供电的频率,从而使自身能不断调整频率的匹配性,以自适应调节驱动频率使两者尽可能接近于完全谐振,从而降低功率损耗。
进一步基于以上谐振控制的优选方式,图3的实施例的电路20结构中,DC/AC转换模块21采用的是脉冲发生器211与半桥驱动结合的方式进行;具体,在图3的优选实施中DC/AC转换模块21还包括:
脉冲发生器211,其用于产生具有所需频率的脉冲信号,当然该脉冲信号的频率与MCU控制器22控制DC/AC转换模块21所需供应到LC振荡器24的交变电流的频率是相同的;
半桥驱动单元212,用于将电芯10输出的直流电压以脉冲的方式供应给LC振荡器24,从而使LC振荡器24振荡进而形成通过电感线圈L的交变电流;当然,脉冲电压的频率与脉冲发生器211的脉冲信号频率也是相同的。
基于电子元器件获取的便利性,在更加优选的实施中,脉冲发生器211包括用于脉冲频调制的PFM单元2111,该PFM单元2111是比较可选的脉冲调制方式,其调制信号的频率可以随MCU控制器22的控制信号幅值而变化,但其占空比不变。因而,在实施中根据输出的调制信号的频率进而调节半桥驱动单元212输出的交变电流的频率。
进一步在图3所示的实施例中,目前PFM单元2111的脉冲频调制的电子器件输出的信号通常为具有所调制频率变化的2.5~5V的低压方波信号,可以参见图4所示。基于这一情形,半桥驱动单元212包括第一晶体管Q1和第二晶体管Q2组成的半桥子单元2122;
而由于PFM单元2111输出的方波信号不能驱动或者使第一晶体管Q1和第 二晶体管Q2的交替导通;因而半桥驱动单元212还包括:
半桥驱动器2121,用于根据PFM单元2111输出的信号,驱动第一晶体管Q1和第二晶体管Q2按照脉冲频率交替导通,进而使LC振荡器24换流。具体,根据目前可便捷获取的电子器件,一个实施中用于驱动半桥的半桥驱动器2121能基于PFM单元2111输出的信号输出两个驱动信号,分别包括图5中所示的用于控制第一晶体管Q1断开或导通的第一驱动信号m,以及图6中所示的用于控制第二晶体管Q2断开或导通的第二驱动信号n。其中,第一驱动信号m和第二驱动信号n的频率是相同的,都等于PFM单元2111输出的脉冲的频率;而且根据电子器件的一些行业标准,符合标准的半桥驱动器2121输出的高电平信号的电压值为12V;第一驱动信号m和第二驱动信号n的区别在于高电平的时间区段不同,当第一驱动信号m为高电平时第二驱动信号n为低电平,因而各自高电平时间错开,从而分别控制第一晶体管Q1和第二晶体管Q2按照脉冲频率交替导通。从而将电芯10的电压按照一定的脉冲频率提供给LC振荡器24,在LC振荡器24内形成包括交替进行的正向过程和负向过程,从而换流和振荡,从而使电感线圈L在正弦或余弦的交变电流下工作产生交变磁场。具体,在图3所示的实施例中,正向过程包括使电容C充电并形成通过电感线圈L在正方向的电流,负向过程包括使电容C放电并由此形成通过电感线圈L在负方向的电流。
具体,图3的实施例中第一晶体管Q1和第二晶体管Q2在图中是以N-MOS管为例进行的描述,在连接上采用第一晶体管Q1的栅极与半桥驱动器2121的第一信号输出端连接,用于接收第一驱动信号m;漏极与电芯10连接,源极与LC振荡器24连接,从而根据第一驱动信号m选择性导通漏极和源极,从而从电芯10汲取直流电流后,并向LC振荡器24输出。第二晶体管Q2的栅极与半桥驱动器2121的第二信号输出端连接,用于接收第二驱动信号n;漏极与LC振荡器24连接,源极接地,从而根据第二驱动信号n选择性导通漏极和源极。基于第一驱动信号m和第二驱动信号n高电平的时段不同,则半桥驱动单元212中第一晶体管Q1和第二晶体管Q2可以分别交替导通,从而使LC振荡器24的电流方向不断交替变化,进而形成振荡。
当然,以上N-MOS管作为示例的第一晶体管Q1和第二晶体管Q2还可以用同等功能的P-MOS、三极管等进行替换。
基于对LC振荡器24的频率的检测,可以采用通过检测LC振荡器24在振荡过程中的电压或者电流信号的变化实现;例如在图3所示的实施例中,频率检测模块23采用的是一用于检测电容C与电感线圈L之间可检测位置例如点位a电压值的电压检测单元231,从而根据所检测的点位a的电压值可以得出LC振荡器24的工作频率。当然,具体地,以一个实施中采用最具有便利性的过零检测电路作为电压检测单元231进行示例说明。其中,过零检测电路是常用于交流中检测波形从正半周向负半周转换经过零电位时的检测功能的电路。LC振荡器24的振荡频率具有周期性,当然随着电芯10不断的放电导致电量不断降低,整体的LC振荡器24的振幅和频率会随着时间也存在一定的衰减变化;而a点的电位在一个实施中可呈图7所示的具有一定周期性的随时间衰减的振荡波形。在图4中当电压检测单元231采用过零检测实施时,以点位a经过零电位时的相邻两个时间T1和T2的差即为半个振荡周期,则LC振荡器24的周期T=(T2-T1)×2,频率f=1/T。而后,MCU控制器22则根据该检测的频率f控制PFM单元212输出的调制信号的频率,进而使两者基本上趋于保持一致。
基于完整实施的便利性,以上所采用的过零检测电路可以采用通用的电子器件过零比较器进行实施,参见图8所示;在图8中,过零比较器F的安装连接为将采样输入端“+”与LC振荡器24的可检测位点a连接,参考输入端“-”接地,结果输出端out连接至MCU控制器22;则参考输入端的接地电压为0,当采样输入端“+”接收的电压值也为0时,向MCU控制器22进行信号输出,即可实现频率检测。
在又一个优选的实施例中,第一晶体管Q1和第二晶体管Q2交替切换的时机被配置为在过零比较器F检测到LC振荡器24的电压或电流变化为0V时进行,可以有效避免第一晶体管Q1和第二晶体管Q2自身的热损耗。
在又一个实施例中,频率检测模块23可以采用图9所示的又一种电压检测单元231a的示例进行,该电压检测单元231a包括:整流二极管D、第一分压电阻R1和第二分压电阻R2;
在连接上整流二极管D的第一端与LC振荡器24中电容C1和电感线圈L之间的a位点连接、第二端与第一分压电阻R1的第一端连接;
第一分压电阻R1的第二端与第二分压电阻R2的第一端连接;
第二分压电阻R2的第二端接地。
因而通过整流二极管D将LC振荡器24的交变电流过滤整流后输出给第一分压电阻R1和第二分压电阻R2组成的分压电路,则后续进一步可以通过MCU控制器22自带的采样引脚检测第一分压电阻R1和第二分压电阻R2之间的b点位的电压即第二分压电阻R2两端的对地电压。
当然,由于a点输出的是正负交替变化的电流,而整流二极管D只能整流正半周或者负半周的电流(图中二极管的方向是以正半周整流为例),因而整流以后施加给第一分压电阻R1和第二分压电阻R2组成的分压电路的是具有脉冲的直流电压,会造成b电的检测电压信号为脉冲信号影响准确性;因而为了使b点能检测到持续的电压信号,电压检测单元231a还包括有与第二分压电阻R2并联的第二电容C2,该第二电容C2的作用是用于滤波,将第二分压电阻R2两端的脉冲电压滤成直流电压从而便于持续检测。
当然,在实施中如果采用的MCU控制器22不具备电压检测引脚,则可以在b点与MCU控制器22之间增加一个可测量b点电压的电表器件进行实施。
采用以上电压检测单元231a,通过从LC振荡器24的a点输出一个正弦波,正弦波经过整流之后输出给具有两个分压电阻的分压电路,b点得到正弦波的直流采样电压,该采样电压随着LC振荡器24的不同频率而产生变化,并通过反馈给到MCU,MCU根据反馈电压值即可获知LC振荡器24的工作频率,从而调整PFM单元2111输出的脉冲的频率,最终保证LC振荡器24尽可能接近完全谐振。
在又一个实施例中,DC/AC转换模块21还可以采用以全桥驱动方式进行的全桥驱动单元212a实现,其结构包括:
由四个晶体管组成的用于使LC振荡器24振荡的全桥2122a、以及用于驱动全桥2122a进行交替导通实现对LC振荡器24进行换流的全桥驱动器2121a。
全桥驱动器2121a的信号控制与前述半桥驱动器2112相类似,根据PFM单元2111输出的脉冲频信号产生驱动信号。在驱动晶体管的通断方式上,第一晶体管Q1和第四晶体管Q4的导通或断开是同步的;而第二晶体管Q2和第三晶体管Q3的导通或断开也是同步的,并且是与第一晶体管Q1和第四晶体管Q4的导通或断开是交替的。
因而,当第一晶体管Q1和第四晶体管Q4导通,第二晶体管Q2和第三晶体管Q3断开时,LC振荡器24的电流方向如图11的箭头所示;当第二晶体管Q2和第三晶体管Q3导通,第一晶体管Q1和第四晶体管Q4断开时,LC振荡器24的电流方向如图12的箭头所示;从而通过控制全桥2122a的交替导通,则可控制LC振荡器24的换流,使LC振荡器24振荡。
而在图10所示的实施例中,采用电压检测单元231检测制LC振荡器24的电压进而检测振荡频率的点位则可以采用图10中c点位进行,电压检测单元231具体的实施可以采用与上述所描述的内容同等实施。
在其他的变体实施例中,以上频率检测模块23,还可以采用通过检测电感线圈L产生磁场的变化,进而获得LC振荡器24的振荡频率;机理在于电感线圈L内产生的磁场H=N×I/Le;其中,N为线圈的匝数、I为电流强度、Le为线圈的有效长度。因而从上可知,电感线圈L产生的磁场与LC振荡器24中的电流是具有相关关系的,使得磁场会随着LC振荡器24的振荡而进行变化,因而通过检测磁场变化情况即可确定LC振荡器24的振荡频率。在这一种实施中,一个比较适合的频率检测模块23比如有具有霍尔效应的霍尔传感器,在结构安装设计上使其处于电感线圈L产生的磁场的范围内,霍尔传感器可以根据所处位置的磁场变化情况生成与磁场强度呈线性相关的感测信号,则MCU控制器22根据该感测信号的变化即可得出LC振荡器24的振荡频率。
或者在其他的变体实施中,还可以采用能响应电感线圈L内产生的磁场的互感等器件,进而通过检测电感线圈L的磁场变化进而得出LC振荡器24的振荡频率。
需要说明的是,本申请的说明书及其附图中给出了本申请的较佳的实施例,但并不限于本说明书所描述的实施例,进一步地,对本领域普通技术人员来说,可以根据上述说明加以改进或变换,而所有这些改进和变换都应属于本申请所附权利要求的保护范围。

Claims (21)

  1. 一种气雾生成装置,被配置为加热可抽吸材料生成气溶胶,其特征在于,包括:
    腔室,用于接收所述可抽吸材料的至少一部分;
    LC振荡器,包括串联的第一电容和电感线圈;
    电源,被配置为向所述LC振荡器提供脉冲电压,以使所述LC振荡器的电感线圈产生变化的磁场;
    感受器,被配置为被所述变化的磁场穿透而发热,进而对接收在所述腔室内的可抽吸材料进行加热;
    频率检测模块,被配置为检测所述LC振荡器的振荡频率;
    控制器,被配置为根据所述频率检测模块的检测结果调整所述电源提供给所述LC振荡器的脉冲电压的频率。
  2. 如权利要求1所述的气雾生成装置,其特征在于,所述控制器调整所述电源提供给所述LC振荡器的脉冲电压的频率,与所述频率检测模块检测的所述LC振荡器的振荡频率相同或基本接近。
  3. 如权利要求1所述的气雾生成装置,其特征在于,所述频率检测模块被配置成通过监控所述LC振荡器的电压或电流的变化,进而检测所述LC振荡器的振荡频率。
  4. 如权利要求3所述的气雾生成装置,其特征在于,所述频率检测模块包括:
    电压检测单元,用于检测所述LC振荡器的可检测位置的电压值;
    所述频率检测模块根据检测的所述电压值的变化周期,进而检测所述LC振荡器的振荡频率。
  5. 如权利要求4所述的气雾生成装置,其特征在于,所述频率检测模块被配置为根据所述可检测位置的电压值两次变化至阈值的时间差,进而检测所述LC振荡器的振荡频率。
  6. 如权利要求5所述的气雾生成装置,其特征在于,所述阈值为0V;
    和/或,所述电压检测单元包括过零比较器。
  7. 如权利要求3所述的气雾生成装置,其特征在于,所述频率检测模块包括:
    整流二极管,该整流二极管的输入端与所述LC振荡器的可检测位置连接;
    所述频率检测模块还包括用于检测所述整流二极管的输出端的电流的电流检测单元,并根据所述电流检测单元的检测结果进而推导所述LC振荡器的振荡频率。
  8. 如权利要求7所述的气雾生成装置,其特征在于,所述电流检测单元包括:
    第一分压电阻、第二分压电阻和第二电容;其中,
    所述第一分压电阻的第一端与所述整流二极管的输出端连接;
    所述第二分压电阻的第一端与第一分压电阻的第二端连接、第二端接地;
    所述第二电容与第二分压电阻并联;
    所述电流检测单元被配置为根据所述第一分压电阻或第二分压电阻两端的电压,进而检测所述整流二极管的输出端的电流。
  9. 如权利要求1所述的气雾生成装置,其特征在于,所述频率检测模块被配置成通过监测所述LC振荡器中电感线圈产生的磁场的变化,进而检测所述LC振荡器的振荡频率。
  10. 如权利要求9所述的气雾生成装置,其特征在于,所述频率检测模块包括用于感测所述电感线圈产生的磁场的霍尔传感器。
  11. 如权利要求1至10任一项所述的气雾生成装置,其特征在于,还包括:
    脉冲发生器,用于产生脉冲信号;
    所述电源被配置为按照与该脉冲信号的频率相同的频率向所述LC振荡器提 供脉冲电压;
    所述控制器被配置为根据所述频率检测模块的检测结果控制脉冲发生器产生的所述脉冲信号的频率,进而调整所述电源提供给所述LC振荡器的脉冲电压的频率。
  12. 如权利要求11所述的气雾生成装置,其特征在于,所述脉冲发生器被配置为通过脉冲频调制产生所述脉冲信号。
  13. 如权利要求1至10任一项所述的气雾生成装置,其特征在于,所述电源包括用于提供直流电压的直流电芯;
    所述气雾生成装置还包括:
    用于所述直流电芯向所述LC振荡器提供电压的晶体管开关,所述控制器通过控制该晶体管开关的断开或导通的频率,进而调整所述直流电芯提供给所述LC振荡器的脉冲电压的频率。
  14. 如权利要求13所述的气雾生成装置,其特征在于,所述晶体管开关包括第一晶体管和第二晶体管;所述第一晶体管和第二晶体管被配置为交替地切换,进而调节所述LC振荡器的正向过程和负向过程的频率;其中,
    所述正向过程包括使所述电容充电并形成通过所述感应线圈在正方向的电流;
    所述负向过程包括使所述电容放电并由此通过所述线圈在负方向的电流。
  15. 如权利要求14所述的气雾生成装置,其特征在于,所述第一晶体管和第二晶体管被配置为当所述LC振荡器的电压变化至0V时切换。
  16. 如权利要求13所述的气雾生成装置,其特征在于,所述晶体管开关包括被配置为按照与所述脉冲电压的频率相同的频率交替导通的第一开关组和第二开关组;其中,
    所述第一开关组包括第一晶体管和第二晶体管;
    所述第二开关组包括第三晶体管和第四晶体管;
    所述第一晶体管的第一端与所述直流电芯的电压输出端连接、第二端与所 述LC振荡器的第一端连接;
    所述第二晶体管的第一端与所述LC振荡器的第二端连接、第二端接地;
    所述第三晶体管的第一端与所述直流电芯的电压输出端连接、第二端与所述LC振荡器的第二端连接;
    所述第四晶体管的第一端与所述LC振荡器的第一端连接、第二端接地。
  17. 如权利要求11所述的气雾生成装置,其特征在于,所述电源包括用于提供直流电压的直流电芯;
    所述气雾生成装置还包括:
    用于所述直流电芯向所述LC振荡器提供电压的晶体管开关;
    晶体管开关驱动器,被配置为控制所述晶体管开关按照与所述脉冲信号的频率相同的频率导通。
  18. 如权利要求1至10任一项所述的气雾生成装置,其特征在于,所述电源提供给所述LC振荡器的脉冲电压的频率介于80KHz~400KHz。
  19. 如权利要求1至10任一项所述的气雾生成装置,其特征在于,所述LC振荡器的振荡频率介于80KHz~400KHz。
  20. 一种气雾生成装置,被配置为加热包括感受器的可抽吸材料生成气溶胶,其特征在于,包括:
    腔室,用于接收所述可抽吸材料的至少一部分;
    LC振荡器,包括串联的第一电容和电感线圈;当所述可抽吸材料的至少一部分接收在所述腔室内时,所述电感线圈与可抽吸材料的感受器感应耦合;
    电源,被配置为向所述LC振荡器提供脉冲电压,以使所述LC振荡器的电感线圈产生变化的磁场;
    频率检测模块,被配置为检测所述LC振荡器的振荡频率;
    控制器,被配置为根据所述频率检测模块的检测结果调整所述电源提供给所述LC振荡器的脉冲电压的频率。
  21. 一种操作气雾生成装置的方法,所述气雾生成装置被配置为加热可抽吸材料生成气溶胶,所述气雾生成装置包括:
    腔室,用于接收所述可抽吸材料的至少一部分;
    LC振荡器,包括串联的第一电容和电感线圈;
    电源,被配置为向所述LC振荡器提供脉冲电压,以使所述LC振荡器的电感线圈产生变化的磁场;
    感受器,配置为被所述变化的磁场穿透而发热,进而对接收在所述腔室内的可抽吸材料进行加热;
    其特征在于,所述方法步骤包括:
    检测所述LC振荡器的振荡频率;
    根据所述频率检测模块的检测结果调整所述电源提供给所述LC振荡器的脉冲电压的频率。
PCT/CN2020/125358 2019-10-31 2020-10-30 气雾生成装置及控制方法 WO2021083344A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP20880872.5A EP4052599A4 (en) 2019-10-31 2020-10-30 AEROSOL GENERATION DEVICE AND CONTROL METHOD
US17/755,443 US20240008544A1 (en) 2019-10-31 2020-10-30 Aerosol-producing device and control method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201911056471.3A CN112741375B (zh) 2019-10-31 2019-10-31 气雾生成装置及控制方法
CN201911056471.3 2019-10-31

Publications (1)

Publication Number Publication Date
WO2021083344A1 true WO2021083344A1 (zh) 2021-05-06

Family

ID=75645276

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/125358 WO2021083344A1 (zh) 2019-10-31 2020-10-30 气雾生成装置及控制方法

Country Status (4)

Country Link
US (1) US20240008544A1 (zh)
EP (1) EP4052599A4 (zh)
CN (1) CN112741375B (zh)
WO (1) WO2021083344A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115836752A (zh) * 2022-12-07 2023-03-24 杭州拓尔微电子有限公司 一种气流传感器、控制电路、控制方法及其电子烟
WO2023207317A1 (zh) * 2022-04-28 2023-11-02 深圳麦时科技有限公司 测温装置及方法、计算机设备及存储介质

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115736387A (zh) * 2021-09-02 2023-03-07 深圳市合元科技有限公司 气溶胶生成装置及其控制方法
CN113907424A (zh) * 2021-09-07 2022-01-11 深圳麦时科技有限公司 气溶胶生成装置及其控制方法
WO2023162196A1 (ja) * 2022-02-28 2023-08-31 日本たばこ産業株式会社 吸引装置、及びエアロゾル生成システム
CN117814551A (zh) * 2022-09-29 2024-04-05 深圳麦时科技有限公司 控制电路、气溶胶生成装置及控制电路的控制方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104382238A (zh) * 2014-12-01 2015-03-04 深圳佳品健怡科技有限公司 电磁感应烟雾生成装置以及具有该装置的电子烟
CN204599333U (zh) * 2015-01-28 2015-09-02 长沙市博巨兴电子科技有限公司 一种电磁加热型电子烟
CN105992528A (zh) * 2014-05-21 2016-10-05 菲利普莫里斯生产公司 用于加热气溶胶形成基质的感应加热装置
CN106304449A (zh) * 2016-09-12 2017-01-04 深圳市鑫汇科股份有限公司 电磁感应加热系统以及温度检测方法
WO2018178114A2 (en) * 2017-03-31 2018-10-04 British American Tobacco (Investments) Limited Apparatus for a resonance circuit
US20190200677A1 (en) * 2018-01-03 2019-07-04 Chong Corporation Heat-not-Burn Device and Method
CN110101117A (zh) * 2019-04-30 2019-08-09 安徽中烟工业有限责任公司 一种使用lc振荡电路的加热装置

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7673812B2 (en) * 2007-01-24 2010-03-09 Taidoc Technology Corporation Ultrasonic nebulizer apparatus and method for adjusting an operation frequency and checking an operating state thereof
CN203563223U (zh) * 2013-11-21 2014-04-23 张辉兵 一种电磁炉调频电路
CN108224784A (zh) * 2016-12-13 2018-06-29 乐山加兴科技有限公司 用于电磁热水器的控制系统
US10349674B2 (en) * 2017-07-17 2019-07-16 Rai Strategic Holdings, Inc. No-heat, no-burn smoking article
GB201721612D0 (en) * 2017-12-21 2018-02-07 British American Tobacco Investments Ltd Circuitry for a plurality of induction elements for an aerosol generating device

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105992528A (zh) * 2014-05-21 2016-10-05 菲利普莫里斯生产公司 用于加热气溶胶形成基质的感应加热装置
CN104382238A (zh) * 2014-12-01 2015-03-04 深圳佳品健怡科技有限公司 电磁感应烟雾生成装置以及具有该装置的电子烟
CN204599333U (zh) * 2015-01-28 2015-09-02 长沙市博巨兴电子科技有限公司 一种电磁加热型电子烟
CN106304449A (zh) * 2016-09-12 2017-01-04 深圳市鑫汇科股份有限公司 电磁感应加热系统以及温度检测方法
WO2018178114A2 (en) * 2017-03-31 2018-10-04 British American Tobacco (Investments) Limited Apparatus for a resonance circuit
US20190200677A1 (en) * 2018-01-03 2019-07-04 Chong Corporation Heat-not-Burn Device and Method
CN110101117A (zh) * 2019-04-30 2019-08-09 安徽中烟工业有限责任公司 一种使用lc振荡电路的加热装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4052599A4

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023207317A1 (zh) * 2022-04-28 2023-11-02 深圳麦时科技有限公司 测温装置及方法、计算机设备及存储介质
CN115836752A (zh) * 2022-12-07 2023-03-24 杭州拓尔微电子有限公司 一种气流传感器、控制电路、控制方法及其电子烟
CN115836752B (zh) * 2022-12-07 2023-11-24 杭州拓尔微电子有限公司 一种气流传感器、控制电路、控制方法及其电子烟

Also Published As

Publication number Publication date
EP4052599A4 (en) 2023-01-04
CN112741375A (zh) 2021-05-04
CN112741375B (zh) 2024-05-03
US20240008544A1 (en) 2024-01-11
EP4052599A1 (en) 2022-09-07

Similar Documents

Publication Publication Date Title
WO2021083344A1 (zh) 气雾生成装置及控制方法
WO2021083343A1 (zh) 气雾生成装置及控制方法
AU2023201344A1 (en) Temperature determination
AU2019332984B2 (en) Apparatus for an aerosol generating device
CA3110943C (en) Apparatus for an aerosol generating device
CA3170567A1 (en) Apparatus for an aerosol generating device
US20220183390A1 (en) Aerosol provision device
WO2022121948A1 (zh) 气雾生成装置
WO2022121946A1 (zh) 气雾生成装置及其控制方法
CN210076575U (zh) 一种采用锂电池供电的电磁感应加热器
CN112806610B (zh) 气雾生成装置及控制方法
WO2022017418A1 (zh) 气雾生成装置
CN214386100U (zh) 气溶胶生成装置及其升压电路
EP4397201A1 (en) Aerosol generating device and control method thereof
JP7514311B2 (ja) エアロゾル生成デバイスのための装置
WO2024061198A1 (zh) 电子雾化装置及其控制方法
WO2024055883A1 (zh) 电子雾化装置及其控制方法
WO2022121947A1 (zh) 气雾生成装置及控制方法
CN116406866A (zh) 气溶胶生成装置及其控制方法
CN117243427A (zh) 电源组件、电子雾化装置及其控制方法
CN115736387A (zh) 气溶胶生成装置及其控制方法
JP2895078B2 (ja) 電磁調理器
CN117243428A (zh) 电源组件、电子雾化装置及其控制方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20880872

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 17755443

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2020880872

Country of ref document: EP

Effective date: 20220531