WO2021083343A1 - 气雾生成装置及控制方法 - Google Patents

气雾生成装置及控制方法 Download PDF

Info

Publication number
WO2021083343A1
WO2021083343A1 PCT/CN2020/125355 CN2020125355W WO2021083343A1 WO 2021083343 A1 WO2021083343 A1 WO 2021083343A1 CN 2020125355 W CN2020125355 W CN 2020125355W WO 2021083343 A1 WO2021083343 A1 WO 2021083343A1
Authority
WO
WIPO (PCT)
Prior art keywords
pfm
oscillator
generating device
aerosol generating
frequency
Prior art date
Application number
PCT/CN2020/125355
Other languages
English (en)
French (fr)
Inventor
刘神辉
徐中立
李永海
Original Assignee
深圳市合元科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市合元科技有限公司 filed Critical 深圳市合元科技有限公司
Priority to EP20883618.9A priority Critical patent/EP4052597A4/en
Priority to US17/755,442 priority patent/US20240032605A1/en
Publication of WO2021083343A1 publication Critical patent/WO2021083343A1/zh

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A24TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
    • A24FSMOKERS' REQUISITES; MATCH BOXES; SIMULATED SMOKING DEVICES
    • A24F40/00Electrically operated smoking devices; Component parts thereof; Manufacture thereof; Maintenance or testing thereof; Charging means specially adapted therefor
    • A24F40/50Control or monitoring
    • A24F40/57Temperature control
    • AHUMAN NECESSITIES
    • A24TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
    • A24FSMOKERS' REQUISITES; MATCH BOXES; SIMULATED SMOKING DEVICES
    • A24F40/00Electrically operated smoking devices; Component parts thereof; Manufacture thereof; Maintenance or testing thereof; Charging means specially adapted therefor
    • A24F40/40Constructional details, e.g. connection of cartridges and battery parts
    • A24F40/46Shape or structure of electric heating means
    • A24F40/465Shape or structure of electric heating means specially adapted for induction heating
    • AHUMAN NECESSITIES
    • A24TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
    • A24FSMOKERS' REQUISITES; MATCH BOXES; SIMULATED SMOKING DEVICES
    • A24F40/00Electrically operated smoking devices; Component parts thereof; Manufacture thereof; Maintenance or testing thereof; Charging means specially adapted therefor
    • A24F40/50Control or monitoring
    • A24F40/51Arrangement of sensors
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/4815Resonant converters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/53Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M7/537Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters
    • H02M7/5387Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters in a bridge configuration
    • H02M7/53871Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters in a bridge configuration with automatic control of output voltage or current
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B6/00Heating by electric, magnetic or electromagnetic fields
    • H05B6/02Induction heating
    • H05B6/06Control, e.g. of temperature, of power
    • AHUMAN NECESSITIES
    • A24TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
    • A24FSMOKERS' REQUISITES; MATCH BOXES; SIMULATED SMOKING DEVICES
    • A24F40/00Electrically operated smoking devices; Component parts thereof; Manufacture thereof; Maintenance or testing thereof; Charging means specially adapted therefor
    • A24F40/20Devices using solid inhalable precursors

Definitions

  • the embodiments of the present application relate to the field of heating non-combustion smoking appliances, and in particular to an aerosol generating device and a control method.
  • Tobacco products e.g., cigarettes, cigars, etc.
  • tobacco-burning products e.g., cigarettes, cigars, etc.
  • People are trying to replace these tobacco-burning products by manufacturing products that release compounds without burning.
  • an example of this type of product is a heating device that releases compounds by heating rather than burning materials to form an aerosol for ingestion.
  • the material may be tobacco or other non-tobacco products, which may or may not contain nicotine.
  • Patent No. 201780070293.2 proposes an induction heating device for electromagnetic induction heating of special cigarette products; it uses a PWM inverter to convert the DC output from the power supply into AC supply to
  • the induction coil specifically makes the induction coil oscillate to form an alternating current, so that the coil generates an alternating magnetic field to induce the receiver to heat and heat the cigarette product.
  • the required oscillation frequency of the induction coil varies in different heating stages of the working process, so that the efficiency of the induction heating in the PWM inverter is different from the required heating efficiency. Maintain the appropriate power output in different heating stages.
  • the embodiments of the present application provide an aerosol generating device with a frequency conversion function and a control method.
  • an embodiment of the present application provides an aerosol generating device configured to heat a smokable material to generate an aerosol, including:
  • Inductance coil configured to generate a changing magnetic field
  • a capacitor configured to form an LC oscillator with the inductance coil
  • the susceptor is configured to be penetrated by the changing magnetic field to generate heat, thereby heating the smokable material to generate an aerosol;
  • the PFM inverter drive module is constructed as an integrated circuit and includes:
  • a bridge circuit coupled to the LC oscillator
  • the PFM controller is configured to output a PFM signal to the bridge circuit to drive the LC oscillator to oscillate so as to cause the inductance coil to generate a changing magnetic field.
  • the PFM controller is configured to output a PFM signal to the bridge circuit according to a preset heating temperature.
  • the aerosol generating device further includes a temperature sensor configured to sense the operating temperature of the sensor;
  • the PFM controller is configured to output a PFM signal to the bridge circuit according to the operating temperature of the susceptor.
  • the PFM controller is configured to output a PFM signal to the bridge circuit according to at least one of the relative permeability, susceptibility, or real-time inductance value of the susceptor.
  • the PFM controller is configured to output a PFM signal to the bridge circuit according to the resonance frequency of the LC oscillator.
  • the resonance frequency of the LC oscillator is determined according to the following formula:
  • f 1/2 ⁇ (L l C) 1/2 ; where f is the resonance frequency of the LC oscillator, L l is the inductance value of the inductor coil including the susceptor, and C is the capacitance value of the capacitor.
  • the aerosol generating device further includes a frequency detection module for detecting the oscillation frequency of the LC oscillator;
  • the PFM controller is configured to output a PFM signal from the detection result of the frequency detection module to the bridge circuit.
  • the frequency detection module is configured to detect the oscillation frequency of the LC oscillator by monitoring changes in the voltage or current of the LC oscillator.
  • the frequency detection module is configured to detect the oscillation frequency of the LC oscillator by monitoring the change of the magnetic field generated by the inductance coil in the LC oscillator.
  • the frequency detection module includes a Hall sensor for sensing the magnetic field generated by the inductance coil.
  • the bridge circuit is a half bridge circuit composed of a first transistor and a second transistor.
  • the bridge circuit is a full bridge circuit.
  • the first transistor and the second transistor are configured to alternately switch according to the frequency of the PFM signal, thereby forming a positive process and a negative process of the LC oscillator;
  • the forward process includes charging the capacitor and forming a current through the induction coil in a positive direction;
  • the negative process includes discharging the capacitor and thereby passing the current through the coil in the negative direction.
  • the first transistor and the second transistor are configured to switch when the voltage of the LC oscillator changes to 0V.
  • the PFM controller includes an MCU controller, a pulse generator and a bridge circuit driver;
  • the MCU controller is configured to control the pulse generator to generate the PFM signal in a PFM manner
  • the bridge circuit driver is configured to drive the bridge circuit to be turned on or off according to the frequency of the PFM signal.
  • the oscillation frequency of the LC oscillator is between 80KHz and 400KHz; more preferably, it is between 200KHz and 300KHz.
  • the frequency detection module is configured to detect the oscillation frequency of the LC oscillator according to the time difference between the two changes of the voltage value of the detectable position to the threshold value.
  • the threshold is 0V
  • the voltage detection unit includes a zero-crossing comparator.
  • the frequency detection module includes:
  • a rectifier diode the input end of the rectifier diode is connected to the detectable position of the LC oscillator;
  • the frequency detection module further includes a current detection unit for detecting the current at the output terminal of the rectifier diode, and derives the oscillation frequency of the LC oscillator according to the detection result of the current detection unit.
  • the current detection unit includes:
  • the first end of the first voltage dividing resistor is connected to the output end of the rectifier diode
  • the first end of the second voltage dividing resistor is connected to the second end of the first voltage dividing resistor, and the second end is grounded;
  • the second capacitor is connected in parallel with the second voltage dividing resistor
  • the current detection unit is configured to detect the current at the output end of the rectifier diode according to the voltage across the first voltage dividing resistor or the second voltage dividing resistor.
  • the application further proposes a method for controlling the aerosol generating device to heat the smokable material to generate aerosol, the aerosol generating device includes:
  • Inductance coil configured to generate a changing magnetic field
  • a capacitor configured to form an LC oscillator with the inductance coil
  • the susceptor is configured to be penetrated by the changing magnetic field to generate heat, thereby heating the smokable material to generate an aerosol;
  • the method steps include:
  • the LC oscillator is driven to oscillate at a variable frequency through the PFM signal, so that the inductance coil generates a variable magnetic field corresponding to the frequency provided to the susceptor.
  • the embodiment of the application adopts the above aerosol generating device, and through the control mode of PFM inverter output, it can flexibly perform matching frequency conversion output with PFM signal according to the real-time situation of the heating status change and the needs of more different heating processes. It can meet more heating efficiency requirements while reducing losses.
  • Fig. 1 is a schematic structural diagram of an aerosol generating device provided by an embodiment
  • FIG. 2 is a block diagram of the circuit of the aerosol generating device provided by an embodiment
  • Fig. 3 is an embodiment of the basic components of the circuit in Fig. 2;
  • Fig. 4 is a curve of the relative permeability of the susceptor according to an embodiment as a function of temperature
  • Fig. 5 is a block diagram of a circuit of an aerosol generating device provided by another embodiment
  • Fig. 6 is an embodiment of the basic components of the circuit in Fig. 5;
  • FIG. 7 is a representative oscillation waveform diagram of the voltage of the LC oscillator of FIG. 6;
  • FIG. 8 is another embodiment of the basic components of the circuit in FIG. 5;
  • Fig. 9 is a block diagram of an embodiment of the PFM inverter drive module in Fig. 2;
  • Fig. 10 is a schematic structural diagram of an aerosol generating device provided by another embodiment.
  • Fig. 1 The structure of the aerosol generating device proposed in an embodiment of the present application can be seen in Fig. 1, and includes:
  • the smokable material A such as cigarettes, is removably received in the cavity;
  • the inductance coil L as a magnetic field generator is used to generate an alternating magnetic field under an alternating current
  • the susceptor 30, at least a part of which extends in the chamber, and is configured to be inductively coupled with the inductive coil L, generates heat under the penetration of the alternating magnetic field, and then heats the smokable material A to make at least one of the smokable material A These components volatilize to form an aerosol for inhalation;
  • the cell 10 is a rechargeable DC cell, which can provide DC voltage and DC current;
  • the circuit 20 is electrically connected to the rechargeable battery core 10, and converts the direct current output by the battery core 10 into an alternating current with a suitable frequency and then supplies it to the inductor L.
  • the inductor coil L may include a cylindrical inductor coil wound in a spiral shape, as shown in FIG. 2.
  • the cylindrical inductor coil L wound in a spiral shape may have a radius r ranging from about 5 mm to about 10 mm, and in particular, the radius r may be about 7 mm.
  • the length of the spirally wound cylindrical inductor coil L may be in the range of about 8 mm to about 14 mm, and the number of turns of the inductor coil L may be in the range of about 8 turns to 15 turns. Accordingly, the volume may be within the range of about 0.15cm 3 to about 1.10cm 3 of.
  • the frequency of the alternating current supplied by the circuit 20 to the inductance coil L is between 80KHz and 400KHz; more specifically, the frequency may be in the range of about 200KHz to 300KHz.
  • the DC power supply voltage provided by the cell 10 is in the range of about 2.5V to about 9.0V, and the amperage of the DC current that the cell 10 can provide is in the range of about 2.5A to about 20A.
  • the susceptor 30 in the shape of a sheet or pin inserted into the smokeable material A for heating in FIG. 1 may have a length of about 12 mm, a width of about 4 mm, and a thickness of about 50 microns. And can be made of grade 430 stainless steel (SS430). As an alternative embodiment, the susceptor 30 may have a length of about 12 mm, a width of about 5 mm, and a thickness of about 50 microns, and may be made of grade 430 stainless steel (SS430). In another preferred embodiment, the susceptor 30 can also be configured into a cylindrical shape; when in use, its internal space is used to receive the smokable material A and heat the outer periphery of the smokable material A. , Generate aerosol for inhalation. These susceptors 30 can also be made of grade 420 stainless steel (SS420) and alloy materials containing iron and nickel (such as permalloy).
  • SS420 grade 420 stainless steel
  • alloy materials containing iron and nickel such as
  • the capacitor C is used to form the LC oscillator 21 with the inductance coil L to generate an alternating current to the inductance coil L by means of LC oscillation, so that the inductance coil L generates an alternating magnetic field, and induces the susceptor 30 to induce heat.
  • the capacitor C and the inductor L are connected in series, and in other variant implementations, the LC oscillator 21 may be formed by connecting the capacitor C and the inductor L in parallel.
  • the circuit 20 further includes a PFM (Pulse Frequency Modulation) inverter drive module 22 configured to drive the LC oscillator 21 to oscillate through the PFM inverter.
  • PFM Pulse Frequency Modulation
  • the PFM inverter drive module 22 includes:
  • the bridge circuit 221 is coupled to the LC oscillator 21;
  • the PFM controller 222 is configured to output a PFM signal to the bridge circuit 221, thereby driving the LC oscillator 21 to oscillate, and generating an alternating current supplied to the inductor L.
  • the bridge circuit 221 can be a half-bridge circuit including two transistor switches as shown in FIG. 3; or in other implementations, a full-bridge circuit with the same function can also be used.
  • the half bridge shown in FIG. 3 is taken as an example for explanation, including:
  • the half-bridge circuit 221 is used to pulse the DC voltage output by the cell 10 to the LC oscillator 21 to drive the LC oscillator 21 to oscillate according to the PFM signal sent by the PFM controller 222, thereby forming an alternating current through the inductor L Variable current.
  • the half-bridge circuit 221 is composed of a first transistor Q1 and a second transistor Q2; the PFM controller 222 controls the first transistor Q1 and the second transistor Q2 to be turned on alternately at a certain frequency through the PFM signal , So as to supply pulse voltage.
  • the first transistor Q1 and the second transistor Q2 are described in the figure with N-MOS transistors as an example, and the connection uses the gate of the first transistor Q1 and the first signal of the PFM controller 222
  • the output terminal is connected, the drain is connected to the voltage output terminal of the cell 10, and the source is connected to the LC oscillator 21.
  • the gate of the second transistor Q2 is connected to the second signal output terminal of the PFM controller 222 for receiving the second driving signal; the drain is connected to the LC oscillator 21, and the source is grounded.
  • the first transistor Q1 and the second transistor Q2 are respectively turned on alternately according to the frequency of the PFM signal, so that the current direction of the LC oscillator 21 is continuously alternately changed according to the frequency of the PFM signal, generating oscillation and forming an alternating current.
  • L l L+Ls; where L is the inductance value of the inductance coil L itself, and Ls is the real-time inductance of the susceptor 30 acting as the iron core in the working state; in implementation, the inductance coil
  • the inductance value of L itself is basically constant, while the real-time inductance Ls of the susceptor 30 changes.
  • the calculation of real-time inductance Ls is mainly based on physical parameters, including the length of the air gap (which generates leakage inductance) between the susceptor 30 and the inductor L, the number of coil turns, the length of the magnetic circuit, and the susceptor 30 acting as an iron core.
  • the cross-sectional area of the susceptor 30 and the relative permeability ⁇ r is basically related to the change of the relative magnetic permeability ⁇ r of the variable.
  • the relative permeability ⁇ r of the susceptor 30 has a temperature-dependent relationship.
  • FIG. 4 shows the relative permeability ⁇ r of a susceptor 30 made of standard permalloy 1J66 with temperature. The changing curve.
  • the relationship is that the relative permeability ⁇ r is constantly changing under the influence of the temperature of the susceptor 30 during operation.
  • the influencing factors of the LC resonance frequency also have some small influencing factors, such as changes in the overall circuit load, changes in the LC frequency selection loop, and external power supply voltage, humidity and other factors that cause changes in internal related component parameters. Wait.
  • the PFM inverter drive module 22 can generate the PFM signal according to the appropriate oscillation frequency of the LC oscillator 21 estimated from the preset heating temperature curve, so that the frequency of driving the LC oscillator 21 is close to the optimum oscillation frequency. , So as to keep the oscillation process of the LC oscillator 21 close to complete resonance.
  • the power delivered to the susceptor 30 can be formed in a variable frequency type.
  • the circuit 20 can be operated under a low load state, and the temperature rise and fall rate of the susceptor 30 during the heating process has a wider range, which promotes rapid temperature rise and shortens the preheating time of the aerosol generating device during the heating process .
  • the PFM inverter drive module 22 may generate a PFM signal according to the real-time operating temperature of the sensor 30 detected by a temperature sensor or the like.
  • the PFM inverter drive module 22 can generate a PFM signal from one of the relative permeability, susceptibility, real-time inductance value, and resonance frequency of the susceptor 30 that has a correlation with temperature.
  • the real-time oscillation frequency of the LC oscillator 21 can be detected, and then the PFM inverter drive module 22 can control the generated PFM signal according to the detected frequency; in this embodiment, the structure of the circuit 20 is shown in FIG. 5
  • a frequency detection module 23 may be included to detect the oscillation frequency of the LC oscillator 21.
  • the frequency detection module 23 adopts a voltage detection unit 231 for detecting the voltage value of a detectable position between the capacitor C and the inductance coil L, such as a The voltage value at point a can derive the operating frequency of the LC oscillator 21.
  • a convenient zero-crossing detection circuit is used as the voltage detection unit 231 for illustration.
  • the zero-crossing detection circuit is a circuit that is often used in AC detection when the detection waveform changes from a positive half cycle to a negative half cycle and passes through a zero potential.
  • the oscillating frequency of the LC oscillator 21 is periodic.
  • the overall amplitude and frequency of the LC oscillator 21 will also have a certain attenuation change over time; and the point a
  • the electric potential may have a certain periodic oscillating waveform that decays with time as shown in FIG. 7. In FIG.
  • the zero-crossing detection circuit used above can be implemented with a universal electronic device zero-crossing comparator, as shown in Figure 6; in Figure 6, the installation and connection of the zero-crossing comparator F is the sampling The input terminal "+” is connected to the point a of the LC oscillator 21, the reference input terminal "-” is grounded, and the output terminal out is connected to the PFM controller 222; then the ground voltage of the reference input terminal is 0, when the sampling input terminal "+" When the received voltage value is also 0, signal output to the PFM controller 222 can realize frequency detection.
  • the timing of the alternate switching of the first transistor Q1 and the second transistor Q2 is configured to be performed when the zero-crossing comparator F detects that the voltage or current of the LC oscillator 21 is 0V, which can effectively avoid the first transistor Q1 and the second transistor Q2. Heat loss of one transistor Q1 and second transistor Q2.
  • the frequency detection module 23 can be implemented by using another example of the voltage detection unit 231a shown in FIG. 8.
  • the voltage detection unit 231a includes: a rectifier diode D, a first voltage divider resistor R1, and a second divider resistor R1. Piezoresistor R2;
  • the first end of the connected rectifier diode D is connected to the point a between the capacitor C1 and the inductor L in the LC oscillator 21, and the second end is connected to the first end of the first voltage dividing resistor R1;
  • the second end of the first voltage dividing resistor R1 is connected to the first end of the second voltage dividing resistor R2;
  • the second end of the second voltage dividing resistor R2 is grounded.
  • the alternating current of the LC oscillator 21 is filtered and rectified by the rectifier diode D, and then output to the voltage divider circuit composed of the first voltage divider R1 and the second voltage divider R2, which can then be further passed through the pin of the PFM controller 222.
  • the voltage at point b between the first voltage dividing resistor R1 and the second voltage dividing resistor R2 is received, that is, the voltage to the ground at both ends of the second voltage dividing resistor R2.
  • the voltage detection unit 231a also includes a second capacitor C2 connected in parallel with the second voltage dividing resistor R2.
  • the second capacitor C2 is used for filtering to filter the pulse voltage across the second voltage dividing resistor R2 into direct current. The voltage thus facilitates continuous detection.
  • an electric meter device that can measure the voltage at point b can be added between the point b and the PFM controller 222 for implementation.
  • the sine wave is rectified and then output to the voltage divider circuit with two voltage dividing resistors, and the sine wave DC sampling voltage is obtained at point b.
  • the sampling voltage changes with the different frequencies of the LC oscillator 21, and the operating frequency of the LC oscillator 21 can be learned by feeding back to the PFM controller 222, so that the PFM controller 222 adjusts the frequency of generating the PFM signal, and finally ensures that the LC The oscillator 21 is always close to full resonance.
  • a Hall sensor can also be used to detect the change parameters of the alternating magnetic field generated by the oscillation of the LC oscillator 21, such as frequency, period, etc., and the PFM inverter drive module 22 can be detected according to the Hall sensor.
  • the changing parameters of the alternating magnetic field generate the PFM signal.
  • the PFM controller 222 is a structured integrated circuit, and the hardware composition may include the MCU controller 2221, the pulse generator 2222 based on the PFM method, and the general electronics of the bridge circuit driver 2223. Device. among them,
  • the pulse generator 2222 is used to generate a PFM signal in a PFM manner according to the control signal sent by the MCU controller 2221; of course, the control signal sent by the MCU controller 2221 mainly includes the modulation frequency, duty cycle and other parameters used to generate the PFM signal;
  • the bridge circuit driver 2223 drives the transistor switches in the bridge circuit 221 according to the PFM signal to alternately turn on according to the frequency of the PFM signal, so that the LC oscillator 21 oscillates.
  • FIG. 10 Another embodiment of the present application proposes an aerosol generating device, the structure of which is shown in FIG. 10, including:
  • the smokable material A is removably received in the cavity 40a;
  • Inductance coil L used to generate a changing magnetic field under alternating current
  • the battery core 10a is a rechargeable direct current battery, which can output direct current;
  • the circuit 20a is suitably electrically connected to the rechargeable battery core 10a, and is used to convert the direct current output from the battery core 10a into an alternating current having a suitable frequency and then supply it to the inductive coil L.
  • the smokable material A used in conjunction with the aerosol generating device is produced and prepared so that the susceptor members 30a/30b are inserted or doped inside; in implementation, the susceptor members 30a can be evenly distributed on the smokable material
  • the aerosol generating device itself does not include a susceptor that is electromagnetically coupled to the inductance coil L to generate heat, and the susceptor member 30a/30b is placed in the smokable material A, when the smokable material A is received in the chamber
  • these susceptor components 30a/30b are penetrated by the alternating magnetic field generated by the inductance coil L to generate heat, thereby heating the smokable material A to generate aerosol for inhalation.
  • An embodiment of the present application further proposes a control method of an aerosol generating device, wherein the structure and implementation of the aerosol generating device can be referred to the above description; the steps of the control method include: controlling the pulse generator 2222 to generate pulse frequency modulation PFM signal;
  • the LC oscillator 21 is driven to oscillate at a variable frequency, and an alternating current supplied to the inductor L is generated.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • General Induction Heating (AREA)

Abstract

本申请提出一种气雾生成装置及其控制方法,装置包括:电感线圈,用于产生变化的磁场;电容,与电感线圈形成LC振荡器;感受器,被变化的磁场穿透而发热;PFM逆变驱动模块驱动LC振荡器振荡进而使电感线圈产生变化的磁场,包括:桥电路和PFM控制器;PFM控制器向桥电路输出PFM信号,以驱动桥电路的导通或断开进而使LC振荡器振荡。采用以上气雾生成装置,通过PFM逆变输出的控制方式,可以灵活根据加热状态变化的实时情况、以及更多不同的加热过程的需求以PFM信号进行匹配性的变频输出,在降低损耗的同时能满足更多的加热效率需求。

Description

气雾生成装置及控制方法
相关申请的交叉参考
本申请要求于2019年10月31日提交中国专利局,申请号为2019110549751,名称为“气雾生成装置及控制方法”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请实施例涉及加热不燃烧烟具领域,尤其涉及一种气雾生成装置及控制方法。
背景技术
烟制品(例如,香烟、雪茄等)在使用过程中燃烧烟草以产生烟草烟雾。人们试图通过制造在不燃烧的情况下释放化合物的产品来替代这些燃烧烟草的制品。
此类产品的示例为加热装置,其通过加热而不是燃烧材料来释放化合物,形成供吸食的气溶胶。例如,该材料可为烟草或其他非烟草产品,这些非烟草产品可包含或可不包含尼古丁。
对于以上加热装置的一个现有技术的实施例中,201780070293.2号专利提出了一种电磁感应式加热特制烟支制品的感应加热装置;其采用PWM逆变器将电源输出的直流转变为交流供应至感应线圈,具体使感应线圈振荡形成交流,从而使线圈产生交变磁场诱导接受器发热加热烟支制品。而对于以上实施例的感应加热装置,由感应线圈的所需的振荡频率在工作过程的不同加热阶段是变化的,使得PWM逆变情形下感应加热的效率和与所需加热效率存在差别,无法在不同加热阶段保持相适应的功率输出。
发明内容
为了解决现有技术中的感应加热式装置的逆变输出和LC振荡器的频率差造成损耗的问题,本申请实施例提供一种具有变频功能的气雾生成装置及控制方法。
基于以上目的,本申请一实施例提出一种气雾生成装置,被配置为加热可抽吸材料生成气溶胶,包括:
腔室,用于接收所述可抽吸材料的至少一部分;
电感线圈,被配置为产生变化的磁场;
电容,被配置为与所述电感线圈形成LC振荡器;
感受器,被配置为由所述变化的磁场穿透而发热,进而加热所述可抽吸材料生成气溶胶;
PFM逆变驱动模块,被构造为集成电路并包括:
桥电路,耦合至所述LC振荡器;以及
PFM控制器,被配置为向所述桥电路输出PFM信号,以驱动所述LC振荡器振荡进而使所述电感线圈产生变化的磁场。
在优选的实施中,所述PFM控制器被配置为根据预设的加热温度向所述桥电路输出PFM信号。
在优选的实施中,所述气雾生成装置还包括温度传感器,所述温度传感器被配置为感测所述感受器的操作温度;
所述PFM控制器被配置为根据所述感受器的操作温度向所述桥电路输出PFM信号。
在优选的实施中,所述PFM控制器被配置为根据所述感受器的相对磁导率、磁化率或实时电感值中的至少一种向所述桥电路输出PFM信号。
在优选的实施中,所述PFM控制器被配置为根据所述LC振荡器的谐振频率向所述桥电路输出PFM信号。
在优选的实施中,所述LC振荡器的谐振频率根据以下公式确定:
f=1/2π(L lC) 1/2;其中,f是所述LC振荡器的谐振频率,L l是包括所述感受器的电感线圈的电感值,C是所述电容的电容值。
在优选的实施中,所述气雾生成装置还包括用于检测所述LC振荡器 的振荡频率的频率检测模块;
所述PFM控制器被配置为所述频率检测模块的检测结果向所述桥电路输出PFM信号。
在优选的实施中,所述频率检测模块被配置成通过监控所述LC振荡器的电压或电流的变化,进而检测所述LC振荡器的振荡频率。
在优选的实施中,所述频率检测模块被配置成通过监测所述LC振荡器中电感线圈产生的磁场的变化,进而检测所述LC振荡器的振荡频率。
在优选实施中,所述频率检测模块包括用于感测所述电感线圈产生的磁场的霍尔传感器。
在优选的实施中,所述桥电路是由第一晶体管和第二晶体管组成的半桥电路。
在优选的实施中,所述桥电路是全桥电路。
在优选的实施中,所述第一晶体管和第二晶体管被配置为按照所述PFM信号的频率交替地切换,进而形成所述LC振荡器的正向过程和负向过程;其中,
所述正向过程包括使所述电容充电并形成通过所述感应线圈在正方向的电流;
所述负向过程包括使所述电容放电并由此通过所述线圈在负方向的电流。
在优选的实施中,所述第一晶体管和第二晶体管被配置为当所述LC振荡器的电压变化至0V时切换。
在优选的实施中,所述PFM控制器包括MCU控制器、脉冲发生器和桥电路驱动器;
其中,所述MCU控制器被配置为控制所述脉冲发生器以PFM方式生成所述PFM信号;
所述桥电路驱动器被配置为驱动所述桥电路按照所述PFM信号的频率导通或断开。
在一个实施例中,所述LC振荡器的振荡频率介于80KHz~400KHz;更加优选的是介于200KHz~300KHz范围。
在优选实施中,所述频率检测模块被配置为根据所述可检测位置的电压值两次变化至阈值的时间差,进而检测所述LC振荡器的振荡频率。
在优选实施中,所述阈值为0V;
和/或,所述电压检测单元包括过零比较器。
在优选实施中,所述频率检测模块包括:
整流二极管,该整流二极管的输入端与所述LC振荡器的可检测位置连接;
所述频率检测模块还包括用于检测所述整流二极管的输出端的电流的电流检测单元,并根据所述电流检测单元的检测结果进而推导所述LC振荡器的振荡频率。
在优选实施中,所述电流检测单元包括:
第一分压电阻、第二分压电阻和第二电容;其中,
所述第一分压电阻的第一端与所述整流二极管的输出端连接;
所述第二分压电阻的第一端与第一分压电阻的第二端连接、第二端接地;
所述第二电容与第二分压电阻并联;
所述电流检测单元被配置为根据所述第一分压电阻或第二分压电阻两端的电压,进而检测所述整流二极管的输出端的电流。
本申请进一步还提出一种控制气雾生成装置加热可抽吸材料产生气溶胶的方法,所述气雾生成装置包括:
电感线圈,被配置为产生变化的磁场;
电容,被配置为与所述电感线圈形成LC振荡器;
感受器,被配置为由所述变化的磁场穿透而发热,进而加热可抽吸材料生成气溶胶;
所述方法步骤包括:
控制脉冲发生器产生PFM信号;
通过所述PFM信号驱动所述LC振荡器按照可变化的频率振荡,进而使所述电感线圈产生提供给感受器的频率对应可变的变化磁场。
本申请实施例采用以上气雾生成装置,通过PFM逆变输出的控制方 式,可以灵活根据加热状态变化的实时情况、以及更多不同的加热过程的需求以PFM信号进行匹配性的变频输出,在降低损耗的同时能满足更多的加热效率需求。
附图说明
一个或多个实施例通过与之对应的附图中的图片进行示例性说明,这些示例性说明并不构成对实施例的限定,附图中具有相同参考数字标号的元件表示为类似的元件,除非有特别申明,附图中的图不构成比例限制。
图1是一实施例提供的气雾生成装置的结构示意图;
图2是一实施例提供的气雾生成装置的电路的框图;
图3是图2中电路的基本组件的一个实施例;
图4是一实施例的感受器的相对磁导率随温度变化的曲线;
图5是又一实施例提供的气雾生成装置的电路的框图;
图6是图5中电路的基本组件的一个实施例;
图7是图6的LC振荡器的电压的代表性振荡波形图;
图8是图5中电路的基本组件的又一个实施例;
图9是图2中PFM逆变驱动模块一个实施例的框图;
图10是又一实施例提供的气雾生成装置的结构示意图。
具体实施方式
为了便于理解本申请,下面结合附图和具体实施方式,对本申请进行更详细的说明。
本申请一个实施例提出的气雾生成装置,其构造可以参见图1所示,包括:
腔室,可抽吸材料A例如烟支可移除地接收在腔室内;
作为磁场发生器的电感线圈L,用于在交变电流下产生交变磁场;
感受器30,至少一部分在腔室内延伸,并被配置为与电感线圈L感应耦合,在被交变磁场穿透下发热,进而对可抽吸材料A进行加热,使可抽吸材料A的至少一种成分挥发,形成供抽吸的气溶胶;
电芯10,为可充电的直流电芯,可以提供直流电压和直流电流;
电路20,通过电连接到可充电的电芯10,并将电芯10输出的直流,转变成具有适合频率的交流再供应到电感线圈L。
根据产品使用中的设置,电感线圈L可以包括绕成螺旋状的圆柱形电感器线圈,如图2中所示。绕成螺旋状的圆柱形电感线圈L可以具有范围在大约5mm到大约10mm内的半径r,并特别地半径r可以大约为7mm。绕成螺旋状的圆柱形电感线圈L的长度可以在大约8mm到大约14mm的范围内,电感线圈L的匝数大约8匝到15匝的范围内。相应地,内体积可能在大约0.15cm 3至大约1.10cm 3的范围内。
在更加优选的实施中,电路20供应到电感线圈L的交变电流的频率介于80KHz~400KHz;更具体地,所述频率可以在大约200KHz~300KHz的范围。
在一个优选的实施例中,电芯10提供的直流供电电压在约2.5V至约9.0V的范围内,电芯10可提供的直流电流的安培数在约2.5A至约20A的范围内。
在一个优选的实施例中,图1中呈插入可抽吸材料A内部进行加热的片状或销钉形状的感受器30可以具有大约12毫米的长度,大约4毫米的宽度和大约50微米的厚度,并且可以由等级430的不锈钢(SS430)制成。作为替代性实施例,感受器30可以具有大约12毫米的长度,大约5毫米的宽度和大约50微米的厚度,并且可以由等级430的不锈钢(SS430)制成。在又一个优选的实施例中,感受器30还可以被构造成圆筒状的形状;在使用时其内部空间用于接收可抽吸材料A,并通过对可抽吸材料A的外周加热的方式,生成供吸食的气溶胶。这些感受器30还可以由等级420的不锈钢(SS420)、以及含有铁镍的合金材料(比如坡莫合金)制成。
基于电磁感应式的加热实施,以上电路20在一个优选的实施方式 中的结构和基本组件可以参见图2至图3所示,包括:
电容C,用于与电感线圈L,组成LC振荡器21,通过LC振荡的方式产生交变电流给电感线圈L,使电感线圈L生成交变磁场,诱导感受器30感应发热。具体,在图3所示实例中是采用将电容C与电感线圈L串联的方式,而在其他的变体实施中也可以采用将电容C与电感线圈L并联的方式组成LC振荡器21。
具体在图2至图3所示的实施中,电路20还包括PFM(脉冲频调制)逆变驱动模块22,被配置为通过PFM逆变驱动LC振荡器21振荡。具体,该PFM逆变驱动模块22包括:
桥电路221,耦合至LC振荡器21;
PFM控制器222,被配置成向桥电路221输出PFM信号,进而驱动LC振荡器21振荡,生成供应给电感线圈L的交变电流。
实施中,桥电路221可以采用图3中所示的包括有两个晶体管开关的半桥电路;或者在其他的实施中还可以用具有相同功能的全桥电路。在本申请实施例中以图3所示半桥为例进行解释说明,包括:
半桥电路221,用于根据PFM控制器222发出的PFM信号,将电芯10输出的直流电压以脉冲的方式供应给LC振荡器21驱动LC振荡器21振荡,进而形成通过电感线圈L的交变电流。具体根据图3中所示,该半桥电路221由第一晶体管Q1和第二晶体管Q2组成;PFM控制器222则通过PFM信号控制第一晶体管Q1和第二晶体管Q2按照一定的频次交替导通,从而供应脉冲电压。
进一步在连接方式上,第一晶体管Q1和第二晶体管Q2在图中是以N-MOS管为例进行的描述,在连接上采用第一晶体管Q1的栅极与PFM控制器222的第一信号输出端连接,漏极与电芯10的电压输出端连接,源极与LC振荡器21连接。第二晶体管Q2的栅极与PFM控制器222的第二信号输出端连接,用于接收第二驱动信号;漏极与LC振荡器21连接,源极接地。在半桥驱动过程中,第一晶体管Q1和第二晶体管Q2按照PFM信号的频率分别交替导通,从而使LC振荡器21的电流方向按照PFM信号的频率不断交替变化,产生振荡形成交流。
使用中LC振荡器21的固有谐振频率会随着感受器30的温度而发生变化引起大的损耗;具体根据LC振荡器21的谐振频率的计算公式f=1/2π(L lC) 1/2,式中L l为由感受器30与电感线圈L组成的铁芯线圈的电感值,C为电容C的电容值;而对应给定的电子器件,电容值C在工作中是基本恒定不变的,因而频率f基本与L l的变化相关。
而根据铁芯线圈电感的计算方式:L l=L+Ls;其中,L为电感线圈L自身的电感值,Ls是充当铁芯的感受器30在工作状态中的实时电感;实施中,电感线圈L自身的电感值基本恒定,而感受器30的实时电感Ls是变化的。进一步根据物理学基础,实时电感Ls的计算主要基于物理量参数包括感受器30与电感线圈L之间存在的气隙(会产生漏电感)长度、线圈匝数、磁路长度、充当铁芯的感受器30的截面积、感受器30的相对磁导率μ r。而对于气雾生成装置给定之后,感受器30的实时电感Ls基本与变量相对磁导率μ r的变化相关。
进一步根据物理学基础,感受器30的相对磁导率μ r具有温度的相关关系,作为一个示例图4示出了一个由标准坡莫合金1J66材质制备的感受器30的相对磁导率μ r随温度变化的曲线。而能代表或者关联这一变化的物理量参数,比如有磁导温度系数α μ或磁化率χ。具体比如磁导温度系数α μ其计算公式为α μ=(μ r2r1)/μ r1(T 2-T 1),式中μ r1是温度为T 1时的磁导率,μ r2是温度为T 2时的磁导率,通常用于表示温度在温度T 1~T 2范围内变化时,相应磁导率的相对变化情况。又比如磁化率χ与感受器30的相对磁导率μ r的关联公式为μ r=1+χ;而根据居里外斯定律,铁磁性材质的感受器30的磁化率χ具有与温度呈反比的关系,即工作中相对磁导率μ r受感受器30的温度影响也是不断变化的。
当然,LC谐振频率的影响因素除了以上主要温度因素之外,还存在一些小的影响因素,比如整个电路负载变化、LC选频回路变化以及外部的电源电压、湿度等因素引起内部相关元件参数变化等。
因而在一个实施例中PFM逆变驱动模块22可以根据由预设的加热温度曲线估算的LC振荡器21的合适振荡频率生成PFM信号,使驱动LC振荡器21的频率与最适振荡频率是接近的,从而保持LC振荡器21的 振荡过程接近完全谐振。
在以上使频率接近从而降低损耗之外的又一个实施例中,通过调整PFM逆变驱动模块22的PFM调频,可形成变频式的输送给感受器30的功率。通过变频式的功率输出方式,可以使电路20处于低负荷状态下运行,并且加热过程中感受器30的升降温速率变化范围更宽,促进快速升温从而缩短气雾生成装置加热过程中的预热时间。
或者在又一个实施例,PFM逆变驱动模块22可以根据由温度传感器等检测的感受器30的实时操作温度生成PFM信号。
或者在又一个实施例中,PFM逆变驱动模块22可以与温度具有相关关系的感受器30的相对磁导率、磁化率、实时电感值、谐振频率中的一种生成PFM信号。
进一步在一个实施例中,可以通过检测LC振荡器21的实时振荡频率,进而PFM逆变驱动模块22根据该检测的频率来控制生成的PFM信号;在该实施例中电路20的结构参见图5和图6所示,可以包括频率检测模块23,用于检测LC振荡器21的振荡频率。例如在图6所示的实施例中,频率检测模块23采用的是一用于检测电容C与电感线圈L之间可检测位置例如点位a电压值的电压检测单元231,从而根据所检测的点位a的电压值可以得出LC振荡器21的工作频率。
进一步,具体在一个实施中采用具有便利性的过零检测电路作为电压检测单元231进行示例说明。其中过零检测电路是常用于交流中检测波形从正半周向负半周转换经过零电位时的检测功能的电路。LC振荡器21的振荡频率具有周期性,当然随着电芯10不断的放电导致电量不断降低,整体的LC振荡器21的振幅和频率会随着时间也存在一定的衰减变化;而a点的电位在一个实施中可呈图7所示的具有一定周期性的随时间衰减的振荡波形。在图6中当电压检测单元231采用过零检测实施时,以点位a经过零电位时的相邻两个时间t1和t2的差即为半个振荡周期,则LC振荡器21的周期T=(t2-t1)×2,频率f=1/T。而后,PFM控制器222则根据该检测的频率f生成频率相同或者趋于接近的PFM信号,进而调整LC振荡器21的振荡过程,使其基本上趋于谐振。
基于完整实施的便利性,以上所采用的过零检测电路可以采用通用的电子器件过零比较器进行实施,参见图6所示;在图6中,过零比较器F的安装连接为将采样输入端“+”与LC振荡器21的a点连接,参考输入端“-”接地,结果输出端out连接至PFM控制器222;则参考输入端的接地电压为0,当采样输入端“+”接收的电压值也为0时,向PFM控制器222进行信号输出,即可实现频率检测。
在又一个优选的实施例中,第一晶体管Q1和第二晶体管Q2交替切换的时机被配置为在过零比较器F检测到LC振荡器21的电压或电流为0V时进行,可以有效避免第一晶体管Q1和第二晶体管Q2自身的热损耗。
在又一个实施例中,频率检测模块23可以采用图8所示的又一种电压检测单元231a的示例进行,该电压检测单元231a包括:整流二极管D、第一分压电阻R1和第二分压电阻R2;
在连接上整流二极管D的第一端与LC振荡器21中电容C1和电感线圈L之间的a点连接、第二端与第一分压电阻R1的第一端连接;
第一分压电阻R1的第二端与第二分压电阻R2的第一端连接;
第二分压电阻R2的第二端接地。
因而通过整流二极管D将LC振荡器21的交变电流过滤整流后输出给第一分压电阻R1和第二分压电阻R2组成的分压电路,则后续进一步可以通过PFM控制器222的引脚接收第一分压电阻R1和第二分压电阻R2之间的b点位的电压即第二分压电阻R2两端的对地电压。
当然,由于a点输出的是正负交替变化的电流,而整流二极管D只能整流正半周或者负半周的电流(图中二极管的方向是以正半周整流为例),因而整流以后施加给第一分压电阻R1和第二分压电阻R2组成的分压电路的是具有脉冲的直流电压,会造成b电的检测电压信号为脉冲信号影响准确性;因而为了使b点能检测到持续的电压信号,电压检测单元231a还包括有与第二分压电阻R2并联的第二电容C2,该第二电容C2的作用是用于滤波,将第二分压电阻R2两端的脉冲电压滤成直流电压从而便于持续检测。
当然,在实施中如果采用的PFM控制器222不具备电压检测引脚,则可以在b点与PFM控制器222之间增加一个可测量b点电压的电表器件进行实施。
采用以上电压检测单元231a,通过从LC振荡器21的a点输出一个正弦波,正弦波经过整流之后输出给具有两个分压电阻的分压电路,b点得到正弦波的直流采样电压,该采样电压随着LC振荡器21的不同频率而产生变化,并通过反馈给到PFM控制器222即可获知LC振荡器21的工作频率,从而PFM控制器222调整生成PFM信号的频率,最终保证LC振荡器21始终接近完全谐振。
或者在又一个实施例中,还可以通过一霍尔传感器检测由LC振荡器21振荡产生的交变磁场的变化参数比如频率、周期等,进而PFM逆变驱动模块22可以根据霍尔传感器检测的交变磁场的变化参数生成PFM信号。
在图9所示的实施例中,PFM控制器222是被构造的集成电路,在硬件组成上可以包括有MCU控制器2221、基于PFM方式的脉冲发生器2222、以及桥电路驱动器2223的通用电子器件。其中,
脉冲发生器2222用于根据MCU控制器2221发出的控制信号以PFM方式生成PFM信号;当然,MCU控制器2221发出的控制信号主要包括用于生成PFM信号的调制频率、占空比等参数;
桥电路驱动器2223根据PFM信号驱动桥电路221中的晶体管开关按照PFM信号的频率交替导通,使LC振荡器21振荡。
本申请的又一个实施例提出一种气雾生成装置,其构造如图10所示,包括:
腔室40a,可抽吸材料A可移除地接收于腔室40a内;
电感线圈L,用于在交变电流下产生变化磁场;
电芯10a,为可充电的直流电芯,可以输出直流电流;
电路20a,通过适当的电连接到可充电的电芯10a,用于从将电芯10a输出的直流电流,转变成具有适合频率的交变电流再供应到电感线 圈L。
与该气雾生成装置配合使用的可抽吸材料A在生产制备时,使其内部置入或者掺杂有感受器构件30a/30b;在实施中,感受器构件30a可以呈均匀分布在可抽吸材料A内的颗粒30a、或者沿可抽吸材料A的轴向延伸的针状或销或薄片30b的形式。在该实施例中,气雾生成装置自身不包括与电感线圈L电磁耦合而发热的感受器,而将感受器构件30a/30b置于可抽吸材料A内,当可抽吸材料A接收在腔室40a内时,这些感受器构件30a/30b被电感线圈L产生的交变磁场穿透而发热,从而加热可抽吸材料A生成供吸食的气溶胶。
本申请一个实施例还进一步还提出一种气雾生成装置的控制方法,其中气雾生成装置的构造和实施可以参见以上描述;控制方法的步骤包括:控制脉冲发生器2222以脉冲频调制方式生成PFM信号;
根据PFM信号驱动LC振荡器21按照可变化的频率振荡,生成供应给电感线圈L的交变电流。
需要说明的是,本申请的说明书及其附图中给出了本申请的较佳的实施例,但并不限于本说明书所描述的实施例,进一步地,对本领域普通技术人员来说,可以根据上述说明加以改进或变换,而所有这些改进和变换都应属于本申请所附权利要求的保护范围。

Claims (14)

  1. 一种气雾生成装置,被配置为加热可抽吸材料生成气溶胶,其特征在于,包括:
    腔室,用于接收所述可抽吸材料的至少一部分;
    电感线圈,被配置为产生变化的磁场;
    电容,被配置为与所述电感线圈形成LC振荡器;
    感受器,被配置为由所述变化的磁场穿透而发热,进而加热所述可抽吸材料生成气溶胶;
    PFM逆变驱动模块,被构造为集成电路并包括:
    桥电路,耦合至所述LC振荡器;以及
    PFM控制器,被配置为向所述桥电路输出PFM信号,以驱动所述LC振荡器按照可变化的频率振荡进而使所述电感线圈产生变化的磁场。
  2. 如权利要求1所述的气雾生成装置,其特征在于,所述PFM控制器被配置为根据预设的加热温度向所述桥电路输出PFM信号。
  3. 如权利要求1所述的气雾生成装置,其特征在于,所述气雾生成装置还包括温度传感器,所述温度传感器被配置为感测所述感受器的操作温度;
    所述PFM控制器被配置为根据所述感受器的操作温度向所述桥电路输出PFM信号。
  4. 如权利要求1所述的气雾生成装置,其特征在于,所述PFM控制器被配置为根据所述感受器的相对磁导率、磁化率或实时电感值中的至少一种向所述桥电路输出PFM信号。
  5. 如权利要求1所述的气雾生成装置,其特征在于,所述PFM控制器被配置为根据所述LC振荡器的谐振频率向所述桥电路输出PFM信 号。
  6. 如权利要求5所述的气雾生成装置,其特征在于,所述LC振荡器的谐振频率根据以下公式确定:
    f=1/2π(L lC) 1/2;其中,f是所述LC振荡器的谐振频率,L l是包括所述感受器的电感线圈的电感值,C是所述电容的电容值。
  7. 如权利要求1所述的气雾生成装置,其特征在于,所述气雾生成装置还包括用于检测所述LC振荡器的振荡频率的频率检测模块;
    所述PFM控制器被配置为所述频率检测模块的检测结果向所述桥电路输出PFM信号。
  8. 如权利要求7所述的气雾生成装置,其特征在于,所述频率检测模块被配置成通过监控所述LC振荡器的电压或电流的变化,进而检测所述LC振荡器的振荡频率。
  9. 如权利要求7所述的气雾生成装置,其特征在于,所述频率检测模块被配置成通过监测所述LC振荡器中电感线圈产生的磁场的变化,进而检测所述LC振荡器的振荡频率。
  10. 如权利要求1至9任一项所述的气雾生成装置,其特征在于,所述桥电路是包括第一晶体管和第二晶体管的半桥电路。
  11. 如权利要求10所述的气雾生成装置,其特征在于,所述第一晶体管和第二晶体管被配置为按照所述PFM信号的频率交替地切换,进而形成所述LC振荡器的正向过程和负向过程;其中,
    所述正向过程包括使所述电容充电并形成通过所述感应线圈在正方向的电流;
    所述负向过程包括使所述电容放电并由此通过所述线圈在负方向的电流。
  12. 如权利要求11所述的气雾生成装置,其特征在于,所述第一晶体管和第二晶体管被配置为当所述LC振荡器的电压变化至0V时切换。
  13. 如权利要求1至9任一项所述的气雾生成装置,其特征在于,所述PFM控制器包括MCU控制器、脉冲发生器和桥电路驱动器;
    其中,所述MCU控制器被配置为控制所述脉冲发生器以PFM方式生成所述PFM信号;
    所述桥电路驱动器被配置为驱动所述桥电路按照所述PFM信号的频率导通或断开。
  14. 一种控制气雾生成装置加热可抽吸材料产生气溶胶的方法,所述气雾生成装置包括:
    电感线圈,被配置为产生变化的磁场;
    电容,被配置为与所述电感线圈形成LC振荡器;
    感受器,被配置为由所述变化的磁场穿透而发热,进而加热可抽吸材料生成气溶胶;
    其特征在于,所述方法步骤包括:
    控制脉冲发生器产生PFM信号;
    通过所述PFM信号驱动所述LC振荡器按照可变化的频率振荡,进而使所述电感线圈产生提供给感受器的频率对应可变的变化磁场。
PCT/CN2020/125355 2019-10-31 2020-10-30 气雾生成装置及控制方法 WO2021083343A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP20883618.9A EP4052597A4 (en) 2019-10-31 2020-10-30 AEROSOL GENERATION DEVICE AND CONTROL METHOD
US17/755,442 US20240032605A1 (en) 2019-10-31 2020-10-30 Aerosol-producing device and control method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201911054975.1A CN112806618B (zh) 2019-10-31 2019-10-31 气雾生成装置及控制方法
CN201911054975.1 2019-10-31

Publications (1)

Publication Number Publication Date
WO2021083343A1 true WO2021083343A1 (zh) 2021-05-06

Family

ID=75714870

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/125355 WO2021083343A1 (zh) 2019-10-31 2020-10-30 气雾生成装置及控制方法

Country Status (4)

Country Link
US (1) US20240032605A1 (zh)
EP (1) EP4052597A4 (zh)
CN (1) CN112806618B (zh)
WO (1) WO2021083343A1 (zh)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113925223A (zh) * 2021-09-06 2022-01-14 深圳麦时科技有限公司 气溶胶生成装置及其控制方法
CN115297580A (zh) * 2022-08-02 2022-11-04 安徽中烟工业有限责任公司 适用于电磁加热型加热不燃烧装置的输出功率控制系统及方法
WO2023030411A1 (zh) * 2021-09-02 2023-03-09 深圳市合元科技有限公司 气溶胶生成装置及其控制方法
WO2023232459A1 (en) * 2022-05-30 2023-12-07 Jt International Sa Aerosol generating device and system
CN115297580B (zh) * 2022-08-02 2024-06-04 安徽中烟工业有限责任公司 适用于电磁加热型加热不燃烧装置的输出功率控制系统及方法

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114669436B (zh) * 2022-03-17 2024-02-02 重庆大学 调频驱动电路、调频驱动方法、驱动装置
CN117243428A (zh) * 2022-06-10 2023-12-19 深圳市合元科技有限公司 电源组件、电子雾化装置及其控制方法
CN117652725A (zh) * 2022-08-26 2024-03-08 深圳麦时科技有限公司 气溶胶产生装置及其气溶胶产生制品、发热组件和感受器
CN117652726A (zh) * 2022-08-26 2024-03-08 深圳麦时科技有限公司 气溶胶产生装置及其气溶胶产生制品、发热组件和感受器

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN203563223U (zh) * 2013-11-21 2014-04-23 张辉兵 一种电磁炉调频电路
CN104180403A (zh) * 2014-09-16 2014-12-03 孔凡荣 便携式电磁炉
CN204201960U (zh) * 2014-09-16 2015-03-11 孔凡荣 便携式电磁炉
WO2018178114A2 (en) * 2017-03-31 2018-10-04 British American Tobacco (Investments) Limited Apparatus for a resonance circuit
WO2018178113A2 (en) * 2017-03-31 2018-10-04 British American Tobacco (Investments) Limited Temperature determination
CN109952039A (zh) * 2016-11-15 2019-06-28 莱战略控股公司 基于感应的气溶胶递送设备
US20190200677A1 (en) * 2018-01-03 2019-07-04 Chong Corporation Heat-not-Burn Device and Method

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170119051A1 (en) * 2015-10-30 2017-05-04 British American Tobacco (Investments) Limited Article for Use with Apparatus for Heating Smokable Material
GB201721612D0 (en) * 2017-12-21 2018-02-07 British American Tobacco Investments Ltd Circuitry for a plurality of induction elements for an aerosol generating device
TWI769355B (zh) * 2017-12-29 2022-07-01 瑞士商傑太日煙國際股份有限公司 用於一蒸氣產生裝置之感應加熱總成
CN110025048A (zh) * 2019-04-03 2019-07-19 深圳市合元科技有限公司 电加热发烟系统及挥发性化合物的释放控制方法
CN110101118A (zh) * 2019-04-30 2019-08-09 安徽中烟工业有限责任公司 一种具有固定加热元件的电磁感应加热烟具

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN203563223U (zh) * 2013-11-21 2014-04-23 张辉兵 一种电磁炉调频电路
CN104180403A (zh) * 2014-09-16 2014-12-03 孔凡荣 便携式电磁炉
CN204201960U (zh) * 2014-09-16 2015-03-11 孔凡荣 便携式电磁炉
CN109952039A (zh) * 2016-11-15 2019-06-28 莱战略控股公司 基于感应的气溶胶递送设备
WO2018178114A2 (en) * 2017-03-31 2018-10-04 British American Tobacco (Investments) Limited Apparatus for a resonance circuit
WO2018178113A2 (en) * 2017-03-31 2018-10-04 British American Tobacco (Investments) Limited Temperature determination
US20190200677A1 (en) * 2018-01-03 2019-07-04 Chong Corporation Heat-not-Burn Device and Method

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4052597A4

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023030411A1 (zh) * 2021-09-02 2023-03-09 深圳市合元科技有限公司 气溶胶生成装置及其控制方法
CN113925223A (zh) * 2021-09-06 2022-01-14 深圳麦时科技有限公司 气溶胶生成装置及其控制方法
WO2023232459A1 (en) * 2022-05-30 2023-12-07 Jt International Sa Aerosol generating device and system
CN115297580A (zh) * 2022-08-02 2022-11-04 安徽中烟工业有限责任公司 适用于电磁加热型加热不燃烧装置的输出功率控制系统及方法
CN115297580B (zh) * 2022-08-02 2024-06-04 安徽中烟工业有限责任公司 适用于电磁加热型加热不燃烧装置的输出功率控制系统及方法

Also Published As

Publication number Publication date
EP4052597A1 (en) 2022-09-07
US20240032605A1 (en) 2024-02-01
CN112806618B (zh) 2023-06-16
EP4052597A4 (en) 2023-01-11
CN112806618A (zh) 2021-05-18

Similar Documents

Publication Publication Date Title
WO2021083343A1 (zh) 气雾生成装置及控制方法
WO2021083344A1 (zh) 气雾生成装置及控制方法
AU2023201344A1 (en) Temperature determination
AU2018241908A1 (en) Apparatus for a resonance circuit
US20220183377A1 (en) Apparatus for aerosol generating device
JP2022125143A (ja) エアロゾル生成デバイスのための装置
JP7390406B2 (ja) エアロゾル発生デバイス用の装置
JP2021534772A (ja) エアロゾル生成デバイスのための装置
US20230127267A1 (en) Apparatus for an aerosol generating device
US20220183390A1 (en) Aerosol provision device
WO2022121948A1 (zh) 气雾生成装置
WO2022121946A1 (zh) 气雾生成装置及其控制方法
CN112806610B (zh) 气雾生成装置及控制方法
WO2023030411A1 (zh) 气溶胶生成装置及其控制方法
WO2024061198A1 (zh) 电子雾化装置及其控制方法
WO2022017418A1 (zh) 气雾生成装置
CN214386100U (zh) 气溶胶生成装置及其升压电路
WO2022121947A1 (zh) 气雾生成装置及控制方法
WO2024055883A1 (zh) 电子雾化装置及其控制方法
CN115005511A (zh) 气雾生成装置及控制方法
JP2023517508A (ja) エアロゾル生成デバイスのための装置
CN116406866A (zh) 气溶胶生成装置及其控制方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20883618

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 17755442

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2020883618

Country of ref document: EP

Effective date: 20220531