WO2022184171A1 - 气雾生成装置 - Google Patents

气雾生成装置 Download PDF

Info

Publication number
WO2022184171A1
WO2022184171A1 PCT/CN2022/079348 CN2022079348W WO2022184171A1 WO 2022184171 A1 WO2022184171 A1 WO 2022184171A1 CN 2022079348 W CN2022079348 W CN 2022079348W WO 2022184171 A1 WO2022184171 A1 WO 2022184171A1
Authority
WO
WIPO (PCT)
Prior art keywords
voltage
sampling
module
aerosol generating
output
Prior art date
Application number
PCT/CN2022/079348
Other languages
English (en)
French (fr)
Inventor
李新军
徐中立
李永海
Original Assignee
深圳市合元科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市合元科技有限公司 filed Critical 深圳市合元科技有限公司
Priority to EP22762632.2A priority Critical patent/EP4302623A1/en
Priority to US18/280,267 priority patent/US20240065331A1/en
Publication of WO2022184171A1 publication Critical patent/WO2022184171A1/zh

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A24TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
    • A24FSMOKERS' REQUISITES; MATCH BOXES; SIMULATED SMOKING DEVICES
    • A24F40/00Electrically operated smoking devices; Component parts thereof; Manufacture thereof; Maintenance or testing thereof; Charging means specially adapted therefor
    • A24F40/40Constructional details, e.g. connection of cartridges and battery parts
    • A24F40/46Shape or structure of electric heating means
    • A24F40/465Shape or structure of electric heating means specially adapted for induction heating
    • AHUMAN NECESSITIES
    • A24TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
    • A24FSMOKERS' REQUISITES; MATCH BOXES; SIMULATED SMOKING DEVICES
    • A24F40/00Electrically operated smoking devices; Component parts thereof; Manufacture thereof; Maintenance or testing thereof; Charging means specially adapted therefor
    • A24F40/40Constructional details, e.g. connection of cartridges and battery parts
    • AHUMAN NECESSITIES
    • A24TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
    • A24FSMOKERS' REQUISITES; MATCH BOXES; SIMULATED SMOKING DEVICES
    • A24F40/00Electrically operated smoking devices; Component parts thereof; Manufacture thereof; Maintenance or testing thereof; Charging means specially adapted therefor
    • A24F40/40Constructional details, e.g. connection of cartridges and battery parts
    • A24F40/46Shape or structure of electric heating means
    • AHUMAN NECESSITIES
    • A24TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
    • A24FSMOKERS' REQUISITES; MATCH BOXES; SIMULATED SMOKING DEVICES
    • A24F40/00Electrically operated smoking devices; Component parts thereof; Manufacture thereof; Maintenance or testing thereof; Charging means specially adapted therefor
    • A24F40/50Control or monitoring
    • AHUMAN NECESSITIES
    • A24TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
    • A24FSMOKERS' REQUISITES; MATCH BOXES; SIMULATED SMOKING DEVICES
    • A24F40/00Electrically operated smoking devices; Component parts thereof; Manufacture thereof; Maintenance or testing thereof; Charging means specially adapted therefor
    • A24F40/50Control or monitoring
    • A24F40/53Monitoring, e.g. fault detection
    • AHUMAN NECESSITIES
    • A24TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
    • A24FSMOKERS' REQUISITES; MATCH BOXES; SIMULATED SMOKING DEVICES
    • A24F40/00Electrically operated smoking devices; Component parts thereof; Manufacture thereof; Maintenance or testing thereof; Charging means specially adapted therefor
    • A24F40/50Control or monitoring
    • A24F40/57Temperature control
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/02Conversion of dc power input into dc power output without intermediate conversion into ac
    • H02M3/04Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
    • H02M3/10Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M3/145Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M3/155Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/156Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B6/00Heating by electric, magnetic or electromagnetic fields
    • H05B6/02Induction heating
    • H05B6/06Control, e.g. of temperature, of power
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B6/00Heating by electric, magnetic or electromagnetic fields
    • H05B6/02Induction heating
    • H05B6/10Induction heating apparatus, other than furnaces, for specific applications
    • H05B6/105Induction heating apparatus, other than furnaces, for specific applications using a susceptor
    • AHUMAN NECESSITIES
    • A24TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
    • A24FSMOKERS' REQUISITES; MATCH BOXES; SIMULATED SMOKING DEVICES
    • A24F40/00Electrically operated smoking devices; Component parts thereof; Manufacture thereof; Maintenance or testing thereof; Charging means specially adapted therefor
    • A24F40/20Devices using solid inhalable precursors
    • AHUMAN NECESSITIES
    • A24TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
    • A24FSMOKERS' REQUISITES; MATCH BOXES; SIMULATED SMOKING DEVICES
    • A24F40/00Electrically operated smoking devices; Component parts thereof; Manufacture thereof; Maintenance or testing thereof; Charging means specially adapted therefor
    • A24F40/50Control or monitoring
    • A24F40/51Arrangement of sensors
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0003Details of control, feedback or regulation circuits
    • H02M1/0006Arrangements for supplying an adequate voltage to the control circuit of converters
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the embodiments of the present application relate to the technical field of heat-not-burn smoking articles, and in particular, to an aerosol generating device.
  • Smoking articles eg, cigarettes, cigars, etc.
  • Burn tobacco during use to produce tobacco smoke.
  • Attempts have been made to replace these tobacco-burning products by making products that release compounds without burning them.
  • an example of such a product is a heating device that releases a compound by heating rather than burning a material.
  • the material may be tobacco or other non-tobacco products, which may or may not contain nicotine.
  • the prior art proposes an electromagnetic induction heating type heating device, the structure of which can be seen in FIG. The variable magnetic field penetrates to induce heat generation, thereby heating the smoking article 1 .
  • the heating device adopts a temperature sensor 4 closely fitted with the susceptor 2 to sense the real-time operating temperature of the susceptor 2, and adjusts the temperature according to the sensing result of the temperature sensor 4.
  • the parameters of the alternating magnetic field generated by the induction coil 3 make the susceptor 2 in an appropriate heating temperature range.
  • the circuit when the induction coil 3 generates an alternating magnetic field to induce the heating of the susceptor 2, the circuit is in a state of heavy load with high power output, the output current of the power supply is relatively large, and the output voltage relative to the ground drops and shakes violently, and then In this process, when the result of the temperature sensor 4 is sampled, there is a large ripple or signal noise due to the low supply voltage, which affects the accuracy of the sampling result.
  • Patent No. 201880084762.0 proposes to avoid or interrupt the alternating magnetic field when sampling the sensing result of the temperature sensor, so as to eliminate the interference to the temperature sampling result.
  • temperature sampling cannot be carried out in real time, and can only be carried out in the interval when heating is interrupted or stopped, which affects the progress of heating and easily leads to a large overshoot of temperature.
  • An embodiment of the present application provides an aerosol-generating device configured to heat an aerosol-generating article to generate an aerosol for inhalation; comprising:
  • an LC oscillator including an inductor coil and a first capacitor
  • a first switch tube positioned between the battery cell and the LC oscillator; the first switch tube is configured to be intermittently turned on to drive the LC oscillator to oscillate, thereby guiding a changing current to flow through the the inductive coil causes the inductive coil to generate a changing magnetic field;
  • a temperature sensor for sensing the temperature of the receptor
  • a sampling module for sampling the sensing result of the temperature sensor
  • the input end is connected to the battery cell, and the output end is connected to the sampling module; the DC-DC booster is configured to turn on the first switch tube when the first switch is turned on.
  • the output voltage of the cell is boosted and output to the sampling module to supply power to the sampling module.
  • the above aerosol generating device is powered by the DC-DC booster to the sampling module during the process of supplying power to the LC oscillator, so that the sampling module can accurately obtain the temperature sensed by the temperature sensor in real time during the oscillation of the LC oscillator. result.
  • a second switch tube positioned between the cell and the sampling module; the second switch tube is configured to provide the output voltage of the cell to the sampling when the first switch tube is disconnected module to power the sampling module.
  • a voltage regulator module including an input end and an output end; wherein, the input end is divided into two channels, the first channel is connected to the DC-DC booster, and the second channel is connected to the battery cell through the second switch tube; the output terminal is connected to the sampling module;
  • the voltage regulator module includes at least two voltage regulators connected in series for generating a constant voltage and powering the sampling module with the constant voltage.
  • the sampling module includes at least an operational amplifier.
  • the voltage follower is positioned between the voltage regulator module and the operational amplifier; the voltage regulator module supplies the constant voltage to the operational amplifier through the voltage follower.
  • the second-order filter is used to perform second-order filtering on the output result of the operational amplifier.
  • the voltage regulators in the voltage regulator module have the same power supply ripple rejection ratio.
  • the output voltages of at least two series-connected voltage stabilizers in the voltage stabilizer module are sequentially decreased.
  • the temperature sensor is a thermocouple; the operational amplifier is used to sample the thermoelectric potential of the hot end relative to the cold end of the thermocouple;
  • the aerosol generating device also includes:
  • the cold junction sampling unit is used for sampling the electric potential of the cold junction of the thermocouple.
  • Yet another embodiment of the present application also provides an aerosol-generating device configured to heat the aerosol-generating article to generate an aerosol for inhalation; comprising:
  • an LC oscillator comprising an inductive coil and a first capacitor; the LC oscillator is configured to intermittently induce a varying current to flow through the inductive coil to drive the inductive coil to generate a varying magnetic field;
  • a temperature sensor for sensing the temperature of the receptor
  • a sampling module for sampling the sensing result of the temperature sensor
  • the voltage stabilization module includes at least two voltage stabilizers connected in series; the voltage stabilization module is used to generate a constant voltage, and use the constant voltage to supply power to the sampling module.
  • the above aerosol generating device is powered by an operational amplifier that includes at least two series regulators to sample the sensing results of the temperature sensor, which greatly reduces the ripple interference in the sampling and operational output, and makes the LC oscillator oscillate. During the process, the temperature results sensed by the temperature sensor can be accurately obtained in real time.
  • the voltage follower is positioned between the voltage regulator module and the operational amplifier; the voltage regulator module supplies the constant voltage to the operational amplifier through the voltage follower.
  • a DC-DC (direct current-direct current) booster one end is connected to the battery cell and the other end is connected to the voltage regulator module, so as to boost the output voltage of the battery cell and output it to the voltage regulator module .
  • a third switch tube positioned between the DC-DC booster and the voltage regulator module; the third switch tube is configured to select a switch when the LC oscillator leads a changing current to flow through the inductance coil
  • the output voltage of the DC-DC booster is provided to the voltage regulator module in a flexible manner.
  • a second switch tube is positioned between the battery cell and the voltage regulator module; the second switch tube is configured to selectively connect the LC oscillator to the interval in which the variable current flows through the inductance coil.
  • the output voltage of the battery cell is provided to the voltage regulator module.
  • the second-order filter is used to perform second-order filtering on the output result of the operational amplifier.
  • the output voltages of at least two series-connected voltage stabilizers in the voltage stabilizer module are sequentially decreased.
  • the voltage regulators in the voltage regulator module have the same power supply ripple rejection ratio.
  • the temperature sensor is a thermocouple; the operational amplifier is used to sample the thermoelectric potential of the hot end relative to the cold end of the thermocouple;
  • the aerosol generating device also includes:
  • the cold junction sampling unit is used for sampling the electric potential of the cold junction of the thermocouple.
  • the controller is configured to control the LC oscillator to direct the varying current according to the output result of the operational amplifier, so as to keep the temperature of the susceptor the same as a preset value.
  • Fig. 1 is the schematic diagram of the electromagnetic induction heating type heating device of the prior art
  • FIG. 2 is a schematic diagram of an aerosol generating device according to an embodiment of the present application.
  • FIG. 3 is a schematic structural diagram of the circuit in FIG. 2 in one embodiment
  • Fig. 4 is the schematic diagram of the basic components of the switch tube drive and LC oscillator oscillation in Fig. 3;
  • FIG. 5 is a schematic diagram of the basic components of one embodiment of the boost module of FIG. 3;
  • FIG. 6 is a schematic diagram of the basic components of one embodiment of the switch module and standard voltage regulator module of Figure 3;
  • Fig. 7 is a structural block diagram of an embodiment of the sampling module in Fig. 3;
  • FIG. 8 is a schematic diagram of the basic components of one embodiment of the first sampling unit in FIG. 7;
  • FIG. 9 is a schematic diagram of the basic components of one embodiment of the second sampling unit of FIG. 8 .
  • An embodiment of the present application proposes an aerosol generating device, the structure of which can be referred to as shown in FIG. 1 , including:
  • the inductor coil L is used to generate a changing magnetic field under the alternating current
  • the susceptor 30, at least partially extending within the chamber, is configured to be inductively coupled to the inductive coil L to generate heat when penetrated by the changing magnetic field, thereby heating the aerosol-generating article A, such as a cigarette, so that the aerosol-generating article A is heated. at least one component volatilizes to form an aerosol for suction;
  • a temperature sensor 40 for sensing the temperature of the receptor 30
  • the battery cell 10 is a rechargeable DC battery cell, which can output a DC current
  • the circuit 20, through appropriate electrical connection to the rechargeable battery cell 10, is used to convert the DC current output from the battery cell 10 into an alternating current with a suitable frequency and then supply it to the inductive coil L to drive the inductive coil L to produce changes magnetic field.
  • the circuit 20 is also used to sample or receive the temperature result sensed by the temperature sensor 40, and control the current or power output to the inductance coil L according to the temperature result.
  • the inductor coil L may comprise a cylindrical inductor coil wound in a spiral shape, as shown in FIG. 1 .
  • the helically wound cylindrical inductor L may have a radius r in the range of about 5 mm to about 10 mm, and in particular the radius r may be about 7 mm.
  • the length of the helically wound cylindrical inductor coil L may be in the range of about 8 mm to about 14 mm, and the number of turns of the inductor coil L may be in the range of about 8 turns to 15 turns.
  • the inner volume may be in the range of about 0.15 cm 3 to about 1.10 cm 3 .
  • the frequency of the alternating current supplied by the circuit 20 to the inductor L is in the range of 80KHz to 400KHz; more specifically, the frequency may be in the range of about 200KHz to 300KHz.
  • the DC power supply voltage provided by the battery cell 10 is in the range of about 2.5V to about 9.0V, and the amperage of the DC current that the battery cell 10 can provide is in the range of about 2.5A to about 20A.
  • the susceptor 30 is generally in the shape of a pin or blade, which is further advantageous for insertion into the aerosol-generating article A; meanwhile, the susceptor 30 may have a length of about 12 millimeters and a width of about 4 millimeters and thickness of about 0.5mm, and can be made of grade 430 stainless steel (SS430). As an alternative example, the susceptor 30 may have a length of about 12 millimeters, a width of about 5 millimeters, and a thickness of about 0.5 millimeters, and may be made of grade 430 stainless steel (SS430).
  • SS430 grade 430 stainless steel
  • the susceptor 30 may also be configured in a cylindrical or tubular shape; in use, its inner space forms a chamber for receiving the aerosol-generating article A, and the aerosol-generating article A is processed by The peripheral heating method generates an aerosol for inhalation.
  • the susceptors can also be made of grade 420 stainless steel (SS420), and alloy materials containing iron/nickel such as permalloy.
  • the susceptor 30 is prepared from the above susceptibility materials, or obtained by electroplating, depositing, etc. on the outer surface of a heat-resistant base material such as ceramics to form a susceptor material coating.
  • the temperature sensor 40 may be a thermistor type sensor such as PT1000, or a thermocouple that acquires temperature by detecting thermoelectric potential, such as a commonly used J-type or K-type thermocouple. As shown in FIG. 2 , the temperature sensor 40 is encapsulated in a pin or sheet-like susceptor 30 , and is connected to the circuit 20 through the slender conductive wires or electrical pins or the like. In other alternative implementations, the temperature sensor 40 is attached to the outer surface of the susceptor 30 or welded on the susceptor 30 .
  • FIGS. 3 to 4 The above structure and basic components of the circuit 20 in a preferred embodiment can be referred to as shown in FIGS. 3 to 4 , including:
  • the LC oscillator 24 is composed of a capacitor C1 and an inductance coil L, and then the battery core 10 oscillates by supplying a pulse voltage to it to generate a changing current supplied to the inductance coil L, thereby generating a changing magnetic field to induce heat in the susceptor 30;
  • the LC oscillator 24 is a parallel LC oscillator 24 composed of a capacitor C1 and an inductance coil L in parallel, while in other variations, it can also be composed of a capacitor C1 and an inductance coil L in series An LC oscillator 24 is connected in series.
  • the transistor switch 23 is used to conduct a current between the battery cell 10 and the LC oscillator 24 to cause the LC oscillator 24 to oscillate, forming a changing current flowing through the inductor L.
  • the transistor switch 23 includes a first switch transistor Q1 , which is turned on and off alternately to guide current between the battery cell 10 and the LC oscillator 24 to oscillate the LC oscillator 24 , forming a flow through The changing current of the inductor coil L.
  • the first switch Q1 is a common MOS switch, and the MOS switch in the connection receives the PWM drive signal of the switch driver 22 according to the G pole and turns on/off.
  • the series-connected LC oscillator 24 can be driven to oscillate through a full-bridge/half-bridge composed of more transistor switches 23.
  • the turn-on and turn-off of the transistor switch 23 is controlled by the drive signal of the switch tube driver 22 .
  • the drive signal of the switch tube driver 22 is sent based on the received pulse control signal of the PWM mode sent by the MCU controller 21 .
  • the circuit 20 includes a sampling module 25 for sampling the sensing results of the temperature sensor 40 .
  • the MCU controller 21 controls the frequency, period and other parameters of the LC oscillator 24 according to the temperature sensed by the temperature sensor 40 sampled by the sampling module 25, and then changes the power provided to the susceptor 30, so that the heating temperature of the susceptor 30 can match the required temperature.
  • the preset target value remains the same or substantially the same.
  • the battery cell 10 needs to continuously provide a large output current during the heating process, and in the product, due to the limited capacity of the battery cell 10, the high output current can only be guaranteed by reducing the output voltage of the positive terminal of the output battery cell 10, Further, the output voltage of the positive terminal of the battery cell 10 fluctuates violently during the heating process.
  • the operation of the sampling module 25 is boosted by the boosting module 26 and then stably powered by the voltage stabilizing module 28.
  • the voltage output by the boosting module 26 is selectively output to the voltage stabilizing module 28 by the switching module 27 .
  • the device structure of the boosting module 26 is shown in FIG. 5 , including:
  • the DC-DC boost chip 261 is preferably a booster chip of the commonly used micro-source semiconductor LP6216B6F in FIG. 5, which is used to convert the voltage output by the battery cell 10 (about 4.5V) into a standard output voltage of 6.0V .
  • the 6.0V voltage output by the DC-DC boost chip 261 is selectively supplied to the voltage regulator module 28 through the switch module 27; and then stably output to the sampling module 25 after being adjusted by the voltage regulator module 28;
  • the switch module 27 mainly includes a second switch tube Q2 and a third switch tube Q3 in FIG. 6 ; when the second switch tube Q2 is turned on and the third switch tube Q3 is turned off, the output of the cell 10 is used as a voltage regulator module. 28; and when the second switch Q2 is turned off and the third switch Q3 is turned on, the output of the DC-DC boost chip 261 is used as the input stage of the voltage regulator module 28;
  • the voltage regulator module 28 includes two regulators connected in series, namely the first LDO (low dropout linear regulator) regulator 281 and the second LDO regulator 282 of the RY6211B SOT23-5 type in FIG. 6 ;
  • the regulated output of the first LDO regulator 281 is 3.3V
  • the regulated output of the second LDO regulator 282 is 3.0V.
  • the output voltage of the second LDO regulator 282 is smaller than the output voltage of the first LDO regulator 281 , and the output voltage is regulated by decreasing the voltage, which is beneficial to ripple and signal noise.
  • the voltage regulator module 28 may further include more LDO voltage regulators whose output voltages are successively reduced in series.
  • Sampling the voltage regulator module 28 with the second-level LDO to output the working voltage of the sampling module 25 can correspondingly greatly reduce the problem of inaccurate sampling results caused by the ripple of the cell 10 .
  • the ripple of the cell 10 during the heating process is 0.24V
  • the PSRR (power supply ripple rejection ratio) of the purchased RY6211B SOT23-5 LDO regulator is calculated as 70dB;
  • the commonly used K-type thermocouple with a resolution of 42uV/0.1 degrees
  • the commonly used K-type thermocouple with a resolution of 42uV/0.1 degrees
  • the double PSRR will be obtained.
  • FIG. 7 shows a schematic structural diagram of an embodiment including a K-type thermocouple type temperature sensor 40 for sampling.
  • the sampling module 25 includes: a first sampling unit 251 for sampling the thermoelectric potential between the hot end and the cold end of the K-type thermocouple, and a second sampling unit 252 for sampling the cold-end potential of the K-type thermocouple.
  • FIG. 8 shows the device composition of the first sampling unit 251 of an embodiment, including: a reference voltage source U1, a voltage follower U2, a differential operational amplifier U3, and a second-order filter 2511; the working principle in implementation is as follows :
  • the reference voltage source U1 (ie ADI chip) is used to stabilize the input standard voltage Vcc and divide the voltage by the voltage dividing resistors R3/R4 in turn, and then the output provides an accurate and stable 2.5V reference voltage PP2V5 for the subsequent circuit;
  • the reference voltage source U1 adopts the conventional REF3025, ADR03ARZ, LM385BLP, LM385BPW and other ADI chips with wide working current and output voltage; usually the working current of these ADI chips is between 15uA and 20mA, and the output voltage is between 50mV and 5V;
  • the voltage follower U2 has the characteristics of large input impedance and small output impedance, and is then used to isolate the voltage divider resistors R3/R4 and the differential amplifier unit U3, so that the differential operational amplification is not affected by the voltage divider resistors R3/R4.
  • the differential amplifying unit U3 provides an accurate bias voltage, and the bias voltage is 1.0V in implementation;
  • the sampling terminals in+/in- of the differential operational amplifier U3 are respectively connected to the positive/negative electrical pins of the K-type thermocouple 40.
  • N+/N- are the positive/negative electrical pins of the K-type thermocouple 40. connected, and then used to sample the thermoelectric potential of the hot end to the cold end of the K-type thermocouple 40 .
  • the differential operational amplifier U3 adopts a zero-drift operational amplifier whose stability is higher than that of ordinary operational amplifiers; at the same time, in order to stabilize the sampling and operation of the differential operational amplifier U3, the capacitor C5 and the capacitor C6 are used as the filtering of the supply voltage; And the input signal of the non-inverting terminal in+ is provided by the capacitor C3, the resistor R5 and the resistor R6, and the input signal of the inverting terminal in- is provided by the capacitor C4, the resistor R7 and the resistor R8.
  • the operation output result Vout PP2V5.
  • a is the operational amplifier parameter set by the differential operational amplifier U3, and ⁇ V is the potential difference between the hot and cold ends of the sampled thermocouple;
  • FIG. 9 shows a schematic diagram of a second sampling unit 252 in general; the second sampling unit 252 obtains the cold junction of a K-type thermocouple with an NTC resistor R1 adjacent to or connected to the cold junction of the thermocouple 40
  • the voltage of the reference voltage source U1 is used as the voltage input, and the cold terminal potential of the thermocouple can be obtained by detecting the voltage of the NTC resistor R1.
  • the MCU controller 21 compares the cold junction potential of the K-type thermocouple sampled by the second sampling unit 252 with the thermoelectric potential of the hot junction relative to the cold junction sampled by the first sampling unit 251 The addition operation is performed, and then the real-time temperature of the sensor 30 can be obtained by looking up the table.
  • the above-mentioned first sampling unit 251 uses the reference voltage source U1 to provide highly stable and high-precision calibration for the MCU controller 21 to receive the results, and the voltage follower U2 and the differential operational amplifier U3 perform zero-drift precise calculation and output the second-order filter , so that the signal is not affected by other loads of the circuit 20 during the sampling and operation process, and the accuracy is improved.
  • grounding methods are used for the grounding between the analog part of the circuit 20 that performs the sampling operation and the digital part of the boost driving, such as those used in FIG. 4 , FIG. 6 and FIG. 8 .
  • each module of the above circuit 20 also includes several basic components, such as resistors, capacitors, diodes, etc., which undertake conventional basic functions such as voltage reduction, current limiting, and filtering in each module.
  • basic components such as resistors, capacitors, diodes, etc., which undertake conventional basic functions such as voltage reduction, current limiting, and filtering in each module.

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Sampling And Sample Adjustment (AREA)
  • Secondary Cells (AREA)
  • Control Of Temperature (AREA)

Abstract

本申请提出一种气雾生成装置,包括:电芯,用于供电;感受器,用于被变化的磁场穿透而发热,以加热气溶胶生成制品;LC振荡器,包括电感线圈和第一电容;第一开关管,定位于电芯与LC振荡器之间;第一开关管被配置为间歇性的导通以驱动LC振荡器振荡;温度传感器,用于感测感受器的温度;采样模块,用于采样温度传感器的感测结果;DC-DC升压器,输入端与电芯连接、输出端与采样模块连接;DC-DC升压器被配置为在第一开关管导通时,将电芯的输出电压进行升压后输出至采样模块以对采样模块供电。以上气雾生成装置,在电芯向LC振荡器供电的过程中由DC-DC升压器向采样模块供电,使采样模块在LC振荡器振荡的过程中能实时准确获取温度传感器感测的温度结果。

Description

气雾生成装置
相关申请的交叉参考
本申请要求于2021年03月04日提交中国专利局,申请号为202110242013.X,申请名称为“气雾生成装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请实施例涉及加热不燃烧烟具技术领域,尤其涉及一种气雾生成装置。
背景技术
烟制品(例如,香烟、雪茄等)在使用过程中燃烧烟草以产生烟草烟雾。人们试图通过制造在不燃烧的情况下释放化合物的产品来替代这些燃烧烟草的制品。
此类产品的示例为加热装置,其通过加热而不是燃烧材料来释放化合物。例如,该材料可为烟草或其他非烟草产品,这些非烟草产品可包含或可不包含尼古丁。作为另一示例,现有技术提出了一种电磁感应加热式的加热装置,其构造可参见图1所示;当烟制品1被接收在加热装置内时,感受器2被感应线圈3产生的交变磁场穿透从而感应发热,进而对烟制品1进行加热。在加热的过程中为了便于实时监测对烟制品1加热的温度,加热装置采用一与感受器2紧密贴合的温度传感器4感测感受器2的实时操作温度,并根据温度传感器4感测的结果调节感应线圈3产生的交变磁场的参数,使感受器2处于适当的加热温度范围。
以上加热装置在实施中,当感应线圈3产生交变磁场诱导感受器2加热的过程中,电路处于高功率输出的大负载状态、电源输出电流较大,相对地输出的电压下降并抖动剧烈,进而在这一过程中采样温度传感器 4的结果时由于供电电压过低存在较大的纹波或信噪,影响了采样结果的准确性。
针对以上情形,作为现有技术201880084762.0号专利提出了在采样温度传感器的感测结果时避开或中断交变磁场,以消除对温度采样结果的干扰。以上实施中温度采样无法实时进行,仅能在加热中断或停止的间隙进行,影响加热的进度并容易导致温度存在较大的过冲。
发明内容
本申请的一个实施例提出一种气雾生成装置,被配置为加热气溶胶生成制品生成供抽吸的气溶胶;包括:
电芯,用于供电;
感受器,用于被变化的磁场穿透而发热,以加热气溶胶生成制品;
LC振荡器,包括电感线圈和第一电容;
第一开关管,定位于所述电芯与LC振荡器之间;所述第一开关管被配置为间歇性的导通以驱动所述LC振荡器振荡,进而引导变化的电流流经所述电感线圈使所述电感线圈产生变化的磁场;
温度传感器,用于感测所述感受器的温度;
采样模块,用于采样所述温度传感器的感测结果;
DC-DC升压器,输入端与所述电芯连接、输出端与所述采样模块连接;所述DC-DC升压器被配置为在所述第一开关管导通时,将所述电芯的输出电压进行升压后输出至所述采样模块以对所述采样模块供电。
以上气雾生成装置,在电芯向LC振荡器供电的过程中由DC-DC升压器向采样模块供电,使采样模块在LC振荡器振荡的过程中能实时准确获取温度传感器感测的温度结果。
在优选的实施中,还包括:
第二开关管,定位于所述电芯与采样模块之间;所述第二开关管被 配置为在所述第一开关管断开时,将所述电芯的输出电压提供给所述采样模块以对所述采样模块供电。
在优选的实施中,还包括:
稳压模块,包括输入端和输出端;其中,所述输入端分为两路,第一路与DC-DC升压器连接、第二路与通过所述第二开关管与电芯连接;所述输出端与所述采样模块连接;
所述稳压模块包括至少两个串联的稳压器,用于生成恒定电压并以该恒定电压为所述采样模块供电。
在优选的实施中,所述采样模块至少包括运算放大器。
在优选的实施中,还包括:
电压跟随器,定位于所述稳压模块与运算放大器之间;所述稳压模块通过该电压跟随器将所述恒定电压提供至所述运算放大器。
在优选的实施中,还包括:
二阶滤波器,用于对所述运算放大器的输出结果进行二阶滤波。
在优选的实施中,所述稳压模块中的稳压器具有相同的电源纹波抑制比。
在优选的实施中,所述稳压模块中至少两个串联的稳压器的输出电压是依次降低的。
在优选的实施中,所述温度传感器是热电偶;所述运算放大器用于采样所述热电偶的热端相对冷端的热电势;
所述气雾生成装置还包括:
冷端采样单元,用于采样所述热电偶的冷端的电势。
本申请的又一个实施例还提供一种气雾生成装置,被配置为加热气溶胶生成制品生成供抽吸的气溶胶;包括:
电芯,用于供电;
感受器,用于被变化的磁场穿透而发热,以加热气溶胶生成制品;
LC振荡器,包括电感线圈和第一电容;所述LC振荡器被配置为间歇性地引导变化的电流流经所述电感线圈,以驱动所述电感线圈产生变化的磁场;
温度传感器,用于感测所述感受器的温度;
采样模块,用于采样所述温度传感器的感测结果;
稳压模块,包括至少两个串联的稳压器;所述稳压模块用于生成恒定电压,并以该恒定电压为所述采样模块供电。
以上气雾生成装置,由包含有至少两个串联稳压器的来对采样温度传感器感测结果的运算放大器进行供电,大大降低了采样和运算输出中的纹波干扰,使LC振荡器振荡的过程中仍能实时准确获取温度传感器感测的温度结果。
在优选的实施中,还包括:
电压跟随器,定位于所述稳压模块与运算放大器之间;所述稳压模块通过该电压跟随器将所述恒定电压提供至所述运算放大器。
在优选的实施中,还包括:
DC-DC(直流-直流)升压器,一端与所述电芯连接、另一端与所述稳压模块连接,以将所述电芯的输出电压进行升压后输出至所述稳压模块。
在优选的实施中,还包括:
第三开关管,定位于所述DC-DC升压器与稳压模块之间;所述第三开关管被配置为当所述LC振荡器引导变化的电流流经所述电感线圈时,选择性地将所述DC-DC升压器的输出电压提供给所述稳压模块。
在优选的实施中,还包括:
第二开关管,定位于所述电芯与稳压模块之间;所述第二开关管被 配置为在所述LC振荡器引导变化的电流流经所述电感线圈的间隔,选择性地将所述电芯的输出电压提供给所述稳压模块。
在优选的实施中,还包括:
二阶滤波器,用于对所述运算放大器的输出结果进行二阶滤波。
在优选的实施中,所述稳压模块中至少两个串联的稳压器的输出电压是依次降低的。
在优选的实施中,所述稳压模块中的稳压器具有相同的电源纹波抑制比。
在优选的实施中,所述温度传感器是热电偶;所述运算放大器用于采样所述热电偶的热端相对冷端的热电势;
所述气雾生成装置还包括:
冷端采样单元,用于采样所述热电偶的冷端的电势。
在优选的实施中,还包括:
控制器,被配置为根据所述运算放大器的输出结果控制所述LC振荡器引导所述变化的电流,进而使所述感受器的温度与预设值保持相同。
附图说明
一个或多个实施例通过与之对应的附图中的图片进行示例性说明,这些示例性说明并不构成对实施例的限定,附图中具有相同参考数字标号的元件表示为类似的元件,除非有特别申明,附图中的图不构成比例限制。
图1是现有技术的电磁感应加热式的加热装置的示意图;
图2是本申请一实施例提供的气雾生成装置的示意图;
图3是图2中电路在一个实施例的结构示意图;
图4是图3中开关管驱动和LC振荡器振荡的基本组件的示意图;
图5是图3中升压模块一个实施例的基本组件的示意图;
图6是图3中开关模块和标准稳压模块一个实施例的基本组件的示意图;
图7是图3中采样模块一个实施例的结构框图;
图8是图7中第一采样单元一个实施例的基本组件的示意图;
图9是图8中第二采样单元一个实施例的基本组件的示意图。
具体实施方式
为了便于理解本申请,下面结合附图和具体实施方式,对本申请进行更详细的说明。
本申请的一实施例提出一种气雾生成装置,其构造可以参见图1所示,包括:
腔室,气溶胶生成制品A可移除地接收在腔室内;
电感线圈L,用于在交变电流下产生变化磁场;
感受器30,至少一部分在腔室内延伸,并被配置为与电感线圈L感应耦合,在被变化磁场穿透下发热,进而对气溶胶生成制品A例如烟支进行加热,使气溶胶生成制品A的至少一种成分挥发,形成供抽吸的气溶胶;
温度传感器40,用于感测感受器30的温度;
电芯10,为可充电的直流电芯,可以输出直流电流;
电路20,通过适当的电连接到可充电的电芯10,用于从将电芯10输出的直流电流,转变成具有适合频率的交变电流再供应到电感线圈L 以驱动电感线圈L产生变化磁场。同时,电路20还用于采样或接收温度传感器40感测的温度结果,并根据该温度结果控制输出给电感线圈L的电流或功率。
根据产品使用中的设置,电感线圈L可以包括绕成螺旋状的圆柱形电感器线圈,如图1中所示。绕成螺旋状的圆柱形电感线圈L可以具有范围在大约5mm到大约10mm内的半径r,并特别地半径r可以大约为7mm。绕成螺旋状的圆柱形电感线圈L的长度可以在大约8mm到大约14mm的范围内,电感线圈L的匝数大约8匝到15匝的范围内。相应地,内体积可能在大约0.15cm 3至大约1.10cm 3的范围内。
在更加优选的实施中,电路20供应到电感线圈L的交变电流的频率介于80KHz~400KHz;更具体地,频率可以在大约200KHz到300KHz的范围。
在一个优选的实施例中,电芯10提供的直流供电电压在约2.5V至约9.0V的范围内,电芯10可提供的直流电流的安培数在约2.5A至约20A的范围内。
在一个优选的实施例中,感受器30大体呈销钉或者刀片状的形状,进而对于插入至气溶胶生成制品A内是有利的;同时,感受器30可以具有大约12毫米的长度,大约4毫米的宽度和大约0.5毫米的厚度,并且可以由等级430的不锈钢(SS430)制成。作为替代性实施例,感受器30可以具有大约12毫米的长度,大约5毫米的宽度和大约0.5毫米的厚度,并且可以由等级430的不锈钢(SS430)制成。在其他的变化实施例中,感受器30还可以被构造成圆筒状或管状的形状;在使用时其内部空间形成用于接收气溶胶生成制品A的腔室,并通过对气溶胶生成制品A的外周加热的方式,生成供吸食的气溶胶。这些感受器还可以由等级420的不锈钢(SS420)、以及含有铁/镍的合金材料(比如坡莫合金) 制成。
在可选的实施中,感受器30是由以上感受性的材质制备的,或者是由陶瓷等耐热的基体材质外表面上电镀、沉积等形成感受材料涂层获得的。
在优选的实施中,温度传感器40在实施中可以是热敏电阻式的传感器如PT1000等,还可以是通过检测热电势进而获取温度的热电偶例如常用的J型或K型热电偶。在图2中所示,温度传感器40是被封装于销钉或片状的感受器30内的,并通过其所具有的细长的导电丝或电引脚等贯穿至感受器30外部与电路20连接。在其他的可选实施中,温度传感器40是紧贴感受器30外部表面或焊接在感受器30上的。
以上由电路20在一个优选的实施方式中的结构和基本组件可以参见图3至图4所示,包括:
LC振荡器24,由电容C1与电感线圈L组成,进而电芯10通过对其提供脉冲电压使其振荡,产生供应到电感线圈L的变化的电流,从而产生变化的磁场诱导感受器30发热;在图4所示的优选实施中,该LC振荡器24是电容C1与电感线圈L并联组成的并联LC振荡器24,而在其他的变化实施中,还可以是电容C1与电感线圈L串联组成的串联LC振荡器24。
晶体管开关23用于在电芯10与LC振荡器24之间引导电流使LC振荡器24振荡,形成流过电感线圈L的变化的电流。在图4所示的实施中,晶体管开关23包括第一开关管Q1,交替的导通和关闭,以在电芯10与LC振荡器24之间引导电流使LC振荡器24振荡,形成流过电感线圈L的变化的电流。当然,在图4所示的优选实施中,第一开关管Q1是常用的MOS管开关,连接中MOS管开关根据G极接收开关管驱动22的PWM驱动信号进而导通/断开。在其他的变化实施中,例如配合串 联的串联LC振荡器24中,可以通过更多的晶体管开关23组成的全桥/半桥驱动串联LC振荡器24振荡等。
进一步在优选的实施中,晶体管开关23的导通和断开是由开关管驱动22的驱动信号控制的。例如图4中采用的常用的FD2204开关驱动器。当然,开关管驱动22的驱动信号是基于接收的MCU控制器21发出的PWM方式的脉冲控制信号发出的。
进一步在图2所示的优选实施中,电路20包括有采样温度传感器40的感测结果的采样模块25。MCU控制器21根据采样模块25采样获得的温度传感器40的感测温度,控制LC振荡器24的频率、周期等参数进而改变提供给感受器30的功率,使感受器30的加热温度能与所需的预设目标值保持相同或基本相同。
进一步通常在实施中,加热过程中电芯10需要持续提供大的输出电流,而产品中由于电芯10容量有限则只能通过降低输出电芯10正端的输出电压来保证较高的输出电流,进而使电芯10正端的输出电压在加热过程中波动剧烈。参见图3所示,电路20中为了消除在温度采样过程中由电芯10输出的电压波动剧烈造成的纹波,采样模块25的工作由升压模块26升压后经稳压模块28稳定供电。当然升压模块26输出的电压由开关模块27选择性地输出给稳压模块28。具体,在一个实施例中升压模块26的器件结构参见图5所示,包括:
DC-DC升压芯片261,在图5中优选采用的是常用的微源半导体LP6216B6F的升压芯片,用于将电芯10输出的电压(约为4.5V)转换成6.0V的标准输出电压。
进一步参见图2和图6,由DC-DC升压芯片261输出的6.0V电压经开关模块27选择性提供给稳压模块28;而后由稳压模块28调整后稳定输出给采样模块25;其中,
开关模块27在图6中主要包括有第二开关管Q2和第三开关管Q3;当第二开关管Q2导通而第三开关管Q3断开时,由电芯10的输出作为稳压模块28的输入级;而当第二开关管Q2断开而第三开关管Q3导通时,则由DC-DC升压芯片261的输出作为稳压模块28的输入级;
稳压模块28包括有两个串联的稳压器,即分别为图6中的RY6211B SOT23-5型第一LDO(低压差线性稳压)稳压器281和第二LDO稳压器282;其中第一LDO稳压器281的稳压输出为3.3V,第二LDO稳压器282的稳压输出为3.0V。第二LDO稳压器282的输出电压小于第一LDO稳压器281的输出电压,将电压递减的方式进行稳压输出有利于纹波和信噪。在其他更多的变化实施中,在保证能提供给采样模块25足够稳定工作电压的情形下,稳压模块28还可以包括继续串联输出电压依次降低的更多LDO稳压器。
采样以上具有二级LDO的稳压模块28来输出提供采样模块25的工作电压,能相应大大减小电芯10的纹波造成采样结果不准确的问题。具体,假设加热过程中电芯10的纹波为0.24V,以所购买选用的RY6211B SOT23-5型LDO稳压器的PSRR(电源纹波抑制比)为70dB计算;经过一级LDO(3.3V)后,输出电压的纹波约=0.24/10 70/20=76uV,而通常采用的K型热电偶(分辨精度为42uV/0.1度)最小要求纹波为4.2uV;因此仅有一级LDO是不够的。当进一步包含二极LDO(3.0V)时,便会获得双倍的PSRR,此时输出电压的纹波约=0.24/10 (70+70)/20=0.024uV;则二级LDO相比一级LDO大大降低了纹波干扰。
进一步为了使采样模块25自身同样准确获取温度传感器40所感测的结果,图7出了一个实施例中包括有用于采样K型热电偶式的温度传感器40的结构示意图。在该实施例中采样模块25包括:用于采样K型热电偶的热端相对冷端的热电势的第一采样单元251、以及用于采样K 型热电偶冷端电势的第二采样单元252。
具体在图8中示出了一个实施例的第一采样单元251的器件组成,包括:基准电压源U1、电压跟随器U2、差分运算放大器U3、二阶滤波器2511;在实施中工作原理为:
基准电压源U1(即ADI芯片)用于将输入的标准电压Vcc依次经稳压、分压电阻R3/R4分压后,输出为后级电路提供精确稳定的2.5V的基准电压PP2V5;在实施中,基准电压源U1采用常规的REF3025、ADR03ARZ、LM385BLP、LM385BPW等宽工作电流和输出电压的ADI芯片;通常这些ADI芯片的工作电流介于15uA~20mA、输出电压介于50mV~5V;
电压跟随器U2,具有输入阻抗大、输出阻抗小的特点,进而用来隔离分压电阻R3/R4与差分放大单元U3,使其差分运算放大倍数不受分压电阻R3/R4的影响,为差分放大单元U3提供精确的偏置电压,实施中偏置电压为1.0V;
差分运算放大器U3的采样端in+/in-分别连接至K型热电偶40的正/负极电引脚连接,例如图8中N+/N-为K型热电偶40的正/负极电引脚的接入,进而用于采样K型热电偶40的热端对冷端的热电势。
在优选的实施中,差分运算放大器U3采用稳定性高于普通运放的零漂移运放进行;同时,为了稳定差分运算放大器U3的采样和运算,由电容C5和电容C6作为供电电压的滤波;以及由电容C3、电阻R5和电阻R6提供正相端in+的输入信号,由电容C4、电阻R7和电阻R8提供反相端in-的输入信号。
则在图8所示的实施例中,差分运算放大器U3工作中通过采样N+/N-的电势后运算输出的结果Vout=PP2V5﹒R4/(R3+R4)+a﹒ΔV;式中a为差分运算放大器U3设置的运放参数、ΔV为采样的热电偶冷热两端的电势差;
而后进一步以上运算的结果经由二阶滤波器2511稳定输出至MCU控制器21。
进一步参见图9,图9示出了一个以通常第二采样单元252的示意图;第二采样单元252以与热电偶40的冷端毗邻或连接的NTC电阻R1来获取K型热电偶的冷端电势、并与标准电阻R2构建分压,再由基准电压源U1的供电电压PP2V5作为电压输入即可通过检测NTC电阻R1的电压获取热电偶的冷端电势。基于K型热电偶的冷端补偿原理采样,则MCU控制器21将第二采样单元252采样的K型热电偶的冷端电势、与第一采样单元251采样获取的热端相对冷端的热电势进行加法运算,而后查表即可获得感受器30的实时温度。
以上第一采样单元251以基准电压源U1为MCU控制器21的结果接收提供高稳定、高精度的校准,并由电压跟随器U2、差分运算放大器U3进行零漂移的精确运算后二阶滤波输出,使采样和运算过程中信号不受电路20的其他负载的影响,提升了准确性。
进一步在更加优选的实施中,使电路20的进行采样运算的模拟部分、以及升压驱动的数字部分等之间的接地分别采用不同的接地方式,例如图4、图6和图8中采用的直接接地、等电势接地、接外壳接地;并对不同的接地之间采用大电阻或磁珠等电子领域隔离措施进行隔离,已屏蔽它们之间的信噪干扰,例如图4中的隔离电阻R8。
进一步在以上电路20各模块中,还包括有若干基本元器件,例如电阻、电容、二极管等,它们在各模块中承担常规的降压、限流、滤波等基础功能。
需要说明的是,本申请的说明书及其附图中给出了本申请的较佳的实施例,但并不限于本说明书所描述的实施例,进一步地,对本领域普 通技术人员来说,可以根据上述说明加以改进或变换,而所有这些改进和变换都应属于本申请所附权利要求的保护范围。

Claims (10)

  1. 一种气雾生成装置,被配置为加热气溶胶生成制品生成气溶胶;其特征在于,包括:
    电芯,用于供电;
    感受器,用于被变化的磁场穿透而发热,以加热气溶胶生成制品;
    LC振荡器,包括电感线圈和第一电容;
    第一开关管,定位于所述电芯与LC振荡器之间;所述第一开关管被配置为间歇性的导通以驱动所述LC振荡器振荡,进而引导变化的电流流经所述电感线圈使所述电感线圈产生变化的磁场;
    温度传感器,用于感测所述感受器的温度;
    采样模块,用于采样所述温度传感器的感测结果;
    DC-DC升压器,输入端与所述电芯连接、输出端与所述采样模块连接;所述DC-DC升压器被配置为在所述第一开关管导通时,将所述电芯的输出电压进行升压后输出至所述采样模块以对所述采样模块供电。
  2. 如权利要求1所述的气雾生成装置,其特征在于,还包括:
    第二开关管,定位于所述电芯与采样模块之间;所述第二开关管被配置为在所述第一开关管断开时,将所述电芯的输出电压提供给所述采样模块以对所述采样模块供电。
  3. 如权利要求2所述的气雾生成装置,其特征在于,还包括:
    稳压模块,包括输入端和输出端;其中,所述输入端分为两路,第一路与DC-DC升压器连接、第二路与通过所述第二开关管与电芯连接;所述输出端与所述采样模块连接;
    所述稳压模块包括至少两个串联的稳压器,用于生成恒定电压并以该恒定电压为所述采样模块供电。
  4. 如权利要求3所述的气雾生成装置,其特征在于,所述采样模块至少包括运算放大器。
  5. 如权利要求4所述的气雾生成装置,其特征在于,还包括:
    电压跟随器,定位于所述稳压模块与运算放大器之间;所述稳压模块通过该电压跟随器将所述恒定电压提供至所述运算放大器。
  6. 如权利要求4所述的气雾生成装置,其特征在于,还包括:
    二阶滤波器,用于对所述运算放大器的输出结果进行二阶滤波。
  7. 如权利要求3所述的气雾生成装置,其特征在于,所述稳压模块中的稳压器具有相同的电源纹波抑制比。
  8. 如权利要求3所述的气雾生成装置,其特征在于,所述稳压模块中至少两个串联的稳压器的输出电压是依次降低的。
  9. 如权利要求4所述的气雾生成装置,其特征在于,所述温度传感器是热电偶;所述运算放大器用于采样所述热电偶的热端相对冷端的热电势;
    所述气雾生成装置还包括:
    冷端采样单元,用于采样所述热电偶的冷端的电势。
  10. 一种气雾生成装置,被配置为加热气溶胶生成制品生成气溶胶;其特征在于,包括:
    电芯,用于供电;
    感受器,用于被变化的磁场穿透而发热,以加热气溶胶生成制品;
    LC振荡器,包括电感线圈和第一电容;所述LC振荡器被配置为间歇性地引导变化的电流流经所述电感线圈,以驱动所述电感线圈产生变化的磁场;
    温度传感器,用于感测所述感受器的温度;
    采样模块,用于采样所述温度传感器的感测结果;
    稳压模块,包括至少两个串联的稳压器;所述稳压模块用于根据所述电芯的输出电压生成恒定电压,并以该恒定电压为所述采样模块供电。
PCT/CN2022/079348 2021-03-04 2022-03-04 气雾生成装置 WO2022184171A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP22762632.2A EP4302623A1 (en) 2021-03-04 2022-03-04 Aerosol generating apparatus
US18/280,267 US20240065331A1 (en) 2021-03-04 2022-03-04 Vapor generation device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110242013.X 2021-03-04
CN202110242013.XA CN115024518A (zh) 2021-03-04 2021-03-04 气雾生成装置

Publications (1)

Publication Number Publication Date
WO2022184171A1 true WO2022184171A1 (zh) 2022-09-09

Family

ID=83118225

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/079348 WO2022184171A1 (zh) 2021-03-04 2022-03-04 气雾生成装置

Country Status (4)

Country Link
US (1) US20240065331A1 (zh)
EP (1) EP4302623A1 (zh)
CN (1) CN115024518A (zh)
WO (1) WO2022184171A1 (zh)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN205987969U (zh) * 2016-08-17 2017-03-01 卓尔悦欧洲控股有限公司 电子烟及其供电电路
CN110101117A (zh) * 2019-04-30 2019-08-09 安徽中烟工业有限责任公司 一种使用lc振荡电路的加热装置
CN212464915U (zh) * 2020-08-12 2021-02-05 深圳市合元科技有限公司 气雾生成装置及感受器

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN205987969U (zh) * 2016-08-17 2017-03-01 卓尔悦欧洲控股有限公司 电子烟及其供电电路
CN110101117A (zh) * 2019-04-30 2019-08-09 安徽中烟工业有限责任公司 一种使用lc振荡电路的加热装置
CN212464915U (zh) * 2020-08-12 2021-02-05 深圳市合元科技有限公司 气雾生成装置及感受器

Also Published As

Publication number Publication date
CN115024518A (zh) 2022-09-09
US20240065331A1 (en) 2024-02-29
EP4302623A1 (en) 2024-01-10

Similar Documents

Publication Publication Date Title
US11937643B2 (en) Inductive heating circuit for volatilizing smokeable material
US20220183392A1 (en) Apparatus for aerosol generating device
EP3701819A1 (en) Aerosol generator
US20220183377A1 (en) Apparatus for aerosol generating device
JP7360744B2 (ja) エアロゾル供給デバイス
UA127835C2 (uk) Апарат для пристрою, що генерує аерозоль
EP3701820A1 (en) Aerosol generating device, method for controlling aerosol generating device, and program for causing processor to execute said method
CN106339026B (zh) 电子烟加热功率稳定控制电路
CN104881063A (zh) 一种自动控温铂金丝电子烟
WO2022121946A1 (zh) 气雾生成装置及其控制方法
WO2022184171A1 (zh) 气雾生成装置
KR20220125349A (ko) 흡연 세트 제어 회로 및 흡연 세트
CN204540829U (zh) 一种能够自动控温的电子烟
US20240172801A1 (en) Inductive heating device having a voltage converter
WO2019196517A1 (zh) 一种气溶胶生成装置及其电路
CN112806610B (zh) 气雾生成装置及控制方法
WO2022017418A1 (zh) 气雾生成装置
RU2816455C2 (ru) Прибор для устройства генерации аэрозоля
CN220274949U (zh) 气雾生成装置及感应线圈
KR20230117745A (ko) 에어로졸 생성 장치 및 제어 방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22762632

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 18280267

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2022762632

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2022762632

Country of ref document: EP

Effective date: 20231004