WO2021083318A1 - 金属氧化物纳米颗粒及其制备方法、量子点发光二极管 - Google Patents

金属氧化物纳米颗粒及其制备方法、量子点发光二极管 Download PDF

Info

Publication number
WO2021083318A1
WO2021083318A1 PCT/CN2020/125188 CN2020125188W WO2021083318A1 WO 2021083318 A1 WO2021083318 A1 WO 2021083318A1 CN 2020125188 W CN2020125188 W CN 2020125188W WO 2021083318 A1 WO2021083318 A1 WO 2021083318A1
Authority
WO
WIPO (PCT)
Prior art keywords
metal oxide
oxide nanoparticles
reagent
organic
organic reagent
Prior art date
Application number
PCT/CN2020/125188
Other languages
English (en)
French (fr)
Inventor
程陆玲
Original Assignee
Tcl科技集团股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tcl科技集团股份有限公司 filed Critical Tcl科技集团股份有限公司
Publication of WO2021083318A1 publication Critical patent/WO2021083318A1/zh
Priority to US17/733,050 priority Critical patent/US20220267671A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/54Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing zinc or cadmium
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/02Use of particular materials as binders, particle coatings or suspension media therefor
    • C09K11/025Use of particular materials as binders, particle coatings or suspension media therefor non-luminescent particle coatings or suspension media
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G53/00Compounds of nickel
    • C01G53/04Oxides; Hydroxides
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G9/00Compounds of zinc
    • C01G9/02Oxides; Hydroxides
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/02Use of particular materials as binders, particle coatings or suspension media therefor
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/60Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing iron, cobalt or nickel
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/60Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing iron, cobalt or nickel
    • C09K11/602Chalcogenides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/50Wavelength conversion elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/50Wavelength conversion elements
    • H01L33/501Wavelength conversion elements characterised by the materials, e.g. binder
    • H01L33/502Wavelength conversion materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y20/00Nanooptics, e.g. quantum optics or photonic crystals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/64Nanometer sized, i.e. from 1-100 nanometer
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
    • H10K50/115OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers comprising active inorganic nanostructures, e.g. luminescent quantum dots

Definitions

  • This application relates to the technical field of nano particles, in particular to a metal oxide nano particle, a preparation method thereof, and a quantum dot light emitting diode.
  • Quantum dots are semiconductor nanostructures that bind excitons in three spatial directions. With the development of quantum dot technology, the application of quantum dots has penetrated into many fields, especially in the fields of quantum dot light-emitting diodes, solar cells, and biomarkers, especially bioluminescent labeling technology.
  • the stability of quantum dots has a greater impact on the application of the product.
  • the factors affecting the stability of quantum dots mainly come from two aspects: on the one hand, due to the large exciton radius of the quantum dot itself, the surface state of the quantum dot is relatively active, resulting in poor stability; on the other hand, the defect state existing on the surface of the quantum dot , The shortcomings are too easy to be oxidized, resulting in unstable quantum dots.
  • improving the stability of quantum dots is mainly achieved by improving the surface defect states of quantum dots.
  • Traditional methods mostly passivate the surface of quantum dots by growing a wide band gap inorganic shell layer on the surface of quantum dots, thereby reducing the surface defect states of quantum dots.
  • the quantum dots prepared by this method may have lattice fitting defects, which will cause the emission peak width of the quantum dots to be broadened, which in turn affects the color purity.
  • the purpose of the embodiments of this application is to provide a metal oxide nanoparticle and a preparation method thereof, and a quantum dot light-emitting diode, which aims to improve the stability of the quantum dot by growing a wide band gap inorganic shell layer on the surface of the quantum dot
  • a defect in the lattice adaptation which causes the emission peak width of the quantum dot to be broadened, thereby affecting the problem of color purity.
  • a method for preparing metal oxide nanoparticles which includes the following steps:
  • the metal oxide nanoparticle samples are water-phase metal oxide nanoparticles; in X-(SO 2 )-Y, X contains Polar functional group;
  • the organic reagent and the metal oxide nanoparticle sample are mixed and processed in a liquid medium, and an alkaline reagent is added to prepare the metal oxide nanoparticle.
  • the polar functional group is selected from at least one of a hydroxyl group, a carboxyl group, and an amino group.
  • X is selected from -(CH 2 ) n -NH 2 , -(CH 2 ) n -OH, -(CH 2 ) n -COOH
  • n is an integer of 1-18.
  • the organic reagent with the molecular formula X-(SO 2 )-Y is selected from OH-(CH 2 ) n -(SO 2 )-(CH 2 ) m -NH 2 , OH-(CH 2 ) n- (SO 2 )-(CH 2 ) m -COOH, OH-(CH 2 ) n -(SO 2 )-(CH 2 ) m -OH, NH 2 -(CH 2 ) n -(SO 2 )-(CH 2 ) At least one of m -NH 2 and COOH-(CH 2 ) n -(SO 2 )-(CH 2 ) m -COOH, wherein the value of m is an integer of 1-18.
  • the liquid phase medium is selected from at least one of ethanol, methanol, isopropanol, acetonitrile, and tetrahydrofuran.
  • the step of mixing the organic reagent and the metal oxide nanoparticle sample in a liquid medium includes: dissolving the organic reagent in the liquid medium to form an organic solution; combining the organic solution with the metal oxide nanoparticle The sample is mixed.
  • the concentration of the organic reagent in the organic solution is 0.1-10 mmol/L.
  • the organic reagent and the metal oxide nanoparticle sample in the liquid phase medium according to the molar mass ratio of the organic reagent to the metal oxide nanoparticle (1-50mmol): 100mg, the organic The reagent and the metal oxide nanoparticle sample are mixed.
  • the alkaline agent is selected from at least one of ammonia and tetramethylammonium hydroxide.
  • the step of adding a precipitation agent to the obtained mixed system is further included.
  • the precipitant in the step of adding the precipitant to the obtained mixed system, is added to the mixed system according to the volume ratio of the precipitant to the mixed system of (1-5):1.
  • the method of adding the alkaline reagent is: in an inert atmosphere, under agitation Add alkaline reagent to the mixture.
  • the alkaline reagent in the step of adding the alkaline reagent to the mixed solution, is added to the mixed solution according to the molar amount relationship of the alkaline reagent and the organic reagent at a ratio of (1-3):1.
  • the stirring conditions include a stirring time, and the stirring time is 10 to 120 minutes.
  • a metal oxide nanoparticle is provided, and the metal oxide nanoparticle is prepared by the method for preparing the metal oxide nanoparticle provided in the first aspect.
  • a quantum dot light-emitting diode including a quantum dot light-emitting layer, and the material of the quantum dot light-emitting layer is the metal oxide nanoparticles provided in the second aspect.
  • the beneficial effect of the method for preparing metal oxide nanoparticles is that after the metal oxide nanoparticle sample is mixed with the organic reagent with the molecular formula X-(SO 2 )-Y, an alkaline reagent, an organic reagent, is added chemical reaction under the action of an alkaline agent, to generate oxygen-containing anion X- (SO 2) -O - (reaction mechanism is: X- (SO 2) -Y + 2OH - ⁇ X- (SO 2) -O - +Y-OH+H + ).
  • the oxygen anions in X-(SO 2 )-O - can quickly combine with metal atoms on the surface of metal oxide nanoparticles and fill the oxygen vacancies on the surface, thereby achieving passivation of metal oxide nanoparticles and reducing metal oxide nanoparticles
  • the surface defect state of the particles improves the stability of the metal oxide nanoparticles.
  • Quantum dot provided in the embodiment of the present application is that the beneficial effects: due to quantum dot obtained by the above method of preparation, therefore, the metal atoms in the surface of the metal oxide nano-particles in combination with X- (SO 2) -O -, X- (SO 2 ).
  • the oxygen anions in -O - can quickly combine with the metal atoms on the surface of the metal oxide nanoparticles and fill the oxygen vacancies on the surface, thereby achieving passivation of the metal oxide nanoparticles and reducing the surface defect state of the metal oxide nanoparticles , Thereby improving the stability of metal oxide nanoparticles.
  • the beneficial effect of the quantum dot light-emitting diode provided by the embodiments of the present application is that since the material of the quantum dot light-emitting layer is the aforementioned metal oxide nanoparticles, the quantum dot light-emitting layer has excellent stability.
  • FIG. 1 is a schematic flow chart of a method for preparing metal oxide nanoparticles according to an embodiment of the present application.
  • first and second are only used for ease of description, and cannot be understood as indicating or implying relative importance or implicitly indicating the number of technical features. Therefore, the features defined with “first” and “second” may explicitly or implicitly include one or more of these features.
  • the meaning of “plurality” means two or more than two, unless otherwise specifically defined.
  • an embodiment of the present application provides a method for preparing metal oxide nanoparticles, which includes the following steps:
  • the metal oxide nanoparticle samples are water-phase metal oxide nanoparticles; in X-(SO 2 )-Y, X Contains polar functional groups;
  • the organic reagent and the metal oxide nanoparticle sample are mixed and processed in a liquid medium and an alkaline reagent is added to prepare the metal oxide nanoparticle.
  • the oxygen anions in X-(SO 2 )-O - can quickly combine with metal atoms on the surface of metal oxide nanoparticles and fill the oxygen vacancies on the surface, thereby achieving passivation of metal oxide nanoparticles and reducing metal oxide nanoparticles
  • the surface defect state of the particles improves the stability of the metal oxide nanoparticles.
  • the metal oxide nanoparticle sample is a conventional metal oxide nanoparticle, including but not limited to ZnO, NiO, W 2 O 3 , Mo 2 O 3 , TiO 2 , SnO, ZrO 2 , Ta 2 O 3 .
  • the oil phase metal oxide nanoparticles are easy to introduce functional groups such as carboxyl groups during the preparation process, it is difficult for oxygen anions to combine and fill their oxygen vacancies. Therefore, the metal oxide nanoparticle samples in the embodiments of the present application are water-phase metal oxide nanoparticles, that is, the surface of the metal oxide nanoparticle samples contains an aqueous ligand.
  • the aqueous ligands include but are not limited to -(CH 2 ) l -OH, -(CH 2 ) l -COOH, -(CH 2 ) l -NH 2 , where the value of l is 0-18.
  • -(SO 2 )- (can also be expressed as -S(O 2 )-) has a strong electron-withdrawing function, which promotes X-(SO 2 )-Y in photolysis under basic reagent from, and - formation of oxygen anion side, so that by X- (sO 2) -O - - (sO 2), with the metal oxide nanoparticle solution sample surface defect states more water problem.
  • At least X contains a polar functional group, so that the organic reagents with the molecular formula X-(SO 2 )-Y remain hydrophilic as a whole.
  • Full dispersion with the water-phase metal oxide nanoparticle sample is conducive to the dissociated X-(SO 2 )-O -to quickly bond with the metal atoms on the surface of the metal oxide nanoparticle and fill the surface oxygen vacancies.
  • Y contains a polar functional group.
  • the polar functional group is selected from at least one of a hydroxyl group, a carboxyl group, and an amino group, and in some embodiments is a hydroxyl group.
  • X is selected from -(CH 2 ) n -NH 2 , -(CH 2 ) n -OH, -(CH 2 ) n- One of COOH, where n is an integer of 1-18.
  • X is the alkane structure of the hydrocarbon backbone, and does not contain other functional groups except for hydroxyl, carboxyl, and amino groups, thereby avoiding the introduction of other energetic groups or complex structures, affecting the molecular formula as X-(SO 2 ) -The reaction of Y organic reagents and alkaline reagents hinders the formation of oxygen anions.
  • the organic reagent with the molecular formula X-(SO 2 )-Y has better water solubility and better dispersibility with water-phase metal oxide nanoparticle samples. It is conducive to the passivation of the subsequent water phase metal oxide nanoparticle samples; and the above selection will not affect the passivation efficiency due to the excessively long carbon chain length, resulting in excessive viscosity.
  • X is selected from -(CH 2 ) n -NH 2 , -(CH 2 ) n -OH, -(CH 2 ) n- One of COOH, the choice of Y is not strictly limited, and it may contain polar groups or not contain polar groups. In some embodiments, in the organic reagent with the molecular formula X-(SO 2 )-Y, Y does not contain a polar group, and one of an alkyl group, a cycloalkyl group, or a hydrogen atom can be selected.
  • Y is selected from alkyl groups with 1 to 18 carbon atoms, and cycloalkyl groups with 3-8 carbon atoms.
  • the organic reagent with the molecular formula X-(SO 2 )-Y is selected from OH-(CH 2 ) n -(SO 2 )-(CH 2 ) m -CH 3 , CH 3 -(CH 2 ) n -(SO 2 )-(CH 2 ) m -COOH ⁇ CH 3 -(CH 2 ) n -(SO 2 )-(CH 2 ) m -OH ⁇ CH 3 -(CH 2 ) n -(SO 2 )-(CH 2 ) m -NH 2 , CH 3 -(CH 2 ) n -(SO 2 )-(CH 2 ) m -COOH, CH 3 -(CH 2 ) n -(SO 2 )-(CH 2 ) m -NH 2 ,
  • Y contains a polar group.
  • the organic reagent with the molecular formula X-(SO 2 )-Y is selected from OH-(CH 2 ) n -(SO 2 )-(CH 2 ) m -NH 2 , OH-(CH 2 ) n -(SO 2 )-(CH 2 ) m -COOH, OH-(CH 2 ) n -(SO 2 )-(CH 2 ) m -OH, NH 2 -(CH 2 ) n -(SO 2 )- At least one of (CH 2 ) m -NH 2 , COOH-(CH 2 ) n -(SO 2 )-(CH 2 ) m -COOH, where n is an integer from 1 to 18, and m is The value is an integer from 1 to 18.
  • the main chain carbon atoms in X and Y are controlled within a suitable range, which can prevent the free ends of the groups on the surface of the prepared metal oxide nanoparticles from being too long, resulting in too high viscosity and reducing the metal oxide nanoparticles’ Film-forming performance.
  • step S02 the organic reagent and the metal oxide nanoparticle sample are mixed and processed in a liquid medium, so that the metal oxide nanoparticle sample and the organic reagent are uniformly mixed, and a mixed liquid of the organic reagent and the metal oxide nanoparticle sample is obtained .
  • the liquid phase medium is used as the dispersion medium to dissolve and disperse the organic reagent, so that it can be fully dispersed with the metal oxide nanoparticle sample, so that the organic reagent can be dissociated into X-(SO 2 ) containing oxygen anions. After -O - , it can smoothly bond with the metal atoms of the metal oxide nanoparticle sample and fill the oxygen vacancies on the surface.
  • the liquid phase medium is selected from at least one of ethanol, methanol, isopropanol, acetonitrile, and tetrahydrofuran.
  • the step of mixing the organic reagent and the metal oxide nanoparticle sample in a liquid medium includes: dissolving the organic reagent in the liquid medium to form an organic solution; and combining the organic solution with the metal oxide nanoparticle sample. The particle sample is mixed.
  • the concentration of the organic reagent in the organic reagent solution is 0.1-10 mmol/L.
  • the concentration of the organic reagent is related to the molecular weight of the organic reagents listed above. When the molecular weight of the organic reagent is small, the concentration of the organic reagent is high, so that the content of organic molecules containing oxygen anions after the dissociation of the organic reagent is relatively high, which can be uniformly and fully distributed and bound around the surface of the metal oxide nanoparticles. When the molecular weight of the organic reagent is large, the molecular weight of the dissociated corresponding organic molecules is also large.
  • the molar mass ratio of the organic reagent to the metal oxide nanoparticle is (1-50mmol): 100mg. .
  • the organic reagent and the metal oxide nanoparticle sample are mixed. If the content of the organic reagent is too low, the content of organic molecules containing oxygen-containing anions dissociated from the organic reagent is low, and the passivation effect on the metal oxide nanoparticle sample is not good. If the content of the organic reagent is too high, the organic reagent is likely to remain, and the remaining organic molecules are introduced as impurities into the metal oxide nanoparticles, which affects the performance of the metal oxide nanoparticles.
  • metal oxide nanoparticles are used as light-emitting layer materials in light-emitting devices, since the remaining organic reagents are insulating molecules, they are not conductive themselves, thereby reducing the luminous efficiency of the resulting quantum dot light-emitting layer.
  • the organic reagent and the metal oxide nanoparticle sample are mixed and processed in a liquid medium at 20-60°C.
  • the gas environment in which the organic reagent and the metal oxide nanoparticle sample are mixed in the liquid medium is an inert atmosphere to prevent the introduction of oxidizing gas and interfere with the reduction reaction in the following steps.
  • the alkaline reagent is an alkaline reagent soluble in polar reagents, so as to ensure that the reaction with X-(SO 2 )-Y can proceed smoothly.
  • the alkaline reagent is selected from one of ammonia water and tetramethylammonium hydroxide, but is not limited thereto. The above alkaline reagents can quickly react with X-(SO 2 )-Y to obtain X-(SO 2 )-O - containing oxygen anions.
  • the alkaline reagent in the step of adding the alkaline reagent to the mixed solution, is added to the mixed solution according to the molar amount relationship of the alkaline reagent and the organic reagent at a ratio of (1-3):1.
  • the alkaline reagent is added to the mixed solution by one-time addition, or it can be added slowly such as dripping. In some embodiments, adding alkaline reagents to the mixed solution is carried out at 20-60°C. In some embodiments, the gas environment in which the alkaline reagent is added to the mixed solution is an inert atmosphere to prevent the introduction of oxidizing gas and interfere with the progress of the reaction.
  • the method of adding the alkaline reagent to the mixed solution is: adding the alkaline reagent to the mixed solution under stirring conditions in an inert atmosphere to promote the reaction, and the stirring time is 10 to 120 minutes.
  • a precipitating agent is added to the mixed system to precipitate the metal oxide nanoparticles in the reaction system and collected by centrifugal separation.
  • the precipitating agent is selected from at least one of ethyl acetate, methyl acetate, propyl acetate, butyl acetate, ethyl formate, methyl formate, propyl formate, and butyl formate, but is not limited to this.
  • the precipitant in the step of adding the precipitant to the mixed system, according to the volume ratio of the precipitant to the mixed system of (1 ⁇ 5):1, the precipitant is added to the mixed system to promote the metal oxide nanoparticles Of precipitation.
  • the metal oxide nanoparticles are separated by high-speed centrifugation.
  • the separated metal oxide nanoparticles after passivation treatment are re-dispersed in corresponding reagents to prepare aqueous metal oxide nanoparticles with better solubility and stability.
  • the second aspect of the embodiments of the present application provides a quantum dot, which is prepared by the above-mentioned method for preparing metal oxide nanoparticles.
  • Quantum dot provided in the embodiment of the present application, obtained by the above method of preparation, therefore, the metal atoms in the surface of the metal oxide nano-particles in combination with X- (SO 2) -O -, X- (SO 2) -O - oxygens Negative ions can quickly combine with the metal atoms on the surface of the metal oxide nanoparticles and fill the oxygen vacancies on the surface, thereby achieving passivation of the metal oxide nanoparticles, reducing the surface defect state of the metal oxide nanoparticles, and improving the metal oxide The stability of nanoparticles.
  • the third aspect of the embodiments of the present application provides a quantum dot light-emitting diode, which includes a quantum dot light-emitting layer, and the material of the quantum dot light-emitting layer is the aforementioned metal oxide nanoparticles.
  • the quantum dot light-emitting layer since the material of the quantum dot light-emitting layer is the aforementioned metal oxide nanoparticles, the quantum dot light-emitting layer has excellent stability.
  • a method for preparing metal oxide nanoparticles includes the following steps:
  • a method for preparing metal oxide nanoparticles includes the following steps:
  • a method for preparing metal oxide nanoparticles includes the following steps:
  • oxygen gas was introduced into the above mixed solution at a rate of 1 ml/min, and the air was continuously ventilated for 1 hour with stirring.
  • a method for preparing metal oxide nanoparticles includes the following steps:
  • a method for preparing metal oxide nanoparticles includes the following steps:
  • oxygen gas was introduced into the above mixed solution at a rate of 1 ml/min, and the air was continuously ventilated for 1 hour with stirring.
  • the metal oxide nanoparticles prepared in the Examples and Comparative Examples were tested for mobility and fluorescence peak position changes over time. The test results are shown in Table 1 below.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Nanotechnology (AREA)
  • Power Engineering (AREA)
  • Computer Hardware Design (AREA)
  • Physics & Mathematics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Composite Materials (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Oxygen, Ozone, And Oxides In General (AREA)

Abstract

本申请公开一种金属氧化物纳米颗粒的制备方法,该方法包括以下步骤:提供分子式为X-(SO 2)-Y的有机试剂和金属氧化物纳米颗粒样品,所述金属氧化物纳米颗粒样品为水相金属氧化物纳米颗粒;X-(SO 2)-Y中,X中含有极性官能团;将所述有机试剂和所述金属氧化物纳米颗粒样品在液相介质中混合处理并加入碱性试剂,制备得到所述金属氧化物纳米颗粒。本申请提供的方法,可以降低金属氧化物纳米颗粒的表面缺陷态,从而提高了金属氧化物纳米颗粒的稳定性。

Description

金属氧化物纳米颗粒及其制备方法、量子点发光二极管
本申请要求于2019年10月30日在中国专利局提交的、申请号为201911043479.6、发明名称为“金属氧化物纳米颗粒及其制备方法和应用”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及纳米颗粒技术领域,具体涉及一种金属氧化物纳米颗粒及其制备方法、量子点发光二极管。
背景技术
量子点(quantum dot)是在把激子在三个空间方向上束缚住的半导体纳米结构。随着量子点技术的发展,量子点的应用已经渗透到很多领域,尤为突出的是在量子点发光二极管、太阳能电池、生物标记等领域,特别是生物荧光标记技术。
量子点产品中,量子点的稳定性对产品的应用有较大影响。量子点稳定性的影响因素主要来自两方面:一方面,由于量子点本身的激子半径较大,量子点表面态比较活泼,导致稳定性较差;另一方面,量子点表面存在的缺陷态,缺点太容易被氧化,从而导致量子点不稳定。目前,改善量子点稳定性主要通过改善量子点的表面缺陷态来实现。而传统方法大多通过在量子点表面生长一层宽带隙的无机壳层,来钝化量子点表面,从而减少量子点的表面缺陷态。但是,该方法制备的量子点会存在晶格适配缺陷,造成量子点发射峰峰宽加宽,进而影响色纯。
申请内容
本申请实施例的目的在于:提供一种金属氧化物纳米颗粒及其制备方法、量子点发光二极管,旨在解决通过在量子点表面生长一层宽带隙的无机壳层来提高量子点稳定性的现有方法,存在晶格适配缺陷,造成量子点发射峰峰宽加宽,进而影响色纯的的问题。
本申请实施例采用的技术方案是:
第一方面,提供了一种金属氧化物纳米颗粒的制备方法,包括以下步骤:
提供分子式为X-(SO 2)-Y的有机试剂和金属氧化物纳米颗粒样品,金属氧化物纳米颗粒样品为水相金属氧化物纳米颗粒;X-(SO 2)-Y中,X中含有极性官能团;
将有机试剂和金属氧化物纳米颗粒样品在液相介质中混合处理并加入碱性试剂,制备得到金属氧化物纳米颗粒。
在一些实施例,极性官能团选自羟基、羧基、氨基中的至少一种。
在一些实施例,分子式为X-(SO 2)-Y的有机试剂中,X选自-(CH 2) n-NH 2、-(CH 2) n-OH、-(CH 2) n-COOH中的一种,其中,n的取值为1~18的整数。
在一些实施例,分子式为X-(SO 2)-Y的有机试剂选自OH-(CH 2) n-(SO 2)-(CH 2) m-NH 2、OH-(CH 2) n-(SO 2)-(CH 2) m-COOH、OH-(CH 2) n-(SO 2)-(CH 2) m-OH、NH 2-(CH 2) n-(SO 2)-(CH 2) m-NH 2、COOH-(CH 2) n-(SO 2)-(CH 2) m-COOH中的至少一种,其中,m的取值为1~18的整数。
在一些实施例,液相介质选自乙醇、甲醇、异丙醇、乙腈、四氢呋喃中的至少一种。
在一些实施例,将有机试剂和金属氧化物纳米颗粒样品在液相介质中混合处理的步骤,包括:将有机试剂溶于液相介质中,形成有机溶液;将有机溶液 与金属氧化物纳米颗粒样品进行混合处理。
在一些实施例,有机溶液中,有机试剂的浓度为0.1~10mmol/L。
在一些实施例,将有机试剂和金属氧化物纳米颗粒样品在液相介质中混合处理的步骤中,按照有机试剂与金属氧化物纳米颗粒的摩尔质量比为(1~50mmol):100mg,将有机试剂和金属氧化物纳米颗粒样品进行混合。
在一些实施例,碱性试剂选自为氨水、四甲基氢氧化铵中的至少一种。
在一些实施例,在将有机试剂和金属氧化物纳米颗粒样品在液相介质中混合处理并加入碱性试剂的步骤之后,还包括向得到的混合体系加入沉淀剂的步骤。
在一些实施例,向得到的混合体系加入沉淀剂的步骤中,按照沉淀剂与混合体系的体积比为(1~5):1的比例,向混合体系中加入沉淀剂。
在一些实施例,在将有机试剂和金属氧化物纳米颗粒样品在液相介质中混合处理并加入碱性试剂的步骤中,加入碱性试剂的方法为:在惰性气氛中,在搅拌条件下向混合液中加入碱性试剂。
在一些实施例,向混合液中加入碱性试剂的步骤中,按照碱性试剂与有机试剂的摩尔用量关系为(1~3):1的比例,向混合液中加入碱性试剂。
在一些实施例,搅拌条件包括搅拌时间,搅拌时间为10~120min。
第二方面,提供了一种金属氧化物纳米颗粒,金属氧化物纳米颗粒由第一方面提供的金属氧化物纳米颗粒的制备方法制备获得。
第三方面,提供一种量子点发光二极管,包括量子点发光层,量子点发光层的材料为第二方面提供的金属氧化物纳米颗粒。
本申请实施例提供的金属氧化物纳米颗粒的制备方法的有益效果在于:在金属氧化物纳米颗粒样品与分子式为X-(SO 2)-Y的有机试剂混合后,加入碱性 试剂,有机试剂在碱性试剂的作用下发生化学反应,生成含有氧负离子的X-(SO 2)-O -(反应机理为:X-(SO 2)-Y+2OH -→X-(SO 2)-O -+Y-OH+H +)。X-(SO 2)-O -中的氧负离子能够迅速与金属氧化物纳米颗粒表面的金属原子结合并填补表面的氧空位,进而实现对金属氧化物纳米颗粒的钝化,降低金属氧化物纳米颗粒的表面缺陷态,从而提高了金属氧化物纳米颗粒的稳定性。
本申请实施例提供的量子点的有益效果在于:由于量子点由上述方法制备获得,因此,金属氧化物纳米颗粒表面的金属原子结合有X-(SO 2)-O -,X-(SO 2)-O -中的氧负离子能够迅速与金属氧化物纳米颗粒表面的金属原子结合并填补表面的氧空位,进而实现对金属氧化物纳米颗粒的钝化,降低金属氧化物纳米颗粒的表面缺陷态,从而提高了金属氧化物纳米颗粒的稳定性。
本申请实施例提供的量子点发光二极管的有益效果在于:由于量子点发光层的材料为上述的金属氧化物纳米颗粒,因此,量子点发光层具有优异的稳定性。
附图说明
为了更清楚地说明本申请实施例中的技术方案,下面将对实施例或示范性技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其它的附图。
图1是本申请一实施例提供的金属氧化物纳米颗粒的制备方法的流程示意图。
具体实施方式
为了使本申请的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本申请进行进一步详细说明。应当理解,此处所描述的具体实施例仅 用以解释本发明,并不用于限定本申请。
需说明的是,术语“第一”、“第二”仅用于便于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括一个或者更多个该特征。“多个”的含义是两个或两个以上,除非另有明确具体的限定。
如图1所示,本申请实施例提供了一种金属氧化物纳米颗粒的制备方法,包括以下步骤:
S01.提供分子式为X-(SO 2)-Y的有机试剂和金属氧化物纳米颗粒样品,金属氧化物纳米颗粒样品为水相金属氧化物纳米颗粒;X-(SO 2)-Y中,X中含有极性官能团;
S02.将有机试剂和金属氧化物纳米颗粒样品在液相介质中混合处理并加入碱性试剂,制备得到金属氧化物纳米颗粒。
本申请实施例提供的金属氧化物纳米颗粒的制备方法,在金属氧化物纳米颗粒样品与分子式为X-(SO 2)-Y的有机试剂混合后,加入碱性试剂,有机试剂在碱性试剂的作用下发生化学反应,生成含有氧负离子的X-(SO 2)-O -(反应机理为:X-(SO 2)-Y+2OH -→X-(SO 2)-O -+Y-OH+H +)。X-(SO 2)-O -中的氧负离子能够迅速与金属氧化物纳米颗粒表面的金属原子结合并填补表面的氧空位,进而实现对金属氧化物纳米颗粒的钝化,降低金属氧化物纳米颗粒的表面缺陷态,从而提高了金属氧化物纳米颗粒的稳定性。
具体的,上述步骤S01中,金属氧化物纳米颗粒样品为常规的金属氧化物纳米颗粒,包括但不限于ZnO、NiO、W 2O 3、Mo 2O 3、TiO 2、SnO、ZrO 2、Ta 2O 3。由于油相金属氧化物纳米颗粒在制备过程中容易引入羧基等官能团,因此,氧负离子难以结合并填补其氧空位。因此,本申请实施例金属氧化物纳米颗粒样 品为水相金属氧化物纳米颗粒,即金属氧化物纳米颗粒样品表面含有水性配体。具体的,水性配体包括但不限于-(CH 2) l-OH、-(CH 2) l-COOH、-(CH 2) l-NH 2,其中l的取值为0~18。
分子式为X-(SO 2)-Y的有机试剂中,-(SO 2)-(也可以表示为-S(O 2)-)的强吸电子功能,促使X-(SO 2)-Y在碱性试剂的作用下解离,并在-(SO 2)-的一侧形成氧负离子,从而通过X-(SO 2)-O -,解决水相金属氧化物纳米颗粒样品表面缺陷态多的问题。本申请实施例中,分子式为X-(SO 2)-Y的有机试剂中,至少X中含有极性官能团,使得分子式为X-(SO 2)-Y的有机试剂整体保持亲水性,能够与水相金属氧化物纳米颗粒样品充分分散,有利于解离出来的X-(SO 2)-O -迅速与金属氧化物纳米颗粒表面的金属原子结合并填补表面的氧空位。分子式为X-(SO 2)-Y的有机试剂中,Y的选择相对灵活,有无极性官能团均可,只需满足其碳原子数为1~18即可。为了保证X-(SO 2)-Y的水溶性特征,在一些实施中Y含有极性官能团。具体的,极性官能团选自羟基、羧基、氨基中的至少一种,在一些实施例中为羟基。
在一些实施例中,分子式为X-(SO 2)-Y的有机试剂中,X选自-(CH 2) n-NH 2、-(CH 2) n-OH、-(CH 2) n-COOH中的一种,其中,n的取值为1~18的整数。在一些实施例中,X为碳氢主链的烷烃结构,除了羟基、羧基、氨基,不含其它官能团,从而可以避免其它挂能团或复杂结构的引入,影响分子式为X-(SO 2)-Y的有机试剂与碱性试剂的反应,阻碍氧负离子的形成。而n的取值为1~18的整数时,分子式为X-(SO 2)-Y的有机试剂的水溶性较好,与水相金属氧化物纳米颗粒样品之间具有较好的分散性,有利于后续水相金属氧化物纳米颗粒样品的钝化;且上述选择也不会因为碳链长度过长,导致粘度过高影响钝化效率。
本申请实施例中,分子式为X-(SO 2)-Y的有机试剂中,X选自-(CH 2) n-NH 2、 -(CH 2) n-OH、-(CH 2) n-COOH中的一种,Y的选择没有严格限定,可以含有极性基团,也可以不含极性基团。在一些实施例中,分子式为X-(SO 2)-Y的有机试剂中,Y不含极性基团,可以选择烷基、环烷基或氢原子中的一种。如:Y选自碳原子数为1~18的烷基,碳原子书为3-8的环烷基。在一些具体实施例中,分子式为X-(SO 2)-Y的有机试剂选自OH-(CH 2) n-(SO 2)-(CH 2) m-CH 3、CH 3-(CH 2) n-(SO 2)-(CH 2) m-COOH、CH 3-(CH 2) n-(SO 2)-(CH 2) m-OH、CH 3-(CH 2) n-(SO 2)-(CH 2) m-NH 2、CH 3-(CH 2) n-(SO 2)-(CH 2) m-COOH、CH 3-(CH 2) n-(SO 2)-(CH 2) m-NH 2、OH-(CH 2) n-(SO 2)-(CH 2) m-CH 3、OH-(CH 2) n-(SO 2)-(CH 2) m-CH 3、NH 2-(CH 2) n-(SO 2)-(CH 2) m-CH 3、COOH-(CH 2) n-(SO 2)-(CH 2) m-CH 3
在一些实施例中,分子式为X-(SO 2)-Y的有机试剂中,Y含极性基团。在一些具体实施例中,分子式为X-(SO 2)-Y的有机试剂选自OH-(CH 2) n-(SO 2)-(CH 2) m-NH 2、OH-(CH 2) n-(SO 2)-(CH 2) m-COOH、OH-(CH 2) n-(SO 2)-(CH 2) m-OH、NH 2-(CH 2) n-(SO 2)-(CH 2) m-NH 2、COOH-(CH 2) n-(SO 2)-(CH 2) m-COOH中的至少一种,其中,n的取值为1~18的整数,m的取值为1~18的整数。上述有机试剂,X、Y中的主链碳原子控制在合适范围,可以防止由于制备得到的金属氧化物纳米颗粒表面的基团自由端过长,导致粘性太高而降低金属氧化物纳米颗粒的成膜性能。
应当理解的是,本申请实施例分子式为X-(SO 2)-Y的有机试剂中,X、Y只是彼此区分的编号而已,限定X,是为了说明其中有一个基团需要满足“含有极性官能团”的特征。当然,也可以对Y进行限定,使其满足“含有极性官能团”的特征。但不管是对X进行限定还是对Y进行限定,都只是对X-(SO 2)-Y中与-(SO 2)-相邻的一个基团进行限定,没有本质区别。
上述步骤S02中,将有机试剂和金属氧化物纳米颗粒样品在液相介质中混合处理,使金属氧化物纳米颗粒样品和有机试剂混合均匀,并得到有机试剂和金属氧化物纳米颗粒样品的混合液。
本申请实施例中,液相介质作为分散介质,将有机试剂溶解分散,使其能够与金属氧化物纳米颗粒样品充分分散,以便于在有机试剂解离成含有氧负离子的X-(SO 2)-O -后,能够顺利于金属氧化物纳米颗粒样品的金属原子结合并填补表面的氧空位。在一些实施例中,液相介质选自乙醇、甲醇、异丙醇、乙腈、四氢呋喃中的至少一种。
在一些实施例中,将有机试剂和金属氧化物纳米颗粒样品在液相介质中混合处理的步骤,包括:将有机试剂溶于液相介质中,形成有机溶液;将有机溶液与金属氧化物纳米颗粒样品进行混合处理。
在一些实施例中,有机试剂溶液中,有机试剂的浓度为0.1~10mmol/L。有机试剂的浓度与所上述列举的有机试剂的分子量有关。当有机试剂的分子量较小时,有机试剂的浓度偏高,从而使得有机试剂解离后的含氧负离子的有机分子的含量较高,能够均匀且充分分布并结合在金属氧化物纳米颗粒表面周围。当有机试剂的分子量较大时,解离出来的对应有机分子的分子量也较大,此时,若含量过高,在少量氧负离子与金属氧化物纳米颗粒结合后,由于空间位阻过大,反而不利于后续氧负离子与金属氧化物纳米颗粒的结合。
本申请实施例中,将有机试剂和金属氧化物纳米颗粒样品在液相介质中混合处理的步骤中,按照有机试剂与金属氧化物纳米颗粒的摩尔质量比为(1~50mmol):100mg的比例,将有机试剂和金属氧化物纳米颗粒样品进行混合。若有机试剂的含量过低,则由有机试剂解离出来的含氧负离子的有机分子含量较低,对金属氧化物纳米颗粒样品的钝化效果不好。若有机试剂的含量过高,则 有机试剂容易残余,残余的有机分子作为杂质引入到金属氧化物纳米颗粒中,影响金属氧化物纳米颗粒的性能。特别的,当金属氧化物纳米颗粒作为发光层材料用于发光器件中时,由于残余的有机试剂为绝缘性分子,其本身不导电,从而会降低得到的量子点发光层的发光效率。
本申请一些实施例中,将有机试剂和金属氧化物纳米颗粒样品在液相介质中混合处理在20~60℃的条件下进行。在一些实施例中,将有机试剂和金属氧化物纳米颗粒样品在液相介质中混合处理的气体环境为惰性气氛,以防止氧化性气体引入,干扰下述步骤还原反应的进行。
向混合液中加入碱性试剂,用于与X-(SO 2)-Y反应,得到含有氧负离子的X-(SO 2)-O -(反应机理为:X-(SO 2)-Y+2OH -→X-(SO 2)-O -+Y-OH+H +)。反应生成的X-(SO 2)-O -中的氧负离子能够迅速与金属氧化物纳米颗粒表面的金属原子结合并填补表面的氧空位,进而实现对金属氧化物纳米颗粒的钝化,降低金属氧化物纳米颗粒的表面缺陷态,从而提高了金属氧化物纳米颗粒的稳定性。
在一些实施例中,碱性试剂为能溶于极性试剂的碱性试剂,从而保证与X-(SO 2)-Y之间的反应能够顺利进行。在一些实施例中,碱性试剂选自氨水、四甲基氢氧化铵中的一种,但不限于此。上述碱性试剂,可以快速与X-(SO 2)-Y反应,得到含有氧负离子的X-(SO 2)-O -
在一些实施例中,向混合液中加入碱性试剂的步骤中,按照碱性试剂与有机试剂的摩尔用量关系为(1~3):1的比例,向混合液中加入碱性试剂。
本申请实施例中,向混合液中加入碱性试剂,可以通过一次性添加,也可以缓慢添加如滴加。在一些实施例中,向混合液中加入碱性试剂在20~60℃的条件下进行。在一些实施例中,向混合液中加入碱性试剂的气体环境为惰性气 氛,以防止氧化性气体引入,干扰反应的进行。
本申请实施例,向混合液中加入碱性试剂的方法为:在惰性气氛中,在搅拌条件下向混合液中加入碱性试剂,以促进反应的进行,搅拌时间为10~120min。
向混合体系加入沉淀剂,将反应体系中的金属氧化物纳米颗粒沉淀,并通过离心分离收集。在一些实施例中,沉淀剂选自乙酸乙酯、乙酸甲酯、乙酸丙酯、乙酸丁酯、甲酸乙酯、甲酸甲酯、甲酸丙酯、甲酸丁酯中的至少一种,但不限于此。在一些实施例中,向混合体系加入沉淀剂的步骤中,按照沉淀剂与混合体系的体积比为(1~5):1的比例,向混合体系中加入沉淀剂,促进金属氧化物纳米颗粒的沉淀。在一些实施例中,采用高速离心的方式分离出金属氧化物纳米颗粒。
将分离出的钝化处理后的金属氧化物纳米颗粒再次分散在相应试剂中制备得到溶解性和稳定性较好的水相金属氧化物纳米颗粒。
本申请实施例第二方面提供一种量子点,量子点由上述的金属氧化物纳米颗粒的制备方法制备获得。
本申请实施例提供的量子点,由上述方法制备获得,因此,金属氧化物纳米颗粒表面的金属原子结合有X-(SO 2)-O -,X-(SO 2)-O -中的氧负离子能够迅速与金属氧化物纳米颗粒表面的金属原子结合并填补表面的氧空位,进而实现对金属氧化物纳米颗粒的钝化,降低金属氧化物纳米颗粒的表面缺陷态,从而提高了金属氧化物纳米颗粒的稳定性。
本申请实施例第三方面提供一种量子点发光二极管,包括量子点发光层,量子点发光层的材料为上述的金属氧化物纳米颗粒。
本申请实施例提供的量子点发光二极管,由于量子点发光层的材料为上述 的金属氧化物纳米颗粒,因此,量子点发光层具有优异的稳定性。
下面结合具体实施例进行说明。
实施例1
一种金属氧化物纳米颗粒的制备方法,包括以下步骤:
取10mmol的有机试剂OH-(CH 2) 2-(SO 2)-(CH 2) 3-NH 2分散在5ml的乙醇试剂中充分溶解,然后将有机试剂溶液添加到含有100mg水相ZnO纳米颗粒的3ml乙醇溶液中,混合搅拌10min使混合液形成均一溶液。
取12mmol的氨水试剂一次添加到上述均一溶液中充分搅拌,使其混合均匀,然后在氩气环境下40℃搅拌30min,使水相ZnO纳米颗粒在非极性试剂中充分被钝化,得到表面钝化的ZnO纳米颗粒。
取15ml的乙酸乙酯溶液添加到上述反应体系中,然后采用离心分离的方式进行分离制备得到钝化的水相ZnO纳米颗粒。
实施例2
一种金属氧化物纳米颗粒的制备方法,包括以下步骤:
取10mmol的有机试剂OH-(CH 2) 3-(SO 2)-(CH 2) 4-COOH分散在5ml的甲醇试剂中充分溶解,然后将有机试剂溶液添加到含有100mg水相NiO纳米颗粒的3ml甲醇溶液中,混合搅拌10min使混合液形成均一溶液。
取12mmol的四甲基氢氧化铵一次添加到上述均一溶液中充分搅拌,使其混合均匀,然后在氩气环境下50℃搅拌30min,使水相NiO纳米颗粒在非极性试剂中充分被钝化,得到表面钝化的NiO纳米颗粒。
取15ml的乙酸甲酯溶液添加到上述反应体系中,然后采用离心分离的方式进行分离制备得到钝化的水相NiO纳米颗粒。
对比例1
一种金属氧化物纳米颗粒的制备方法,包括以下步骤:
取100mg的水相ZnO纳米颗粒分散在3ml的乙醇溶液中,混合搅拌10min使其混合均匀形成均一溶液。
在室温环境下向上述混合液中以1ml/min的速率通氧气,持续通气1h并搅拌。
取15ml的乙酸乙酯溶液添加到上述反应体系中,然后采用离心分离的方式进行分离制备得到钝化的水相ZnO纳米颗粒。
对比例2
一种金属氧化物纳米颗粒的制备方法,包括以下步骤:
一种金属氧化物纳米颗粒的制备方法,包括以下步骤:
取100mg的水相NiO纳米颗粒分散在3ml的乙醇溶液中,混合搅拌10min使其混合均匀形成均一溶液。
在室温环境下向上述混合液中以1ml/min的速率通氧气,持续通气1h并搅拌。
取15ml的乙酸乙酯溶液添加到上述反应体系中,然后采用离心分离的方式进行分离制备得到钝化的水相NiO纳米颗粒。
将实施例和对比例制备的金属氧化物纳米颗粒进行迁移率和荧光峰位随时间变化的测试,测试结果如下表1所示。
表1
Figure PCTCN2020125188-appb-000001
由表1可见,相较于对比例,本申请实施例制备得到的金属氧化物纳米颗粒,稳定性增强。
以上仅为本申请的可选实施例而已,并不用于限制本申请。对于本领域的技术人员来说,本申请可以有各种更改和变化。凡在本申请的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本申请的权利要求范围之内。

Claims (16)

  1. 金属氧化物纳米颗粒的制备方法,其特征在于,包括以下步骤:
    提供分子式为X-(SO 2)-Y的有机试剂和金属氧化物纳米颗粒样品,所述金属氧化物纳米颗粒样品为水相金属氧化物纳米颗粒;X-(SO 2)-Y中,X中含有极性官能团;
    将所述有机试剂和所述金属氧化物纳米颗粒样品在液相介质中混合处理并加入碱性试剂,制备得到所述金属氧化物纳米颗粒。
  2. 如权利要求1所述的金属氧化物纳米颗粒的制备方法,其特征在于,所述极性官能团选自羟基、羧基、氨基中的至少一种。
  3. 如权利要求1所述的金属氧化物纳米颗粒的制备方法,其特征在于,所述分子式为X-(SO 2)-Y的有机试剂中,X选自-(CH 2) n-NH 2、-(CH 2) n-OH、-(CH 2) n-COOH中的一种,其中,n的取值为1~18的整数。
  4. 如权利要求1所述的金属氧化物纳米颗粒的制备方法,其特征在于,所述分子式为X-(SO 2)-Y的有机试剂选自OH-(CH 2) n-(SO 2)-(CH 2) m-NH 2、OH-(CH 2) n-(SO 2)-(CH 2) m-COOH、OH-(CH 2) n-(SO 2)-(CH 2) m-OH、NH 2-(CH 2) n-(SO 2)-(CH 2) m-NH 2、COOH-(CH 2) n-(SO 2)-(CH 2) m-COOH中的至少一种,其中,m的取值为1~18的整数。
  5. 如权利要求1至4任一项所述的金属氧化物纳米颗粒的制备方法,其特征在于,所述液相介质选自乙醇、甲醇、异丙醇、乙腈、四氢呋喃中的至少一种。
  6. 如权利要求1至4任一项所述的金属氧化物纳米颗粒的制备方法,其特征在于,将所述有机试剂和所述金属氧化物纳米颗粒样品在液相介质中混合 处理的步骤,包括:将所述有机试剂溶于所述液相介质中,形成有机溶液;将所述有机溶液与所述金属氧化物纳米颗粒样品进行混合处理。
  7. 如权利要求6所述的金属氧化物纳米颗粒的制备方法,其特征在于,所述有机溶液中,所述有机试剂的浓度为0.1~10mmol/L。
  8. 如权利要求1至4任一项所述的金属氧化物纳米颗粒的制备方法,其特征在于,将所述有机试剂和所述金属氧化物纳米颗粒样品在液相介质中混合处理的步骤中,按照所述有机试剂与所述金属氧化物纳米颗粒的摩尔质量比为(1~50mmol):100mg,将所述有机试剂和所述金属氧化物纳米颗粒样品进行混合。
  9. 如权利要求1至4任一项所述的金属氧化物纳米颗粒的制备方法,其特征在于,所述碱性试剂选自为氨水、四甲基氢氧化铵中的至少一种。
  10. 如权利要求1至4任一项所述的金属氧化物纳米颗粒的制备方法,其特征在于,在将所述有机试剂和所述金属氧化物纳米颗粒样品在液相介质中混合处理并加入碱性试剂的步骤之后,还包括向得到的混合体系加入沉淀剂的步骤。
  11. 如权利要求10所述的金属氧化物纳米颗粒的制备方法,其特征在于,向得到的混合体系加入沉淀剂的步骤中,按照所述沉淀剂与所述混合体系的体积比为(1~5):1的比例,向所述混合体系中加入沉淀剂。
  12. 如权利要求1至4任一项所述的金属氧化物纳米颗粒的制备方法,其特征在于,在将所述有机试剂和所述金属氧化物纳米颗粒样品在液相介质中混合处理并加入碱性试剂的步骤中,加入碱性试剂的方法为:在惰性气氛中,在搅拌条件下向所述混合液中加入碱性试剂。
  13. 如权利要求12所述的金属氧化物纳米颗粒的制备方法,其特征在于, 向所述混合液中加入碱性试剂的步骤中,按照所述碱性试剂与所述有机试剂的摩尔用量关系为(1~3):1的比例,向所述混合液中加入所述碱性试剂。
  14. 如权利要求13所述的金属氧化物纳米颗粒的制备方法,其特征在于,所述搅拌条件包括搅拌时间,所述搅拌时间为10~120min。
  15. 金属氧化物纳米颗粒,其特征在于,所述金属氧化物纳米颗粒由权利要求1至14任一项所述的金属氧化物纳米颗粒的制备方法制备获得。
  16. 量子点发光二极管,包括量子点发光层,其特征在于,所述量子点发光层的材料为权利要求15所述的金属氧化物纳米颗粒。
PCT/CN2020/125188 2019-10-30 2020-10-30 金属氧化物纳米颗粒及其制备方法、量子点发光二极管 WO2021083318A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/733,050 US20220267671A1 (en) 2019-10-30 2022-04-29 Metal oxide nanoparticles and preparation method thereof, quantum dot light-emitting diode

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201911043479.6A CN112745826B (zh) 2019-10-30 2019-10-30 金属氧化物纳米颗粒及其制备方法和应用
CN201911043479.6 2019-10-30

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/733,050 Continuation US20220267671A1 (en) 2019-10-30 2022-04-29 Metal oxide nanoparticles and preparation method thereof, quantum dot light-emitting diode

Publications (1)

Publication Number Publication Date
WO2021083318A1 true WO2021083318A1 (zh) 2021-05-06

Family

ID=75641669

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/125188 WO2021083318A1 (zh) 2019-10-30 2020-10-30 金属氧化物纳米颗粒及其制备方法、量子点发光二极管

Country Status (3)

Country Link
US (1) US20220267671A1 (zh)
CN (1) CN112745826B (zh)
WO (1) WO2021083318A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1116036B1 (en) * 1998-09-18 2004-08-11 Massachusetts Institute Of Technology Water-soluble fluorescent semiconductor nanocrystals
JP2009197320A (ja) * 2008-01-24 2009-09-03 Furukawa Electric Co Ltd:The 微粒子分散液の製造方法、及び微粒子分散液
CN106479503A (zh) * 2016-09-29 2017-03-08 Tcl集团股份有限公司 一种量子点固态膜及其制备方法
CN109762557A (zh) * 2019-01-14 2019-05-17 天津理工大学 无机荧光纳米粒子及其制备方法和应用

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101343536A (zh) * 2008-07-16 2009-01-14 东北师范大学 表面功能化纳米微粒及其聚合物纳米复合材料的制备方法
CN105985774B (zh) * 2015-02-09 2019-05-28 纳晶科技股份有限公司 纳米晶-配体复合物、其制备方法、印刷材料及印刷材料的应用
JP6729554B2 (ja) * 2015-03-23 2020-07-22 コニカミノルタ株式会社 組成物及びそれを含有する光学機能性膜
CN108977195A (zh) * 2017-05-31 2018-12-11 Tcl集团股份有限公司 一种表面配体为去质子巯基的量子点的制备方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1116036B1 (en) * 1998-09-18 2004-08-11 Massachusetts Institute Of Technology Water-soluble fluorescent semiconductor nanocrystals
JP2009197320A (ja) * 2008-01-24 2009-09-03 Furukawa Electric Co Ltd:The 微粒子分散液の製造方法、及び微粒子分散液
CN106479503A (zh) * 2016-09-29 2017-03-08 Tcl集团股份有限公司 一种量子点固态膜及其制备方法
CN109762557A (zh) * 2019-01-14 2019-05-17 天津理工大学 无机荧光纳米粒子及其制备方法和应用

Also Published As

Publication number Publication date
US20220267671A1 (en) 2022-08-25
CN112745826A (zh) 2021-05-04
CN112745826B (zh) 2022-10-11

Similar Documents

Publication Publication Date Title
CN111081816B (zh) 碱金属离子钝化表面缺陷的钙钛矿纳米晶及其制备与应用
JP2015096461A (ja) ナノ粒子の製造方法及び該方法により製造されたナノ粒子
WO2004007636A1 (ja) 複合ナノ粒子及びその製造方法
TW200944552A (en) Semiconductor nanoparticle capping agents
Oderinde et al. Water as DES-cosolvent on the morphology tuning and photochromic enhancement of tungsten oxide-molybdenum oxide nanocomposite
CN114132956A (zh) 一种ZnS微球的制备方法
CN107140677B (zh) 一种功能器件用金属氧化物纳米颗粒的制备方法
CN115536059A (zh) 一种CsPbBr3纳米片及其制备方法和应用
CN113814408B (zh) 一种CuPd合金纳米晶的制备及其组分调控方法
CN109516496B (zh) 一种稳定分散的全无机钙钛矿CsPbBr3纳米晶的制备方法
WO2021083318A1 (zh) 金属氧化物纳米颗粒及其制备方法、量子点发光二极管
Ray et al. Synthesis of highly stable double-coated Zn-doped cesium lead bromide nanocrystals for indium ion detection in water
Madhu et al. Synthesis and investigation of photonic properties of surface modified ZnO nanoparticles with imine linked receptor as coupling agent-for application in LEDs
Zhong et al. A Universal Synthesis Strategy for Lanthanide Sulfide Nanocrystals with Efficient Photocatalytic Hydrogen Production
Gao et al. Synthesis and luminescence properties of CdSe: Eu NPs and their surface polymerization of poly (MMA-co-MQ)
JP5951136B2 (ja) アルミン酸亜鉛発光材料、及びその製造方法
WO2020073926A1 (zh) 量子点的制备方法
EP2881448B1 (en) Zinc aluminate material and method for preparing same
CN112744791B (zh) 金属氧化物纳米颗粒及其制备方法及其应用
CN112745827B (zh) 水相量子点及其制备方法和应用
CN111139058A (zh) 一种钙钛矿量子点结构及其制备方法
CN115433575B (zh) 一种CsPbX3纳米晶材料的制备方法
CN112745829B (zh) 量子点的提纯方法及应用
US20240158695A1 (en) Preparation method of core-shell quantum dot and core-shell quantum dot
CN116960257B (zh) 一种基于金属氧化物包覆钙钛矿量子点的白光led器件及其制备方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20883117

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20883117

Country of ref document: EP

Kind code of ref document: A1