WO2021083003A1 - 显示装置及电子设备 - Google Patents

显示装置及电子设备 Download PDF

Info

Publication number
WO2021083003A1
WO2021083003A1 PCT/CN2020/122470 CN2020122470W WO2021083003A1 WO 2021083003 A1 WO2021083003 A1 WO 2021083003A1 CN 2020122470 W CN2020122470 W CN 2020122470W WO 2021083003 A1 WO2021083003 A1 WO 2021083003A1
Authority
WO
WIPO (PCT)
Prior art keywords
display area
display device
pixels
driving
pixel
Prior art date
Application number
PCT/CN2020/122470
Other languages
English (en)
French (fr)
Inventor
李亮
Original Assignee
Oppo广东移动通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oppo广东移动通信有限公司 filed Critical Oppo广东移动通信有限公司
Priority to EP20882716.2A priority Critical patent/EP4016512A4/en
Publication of WO2021083003A1 publication Critical patent/WO2021083003A1/zh
Priority to US17/687,183 priority patent/US20220190082A1/en

Links

Images

Classifications

    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/22Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources
    • G09G3/30Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels
    • G09G3/32Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED]
    • G09G3/3208Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED] organic, e.g. using organic light-emitting diodes [OLED]
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/22Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources
    • G09G3/30Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels
    • G09G3/32Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED]
    • G09G3/3208Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED] organic, e.g. using organic light-emitting diodes [OLED]
    • G09G3/3225Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED] organic, e.g. using organic light-emitting diodes [OLED] using an active matrix
    • G09G3/3233Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED] organic, e.g. using organic light-emitting diodes [OLED] using an active matrix with pixel circuitry controlling the current through the light-emitting element
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/12Active-matrix OLED [AMOLED] displays
    • H10K59/121Active-matrix OLED [AMOLED] displays characterised by the geometry or disposition of pixel elements
    • H10K59/1213Active-matrix OLED [AMOLED] displays characterised by the geometry or disposition of pixel elements the pixel elements being TFTs
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/12Active-matrix OLED [AMOLED] displays
    • H10K59/121Active-matrix OLED [AMOLED] displays characterised by the geometry or disposition of pixel elements
    • H10K59/1216Active-matrix OLED [AMOLED] displays characterised by the geometry or disposition of pixel elements the pixel elements being capacitors
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/60OLEDs integrated with inorganic light-sensitive elements, e.g. with inorganic solar cells or inorganic photodiodes
    • H10K59/65OLEDs integrated with inorganic image sensors
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2300/00Aspects of the constitution of display devices
    • G09G2300/04Structural and physical details of display devices
    • G09G2300/0421Structural details of the set of electrodes
    • G09G2300/0426Layout of electrodes and connections
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2300/00Aspects of the constitution of display devices
    • G09G2300/08Active matrix structure, i.e. with use of active elements, inclusive of non-linear two terminal elements, in the pixels together with light emitting or modulating elements
    • G09G2300/0809Several active elements per pixel in active matrix panels
    • G09G2300/0842Several active elements per pixel in active matrix panels forming a memory circuit, e.g. a dynamic memory with one capacitor
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2310/00Command of the display device
    • G09G2310/02Addressing, scanning or driving the display screen or processing steps related thereto
    • G09G2310/0262The addressing of the pixel, in a display other than an active matrix LCD, involving the control of two or more scan electrodes or two or more data electrodes, e.g. pixel voltage dependent on signals of two data electrodes
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2340/00Aspects of display data processing
    • G09G2340/04Changes in size, position or resolution of an image
    • G09G2340/0407Resolution change, inclusive of the use of different resolutions for different screen areas

Definitions

  • This application relates to the field of electronic technology, in particular to a display device and electronic equipment.
  • the electronic device can use its display screen to display pictures.
  • the senor is arranged under the display device, and the sensor transmits signals through the display device.
  • Elements such as opaque thin film transistors in the display device will reduce the light transmittance of the display device and affect the quality of the signal transmitted by the sensor.
  • the embodiments of the present application provide a display device and an electronic device, which can increase the light transmittance of the first display area, which is beneficial to improve the quality of the transmission signal of the sensor.
  • An embodiment of the present application provides a display device, which includes a first display area and a second display area that are adjacent to each other;
  • the first display area includes a plurality of first driving units, at least one of the first driving units includes at least two thin film transistors, and at least one thin film transistor in the first driving unit is located in the first display area, And at least one thin film transistor in the first driving unit is located in the second display area.
  • An embodiment of the present application also provides a display device, which includes a first display area, and the first display includes:
  • a plurality of first driving units at least one of the first driving units includes at least two thin film transistors, at least one of the thin film transistors in the first driving unit is located in the first driving circuit layer, and in the first driving unit At least one thin film transistor is located on the second driving circuit layer, and the thin film transistors in the first driving circuit layer and the thin film transistors in the second driving circuit layer are at least partially arranged opposite to each other.
  • An embodiment of the present application also provides an electronic device, which includes a display device and a sensor.
  • the display device is the above-mentioned display device, and the sensor is used to transmit a signal through the first display area.
  • FIG. 1 is a schematic diagram of the structure of an electronic device provided by an embodiment of the application.
  • FIG. 2 is a schematic structural diagram of a display device provided by an embodiment of the application.
  • FIG. 3 is a schematic diagram of the first laminated structure of the first display area in the display device provided by an embodiment of the application.
  • FIG. 4 is a schematic diagram of a first partial structure of a display device provided by an embodiment of this application.
  • FIG. 5 is an enlarged schematic diagram of part X of the display device in FIG. 4.
  • FIG. 6 is a schematic diagram of a first circuit of the first driving unit in the display device provided by an embodiment of the application.
  • FIG. 7 is a schematic diagram of a second type of circuit of the first driving unit in the display device provided by an embodiment of the application.
  • FIG. 8 is a schematic diagram of a third circuit of the first driving unit in the display device provided by the embodiment of the application.
  • FIG. 9 is a schematic diagram of the second partial structure of the display device provided by an embodiment of the application.
  • FIG. 10 is a schematic diagram of the first structure of the Y part of the display device in FIG. 9.
  • FIG. 11 is a schematic diagram of a second structure of the Y part of the display device in FIG. 9.
  • FIG. 12 is a schematic diagram of a third structure of the Y part of the display device in FIG. 9.
  • FIG. 13 is a schematic structural diagram of a first pixel and a first driving unit in a display device provided by an embodiment of the application.
  • FIG. 14 is a schematic diagram of a third partial structure of a display device provided by an embodiment of the application.
  • FIG. 15 is a schematic diagram of a third layered structure of the first display area in the display device provided by an embodiment of the application.
  • FIG. 16 is a schematic diagram of a fourth layered structure of the first display area in the display device provided by an embodiment of the application.
  • FIG. 17 is a schematic diagram of a second layered structure of the first display area in the display device provided by an embodiment of the application.
  • An embodiment of the present application provides a display device, which includes a first display area and a second display area that are adjacent to each other;
  • the first display area includes a plurality of first driving units, at least one of the first driving units includes at least two thin film transistors, and at least one thin film transistor in the first driving unit is located in the first display area, And at least one thin film transistor in the first driving unit is located in the second display area.
  • the display device further includes a gate line
  • the plurality of thin film transistors of the first driving unit includes at least one driving tube and at least one control tube
  • the gate of the control tube is electrically connected to the gate line ; All the drive tubes are arranged in the first display area, and all the control tubes are arranged in the second display area.
  • the display device further includes a light-emitting layer, the light-emitting layer includes a plurality of first pixels, the plurality of first driving units are used to drive the plurality of first pixels, and the driving tube is in the light-emitting layer.
  • the orthographic projection of is at least partially overlapped with the first pixel.
  • the projection of the driving tube on the light-emitting layer is located in the first pixel.
  • the first display area includes a plurality of first pixel sets, each of the first pixel sets includes at least two of the first pixels, and one of the first driving units is used to drive one of the first pixels. All the first pixels in a pixel set.
  • the second display area includes a plurality of second pixels, and the physical structures of the first pixels and the second pixels are the same.
  • the first driving unit further includes a capacitor, and the capacitor is located in the first display area.
  • the light transmittance of the first display area is greater than the light transmittance of the second display area.
  • the first display area includes a plurality of first pixels
  • the second display area includes a plurality of second pixels
  • the size of the first pixel is larger than the size of the second pixel
  • the first display area includes a plurality of first pixels
  • the second display area includes a plurality of second pixels
  • the distribution density of the first pixels is smaller than the distribution density of the second pixels
  • the second display area includes a second driving unit, the second driving unit drives the plurality of second pixels, and the number of thin film transistors of the second driving unit is greater than or equal to the thin film transistors of the first driving unit quantity.
  • An embodiment of the present application also provides a display device, the display device includes a first display area, and the first display includes:
  • a first driving circuit layer and a second driving circuit layer are stacked; a plurality of first driving units, at least one of the first driving units includes at least two thin film transistors, and at least one thin film transistor in the first driving unit is located at the The first driving circuit layer, and at least one thin film transistor in the first driving unit is located on the second driving circuit layer, the thin film transistor in the first driving circuit layer and the thin film in the second driving circuit layer
  • the transistors are at least partially arranged oppositely.
  • the display device further includes a gate line, the plurality of thin film transistors of the first driving unit are divided into a driving tube and a control tube, the gate of the control tube is electrically connected to the gate line, and each of them is electrically connected to the gate line.
  • the drive tube is located on the first drive circuit layer, and each of the control tubes is located on the second drive circuit layer.
  • the display device further includes a light-emitting layer, the light-emitting layer includes a plurality of first pixels, and the plurality of first driving units are used to drive the plurality of first pixels;
  • the first driving circuit layer is located between the light-emitting layer and the second driving circuit layer.
  • the first display area includes a plurality of first pixel sets, each of the first pixel sets includes at least two of the first pixels, and one of the first driving units is used to drive one of the first pixels. All the first pixels in a pixel set.
  • the second display area includes a plurality of second pixels, and the physical structures of the first pixels and the second pixels are the same.
  • the display device further includes a second display area adjacent to the first display area, and the light transmittance of the second display area is lower than the light transmittance of the first display area.
  • An embodiment of the present application also provides an electronic device.
  • the electronic device includes a display device and a sensor.
  • the display device is the display device described in any of the above embodiments, and the sensor is used for transmitting through the first display area. signal.
  • the embodiments of the present application provide an electronic device and a display device thereof.
  • the electronic device may include a display device and a camera.
  • the lens of the camera is set relative to the display device, that is, the camera acquires external light signals passing through the display device for imaging.
  • the embodiment of the present application may set the display device in zones, for example, setting the light transmittance of the part of the display device corresponding to the camera to be greater than the light transmittance of other positions of the display device, which can improve the imaging effect of the camera.
  • the electronic devices provided by the embodiments of the application can be mobile terminal devices such as mobile phones and tablet computers, and can also be game devices, augmented reality (AR) devices, virtual reality (VR) devices, on-board computers, and laptop computers. , Data storage devices, audio playback devices, video playback devices, wearable devices and other devices with display devices, where the wearable devices can be smart bracelets, smart glasses, etc.
  • AR augmented reality
  • VR virtual reality
  • Data storage devices Audio playback devices, video playback devices, wearable devices and other devices with display devices, where the wearable devices can be smart bracelets, smart glasses, etc.
  • FIG. 1 is a schematic structural diagram of an electronic device provided by an embodiment of the application.
  • FIG. 1 shows an example in which the electronic device is a mobile phone, where the display device 20 includes a first display area 240 and a second display area 220, and the light transmittance of the first display area 240 is greater than that of the second display area 220.
  • the electronic device 10 is provided with a sensor such as a camera 60, and the sensor is used to transmit signals through the first display area 240.
  • the sensor is a camera 60
  • the lens of the camera 60 is set toward the first display area 240
  • the camera 60 is used to obtain an external light signal passing through the first display area 240 for imaging.
  • the camera 60 is disposed under the first display area 240 of the display device 20, and the camera 60 is used to obtain an external light signal passing through the first display area 240 of the display device 20, and to image according to the obtained external light signal.
  • the display area of the display device 20 is complete, and the screen-to-body ratio of the display device 20 is increased.
  • the camera 60 can be used as a front camera of an electronic device, and the camera 60 can be used to obtain images such as a user's selfie through the first display area 240 of the display device 20.
  • the sensor may be at least one of a camera, a proximity sensor, a light sensor, a distance measuring sensor, a fingerprint recognition sensor, and the like.
  • FIG. 2 is a schematic structural diagram of a display device provided by an embodiment of the application.
  • the display device 20 in the embodiment of the present application may include a first display area 240 and a second display area 220 that are adjacent to each other.
  • Both the first display area 240 and the second display area 220 can be used to display text or images, and the first display area 240 and the second display area 220 can display the same image together, for example, the second display area 220 displays a part of a preset image , The first display area 240 displays the remaining part of the preset image.
  • the second display area 220 and the first display area 240 may also display different images. For example, the second display area 220 displays a preset image, and the first display area 240 displays a task bar image.
  • Both the second display area 220 and the first display area 240 can display content, the display area is complete, the display device 20 has a high screen-to-body ratio, the second display area 220 can surround the first display area 240, and the periphery of the first display area 240 can be both It is adjacent to the second display area 220, that is, the first display area 240 is located in the middle of the second display area 220.
  • the second display area 220 may also partially surround the first display area 240, and a part of the edge of the first display area 240 is adjacent to the second display area 220.
  • the first display area 240 is located at a corner of the display device 20 or is located in the display area. The middle of the top of the device 20.
  • FIG. 3 is a schematic diagram of the first type of laminated structure of the first display area in the display device provided by an embodiment of the application
  • FIG. 4 is a schematic diagram of the first partial structure of the display device provided by an embodiment of the application 5 is an enlarged schematic diagram of part X of the display device in FIG. 4. It should be noted that FIG. 5 only shows part of the first driving unit.
  • the first display area 240 of the display device 20 includes a light-emitting layer 294 and a driving circuit layer 292 that are stacked.
  • the first display area 240 includes a plurality of first driving units 248, at least one first driving unit 248 includes at least two thin film transistors, at least one thin film transistor in the first driving unit 248 is located in the first display area 240, and the first driving unit 248 At least one thin film transistor in the unit 248 is located in the second display area 220.
  • Each first driving unit 248 may include at least two thin film transistors, at least one thin film transistor 2482 in any first driving unit 248 is located in the first display area, and at least one thin film transistor 2484 in the first driving unit 248 is located in the second display area. Display area.
  • At least one opaque thin film transistor in the first driving unit 248 is located in the second display outside the first display area, so as to increase the light transmittance of the first display area 240, so that more cameras than the first display area 240 can be obtained.
  • the external light signal improves the imaging quality of the camera.
  • the display device may further include a light-emitting layer 294.
  • the light-emitting layer 294 may include a pixel defining layer 2942.
  • the pixel defining layer 2942 includes a pixel hole, and the first pixel 246 is provided in the pixel hole.
  • the first driving unit 248 is used to drive the first pixel 246.
  • At least one thin film transistor in the first driving unit 248 is located in the first display area 240, and at least one thin film transistor in the first driving unit 248 is located in the second display area 220 outside the first display area 240. It is understandable that the camera is used to obtain images of external light signals that pass through the first display area 240. Some opaque thin film transistors are arranged outside the first display area 240, and the opaque thin film transistors in the first display area 240 The reduction in the number can increase the light transmittance of the first display area.
  • first pixels in the first display area there are multiple first pixels in the first display area, and there are also multiple first driving units, and the multiple first driving units drive multiple first pixels to obtain a better display effect.
  • the display device also includes a gate line (not shown in the figure) and a data line (not shown in the figure), and the gate line, the data line and the first driving unit cooperate to drive each first pixel.
  • the gate lines and the data lines may be arranged in different layers and arranged alternately. For example, the gate lines are arranged in rows and the data lines are arranged in columns.
  • the first driving units are respectively 7T1C, 5T2C, and 2T1C as an example for description.
  • FIG. 6 is a schematic diagram of a first circuit of the first driving unit in the display device provided by an embodiment of the application.
  • the first driving unit may be 2T1C
  • the first driving unit may include a plurality of thin film transistors (T1 and T2)
  • the plurality of thin film transistors may be divided into a driving tube T1 and a control tube T2, and the gate and gate of each control tube T2
  • the line SEL is electrically connected.
  • the plurality of thin film transistors in each first driving unit can be divided into two types, one of which is a driving tube and the other is a control tube. If the gate of the thin film transistor in each first driving unit is electrically connected to the gate line SEL, it is the control tube T2, and the thin film transistor in each first driving unit except the control tube T2 is the driving tube T1.
  • the drive tube T1 is arranged in the first display area, and the control tube T2 is arranged in the second display area outside the first display area.
  • Each first pixel in the first display area is connected to the power supply voltage through a wire, and the longer the wire length, the greater the wire resistance.
  • the power supply voltage will produce a voltage drop (IR Drop) on the wire.
  • the resistance of the wire makes the power supply voltage obtained by each first driving unit different, so that under the same data signal voltage input, different first Pixels have different currents and brightness outputs, resulting in uneven display brightness of the entire display device, and the IR drop of the first pixel will also be different for different pictures.
  • the control tube in the first drive unit mainly plays a control role and is not sensitive to IR drop.
  • the driving tube in the first driving unit mainly plays the role of driving the first pixel. It is arranged in the first display area and is close to the first pixel.
  • the voltage drop (IRDrop) is relatively small, that is, the power supply voltage and the voltage to the first pixel are relatively small.
  • the IR voltage drop of the voltage signal is small, and it is easier to compensate the color of the first display area.
  • the Cs in the first driving unit is arranged adjacent to the driving tube, that is, the Cs and the driving tube T1 are both arranged on the driving circuit layer of the first display area.
  • the first driving unit may also be 5T2C. Please refer to FIG. 7 for details.
  • FIG. 7 is a schematic diagram of a second circuit of the first driving unit in the display device provided by an embodiment of the application.
  • T1, T3, and T5 in the first driving unit are control tubes, and T2 and T4 in the first driving unit are driving tubes.
  • Vscan1 and Vsacan2 are connected to different gate lines, Vdata is connected to a data line, Vdd is connected to a voltage source, Vems is connected to a light-emitting scan control line, and OLED is a pixel.
  • the basic working principle of the first driving unit adopting 5T2C can be as follows:
  • Reset stage T1 is on, T4 is on, T3 is on, T2 is on, T5 is on, and the current passes through T3 and T4 to charge the capacitor C2. Because T5 is on, the OLED does not emit light.
  • Threshold voltage storage stage T1, T2, T3, and T5 are turned on, T4 is turned off, and Vdata is 0.
  • Vth is the threshold voltage of the thin film transistor.
  • T1, T2, T5 are turned on, T3, T4 are turned off, the gray-scale data voltage jumps to a positive value, and the gray-scale data is coupled to T2 through C1.
  • Va Vth+Vdata*C1/( C1+C2), because T5 is turned on, the OLED does not emit light.
  • the first driving unit may also be 7T1C. Please refer to FIG. 8 for details.
  • FIG. 8 is a schematic diagram of a third circuit of the first driving unit in the display device provided by the embodiment of the application.
  • T2, T3, T4, and T7 in the first driving unit are control tubes, and T1, T5, and T6 in the first driving unit are driving tubes.
  • Gn-1 and Gn are connected to different gate lines, DATA is connected to a data line, ELVDD is connected to a voltage source, and EM is connected to a light-emitting scan control line.
  • the capacitors C1 and C2 in the first driving unit are arranged adjacent to the driving tube, that is, the capacitors C1 and C2 and the driving tubes T2 and T4 are all arranged on the driving circuit layer of the first display area.
  • the basic working principle of the first driving unit adopting 7T1C can be as follows:
  • Capacitor discharge stage Gn-1 is a low potential, T4 is on, INIT is a low potential, and capacitor C1 is discharged.
  • Vth is the threshold voltage of the thin film transistor.
  • T2, T3, T4, and T7 are mainly used for resetting and controlling, and the actual driving paths are T1, T5, and T6.
  • the first driving unit of the 7T1C can eliminate the dispersion of the Vth of the thin film transistors in the 2T1C driving circuit, and solve the problem of uneven brightness distribution of the display device.
  • the capacitor C1 in the first driving unit is disposed adjacent to the driving tube, that is, the capacitor C1 and the driving tubes T1, T5, and T6 are all disposed on the driving circuit layer of the first display area.
  • the second display area 220 of the display device 20 is used to display information such as images and text.
  • the camera does not need to obtain external light signals through the second display area 220, and the second display area 220 does not need to consider the light transmittance. Therefore, the thin film transistor located outside the first display area 240 may be disposed in the second display area 220.
  • the gap of the second display area 220 is used to accommodate the thin film transistors of the first driving unit located outside the first display area 240.
  • the size of the second pixel in the second display area 220 corresponds to the size of the second driving unit that drives the second pixel.
  • the multiple second drive units also need multiple control lines to be connected to the drive chip of the display device 20.
  • the drive chip controls each second drive unit through multiple control lines, and the multiple control lines are arranged between the multiple second drive units. , There is an interval space between the second pixels, and the interval space is arranged corresponding to the control line.
  • the control line has a certain line width, which needs to meet impedance requirements and product technology.
  • the pixel density of the second display area 220 can reach more than 400ppi, and the size of the second pixel and the second driving unit of the second display area 220 are approximately the same.
  • the second driving unit is correspondingly arranged below the second pixel, and there are multiple control lines. It is arranged between the plurality of second driving units and correspondingly arranged under the interval space between the second pixels.
  • the second driving unit and the control line connected to it basically cover a whole layer of space, and it is difficult to accommodate other components.
  • the second display area may include a third display area adjacent to the first display area. Please refer to FIG. 9 for details.
  • FIG. 9 is a schematic diagram of the second partial structure of the display device provided by the embodiment of the application.
  • the second display area may include a third display area 260 and a fourth display area 270, and the thin film transistor of the first driving unit located outside the first display area may be located in the third display area 260.
  • FIG. 10 is a schematic diagram of the first structure of the Y part of the display device in FIG. 9.
  • the size of the third pixel 266 of the third display area 260 may be greater than the size of the fourth pixel 276 of the fourth display area 270, the spacing distance between the third pixels 266 is positively correlated with the size of the third pixel 266, and the third display area If the transition drive unit of the 260 and the second drive unit 228 are the same drive circuit, the size of the transition drive unit is equal to or slightly larger than the size of the second drive unit 228, and the control line connected to the transition drive unit is connected to the second drive unit 228.
  • the line width is approximately equal, and the size of the transition drive unit in the third display area 260 is smaller than the size of the third pixel 266. Therefore, the third display area 260 is provided with an accommodation space on a layer of the transition drive unit, and the accommodation space can be used to accommodate The thin film transistor of the first driving unit outside the first display area. It should be noted that the fourth pixel in this embodiment can be understood as the second pixel in the foregoing embodiment.
  • FIG. 11 is a schematic diagram of the second structure of the Y part of the display device in FIG. 9.
  • the size of the third pixel 266 of the third display area 260 may be the same as the size of the fourth pixel 276 of the fourth display area 270, but the spacing between the third pixels 266 is greater than the spacing between the fourth pixels 276, and the third display If the transition drive unit of the area 260 and the second drive unit 228 are the same drive circuit, because the distance between the third pixels 266 is larger, the third display area 260 is provided with an accommodation space on a layer of the transition drive unit. It can be used to accommodate the thin film transistor of the first driving unit located outside the first display area. It should be noted that the fourth pixel in this embodiment can be understood as the second pixel in the foregoing embodiment.
  • the size of the third pixel 266 of the third display area 260 may be the same as the size of the fourth pixel 276 of the fourth display area 270, the spacing between the third pixels 266 and the spacing between the second pixels are also the same, but the third
  • the transition drive unit of the display area 260 can be a simpler drive circuit than the second drive unit 228.
  • the transition drive unit is 2T1C or 5T1C, and the second drive unit is 7T1C. Because the transition drive unit includes fewer thin film transistors, it occupies There is also less space.
  • the third display area 260 is provided with a accommodating space on a layer of the transition driving unit, and the accommodating space can be used to accommodate the thin film transistors of the first driving unit located outside the first display area.
  • FIG. 12 is a schematic diagram of a third structure of the Y part of the display device in FIG. 9, and FIG. 13 is a schematic diagram of the structure of the first pixel and the first driving unit in the display device provided by an embodiment of the application.
  • the third pixel 266 of the third display area 260 can be divided into a plurality of second pixel sets 242, that is, the third display area 260 includes a plurality of second pixel sets 242, and each second pixel set 242 includes at least two connected in parallel.
  • the third pixel 266 and the third pixel 266 may have the same physical structure as the fourth pixel, and all the third pixels 266 in the second pixel set 242 share a transition driving unit.
  • the light emitting layers of the third display area and the fourth display area can be formed in the same process, and there is no difference between the light emitting layers of the third display area and the fourth display area.
  • one main driving unit drives one fourth pixel.
  • one transition drive unit drives a plurality of third pixels 266 connected in parallel, which can reduce the number of transition drive units and reduce the distribution density of transition drive units.
  • the number of transition drive units per unit area is smaller than the unit area.
  • the third display area 260 is provided with a layer of the transition driving unit with an accommodating space, and the accommodating space can be used for accommodating the thin film transistors of the first driving unit located outside the first display area.
  • the same physical structure of the third pixel and the fourth pixel can be understood to mean that the third pixel and the fourth pixel have the same size, the same distribution density, and the same arrangement.
  • the arrangement can be one of standard RGB arrangement, Pentile arrangement or Delta arrangement.
  • the parallel connection of the third pixels can be realized by connecting the third pixels in the light-emitting layer in parallel, or can be realized by connecting the metal anodes in the anode layer in parallel.
  • the third pixel and the fourth pixel may also have different physical structures.
  • the distribution density of the third pixel is smaller than the distribution density of the fourth pixel
  • the size of the third pixel is larger than the size of the fourth pixel
  • the third pixel is arranged in a standard RGB arrangement
  • the fourth pixel is arranged in a Pentile arrangement.
  • the physical structure of the third pixel in the third display area and the fourth pixel in the fourth display area may be the same, that is, the size of the third pixel and the fourth pixel, the spacing between the pixels, and the arrangement of the pixels are the same.
  • a layer where the third driving unit is arranged in the third display area is designed to accommodate a space for accommodating the thin film transistors of the first driving unit located outside the first display area.
  • the method of reducing the PPI may specifically include at least one of increasing the size of the third pixel and increasing the spacing between the third pixels.
  • the third pixel and the fourth pixel can be formed in the same process, and there is no need to form pixels with different physical structures through different processes.
  • the first pixel may also have the same physical structure as the third pixel, so that all the pixels of the display device are formed in the same process. Of course, the physical structure of the first pixel may also be different from that of the third pixel.
  • FIG. 14 is a schematic diagram of the third part of the structure of the display device according to an embodiment of the application.
  • the display device 20 may further include a non-display area 280.
  • Part of the thin film transistors (such as the control tube 2484) of the first driving unit 248 that drives the first pixels 246 of the first display area 240 may also be disposed in the non-display area 280.
  • Part of the thin film transistors of the unit 248 (such as the driving tube 2482) are disposed in the first display area 240.
  • the display device 20 may be a full screen, that is, the front of the display device 20 is basically a display area. From the front of the electronic device, the front of the display device 20 is basically equivalent to the display surface of the electronic device. However, even if it is a full-screen display device 20, there will still be non-display areas at the edges of the display device 20.
  • the non-display areas can be understood as the black borders of the display device 20.
  • the width of the black borders can be very narrow, such as the width of the black borders. Less than 1 mm or 0.5 mm, etc.
  • the first driving units 248 driving the first pixels 246 of the first display area 240 are also small.
  • Part of the thin film transistors (such as the control tube 2484) are set to the black edge position to increase the light transmittance of the first display area 240 without affecting the second display area 220.
  • the first pixel 246 corresponding to the first display area 240 needs to be provided with a plurality of first driving units 248, and part of the thin film transistors (such as the control tube 2484) of each first driving unit 248 can be all set at the black edge position.
  • the first driving unit 248 can use a driving circuit such as 2T1C, 5T1C, etc.
  • the number of thin film transistors that need to be placed on the black side in each first driving unit 248 is small. It is also possible to set the distribution density of the first pixels 246 in the first display area 240 to be lower, so that the total number of the first driving units 248 in the first display area 240 is smaller.
  • the thin film transistors located outside the first display area may also be partly arranged in the non-display area 280 and partly arranged in the first display area 240.
  • part of the control tubes 2484 can be arranged on the black border and part of the control tubes are arranged in the second display area or the first display area.
  • control tube arranged on the black border is also on the same layer as the driving tube of the driving circuit layer of the first display area.
  • the first display area also includes a metal anode, which is adjacent to the first pixel.
  • the metal anode in the first display area can be made of a highly reflective material (such as metallic magnesium, magnesium alloy, etc.) to improve the display brightness of the first display area.
  • the metal anode is arranged under the first pixel, and the light transmittance of the metal anode is relatively low.
  • the drive tube 2482 arranged under the first pixel is equal to the metal anode, so that the light signal passing through the pixel definition layer will not be driven by the drive tube 2482. Equal barriers to improve the overall light transmittance of the first display area.
  • the area of the first drive unit of 7T1C is relatively large, and it cannot be all arranged under the metal anode, and the metal anode cannot cover the corresponding first drive unit. It can also be understood as the metal anode
  • the projected area on the drive circuit layer is smaller than the area of the first drive unit.
  • the control tube in the first driving unit is arranged in the second display area, and the driving tube in the first driving unit is arranged under the metal anode of the first display area.
  • the area of the driving tube is significantly smaller than that of the first driving unit, so that the driving The tubes are all arranged under the metal anode, thereby increasing the light transmittance of the first display area.
  • the metal anode in the first display area can also be made of high light-transmitting materials (such as ITO) to increase the light transmittance of the first display area.
  • the metal anode is arranged under the first pixel.
  • the light transmittance of the first pixel and the metal anode is lower than the light transmittance of the pixel defining layer.
  • the drive tube 2482 arranged under the first pixel is equivalent to being arranged under the metal anode, so that the pixel can pass through.
  • the light signal of the definition layer will not be blocked by the driving tube 2482, etc., which improves the overall light transmittance of the first display area.
  • FIG. 15 is a schematic diagram of the stacked structure of the second display area in the display device provided by the embodiment of the present application.
  • the second display area of the display device includes a substrate 291, a first driving circuit layer 298, an anode layer 293, a light-emitting layer 294, a common electrode layer 295, a planarization layer 296, and a touch layer 297 stacked in sequence.
  • the substrate 291 can be used as a carrying platform of the display device, and the substrate 291 can be made of glass, plastic, resin, or other materials.
  • the material of the substrate 291 may be polyimide (PI).
  • the first driving circuit layer 298 is disposed on the substrate 291.
  • the first driving circuit layer 298 includes second driving units 228 for driving the second pixels 226 in the second display area 220, and each second driving unit 228 includes at least one thin film transistor. TFT. Among them, the source and drain of the thin film transistor are located on the same layer, and the gate is located between the source and the light-emitting layer.
  • the anode layer 293 is disposed on the first driving circuit layer 298.
  • the anode layer 293 includes a first anode layer 2932, a first insulating layer 2934, and a second anode layer 2936.
  • the first insulating layer 2934 is disposed on the first anode layer 2932 and the second anode layer 2932. Between the anode layers 2936, the first anode layer 2932 and the second anode layer 2936 are separated and insulated.
  • the first anode layer 2932 includes a first signal line (gate line) in a first direction
  • the second anode layer 2936 includes a second signal line (data line) in a second direction.
  • the first direction and the second direction may be arranged vertically,
  • the first signal line and the second signal line are respectively electrically connected to the second driving unit 228, and the driving chip of the display device controls the second driving unit 228 through the first signal line and the second signal line.
  • the first signal line and the second signal line may be metal or alloy materials such as molybdenum, molybdenum aluminum molybdenum, and Ag.
  • the first signal line and the gate of the second driving unit 268 may be located on the same layer, and the second signal line may be electrically connected to the drain of the second driving unit 228 through the conductive portion located in the first via 2935.
  • the anode layer 293 may also include a metal anode layer, the metal anode layer is adjacent to the light emitting layer 294, the metal anode 2938 of the metal anode layer and the second pixel 226 of the light emitting layer 294 are directly adjacent and electrically connected, the metal anode layer and the second driving unit There is a second insulating layer 2939 between the sources in the 228, and the metal anode 2938 can be electrically connected to the source of the second driving unit 228 through a conductive part located in the pixel via.
  • the metal anode 2938 can be made of materials such as Mg, Ag, and Al.
  • the metal anode in the metal anode layer may be located on the same layer as the second signal line in the second anode layer, that is, the metal anode layer and the second anode layer are in the same layer.
  • An insulating layer and the second insulating layer can be the same layer; the metal anode in the metal anode layer can also be located in a different layer from the second anode layer, and the metal anode layer and the second anode layer are separated and separated by the second insulating layer. insulation.
  • the light-emitting layer 294 is disposed on the anode layer 293.
  • the light-emitting layer 294 includes a pixel defining layer 2942.
  • the pixel defining layer 2942 has a plurality of pixel holes. Each pixel hole is provided with a second pixel 226, and the second pixel 226 includes an organic light-emitting material.
  • the common electrode layer 295 is disposed on the light emitting layer 294, and the anode layer 293 and the common electrode layer 295 are disposed on both sides of the second pixel 226, and jointly drive the second pixel 226.
  • the common electrode layer 295 can be made of materials such as Mg and Ag.
  • a planarization layer 296 may also be disposed on the common electrode layer 295.
  • the second pixel 226 is disposed behind the pixel hole, and the second pixel 226 does not fill the pixel hole.
  • a concave may appear after the common electrode layer 295 is disposed on the second pixel 226, a concave may appear.
  • the groove and the planarization layer 296 can fill the groove and cover the entire light-emitting layer 294 to protect the light-emitting layer 294 and the like.
  • a touch layer 297 may be further provided on the planarization layer 296, and the touch layer 297 may be used to detect a touch operation of the user.
  • a polarizer (not shown in the figure) can also be provided on the touch layer 297, and the polarizer can be used to prevent internal light from being transmitted out and prevent the user from seeing the internal driving unit and other components.
  • the touch layer 297 and the polarizer may be bonded together and then disposed on the planarization layer 296.
  • part of the structure can be added or reduced as needed, and the embodiments of the present application are not limited herein.
  • at least one of the touch layer 297 and the polarizer can be reduced.
  • a protective layer can be added between the planarization layer 296 and the touch layer 297, and the protective layer can be made of the same material as the substrate 291.
  • the first display area 240 may adopt a structure similar to that of the second display area 220.
  • the main difference between the first display area 240 and the second display area 220 is the first driving circuit layer 298.
  • the first driving circuit layer 298 of the first display area 240 and the first driving circuit layer 298 of the second display area 220 are adjacent to each other and are in the same layer.
  • all the layer structures in the first display area 240 except for the driving circuit layer use light-transmitting materials to increase the light transmittance of the first display area.
  • the substrate, pixel definition layer, common electrode layer, planarization layer, and touch layer of the first display area 240 can be made of light-transmitting materials, and the signal lines in the anode layer can be made of light-transmitting materials such as nano-silver.
  • the metal anode in the first display area can be made of light-transmitting materials such as ITO, and the common electrode layer can be made of light-transmitting materials such as ITO.
  • the TFT of the driving circuit layer in the first display area cannot be made of light-transmitting materials, and the driving circuit layer of the first display area may also be made of light-transmitting materials except for TFTs.
  • the substrate, pixel definition layer, common electrode layer, planarization layer, and touch control layer of the first display area 240 can also be made of the same light-transmitting material as the second display area 220.
  • the substrate can be Transparent materials such as glass or resin.
  • the size of the first pixel in the first display area may be set to be greater than the size of the second pixel, the size of the first pixel in the first display area is greater than the size of the second pixel, and the size of the first pixel in the first display area is greater than the size of the second pixel.
  • the spacing and the size of the first pixel that is, the larger the size of the first pixel, the larger the separation distance between the first pixels. Therefore, the distribution density of the first pixels in the first display area is less than that of the first pixel.
  • the distribution density of the second pixel in the second display area The light transmittance of the pixel definition layer between the first pixels is greater than the light transmittance of the first pixel. Therefore, the larger the size of the first pixel, the light transmittance of the first display area Higher.
  • the distribution density of the first pixels can also be set to be smaller than the distribution density of the second pixels.
  • the size of the first pixel in the first display area is the same as the size of the second pixel. Increase the separation distance between the first pixels to make the distribution density of the first pixel smaller than the distribution density of the second pixel.
  • the light transmittance of the pixel definition layer is greater than the light transmittance of the first pixel. Therefore, the smaller the distribution density of the first pixels and the greater the separation distance between the first pixels, the higher the light transmittance of the first display area.
  • the second pixel in the second display area may reach more than 400 ppi
  • the size of the first pixel in the first display area may be four times that of the second pixel
  • the first pixel in the first display area may be 200 ppi.
  • the first driving unit provided in the first display area may be a simple driving circuit.
  • the second display area includes a plurality of second driving units, and one second driving unit drives one second pixel.
  • the first driving unit in the first display area may be a simpler driving circuit than the second driving unit in the second display area.
  • the number of thin film transistors included in the first driving unit is less than the number of thin film transistors of the second driving unit.
  • the second driving unit is a 7T1C driving circuit
  • the first driving unit may be a driving circuit such as 5T1C or 2T1C.
  • the distribution density of the first driving unit may be set to be smaller than the distribution density of the second driving unit.
  • the plurality of first pixels in the first display area may be divided into a plurality of first pixel sets, that is, the first display area includes a plurality of first pixel sets, and each first pixel set includes at least two first pixels, the first pixels and The physical structure of the second pixel is the same, and all the first pixels in the first pixel set share a first driving unit.
  • the light-emitting layers of the first display area and the second display area can be formed in the same process, and there is no difference between the light-emitting layers of the first display area and the second display area.
  • one second driving unit drives one second pixel.
  • one first driving unit drives multiple first pixels, which can reduce the number of first driving units and the distribution density of the first driving units.
  • the number of first driving units per unit area is smaller than the unit area.
  • the number of second driving units in the second display area can increase the light transmittance of the first display area.
  • the number of thin film transistors included in the first driving unit is less than the number of thin film transistors in the second driving unit, which further improves the light transmittance of the first display area.
  • the plurality of first pixels in the first pixel set may be connected in parallel or in series. It should be noted that the series connection requires a larger driving voltage, the driving voltage of the first driving unit connected in parallel is similar to the driving unit of the second driving unit, and the driving voltage of the driving unit is difficult to increase.
  • the number of first pixels in a pixel set may be more than the first pixel set formed by series connection.
  • the same physical structure of the first pixel and the second pixel can be understood to mean that the first pixel and the second pixel have the same size, the same distribution density, and the same arrangement.
  • the arrangement can be one of standard RGB arrangement, Pentile arrangement or Delta arrangement.
  • the parallel connection of the first pixels may be realized by connecting the first pixels in the light emitting layer in parallel, or may be realized by connecting the metal anodes in the anode layer in parallel.
  • the display device further includes a polarizer.
  • the polarizer may have a first polarizing portion corresponding to the first display area, and the first polarizing portion may be a through hole or a light-transmitting material.
  • a through hole is first provided corresponding to the first display area, and then a transparent material is filled in the through hole to form the first polarizing part.
  • first set a through hole corresponding to the first display area and then fill the through hole with a material with high light transmittance and low polarization to form the first polarizing part, so that the first polarizing part can not only achieve the function of high light transmittance, but also Prevent the light from reflecting out, allowing users to see the function of the internal structure.
  • the laminated structure of the first display area may also be other structures, which is not limited in the embodiment of the present application.
  • FIG. 16 is a schematic diagram of the fourth type of laminated structure of the first display area in the display device provided by an embodiment of the application.
  • the main difference between the laminated structure of the first display area in this embodiment and the above embodiment lies in the driving circuit layer and the anode layer.
  • the source and drain of the thin film transistor of the first driving unit in the first display area are located in the same layer, and the source is located between the gate and the light-emitting layer.
  • the anode layer 293 is partially disposed on the driving circuit layer 292.
  • the anode layer 293 includes a first anode layer 2932, a first insulating layer 2934, and a second anode layer 2936.
  • the first insulating layer 2934 is disposed on the first anode layer 2932 and the second anode layer.
  • the layers 2936 are used to separate and insulate the first anode layer 2932 and the second anode layer 2936.
  • the first anode layer 2932 includes the first signal line (gate line) in the first direction
  • the second anode layer 2936 includes the first
  • the second signal line (data line) in two directions, the first direction and the second direction can be arranged vertically, the first signal line and the second signal line are electrically connected to the second driving unit 228, and the driving chip of the display device passes through the A signal line and a second signal line control the second driving unit 228.
  • the first signal line and the gate electrode in the second driving unit 228 may be located on the same layer, and the second signal line may be located on the same layer as the drain electrode of the second driving unit 228.
  • the anode layer 293 may also include a metal anode layer 2938, the metal anode layer 2938 is adjacent to the light emitting layer 294, the metal anode of the metal anode layer 2938 and the second pixel 226 of the light emitting layer 294 are directly adjacent and electrically connected, and the metal anode layer 2938 is connected to the second pixel 226 of the light emitting layer 294 directly.
  • the light shielding block 280 is disposed on the second insulating layer 2939 between the metal anode layer 2938 and the second anode layer 2936.
  • the embodiment of the present application also provides another display device.
  • the main difference between the display device of this embodiment and the display device of the foregoing embodiment lies in the arrangement of the thin film transistor of the first driving unit.
  • the thin film transistors of the first driving unit may all be arranged in the first display area, and the thin film transistors of the first driving unit may be partly arranged on the first driving circuit layer and partly arranged on the other driving circuit layer (the second driving circuit). Layer), the light transmittance of the first display area can also be improved.
  • FIG. 17 is a schematic diagram of the second layered structure of the first display area in the display device provided by an embodiment of the application.
  • the first display area includes a first driving circuit layer 298 and a second driving circuit layer 299 that are stacked. At least one thin film transistor in the first drive unit 248 is located on the first drive circuit layer 298, at least one thin film transistor in the first drive unit 248 is located on the second drive circuit layer 299, and the first drive circuit
  • the thin film transistors in the layer 298 and the thin film transistors in the second driving circuit layer 299 are at least partially disposed opposite to each other.
  • the opaque thin film transistors in the first driving unit 248 can be stacked to reduce the opaque area in the first display area, thereby increasing the light transmittance of the first display area.
  • the thin film transistors in the first driving unit 248 can also be divided into a driving tube 2482 and a control tube 2484.
  • the gate of each control tube 2484 is electrically connected to the gate line, and each driving tube 2482 is located in the The first driving circuit layer 298 and each of the control tubes 2484 are located on the second driving circuit layer 299.
  • the thin film transistor of each driving unit is divided into a control tube and a driving tube, and they are arranged on different layers.
  • the gate of the control tube is electrically connected to the gate line, which can facilitate wiring.
  • the first driving circuit layer 298 is located between the light-emitting layer and the second driving circuit layer 299.
  • the second driving circuit layer may also be located between the light-emitting layer and the first driving circuit layer.
  • first driving circuit layer 298 is located between the light-emitting layer and the second driving circuit layer 299.
  • Each first pixel in the first display area is connected to the power supply voltage through a wire, and the longer the wire length, the greater the wire resistance.
  • the power supply voltage will produce a voltage drop (IR Drop) on the wires, and the resistance value of the wires makes the power supply voltage obtained by each first driving unit 248 different, so that under the same data signal voltage input, different first driving units 248 One pixel has different current and brightness output, resulting in uneven display brightness of the entire display device, and the IR drop of the first pixel will also be different if the picture is different.
  • the control tube 2484 in the first driving unit 248 mainly plays a control role, and is not sensitive to IR drop. It is placed on the second driving circuit layer 299, that is, the IR drop of the power supply voltage and the voltage signal of the control tube 2484 is not sensitive to IR drop. It does not affect the opening and closing of the control tube 2484, and has no effect on the color compensation of the first display area.
  • the driving tube 2482 in the first driving unit 248 mainly plays the role of driving the first pixel. It is arranged on the first driving circuit layer 298. It is close to the first pixel, and the voltage drop (IR Drop) is relatively small, that is, the power supply voltage and the The IR voltage drop of the voltage signal of the first pixel is small, which makes it easier to compensate for the color of the first display area.
  • the driving tube 2482 and the control tube 2484 are arranged to overlap as much as possible. If there are more driving tubes 2482, the driving tubes 2482 cover the control tubes 2484. Similarly, if there are more control tubes 2484, the control tubes 2484 cover the driving tubes 2482. Make the light-transmissive area of the first display area the largest.
  • the driving tube 2482 and the first pixel may be at least partially arranged opposite to each other, which can increase the light transmittance of the first display area.
  • the orthographic projection of the driving tube 2482 on the light-emitting layer at least partially overlaps with the first pixel.
  • the orthographic projection of the driving tube 2482 on the light-emitting layer is located in the first pixel, that is, the first pixel covers the driving tube 2482, which can increase the first display area. ⁇ Transmittance. If the control tube 2484 is arranged in the first display area, the orthographic projection of the control tube 2484 on the light-emitting layer is also located in the first pixel.
  • the laminated structure of the first display area and the structure of the first pixel in this embodiment may be the same as the structure of the foregoing embodiment, and will not be repeated here.
  • the lens of the camera in the electronic equipment faces the substrate of the display device, and the camera is used to obtain external light signals passing through the first display area for imaging.
  • the lens of the camera can be close to or adjacent to the substrate of the display device.
  • the substrate of the display device is mainly used to carry other layer structures of the display device, and does not need special functions. Because, in order to further reduce the space occupied by the camera, the camera part can be arranged in the substrate. Please refer to FIG. 13 for details.
  • FIG. 13 is a schematic diagram of the first structure of a display device and a camera provided by an embodiment of the application.
  • a first mounting hole is provided at a position of the substrate relative to the camera 60, and the camera 60 is at least partially disposed in the first mounting hole.
  • the first mounting hole can be a blind hole, that is, the thickness of the part of the substrate 291 relative to the camera 60 is smaller than the thickness of other parts.
  • the substrate 291 is still a complete substrate 291, which does not affect its function of carrying other layer structures of the display device 20, and can vacate a part.
  • the space accommodates the camera 60.
  • the installation method of the first mounting hole and the camera 60 can be set according to the size of the first mounting hole and the size of the camera 60. Exemplarily, if the space of the first mounting hole is insufficient to install the entire camera 60, the lens 62 of the camera 60 is partially disposed in the first mounting hole. If the camera 60 is sufficiently small, the entire camera 60 is arranged in the first mounting hole.
  • the camera 60 relative to the first display area 240 can be used as the front camera 60 of the electronic device.
  • the front camera is generally a camera with a lens that cannot be moved.
  • the substrate 291 of the display device can be provided with a first mounting hole.
  • the camera 60 of a display area 240 may be a camera 60 with a movable lens 62, and the lens 62 of the camera 60 may be movable for realizing functions such as auto-focusing.
  • the size and shape of the first pixel in the first display area can be set as required.
  • the first pixel may be rectangular or similar to circular.
  • the circular-like first pixel may be a circle, an ellipse, a rounded rectangle, or the like. Since the edge of the first pixel that is similar to the circle is an arc-shaped transition, the diffraction problem in the first display area can be improved.
  • the display device may have a regular shape, such as a rectangle, a rounded rectangle, or a circle.
  • the display device may also have an irregular shape, which is not limited in the embodiment of the present application.
  • One camera or multiple cameras can be set under the first display area. Multiple cameras can be cameras that cooperate with each other, such as two identical cameras, a normal camera, and a virtual camera or a black-and-white camera. Below the first display area, in addition to the camera, you can also set other functional devices, such as proximity sensors, Light sensor, distance measuring sensor, fingerprint recognition sensor, etc.
  • the electronic device 10 further includes a housing 40 and a camera 60.
  • the housing 40 may include a back cover (not shown in the figure) and a frame 420, and the frame 420 is arranged around the periphery of the back cover.
  • the display device 20 may be disposed in the frame 420, and the display device 20 and the back cover may be used as two opposite sides of the electronic device 10.
  • the camera 60 is provided between the back cover of the housing 40 and the display device 20.
  • the display device 20 may be an Organic Light-Emitting Diode (OLED) display device 20.
  • the display device 20 may be a full screen, that is, the display surface of the display device 20 is basically a display area.
  • the display device 20 may also be provided with a cover plate.
  • the cover plate covers the display device 20 to protect the display device 20 and prevent the display device 20 from being scratched or damaged by water.
  • the cover plate may be a transparent glass cover plate, so that the user can observe the information displayed by the display device 20 through the cover plate.
  • the cover plate may be a cover plate made of sapphire.
  • Electronic equipment can also include circuit boards, batteries, and midplanes.
  • the frame 420 is arranged around the middle board, wherein the frame 420 and the middle board can form the middle frame of the electronic device 10.
  • the middle board and the frame 420 form a accommodating cavity on both sides of the middle board.
  • One accommodating cavity is used for accommodating the display device 20, and the other accommodating cavity is used for accommodating circuit boards, batteries, and other electronic components or functions of the electronic device 10 Components.
  • the middle plate may have a thin plate or sheet-like structure, or a hollow frame structure.
  • the middle frame is used to provide support for the electronic components or functional components in the electronic device 10 so as to install the electronic components and functional components in the electronic device 10 together.
  • the camera 60, receiver, battery and other functional components of the electronic device 10 can all be mounted on the middle frame or circuit board for fixing. It is understandable that the material of the middle frame may include metal or plastic.
  • the circuit board can be installed on the middle frame.
  • the circuit board may be the main board of the electronic device 10.
  • the circuit board may be integrated with one or more of functional components such as a microphone, a speaker, a receiver, a headphone interface, an acceleration sensor, a gyroscope, and a processor.
  • the display device 20 may be electrically connected to the circuit board to control the display of the display device 20 through a processor on the circuit board.
  • the display device 20 and the camera 60 may both be electrically connected to the processor; when the processor receives a shooting instruction, the processor controls the light-transmitting area to turn off the display, and controls the camera 60 to collect images through the first display area 240; When the shooting instruction is not received and the image display instruction is received, the processor controls the second display area 220 and the first display area 240 to display images together.
  • the battery can be installed on the middle frame. At the same time, the battery is electrically connected to the circuit board, so that the battery can supply power to the electronic device 10.
  • a power management circuit may be provided on the circuit board. The power management circuit is used to distribute the voltage provided by the battery to various electronic components in the electronic device 10.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Geometry (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • General Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Theoretical Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

本申请实施例提供一种显示装置及电子设备,显示装置包括邻接的第一显示区和第二显示区;其中,第一显示区包括多个第一驱动单元,至少一个第一驱动单元包括至少两个薄膜晶体管,第一驱动单元中至少一个薄膜晶体管位于第一显示区,且第一驱动单元中至少一个薄膜晶体管位于第二显示区。

Description

显示装置及电子设备
本申请要求于2019年10月31日提交中国专利局、申请号为201911050485.4、申请名称为“显示装置及电子设备”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及电子技术领域,特别涉及一种显示装置及电子设备。
背景技术
随着通信技术的发展,诸如智能手机等电子设备越来越普及。在电子设备的使用过程中,电子设备可以采用其显示屏显示画面。
相关技术中,将传感器设置在显示装置下方,传感器透过显示装置传输信号,显示装置中的不透光的薄膜晶体管等元件会降低显示装置的透光率,影响传感器传输信号的质量。
发明内容
本申请实施例提供一种显示装置及电子设备,可以提高第一显示区的透光率,有利于提高传感器的传输信号的质量。
本申请实施例提供一种显示装置,其包括邻接的第一显示区和第二显示区;
其中,所述第一显示区包括多个第一驱动单元,至少一个所述第一驱动单元包括至少两个薄膜晶体管,所述第一驱动单元中至少一个薄膜晶体管位于所述第一显示区,且所述第一驱动单元中至少一个薄膜晶体管位于所述第二显示区。
本申请实施例还提供一种显示装置,其包括第一显示区,所述第一显示包括:
层叠设置的第一驱动电路层和第二驱动电路层;
多个第一驱动单元,至少一个所述第一驱动单元包括至少两个薄膜晶体管,所述第一驱动单元中至少一个薄膜晶体管位于所述第一驱动电路层,且所述第一驱动单元中至少一个薄膜晶体管位于所述第二驱动电路层,所述第一驱动电路层中的薄膜晶体管与所述第二驱动电路层中的薄膜晶体管至少部分相对设置。
本申请实施例还提供一种电子设备,其包括显示装置和传感器,所述显示装置如上述所述的显示装置,所述传感器用于透过所述第一显示区传输信号。
附图说明
为了更清楚地说明本申请实施例中的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍。
图1为本申请实施例提供的电子设备的结构示意图。
图2为本申请实施例提供的显示装置的结构示意图。
图3为本申请实施例提供的显示装置中第一显示区的第一种层叠结构示意图。
图4为本申请实施例提供的显示装置的第一种部分结构示意图。
图5为图4中显示装置的X部分放大示意图。
图6为本申请实施例提供的显示装置中第一驱动单元的第一种电路示意图。
图7为本申请实施例提供的显示装置中第一驱动单元的第二种电路示意图。
图8为本申请实施例提供的显示装置中第一驱动单元的第三种电路示意图。
图9为本申请实施例提供的显示装置的第二种部分结构示意图。
图10为图9中显示装置的Y部分的第一种结构示意图。
图11为图9中显示装置的Y部分的第二种结构示意图。
图12为图9中显示装置的Y部分的第三种结构示意图。
图13为本申请实施例提供的显示装置中第一像素和第一驱动单元的结构示意图。
图14为本申请实施例提供的显示装置的第三种部分结构示意图。
图15为本申请实施例提供的显示装置中第一显示区的第三种层叠结构示意图。
图16为本申请实施例提供的显示装置中第一显示区的第四种层叠结构示意图。
图17为本申请实施例提供的显示装置中第一显示区的第二种的层叠结构示意图。
具体实施方式
本申请实施例提供一种显示装置,显示装置包括邻接的第一显示区和第二显示区;
其中,所述第一显示区包括多个第一驱动单元,至少一个所述第一驱动单元包括至少两个薄膜晶体管,所述第一驱动单元中至少一个薄膜晶体管位于所述第一显示区,且所述第一驱动单元中至少一个薄膜晶体管位于所述第二显示区。
其中,所述显示装置还包括栅极线,所述第一驱动单元的多个薄膜晶体管包括至少一个驱动管和至少一个控制管,所述控制管的栅极与所述栅极线电性连接;所有所述驱动管设置于所述第一显示区,所有所述控制管设置于所述第二显示区。
其中,所述显示装置还包括发光层,所述发光层包括多个第一像素,所述多个第一驱动单元用于驱动所述多个第一像素,所述驱动管在所述发光层的正投影与所述第一像素至少部分重合。
其中,所述驱动管在所述发光层的投影位于所述第一像素内。
其中,所述第一显示区包括多个第一像素集合,每一个第一所述第一像素集合包括至少两个所述第一像素,一个所述第一驱动单元用于驱动一个所述第一像素集合内所有的所述第一像素。
其中,每一个所述第一像素集合中的所有所述第一像素并联连接。
其中,所述第二显示区包括多个第二像素,所述第一像素和所述第二像素的物理结构相同。
其中,所述第一驱动单元还包括电容,所述电容位于所述第一显示区。
其中,所述第一显示区的透光率大于所述第二显示区的透光率。
其中,所述第一显示区包括多个第一像素,所述第二显示区包括多个第二像素,所述第一像素的尺寸大于所述第二像素的尺寸。
其中,所述第一显示区包括多个第一像素,所述第二显示区包括多个第二像素,所述第一像素的分布密度小于所述第二像素的分布密度。
其中,所述第二显示区包括第二驱动单元,第二驱动单元驱动所述多个第二像素,所述第二驱动单元的薄膜晶体管的数量大于或等于所述第一驱动单元的薄膜晶体管的数量。
本申请实施例还提供一种显示装置,显示装置包括第一显示区,所述第一显示包括:
层叠设置的第一驱动电路层和第二驱动电路层;多个第一驱动单元,至少一个所述第一驱动单元包括至少两个薄膜晶体管,所述第一驱动单元中至少一个薄膜晶体管位于所述第一驱动电路层,且所述第一驱动单元中至少一个薄膜晶体管位于所述第二驱动电路层,所述第一驱动电路层中的薄膜晶体管与所述第二驱动电路层中的薄膜晶体管至少部分相对设置。
其中,所述显示装置还包括栅极线,所述第一驱动单元的多个薄膜晶体管分成驱动管和控制管,所述控制管的栅极与所述栅极线电性连接,每一个所述驱动管位于所述第一驱动电路层,每一个所述控制管位于所述第二驱动电路层。
其中,所述显示装置还包括发光层,所述发光层包括多个第一像素,所述多个第一驱动单元用于驱动所述多个第一像素;
所述第一驱动电路层位于所述发光层和所述第二驱动电路层之间。
其中,所述第一显示区包括多个第一像素集合,每一个第一所述第一像素集合包括至少两个所述第一像素,一个所述第一驱动单元用于驱动一个所述第一像素集合内所有的所述第一像素。
其中,每一个所述第一像素集合中的所有所述第一像素并联连接。
其中,所述第二显示区包括多个第二像素,所述第一像素和所述第二像素的物理结构相同。
其中,所述显示装置还包括与所述第一显示区邻接的第二显示区,所述第二显示区的透光率小于所述第一显示区的透光率。
本申请实施例还提供一种电子设备,电子设备包括显示装置和传感器,所述显示装置如上述任一实施例中所述的显示装置,所述传感器用于透过所述第一显示区传输信号。
本申请实施例提供一种电子设备及其显示装置,电子设备可包括显示装置和摄像头,摄像头的镜头相对显示装置设置,即摄像头获取透过该显示装置的外界光信号进行成像。可以理解的是,常规显示装置的透光率较低,摄像头透过显示装置成像的效果不佳。为此,本申请实施例可以将显示装置分区设置,如将显示装置对应摄像头部分的透光率设置大于显示装置其他位置的透光率,可以改善摄像头成像效果。下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述。
本申请实施例提供的电子设备可以是手机、平板电脑等移动终端设备,还可以是游戏设备、增强现实(Augmented Reality,AR)设备、虚拟现实(Virtual Reality,VR)设备、车载电脑、笔记本电脑、数据存储装置、音频播放装置、视频播放装置、可穿戴设备等具有显示装置的设备,其中可穿戴设备可以是智能手环、智能眼镜等。
请参阅图1,图1为本申请实施例提供的电子设备的结构示意图。图1示出了电子设备为手机的示例,其中,显示装置20包括第一显示区240和第二显示区220,第一显示区240的透光率大于第二显示区220的 透光率。电子设备10内设有传感器如摄像头60,传感器用于透过第一显示区240传输信号。例如,传感器为摄像头60,摄像头60的镜头朝向第一显示区240设置,摄像头60用于获取透过第一显示区240的外界光信号进行成像。也可以理解为,摄像头60设置在显示装置20第一显示区240下方,摄像头60用于获取透过显示装置20第一显示区240的外界光信号,并根据获取的外界光信号成像。显示装置20的显示区域完整,提高了显示装置20的屏占比。摄像头60可以作为电子设备的前置摄像头,摄像头60可以用于透过显示装置20第一显示区240获取用户的自拍照等图像。传感器可以为摄像头、接近传感器、光线传感器、测距传感器、指纹识别传感器等中的至少一种。
为了更加全面的理解本申请实施例的显示装置。下面对显示装置进行详细说明。
请参阅图2,图2为本申请实施例提供的显示装置的结构示意图。本申请实施例中的显示装置20可以包括邻接的第一显示区240和第二显示区220。
第一显示区240和第二显示区220都可以用于显示文字或图像,第一显示区240和第二显示区220可以共同显示同一图像,例如,第二显示区220显示预设图像的一部分,第一显示区240显示预设图像剩下的部分。第二显示区220和第一显示区240也可以显示不同的图像,例如,第二显示区220显示预设图像,第一显示区240显示任务栏图像。第二显示区220和第一显示区240都可以显示内容,显示区域完整,显示装置20的屏占比高,第二显示区220可以围绕第一显示区240,第一显示区240周缘可以都与第二显示区220邻接,即第一显示区240位于第二显示区220中间。第二显示区220也可以部分围绕透第一显示区240,第一显示区240的部分边缘与第二显示区220邻接,例如,第一显示区240位于显示装置20的边角位置或位于显示装置20的顶端中间。
请参阅图3至图5,图3为本申请实施例提供的显示装置中第一显示区的第一种层叠结构示意图,图4为本申请实施例提供的显示装置的第一种部分结构示意图,图5为图4中显示装置的X部分放大示意图。需要说明的是,图5仅示出了部分第一驱动单元。显示装置20的所述第一显示区240包括层叠设置的发光层294和驱动电路层292。第一显示区240包括多个第一驱动单元248,至少一个第一驱动单元248包括至少两个薄膜晶体管,第一驱动单元248中至少一个薄膜晶体管位于第一显示区240,且该第一驱动单元248中至少一个薄膜晶体管位于第二显示区220。每一个第一驱动单元248可以包括至少两个薄膜晶体管,任意一个第一驱动单元248中至少一个薄膜晶体管2482位于第一显示区,且该第一驱动单元248中至少一个薄膜晶体管2484位于第二显示区。第一驱动单元248中至少一个不透光的薄膜晶体管位于第一显示区外的第二显示,以提高第一显示区240的透光率,从而使相对第一显示区240的摄像头获取更多的外界光信号,提高摄像头的成像质量。
其中,显示装置还可以包括发光层294,所述发光层294可以包括像素定义层2942,像素定义层2942包括像素孔,像素孔内设有第一像素246。所述第一驱动单元248用于驱动所述第一像素246。
所述第一驱动单元248中至少一个薄膜晶体管位于所述第一显示区240,所述第一驱动单元248中至少一个薄膜晶体管位于所述第一显示区240外的第二显示区220。可以理解的是,摄像头用于获取透过第一显示区240的外界光信号成像,部分不透光的薄膜晶体管设置在第一显示区240外,第一显示区240内不透光的薄膜晶体管的数量减少,可以提高第一显示区透光率。
其中,第一显示区的第一像素为多个,第一驱动单元也为多个,多个第一驱动单元驱动多个第一像素以得到较好的显示效果。
显示装置还包括栅极线(图中未示出)和数据线(图中未示出),栅极线、数据线和第一驱动单元配合驱动每一个第一像素。栅极线和数据线可以设置在不同层且交错排布,例如,栅极线呈行排布,数据线呈列排布。
为了更加全面的理解本申请实施例的第一驱动单元的薄膜晶体管的设置,下面以第一驱动单元分别为7T1C、5T2C和2T1C为例进行说明。
请参阅图6,图6为本申请实施例提供的显示装置中第一驱动单元的第一种电路示意图。第一驱动单元可以为2T1C,第一驱动单元可以包括多个薄膜晶体管(T1和T2),该多个薄膜晶体管可以分成驱动管T1和控制管T2,每一个控制管T2的栅极与栅极线SEL电性连接。也可以理解为,每一个第一驱动单元中的多个薄膜晶体管可以分成两类,其中一类为驱动管另一类为控制管。每一个第一驱动单元中的薄膜晶体管的栅极若与栅极线SEL电性连接则为控制管T2,每一个第一驱动单元中除了控制管T2以外的薄膜晶体管则为驱动管T1。
将驱动管T1设置在第一显示区,将控制管T2设置在第一显示区外的第二显示区。第一显示区的每个第一像素与电源电压通过导线连接,导线长度越长,导线电阻也越大。不可避免的,电源电压会在导线上产生电压降(IR Drop),导线的电阻值使得每一个第一驱动单元获得的电源电压不同,从而使得在相同的数据信号电压输入下,不同的第一像素有不同的电流、亮度输出,导致整个显示装置的显示亮度不均匀,并且画面不同,第一像素的IR drop也会跟着不同。第一驱动单元中的控制管主要起控制作用,对IR压降(IR drop)不敏感,放置在第一显示区外,即电源电压和控制管的电压信号的IR压降即使较大,也不影响控制管的开启和关闭,对第一显示区的色彩补偿没有影响。第一驱动单元中的驱动管主要起驱动第一像素作用,设置在第一显示区,与第一像素距离近,电压降(IR Drop)相对就会小,即电源电压和到第一像素的电压信号的IR压降小,更容易对第一显示区的色彩进行补偿。
需要说明的是,第一驱动单元中的Cs与驱动管相邻设置,即Cs和驱动管T1均设置在第一显示区的驱动电路层。
第一驱动单元还可以为5T2C,具体请参阅图7,图7为本申请实施例提供的显示装置中第一驱动单元的第二种电路示意图。第一驱动单元中的T1、T3和T5为控制管,第一驱动单元中的T2和T4为驱动管。图中Vscan1、Vsacan2连接不同的栅极线,Vdata连接数据线,Vdd连接电压源,Vems连接发光扫描控制线,OLED为像素。
采用5T2C的第一驱动单元其基本的工作原理可以如下:
重置阶段:T1导通、T4导通、T3导通、T2导通,T5导通,电流通过T3和T4对电容C2充电,由于T5导通,OLED不发光。
阈值电压存储阶段:T1、T2、T3、T5导通,T4关断,Vdata为0。a点电压通过T3、T2、T5放电至Va=Vth,由于T5导通,OLED不发光。其中,Vth为薄膜晶体管的阈值电压。
数据电压写入阶段:T1、T2、T5导通,T3、T4关断,灰阶数据电压跳变为正值,灰度数据通过 C1耦合到T2,此时Va=Vth+Vdata*C1/(C1+C2),由于T5导通,OLED不发光。
发光阶段:T2、T4导通,T1、T3、T5关断,T2驱动OLED发光,储存在C2的电压Va=Vth+Vdata*C1/(C1+C2)保持不变,从而维持OLED在一帧内亮度不变。
第一驱动单元还可以为7T1C,具体请参阅图8,图8为本申请实施例提供的显示装置中第一驱动单元的第三种电路示意图。第一驱动单元中的T2、T3、T4和T7为控制管,第一驱动单元中的T1、T5和T6为驱动管。图中Gn-1、Gn连接不同的栅极线,DATA连接数据线,ELVDD连接一电压源,EM连接发光扫描控制线。
需要说明的是,第一驱动单元中的电容C1和C2与驱动管相邻设置,即电容C1、C2和驱动管T2、T4均设置在第一显示区的驱动电路层。
采用7T1C的第一驱动单元其基本的工作原理可以如下:
电容放电阶段:Gn-1为低电位,T4导通,INIT为一个低电位,电容C1放电。
补偿阶段:Gn为低电位,T2和T3导通,T1的漏极和栅极短路,且Vg>Vth,T1打开,直到vg=Vdata-Vth。其中,Vth为薄膜晶体管的阈值电压。
发光阶段:EM为低电位,T5和T6导通,Vgs=ELVDD-(Vdata-Vth)。
其中,T2、T3、T4和T7主要起到复位和控制,实际的驱动通路是T1、T5和T6。同时7T1C的第一驱动单元可以消除2T1C驱动电路中薄膜晶体管的Vth的离散,解决显示装置的亮度分布不均匀的问题。
需要说明的是,第一驱动单元中的电容C1与驱动管相邻设置,即电容C1和驱动管T1、T5、T6均设置在第一显示区的驱动电路层。
请继续参阅图2,显示装置20的第二显示区220是用来显示图像和文字等信息,摄像头不需要通过第二显示区220获取外界光信号,第二显示区220不需要考虑透光率的问题,因此,可以将位于第一显示区240外的薄膜晶体管可以设置在第二显示区220。利用第二显示区220的间隙容纳位于第一显示区240外的第一驱动单元的薄膜晶体管。
需要说明的是,显示装置20第二显示区220的第二像素的分布密度越大,单位面积内的第二像素越多,其分辨率也越高,提供的显示效果也越好,考虑到显示装置20的产品工艺,第二显示区220中第二像素和驱动第二像素的第二驱动单元的尺寸相对应。多个第二驱动单元还需要多条控制线与显示装置20的驱动芯片连接,驱动芯片通过多条控制线控制每一个第二驱动单元,多条控制线布设在多个第二驱动单元之间,第二像素之间具有间隔空间,间隔空间与控制线对应设置。控制线具有一定的线宽,其需要满足阻抗需求和产品工艺。例如,第二显示区220的像素密度可以达到400ppi以上,第二显示区220的第二像素和第二驱动单元的尺寸大致相等,第二驱动单元对应设置在第二像素下方,多条控制线布设在多个第二驱动单元之间,并对应设置在第二像素之间的间隔空间下方。第二驱动单元和与其连接的控制线基本覆盖一整层空间,很难再容纳其他元件。
可以在第二显示区可以包括邻接第一显示区的第三显示区,具体请参阅图9,图9为本申请实施例提供的显示装置的第二种部分结构示意图。第二显示区可以包括第三显示区260和第四显示区270,位于第一显示区外的第一驱动单元的薄膜晶体管可以位于第三显示区260。
请结合图10,图10为图9中显示装置的Y部分的第一种结构示意图。第三显示区260的第三像素266的尺寸可以大于第四显示区270的第四像素276的尺寸,第三像素266之间的间隔距离与第三像素266的尺寸正相关,第三显示区260的过渡驱动单元和第二驱动单元228若为相同的驱动电路,过渡驱动单元的尺寸等于或略大于第二驱动单元228的尺寸,连接过渡驱动单元的控制线与连接第二驱动单元228的线宽大致相等,第三显示区260的过渡驱动单元的尺寸小于第三像素266的尺寸,因此,第三显示区260设置过渡驱动单元的一层具有容纳空间,该容纳空间可以用于容纳位于第一显示区外的第一驱动单元的薄膜晶体管。需要说明的是,本实施例的第四像素可以理解为上述实施例中的第二像素。
请结合图11,图11为图9中显示装置的Y部分的第二种结构示意图。第三显示区260的第三像素266的尺寸可以和第四显示区270的第四像素276的尺寸相同,但第三像素266之间的间距大于第四像素276之间的间距,第三显示区260的过渡驱动单元和第二驱动单元228若为相同的驱动电路,因为第三像素266之间的间距更大,第三显示区260设置过渡驱动单元的一层具有容纳空间,该容纳空间可以用于容纳位于第一显示区外的第一驱动单元的薄膜晶体管。需要说明的是,本实施例的第四像素可以理解为上述实施例中的第二像素。
第三显示区260的第三像素266的尺寸可以和第四显示区270的第四像素276的尺寸相同,第三像素266之间的间距和第二像素之间的间距也相同,但是第三显示区260的过渡驱动单元可以比第二驱动单元228更简略的驱动电路,例如,过渡驱动单元为2T1C或5T1C,第二驱动单元为7T1C,因为过渡驱动单元包括的薄膜晶体管更少,其占用的空间也更少,第三显示区260设置过渡驱动单元的一层具有容纳空间,该容纳空间可以用于容纳位于第一显示区外的第一驱动单元的薄膜晶体管。
请结合图12和图13,图12为图9中显示装置的Y部分的第三种结构示意图,图13为本申请实施例提供的显示装置中第一像素和第一驱动单元的结构示意图。第三显示区260的第三像素266可以分成多个第二像素集合242,即第三显示区260包括多个第二像素集合242,每一个第二像素集合242包括至少两个相互并联连接的第三像素266,第三像素266可以和第四像素的物理结构可以相同,第二像素集合242内所有第三像素266共用一个过渡驱动单元。第三显示区和第四显示区的发光层可以在同一工序中形成,第三显示区和第四显示区的发光层没有区别。第四显示区中,一个主驱动单元驱动一个第四像素。第三显示区中,一个过渡驱动单元驱动并联连接的多个第三像素266,可以减少过渡驱动单元的数量,减小过渡驱动单元的分布密度,单位面积内的过渡驱动单元的数量小于单位面积内主驱动单元的数量,第三显示区260设置过渡驱动单元的一层具有容纳空间,该容纳空间可以用于容纳位于第一显示区外的第一驱动单元的薄膜晶体管。
第三像素和第四像素的物理结构相同可以理解为第三像素和第四像素的尺寸大小相同、分布密度相同、排列方式相同等。排列方式可以为标准RGB排列、Pentile排列或Delta排列中的一项。
第三像素并联可以通过在发光层中的第三像素并联连接实现,也可以通过阳极层中的金属阳极并联连接实现。
当然,第三像素和第四像素也可以物理结构不同。例如,第三像素的分布密度小于第四像素的分布密度,第三像素的尺寸大于第四像素的尺寸,第三像素按照标准RGB排列方式排列,第四像素按照 Pentile排列方式排列等。
此外,第三显示区的第三像素和第四显示区的第四像素的物理结构可以相同,即第三像素和第四像素的大小尺寸、像素之间的间距、像素的排列方式都相同。通过降低第三显示区PPI的方式,在第三显示区设置第三驱动单元的一层设计出容纳空间,用于容纳位于第一显示区外的第一驱动单元的薄膜晶体管。降低PPI的方式具体可以包增大第三像素的尺寸和增大第三像素之间的间距等中的至少一种。第三像素和第四像素可以在同一个工序中形成,不需要通过不同的工序形成不同物理结构的像素。第一像素也可以和第三像素的物理结构相同,从而在同一个工序中形成显示装置所有的像素。当然,第一像素也可以为第三像素的物理结构不同。
位于第一显示区外的薄膜晶体管除了设置在第二显示区,还可以设置在非显示区。具体请参阅图14,图14为本申请实施例提供的显示装置的第三种部分结构示意图。显示装置20还可以包括非显示区280,驱动第一显示区240的第一像素246的第一驱动单元248的部分薄膜晶体管(如控制管2484)还可以设置于非显示区280,第一驱动单元248的部分薄膜晶体管(如驱动管2482)设置于第一显示区240。显示装置20可以为全面屏,即显示装置20的正面基本都是显示区域,从电子设备的正面看,显示装置20的正面基本等同于电子设备的显示面。但是,即使是全面屏的显示装置20,显示装置20的边缘还是会有非显示区域,非显示区域可以理解为显示装置20的黑边,黑边的宽度可以做到非常窄,如黑边宽度小于1毫米或0.5毫米等。因为第一显示区240面积小,第一显示区240内第一像素246的数量也少,驱动第一显示区240第一像素246的第一驱动单元248也少,可以将第一驱动单元248的部分薄膜晶体管(如控制管2484)设置到黑边位置,提高第一显示区240的透光率,又不会对第二显示区220造成影响。对应第一显示区240的第一像素246需要设置多个第一驱动单元248,可以将每一个第一驱动单元248的部分薄膜晶体管(如控制管2484)全部设置在黑边位置。为了让为黑边位置可以更好的容纳所有的第一驱动单元248的薄膜晶体管,可以用较简单的第一驱动单元248,例如第一驱动单元248可以采用2T1C、5T1C等驱动电路,可以使每个第一驱动单元248中需要放置在黑边的薄膜晶体管的数量较少。还可以第一显示区240内的第一像素246分布密度设置较低,使第一显示区240内第一驱动单元248的总数较少。需要说明的是,位于第一显示区外的薄膜晶体管还可以部分设置在非显示区280,部分设置在第一显示区240。
考虑到黑边的宽度非常小,可能无法容纳所有的控制管2484,可以将部分控制管2484设置在黑边,部分控制管设置在第二显示区或第一显示区。
需要说明的是,设置在黑边的控制管也是与第一显示区驱动电路层的驱动管同一层。
第一显示区还包括金属阳极,金属阳极与第一像素邻接,第一显示区的金属阳极可以采用高反射材料(如金属镁、镁合金等),以提高第一显示区的显示亮度。金属阳极设置在第一像素下方,金属阳极的透光率较低,驱动管2482设置在第一像素下方等于设置在金属阳极下方,从而使透过像素定义层的光信号不会被驱动管2482等阻挡,提高第一显示区的整体透光率。
需要说明的是,第一驱动单元若为7T1C,7T1C的第一驱动单元的面积较大,无法全部设置在金属阳极下方,金属阳极无法覆盖对应的第一驱动单元,也可以理解为,金属阳极在驱动电路层的投影的面积比第一驱动单元的面积小。将第一驱动单元中控制管设置在第二显示区,第一驱动单元中的驱动管设 置在第一显示区的金属阳极下方,驱动管面积明显小于第一驱动单元的面积,从而可以将驱动管全部设置在金属阳极下方,从而提高第一显示区的透光率。
第一显示区的金属阳极也可以采用高透光材料(如ITO),以提高第一显示区的透光率。金属阳极设置在第一像素下方,第一像素和金属阳极的透光率比像素定义层的透光率小,驱动管2482设置在第一像素下方等于设置在金属阳极下方,从而使透过像素定义层的光信号不会被驱动管2482等阻挡,提高第一显示区的整体透光率。
为了更加全面的理解本申请实施例的显示装置,请参阅图15,图15为本申请实施例提供的显示装置中第二显示区的层叠结构示意图。显示装置的第二显示区包括依次层叠设置的基板291、第一驱动电路层298、阳极层293、发光层294、公共电极层295、平坦化层296和触控层297。
基板291可以作为显示装置的承载平台,基板291可以采用玻璃或塑料或树脂或其他材料制成。例如基板291的材料可以采用聚酰亚胺(polyimide,PI)。
第一驱动电路层298设置于基板291上,第一驱动电路层298中包括驱动第二显示区220中第二像素226的第二驱动单元228,每个第二驱动单元228包括至少一个薄膜晶体管TFT。其中,薄膜晶体管的源极和漏极位于同一层,栅极位于源极和发光层之间。
阳极层293设置在第一驱动电路层298上,阳极层293包括第一阳极层2932、第一绝缘层2934和第二阳极层2936,第一绝缘层2934设置在第一阳极层2932和第二阳极层2936之间,用以将第一阳极层2932和第二阳极层2936分隔并绝缘。第一阳极层2932包括第一方向的第一信号线(栅极线),第二阳极层2936包括第二方向的第二信号线(数据线),第一方向和第二方向可以垂直设置,第一信号线和第二信号线分别与第二驱动单元228电性连接,显示装置的驱动芯片通过第一信号线和第二信号线控制第二驱动单元228。第一信号线和第二信号线可以钼、钼铝钼、Ag等金属或合金材料。第一信号线可以与第二驱动单元268中的栅极位于同一层,第二信号线可以与通过位于第一过孔2935内的导电部与第二驱动单元228的漏极电性连接。阳极层293还可以包括金属阳极层,金属阳极层相邻发光层294,金属阳极层的金属阳极2938和发光层294的第二像素226直接邻接并电性连接,金属阳极层和第二驱动单元228中的源极之间具有第二绝缘层2939,金属阳极2938可以通过位于像素过孔内的导电部与第二驱动单元228的源极电性连接。金属阳极2938可以采用Mg、Ag、Al等材料。需要说明的是,在其他一些实施例中,金属阳极层中的金属阳极可以和第二阳极层中的第二信号线位于同一层,即,金属阳极层和第二阳极层为同一层,第一绝缘层和第二绝缘层可以为同一层;金属阳极层中的金属阳极也可以和第二阳极层位于不同层,且金属阳极层和第二阳极层之间通过第二绝缘层隔开并绝缘。
发光层294设置在阳极层293上,发光层294包括像素定义层2942,像素定义层2942具有多个像素孔,每个像素孔内设置有第二像素226,第二像素226包括有机发光材料。
公共电极层295设置在发光层294上,阳极层293和公共电极层295设置在第二像素226两侧,并共同驱动第二像素226。公共电极层295可以采用Mg、Ag等材料。
公共电极层295上还可以设置平坦化层296,第二像素226设置在像素孔后,第二像素226并未填满像素孔,公共电极层295设置在第二像素226上后,会出现凹槽,平坦化层296可以将凹槽填平,并覆盖 整层发光层294,用以保护发光层294等。
在平坦化层296上还可以设置触控层297,触控层297可以用于检测用户触控操作。
在触控层297上还可以设置偏光片(图中未示出),偏光片可以用于防止内部光线透射出去,防止用户看到内部的驱动单元等元件。触控层297和偏光片可以贴合在一起,然后再设置在平坦化层296上。
需要说明的是,在其他一些实施例中,可以根据需要增加或减少部分结构,本申请实施例在此不做限定。例如,可以减少触控层297、偏光片中的至少一项。又例如,可以在平坦化层296和触控层297之间增加一层保护层,保护层可以采用与基板291一样的材料。
第一显示区240可以采用和第二显示区220类似的结构,具体可参阅上述实施例,在此不再赘述。第一显示区240与第二显示区220的主要区别在于第一驱动电路层298。第一显示区240的第一驱动电路层298和第二显示区220的第一驱动电路层298邻接,并处于同一层。其中,第一显示区240内各层结构中除了驱动电路层都采用透光材料,以提高第一显示区的透光率。例如,第一显示区240的基板、像素定义层、公共电极层、平坦化层、触控层都可以采用透光材料制成,阳极层中的信号线可以采用或纳米银等透光材料制。第一显示区的金属阳极可以采用ITO等透光材料,公共电极层可以采用ITO等透光材料。第一显示区的驱动电路层的TFT无法采用透光材料,第一显示区的驱动电路层中除了TFT其他部分也可以采用透光材料。可以理解的是,通过提高材料的透光率以及改变布线的排布以提高第一显示区240的方案均在本申请的范围内。需要说明的是,第一显示区240的基板、像素定义层、公共电极层、平坦化层、触控层也可以和第二显示区220采用一样的透光材料,示例性地,基板可以采用玻璃或树脂等透光材料。
为了提高第一显示区的透光率,可以设置第一显示区的第一像素的尺寸大于第二像素的尺寸,第一显示区的第一像素的尺寸大于第二像素的尺寸,第一像素之间的间距和第一像素的尺寸正相关,即,第一像素的尺寸越大,第一像素之间的间隔距离也越大,因此,第一显示区的第一像素的分布密度小于第二显示区第二像素的分布密度,第一像素之间的像素定义层的透光率大于第一像素的透光率,因此,第一像素的尺寸越大,第一显示区的透光率越高。
为了提高第一显示区的透光率,还可以设置第一像素的分布密度小于第二像素的分布密度。第一显示区的第一像素的尺寸与第二像素的尺寸相同,增大第一像素之间的间隔距离,使第一像素的分布密度小于第二像素的分布密度,第一像素之间的像素定义层的透光率大于第一像素的透光率,因此,第一像素的分布密度越小,第一像素之间的间隔距离越大,第一显示区的透光率越高。示例性的,第二显示区的第二像素可以达到400ppi以上,第一显示区的第一像素的尺寸可以为第二像素的四倍,第一显示区的第一像素可以为200ppi。
为了提高第一显示区的透光率,设置在第一显示区的第一驱动单元可以为简略的驱动电路。具体的,第二显示区包括多个第二驱动单元,一个第二驱动单元驱动一个第二像素。第一显示区的第一驱动单元可以为比第二显示区的第二驱动单元更简略的驱动电路。第一驱动单元包括的薄膜晶体管的数量少于第二驱动单元的薄膜晶体管的数量。因为,薄膜晶体管不透光,第一驱动单元中不透光的薄膜晶体管的数量较少,其占据的面积也较少,驱动电路层不透光的区域也较少,驱动电路层可透光的区域的占比也较高,可以提高驱动电路层、以及第一显示区的透光率。例如,第二驱动单元为7T1C驱动电路,第一 驱动单元可以为5T1C或2T1C等驱动电路。
为了提高第一显示区的透光率,还可以设置第一驱动单元的分布密度小于第二驱动单元的分布密度。第一显示区的多个第一像素可以分成多个第一像素集合,即第一显示区包括多个第一像素集合,每一个第一像素集合包括至少两个第一像素,第一像素和第二像素的物理结构相同,第一像素集合内所有第一像素共用一个第一驱动单元。第一显示区和第二显示区的发光层可以在同一工序中形成,第一显示区和第二显示区的发光层没有区别。第二显示区中,一个第二驱动单元驱动一个第二像素。第一显示区中,一个第一驱动单元驱动多个第一像素,可以减少第一驱动单元的数量,减小第一驱动单元的分布密度,单位面积内的第一驱动单元的数量小于单位面积内第二驱动单元的数量,相对于第二显示区,可以提高第一显示区的透光率。其中,第一驱动单元包括的薄膜晶体管的数量少于第二驱动单元的薄膜晶体管的数量,进一步提高第一显示区的透光率。
第一像素集合内的多个第一像素可以并联连接也可以串联连接。需要说明的是,串联连接需要较大的驱动电压,并联连接的第一驱动单元的驱动电压和第二驱动单元的驱动单元相近,而驱动单元的驱动电压升高较难,并联连接形成的第一像素集合中第一像素的数量可以多于串联连接形成的第一像素集合。
第一像素和第二像素的物理结构相同可以理解为第一像素和第二像素的尺寸大小相同、分布密度相同、排列方式相同等。排列方式可以为标准RGB排列、Pentile排列或Delta排列中的一项。
第一像素并联可以通过在发光层中的第一像素并联连接实现,也可以通过阳极层中的金属阳极并联连接实现。
显示装置还包括偏光片,偏光片对应第一显示区可以具有第一偏光部,第一偏光部可以为通孔或透光材料。例如,先对应第一显示区设置一通孔,然后在通孔内填充透明材料形成第一偏光部。又例如,先对应第一显示区设置一通孔,然后在通孔内填充高透光低偏光性材料形成第一偏光部,使第一偏光部既可以实现高透光率的功能,又可以实现防止光线反射出去,让用户看到内部结构的功能。
第一显示区的层叠结构还可以为其他结构,本申请实施例并不对此进行限定。示例性的,在其他一些实施例中,请参阅图16,图16为本申请实施例提供的显示装置中第一显示区的第四种层叠结构示意图。本实施例中第一显示区的层叠结构与上述实施例的主要区别在于驱动电路层和阳极层。第一显示区的第一驱动单元的薄膜晶体管的源极和漏极位于同一层,源极位于栅极和发光层之间。
阳极层293部分设置在驱动电路层292上,阳极层293包括第一阳极层2932、第一绝缘层2934和第二阳极层2936,第一绝缘层2934设置在第一阳极层2932和第二阳极层2936之间,用以将第一阳极层2932和第二阳极层2936分隔并绝缘,第一阳极层2932包括第一方向的第一信号线(栅极线),第二阳极层2936包括第二方向的第二信号线(数据线),第一方向和第二方向可以垂直设置,第一信号线和第二信号线分别与第二驱动单元228电性连接,显示装置的驱动芯片通过第一信号线和第二信号线控制第二驱动单元228。第一信号线可以与第二驱动单元228中的栅极位于同一层,第二信号线可以与第二驱动单元228中的漏极位于同一层。阳极层293还可以包括金属阳极层2938,金属阳极层2938相邻发光层294,金属阳极层2938的金属阳极和发光层294的第二像素226直接邻接并电性连接,金属阳极层2938和第二驱动单元 228中的源极之间具有第二绝缘层2939,金属阳极可以通过像素过孔与第二驱动单元228的源极电性连接。遮光块280设置在金属阳极层2938和第二阳极层2936之间的第二绝缘层2939。
本申请实施例还提供另一种显示装置,本实施例的显示装置与上述实施例的显示装置的主要区别在于第一驱动单元的薄膜晶体管的设置方式。本实施例中,第一驱动单元的薄膜晶体管可以全部设置在第一显示区,第一驱动单元的薄膜晶体管可以部分设置在第一驱动电路层部分设置在另一驱动电路层(第二驱动电路层),同样可以提高第一显示区的透光率。具体请参阅图17,图17为本申请实施例提供的显示装置中第一显示区的第二种的层叠结构示意图。第一显示区包括层叠设置的第一驱动电路层298和第二驱动电路层299。所述第一驱动单元248中至少一个薄膜晶体管位于所述第一驱动电路层298,所述第一驱动单元248中至少一个薄膜晶体管位于所述第二驱动电路层299,所述第一驱动电路层298中的薄膜晶体管与所述第二驱动电路层299中的薄膜晶体管至少部分相对设置。第一驱动单元248中的不透光的薄膜晶体管可以层叠设置,减小第一显示区中不透光的面积,从而提高第一显示区的透光率。
其中,第一驱动单元248中的薄膜晶体管同样可以分成驱动管2482和控制管2484,每一个控制管2484的栅极与所述栅极线电性连接,每一个所述驱动管2482位于所述第一驱动电路层298,每一个所述控制管2484位于所述第二驱动电路层299。每一个驱动单元的薄膜晶体管分成控制管和驱动管,并且设置在不同的层,控制管的栅极均与栅极线电性连接,可以方便布线。
所述第一驱动电路层298位于所述发光层和所述第二驱动电路层299之间。当然,也可以所述第二驱动电路层位于所述发光层和所述第一驱动电路层之间。
若所述第一驱动电路层298位于所述发光层和所述第二驱动电路层299之间。第一显示区的每个第一像素与电源电压通过导线连接,导线长度越长,导线电阻也越大。不可避免的,电源电压会在导线上产生电压降(IR Drop),导线的电阻值使得每一个第一驱动单元248获得的电源电压不同,从而使得在相同的数据信号电压输入下,不同的第一像素有不同的电流、亮度输出,导致整个显示装置的显示亮度不均匀,并且画面不同,第一像素的IR drop也会跟着不同。第一驱动单元248中的控制管2484主要起控制作用,对IR压降(IR drop)不敏感,放置在第二驱动电路层299,即电源电压和控制管2484的电压信号的IR压降即使较大,也不影响控制管2484的开启和关闭,对第一显示区的色彩补偿没有影响。第一驱动单元248中的驱动管2482主要起驱动第一像素作用,设置在第一驱动电路层298,与第一像素距离近,电压降(IR Drop)相对就会小,即电源电压和到第一像素的电压信号的IR压降小,更容易对第一显示区的色彩进行补偿。
其中,驱动管2482和控制管2484尽量重叠设置。若驱动管2482的数量更多,则驱动管2482覆盖控制管2484。同样的,若控制管2484的数量更多,则控制管2484覆盖驱动管2482。使第一显示区透光的区域最大。
需要说明的是,因为第一像素的透光率低于像素定义层的透光率,因此,驱动管2482和第一像素可以至少部分相对设置,可以提高第一显示区的透光率。也可以理解为,驱动管2482在所述发光层的正投影与所述第一像素至少部分重合。其中,因为驱动管2482的面积小于第一项像素的面积,驱动管2482在所述发光层的正投影位于所述第一像素内,即第一像素覆盖驱动管2482,可以提高第一显示区的透光 率。控制管2484若设置在第一显示区,控制管2484在所述发光层的正投影同样位于所述第一像素内。
需要说明的是,本实施例中的第一显示区的层叠结构、第一像素的结构可以和上述实施例结构相同,在此不再赘述。
电子设备中摄像头的镜头朝向显示装置的基板,摄像头并用于获取透过第一显示区的外界光信号进行成像。为了减小摄像头占用的空间,可以让摄像头的镜头接近或邻接显示装置的基板。显示装置的基板主要用于承载显示装置的其他层结构,本身不需要特别的功能。因为,为了进一步减小摄像头占用的空间,可以将摄像头部分设置在基板内。具体请参阅图13,图13为本申请实施例提供的显示装置和摄像头的第一种结构示意图。在基板相对摄像头60的位置设置一第一安装孔,摄像头60至少部分设置于该第一安装孔内。第一安装孔可以为盲孔,即基板291相对摄像头60的部分厚度小于其他部分的厚度,基板291还是完整的基板291,不影响其承载显示装置20其他层结构的作用,又能空出部分空间容纳摄像头60。第一安装孔和摄像头60的安装方式可以根据第一安装孔的尺寸和摄像头60的尺寸进行设置。示例性地,若第一安装孔的空间不足以安装整个摄像头60,则将摄像头60的镜头62部分设置在第一安装孔内。若摄像头60足够小,则将整个摄像头60设置在第一安装孔内。
需要说明的是,相对第一显示区240的摄像头60可以作为电子设备的前置摄像头60,前置摄像头一般为镜头不能移动的摄像头,显示装置的基板291可以设置第一安装孔,则相对第一显示区240的摄像头60可以为镜头62可移动的摄像头60,摄像头60的镜头62可移动用于实现自动对焦等功能。
可以理解的是,上述任意一个实施例中,第一显示区中的第一像素的尺寸和形状可以根据需要设置。例如,第一像素可以矩形,还可以为类圆形。类圆形的第一像素可以为圆形、椭圆形或圆角矩形等。类圆形的第一像素因为边缘为弧形过渡,可以改善第一显示区的衍射问题。
显示装置可以呈规则形状,如矩形、圆角矩形或圆形。当然,在一些其它可能的实施例中,显示装置也可以呈非规则形状,本申请实施例对此不作限定。
第一显示区下方可以设置一个摄像头也可以设置多个摄像头。多个摄像头可以为相互配合的摄像头,如两个相同的摄像头、一个普通摄像头和一个虚化摄像头或黑白摄像头等,第一显示区下方除了设置摄像头以外还可以设置其他功能器件,如接近传感器、光线传感器、测距传感器、指纹识别传感器等。
为了更加全面的理解本申请实施例的电子设备。下面对电子设备的结构作进一步说明。请继续参阅图1,电子设备10还包括壳体40和摄像头60。
壳体40可以包括后盖(图中未示出)和边框420,边框420围绕后盖的周缘设置。显示装置20可以设置于边框420内,显示装置20和后盖可以作为电子设备10的相对的两面。摄像头60设置在壳体40的后盖和显示装置20之间。显示装置20可以为有机发光二极管显示装置20(Organic Light-Emitting Diode,OLED)显示装置20。显示装置20可以为全面屏,即,显示装置20的显示面基本全部都是显示区域。显示装置20上还可以设置有盖板。盖板覆盖显示装置20,以对显示装置20进行保护,防止显示装置20被刮伤或者被水损坏。其中,盖板可以为透明玻璃盖板,从而用户可以透过盖板观察到显示装置20显示的信息。例如,盖板可以为蓝宝石材质的盖板。
电子设备还可以包括电路板、电池和中板。边框420围绕中板设置,其中,边框420可以与中板形 成电子设备10的中框。中板和边框420在中板两侧各形成一个容纳腔,其中一个容纳腔用于容置显示装置20,另一个容纳腔用于容置电路板、电池和电子设备10的其他电子元件或功能组件。
其中,中板可以为薄板状或薄片状的结构,也可以为中空的框体结构。中框用于为电子设备10中的电子元件或功能组件提供支撑作用,以将电子设备10中的电子元件、功能组件安装到一起。电子设备10的摄像头60、受话器、电池等功能组件都可以安装到中框或电路板上以进行固定。可以理解的,中框的材质可以包括金属或塑胶等。
电路板可以安装在中框上。电路板可以为电子设备10的主板。其中,电路板上可以集成有麦克风、扬声器、受话器、耳机接口、加速度传感器、陀螺仪以及处理器等功能组件中的一个或多个。同时,显示装置20可以电连接至电路板,以通过电路板上的处理器对显示装置20的显示进行控制。显示装置20和摄像头60可以均与处理器电性连接;当处理器接收到拍摄指令时,处理器控制透光区关闭显示,并控制摄像头60透过第一显示区240采集图像;当处理器未接收到拍摄指令,且接收到显示图像指令时,处理器控制第二显示区220和第一显示区240共同显示图像。
电池可以安装在中框上。同时,电池电连接至电路板,以实现电池为电子设备10供电。其中,电路板上可以设置有电源管理电路。电源管理电路用于将电池提供的电压分配到电子设备10中的各个电子元件。
应当理解的是,在本文中提及的“多个”是指是两个或两个以上。
以上对本申请实施例提供的电子设备及控制装饰件镜片的方法进行了详细介绍。本文中应用了具体个例对本申请的原理及实施方式进行了阐述,以上实施例的说明只是用于帮助理解本申请。同时,对于本领域的技术人员,依据本申请的思想,在具体实施方式及应用范围上均会有改变之处,综上所述,本说明书内容不应理解为对本申请的限制。

Claims (20)

  1. 一种显示装置,包括邻接的第一显示区和第二显示区;
    其中,所述第一显示区包括多个第一驱动单元,至少一个所述第一驱动单元包括至少两个薄膜晶体管,所述第一驱动单元中至少一个薄膜晶体管位于所述第一显示区,且所述第一驱动单元中至少一个薄膜晶体管位于所述第二显示区。
  2. 根据权利要求1所述的显示装置,其中,所述显示装置还包括栅极线,所述第一驱动单元的多个薄膜晶体管包括至少一个驱动管和至少一个控制管,所述控制管的栅极与所述栅极线电性连接;
    所有所述驱动管设置于所述第一显示区,所有所述控制管设置于所述第二显示区。
  3. 根据权利要求2所述的显示装置,其中,所述显示装置还包括发光层,所述发光层包括多个第一像素,所述多个第一驱动单元用于驱动所述多个第一像素,所述驱动管在所述发光层的正投影与所述第一像素至少部分重合。
  4. 根据权利要求3所述的显示装置,其中,所述驱动管在所述发光层的投影位于所述第一像素内。
  5. 根据权利要求3所述的显示装置,其中,所述第一显示区包括多个第一像素集合,每一个第一所述第一像素集合包括至少两个所述第一像素,一个所述第一驱动单元用于驱动一个所述第一像素集合内所有的所述第一像素。
  6. 根据权利要求5所述的显示装置,其中,每一个所述第一像素集合中的所有所述第一像素并联连接。
  7. 根据权利要求6所述的显示装置,其中,所述第二显示区包括多个第二像素,所述第一像素和所述第二像素的物理结构相同。
  8. 根据权利要求1所述的显示装置,其中,所述第一驱动单元还包括电容,所述电容位于所述第一显示区。
  9. 根据权利要求1所述的显示装置,其中,所述第一显示区的透光率大于所述第二显示区的透光率。
  10. 根据权利要求9所述的显示装置,其中,所述第一显示区包括多个第一像素,所述第二显示区包括多个第二像素,所述第一像素的尺寸大于所述第二像素的尺寸。
  11. 根据权利要求9所述的显示装置,其中,所述第一显示区包括多个第一像素,所述第二显示区包括多个第二像素,所述第一像素的分布密度小于所述第二像素的分布密度。
  12. 根据权利要求11所述的显示装置,其中,所述第二显示区包括第二驱动单元,第二驱动单元驱动所述多个第二像素,所述第二驱动单元的薄膜晶体管的数量大于或等于所述第一驱动单元的薄膜晶体管的数量。
  13. 一种显示装置,包括第一显示区,所述第一显示包括:
    层叠设置的第一驱动电路层和第二驱动电路层;多个第一驱动单元,至少一个所述第一驱动单元包括至少两个薄膜晶体管,所述第一驱动单元中至少一个薄膜晶体管位于所述第一驱动电路层,且所述第一驱动单元中至少一个薄膜晶体管位于所述第二驱动电路层,所述第一驱动电路层中的薄膜晶体管与 所述第二驱动电路层中的薄膜晶体管至少部分相对设置。
  14. 根据权利要求13所述的显示装置,其中,所述显示装置还包括栅极线,所述第一驱动单元的多个薄膜晶体管分成驱动管和控制管,所述控制管的栅极与所述栅极线电性连接,每一个所述驱动管位于所述第一驱动电路层,每一个所述控制管位于所述第二驱动电路层。
  15. 根据权利要求14所述的显示装置,其中,所述显示装置还包括发光层,所述发光层包括多个第一像素,所述多个第一驱动单元用于驱动所述多个第一像素;
    所述第一驱动电路层位于所述发光层和所述第二驱动电路层之间。
  16. 根据权利要求15所述的显示装置,其中,所述第一显示区包括多个第一像素集合,每一个第一所述第一像素集合包括至少两个所述第一像素,一个所述第一驱动单元用于驱动一个所述第一像素集合内所有的所述第一像素。
  17. 根据权利要求16所述的显示装置,其中,每一个所述第一像素集合中的所有所述第一像素并联连接。
  18. 根据权利要求17所述的显示装置,其中,所述第二显示区包括多个第二像素,所述第一像素和所述第二像素的物理结构相同。
  19. 根据权利要求13所述的显示装置,其中,所述显示装置还包括与所述第一显示区邻接的第二显示区,所述第二显示区的透光率小于所述第一显示区的透光率。
  20. 一种电子设备,包括显示装置和传感器,所述显示装置如权利要求1-19任一项所述的显示装置,所述传感器用于透过所述第一显示区传输信号。
PCT/CN2020/122470 2019-10-31 2020-10-21 显示装置及电子设备 WO2021083003A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP20882716.2A EP4016512A4 (en) 2019-10-31 2020-10-21 DISPLAY AND ELECTRONIC DEVICE
US17/687,183 US20220190082A1 (en) 2019-10-31 2022-03-04 Display apparatus and electronic device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201911050485.4 2019-10-31
CN201911050485.4A CN110706649B (zh) 2019-10-31 2019-10-31 显示装置及电子设备

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/687,183 Continuation US20220190082A1 (en) 2019-10-31 2022-03-04 Display apparatus and electronic device

Publications (1)

Publication Number Publication Date
WO2021083003A1 true WO2021083003A1 (zh) 2021-05-06

Family

ID=69203919

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/122470 WO2021083003A1 (zh) 2019-10-31 2020-10-21 显示装置及电子设备

Country Status (4)

Country Link
US (1) US20220190082A1 (zh)
EP (1) EP4016512A4 (zh)
CN (1) CN110706649B (zh)
WO (1) WO2021083003A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113612880A (zh) * 2021-08-12 2021-11-05 惠州Tcl云创科技有限公司 一种移动终端及其照片处理方法

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4016513A4 (en) * 2019-10-31 2022-09-28 Guangdong Oppo Mobile Telecommunications Corp., Ltd. DISPLAY DEVICE AND ELECTRONIC DEVICE
CN110706649B (zh) * 2019-10-31 2022-02-22 Oppo广东移动通信有限公司 显示装置及电子设备
WO2021249015A1 (zh) * 2020-06-08 2021-12-16 Oppo广东移动通信有限公司 显示装置及电子设备
CN111768740B (zh) * 2020-06-17 2022-04-19 厦门天马微电子有限公司 显示面板及其驱动方法、显示装置
CN111885230A (zh) * 2020-07-17 2020-11-03 Oppo广东移动通信有限公司 电子设备、显示屏及其显示方法
CN112265503B (zh) * 2020-10-30 2022-03-22 Oppo广东移动通信有限公司 汽车、汽车显示设备的显示方法以及存储介质
CN112102783B (zh) * 2020-11-05 2021-02-02 武汉华星光电半导体显示技术有限公司 显示装置及电子设备
CN113394258A (zh) * 2021-06-07 2021-09-14 昆山国显光电有限公司 显示面板和显示装置
CN113487999B (zh) * 2021-07-26 2023-08-25 京东方科技集团股份有限公司 显示面板、电子设备和显示控制方法
CN113990909A (zh) * 2021-10-28 2022-01-28 京东方科技集团股份有限公司 显示面板及显示装置

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20180061918A1 (en) * 2016-08-31 2018-03-01 Lg Display Co., Ltd. Organic Light Emitting Display Device
CN109216374A (zh) * 2017-06-30 2019-01-15 乐金显示有限公司 显示装置及其制造方法
CN208607570U (zh) * 2018-12-25 2019-03-15 北京小米移动软件有限公司 终端屏幕及终端
CN110046567A (zh) * 2019-04-11 2019-07-23 Oppo广东移动通信有限公司 显示屏组件及电子设备
CN110379836A (zh) * 2019-07-19 2019-10-25 云谷(固安)科技有限公司 显示面板及显示装置
CN110392146A (zh) * 2019-07-17 2019-10-29 北京小米移动软件有限公司 终端屏幕及终端
CN110619837A (zh) * 2019-10-31 2019-12-27 Oppo广东移动通信有限公司 显示装置和电子设备
CN110706649A (zh) * 2019-10-31 2020-01-17 Oppo广东移动通信有限公司 显示装置及电子设备
CN111627962A (zh) * 2020-05-19 2020-09-04 武汉华星光电半导体显示技术有限公司 显示面板、显示装置以及显示面板的制作方法

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101084181B1 (ko) * 2010-01-05 2011-11-17 삼성모바일디스플레이주식회사 유기 발광 표시 장치
CN104362169B (zh) * 2014-11-26 2017-10-10 京东方科技集团股份有限公司 一种有机发光二极管阵列基板及其制备方法、显示装置
CN107367860B (zh) * 2017-08-25 2019-07-16 深圳市华星光电技术有限公司 液晶显示组件
KR102430809B1 (ko) * 2017-09-29 2022-08-09 엘지디스플레이 주식회사 양면 디스플레이
CN207264695U (zh) * 2017-09-30 2018-04-20 云谷(固安)科技有限公司 终端及显示屏
KR102527230B1 (ko) * 2018-03-09 2023-05-02 삼성디스플레이 주식회사 디스플레이 장치
CN110009993A (zh) * 2019-03-28 2019-07-12 武汉华星光电半导体显示技术有限公司 显示面板以及显示装置

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20180061918A1 (en) * 2016-08-31 2018-03-01 Lg Display Co., Ltd. Organic Light Emitting Display Device
CN109216374A (zh) * 2017-06-30 2019-01-15 乐金显示有限公司 显示装置及其制造方法
CN208607570U (zh) * 2018-12-25 2019-03-15 北京小米移动软件有限公司 终端屏幕及终端
CN110046567A (zh) * 2019-04-11 2019-07-23 Oppo广东移动通信有限公司 显示屏组件及电子设备
CN110392146A (zh) * 2019-07-17 2019-10-29 北京小米移动软件有限公司 终端屏幕及终端
CN110379836A (zh) * 2019-07-19 2019-10-25 云谷(固安)科技有限公司 显示面板及显示装置
CN110619837A (zh) * 2019-10-31 2019-12-27 Oppo广东移动通信有限公司 显示装置和电子设备
CN110706649A (zh) * 2019-10-31 2020-01-17 Oppo广东移动通信有限公司 显示装置及电子设备
CN111627962A (zh) * 2020-05-19 2020-09-04 武汉华星光电半导体显示技术有限公司 显示面板、显示装置以及显示面板的制作方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4016512A4

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113612880A (zh) * 2021-08-12 2021-11-05 惠州Tcl云创科技有限公司 一种移动终端及其照片处理方法

Also Published As

Publication number Publication date
CN110706649A (zh) 2020-01-17
US20220190082A1 (en) 2022-06-16
EP4016512A4 (en) 2022-09-07
CN110706649B (zh) 2022-02-22
EP4016512A1 (en) 2022-06-22

Similar Documents

Publication Publication Date Title
WO2021083003A1 (zh) 显示装置及电子设备
WO2021082949A1 (zh) 显示装置及电子设备
CN110648622A (zh) 显示装置及电子设备
WO2021083255A1 (zh) 显示装置及电子设备
WO2020087799A1 (zh) 显示屏及显示终端
CN111726502B (zh) 电子设备及显示装置
WO2021082983A1 (zh) 显示装置及电子设备
CN110599944A (zh) 显示装置及电子设备
US20220190084A1 (en) Display apparatus and electronic device
WO2021083007A1 (zh) 显示装置及电子设备
CN110767729A (zh) 显示装置及电子设备
US20220190099A1 (en) Display device and electronic device
US11776469B2 (en) Display apparatus and electronic device
CN110728921B (zh) 显示装置及电子设备
CN210378415U (zh) 显示装置及电子设备
CN210516182U (zh) 显示装置及电子设备
CN110752239A (zh) 显示装置及电子设备
CN111584609A (zh) 显示装置、显示装置的制程方法及电子设备
WO2021249016A1 (zh) 显示装置、显示装置的制程方法及电子设备
WO2021249015A1 (zh) 显示装置及电子设备
CN212542439U (zh) 显示装置及电子设备
US20240065057A1 (en) Fanout Lines with Shielding in an Active Area

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20882716

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020882716

Country of ref document: EP

Effective date: 20220316

NENP Non-entry into the national phase

Ref country code: DE