WO2024055883A1 - 电子雾化装置及其控制方法 - Google Patents

电子雾化装置及其控制方法 Download PDF

Info

Publication number
WO2024055883A1
WO2024055883A1 PCT/CN2023/117259 CN2023117259W WO2024055883A1 WO 2024055883 A1 WO2024055883 A1 WO 2024055883A1 CN 2023117259 W CN2023117259 W CN 2023117259W WO 2024055883 A1 WO2024055883 A1 WO 2024055883A1
Authority
WO
WIPO (PCT)
Prior art keywords
inverter
atomizer
resonant
voltage
electronic atomization
Prior art date
Application number
PCT/CN2023/117259
Other languages
English (en)
French (fr)
Inventor
黄林建
徐中立
李永海
梁坤新
方小刚
Original Assignee
深圳市合元科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市合元科技有限公司 filed Critical 深圳市合元科技有限公司
Publication of WO2024055883A1 publication Critical patent/WO2024055883A1/zh

Links

Classifications

    • AHUMAN NECESSITIES
    • A24TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
    • A24DCIGARS; CIGARETTES; TOBACCO SMOKE FILTERS; MOUTHPIECES FOR CIGARS OR CIGARETTES; MANUFACTURE OF TOBACCO SMOKE FILTERS OR MOUTHPIECES
    • A24D1/00Cigars; Cigarettes
    • A24D1/20Cigarettes specially adapted for simulated smoking devices
    • AHUMAN NECESSITIES
    • A24TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
    • A24FSMOKERS' REQUISITES; MATCH BOXES; SIMULATED SMOKING DEVICES
    • A24F40/00Electrically operated smoking devices; Component parts thereof; Manufacture thereof; Maintenance or testing thereof; Charging means specially adapted therefor
    • A24F40/10Devices using liquid inhalable precursors
    • AHUMAN NECESSITIES
    • A24TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
    • A24FSMOKERS' REQUISITES; MATCH BOXES; SIMULATED SMOKING DEVICES
    • A24F40/00Electrically operated smoking devices; Component parts thereof; Manufacture thereof; Maintenance or testing thereof; Charging means specially adapted therefor
    • A24F40/20Devices using solid inhalable precursors
    • AHUMAN NECESSITIES
    • A24TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
    • A24FSMOKERS' REQUISITES; MATCH BOXES; SIMULATED SMOKING DEVICES
    • A24F40/00Electrically operated smoking devices; Component parts thereof; Manufacture thereof; Maintenance or testing thereof; Charging means specially adapted therefor
    • A24F40/40Constructional details, e.g. connection of cartridges and battery parts
    • AHUMAN NECESSITIES
    • A24TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
    • A24FSMOKERS' REQUISITES; MATCH BOXES; SIMULATED SMOKING DEVICES
    • A24F40/00Electrically operated smoking devices; Component parts thereof; Manufacture thereof; Maintenance or testing thereof; Charging means specially adapted therefor
    • A24F40/40Constructional details, e.g. connection of cartridges and battery parts
    • A24F40/42Cartridges or containers for inhalable precursors
    • AHUMAN NECESSITIES
    • A24TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
    • A24FSMOKERS' REQUISITES; MATCH BOXES; SIMULATED SMOKING DEVICES
    • A24F40/00Electrically operated smoking devices; Component parts thereof; Manufacture thereof; Maintenance or testing thereof; Charging means specially adapted therefor
    • A24F40/40Constructional details, e.g. connection of cartridges and battery parts
    • A24F40/46Shape or structure of electric heating means

Definitions

  • the present application relates to the field of electronic atomization technology, and in particular to an electronic atomization device and a control method thereof.
  • An example electronic atomization device includes a detachably connected atomizer and a power supply assembly.
  • the atomizer is provided with a liquid storage chamber for storing liquid substrate, an atomization component, etc.
  • the power component is provided with batteries, circuits, etc. It is usually necessary to detect the connection status between the atomizer and the power component, that is, to detect whether the atomizer is connected to the power component. Only after the atomizer is connected to the power component can the atomization component be started to heat the liquid. The matrix in turn creates a smokeable aerosol.
  • the resonant voltage of the resonant circuit is too large, which can easily damage the resonant device.
  • This application aims to provide an electronic atomization device and a control method thereof to avoid the problem that the resonant voltage of the resonant circuit is too large and the resonant device is easily damaged when detecting whether the atomizer is connected to a power component.
  • the present application provides an electronic atomization device, including a power supply component and an atomizer removably connected to the power supply component;
  • the atomizer includes a sensor configured to be penetrated by a changing magnetic field and generate heat to heat the liquid matrix and generate an aerosol;
  • the power components include:
  • an inverter including at least one resonant device, the inverter configured to generate a changing magnetic field
  • a controller configured to control the battery core to provide pulse voltage to the inverter to detect whether the atomizer is connected to the power component; and further configured to detect whether the atomizer is connected to the
  • the resonant frequency of the inverter and/or the voltage value of the pulse voltage is adjusted so that the resonant voltage of the inverter is lower than the withstand voltage value of the at least one resonant device.
  • an electronic atomization device including a power supply component and an atomizer removably connected to the power supply component;
  • the atomizer includes a sensor configured to be penetrated by a changing magnetic field and generate heat to heat the liquid matrix and generate an aerosol;
  • the power components include:
  • an inverter configured to generate a changing magnetic field
  • a controller configured to control the battery core to provide a first pulse voltage to the inverter, so that the inverter operates at a first resonant frequency, thereby causing the sensor to generate heat;
  • the vaporizer is connected to the power supply assembly.
  • Another aspect of the present application provides a method for controlling an electronic atomization device, which includes a power supply component and an atomizer removably connected to the power supply component;
  • the atomizer includes a sensor configured to be penetrated by a changing magnetic field and generate heat to heat the liquid matrix and generate an aerosol;
  • the power components include:
  • an inverter including at least one resonant device, the inverter configured to generate a changing magnetic field
  • the methods include:
  • Control the battery core to provide pulse voltage to the inverter to detect whether the atomizer is connected to the power component
  • the resonant frequency of the inverter and/or the voltage value of the pulse voltage is adjusted so that the resonant voltage of the inverter is lower than the at least The withstand voltage value of a resonant device.
  • the above electronic atomization device and its control method adjust the resonant frequency and/or the voltage value of the pulse voltage of the inverter when detecting whether the atomizer is connected to the power component, so that the resonant frequency of the inverter is The resonant voltage is lower than the withstand voltage value of at least one resonant device in the inverter to avoid damaging the resonant device.
  • Figure 1 is a schematic diagram of an electronic atomization device provided by an embodiment of the present application.
  • Figure 2 is a schematic diagram of the switching circuit and the resonant circuit provided by the embodiment of the present application;
  • FIG. 3 is a schematic diagram of the sampling circuit and comparison circuit provided by the embodiment of the present application.
  • Figure 4 is a schematic diagram of the control method of the electronic atomization device provided by the embodiment of the present application.
  • Figure 1 is a schematic diagram of an electronic atomization device provided by an embodiment of the present application.
  • the electronic atomization device 100 includes an atomizer 10 and a power supply assembly 20 .
  • the atomizer 10 is removably connected to the power supply assembly 20, and the atomizer 10 and the power supply assembly 20 may be snap-fit, magnetic, or the like.
  • the atomizer 10 includes a sensor 11 and a liquid storage chamber (not shown).
  • the liquid storage chamber is used to store an atomizable liquid matrix; the sensor 11 is configured to be inductively coupled with the inductor 21 and generate heat when penetrated by a changing magnetic field, thereby heating the liquid matrix to generate an aerosol for smoking.
  • the liquid matrix preferably contains a tobacco-containing material containing volatile tobacco flavor compounds that are released from the liquid matrix upon heating.
  • a liquid matrix May contain non-tobacco materials.
  • Liquid bases may include water, ethanol or other solvents, plant extracts, nicotine solutions, and natural or artificial flavors.
  • the liquid matrix further contains an aerosol-forming agent. Examples of suitable aerosol formers are glycerol and propylene glycol.
  • the senor 11 can be made of at least one of the following materials: aluminum, iron, nickel, copper, bronze, cobalt, ordinary carbon steel, stainless steel, ferritic stainless steel, martensitic stainless steel or austenitic stainless steel.
  • the atomizer 10 further includes a liquid delivery unit.
  • the liquid transfer unit can be cotton fiber, metal fiber, ceramic fiber, glass fiber, porous ceramic, etc., and can transfer the liquid matrix stored in the liquid storage chamber to the sensor 11 through capillary action.
  • the power component 20 includes an inductor 21 , a circuit 22 and a battery core 23 .
  • the inductor 21 generates a changing magnetic field under alternating current, and the inductor 21 includes but is not limited to an induction coil.
  • the battery core 23 provides power for operating the electronic atomization device 100 .
  • the battery cell 23 may be a rechargeable battery cell or a disposable battery cell.
  • Circuitry 22 may control the overall operation of the electronic atomization device 100 .
  • the circuit 22 not only controls the operation of the battery core 23 and the inductor 21 , but also controls the operation of other components in the electronic atomization device 100 .
  • FIG. 1 shows a schematic diagram of the basic components of one embodiment of circuit 22; circuit 22 includes:
  • the inverter includes a switching circuit 221 and a resonant circuit 222.
  • the switch circuit 221 is a half-bridge circuit composed of transistors; the transistors include but are not limited to IGBTs, MOS tubes, etc. As shown in the figure, the half-bridge circuit includes a switch tube Q1 and a switch tube Q2, which are used to cause the resonant circuit 222 to resonate through alternate on-off switching.
  • the resonant circuit 222 is composed of an inductor 21 (indicated by L in the figure), a first capacitor C1 and a second capacitor C2; the resonant circuit 222 is used to form an alternating current flowing through the inductor L during the resonance process, so that the inductor L generates an alternating magnetic field to induce heating of the receptor 11.
  • the driver 223 is used to control the switching tube Q1 and the switching tube Q2 of the switching circuit 221 to alternately turn on and off according to the control signal of the controller (not shown in the drawing).
  • the controller may also be part of the circuit 22, preferably using an MCU.
  • the driver 223 uses the commonly used FD2204 model switching tube driver, which is controlled by the controller in PWM mode. According to the pulse width of the PWM, the 3rd and 10th I/O ports alternately send out high level/low level, and then drive the conduction time of the switch tube Q1 and the switch tube Q2 to control the resonant circuit 222 to generate resonance.
  • the switching tube Q1 and the switching tube Q2 are connected in series to form the first branch, the first capacitor C1 and the second capacitor C2 are connected in series to form the second branch; one end of the inductor L The other end of the inductor L is electrically connected between the first capacitor C1 and the second capacitor C2.
  • the first end of the first capacitor C1 is connected to the positive electrode of the battery core 23, and the second end is connected to the first end of the second capacitor C2; the second end of the second capacitor C2 is grounded through the resistor R1; the switch tube Q1 The first end is connected to the positive electrode of the battery core 23, and the second end is connected to the first end of the switch tube Q2.
  • the second end of the switch tube Q2 is grounded through the resistor R1; of course, the control terminals of the switch tube Q1 and the switch tube Q2 are both is connected to the driver 223, and is then turned on and off under the driving of the driver 223; the first end of the inductor L is connected to the second end of the switching tube Q1, and the second end of the inductor L is connected to the first capacitor C1. The second end is connected.
  • the withstand voltage values of the first capacitor C1, the second capacitor C2, the switching tube Q1 and the switching tube Q2 are much greater than the output voltage value of the battery core 23.
  • the output voltage of the battery core 23 is basically about 4V
  • the withstand voltage of the first capacitor C1, the second capacitor C2, the switching tube Q1 and the switching tube Q2 is within 100V.
  • the connection state of the first capacitor C1 and the second capacitor C2 and the inductor L changes.
  • the switch Q1 is turned on and the switch Q2 is turned off
  • the first capacitor C1 and the inductor L together form a closed LC series circuit
  • the second capacitor C2 and the inductor L form two ends connected to the battery core 23 respectively.
  • the first capacitor C1 and the inductor L form two ends with the battery core 23 respectively.
  • the positive and negative electrodes are connected in an LC series circuit, and the second capacitor C2 and the inductor L together form a closed LC series circuit.
  • the first capacitor C1 and the second capacitor C2 can form respective LC series circuits with the inductor L.
  • the direction and period of the current flowing through the inductor L are the same, thereby jointly forming an alternating current flowing through the inductor L.
  • the controller drives the switching tube Q1 and the switching tube Q2 to alternately turn on and off through the driver 223, the inductor L, the first capacitor C1 and the second capacitor C2 work in the resonance state, and the central resonance point A generates sinusoidal oscillation.
  • the voltage amplitude is Q times Vin
  • Q is the quality factor of the inductor L
  • the first capacitor C1 and the second capacitor C2 work in the resonance state
  • Vin is the input voltage or supply voltage of the switching circuit 221.
  • Vin is constant, the greater the Q value, the higher the amplitude of the resonant voltage at point A, the greater the magnetic induction intensity ⁇ coupled to the sensor 11, the higher the induced electromotive force received by the sensor 11, and the faster the heating rate.
  • the resonant frequency can improve the quality factor of the resonant circuit.
  • Vin is certain, the higher the resonant frequency, the greater the Q value.
  • high frequency requires high response speed of the device and the cost is difficult to control.
  • the controller is configured to control the battery core 23 to provide a pulse voltage.
  • the inverter is configured to detect whether the atomizer 10 is connected to the power supply assembly 20; and is further configured to adjust the resonance of the inverter when detecting whether the atomizer 10 is connected to the power supply assembly 20.
  • the frequency and/or the voltage value of the pulse voltage is such that the resonant voltage at point A is lower than the withstand voltage value of at least one resonant device in the inverter.
  • the resonant frequency of the inverter is controlled to be lower than the operating frequency of the inverter.
  • the operating frequency of the inverter refers to the frequency at which the inverter can cause the sensor 11 to heat the liquid substrate to generate aerosol for smoking when the atomizer 10 is connected to the power component 20 .
  • the operating frequency of the inverter is between 800KHz-2Mhz.
  • the pulse voltage provided to the inverter is controlled to be between the cell voltage and the operating voltage of the inverter; preferably, the pulse voltage provided to the inverter is controlled.
  • the pulse voltage of the device is the cell voltage.
  • the working voltage of the inverter can refer to the definition of the working frequency of the inverter.
  • the working voltage is generally the voltage after the battery voltage is boosted, such as 8.5V.
  • the resonant frequency and supply voltage of the inverter can be controlled so that the resonant voltage at point A is lower than the withstand voltage value of at least one resonant device in the inverter.
  • the controller is configured to control the battery core 23 to provide a first pulse voltage to the inverter, so that the inverter operates at a first resonant frequency, thereby causing the sensor 11 to generate heat;
  • the voltage value of the second pulse voltage is less than or equal to the voltage value of the first pulse voltage.
  • the Q value is usually small, so a larger pulse voltage can be provided to the inverter, and the inverter can operate at a larger resonant frequency.
  • the sensor 11 can be heated to generate aerosol as quickly as possible, and on the other hand, the resonant device is not easily damaged (the amplitude of the resonant voltage at point A is small).
  • the resonant frequency of the inverter operation is between 800KHz-2Mhz, and the pulse voltage provided to the inverter is the voltage after the battery voltage is boosted, such as 8.5V.
  • the controller detects whether the atomizer 10 is connected to the power component 20, if the atomizer 10 is not connected to the power component 20, the Q value is larger at this time, and if a larger pulse voltage is still provided to the inverter, And making the inverter work at a larger resonant frequency will result in a larger amplitude of the resonant voltage at point A, which will easily damage the resonant components, such as the first capacitor C1, the second capacitor C2, the switching tube Q1 or Switch tube Q2. Therefore, it is necessary to provide a relatively small pulse voltage to the inverter and make the inverter operate at a relatively small resonant frequency.
  • the controller is configured to be woken up at regular intervals to detect whether the atomizer 10 is connected to the power component 20 .
  • the electronic atomization device 100 may also include a timer.
  • the timer may be integrated in the controller or set separately.
  • the controller receives the timing signal generated by the timer, it controls the battery core 23 to provide a pulse voltage to the inverter.
  • a transformer is used to detect whether the atomizer 10 is connected to the power supply assembly 20.
  • the controller When the controller detects that the atomizer 10 is not connected to the power supply assembly 20 or the atomizer 10 is removed from the power supply assembly, it controls the inverter to stop working.
  • the controller can control the battery core to regularly provide a second pulse voltage to the inverter so that the inverter operates at a second resonant frequency. , thereby detecting whether the atomizer is connected to the power component.
  • the controller is further configured to obtain at least one electrical parameter of the inverter and determine whether the atomizer is connected to the power component based on the electrical parameter.
  • the electrical parameters include but are not limited to resonant voltage, resonant current, Q value, resonant frequency, parameters derived from the aforementioned parameters, etc.
  • the electronic atomization device 100 further includes an indication device.
  • the controller determines that the atomizer is not connected to the power component based on the above electrical parameters, that is, when the inverter is in an no-load state
  • the controller controls the indication device to instruct it from The transition from load state to no-load state
  • the indicating device can also indicate the transition of the inverter from no-load state to load state.
  • the indicating device may include an LED, a display screen, a vibrator or a buzzer, etc.
  • the indicating device may provide an indication when the inverter stops working.
  • the electronic atomization device 100 may further include a sampling circuit for detecting the resonant voltage at point A to obtain a sampling voltage; the controller is also configured to determine whether the atomizer 10 is based on the sampling voltage. Connected to power supply assembly 20.
  • the sampling circuit includes a resistor R34 and a resistor R37 connected in series, To divide the resonant voltage at point A; resistor R34 couples the high-frequency resonant voltage through diode D7, and C27 is the integrating capacitor to stabilize the voltage at point T2.
  • the controller can detect whether the atomizer 10 is connected to the power component 20 according to the divided voltage of the sampling circuit.
  • the Q value is larger
  • the amplitude of the resonant voltage at point A is larger
  • the sampling voltage is also larger
  • the amplitude of the resonant voltage at point A is small
  • the sampling voltage is also small.
  • the resonant voltage at point A is higher than the withstand voltage value of the resonant device; if the power supply voltage of the inverter is to boost the cell voltage At the last voltage value, the resonant voltage at point A is much higher than the withstand voltage value of the resonant device.
  • the electronic atomization device 100 may further include a comparison circuit for comparing the sampling voltage of the sampling circuit with a preset voltage threshold to output a comparison signal; the controller is further configured to: The signal controls the inverter to stop working. That is, the resonant output is turned off to protect the resonant device.
  • the comparison circuit includes comparator U9, resistors R36, resistors R38, and capacitor C30 to form the forward terminal (in+) input of comparator U9; the reverse terminal (in-) of comparator U9 It is electrically connected to the sampling circuit through resistor R35; ZD1 is a Zener diode.
  • the preset threshold voltage such as 2.7V
  • ZD1 reversely collapses (breakdown) so that the voltage of T2 does not exceed 2.7V to protect the comparator.
  • resistor R41 and capacitor C31 function as an RC integral decoupler, so that the operating voltage of comparator U9 is not affected by the external input voltage VOP and maintains the operating voltage of comparator U9 Stablize.
  • the resonant voltage at point A is divided by resistors R34 and R37.
  • Resistor R35 can introduce the divided sampling voltage to a controller, such as an I/O port of an MCU.
  • the controller combines the sampling voltage with a preset voltage.
  • a threshold voltage for example, 1.8V
  • This comparison signal causes the controller to generate an interrupt and immediately turn off the resonant output to protect the resonant device from damage.
  • this application further provides a control method for an electronic atomization device.
  • an electronic atomization device For the structure of the electronic atomization device, reference can be made to the foregoing content and will not be described in detail here.
  • the method includes steps:
  • the method further includes:
  • Control the battery core to provide a first pulse voltage to the inverter so that the inverter operates at a first resonant frequency, thereby causing the sensor to generate heat;
  • the battery core controls the battery core to provide a second pulse voltage to the inverter at regular intervals, so that the inverter operates at a second resonant frequency lower than the first resonant frequency, thereby detecting whether the atomizer Connect to the power component.
  • the method further includes:
  • the voltage value of the second pulse voltage is smaller than the voltage value of the first pulse voltage.
  • the method further includes:
  • At least one electrical parameter of the inverter is obtained and based on the electrical parameter it is determined whether the atomizer is connected to the power supply component.
  • the method further includes:
  • the electrical parameters of the inverter are compared with a first preset electrical parameter threshold, and the inverter is controlled to stop working according to the comparison result.
  • the electronic atomization device further includes a comparison circuit; the comparison circuit is configured to compare at least one electrical parameter obtained from the inverter with a second preset electrical parameter threshold to output a comparison signal;
  • the method also includes:
  • the inverter is controlled to stop working according to the comparison signal.
  • the method further includes:
  • At least one electrical parameter of the inverter includes a resonant voltage.
  • the method further includes:
  • the inverter When it is detected that the atomizer is removed from the power supply component, the inverter is controlled to stop working.
  • the method further includes:
  • the battery core is controlled to regularly provide a second pulse voltage to the inverter, so that the inverter operates at a second resonant frequency, thereby detecting Whether the atomizer is connected to the power supply assembly.
  • the method further includes:
  • LCC series resonant circuits can also be LC series resonant circuits (including but not limited to half-bridge series resonance, full-bridge series resonance), LC parallel resonant circuits, etc. .

Landscapes

  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Special Spraying Apparatus (AREA)

Abstract

一种电子雾化装置(100)及其控制方法,电子雾化装置(100)包括电源组件(20)以及雾化器(10);雾化器(10)包括感受器(11);电源组件(20)包括电芯(23);逆变器,包括至少一个谐振器件,逆变器被配置为产生变化的磁场;控制器,被配置为控制电芯(23)提供脉冲电压给逆变器从而检测雾化器(10)是否连接至电源组件(20);进一步被配置为在检测雾化器(10)是否连接至电源组件(20)时,调整逆变器的谐振频率和/或脉冲电压的电压值,使得逆变器的谐振电压低于至少一个谐振器件的耐压值。

Description

电子雾化装置及其控制方法
相关申请的交叉参考
本申请要求于2022年09月16日提交中国专利局,申请号为202211129817.X,名称为“电子雾化装置及其控制方法”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及电子雾化技术领域,尤其涉及一种电子雾化装置及其控制方法。
背景技术
作为示例的电子雾化装置,包含可拆卸连接的雾化器和电源组件。雾化器内设置有用于存储液体基质的储液腔、雾化组件等,电源组件内设置有电芯、电路等。通常需要对雾化器与电源组件之间的连接状态进行检测,即检测雾化器是否连接于电源组件,只有在雾化器与电源组件连接之后,才可启动雾化组件工作,以加热液体基质进而产生可吸食的气溶胶。
在检测雾化器是否连接于电源组件时,谐振电路的谐振电压过大,易损坏谐振器件。
申请内容
本申请旨在提供一种电子雾化装置及其控制方法,以避免在检测雾化器是否连接于电源组件时,谐振电路的谐振电压过大,易损坏谐振器件的问题。
本申请一方面提供一种电子雾化装置,包括电源组件、以及可移除地连接至所述电源组件的雾化器;
所述雾化器包括感受器,所述感受器被配置为被变化的磁场穿透而发热,以对液体基质进行加热并生成气溶胶;
所述电源组件包括:
电芯,用于提供电力;
逆变器,包括至少一个谐振器件,所述逆变器被配置为产生变化的磁场;和
控制器,被配置为控制所述电芯提供脉冲电压给所述逆变器从而检测所述雾化器是否连接至所述电源组件;并且进一步被配置为在检测所述雾化器是否连接至所述电源组件时,调整所述逆变器的谐振频率和/或所述脉冲电压的电压值,使得所述逆变器的谐振电压低于所述至少一个谐振器件的耐压值。
本申请另一方面提供一种电子雾化装置,包括电源组件、以及可移除地连接至所述电源组件的雾化器;
所述雾化器包括感受器,所述感受器被配置为能够被变化的磁场穿透而发热,以对液体基质进行加热并生成气溶胶;
所述电源组件包括:
电芯,用于提供电力;
逆变器,所述逆变器被配置为产生变化的磁场;和
控制器,被配置控制所述电芯提供第一脉冲电压给所述逆变器,使所述逆变器在第一谐振频率下工作,从而使所述感受器发热;
以及被配置为控制所述电芯定期间隔地提供第二脉冲电压给所述逆变器,使所述逆变器在低于第一谐振频率的第二谐振频率下工作,从而检测所述雾化器是否连接至所述电源组件。
本申请另一方面提供一种电子雾化装置的控制方法,所述电子雾化装置包括电源组件、以及可移除地连接至所述电源组件的雾化器;
所述雾化器包括感受器,所述感受器被配置为被变化的磁场穿透而发热,以对液体基质进行加热并生成气溶胶;
所述电源组件包括:
电芯,用于提供电力;
逆变器,包括至少一个谐振器件,所述逆变器被配置为产生变化的磁场;
所述方法包括:
控制所述电芯提供脉冲电压给所述逆变器从而检测所述雾化器是否连接至所述电源组件;
在检测所述雾化器是否连接至所述电源组件时,调整所述逆变器的谐振频率和/或所述脉冲电压的电压值,使得所述逆变器的谐振电压低于所述至少一个谐振器件的耐压值。
以上电子雾化装置及其控制方法,在检测雾化器是否连接至电源组件时,整逆变器的谐振频率和/或脉冲电压的电压值,使得逆变器的谐 振电压低于逆变器中至少一个谐振器件的耐压值,避免损坏谐振器件。
附图说明
一个或多个实施例通过与之对应的附图中的图片进行示例性说明,这些示例性说明并不构成对实施例的限定,附图中具有相同参考数字标号的元件表示为类似的元件,除非有特别申明,附图中的图不构成比例限制。
图1是本申请实施方式提供的电子雾化装置示意图;
图2是本申请实施方式提供的开关电路和谐振电路的示意图;
图3是本申请实施方式提供的采样电路和比较电路的示意图;
图4是本申请实施方式提供的电子雾化装置的控制方法示意图。
具体实施方式
为了便于理解本申请,下面结合附图和具体实施方式,对本申请进行更详细的说明。需要说明的是,当元件被表述“固定于”另一个元件,它可以直接在另一个元件上、或者其间可以存在一个或多个居中的元件。当一个元件被表述“连接”另一个元件,它可以是直接连接到另一个元件、或者其间可以存在一个或多个居中的元件。本说明书所使用的术语“上”、“下”、“左”、“右”、“内”、“外”以及类似的表述只是为了说明的目的。
除非另有定义,本说明书所使用的所有的技术和科学术语与属于本申请的技术领域的技术人员通常理解的含义相同。本说明书中在本申请的说明书中所使用的术语只是为了描述具体的实施方式的目的,不是用于限制本申请。本说明书所使用的术语“和/或”包括一个或多个相关的所列项目的任意的和所有的组合。
图1是本申请实施方式提供的电子雾化装置示意图。
如图1所示,电子雾化装置100包括雾化器10和电源组件20。雾化器10可移除地连接至电源组件20,雾化器10与电源组件20可以是卡扣连接、磁性连接等等。
雾化器10包括感受器11以及储液腔(未示出)。储液腔用于存储可雾化的液体基质;感受器11配置为与电感器21感应耦合,在被变化磁场穿透下发热,进而对液体基质进行加热,以生成供吸食的气溶胶。
液体基质优选地包含含烟草的材料,所述含烟草的材料包含在加热时从液体基质释放的挥发性烟草香味化合物。替代地或另外,液体基质 可以包含非烟草材料。液体基质可以包括水、乙醇或其它溶剂、植物提取物、尼古丁溶液和天然或人造的调味剂。优选的是,液体基质进一步包含气溶胶形成剂。合适的气溶胶形成剂的实例是甘油和丙二醇。
一般的,感受器11可选用以下至少之一材料制成:铝、铁、镍、铜、青铜、钴、普通碳钢、不锈钢、铁素体不锈钢、马氏体不锈钢或奥氏体不锈钢。
进一步地,雾化器10还包括液体传递单元。液体传递单元可以为如棉纤维、金属纤维、陶瓷纤维、玻璃纤维、多孔陶瓷等,通过毛细作用,可将储液腔存储的液态基质传递至感受器11。
电源组件20包括电感器21、电路22以及电芯23。
电感器21在交变电流下产生变化的磁场,电感器21包括但不限于感应线圈。
电芯23提供用于操作电子雾化装置100的电力。电芯23可以是可反复充电电芯或一次性电芯。
电路22可以控制电子雾化装置100的整体操作。电路22不仅控制电芯23和电感器21的操作,而且还控制电子雾化装置100中其它元件的操作。
图2示出了电路22一个实施例的基本组件的示意图;该电路22包括:
逆变器,包括开关电路221和谐振电路222。
开关电路221,即为由晶体管组成的半桥电路;晶体管包括但不限于IGBT、MOS管等等。如图所示,半桥电路包括开关管Q1和开关管Q2,用于通过交替的通断切换使谐振电路222产生谐振。
谐振电路222,由电感器21(图中的L所示)与第一电容器C1和第二电容器C2组成的;谐振电路222用于在谐振的过程中形成流过电感器L的交变电流,从而使电感器L产生交变磁场诱导感受器11发热。
驱动器223,用于根据控制器(附图未示出)的控制信号控制开关电路221的开关管Q1和开关管Q2交替地导通和断开。控制器也可以是电路22的一部分,优选的采用MCU。
作为一种示例,驱动器223采用的是常用的FD2204型号的开关管驱动器,其是由控制器以PWM方式控制的,根据PWM的脉冲宽度分别由第3和第10 I/O口交替地发出高电平/低电平,进而驱动开关管Q1、开关管Q2的导通时间,以控制谐振电路222产生谐振。
在连接上,开关管Q1与开关管Q2串联连接以构成第一支路,第一电容器C1与第二电容器C2串联连接以构成第二支路;电感器L的一端 电连接至开关管Q1和开关管Q2之间,电感器L的另一端电连接至第一电容器C1和第二电容器C2之间。
具体地,第一电容器C1的第一端与电芯23的正极连接、第二端与第二电容器C2的第一端连接;第二电容器C2的第二端通过电阻R1接地;开关管Q1的第一端与电芯23的正极连接、第二端与开关管Q2的第一端连接,开关管Q2的第二端通过电阻R1接地;当然,开关管Q1和开关管Q2的控制端均是连接至驱动器223的,进而在驱动器223的驱动下进行导通和断开;电感器L的第一端与开关管Q1的第二端连接、电感器L的第二端与第一电容器C1的第二端连接。
在谐振器件的硬件选择上,第一电容器C1、第二电容器C2、开关管Q1以及开关管Q2的耐压值远大于电芯23的输出电压值。例如,在通常的实施中,采用的电芯23的输出电压基本大约在4V左右,而第一电容器C1、第二电容器C2、开关管Q1以及开关管Q2的耐压值在100V以内。
以上结构的谐振电路222在开关管Q1和开关管Q2的切换状态下,第一电容器C1和第二电容器C2与电感器L的连接状态是变化的。当开关管Q1导通、开关管Q2断开时,第一电容器C1与电感器L它们共同形成一个闭合的LC串联回路、而第二电容器C2与电感器L形成两端分别与电芯23的正负极连接的LC串联回路;而当开关管Q1断开、开关管Q2导通时,所构成的回路与上述状态相反,第一电容器C1与电感器L形成两端分别与电芯23的正负极连接的LC串联回路、而第二电容器C2与电感器L共同形成一个闭合的LC串联回路。在各自的不同状态下,第一电容器C1和第二电容器C2均能与电感器L形成各自的LC串联回路。但是各自的LC串联回路在振荡过程中,产生的流过电感器L的电流方向和周期是相同的,进而共同形成流过电感器L的交变电流。
当控制器通过驱动器223驱动开关管Q1和开关管Q2交替地导通和断开时,电感器L、第一电容器C1和第二电容器C2工作在谐振状态,中心谐振点A产生正弦振荡,其电压幅值为Q倍Vin,Q为电感器L、第一电容器C1和第二电容器C2的品质因素,Vin为开关电路221的输入电压或者供电电压。在Vin一定的情况下,Q值越大,A点谐振电压的幅值越高,耦合在感受器11上的磁感应强度β越大,感受器11接收到的感应电动势越高,发热的速度越快。谐振频率可以提升谐振回路的品质因素,在Vin一定的情况下,谐振频率越高,Q值越大,但是频率高对器件的响应速度要求高、成本难以控制。
在一示例中,所述控制器被配置为控制所述电芯23提供脉冲电压 给所述逆变器从而检测所述雾化器10是否连接至所述电源组件20;并且进一步被配置为在检测雾化器10是否连接至电源组件20时,调整所述逆变器的谐振频率和/或所述脉冲电压的电压值,使得A点谐振电压低于所述逆变器中至少一个谐振器件的耐压值。
具体地,在检测雾化器10是否连接至电源组件20时,控制逆变器的谐振频率低于所述逆变器的工作频率。逆变器的工作频率指的是,当雾化器10连接至电源组件20,逆变器能够在该频率下使得感受器11对液体基质进行加热以生成供吸食的气溶胶。一般的,逆变器的工作频率介于800KHz-2Mhz。
由于Vin与A点谐振电压也是正相关的,即Vin较大时,A点谐振电压也较大。因此,在检测雾化器10是否连接至电源组件20时,控制提供给逆变器的脉冲电压介于电芯电压与所述逆变器的工作电压之间;优选的,控制提供给逆变器的脉冲电压为电芯电压。逆变器的工作电压可以参考逆变器的工作频率的定义,该工作电压一般为电芯电压升压后的电压,例如8.5V。
可以理解的,可以控制逆变器的谐振频率和供电电压,使得A点谐振电压低于所述逆变器中至少一个谐振器件的耐压值。例如:可以先控制逆变器的供电电压为电芯电压,再控制逆变器的谐振频率;两者也可以同时控制,并没有一定的先后顺序。
作为具体示例的,若电子雾化装置100工作在1.55Mhz时谐振电路222的品质因素Q=34.8(逆变器的供电电压为电芯电压,例如4V),此时A点谐振电压=34.8*4V=139V,高出谐振器件的耐压值,例如100V;所以,在检测雾化器10是否连接至电源组件20时,降低逆变器的谐振频率,例如降低至1Mhz或者更低,避免第一电容器C1、第二电容器C2、开关管Q1以及开关管Q2的损坏风险。
在一示例中,控制器被配置为控制所述电芯23提供第一脉冲电压给所述逆变器,使所述逆变器在第一谐振频率下工作,从而使所述感受器11发热;
以及控制所述电芯23定期间隔地提供第二脉冲电压给所述逆变器,使所述逆变器在低于第一谐振频率的第二谐振频率下工作,从而检测所述雾化器10是否连接至所述电源组件20。
其中,所述第二脉冲电压的电压值小于或者等于所述第一脉冲电压的电压值。
在雾化器10连接至电源组件20时,Q值通常较小,因此可以提供较大的脉冲电压给所述逆变器,并使得所述逆变器在较大的谐振频率下 工作,一方面能够使所述感受器11发热尽快地产生气溶胶,另一方面也不易损坏谐振器件(A点谐振电压的幅值较小)。如前所述的,逆变器工作的谐振频率介于800KHz-2Mhz,提供给逆变器的脉冲电压为电芯电压升压后的电压,例如8.5V。
在控制器检测雾化器10是否连接至电源组件20时,如果雾化器10未连接至电源组件20,此时Q值较大,如果仍提供较大的脉冲电压给所述逆变器,并使得所述逆变器在较大的谐振频率下工作,将导致A点谐振电压的幅值较大,极易损坏谐振器件,例如,第一电容器C1、第二电容器C2、开关管Q1或开关管Q2。因此需要提供相对较小的脉冲电压给所述逆变器,并使得所述逆变器在相对较小的谐振频率下工作。
在一示例中,控制器被配置为能够定时间隔地被唤醒以检测雾化器10是否连接至电源组件20。
具体地,电子雾化装置100还可包括定时器,定时器可集成在控制器内或者单独设置,控制器在接收到所述定时器产生的定时信号时,控制电芯23提供脉冲电压给逆变器来检测雾化器10是否连接至电源组件20。
当控制器检测到雾化器10未连接至电源组件20或者雾化器10从电源组件移除时,则控制所述逆变器停止工作。
在所述逆变器停止工作之后的预定时间段内,控制器可以控制所述电芯定期地提供第二脉冲电压给所述逆变器,使所述逆变器在第二谐振频率下工作,从而检测所述雾化器是否连接至所述电源组件。
在一示例中,所述控制器还被配置为获取所述逆变器的至少一个电参数并且基于所述电参数来判断所述雾化器是否连接至所述电源组件。
其中,电参数包括但不限于谐振电压、谐振电流、Q值、谐振频率、前述参数衍生后的参数等等。
在另一示例中,电子雾化装置100还包括指示器件,控制器基于上述电参数判断雾化器未连接于电源组件上时,即逆变器处于空载状态时,控制指示器件指示其从负载状态到空载状态的转变,当然指示器件也能够指示逆变器从空载状态到负载状态的转变。作为可选的例子,指示器件可包括LED、显示屏、振动器或者蜂鸣器等。作为可选的示例,指示器件可以在所述逆变器停止工作时提供指示。
在一具体示例中,电子雾化装置100还可包括采样电路,用于检测A点的谐振电压以得到采样电压;所述控制器,还被配置为基于所述采样电压判断雾化器10是否连接至电源组件20。
具体地,如图3所示,采样电路包括串联连接的电阻R34和电阻R37, 以对A点的谐振电压进行分压;电阻R34通过二极管D7耦合高频谐振电压,C27为积分电容使T2点电压呈稳定状态。这样,控制器可根据采样电路的分压,检测雾化器10是否连接至电源组件20。一般的,雾化器10未连接至电源组件20时,Q值较大,A点谐振电压的幅值较大,采样电压也较大;雾化器10连接至电源组件20时,Q值较小,A点谐振电压的幅值较小,采样电压也较小。
由上具体示例可以看出,在雾化器10未连接至电源组件20时,A点谐振电压要高出谐振器件的耐压值;若逆变器的供电电压为对电芯电压进行升压后的电压值,A点谐振电压要远远高出谐振器件的耐压值。
在另一具体示例中,电子雾化装置100还可包括比较电路,用于比较采样电路的采样电压与预设电压阈值,以输出比较信号;所述控制器,还被配置为根据所述比较信号控制所述逆变器停止工作。即关闭谐振输出,保护谐振器件。
如图3所示,在一具体的示例中,比较电路包括比较器U9,电阻R36、电阻R38,电容器C30组成比较器U9正向端(in+)输入;比较器U9反向端(in-)通过电阻R35与采样电路电连接;ZD1为齐纳二极管,当T2电压稳定上升超过预设阈值电压,例如2.7V时,ZD1反向崩溃(breakdown),使T2电压不超过2.7V,保护比较器U9不因输入电压高于芯片额定电压而损坏;电阻R41和电容器C31起到RC积分退耦器的作用,使比较器U9工作电压不受外界输入端电压VOP影响,保持比较器U9的工作电压稳定。
其工作原理大致如下:当比较器U9反向端(in-)输入电压低于1/2VOP电压时,比较器U9输出端(OUT)输出高电平;当反向端(in-)输入电压高于1/2VOP电压时,比较器U9输出端(OUT)输出电平由高转为低电平,通过电阻R40输出至控制器,例如MCU的外部中断I/O口,控制器接收到该中断信号后立即关闭谐振输出,保护谐振器件避免损坏,同时及时关闭谐振输出可为系统节省功耗、提升电芯续航。
在另一示例中,与图3示例不同的是,不设置比较器,直接通过控制器内置的比较器来实现也是可行的。具体地,A点谐振电压通过电阻R34和电阻R37分压,电阻R35可以将分压后的采样电压引入到控制器,例如MCU的I/O口,所述控制器将所述采样电压与预设阈值电压(例如,1.8V)进行比较以产生比较信号,并根据该比较信号控制所述逆变器停止工作。该比较信号使得控制器产生中断,立即关闭谐振输出,保护谐振器件避免损坏。
如图4所示,本申请进一步地提供一种电子雾化装置的控制方法, 所述电子雾化装置的结构可参考前述内容,在此不作赘述。
所述方法包括步骤:
S11、控制所述电芯提供脉冲电压给所述逆变器从而检测所述雾化器是否连接至所述电源组件;
S12、在检测所述雾化器是否连接至所述电源组件时,调整所述逆变器的谐振频率和/或所述脉冲电压的电压值,使得所述逆变器的谐振电压低于所述至少一个谐振器件的耐压值。
在一示例中,所述方法还包括:
控制所述电芯提供第一脉冲电压给所述逆变器,使所述逆变器在第一谐振频率下工作,从而使所述感受器发热;
以及控制所述电芯定期间隔地提供第二脉冲电压给所述逆变器,使所述逆变器在低于第一谐振频率的第二谐振频率下工作,从而检测所述雾化器是否连接至所述电源组件。
在一示例中,所述方法还包括:
所述第二脉冲电压的电压值小于所述第一脉冲电压的电压值。
在一示例中,所述方法还包括:
获取所述逆变器的至少一个电参数并且基于所述电参数来判断所述雾化器是否连接至所述电源组件。
在一示例中,所述方法还包括:
将所述逆变器的电参数与第一预设电参数阈值进行比较,并根据比较结果控制所述逆变器停止工作。
在一示例中,所述电子雾化装置还包括比较电路;所述比较电路用于比较获取自所述逆变器的至少一个电参数与第二预设电参数阈值,以输出比较信号;
所述方法还包括:
根据所述比较信号控制所述逆变器停止工作。
在一示例中,所述方法还包括:
所述逆变器的至少一个电参数包括谐振电压。
在一示例中,所述方法还包括:
当检测到所述雾化器从所述电源组件移除时,控制所述逆变器停止工作。
在一示例中,所述方法还包括:
在所述逆变器停止工作之后的预定时间段内,控制所述电芯定期地提供第二脉冲电压给所述逆变器,使所述逆变器在第二谐振频率下工作,从而检测所述雾化器是否连接至所述电源组件。
在一示例中,所述方法还包括:
定时间隔地被唤醒以检测所述雾化器是否连接至所述电源组件。
需要说明的是,以上示例仅以LCC串联谐振电路进行说明;在其它示例中,还可以为LC串联谐振电路(包括但不限于半桥串联谐振、全桥串联谐振)、LC并联谐振电路等等。
需要说明的是,本申请的说明书及其附图中给出了本申请的较佳的实施例,但是,本申请可以通过许多不同的形式来实现,并不限于本说明书所描述的实施例,这些实施例不作为对本申请内容的额外限制,提供这些实施例的目的是使对本申请的公开内容的理解更加透彻全面。并且,上述各技术特征继续相互组合,形成未在上面列举的各种实施例,均视为本申请说明书记载的范围;进一步地,对本领域普通技术人员来说,可以根据上述说明加以改进或变换,而所有这些改进和变换都应属于本申请所附权利要求的保护范围。

Claims (16)

  1. 一种电子雾化装置,其特征在于,包括电源组件、以及可移除地连接至所述电源组件的雾化器;
    所述雾化器包括感受器,所述感受器被配置为被变化的磁场穿透而发热,以对液体基质进行加热并生成气溶胶;
    所述电源组件包括:
    电芯,用于提供电力;
    逆变器,包括至少一个谐振器件,所述逆变器被配置为产生变化的磁场;和
    控制器,被配置为控制所述电芯提供脉冲电压给所述逆变器从而检测所述雾化器是否连接至所述电源组件;并且进一步被配置为在检测所述雾化器是否连接至所述电源组件时,调整所述逆变器的谐振频率和/或所述脉冲电压的电压值,使得所述逆变器的谐振电压低于所述至少一个谐振器件的耐压值。
  2. 如权利要求1所述的电子雾化装置,其特征在于,所述逆变器包括开关电路和谐振电路;所述开关电路包括开关管,所述谐振电路包括电感器和电容器;
    所述开关管被配置为在脉冲信号的驱动下交替地导通和断开,以使得所述谐振电路中的电感器流过交变电流并产生变化的磁场。
  3. 如权利要求2所述的电子雾化装置,其特征在于,所述谐振器件包括所述开关管和/或所述电容器。
  4. 如权利要求2所述的电子雾化装置,其特征在于,所述电感器与所述电容器串联连接。
  5. 如权利要求4所述的电子雾化装置,其特征在于,所述开关管包括第一开关管和第二开关管,所述电容器包括第一电容器和第二电容器;
    所述第一开关管与所述第二开关管串联连接以构成第一支路,所述第一电容器与所述第二电容器串联连接以构成第二支路;
    所述电感器的一端电连接至所述第一开关管和所述第二开关管之 间,另一端电连接至所述第一电容器和所述第二电容器之间。
  6. 如权利要求1所述的电子雾化装置,其特征在于,所述控制器还被配置控制所述电芯提供第一脉冲电压给所述逆变器,使所述逆变器在第一谐振频率下工作,从而使所述感受器发热;
    以及控制所述电芯定期间隔地提供第二脉冲电压给所述逆变器,使所述逆变器在低于第一谐振频率的第二谐振频率下工作,从而检测所述雾化器是否连接至所述电源组件。
  7. 如权利要求6所述的电子雾化装置,其特征在于,所述第二脉冲电压的电压值小于所述第一脉冲电压的电压值。
  8. 如权利要求1所述的电子雾化装置,其特征在于,所述控制器还被配置为获取所述逆变器的至少一个电参数并且基于所述电参数来判断所述雾化器是否连接至所述电源组件。
  9. 如权利要求8所述的电子雾化装置,其特征在于,所述控制器还被配置为将所述逆变器的电参数与第一预设电参数阈值进行比较,并根据比较结果控制所述逆变器停止工作。
  10. 如权利要求1所述的电子雾化装置,其特征在于,所述电子雾化装置还包括比较电路;
    所述比较电路用于比较获取自所述逆变器的至少一个电参数与第二预设电参数阈值,以输出比较信号;
    所述控制器还被配置为根据所述比较信号控制所述逆变器停止工作。
  11. 如权利要求8至10任何一项所述的电子雾化装置,其特征在于,所述逆变器的至少一个电参数包括谐振电压。
  12. 如权利要求1所述的电子雾化装置,其特征在于,所述控制器还被配置为当检测到所述雾化器从所述电源组件移除时,控制所述逆变器停止工作。
  13. 如权利要求12所述的电子雾化装置,其特征在于,所述控制 器还被配置为在所述逆变器停止工作之后的预定时间段内,控制所述电芯定期地提供第二脉冲电压给所述逆变器,使所述逆变器在第二谐振频率下工作,从而检测所述雾化器是否连接至所述电源组件。
  14. 如权利要求1所述的电子雾化装置,其特征在于,所述控制器还被配置为能够定时间隔地被唤醒以检测所述雾化器是否连接至所述电源组件。
  15. 一种电子雾化装置,其特征在于,包括电源组件、以及可移除地连接至所述电源组件的雾化器;
    所述雾化器包括感受器,所述感受器被配置为能够被变化的磁场穿透而发热,以对液体基质进行加热并生成气溶胶;
    所述电源组件包括:
    电芯,用于提供电力;
    逆变器,所述逆变器被配置为产生变化的磁场;和
    控制器,被配置控制所述电芯提供第一脉冲电压给所述逆变器,使所述逆变器在第一谐振频率下工作,从而使所述感受器发热;
    以及被配置为控制所述电芯定期间隔地提供第二脉冲电压给所述逆变器,使所述逆变器在低于第一谐振频率的第二谐振频率下工作,从而检测所述雾化器是否连接至所述电源组件。
  16. 一种电子雾化装置的控制方法,其特征在于,所述电子雾化装置包括电源组件、以及可移除地连接至所述电源组件的雾化器;
    所述雾化器包括感受器,所述感受器被配置为被变化的磁场穿透而发热,以对液体基质进行加热并生成气溶胶;
    所述电源组件包括:
    电芯,用于提供电力;
    逆变器,包括至少一个谐振器件,所述逆变器被配置为产生变化的磁场;
    所述方法包括:
    控制所述电芯提供脉冲电压给所述逆变器从而检测所述雾化器是否连接至所述电源组件;
    在检测所述雾化器是否连接至所述电源组件时,调整所述逆变器的谐振频率和/或所述脉冲电压的电压值,使得所述逆变器的谐振电压低于所述至少一个谐振器件的耐压值。
PCT/CN2023/117259 2022-09-16 2023-09-06 电子雾化装置及其控制方法 WO2024055883A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202211129817.X 2022-09-16
CN202211129817.XA CN117717195A (zh) 2022-09-16 2022-09-16 电子雾化装置及其控制方法

Publications (1)

Publication Number Publication Date
WO2024055883A1 true WO2024055883A1 (zh) 2024-03-21

Family

ID=90200320

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/117259 WO2024055883A1 (zh) 2022-09-16 2023-09-06 电子雾化装置及其控制方法

Country Status (2)

Country Link
CN (1) CN117717195A (zh)
WO (1) WO2024055883A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN212545567U (zh) * 2020-07-13 2021-02-19 深圳麦时科技有限公司 电磁加热电路及电子雾化装置
CN112869242A (zh) * 2021-01-07 2021-06-01 深圳麦克韦尔科技有限公司 一种雾化器的加热电路以及电子雾化装置
CN112911955A (zh) * 2018-08-31 2021-06-04 尼科创业贸易有限公司 用于气溶胶生成系统的谐振电路
CN113424990A (zh) * 2021-05-26 2021-09-24 深圳麦时科技有限公司 气溶胶形成装置及其加热组件检测方法
CN214431831U (zh) * 2020-12-08 2021-10-22 深圳市合元科技有限公司 气雾生成装置
CN113993405A (zh) * 2019-06-28 2022-01-28 尼科创业贸易有限公司 用于气溶胶生成装置的设备

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112911955A (zh) * 2018-08-31 2021-06-04 尼科创业贸易有限公司 用于气溶胶生成系统的谐振电路
CN113993405A (zh) * 2019-06-28 2022-01-28 尼科创业贸易有限公司 用于气溶胶生成装置的设备
CN212545567U (zh) * 2020-07-13 2021-02-19 深圳麦时科技有限公司 电磁加热电路及电子雾化装置
CN214431831U (zh) * 2020-12-08 2021-10-22 深圳市合元科技有限公司 气雾生成装置
CN112869242A (zh) * 2021-01-07 2021-06-01 深圳麦克韦尔科技有限公司 一种雾化器的加热电路以及电子雾化装置
CN113424990A (zh) * 2021-05-26 2021-09-24 深圳麦时科技有限公司 气溶胶形成装置及其加热组件检测方法

Also Published As

Publication number Publication date
CN117717195A (zh) 2024-03-19

Similar Documents

Publication Publication Date Title
WO2021083343A1 (zh) 气雾生成装置及控制方法
WO2022121948A1 (zh) 气雾生成装置
US20220183377A1 (en) Apparatus for aerosol generating device
WO2021083344A1 (zh) 气雾生成装置及控制方法
US20220183390A1 (en) Aerosol provision device
WO2023029951A1 (zh) 控制装置、存储介质、计算机程序产品、气溶胶生成装置及其控制方法
WO2022121946A1 (zh) 气雾生成装置及其控制方法
WO2024055883A1 (zh) 电子雾化装置及其控制方法
CN113824435B (zh) 一种雾化器追频电路
WO2024061198A1 (zh) 电子雾化装置及其控制方法
CN206944412U (zh) 具雾化控制的加湿器
CN108398972A (zh) 基于可控硅的温度控制器
WO2023236870A1 (zh) 电源组件、电子雾化装置及其控制方法
CN106955422A (zh) 鼻炎光疗仪
CA3169948A1 (en) Apparatus for supplying a varying current to an inductive element of an aerosol generating device
WO2023236934A1 (zh) 电源组件、电子雾化装置及其控制方法
CN204906355U (zh) 一种超声波雾化片高精度扫频电路
CN220712936U (zh) 电子雾化装置
WO2023207794A1 (zh) 超声雾化装置
WO2022121947A1 (zh) 气雾生成装置及控制方法
CN217311668U (zh) 美容铲皮机
CN201830539U (zh) 一种无极灯调光镇流器
WO2024061166A1 (zh) 超声雾化器及基于超声雾化器的谐振频率确定方法
WO2022017418A1 (zh) 气雾生成装置
CN114285312A (zh) 一种容性负载的自动谐振高压高频交流电源

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23864615

Country of ref document: EP

Kind code of ref document: A1