WO2022121946A1 - 气雾生成装置及其控制方法 - Google Patents

气雾生成装置及其控制方法 Download PDF

Info

Publication number
WO2022121946A1
WO2022121946A1 PCT/CN2021/136481 CN2021136481W WO2022121946A1 WO 2022121946 A1 WO2022121946 A1 WO 2022121946A1 CN 2021136481 W CN2021136481 W CN 2021136481W WO 2022121946 A1 WO2022121946 A1 WO 2022121946A1
Authority
WO
WIPO (PCT)
Prior art keywords
oscillator
series
lcc
resistor
aerosol
Prior art date
Application number
PCT/CN2021/136481
Other languages
English (en)
French (fr)
Inventor
李新军
徐中立
李永海
Original Assignee
深圳市合元科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市合元科技有限公司 filed Critical 深圳市合元科技有限公司
Priority to EP21902651.5A priority Critical patent/EP4260733A4/en
Priority to KR1020237022824A priority patent/KR20230117412A/ko
Priority to JP2023534233A priority patent/JP2023553026A/ja
Priority to US18/256,213 priority patent/US20240099376A1/en
Publication of WO2022121946A1 publication Critical patent/WO2022121946A1/zh

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A24TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
    • A24FSMOKERS' REQUISITES; MATCH BOXES; SIMULATED SMOKING DEVICES
    • A24F40/00Electrically operated smoking devices; Component parts thereof; Manufacture thereof; Maintenance or testing thereof; Charging means specially adapted therefor
    • A24F40/40Constructional details, e.g. connection of cartridges and battery parts
    • A24F40/46Shape or structure of electric heating means
    • A24F40/465Shape or structure of electric heating means specially adapted for induction heating
    • AHUMAN NECESSITIES
    • A24TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
    • A24FSMOKERS' REQUISITES; MATCH BOXES; SIMULATED SMOKING DEVICES
    • A24F40/00Electrically operated smoking devices; Component parts thereof; Manufacture thereof; Maintenance or testing thereof; Charging means specially adapted therefor
    • A24F40/40Constructional details, e.g. connection of cartridges and battery parts
    • A24F40/46Shape or structure of electric heating means
    • AHUMAN NECESSITIES
    • A24TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
    • A24FSMOKERS' REQUISITES; MATCH BOXES; SIMULATED SMOKING DEVICES
    • A24F40/00Electrically operated smoking devices; Component parts thereof; Manufacture thereof; Maintenance or testing thereof; Charging means specially adapted therefor
    • A24F40/40Constructional details, e.g. connection of cartridges and battery parts
    • AHUMAN NECESSITIES
    • A24TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
    • A24FSMOKERS' REQUISITES; MATCH BOXES; SIMULATED SMOKING DEVICES
    • A24F40/00Electrically operated smoking devices; Component parts thereof; Manufacture thereof; Maintenance or testing thereof; Charging means specially adapted therefor
    • A24F40/50Control or monitoring
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B6/00Heating by electric, magnetic or electromagnetic fields
    • H05B6/02Induction heating
    • H05B6/06Control, e.g. of temperature, of power
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B6/00Heating by electric, magnetic or electromagnetic fields
    • H05B6/02Induction heating
    • H05B6/10Induction heating apparatus, other than furnaces, for specific applications
    • H05B6/105Induction heating apparatus, other than furnaces, for specific applications using a susceptor
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B6/00Heating by electric, magnetic or electromagnetic fields
    • H05B6/02Induction heating
    • H05B6/36Coil arrangements
    • AHUMAN NECESSITIES
    • A24TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
    • A24FSMOKERS' REQUISITES; MATCH BOXES; SIMULATED SMOKING DEVICES
    • A24F40/00Electrically operated smoking devices; Component parts thereof; Manufacture thereof; Maintenance or testing thereof; Charging means specially adapted therefor
    • A24F40/20Devices using solid inhalable precursors

Definitions

  • the embodiments of the present application relate to the technical field of heat-not-burn low-temperature smoking articles, and in particular, to an aerosol generating device and a control method thereof.
  • Smoking articles eg, cigarettes, cigars, etc.
  • Burn tobacco during use to produce tobacco smoke.
  • Attempts have been made to replace these tobacco-burning products by making products that release compounds without burning them.
  • Patent No. 201580007754.2 proposes an induction heating device for electromagnetic induction heating special cigarette products; specifically, an induction coil and a capacitor are connected in series or in parallel to form an LC oscillating device. An alternating current is formed in a way, so that the coil generates an alternating magnetic field to induce the susceptor to heat up and heat the cigarette product.
  • the above known heating devices usually use an operational amplifier to synchronously output the oscillation voltage of the LC oscillation or use a zero-crossing comparator to detect the zero-crossing time of the oscillation voltage, and then the control chip samples the above results to calculate the frequency of the LC oscillation.
  • the control chip since the frequency of LC oscillation is very high, about 200-400KHz, the control chip should be able to sample the instantaneous output results of the above comparator and amplifier, and the sampling speed of the control chip should be about tens of MHz to avoid missing the comparator. Or the resulting signal of the instantaneous output of the amplifier; thus making it undesirable to track the frequency of the LC oscillation in this way.
  • Embodiments of the present application provide an aerosol-generating device configured to heat an aerosol-generating article to generate an aerosol for suction; including:
  • a susceptor configured to be penetrated by the changing magnetic field to generate heat to heat the aerosol-generating article
  • a series LC oscillator or series LCC oscillator having an inductive coil, configured to direct a varying current flow through the inductive coil to drive the inductive coil to produce a varying magnetic field;
  • a circuit configured to determine the oscillation frequency of the series LC oscillator or the series LCC oscillator according to the rate of change of the oscillation voltage of the series LC oscillator or the series LCC oscillator.
  • the above aerosol generating device determines the oscillation frequency according to the rate of change of the oscillation voltage.
  • the circuit includes:
  • an active differentiation unit configured to detect the rate of change of the oscillation voltage of the series-connected LC oscillator or the series-connected LCC oscillator, and output a high-level signal when the rate of change of the oscillation voltage is greater than a preset threshold;
  • a controller configured to determine the oscillation frequency of the series-connected LC oscillator or the series-connected LCC oscillator according to the interval time of the high-level signal.
  • the active differential unit includes: an active differential module and a comparator; wherein,
  • the active differentiation module is configured to detect the rate of change of the oscillation voltage of the series LC oscillator or the series LCC oscillator;
  • the comparator is configured to compare the rate of change of the oscillation voltage with a preset threshold, and output a high-level signal to the controller when the rate of change of the oscillation voltage is greater than the preset threshold.
  • the active differential module includes: a first capacitor, a first resistor, a second capacitor, a second resistor, and an operational amplifier; wherein,
  • the first end of the first capacitor is connected to the series-connected LC oscillator or the series-connected LCC oscillator, and the second end is connected to the first end of the first resistor;
  • the first input end of the operational amplifier is connected to the second end of the first resistor, and the output end is connected to the comparator;
  • the first end of the second capacitor is connected to the second end of the first resistor, and the second end is connected to the output end of the operational amplifier;
  • the first end of the second resistor is connected to the second end of the first resistor, and the second end is connected to the output end of the operational amplifier.
  • the active differential unit further includes:
  • the access module includes: a first diode, a third resistor and a fourth resistor; wherein,
  • the first end of the first diode is connected to the series LC oscillator or series LCC oscillator, the second end is connected to the first end of the third resistor, and is configured to allow only current to be the series-connected LC oscillator or the series-connected LCC oscillator flows to the third resistor;
  • the second end of the third resistor is connected to the active differential module
  • the first end of the fourth resistor is connected to the second end of the third resistor, and the second end is grounded.
  • the access module further includes: a voltage regulator tube; the first end of the voltage regulator tube is connected to the second end of the third resistor, and the second end is connected to the first end of the fourth resistor. Two-terminal connection.
  • the preset threshold is an output value of the active differential module when the rate of change of the oscillation voltage is zero.
  • the controller is configured to adjust the oscillation frequency of the series LC oscillator or the series LCC oscillator so that the oscillation frequency of the series LC oscillator or the series LCC oscillator is the same as the preset frequency
  • the frequencies are the same or basically close.
  • Another embodiment of the present application also provides a method for controlling an aerosol generating device, the aerosol generating device comprising:
  • a susceptor configured to be penetrated by the changing magnetic field to generate heat to heat the aerosol-generating article
  • a series LC oscillator or series LCC oscillator having an inductive coil, configured to direct a varying current flow through the inductive coil to drive the inductive coil to produce a varying magnetic field;
  • the method includes:
  • the oscillation frequency of the LCC oscillator or the series LC oscillator is determined according to the interval time of the high-level signal.
  • the oscillation frequency of the series LC oscillator or the series LCC oscillator is adjusted so that the oscillation frequency of the series LC oscillator or the series LCC oscillator is the same as or substantially close to the preset frequency.
  • FIG. 1 is a schematic structural diagram of an aerosol generating device according to an embodiment of the present application.
  • Fig. 2 is a structural block diagram of an embodiment of the circuit in Fig. 1;
  • Figure 3 is a schematic diagram of the basic components of one embodiment of the circuit of Figure 2;
  • FIG. 4 is a schematic diagram of forward current in one phase of the LCC oscillator of FIG. 3;
  • Figure 5 is a schematic diagram of reverse current flow in one phase of the LCC oscillator in Figure 3;
  • Fig. 6 is the schematic diagram of the resonant current of the LCC oscillator connected in series in Fig. 3;
  • Fig. 7 is the schematic diagram of the resonant current and the resonant voltage variation of the LCC oscillator test in series in Fig. 3;
  • FIG. 8 is a schematic diagram of signal changes in three stages of an active differential unit
  • FIG. 9 is a schematic diagram of a control method of an aerosol generating device according to an embodiment.
  • An embodiment of the present application proposes an aerosol generating device, the structure of which can be referred to as shown in FIG. 1 , including:
  • the inductor coil L is used to generate a changing magnetic field under the alternating current
  • the susceptor 30, at least partially extending within the chamber, is configured to be inductively coupled to the inductive coil L to generate heat when penetrated by the changing magnetic field, thereby heating the aerosol-generating article A, such as a cigarette, so that the aerosol-generating article A is heated. at least one component volatilizes to form an aerosol for suction;
  • the battery cell 10 is a rechargeable DC battery cell, which can output a DC current
  • the circuit 20 is connected to the rechargeable battery cell 10 through appropriate electrical connection, and is used to convert the DC current output from the battery cell 10 into an alternating current having a suitable frequency and then supply it to the inductance coil L.
  • the inductor coil L may comprise a cylindrical inductor coil wound in a spiral shape, as shown in FIG. 1 .
  • the helically wound cylindrical inductor L may have a radius r in the range of about 5 mm to about 10 mm, and in particular the radius r may be about 7 mm.
  • the length of the helically wound cylindrical inductor coil L may be in the range of about 8 mm to about 14 mm, and the number of turns of the inductor coil L may be in the range of about 8 turns to 15 turns.
  • the inner volume may be in the range of about 0.15 cm 3 to about 1.10 cm 3 .
  • the frequency of the alternating current supplied to the inductor L by the circuit 20 is between 80KHz and 400KHz; more specifically, the frequency may be in the range of about 200KHz to 300KHz.
  • the DC power supply voltage provided by the battery cell 10 is in the range of about 2.5V to about 9.0V, and the amperage of the DC current that the battery cell 10 can provide is in the range of about 2.5A to about 20A.
  • the susceptor 30 is generally in the shape of a pin or blade, which is further advantageous for insertion into the aerosol-generating article A; meanwhile, the susceptor 30 may have a length of about 12 millimeters and a width of about 4 millimeters and thickness of about 0.5mm, and can be made of grade 430 stainless steel (SS430). As an alternative example, the susceptor 30 may have a length of about 12 millimeters, a width of about 5 millimeters, and a thickness of about 0.5 millimeters, and may be made of grade 430 stainless steel (SS430).
  • SS430 grade 430 stainless steel
  • the susceptor 30 may also be configured in a cylindrical or tubular shape; in use, its inner space forms a chamber for receiving the aerosol-generating article A, and the aerosol-generating article A is processed by The peripheral heating method generates an aerosol for inhalation.
  • the susceptors can also be made of grade 420 stainless steel (SS420), and alloy materials containing iron/nickel such as permalloy.
  • the aerosol generating device further includes a bracket 40 for arranging the inductive coil L and the susceptor 30 .
  • the material of the bracket 40 may include a high temperature resistant non-metallic material such as PEEK or ceramics.
  • the inductor coil L is wound on the outer wall of the bracket 40 and then fixed.
  • the hollow tubular shape of the holder 40 and the hollow part of the space of the tubular shape forms the above-mentioned chamber for receiving the aerosol-generating product A. As shown in FIG.
  • the susceptor 30 is prepared from the above susceptibility materials, or obtained by electroplating, depositing, etc. on the outer surface of a heat-resistant base material such as ceramics to form a susceptor material coating.
  • FIG. 2 to FIG. 3 The above structure and basic components of the circuit 20 in a preferred embodiment can be referred to as shown in FIG. 2 to FIG. 3 , including:
  • the LCC oscillator 24 is composed of the above inductor coil L, the first capacitor C1 and the second capacitor C2; the LCC oscillator 24 is used to form an alternating current flowing through the inductor coil L during the oscillation process , so that the induction coil L generates an alternating magnetic field to induce the susceptor 30 to heat up;
  • the half-bridge 23 is a half-bridge circuit composed of transistor switches; it includes a switch tube Q1 and a switch tube Q2, and is used to oscillate the LCC oscillator 24 through alternate on-off switching;
  • the half-bridge driver 22 is configured to control the switching tube Q1 and the switching tube Q2 of the half-bridge 23 to be turned on and off alternately according to the control signal of the MCU controller 21 .
  • first end of the first capacitor C1 is connected to the positive electrode of the cell 10, and the second end is connected to the first end of the second capacitor C2; the second end of the second capacitor C2 is grounded through the resistor R1;
  • the first end of the switch tube Q1 of the half bridge 23 is connected to the positive pole of the cell 10, and the second end is connected to the first end of the switch tube Q2, and the second end of the switch tube Q2 is grounded through the resistor R1; of course, the switch tube Q1 and The controlled ends of the switch tube Q2 are all connected to the half-bridge driver 22, and are then turned on and off under the driving of the half-bridge driver 22;
  • the first end of the inductor coil L is connected to the second end of the switch tube Q1, and the second end is connected to the second end of the first capacitor C1.
  • the maximum voltage values of the first capacitor C1 and the second capacitor C2 are far greater than the output voltage value of the battery cell 10 .
  • the output voltage of the adopted battery cell 10 is basically about 4V, and the maximum voltage of the adopted first capacitor C1 and the second capacitor C2 is 30-80V.
  • the connection state of the first capacitor C1 and the second capacitor C2 and the inductor coil L changes.
  • the first capacitor C1 and the inductor coil L together form a closed series LC loop
  • the second capacitor C2 and the inductor coil L form two ends of the inductor coil L respectively.
  • a series LC loop in which the positive and negative poles of the battery cell 10 are connected; and when the switch tube Q1 is turned off and the switch tube Q2 is turned on, the loop formed is opposite to the above state.
  • the first capacitor C1 and the inductance coil L form two ends with The positive and negative electrodes of the cell 10 are connected in series LC loop, and the second capacitor C2 and the inductance coil L together form a closed series LC loop.
  • the first capacitor C1 and the second capacitor C2 can both form their respective LC loops with the inductor coil L.
  • the direction and period of the current flowing through the inductor coil L are the same, and they together form an alternating current flowing through the inductor coil L.
  • the switch tube Q1 is turned on, and the switch tube Q2 is kept in an off state.
  • the LCC oscillator 24 completes the following two processes. specific,
  • stage S12 After the completion of stage S11, the switch tube Q1 is kept on and the switch tube Q2 is turned off, and the inductor coil L will discharge in the same direction as the current i2 in FIG. 1 to charge the first capacitor C1, so that the positive direction flows through the inductor The current of the coil L gradually decreases until the inductor coil L discharges until the current reaches zero.
  • the inductor coil L and the loop formed by the switch tube Q1 and the first capacitor C1 have basically no impedance. Therefore, in this stage S12, the inductor coil L is mainly discharged to the first capacitor C1.
  • a capacitor C1 is charged, and the current flowing through the inductor L during the discharging process is the same as the current i2 in stage S11. While the second capacitor C2 has been substantially charged to the same output voltage as the cell 10 in stage S11 , the inductor L in this stage S12 will compensate the second capacitor C2 by a very small amount, but it can be ignored.
  • stage S11 and stage S12 After the total current flowing through the inductor coil L increases from 0 to the maximum, the discharge of the inductor coil L gradually decreases to 0, and the direction of the current flowing through the inductor coil L is always is the positive direction from left to right.
  • step S20 after the completion of step S10, the switch tube Q1 is turned off and the switch tube Q2 is turned on to complete the following two-stage process. specific,
  • the switch tube Q2 starts to be turned on, and the LCC oscillator 24 generates the loops of the current i3 and the current i4 shown in FIG. 5 .
  • the current i3 is returned to the negative electrode of the battery cell 10 by the positive electrode of the battery cell 10 through the first capacitor C1, the inductance coil L, and the switch tube Q2 in turn to form a loop; at the same time, the current i4 is formed by
  • the positive end of the second capacitor C2 goes through the inductance coil L and the switch tube Q2 in turn in the counterclockwise direction as shown in the figure, and then returns to the negative end of the second capacitor C2 to form a loop.
  • the current flowing through the inductor coil L from right to left as shown in FIG. 5 is formed, and the current direction is opposite to that in FIG. 4 , so it can be recorded as the current in the negative direction.
  • Stage S21 simultaneously includes charging the first capacitor C1 and discharging the second capacitor C2; when the voltage of the first capacitor C1 increases to be equal to the output voltage of the cell 10, and the voltage across the second capacitor C2 When the difference is 0, the current of the inductor coil L reaches the maximum resonance peak value.
  • stage S22 After the completion of stage S21, the switch tube Q2 is kept on, and the inductor coil L will charge the second capacitor C2 in the reverse direction, so that the current flowing through the inductor coil L in the negative direction gradually decreases until the inductor coil L discharges until the current is 0 ends.
  • the total current flowing through the inductance coil L also increases from 0 to the maximum, and then gradually decreases to 0 by the discharge of the inductive coil L.
  • the LCC oscillator 24 of the present application is inverted based on the ZCS (zero current switching) inverter topology, which is different from the ZVS (zero voltage switching) inversion of the existing LC oscillator. and the switch transistor Q1 and the switch transistor Q2 are configured to perform on/off switching when the current flowing through the inductor coil L is 0.
  • the number of the first capacitor C1 and the number of the second capacitor is one.
  • each of the first capacitor C1 or the second capacitor C2 may include two or three capacitors connected in parallel with each other with relatively smaller capacitance values.
  • the ESR equivalent resistance value
  • the circuit 20 of the above LCC oscillator 24 which is inverted by ZCS technology in implementation, has a substantially halved resonant frequency compared to the current LC series/parallel oscillation of a single capacitor.
  • the oscillation frequency of the above LCC oscillator 24 is about 190 KHz, which is beneficial for both synchronization detection and control of the MCU controller 21 .
  • Capacitive and inductive are electrical terms related to the hybrid circuit of electronic devices (such as LC oscillator or the above LCC oscillator 24); when the capacitive reactance of the hybrid circuit is larger than the inductive reactance, the circuit is "capacitive”. If the inductive reactance is larger than the capacitive reactance, the circuit is inductive.
  • the "weak inductance” state is the state in which the inductive reactance is basically close to the capacitive reactance, and the inductive reactance is slightly larger than the capacitive reactance.
  • the half-bridge driver 22 adopts a common FD2204 switch tube driver, which is controlled by the MCU controller 21 in a PWM manner.
  • the I/O port of 10 alternately sends out high level/low level to drive the on-time of the switch tube Q1 and the switch tube Q2 to control the oscillation of the LCC oscillator 24 .
  • the LCC inversion process is symmetrical, then the corresponding MCU controller 21 sends a PWM control signal with a 50% duty cycle to the half-bridge driver 22 to drive the half-bridge 23 to switch in this way .
  • the circuit 20 further includes: an active differential unit 25; the process of detecting by the active differential unit 25 includes:
  • the MCU controller 21 can obtain the oscillation frequency of the LCC oscillator 24 according to the time interval of the received interrupt signal.
  • the implementation of the above process is realized by the three sub-modules of the active differential unit 25 shown in FIG. 3, which specifically include:
  • the signal access module is composed of diode D1, resistor R2, resistor R3, and Zener tube Z; diode D1 allows access to the voltage of the positive half-waveform of the LCC oscillator 24 and filters out the voltage of the negative half-waveform, and then the resistor R2 and the resistor R3 divides the voltage; Z is a voltage regulator to prevent the input voltage from being too large and protect the subsequent circuit;
  • the active differential module in Figure 3, adopts a conventional active differential circuit with standard basic devices, which is composed of an operational amplifier U1, a capacitor C3, a resistor R4, a resistor R5, a resistor R6, a capacitor C4 and a resistor R6; among them, Operational amplifier U1, capacitor C3, and resistor R4 are the basic necessary components to form an active differential module; the ratio of resistor R4 and resistor R7 is 1, which is to avoid high peaks in the output and make the circuit have the flattest amplitude-frequency response and reduce the Q value. ; Capacitor C4 is for the purpose of voltage regulation to avoid self-oscillation of the op amp;
  • the voltage signal Vout output by the active differential module during operation is:
  • PP_LCC is the resonant voltage of the LCC oscillator 24; according to the formula principle of the calculation, the output result is the derivative of the resonant voltage of the LCC oscillator 24 with respect to time t, and the result of the comprehensive operation of the relevant device parameters in the active differential, and The parameters of the relevant devices are known and given, and the output result can be equivalent to the derivative of the voltage to time, that is, the rate of change of the voltage.
  • the comparison output module is mainly the comparator U2 in Figure 3; when the Vout output by the active differential module is higher than the preset threshold, it outputs a high level.
  • FIG. 8 shows a schematic diagram of the signal changes of the three stages of the active differential unit 25 detected in one embodiment
  • Signal 1 is the graph of the voltage signal at the point between the resistor R2 and the resistor R3 of the signal access module
  • Signal 2 is the graph of the voltage signal Vout output by the operational amplifier U1 of the active differential module
  • Signal 3 is a pulsed square wave pattern compared and output by comparator U2.
  • the signal 2 in FIG. 8 is negatively correlated with the signal 1; that is, when the signal 1 is in the rising process, the output of the signal 2 is a negative value, until the signal 1 reaches the The signal 2 is 0 at the peak; when the signal 1 starts to drop from the peak, the output of the signal 2 is a positive value; but since the active differential module cannot output a negative signal, a reference value is added to the result in the operation to make the signal 2 The output is always positive.
  • the comparison U2 uses the reference value as the comparison basis.
  • the formula will use the signal value output when the signal 1 reaches the peak, that is, when the voltage change rate is 0, as the reference value of the reference input terminal of the comparator U2, that is, R6*2.5/(R5+R6).
  • the MCU controller 21 does not need to take active high-frequency sampling to obtain the oscillation frequency of the LCC oscillator 24; only the pulse square wave of the signal 3 is sent to the MCU controller 21 as an interrupt signal, and the MCU controller 21 receives it. After the signal, the interval time (ie period) between adjacent square waves is calculated to calculate the acquisition frequency.
  • the electrical term "interrupt signal” is a control method for a chip or a single-chip microcomputer similar device. Specifically, when the CPU or the receiving process receives the "interrupt signal”, it temporarily stops other processes or tasks, and completes the "interrupt signal” at an appropriate time. ”, then return to the original process or task after the corresponding function or process.
  • the active differentiation module 25 generates a square wave with the same frequency by detecting the voltage change rate or derivative of the LCC oscillator 24, and then performs a comparison operation, and sends the square wave as an interrupt signal to the MCU controller 21, then the MCU After receiving the signal, the controller 21 calculates the interval time (ie period) between adjacent square waves to calculate the acquisition frequency.
  • the above LCC oscillators 24 can replace or equivalently use series LC oscillators with the same symmetrical resonance; their oscillation processes are all performed with a 50% duty cycle and output a symmetrical sine or cosine varying voltage or current; and their switching is done in zero-current topology.
  • the frequency of the series LC oscillator can be tracked using an active differentiation unit 25 for ease of control and adjustment.
  • Yet another embodiment of the present application also provides a method for controlling an aerosol generating device, wherein the aerosol generating device is heated by driving the susceptor 30 with the above LCC oscillator 24 or a similar series-connected LC oscillator.
  • the method steps are shown in Figure 9, including the following steps:
  • the MCU controller 21 may further adjust the oscillation frequency of the LCC oscillator 24 or the series-connected LC oscillator to keep the same or substantially close to the preset frequency.
  • the oscillation frequency is kept the same or basically close to the preset frequency, thereby maximizing the efficiency.

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • General Induction Heating (AREA)
  • Inductance-Capacitance Distribution Constants And Capacitance-Resistance Oscillators (AREA)

Abstract

一种气雾生成装置,被配置为加热气雾生成制品(A)以生成供抽吸的气溶胶;包括:感受器(30),被配置为被变化的磁场穿透而发热,以加热气雾生成制品(A);具有电感线圈(L)的串联LC振荡器或串联的LCC振荡器(24),被配置为引导变化的电流流经电感线圈(L)以驱动电感线圈(L)产生变化的磁场;电路(20),被配置为根据串联LC振荡器或串联的LCC振荡器(24)的振荡电压的变化率确定串联LC振荡器或串联的LCC振荡器(24)的振荡频率。

Description

气雾生成装置及其控制方法
相关申请的交叉参考
本申请要求于2020年12月08日提交中国专利局,申请号为202011442673.4,发明名称为“气雾生成装置及控制方法”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请实施例涉及加热不燃烧低温烟具技术领域,尤其涉及一种气雾生成装置及其控制方法。
背景技术
烟制品(例如,香烟、雪茄等)在使用过程中燃烧烟草以产生烟草烟雾。人们试图通过制造在不燃烧的情况下释放化合物的产品来替代这些燃烧烟草的制品。
此类产品的示例为加热装置,其通过加热而不是燃烧材料来释放化合物。例如,该材料可为烟草或其他非烟草产品,这些非烟草产品可包含或可不包含尼古丁。在已知的装置中,通过电磁感应发热的加热器对烟草产品加热以生成供吸食的气溶胶。对于以上加热装置的一个现有技术的实施例中,201580007754.2号专利提出了一种电磁感应式加热特制烟支制品的感应加热装置;具体是通过一个感应线圈与一个电容器串联或并联组成LC振荡的方式形成交流,从而使线圈产生交变磁场诱导感受器发热加热烟支制品。以上已知的加热装置,通常采用一个运算放大器同步输出LC振荡的振荡电压或通过过零比较器检测振荡电压过零的时间,而后控制芯片采样以上结果计算LC振荡的频率。实施中,由于LC振荡的频率非常高,大约200~400KHz,则控制芯片要在以上比较器和放大器瞬时输出结果时能采样到,则控制芯片的采样速度要几十MHz 左右才能避免错过比较器或放大器瞬时输出的结果信号;进而使得通过这一方式跟踪LC振荡的频率,是不可取的。
发明内容
本申请实施例提供一种气雾生成装置,被配置为加热气雾生成制品以生成供抽吸的气溶胶;包括:
感受器,被配置为被变化的磁场穿透而发热,以加热气雾生成制品;
具有电感线圈的串联LC振荡器或串联的LCC振荡器,被配置为引导变化的电流流经所述电感线圈以驱动所述电感线圈产生变化的磁场;
电路,被配置为根据所述串联LC振荡器或串联的LCC振荡器的振荡电压的变化率确定所述串联LC振荡器或串联的LCC振荡器的振荡频率。以上气雾生成装置,根据振荡电压的变化率确定振荡频率。
在优选的实施中,所述电路包括:
有源微分单元,被配置为检测所述串联LC振荡器或串联的LCC振荡器的振荡电压的变化率,并在当所述振荡电压的变化率大于预设阈值时输出高电平信号;
控制器,被配置为根据所述高电平信号的间隔时间确定所述串联LC振荡器或串联的LCC振荡器的振荡频率。
在优选的实施中,所述有源微分单元包括:有源微分模块和比较器;其中,
所述有源微分模块被配置为检测所述串联LC振荡器或串联的LCC振荡器的振荡电压的变化率;
比较器,被配置为将所述振荡电压的变化率与预设阈值进行比较运算,并在当所述振荡电压的变化率大于预设阈值时向所述控制器输出高电平信号。
在优选的实施中,所述有源微分模块包括:第一电容、第一电阻、 第二电容、第二电阻以及运算放大器;其中,
所述第一电容的第一端与所述串联LC振荡器或串联的LCC振荡器连接、第二端与第一电阻的第一端连接;
所述运算放大器的第一输入端与所述第一电阻的第二端连接、输出端与所述比较器连接;
所述第二电容的第一端与所述第一电阻的第二端连接、第二端与所述运算放大器的输出端连接;
所述第二电阻的第一端与所述第一电阻的第二端连接、第二端与所述运算放大器的输出端连接。
在优选的实施中,所述有源微分单元还包括:
接入模块,包括:第一二极管、第三电阻和第四电阻;其中,
所述第一二极管的第一端与所述串联LC振荡器或串联的LCC振荡器连接、第二端与所述第三电阻的第一端连接,并被配置为仅允许电流由所述串联LC振荡器或串联的LCC振荡器流向所述第三电阻;
所述第三电阻的第二端与所述有源微分模块连接;
所述第四电阻的第一端与所述第三电阻的第二端连接、第二端接地。
在优选的实施中,所述接入模块还包括:稳压管;所述稳压管的第一端与所述第三电阻的第二端连接、第二端与所述第四电阻的第二端连接。
在优选的实施中,所述预设阈值是当所述振荡电压的变化率为0时所述有源微分模块的输出值。
在优选的实施中,所述控制器被配置为调整所述串联LC振荡器或串联的LCC振荡器的振荡频率,以使所述串联LC振荡器或串联的LCC振荡器的振荡频率与预设频率相同或基本接近。
本申请的又一个实施例还提出一种气雾生成装置的控制方法,所述气雾生成装置包括:
感受器,被配置为被变化的磁场穿透而发热,以加热气雾生成制品;
具有电感线圈的串联LC振荡器或串联的LCC振荡器,被配置为引导变化的电流流经所述电感线圈以驱动所述电感线圈产生变化的磁场;
所述方法包括:
检测所述LCC振荡器或串联LC振荡器的振荡电压变化率;
当所述振荡电压变化率高于预设值时生成高电平信号;
根据所述高电平信号的间隔时间确定所述LCC振荡器或串联LC振荡器的振荡频率。
在优选的实施中,还包括:
调整所述串联LC振荡器或串联的LCC振荡器的振荡频率,以使所述串联LC振荡器或串联的LCC振荡器的振荡频率与预设频率相同或基本接近。
附图说明
一个或多个实施例通过与之对应的附图中的图片进行示例性说明,这些示例性说明并不构成对实施例的限定,附图中具有相同参考数字标号的元件表示为类似的元件,除非有特别申明,附图中的图不构成比例限制。
图1是本申请一实施例提供的气雾生成装置的结构示意图;
图2是图1中电路一个实施例的结构框图;
图3是图2中电路一个实施例的基本组件的示意图;
图4是图3中LCC振荡器的一个阶段中正向电流的示意图;
图5是图3中LCC振荡器的一个阶段中反向电流的示意图;
图6是图3中串联的LCC振荡器的谐振电流的示意图;
图7是图3中串联的LCC振荡器测试的谐振电流和谐振电压变化的示意图;
图8是有源微分单元的三个阶段的信号的变化示意图;
图9是一个实施例提出的气雾生成装置的控制方法的示意图。
具体实施方式
为了便于理解本申请,下面结合附图和具体实施方式,对本申请进行更详细的说明。
本申请的一实施例提出一种气雾生成装置,其构造可以参见图1所示,包括:
腔室,气溶胶生成制品A可移除地接收在腔室内;
电感线圈L,用于在交变电流下产生变化磁场;
感受器30,至少一部分在腔室内延伸,并被配置为与电感线圈L感应耦合,在被变化磁场穿透下发热,进而对气溶胶生成制品A例如烟支进行加热,使气溶胶生成制品A的至少一种成分挥发,形成供抽吸的气溶胶;
电芯10,为可充电的直流电芯,可以输出直流电流;
电路20,通过适当的电连接到可充电的电芯10,用于从将电芯10输出的直流电流,转变成具有适合频率的交变电流再供应到电感线圈L。
根据产品使用中的设置,电感线圈L可以包括绕成螺旋状的圆柱形电感器线圈,如图1中所示。绕成螺旋状的圆柱形电感线圈L可以具有范围在大约5mm到大约10mm内的半径r,并特别地半径r可以大约为7mm。绕成螺旋状的圆柱形电感线圈L的长度可以在大约8mm到大约14mm的范围内,电感线圈L的匝数大约8匝到15匝的范围内。相应地,内体积可能在大约0.15cm 3至大约1.10cm 3的范围内。
在更加优选的实施中,电路20供应到电感线圈L的交变电流的频率介于80KHz~400KHz;更具体地,所述频率可以在大约200KHz到300KHz的范围。
在一个优选的实施例中,电芯10提供的直流供电电压在约2.5V至约9.0V的范围内,电芯10可提供的直流电流的安培数在约2.5A至约20A的范围内。
在一个优选的实施例中,感受器30大体呈销钉或者刀片状的形状,进而对于插入至气溶胶生成制品A内是有利的;同时,感受器30可以具有大约12毫米的长度,大约4毫米的宽度和大约0.5毫米的厚度,并且可以由等级430的不锈钢(SS430)制成。作为替代性实施例,感受器30可以具有大约12毫米的长度,大约5毫米的宽度和大约0.5毫米的厚度,并且可以由等级430的不锈钢(SS430)制成。在其他的变化实施例中,感受器30还可以被构造成圆筒状或管状的形状;在使用时其内部空间形成用于接收气溶胶生成制品A的腔室,并通过对气溶胶生成制品A的外周加热的方式,生成供吸食的气溶胶。这些感受器还可以由等级420的不锈钢(SS420)、以及含有铁/镍的合金材料(比如坡莫合金)制成。
在图1所示的实施例中,气雾生成装置还包括用于布置电感线圈L和感受器30的支架40,该支架40的材质可以包括耐高温非金属材料比如PEEK或者陶瓷等。在实施中,电感线圈L采用缠绕在支架40的外壁上进而固定。同时,根据图1所示,该支架40的中空的管状形状,其管状中空的部分空间形成上述用于接收气溶胶生成制品A的腔室。
在可选的实施中,感受器30是由以上感受性的材质制备的,或者是由陶瓷等耐热的基体材质外表面上电镀、沉积等形成感受材料涂层获得的。
以上由电路20在一个优选的实施方式中的结构和基本组件可以参见图2至图3所示,包括:
LCC振荡器24,该LCC振荡器24是由以上电感线圈L与第一电容C1和第二电容C2组成的;LCC振荡器24用于在振荡的过程中形成流过 电感线圈L的交变电流,从而使电感线圈L产生交变磁场诱导感受器30发热;
半桥23,即为由晶体管开关组成的半桥电路;包括开关管Q1和开关管Q2,用于通过交替的通断切换使LCC振荡器24振荡;
半桥驱动器22,用于根据MCU控制器21的控制信号控制半桥23的开关管Q1和开关管Q2交替的导通和断开。
以上实施例的LCC振荡器24完整连接方式和详细的振荡过程参见图3所示;具体,
在连接上,第一电容C1的第一端与电芯10的正极连接、第二端与第二电容C2的第一端连接;第二电容C2的第二端通过电阻R1接地;
半桥23的开关管Q1的第一端与电芯10的正极连接、第二端与开关管Q2的第一端连接,开关管Q2的第二端通过电阻R1接地;当然,开关管Q1和开关管Q2的受控端均是连接至半桥驱动器22的,进而由半桥驱动器22的驱动下进行导通和断开;
电感线圈L的第一端与开关管Q1的第二端连接、第二端与第一电容C1的第二端连接。同时,在LCC振荡器24的硬件选择上,第一电容C1和第二电容C2的最大电压值远大于电芯10的输出电压值。例如,在通常的实施中,采用的电芯10的输出电压基本大约在4V左右,而采用的第一电容C1和第二电容C2最大电压为30~80V。
以上结构的LCC振荡器24在开关管Q1和开关管Q2的切换状态下,第一电容C1和第二电容C2与电感线圈L的连接状态是变化的。具体在图3中当开关管Q1导通、开关管Q2断开时,第一电容C1与电感线圈L它们共同形成一个闭合的串联LC回路、而第二电容C2电感线圈L形成两端分别与电芯10的正负极连接的串联LC回路;而当开关管Q1断开、开关管Q2导通时,所构成的回路与上述状态相反,第一电容C1与电感线圈L形成两端分别与电芯10的正负极连接的串联LC回路、而第二电容C2电感线圈L它们共同形成一个闭合的串联LC回路。在各自的不同状态下,第一电容C1和第二电容C2它们均能与电感线圈L形成各自的LC回路。但是它们各自的LC回路在振荡过程中,产生的流过电感线圈 L的电流方向和周期是相同的,进而它们共同形成流过电感线圈L的交变电流。
具体对于具有以上LCC振荡器24的振荡过程的控制步骤不同于常规的串联或并联LC振荡器。进一步在本申请的优选的实施中,以开关管Q1和开关管Q2切换的动作来描述LCC振荡器24的完整振荡过程;包括:
S10,导通开关管Q1、并保持开关管Q2断开状态,此状态下LCC振荡器24完成以下两个过程。具体,
S11:如图4所示,开关管Q1导通、开关管Q2断开时,电芯10通过电流i1对第二电容C2形成充电、同时第一电容C1会通过电流i2形成放电,在该过程中形成图4所示从左向右流过电感线圈L的电流,可以记为正方向的电流。在该阶段S11中,第一电容C1由开关管Q1导通时开始放电直至两端电压差为0放电完成、以及第二电容C2两端的电压增大至与电芯10的输出电压相等时充电停止,此时电感线圈L的电流达到谐振峰值最大。
S12:在阶段S11完成之后继续保持开关管Q1导通、开关管Q2断开状态,电感线圈L会以图1中电流i2相同的方向放电给第一电容C1充电,从而使正方向流过电感线圈L的电流逐渐减小直至电感线圈L放电至电流为0结束。此阶段中,由于在阶段S11中第一电容C1放电完,则电感线圈L与通过开关管Q1与第一电容C1形成的回路基本没有阻抗,因而此阶段S12中电感线圈L主要是放电给第一电容C1充电,放电过程中流过电感线圈L的电流与阶段S11中电流i2相同。而第二电容C2在阶段S11已经基本上充电至与电芯10的输出电压相同,此阶段S12中电感线圈L会极少量对第二电容C2补偿,但是基本可以忽略。
在阶段S11和阶段S12的完整过程中,流过电感线圈L的总电流由0正向增加到最大后,再由电感线圈L的放电逐渐降低至0,而流过电感线圈L的电流方向始终是从左向右的正方向。
S20,步骤S10完成之后,断开开关管Q1、导通开关管Q2,完成以下两个阶段的过程。具体,
S21:开关管Q2导通开始,LCC振荡器24内产生图5中所示的电流i3和电流i4的回路。根据图5中所示的电流路径,电流i3由电芯10的正极依次经第一电容C1、电感线圈L、开关管Q2后通过接地回到电芯10的负极形成回路;同时,电流i4由第二电容C2的正端沿图中所示逆时针方向依次经电感线圈L、开关管Q2后回到第二电容C2的负端形成回路。在该过程中形成如图5所示从右向左流过电感线圈L的电流,与图4中电流方向相反,则可以记为负方向的电流。
阶段S21中的同时包含有对第一电容C1的充电、以及第二电容C2的放电;当第一电容C1电压增大至与电芯10的输出电压相等时、以及第二电容C2两端的压差为0时,电感线圈L的电流达到谐振峰值最大。
S22:在阶段S21完成之后继续保持开关管Q2导通,电感线圈L会反向给第二电容C2充电,从而使负方向流过电感线圈L的电流逐渐减小直至电感线圈L放电至电流为0结束。
在该步骤S20的阶段S21和阶段S22的完整过程中,流过电感线圈L的总电流同样由0反向增加到最大后,再由电感线圈L的放电逐渐降低至0。
因此在以上LCC振荡器24在振荡的过程中,流过电感线圈L的电流的变化可以参见图6所示,一个完整的电流周期包括有在图6中分别对应以上阶段S11/S12/S21/S22的四个部分。以上步骤S10和步骤S20循环交替的地切换开关管Q1和开关管Q2的通断状态,则可以在LCC振荡器24内循环地产生以上阶段S11/S12/S21/S22的振荡过程,形成流过电感线圈L的交变电流。
因此基于以上控制的过程可以看出,本申请的LCC振荡器24是以ZCS(零电流开关)逆变器拓扑产生逆变的,不同于现有的LC振荡器的ZVS(零电压开关)逆变器拓扑;并且开关管Q1和开关管Q2被配置为当流过电感线圈L的电流为0时进行通/断切换。
在图3所示的优选实施中,第一电容C1和第二电容的数量均为1个。在其他的可选实施中,第一电容C1或第二电容C2各自可以包括相互并联的2个、3个相对容值更小的电容组成。例如通过将第一电容C1 采用多个较小的电容替换原本所需相对大的电容时,它们的电容是相等或者大致相等的;则各自之间可以随着LCC振荡器24的振荡频率的变化,相应呈现出比仅单个电容时大幅降低并变化的ESR(等效电阻值),具体是当低频时ESR呈相对高的表现、高频时ESR呈相对低的表现,对于防止尖峰脉冲可能是有利的。并且采用多个较小的电容替换原本所需相对大的电容时,降低LCC振荡器24的谐振频率是有利的。
采用以上LCC振荡器24的电路20,在实施中通过ZCS技术形成逆变,相比目前单个电容的LC串联/并联振荡具有基本减半的谐振频率。通常LC串联/并联振荡频率大约380Hz时,以上LCC振荡器24的振荡频率大约在190KHz,对于同步检测和MCU控制器21的控制上都是有利的。
并且以上振荡的过程中,通过检测得到的LCC振荡器24的谐振电压和电流的变化参见图7所示;谐振电压大约是超前谐振电流的,为1/4个周期,整体LCC振荡器24呈弱感性。“容性”、“感性”是电子器件混联电路(如LC振荡器或以上LCC振荡器24)相关的电学术语;当混联电路容抗比感抗大则电路呈“容性”,若感抗比容抗大则电路呈感性。“弱感性”状态即感抗与容抗基本接近并且感抗略微大于而非远大于容抗的状态。
进一步参见图3所示的实施例,半桥驱动器22采用的是常用的FD2204型号的开关管驱动器,其是由MCU控制器21以PWM方式控制的,根据PWM的脉冲宽度分别由第3和第10的I/O口交替发出高电平/低电平进而驱动开关管Q1、开关管Q2的导通时间,以控制LCC振荡器24的振荡。
从以上详细的控制步骤中,LCC逆变的过程是对称的,则对应MCU控制器21以50%占空比的PWM控制信号发送至半桥驱动器22即可驱动半桥23按照这一方式切换。
进一步参见图2,为了准确检测以上LCC振荡器24的振荡频率,电路20还包括:有源微分单元25;通过该有源微分单元25检测的过程中包括:
基于振荡电压逐步达到最大、同时电流变为0的特点,先检测LCC振荡器24振荡电压的变化率/求导数;
并在当电压的变化率或导数与预设阈值进行比较,当大于预设阈值时输出脉冲式的中断信号给MCU控制器21;
MCU控制器21根据所接收的中断信号的时间间隔即可获取LCC振荡器24的振荡频率。
具体以上过程的实施是由图3所示的有源微分单元25的三个子模块实现的,具体包括:
信号接入模块,由二极管D1、电阻R2和电阻R3、稳压管Z组成;二极管D1允许接入LCC振荡器24正半波形的电压而过滤掉负半波形的电压,而后由电阻R2和电阻R3进行分压;Z为稳压管,防止输入电压过大,对后级电路保护;
有源微分模块,在图3中采用的是常规的具有标准基本器件的有源微分电路,由运算放大器U1、电容C3、电阻R4、电阻R5、电阻R6以及电容C4和电阻R6组成;其中,运算放大器U1、电容C3、电阻R4是组成有源微分模块的基本必要组件;电阻R4和电阻R7的比值是1,是避免输出出现较高的尖峰,使电路具有最平坦幅频响应降低Q值;电容C4是稳压目的,避免运放自激振荡;
有源微分模块在工作中输出的电压信号Vout为:
Figure PCTCN2021136481-appb-000001
式中,PP_LCC是LCC振荡器24的谐振电压;根据该计算的公式原理,输出结果为LCC振荡器24的谐振电压对时间t的导数、以及有源微分中相关器件参数综合运算的结果,而相关器件的参数是已知给定的,则输出结果可以等同于电压对时间的导数,即电压的变化率。
比较输出模块,在图3中主要就是比较器U2;当有源微分模块输出的Vout高于预设阈值时输出高电平。
为了更便于技术人员的理解,图8示出了一个实施例中检测的有源微分单元25的三个阶段的信号的变化示意图;其中,
信号1是由信号接入模块的电阻R2和电阻R3之间位点的电压信号的图形;
信号2是由有源微分模块的运算放大器U1输出的电压信号Vout的图形;
信号3是由比较器U2比较输出的脉冲式的方波的图形。
需要说明的是,根据以上输出的电压信号Vout的计算公式,图8的信号2是与信号1负相关的;即当信号1在上升过程中,信号2输出为负值,直至当信号1达到波峰时信号2为0;当信号1由波峰开始下降时,信号2输出为正值;但是由于有源微分模块无法输出负信号,则在运算中在结果中加上了与一基准值使信号2输出始终为正。而比较U2则以该基准值作为比较基础,当信号2开始高于该基准值后继续增大则说明信号1是处于由峰值开始下降的过程;而后下降结束后输出低电平。根据以上所描述,公式将采用信号1达到波峰时即电压变化率为0时输出的信号值为比较器U2参考输入端的基准值,即R6*2.5/(R5+R6)。
则根据以上所述,在实施中MCU控制器21无需主动高频采样获取LCC振荡器24的振荡频率;仅需信号3的脉冲方波作为中断信号发送至MCU控制器21,MCU控制器21接收该信号后计算相邻方波之间的间隔时间(即周期)计算获取频率。其中,电学术语“中断信号”是芯片或单片机类似器件的一种控制方式,具体是CPU或者接收进程接收该“中断信号”时,暂时停止其他进程或任务,并在适当的时机完成“中断信号”所对应的功能或进程后,返回至原先的进程或任务。
通过以上方式,有源微分模块25通过检测LCC振荡器24的电压变化率或导数,而后比较运算生成具有相同频率的方波,并将该方波作为中断信号发送至MCU控制器21,则MCU控制器21接收该信号后计算相邻方波之间的间隔时间(即周期)计算获取频率。
在又一个变化的实施中,以上LCC振荡器24可以替换或同等采用相同对称谐振的串联LC振荡器;它们的振荡过程均是以50%占空比进行并输出的对称正弦或余弦的变化电压或电流;并且它们的开关切换是以零电流拓扑技术进行的。可以采用有源微分单元25跟踪串联LC振荡器 的频率便于控制和调整。
本申请的又一个实施例还提出一种气雾生成装置的控制方法,其中气雾生成装置是以以上LCC振荡器24或相近的串联LC振荡器驱动感受器30加热的。方法步骤参见图9所示,包括如下步骤:
S100,检测LCC振荡器24或串联LC振荡器的振荡电压变化率;
S200,并将振荡电压变化率与预设值比较,当高于预设值时生成高电平信号;
S300,通过检测高电平信号的间隔时间计算检测LCC振荡器24或串联LC振荡器的振荡频率;
S400,进一步可以由MCU控制器21进一步调整LCC振荡器24或串联LC振荡器的振荡频率,从与预设频率保持相同或基本接近。
通过跟踪检测频率并实时调整,使振荡频率与预设频率保持相同或基本接近,进而最大化地提升效率。
需要说明的是,本申请的说明书及其附图中给出了本申请的较佳的实施例,但并不限于本说明书所描述的实施例,进一步地,对本领域普通技术人员来说,可以根据上述说明加以改进或变换,而所有这些改进和变换都应属于本申请所附权利要求的保护范围。

Claims (10)

  1. 一种气雾生成装置,被配置为加热气雾生成制品以生成供抽吸的气溶胶;其特征在于,包括:
    感受器,被配置为被变化的磁场穿透而发热,以加热气雾生成制品;
    具有电感线圈的串联LC振荡器或串联的LCC振荡器,被配置为引导变化的电流流经所述电感线圈以驱动所述电感线圈产生变化的磁场;
    电路,被配置为根据所述串联LC振荡器或串联的LCC振荡器的振荡电压的变化率确定所述串联LC振荡器或串联的LCC振荡器的振荡频率。
  2. 如权利要求1所述的气雾生成装置,其特征在于,所述电路包括:
    有源微分单元,被配置为检测所述串联LC振荡器或串联的LCC振荡器的振荡电压的变化率,并在当所述振荡电压的变化率大于预设阈值时输出高电平信号;
    控制器,被配置为根据所述高电平信号的间隔时间确定所述串联LC振荡器或串联的LCC振荡器的振荡频率。
  3. 如权利要求2所述的气雾生成装置,其特征在于,所述有源微分单元包括:有源微分模块和比较器;其中,
    所述有源微分模块被配置为检测所述串联LC振荡器或串联的LCC振荡器的振荡电压的变化率;
    比较器,被配置为将所述振荡电压的变化率与预设阈值进行比较运算,并在当所述振荡电压的变化率大于预设阈值时向所述控制器输出高 电平信号。
  4. 如权利要求3所述的气雾生成装置,其特征在于,所述有源微分模块包括:第一电容、第一电阻、第二电容、第二电阻以及运算放大器;其中,
    所述第一电容的第一端与所述串联LC振荡器或串联的LCC振荡器连接、第二端与第一电阻的第一端连接;
    所述运算放大器的第一输入端与所述第一电阻的第二端连接、输出端与所述比较器连接;
    所述第二电容的第一端与所述第一电阻的第二端连接、第二端与所述运算放大器的输出端连接;
    所述第二电阻的第一端与所述第一电阻的第二端连接、第二端与所述运算放大器的输出端连接。
  5. 如权利要求3所述的气雾生成装置,其特征在于,所述有源微分单元还包括:
    接入模块,包括:第一二极管、第三电阻和第四电阻;其中,
    所述第一二极管的第一端与所述串联LC振荡器或串联的LCC振荡器连接、第二端与所述第三电阻的第一端连接,并被配置为仅允许电流由所述串联LC振荡器或串联的LCC振荡器流向所述第三电阻;
    所述第三电阻的第二端与所述有源微分模块连接;
    所述第四电阻的第一端与所述第三电阻的第二端连接、第二端接地。
  6. 如权利要求5所述的气雾生成装置,其特征在于,所述接入模 块还包括:稳压管;所述稳压管的第一端与所述第三电阻的第二端连接、第二端与所述第四电阻的第二端连接。
  7. 如权利要求3至6任一项所述的气雾生成装置,其特征在于,所述预设阈值是当所述振荡电压的变化率为0时所述有源微分模块的输出值。
  8. 如权利要求2至6任一项所述的气雾生成装置,其特征在于,所述控制器被配置为调整所述串联LC振荡器或串联的LCC振荡器的振荡频率,以使所述串联LC振荡器或串联的LCC振荡器的振荡频率与预设频率相同或基本接近。
  9. 一种气雾生成装置的控制方法,所述气雾生成装置包括:
    感受器,被配置为被变化的磁场穿透而发热,以加热气雾生成制品;
    具有电感线圈的串联LC振荡器或串联的LCC振荡器,被配置为引导变化的电流流经所述电感线圈以驱动所述电感线圈产生变化的磁场;
    其特征在于,所述方法包括:
    检测所述LCC振荡器或串联LC振荡器的振荡电压变化率;
    当所述振荡电压变化率高于预设值时生成高电平信号;
    根据所述高电平信号的间隔时间确定所述LCC振荡器或串联LC振荡器的振荡频率。
  10. 如权利要求9所述的气雾生成装置的控制方法,其特征在于,还包括:
    调整所述串联LC振荡器或串联的LCC振荡器的振荡频率,以使所 述串联LC振荡器或串联的LCC振荡器的振荡频率与预设频率相同或基本接近。
PCT/CN2021/136481 2020-12-08 2021-12-08 气雾生成装置及其控制方法 WO2022121946A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP21902651.5A EP4260733A4 (en) 2020-12-08 2021-12-08 AEROSOL PRODUCTION APPARATUS AND ITS CONTROL METHOD
KR1020237022824A KR20230117412A (ko) 2020-12-08 2021-12-08 에어로졸 생성 장치 및 그 제어 방법
JP2023534233A JP2023553026A (ja) 2020-12-08 2021-12-08 エアロゾル発生装置及びその制御方法
US18/256,213 US20240099376A1 (en) 2020-12-08 2021-12-08 Aerosol-producing apparatus and control method therefor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202011442673.4A CN114601201A (zh) 2020-12-08 2020-12-08 气雾生成装置及其控制方法
CN202011442673.4 2020-12-08

Publications (1)

Publication Number Publication Date
WO2022121946A1 true WO2022121946A1 (zh) 2022-06-16

Family

ID=81857018

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/136481 WO2022121946A1 (zh) 2020-12-08 2021-12-08 气雾生成装置及其控制方法

Country Status (6)

Country Link
US (1) US20240099376A1 (zh)
EP (1) EP4260733A4 (zh)
JP (1) JP2023553026A (zh)
KR (1) KR20230117412A (zh)
CN (1) CN114601201A (zh)
WO (1) WO2022121946A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024011631A1 (zh) * 2022-07-15 2024-01-18 深圳麦克韦尔科技有限公司 电子雾化装置
CN115644523A (zh) * 2022-10-19 2023-01-31 深圳麦时科技有限公司 控制方法、控制模块及气溶胶生成装置

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1334643A (zh) * 2000-06-13 2002-02-06 阿尔卑斯电气株式会社 电压控制型振荡电路
CN103163764A (zh) * 2011-12-13 2013-06-19 三星电子株式会社 感应加热定影装置和成像设备
CN107727927A (zh) * 2017-12-01 2018-02-23 江苏科技大学 一种感应加热校平机变频器谐振检测及频率跟踪系统
CN109890233A (zh) * 2016-11-22 2019-06-14 菲利普莫里斯生产公司 感应加热装置、包括感应加热装置的气溶胶生成系统及其操作方法
CN110476478A (zh) * 2017-03-31 2019-11-19 英美烟草(投资)有限公司 用于谐振电路的装置
WO2020183162A1 (en) * 2019-03-11 2020-09-17 Nicoventures Trading Limited Aerosol provision system
CN112039341A (zh) * 2019-11-13 2020-12-04 扬州船用电子仪器研究所(中国船舶重工集团公司第七二三研究所) 一种对称半桥lc串联谐振正弦功率变换电路的驱动方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1334643A (zh) * 2000-06-13 2002-02-06 阿尔卑斯电气株式会社 电压控制型振荡电路
CN103163764A (zh) * 2011-12-13 2013-06-19 三星电子株式会社 感应加热定影装置和成像设备
CN109890233A (zh) * 2016-11-22 2019-06-14 菲利普莫里斯生产公司 感应加热装置、包括感应加热装置的气溶胶生成系统及其操作方法
CN110476478A (zh) * 2017-03-31 2019-11-19 英美烟草(投资)有限公司 用于谐振电路的装置
CN107727927A (zh) * 2017-12-01 2018-02-23 江苏科技大学 一种感应加热校平机变频器谐振检测及频率跟踪系统
WO2020183162A1 (en) * 2019-03-11 2020-09-17 Nicoventures Trading Limited Aerosol provision system
CN112039341A (zh) * 2019-11-13 2020-12-04 扬州船用电子仪器研究所(中国船舶重工集团公司第七二三研究所) 一种对称半桥lc串联谐振正弦功率变换电路的驱动方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4260733A4

Also Published As

Publication number Publication date
EP4260733A4 (en) 2024-06-19
EP4260733A1 (en) 2023-10-18
KR20230117412A (ko) 2023-08-08
US20240099376A1 (en) 2024-03-28
CN114601201A (zh) 2022-06-10
JP2023553026A (ja) 2023-12-20

Similar Documents

Publication Publication Date Title
WO2022121946A1 (zh) 气雾生成装置及其控制方法
WO2022121948A1 (zh) 气雾生成装置
WO2021083343A1 (zh) 气雾生成装置及控制方法
WO2021083344A1 (zh) 气雾生成装置及控制方法
US20220183377A1 (en) Apparatus for aerosol generating device
US20220183390A1 (en) Aerosol provision device
WO2022121947A1 (zh) 气雾生成装置及控制方法
WO2022017418A1 (zh) 气雾生成装置
EP4397201A1 (en) Aerosol generating device and control method thereof
WO2023030411A1 (zh) 气溶胶生成装置及其控制方法
WO2024061198A1 (zh) 电子雾化装置及其控制方法
CN115005511A (zh) 气雾生成装置及控制方法
WO2024055883A1 (zh) 电子雾化装置及其控制方法
WO2023236870A1 (zh) 电源组件、电子雾化装置及其控制方法
WO2022184171A1 (zh) 气雾生成装置
CN116406866A (zh) 气溶胶生成装置及其控制方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21902651

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023534233

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 18256213

Country of ref document: US

ENP Entry into the national phase

Ref document number: 20237022824

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2021902651

Country of ref document: EP

Effective date: 20230710