WO2021083255A1 - 显示装置及电子设备 - Google Patents

显示装置及电子设备 Download PDF

Info

Publication number
WO2021083255A1
WO2021083255A1 PCT/CN2020/124682 CN2020124682W WO2021083255A1 WO 2021083255 A1 WO2021083255 A1 WO 2021083255A1 CN 2020124682 W CN2020124682 W CN 2020124682W WO 2021083255 A1 WO2021083255 A1 WO 2021083255A1
Authority
WO
WIPO (PCT)
Prior art keywords
driving
pixels
pixel
display device
display area
Prior art date
Application number
PCT/CN2020/124682
Other languages
English (en)
French (fr)
Inventor
李亮
Original Assignee
Oppo广东移动通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oppo广东移动通信有限公司 filed Critical Oppo广东移动通信有限公司
Publication of WO2021083255A1 publication Critical patent/WO2021083255A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/12Active-matrix OLED [AMOLED] displays
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/12Active-matrix OLED [AMOLED] displays
    • H10K59/121Active-matrix OLED [AMOLED] displays characterised by the geometry or disposition of pixel elements
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/12Active-matrix OLED [AMOLED] displays
    • H10K59/121Active-matrix OLED [AMOLED] displays characterised by the geometry or disposition of pixel elements
    • H10K59/1213Active-matrix OLED [AMOLED] displays characterised by the geometry or disposition of pixel elements the pixel elements being TFTs

Definitions

  • This application relates to the field of electronic technology, in particular to a display device and electronic equipment.
  • the electronic device can use its display screen to display pictures.
  • the senor is arranged under the display device, and the sensor transmits signals through the display device.
  • the regularly arranged driving units in the display device will cause diffraction phenomenon, which affects the quality of the signal transmitted by the sensor.
  • the embodiments of the present application provide a display device and an electronic device, which can improve the diffraction problem of the first display area.
  • An embodiment of the present application provides a display device, which includes a first display area
  • the first display area includes a plurality of first driving units and a plurality of first pixels, and each of the first driving units is used to drive one or more of the first pixels;
  • Each of the first driving units includes a driving tube and a control tube, the driving tube of each of the first driving units is at least partially disposed opposite to one of the first pixels, and all of the first driving units are
  • the driving tubes are arranged in a matrix, and the control tubes of at least two of the first driving units are arranged together.
  • An embodiment of the present application also provides an electronic device, which includes a display device and a sensor.
  • the display device is the above-mentioned display device, and the sensor is used to transmit a signal through the first display area.
  • FIG. 1 is a schematic diagram of the structure of an electronic device provided by an embodiment of the application.
  • FIG. 2 is a schematic structural diagram of a display device provided by an embodiment of the application.
  • FIG. 3 is a first schematic diagram of the first driving unit of part X in the electronic device shown in FIG. 2.
  • FIG. 4 is a second schematic diagram of the first driving unit of part X in the electronic device shown in FIG. 2.
  • FIG. 5 is a schematic diagram of a partially stacked structure of a first display area of a display device provided by an embodiment of the application.
  • FIG. 6 is a schematic diagram of a first circuit of the first driving unit in the display device provided by an embodiment of the application.
  • FIG. 7 is a schematic diagram of a second type of circuit of the first driving unit in the display device provided by an embodiment of the application.
  • FIG. 8 is a schematic diagram of a third circuit of the first driving unit in the display device provided by the embodiment of the application.
  • FIG. 9 is a schematic diagram of a part of the structure of the first display area of the display device according to an embodiment of the application.
  • FIG. 10 is a schematic diagram of a second structure of the first driving circuit of the first display area portion of the display device according to an embodiment of the application.
  • FIG. 11 is a schematic diagram of a first structure of part of the first pixels in the first display area of the display device according to an embodiment of the application.
  • FIG. 12 is a schematic diagram of a third structure of a part of the first driving unit in the first display area of the display device according to an embodiment of the application.
  • FIG. 13 is a schematic diagram of a second structure of part of the first pixels in the first display area of the display device according to an embodiment of the application.
  • FIG. 14 is a schematic diagram of a fourth structure of a part of the first driving unit in the first display area of the display device according to an embodiment of the application.
  • FIG. 15 is a schematic diagram of another part of the laminated structure of the first display area of the display device provided by an embodiment of the application.
  • FIG. 16 is a schematic diagram of the laminated structure of the first display area in the display device provided by an embodiment of the application.
  • FIG. 17 is a schematic diagram of another layered structure of the first display area in the display device provided by an embodiment of the application.
  • An embodiment of the present application provides a display device, and the display device includes a first display area
  • the first display area includes a plurality of first driving units and a plurality of first pixels, and each of the first driving units is used to drive one or more of the first pixels;
  • Each of the first driving units includes a driving tube and a control tube, the driving tube of each of the first driving units is at least partially disposed opposite to one of the first pixels, and all of the first driving units are
  • the driving tubes are arranged in a matrix, and the control tubes of at least two of the first driving units are arranged together.
  • the first display area further includes a pixel definition layer, the pixel definition layer has a plurality of pixel holes, and each of the pixel holes is provided with a first pixel;
  • Each of the first driving units includes a plurality of the driving tubes, and the plurality of driving tubes of each of the first driving units are arranged together and arranged relative to the first pixel;
  • Each of the first driving units includes a plurality of the control tubes, and the plurality of control tubes of each of the first driving units are arranged together and arranged relative to the pixel definition layer.
  • the driving tubes of a plurality of the first driving units are connected by a first driving signal line arranged along a first direction;
  • the control tubes of a plurality of the first driving units are connected by a second driving signal line arranged along a second direction, and the first direction and the second direction are perpendicular.
  • the display device further includes a first driving chip, and the first driving signal line is connected to the first driving chip through a third driving signal line arranged along the second direction.
  • the third driving signal line is arranged adjacent to the second driving signal line.
  • the first display area further includes a driving circuit layer
  • the driving circuit layer includes the first driving unit
  • the orthographic projection of the first pixel on the driving circuit layer covers the driving tube
  • the pixel The orthographic projection of the definition layer on the drive circuit layer covers the control tube.
  • each of the first driving units is used to drive one of the first pixels
  • the first display area includes a plurality of pixel sets and a plurality of driving sets
  • each of the pixel sets includes a plurality of pixels arranged in a rectangular shape.
  • Each of the first pixels, the number of the first driving units included in each of the driving sets is the same as the number of the first pixels included in the pixel sets, and each of the driving sets drives one of the pixels Set, all the control pipes in at least one of the drive junction sets are set together.
  • each of the first driving units is used to drive one of the first pixels
  • the first display area includes a plurality of pixel units and a plurality of driving sets
  • each of the pixel units includes a plurality of pixels of different colors.
  • the number of the first driving units included in each of the driving sets is the same as the number of the first pixels included in one of the pixel units, and each of the driving sets drives one of the pixel units, All the control pipes in at least one of the drive sets are collectively set.
  • the first driving unit further includes a capacitor, and the capacitor is arranged corresponding to the first pixel and adjacent to the driving tube.
  • the display device further includes a second display area, and the light transmittance of the second display area is less than the light transmittance of the first display area.
  • the first display area includes a plurality of first pixels
  • the second display area includes a plurality of second pixels
  • the size of the first pixel is larger than the size of the second pixel
  • the first display area includes a plurality of first pixels
  • the second display area includes a plurality of second pixels
  • the distribution density of the first pixels is smaller than the distribution density of the second pixels
  • the second display area includes a second driving unit, the second driving unit drives the plurality of second pixels, and the number of thin film transistors of the second driving unit is greater than or equal to the thin film transistors of the first driving unit quantity.
  • the distribution density of the first driving unit is smaller than the distribution density of the second driving unit
  • a plurality of the first pixels are connected in parallel.
  • the plurality of first pixels connected in parallel are connected through a metal anode in the anode layer.
  • the plurality of first pixels connected in parallel are driven by one first driving unit.
  • a plurality of the first pixels are connected in series.
  • An embodiment of the present application provides an electronic device.
  • the electronic device includes a display device and a sensor.
  • the display device is the display device described in any one of the foregoing embodiments, and the sensor is used to transmit a signal through the first display area.
  • the electronic devices provided by the embodiments of the application can be mobile terminal devices such as mobile phones and tablet computers, and can also be game devices, augmented reality (AR) devices, virtual reality (VR) devices, on-board computers, and laptop computers. , Data storage devices, audio playback devices, video playback devices, wearable devices and other devices with display devices, where the wearable devices can be smart bracelets, smart glasses, etc.
  • AR augmented reality
  • VR virtual reality
  • Data storage devices Audio playback devices, video playback devices, wearable devices and other devices with display devices, where the wearable devices can be smart bracelets, smart glasses, etc.
  • FIG. 1 is a schematic structural diagram of an electronic device provided by an embodiment of the application.
  • FIG. 1 shows an example in which the electronic device is a mobile phone, where the display device 20 includes a first display area 240 and a second display area 220, and the light transmittance of the first display area 240 is greater than that of the second display area 220.
  • the electronic device 10 is provided with a sensor such as a camera 60, and the sensor is used to transmit signals through the first display area 240.
  • the sensor is a camera 60
  • the lens of the camera 60 is set toward the first display area 240
  • the camera 60 is used to obtain an external light signal passing through the first display area 240 for imaging.
  • the camera 60 is disposed under the first display area 240 of the display device 20, and the camera 60 is used to obtain an external light signal passing through the first display area 240 of the display device 20, and to image according to the obtained external light signal.
  • the display area of the display device 20 is complete, and the screen-to-body ratio of the display device 20 is increased.
  • the camera 60 can be used as a front camera of an electronic device, and the camera 60 can be used to obtain images such as a user's selfie through the first display area 240 of the display device 20.
  • the sensor may be at least one of a camera, a proximity sensor, a light sensor, a distance measuring sensor, a fingerprint recognition sensor, and the like.
  • FIG. 2 is a schematic structural diagram of a display device provided by an embodiment of the application.
  • the display device 20 in the embodiment of the present application may include a first display area 240 and a second display area 220 that are adjacent to each other.
  • Both the first display area 240 and the second display area 220 can be used to display text or images.
  • the first display area 240 and the second display area 220 can display images together.
  • the second display area 220 displays a part of a preset image.
  • the first display area 240 displays the remaining part of the preset image.
  • the second display area 220 and the first display area 240 may also display different images.
  • the second display area 220 displays a preset image
  • the first display area 240 displays a task bar image.
  • Both the second display area 220 and the first display area 240 can display content, the display area is complete, the display device 20 has a high screen-to-body ratio, the second display area 220 can surround the first display area 240, and the periphery of the first display area 240 can be both It is adjacent to the second display area 220, that is, the first display area 240 is located in the middle of the second display area 220.
  • the second display area 220 may also partially surround the first display area 240, and a part of the edge of the first display area 240 is adjacent to the second display area 220.
  • the first display area 240 is located at a corner of the display device 20 or is located in the display area. The middle of the top of the device 20.
  • the first display area 240 of the display device 20 includes a plurality of first driving units 248 and a plurality of first pixels (not shown in the figure), and each first driving unit is used to drive one first pixel.
  • a plurality of first pixels are arranged in a matrix, and each first driving unit is arranged corresponding to the first pixel it drives. For example, it is arranged directly below the first pixel.
  • the driving tube and the control tube of each first driving unit They are all arranged together and corresponding to one first pixel arrangement, and a plurality of first driving units are arranged in a regular matrix.
  • FIG. 4 is an enlarged schematic diagram of part X in the electronic device shown in FIG. 2, and FIG. 5 is a partial layered structure of the first display area of the display device according to an embodiment of the application.
  • the first display area 240 of the display device 20 also includes a plurality of first driving units 248 and a plurality of first pixels 246, and each first driving unit 248 is used to drive one or more first pixels 246.
  • Each first driving unit 248 includes a driving tube 2482 and a control tube 2484.
  • the driving tube 2482 of each first driving unit 248 is arranged corresponding to the first pixel 246, that is, the driving tube 2482 of each first driving unit 248 is at least partially connected to one
  • the first pixels 246 are arranged oppositely, the driving tubes 2482 of the plurality of first driving units 248 are arranged in a matrix, and the control tubes 2482 of at least two first driving units 248 are arranged together.
  • the driving tubes 2482 of the plurality of first driving units 248 are distributed in a matrix, which can also be understood as the driving tubes 2482 of the plurality of first driving units 248 evenly distributed, and the distance between the driving tubes 2482 of any two adjacent first driving units 248 equal.
  • the control tubes 2484 of at least two first driving units 248 are arranged together, the distance between the control tubes 2484 of at least two adjacent first driving units 248 is small, and the two adjacent first driving units 248 are not arranged together.
  • the distance between the control tubes 2484 of the driving unit 248 is relatively large, the control tubes 2484 of the first driving units 248 are not evenly arranged, and the control tubes 2484 that are not evenly distributed are doped in the evenly distributed (matrix arrangement) driving tubes.
  • the overall arrangement of the control tubes 2484 and the driving tubes 2482 is no longer a regular matrix arrangement, and the irregularly arranged multiple control tubes 2484 and driving tubes 2482 will not cause diffraction phenomenon or slight diffraction phenomenon.
  • the plurality of first pixels are arranged in a matrix, and the driving tubes corresponding to the first pixels are arranged in a matrix.
  • the drive tube of the first drive unit can be arranged at least partially opposite to a first pixel.
  • the first display area further includes a drive circuit layer, and a plurality of first drive units are located in the drive circuit layer.
  • the driving tube is located in or partially overlapped with the orthographic projection of a first pixel on the driving circuit layer.
  • the control tubes of the at least two first driving units can be assembled in a manner such that the control tubes of multiple first driving units are gathered in multiple places, and the control tubes of the multiple first driving units include multiple gathering places.
  • One gathering place can be the gathering of control tubes of multiple first driving units (such as 4 or 8).
  • the control pipes of a plurality of first driving units can also be arranged in one place, that is, the gathered control pipes are all gathered together. For example, half of the control tubes are gathered in the middle of all the control tubes.
  • the display device 20 further includes a gate line (not shown in the figure) and a data line (not shown in the figure), and the gate line, the data line and the first driving unit 248 cooperate to drive each first pixel 246.
  • the gate lines and the data lines may be arranged in different layers and arranged alternately. For example, the gate lines are arranged in rows and the data lines are arranged in columns.
  • the first driving unit 248 includes at least two thin film transistors, wherein the gate of the thin film transistor is connected to the gate line as a driving tube 2482, and the other is a control tube 2484.
  • the first driving unit 248 is respectively 2T1C, 5T2C, and 7T1C as an example for description.
  • FIG. 6 is a schematic diagram of a first circuit of the first driving unit in the display device provided by an embodiment of the application.
  • the first driving unit can be 2T1C
  • the first driving unit can include 2 thin film transistors (T1 and T2)
  • the 2 thin film transistors can be divided into a driving tube T1 and a control tube T2, each of which controls the gate and gate line of the tube T2 SEL is electrically connected.
  • the two thin film transistors in each first driving unit can be divided into two types, one of which is a driving tube and the other is a control tube. If the gate of the thin film transistor in each first driving unit is electrically connected to the gate line SEL, it is the control tube T2, and the thin film transistor in each first driving unit except the control tube T2 is the driving tube T1.
  • the driving tube T1 is arranged corresponding to the first pixel, and the control tubes T2 of at least two first driving units are arranged adjacently.
  • the driving tube is used to directly drive the first pixel.
  • the voltage of the driving tube directly affects the display effect of the first pixel. If the distance between the driving tube and the first pixel is close, the voltage drop (IR Drop) from the driving tube to the first pixel will be relatively small. It is easy to compensate the color of the first display area.
  • the control tube is used to turn on and turn off the function. Even if the voltage of the control tube deviates, it does not affect the turn on and off of the control tube, and has no effect on the display effect of the first pixel.
  • the setting of the control tube not corresponding to the first pixel has no effect on the display effect of the first pixel. Therefore, the driving tube in the first driving unit is configured corresponding to the first pixel, and the control tubes of at least two first driving units are arranged adjacent to each other.
  • the multiple first driving units in a display area are not arranged regularly, and the irregularly arranged first driving units will not cause diffraction phenomenon or slight diffraction phenomenon.
  • the Cs in the first driving unit is arranged adjacent to the driving tube, that is, both Cs and the driving tube T1 are arranged corresponding to the first pixel.
  • the first driving unit may also be 5T2C. Please refer to FIG. 7 for details.
  • FIG. 7 is a schematic diagram of a second circuit of the first driving unit in the display device provided by an embodiment of the application.
  • T1, T3, and T5 in the first driving unit are control tubes, and T2 and T4 in the first driving unit are driving tubes.
  • Vscan1 and Vsacan2 are connected to different gate lines, Vdata is connected to a data line, Vdd is connected to a voltage source, Vems is connected to a light-emitting scan control line, and OLED is a pixel.
  • the basic working principle of the first driving unit adopting 5T2C can be as follows:
  • Reset stage T1 is on, T4 is on, T3 is on, T2 is on, T5 is on, and the current passes through T3 and T4 to charge the capacitor C2. Because T5 is on, the OLED does not emit light.
  • Threshold voltage storage stage T1, T2, T3, and T5 are turned on, T4 is turned off, and Vdata is 0.
  • Vth is the threshold voltage of the thin film transistor.
  • T1, T2, T5 are turned on, T3, T4 are turned off, the gray-scale data voltage jumps to a positive value, and the gray-scale data is coupled to T2 through C1.
  • Va Vth+Vdata*C1/( C1+C2), because T5 is turned on, the OLED does not emit light.
  • the capacitor C1 in the first driving unit is arranged adjacent to the driving tube, that is, the capacitor C1 and the driving tubes T1, T5, and T6 are all arranged corresponding to the first pixel.
  • the first driving unit may also be 7T1C. Please refer to FIG. 8 for details.
  • FIG. 8 is a schematic diagram of a third circuit of the first driving unit in the display device provided by the embodiment of the application.
  • T2, T3, T4, and T7 in the first driving unit are control tubes, and T1, T5, and T6 in the first driving unit are driving tubes.
  • Gn-1 and Gn are connected to different gate lines, DATA is connected to a data line, ELVDD is connected to a voltage source, and EM is connected to a light-emitting scan control line.
  • the capacitors C1 and C2 in the first driving unit are arranged adjacent to the driving tube, that is, the capacitors C1 and C2 and the driving tubes T2 and T4 are all arranged corresponding to the first pixel.
  • the basic working principle of the first driving unit adopting 7T1C can be as follows:
  • Capacitor discharge stage Gn-1 is a low potential, T4 is on, INIT is a low potential, and capacitor C1 is discharged.
  • Vth is the threshold voltage of the thin film transistor.
  • T2, T3, T4, and T7 are mainly used for resetting and controlling, and the actual driving paths are T1, T5, and T6.
  • the first driving unit of the 7T1C can eliminate the dispersion of the Vth of the thin film transistors in the 2T1C driving circuit, and solve the problem of uneven brightness distribution of the display device.
  • the first display area 240 further includes a pixel definition layer 2942.
  • the pixel definition layer 2942 has a plurality of pixel holes 2944, and each pixel hole 2944 is provided with a first pixel 246.
  • Each first driving unit 248 includes a plurality of driving tubes 2482, and the plurality of driving tubes 2482 of each first driving unit 248 are arranged together and arranged relative to the first pixel 246.
  • Each first driving unit 248 includes a plurality of control tubes 2484, and the plurality of control tubes 2484 of each first driving unit 248 are arranged together and arranged relative to the pixel definition layer 2942.
  • the first driving unit 248 may include a plurality of driving tubes 2482 and a plurality of control tubes 2484, and the first driving unit 248 may be a driving circuit such as 5T1C or 7T1C.
  • the driving tubes 2482 in each first driving unit 248 are arranged together and arranged relative to the first pixel 246. It can also be understood that the driving tube 2482 in each first driving unit 248 is arranged below the first pixel 246.
  • the control tubes 2484 in each first driving unit 248 are arranged together and arranged relative to the pixel definition layer 2942. It can also be understood that the control tubes 2484 in each first driving unit 248 are arranged below the pixel definition layer 2942.
  • the control tubes 2484 of the first driving unit 248 can be gathered together to form a more sparse opaque area, and the light transmittance of the first display area 240 can be improved.
  • the first display area 240 also includes a driving circuit layer 292.
  • the driving circuit layer 292 includes a first driving unit 248.
  • the orthographic projection of the first pixel 246 on the driving circuit layer 292 covers the driving tube 2482. It can also be understood that the first pixel 246 completely shields
  • the plurality of driving tubes 2482 of the first driving unit 248, and the orthographic projection of the pixel definition layer 2942 on the driving circuit layer 292 covers the control tube 2484, which can also be understood as the pixel definition layer 2942 completely shielding the plurality of control tubes 2484 of the first driving unit 248 .
  • All the driving tubes 2482 are arranged below the first pixel 246, and all the control tubes 2484 are arranged below the pixel definition layer 2942, which facilitates the arrangement of the driving tubes 2482 and the control tubes 2484.
  • the driving tubes 2482 of the plurality of first driving units 248 are connected by the first driving signal line 282 arranged along the first direction; the control tubes 2484 of the plurality of first driving units 248 are connected by the first driving signal line 282 arranged in the second direction.
  • the second driving signal line 284 is connected, and the first direction is perpendicular to the second direction.
  • the first driving signal line 282 in the first direction is connected to the driving tube 2482, and the second driving signal line 284 in the second direction is connected to the control tube 2484, which facilitates the arrangement of the driving signal lines, and the first driving signal line 282 Different from the direction of the second driving signal line 284, an irregular wiring network is formed. Compared with the regular and dense wiring network in the second display area 220, light diffraction is not easily caused.
  • the first direction can be understood as a transverse direction
  • the second direction can be a longitudinal direction.
  • the first direction can also be a longitudinal direction
  • the second direction is a transverse direction.
  • the horizontal direction may be understood as the width direction of the display device 20, and the vertical direction may be the length direction of the display device 20.
  • FIG. 9 is a schematic diagram of a part of the structure of the first display area of the display device according to an embodiment of the application.
  • the display device 20 further includes a first driving chip 260, and the first driving signal line 282 is connected to the first driving chip 260 through a third driving signal line 286 arranged along the second direction.
  • the first driving chip 260 is used to drive the first display area 240 to display images.
  • the driving tube 2482 is connected to the first driving chip 260 through the first driving signal line 282 in the first direction and the third driving signal line 286 in the second direction successively.
  • the first driving chip 260 is also connected to the control tube 2484 through the second driving signal line 284 in the second direction.
  • the first driving chip 260 is arranged on the side of the first display area 240, and the second driving signal line 284 and the third driving signal line 286 in the second direction, and the first driving signal line 282 in the first direction can be conveniently controlled.
  • FIG. 10 is a schematic diagram of a second structure of the first driving circuit of the first display area portion of the display device according to an embodiment of the present application.
  • the third driving signal line and the second driving signal line 284 may be arranged adjacent to each other. Setting the vertical traces together can sparse the network of drive signal lines and reduce the problem of light diffraction. Among them, the third driving signal line may converge with the second driving signal line 284 to form a larger signal line.
  • the arrangement of the driving signal lines in the second display area is regular, and a dense network will cause light diffraction.
  • the first driving signal line 282 connected to the driving tube 2482 is a horizontal wiring
  • the second driving signal line 284 connected to the control tube 2484 is a vertical wiring.
  • the third driving signal line 282 is connected to the third driving signal line 282.
  • the driving signal line and the second driving signal line 284 are combined into a large longitudinal trace, thereby sparse the trace network and reduce the problem of light diffraction.
  • the arrangement of the driving signal lines in the second display area can be a regular dense network or an irregular sparse network.
  • the arrangement of the driving signal lines in the second display area is similar to that of the first display.
  • the drive signal lines of the zones are arranged similarly.
  • FIG. 11 is a schematic diagram of the first structure of a part of the first pixels in the first display area of the display device according to the embodiment of the application
  • FIG. 12 is the first display of the display device according to the embodiment of the application.
  • Each first driving unit 248 is used to drive a first pixel 246.
  • the first display area 240 includes a plurality of pixel sets 243 and a plurality of driving sets 244, and each pixel set 243 includes a plurality of first pixels arranged in a rectangular shape. 246.
  • Each drive set 244 includes the same number of first drive units 248 as the number of first pixels 246 in a pixel set 243.
  • Each drive set 244 drives a pixel set 243, and all controls in at least one drive set are Tube 2484 gathers the setting.
  • Each pixel set 243 may include a plurality of first pixels 246 arranged in a rectangular shape, such as 4, 8, 16, etc.
  • Each driving set 244 also includes a corresponding number of first driving units 248.
  • the driving tube 2482 of each first driving unit 248 is correspondingly arranged under the first pixel 246, and all the control tubes 2484 of the plurality of first driving units 248 in the driving set 244 can be gathered and arranged together, in order to better pass the control tube 2484 To control all the first pixels 246, the control tube 2484 can be collectively arranged in the middle position of the driving assembly 244.
  • control tubes 2484 may also be collectively arranged at the corners, sides of the driving assembly 244 or gap positions between the driving tubes 2482 of different first driving units 248. Among them, it is possible to partially drive the aggregated settings of all control tubes in each drive set in the set, or drive all the aggregated settings of control pipes in each drive set in the set.
  • FIG. 13 is a schematic diagram of a second structure of a part of the first pixels in the first display area of the display device according to an embodiment of the application
  • FIG. 14 is the first structure of the display device according to an embodiment of the application.
  • Each first driving unit 248 is used to drive a first pixel 246.
  • the first display area 240 includes a plurality of pixel units 242 and a plurality of driving sets 244.
  • Each pixel unit 242 includes a plurality of first pixels 246 of different colors.
  • Each drive set 244 includes the same number of first drive units 248 as the number of first pixels 246 in one pixel unit 242, each drive set 244 drives one pixel unit 242, and all control tubes 2484 in at least one drive set 244 Aggregate settings.
  • one pixel unit 242 can include four first pixels 246 of different colors R, G, B, and G, and the pixel unit 242 can be used as the first display area 240.
  • one pixel unit 242 can mix colors to form various colors required.
  • a driving set 244 correspondingly includes four first driving units 248, and the four first driving units 248 respectively drive one first pixel 246, and the driving set 244 corresponds to four first driving units 248.
  • the driving tube 2482 of each first driving unit 248 in the 244 is correspondingly arranged under the first pixel 246, and all the control tubes 2484 of the four first driving units 248 in the driving set 244 can be arranged together in order to pass the control tube 2484.
  • control tube 2484 can be collectively arranged in the middle of the driving assembly 244.
  • control tubes 2484 may also be collectively arranged at the corners, sides of the driving assembly 244 or gap positions between the driving tubes 2482 of different first driving units 248.
  • One drive set 244 drives one pixel unit 242, because in the display process, the first display area 240 displays the corresponding color by each pixel unit 242, and a drive set 244 is set corresponding to one pixel unit 242.
  • the control tube 2484 is set up to facilitate control.
  • one pixel unit includes three first pixels of different colors, R, G, and B, and the drive set correspondingly includes three first drive units.
  • the pixel unit 242 may also include four first pixels 246 with four different colors of R, G, B, W, or include four first pixels 246 with four different colors of R, G, B, Y, etc., and the driving set 244 corresponds to It includes four first driving units 248.
  • FIG. 16 is a schematic diagram of the stacked structure of the first display area in the display device provided by the embodiment of the present application.
  • the first display area of the display device includes a substrate 291, a driving circuit layer 292, an anode layer 293, a light emitting layer 294, a common electrode layer 295, a planarization layer 296, and a touch layer 297.
  • the substrate 291 can be used as a carrying platform of the display device, and the substrate 291 can be made of glass, plastic, resin, or other materials.
  • the material of the substrate 291 may be polyimide (PI).
  • the driving circuit layer 292 is disposed on the substrate 291.
  • the driving circuit layer 292 includes first driving units 248 for driving the first pixels in the first display area, and each first driving unit 248 includes at least two thin film transistors TFT. Among them, the source and drain of the thin film transistor are located on the same layer, and the gate is located between the source and the light-emitting layer.
  • the anode layer 293 is disposed on the driving circuit layer 292.
  • the anode layer 293 includes a first anode layer 2932, a first insulating layer 2934, and a second anode layer 2936.
  • the first insulating layer 2934 is disposed on the first anode layer 2932 and the second anode layer. Between 2936, it is used to separate and insulate the first anode layer 2932 and the second anode layer 2936.
  • the first anode layer 2932 includes a first signal line (gate line)
  • the second anode layer 2936 includes a second signal line (data line).
  • the first signal line and the second signal line can be arranged in different layers and arranged vertically.
  • a signal line and a second signal line are respectively electrically connected to the first driving unit 248, and the first driving chip of the display device controls the first driving unit 248 through the first signal line and the second signal line.
  • the first signal line and the second signal line can be made of transparent ITO and other high-transmittance materials.
  • the first signal line may be located on the same layer as the gate of the thin film transistor in the first driving unit, and the second signal line may be connected to the drain of part of the thin film transistor in the first driving unit through the conductive portion in the first via 2935. Extremely electrical connection.
  • the anode layer 293 may also include a metal anode layer.
  • the metal anode layer is adjacent to the light-emitting layer 294, the metal anode 2938 of the metal anode layer and the first pixel 246 of the light-emitting layer 294 are directly adjacent and electrically connected, and the metal anode layer is connected to the first driving unit.
  • the metal anode 2938 can be made of transparent ITO and other high light-transmitting materials.
  • the metal anode in the metal anode layer may be located on the same layer as the second signal line in the second anode layer, that is, the metal anode layer and the second anode layer are in the same layer.
  • An insulating layer and the second insulating layer can be the same layer; the metal anode in the metal anode layer can also be located in a different layer from the second anode layer, and the metal anode layer and the second anode layer are separated and separated by the second insulating layer. insulation.
  • the light emitting layer 294 is disposed on the anode layer 293.
  • the light emitting layer 294 includes a pixel defining layer 2942.
  • the pixel defining layer 2942 has a plurality of pixel holes. Each pixel hole is provided with a first pixel 246, and the first pixel 246 includes an organic light emitting material.
  • the common electrode layer 295 is disposed on the light emitting layer 294, and the anode layer 293 and the common electrode layer 295 are disposed on both sides of the first pixel, and jointly drive the first pixel.
  • the common electrode layer 295 can be made of transparent ITO and other high light-transmitting materials.
  • a planarization layer 296 may also be provided on the common electrode layer 295. After the first pixel is disposed on the pixel hole, the first pixel does not fill the pixel hole. After the common electrode layer 295 is disposed on the first pixel, a groove will appear, which is flat. The chemical layer 296 can fill the grooves and cover the entire light-emitting layer 294 to protect the light-emitting layer 294 and the like.
  • a touch layer 297 may be further provided on the planarization layer 296, and the touch layer 297 may be used to detect a touch operation of the user.
  • a polarizer (not shown in the figure) can also be provided on the touch layer 297, and the polarizer can be used to prevent internal light from being transmitted out and prevent the user from seeing the internal driving unit and other components.
  • the touch layer 297 and the polarizer may be bonded together and then disposed on the planarization layer 296.
  • part of the structure can be added or reduced as needed, and the embodiments of the present application are not limited herein.
  • at least one of the touch layer 297 and the polarizer can be reduced.
  • a protective layer can be added between the planarization layer 296 and the touch layer 297, and the protective layer can be made of the same material as the substrate 291.
  • All the layers in the first display area 240 except for the driving circuit layer 292 use light-transmitting materials to increase the light transmittance of the first display area 240.
  • the substrate 291, the pixel defining layer 2942, the common electrode layer 295, the planarization layer 296, and the touch layer 297 of the first display area 240 can be made of light-transmitting materials
  • the driving signal lines in the anode layer 293 can be made of ITO. Or made of light-transmitting materials such as nano silver.
  • the thin film transistors (TFTs) of the driving circuit layer 292 cannot use light-transmitting materials, and the driving circuit layer 292 may also use light-transmitting materials except for TFTs. It can be understood that the solution of increasing the light transmittance of the material and changing the arrangement of the wiring to increase the first display area 240 is within the scope of the present application.
  • the second display area may adopt a layered structure similar to that of the first display area.
  • At least one of the substrate, the pixel defining layer, the common electrode layer, the planarization layer, the touch layer, etc. of the second display area can be made of the same light-transmitting material as the first display area.
  • the substrate can be glass or Light-transmitting materials such as resin.
  • the driving signal line can be made of metal or alloy materials such as molybdenum, molybdenum, aluminum, molybdenum, and Ag, and the metal anode of the second display area can be made of metal materials, such as Mg, Ag, and Al.
  • the common electrode layer of the second display area can be made of materials such as Mg and Ag. The common electrode layer of the second display area and the edge of the common electrode layer of the first display area are connected to form a complete common electrode layer.
  • the light-emitting layer of the second display area includes a plurality of second pixels, and the material of the second pixels may be the same as that of the first pixels, and the light transmittance is also the same.
  • the material of the first pixel may also be different from that of the second pixel, so that the light transmittance of the first pixel is greater than the light transmittance of the second pixel.
  • the size of the first pixel in the first display area may be set to be greater than the size of the second pixel, the size of the first pixel in the first display area is greater than the size of the second pixel, and the size of the first pixel in the first display area is greater than the size of the second pixel.
  • the light transmittance of the pixel definition layer between the first pixels is greater than the light transmittance of the first pixel. Therefore, the larger the size of the first pixel, the light transmittance of the first display area Higher.
  • the second pixel in the second display area may reach more than 400 ppi
  • the size of the first pixel in the first display area may be four times that of the second pixel
  • the first pixel in the first display area may be 200 ppi.
  • the distribution density of the first pixels can also be set to be smaller than the distribution density of the second pixels.
  • the size of the first pixel in the first display area is the same as the size of the second pixel. Increase the separation distance between the first pixels to make the distribution density of the first pixel smaller than the distribution density of the second pixel.
  • the light transmittance of the pixel definition layer is greater than the light transmittance of the first pixel. Therefore, the smaller the distribution density of the first pixels and the greater the separation distance between the first pixels, the higher the light transmittance of the first display area.
  • the second pixels in the second display area may reach more than 400 ppi
  • the spacing between the first pixels is much larger than the spacing between the second pixels
  • the first pixels in the first display area may be 200 ppi.
  • the first driving unit provided in the first display area may be a simple driving circuit.
  • the second display area includes a plurality of second driving units, and one second driving unit drives one second pixel.
  • the first driving unit in the first display area may be a simpler driving circuit than the second driving unit in the second display area, that is, the number of thin film transistors included in the first driving unit is less than the number of thin film transistors in the second driving unit.
  • the second driving unit is a 7T1C driving circuit
  • the first driving unit may be a driving circuit such as 5T1C or 2T1C.
  • the distribution density of the first driving unit may be set to be smaller than the distribution density of the second driving unit.
  • One first driving unit can drive multiple first pixels, and one second driving unit can drive one second pixel. In the second display area, one second driving unit drives one second pixel. In the first display area, one first driving unit drives multiple first pixels, which can reduce the number of first driving units and the distribution density of the first driving units. The number of first driving units per unit area is smaller than the unit area. The number of second driving units in the second display area can increase the light transmittance of the first display area.
  • the physical structure of the first pixel and the second pixel may be the same, the light-emitting layers of the first display area and the second display area may be formed in the same process, and there is no difference between the light-emitting layers of the first display area and the second display area.
  • the same physical structure of the first pixel and the second pixel can be understood to mean that the first pixel and the second pixel have the same size, the same distribution density, and the same arrangement.
  • the arrangement can be one of standard RGB arrangement, Pentile arrangement or Delta arrangement.
  • the plurality of first pixels driven by one first driving unit may be connected in parallel or in series. It should be noted that the series connection requires a larger driving voltage, the driving voltage of the first driving unit connected in parallel is similar to the driving unit of the second driving unit, and the driving voltage of the driving unit is difficult to increase.
  • the number of first pixels in a pixel set may be more than the first pixel set formed by series connection.
  • the parallel connection of a plurality of first pixels may be realized by connecting the first pixels in the light-emitting layer in parallel, or may be realized by connecting the metal anodes in the anode layer in parallel.
  • the above-mentioned multiple embodiments can be used in combination, that is, increasing the size of the first pixel, reducing the distribution density of the first pixel, and the first driving
  • the unit adopts a simpler driving circuit and reduces at least two of the distribution density of the first driving unit.
  • the display device further includes a polarizer.
  • the polarizer may have a first polarizing portion corresponding to the first display area, and the first polarizing portion may be a through hole or a light-transmitting material.
  • a through hole is first provided corresponding to the first display area, and then a transparent material is filled in the through hole to form the first polarizing part.
  • first set a through hole corresponding to the first display area and then fill the through hole with a material with high light transmittance and low polarization to form the first polarizing part, so that the first polarizing part can not only achieve the function of high light transmittance, but also Prevent the light from reflecting out, allowing users to see the function of the internal structure.
  • the laminated structure of the first display area may also be other structures, which is not limited in the embodiment of the present application.
  • FIG. 17 is a schematic diagram of another layered structure of the first display area in the display device provided by an embodiment of the application.
  • the main difference between the laminated structure of the first display area in this embodiment and the above embodiment lies in the driving circuit layer and the anode layer.
  • the source and drain of the thin film transistor of the first driving unit in the first display area are located in the same layer, and the source is located between the gate and the light-emitting layer.
  • the anode layer 293 is partially disposed on the driving circuit layer 292.
  • the anode layer 293 includes a first anode layer 2932, a first insulating layer 2934, and a second anode layer 2936.
  • the first insulating layer 2934 is disposed on the first anode layer 2932 and the second anode layer.
  • the layers 2936 are used to separate and insulate the first anode layer 2932 and the second anode layer 2936.
  • the first anode layer 2932 includes the first signal line (gate line), and the second anode layer 2936 includes the second signal line ( Data line), the first signal line and the second signal line are located in different layers and can be arranged vertically, the first signal line and the second signal line are electrically connected to the first driving unit, and the first driving chip of the display device passes through the first The signal line and the second signal line control the first driving unit.
  • the first signal line may be located on the same layer as the gate of the thin film transistor in the first driving unit, and the second signal line may be connected to the drain of the thin film transistor in the first driving unit through a wire in the via hole.
  • the anode layer 293 may also include a metal anode layer 2938, the metal anode layer 2938 is adjacent to the light emitting layer 294, the metal anode of the metal anode layer 2938 and the first pixel of the light emitting layer 294 are directly adjacent and electrically connected, and the metal anode layer 2938 is connected to the first pixel.
  • the light shielding block 280 is disposed on the second insulating layer 2939 between the metal anode layer 2938 and the second anode layer 2936.
  • the display device may include a first display area and a second display area, and the display device may also include only the first display area.
  • the size and shape of the first pixel in the first display area can be set as required.
  • the first pixel may be rectangular or similar to circular.
  • the circular-like first pixel may be a circle, an ellipse, a rounded rectangle, or the like. Since the edge of the first pixel that is similar to the circle is an arc-shaped transition, the diffraction problem in the first display area can be improved.
  • the display device may have a regular shape, such as a rectangle, a rounded rectangle, or a circle.
  • the display device may also have an irregular shape, which is not limited in the embodiment of the present application.
  • One camera or multiple cameras can be set under the first display area. Multiple cameras can be cameras that cooperate with each other, such as two identical cameras, a normal camera, and a virtual camera or a black-and-white camera. Below the first display area, in addition to the camera, you can also set other functional devices, such as proximity sensors, Light sensor, distance measuring sensor, fingerprint recognition sensor, etc.
  • the electronic device 10 further includes a housing 40 and a camera 60.
  • the housing 40 may include a back cover (not shown in the figure) and a frame 420, and the frame 420 is arranged around the periphery of the back cover.
  • the display device 20 may be disposed in the frame 420, and the display device 20 and the back cover may be used as two opposite sides of the electronic device 10.
  • the camera 60 is provided between the back cover of the housing 40 and the display device 20.
  • the display device 20 may be an Organic Light-Emitting Diode (OLED) display device.
  • the display device 20 may be a full screen, that is, the display surface of the display device 20 is basically a display area.
  • the display device 20 may also be provided with a cover plate.
  • the cover plate covers the display device 20 to protect the display device 20 and prevent the display device 20 from being scratched or damaged by water.
  • the cover plate may be a transparent glass cover plate, so that the user can observe the information displayed by the display device 20 through the cover plate.
  • the cover plate may be a cover plate made of sapphire.
  • Electronic equipment can also include circuit boards, batteries, and midplanes.
  • the frame 420 is arranged around the middle board, wherein the frame 420 and the middle board may form a middle frame of the electronic device 10.
  • the middle board and the frame 420 form a accommodating cavity on both sides of the middle board.
  • One accommodating cavity is used for accommodating the display device 20, and the other accommodating cavity is used for accommodating circuit boards, batteries, and other electronic components or functions of the electronic device 10 Components.
  • the middle plate may have a thin plate or sheet-like structure, or a hollow frame structure.
  • the middle frame is used to provide support for the electronic components or functional components in the electronic device 10 so as to install the electronic components and functional components in the electronic device 10 together.
  • the camera 60, receiver, battery and other functional components of the electronic device 10 can all be mounted on the middle frame or circuit board for fixing. It is understandable that the material of the middle frame may include metal or plastic.
  • the circuit board can be installed on the middle frame.
  • the circuit board may be the main board of the electronic device 10.
  • the circuit board may be integrated with one or more of functional components such as a microphone, a speaker, a receiver, a headphone interface, an acceleration sensor, a gyroscope, and a processor.
  • the display device 20 may be electrically connected to the circuit board to control the display of the display device 20 through a processor on the circuit board.
  • the display device 20 and the camera 60 may both be electrically connected to the processor; when the processor receives the shooting instruction, the processor controls the first display area 240 to close the display, and controls the camera 60 to collect images through the first display area 240; when When the processor does not receive the shooting instruction and receives the image display instruction, the processor controls the second display area 220 and the first display area 240 to display images together.
  • the battery can be installed on the middle frame. At the same time, the battery is electrically connected to the circuit board, so that the battery can supply power to the electronic device 10.
  • a power management circuit may be provided on the circuit board. The power management circuit is used to distribute the voltage provided by the battery to various electronic components in the electronic device 10.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Geometry (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

本申请实施例提供一种显示装置及电子设备,显示装置包括第一显示区;第一显示区包括多个第一驱动单元和多个第一像素,每一第一驱动单元包括驱动管和控制管,每一第一驱动单元的驱动管至少部分与一个第一像素相对设置,多个第一驱动单元的驱动管呈矩阵排布,至少两个第一驱动单元的控制管聚集设置。

Description

显示装置及电子设备
本申请要求于2019年10月31日提交中国专利局、申请号为201911050482.0、申请名称为“显示装置及电子设备”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及电子技术领域,特别涉及一种显示装置及电子设备。
背景技术
随着通信技术的发展,诸如智能手机等电子设备越来越普及。在电子设备的使用过程中,电子设备可以采用其显示屏显示画面。
相关技术中,将传感器设置在显示装置下方,传感器透过显示装置传输信号,显示装置中规则排布的驱动单元会产生衍射现象,影响传感器传输信号的质量。
发明内容
本申请实施例提供一种显示装置及电子设备,可以改善第一显示区的衍射问题。
本申请实施例提供一种显示装置,其包括第一显示区;
所述第一显示区包括多个第一驱动单元和多个第一像素,每一所述第一驱动单元用于驱动一个或多个所述第一像素;
每一所述第一驱动单元包括驱动管和控制管,每一所述第一驱动单元的所述驱动管至少部分与一个所述第一像素相对设置,多个所述第一驱动单元的所述驱动管呈矩阵排布,至少两个所述第一驱动单元的所述控制管聚集设置。
本申请实施例还提供一种电子设备,其包括显示装置和传感器,所述显示装置如上述所述的显示装置,所述传感器用于透过所述第一显示区传输信号。
附图说明
为了更清楚地说明本申请实施例中的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍。
图1为本申请实施例提供的电子设备的结构示意图。
图2为本申请实施例提供的显示装置的结构示意图。
图3为图2所示电子设备中X部分的第一驱动单元的第一种示意图。
图4为图2所示电子设备中X部分的第一驱动单元的第二种示意图。
图5为本申请实施例提供的显示装置的第一显示区部分层叠结构示意图。
图6为本申请实施例提供的显示装置中第一驱动单元的第一种电路示意图。
图7为本申请实施例提供的显示装置中第一驱动单元的第二种电路示意图。
图8为本申请实施例提供的显示装置中第一驱动单元的第三种电路示意图。
图9为本申请实施例提供的显示装置的第一显示区的部分结构示意图。
图10为本申请实施例提供的显示装置的第一显示区部分第一驱动电路的第二种结构示意图。
图11为本申请实施例提供的显示装置的第一显示区中部分第一像素的第一种结构示意图。
图12为本申请实施例提供的显示装置的第一显示区中部分第一驱动单元的第三种结构示意图。
图13为本申请实施例提供的显示装置的第一显示区中部分第一像素的第二种结构示意图。
图14为本申请实施例提供的显示装置的第一显示区中部分第一驱动单元的第四种结构示意图。
图15为本申请实施例提供的显示装置的第一显示区另一部分层叠结构示意图。
图16为本申请实施例提供的显示装置中第一显示区的层叠结构示意图。
图17为本申请实施例提供的显示装置中第一显示区的另一层叠结构示意图。
具体实施方式
本申请实施例提供一种显示装置,显示装置包括第一显示区;
所述第一显示区包括多个第一驱动单元和多个第一像素,每一所述第一驱动单元用于驱动一个或多个所述第一像素;
每一所述第一驱动单元包括驱动管和控制管,每一所述第一驱动单元的所述驱动管至少部分与一个所述第一像素相对设置,多个所述第一驱动单元的所述驱动管呈矩阵排布,至少两个所述第一驱动单元的所述控制管聚集设置。
其中,所述第一显示区还包括像素定义层,所述像素定义层具有多个像素孔,每一所述像素孔内设有一所述第一像素;
每一所述第一驱动单元包括多个所述驱动管,每一所述第一驱动单元的多个所述驱动管聚集设置,且相对所述第一像素设置;
每一所述第一驱动单元包括多个所述控制管,每一所述第一驱动单元的多个所述控制管聚集设置,且相对所述像素定义层设置。
其中,多个所述第一驱动单元的驱动管通过沿第一方向设置的第一驱动信号线连接;
多个所述第一驱动单元的控制管通过沿第二方向设置的第二驱动信号线连接,所述第一方向和所述第二方向垂直。
其中,所述显示装置还包括第一驱动芯片,所述第一驱动信号线通过沿第二方向设置的第三驱动信号线与所述第一驱动芯片连接。
其中,所述第三驱动信号线与所述第二驱动信号线相邻设置。
其中,所述第一显示区还包括驱动电路层,所述驱动电路层包括所述第一驱动单元,所述第一像素在所述驱动电路层的正投影覆盖所述驱动管,所述像素定义层在所述驱动电路层的正投影覆盖所述控制管。
其中,每一所述第一驱动单元用于驱动一个所述第一像素,所述第一显示区包括多个像素集合和多个驱动集合,每一所述像素集合包括呈矩形排布的多个所述第一像素,每一所述驱动集合包括所述第一驱动单元的数量与一所述像素集合中包括所述第一像素的数量相同,每一所述驱动集合驱动一所述像素 集合,至少一个所述驱动结集合中的所有所述控制管聚集设置。
其中,每一所述第一驱动单元用于驱动一个所述第一像素,所述第一显示区包括多个像素单元和多个驱动集合,每一所述像素单元包括不同颜色的多个所述第一像素,每一所述驱动集合包括所述第一驱动单元的数量与一所述像素单元中包括所述第一像素的数量相同,每一所述驱动集合驱动一所述像素单元,至少一个所述驱动集合中的所有所述控制管聚集设置。
其中,所述第一驱动单元还包括电容,所述电容对应所述第一像素设置,且相邻所述驱动管。
其中,所述显示装置还包括第二显示区,所述第二显示区的透光率小于所述第一显示区的透光率。
其中,所述第一显示区包括多个第一像素,所述第二显示区包括多个第二像素,所述第一像素的尺寸大于所述第二像素的尺寸。
其中,所述第一显示区包括多个第一像素,所述第二显示区包括多个第二像素,所述第一像素的分布密度小于所述第二像素的分布密度。
其中,所述第二显示区包括第二驱动单元,第二驱动单元驱动所述多个第二像素,所述第二驱动单元的薄膜晶体管的数量大于或等于所述第一驱动单元的薄膜晶体管的数量。
其中,所述第一驱动单元的分布密度小于所述第二驱动单元的分布密度
其中,所述第一像素和所述第二像素的物理结构。
其中,多个所述第一像素并联连接。
其中,并联连接的所述多个第一像素通过阳极层中的金属阳极连接。
其中,并联连接的所述多个第一像素通过一个所述第一驱动单元驱动。
其中,多个所述第一像素串联连接。
本申请实施例提供一种电子设备,电子设备包括显示装置和传感器,所述显示装置如上述任意一个实施例所述的显示装置,所述传感器用于透过所述第一显示区传输信号。
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述。显然,所描述的实施例仅仅是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域技术人员在没有付出创造性劳动前提下所获得的所有其他实施例,都属于本申请的保护范围。
本申请实施例提供的电子设备可以是手机、平板电脑等移动终端设备,还可以是游戏设备、增强现实(Augmented Reality,AR)设备、虚拟现实(Virtual Reality,VR)设备、车载电脑、笔记本电脑、数据存储装置、音频播放装置、视频播放装置、可穿戴设备等具有显示装置的设备,其中可穿戴设备可以是智能手环、智能眼镜等。
请参阅图1,图1为本申请实施例提供的电子设备的结构示意图。图1示出了电子设备为手机的示例,其中,显示装置20包括第一显示区240和第二显示区220,第一显示区240的透光率大于第二显示区220的透光率。电子设备10内设有传感器如摄像头60,传感器用于透过第一显示区240传输信号。例如,传感器为摄像头60,摄像头60的镜头朝向第一显示区240设置,摄像头60用于获取透过第一显示区240的外界光信号进行成像。也可以理解为,摄像头60设置在显示装置20的第一显示区240下方,摄像头60用于获取透过显示装置20第一显示区240的外界光信号,并根据获取的外界光信号成像。显示装置20的显示区域完整,提高了显示装置20的屏占比。摄像头60可以作为电子设备的前置 摄像头,摄像头60可以用于透过显示装置20第一显示区240获取用户的自拍照等图像。其中,传感器可以为摄像头、接近传感器、光线传感器、测距传感器、指纹识别传感器等中的至少一种。
为了更加全面的理解本申请实施例的显示装置。下面对显示装置进行详细说明。
请参阅图2,图2为本申请实施例提供的显示装置的结构示意图。本申请实施例中的显示装置20可以包括邻接的第一显示区240和第二显示区220。
第一显示区240和第二显示区220都可以用于显示文字或图像,第一显示区240和第二显示区220可以共同显示图像,例如,第二显示区220显示预设图像的一部分,第一显示区240显示预设图像剩下的部分。第二显示区220和第一显示区240也可以显示不同的图像,例如,第二显示区220显示预设图像,第一显示区240显示任务栏图像。第二显示区220和第一显示区240都可以显示内容,显示区域完整,显示装置20的屏占比高,第二显示区220可以围绕第一显示区240,第一显示区240周缘可以都与第二显示区220邻接,即第一显示区240位于第二显示区220中间。第二显示区220也可以部分围绕透第一显示区240,第一显示区240的部分边缘与第二显示区220邻接,例如,第一显示区240位于显示装置20的边角位置或位于显示装置20的顶端中间。
请结合图3,图3为图2所示电子设备中X部分的放大示意图。显示装置20的第一显示区240包括多个第一驱动单元248和多个第一像素(图中未示出),每一第一驱动单元用于驱动一个第一像素。多个第一像素呈矩阵排布,每一个第一驱动单元与其驱动的第一像素对应设置,如设置在第一像素正下方,可以理解的,每一个第一驱动单元的驱动管和控制管均设置在一起,且对应一个第一像素设置,多个第一驱动单元呈规则的矩阵排布。
在另外一些实施例中,请结合图4和图5,图4为图2所示电子设备中X部分的放大示意图,图5为本申请实施例提供的显示装置的第一显示区部分层叠结构示意图。显示装置20的第一显示区240也包括多个第一驱动单元248和多个第一像素246,每一第一驱动单元248用于驱动一个或多个第一像素246。
每一第一驱动单元248包括驱动管2482和控制管2484,每一第一驱动单元248的驱动管2482对应第一像素246设置,即每一第一驱动单元248的驱动管2482至少部分与一个第一像素246相对设置,多个第一驱动单元248的驱动管2482呈矩阵排布,至少两个第一驱动单元248的控制管2482聚集设置。
多个第一驱动单元248的驱动管2482呈矩阵分布,也可以理解为多个第一驱动单元248的驱动管2482均匀分布,任意两个相邻的第一驱动单元248的驱动管2482的间距相等。至少两个第一驱动单元248的控制管2484聚集设置,聚集设置且相邻的两个第一驱动单元248的控制管2484之间的间距较小,未聚集设置且相邻的两个第一驱动单元248的控制管2484之间的间距较大,多个第一驱动单元248的控制管2484没有均匀排布,未均匀分布的控制管2484掺杂在均匀分布(矩阵排布)的驱动管2482中,使得控制管2484和驱动管2482的整体排布不再是规则的矩阵排布,不规则排布的多个控制管2484和驱动管2482不会产生衍射现象或产生轻微的衍射现象。
多个第一像素呈矩阵排布,与第一像素对应设置的驱动管与呈矩阵排布。第一驱动单元的驱动管可以与一个第一像素至少部分相对设置,可以理解为第一显示区还包括驱动电路层,多个第一驱动单元位于驱动电路层中,每一第一驱动单元的驱动管位于一个第一像素在驱动电路层的正投影内或部分重叠。 可以理解的,至少两个第一驱动单元的控制管聚集设置可以为多个第一驱动单元的控制管聚集在多个地方,多个第一驱动单元的控制管包括多个聚集的地方,每一个聚集的地方可以为多个第一驱动单元(如4个或8个等)的控制管聚集。多个第一驱动单元的控制管也可以聚集设置在一个地方,即聚集的控制管全部聚集在一起。如一半的控制管聚集在所有控制管的中间位置。
显示装置20还包括栅极线(图中未示出)和数据线(图中未示出),栅极线、数据线和第一驱动单元248配合驱动每一个第一像素246。栅极线和数据线可以设置在不同层且交错排布,例如,栅极线呈行排布,数据线呈列排布。
可以理解的是,第一驱动单元248包括至少两个薄膜晶体管,其中,薄膜晶体管的栅极与栅极线连接的为驱动管2482,其他的为控制管2484。
为了更加全面的理解本申请实施例的第一驱动单元248的驱动管2482和控制管2484的设置,下面以第一驱动单元248分别为2T1C、5T2C和7T1C为例进行说明。
请参阅图6,图6为本申请实施例提供的显示装置中第一驱动单元的第一种电路示意图。第一驱动单元可以为2T1C,第一驱动单元可以包括2个薄膜晶体管(T1和T2),2个薄膜晶体管可以分成驱动管T1和控制管T2,每一个控制管T2的栅极与栅极线SEL电性连接。也可以理解为,每一个第一驱动单元中的2个薄膜晶体管可以分成两类,其中一类为驱动管另一类为控制管。每一个第一驱动单元中的薄膜晶体管的栅极若与栅极线SEL电性连接,则为控制管T2,每一个第一驱动单元中除了控制管T2以外的薄膜晶体管则为驱动管T1。
将驱动管T1对应第一像素设置,将至少两个第一驱动单元的控制管T2相邻设置。驱动管用于直接驱动第一像素,驱动管的电压直接影响第一像素的显示效果,驱动管与第一像素距离近,驱动管到第一像素的电压降(IR Drop)相对就会小,更容易对第一显示区的色彩进行补偿。控制管用于功能的开启和关闭,即使控制管的电压偏离部分,也不影响控制管的开启和关闭,对第一像素的显示效果没有影响。控制管不对应第一像素设置对第一像素的显示效果也没影响,因此,第一驱动单元中的驱动管对应第一像素设置,至少两个第一驱动单元的控制管相邻设置,第一显示区的多个第一驱动单元不是规则的排布,不规则排布的第一驱动单元不会产生衍射现象,或产生轻微的衍射现象。
需要说明的是,第一驱动单元中的Cs与驱动管相邻设置,即Cs和驱动管T1均对应第一像素设置。
第一驱动单元还可以为5T2C,具体请参阅图7,图7为本申请实施例提供的显示装置中第一驱动单元的第二种电路示意图。第一驱动单元中的T1、T3和T5为控制管,第一驱动单元中的T2和T4为驱动管。图中Vscan1、Vsacan2连接不同的栅极线,Vdata连接数据线,Vdd连接电压源,Vems连接发光扫描控制线,OLED为像素。
采用5T2C的第一驱动单元其基本的工作原理可以如下:
重置阶段:T1导通、T4导通、T3导通、T2导通,T5导通,电流通过T3和T4对电容C2充电,由于T5导通,OLED不发光。
阈值电压存储阶段:T1、T2、T3、T5导通,T4关断,Vdata为0。a点电压通过T3、T2、T5放电至Va=Vth,由于T5导通,OLED不发光。其中,Vth为薄膜晶体管的阈值电压。
数据电压写入阶段:T1、T2、T5导通,T3、T4关断,灰阶数据电压跳变为正值,灰度数据通过 C1耦合到T2,此时Va=Vth+Vdata*C1/(C1+C2),由于T5导通,OLED不发光。
发光阶段:T2、T4导通,T1、T3、T5关断,T2驱动OLED发光,储存在C2的电压Va=Vth+Vdata*C1/(C1+C2)保持不变,从而维持OLED在一帧内亮度不变。
需要说明的是,第一驱动单元中的电容C1与驱动管相邻设置,即电容C1和驱动管T1、T5、T6均对应第一像素设置。
第一驱动单元还可以为7T1C,具体请参阅图8,图8为本申请实施例提供的显示装置中第一驱动单元的第三种电路示意图。第一驱动单元中的T2、T3、T4和T7为控制管,第一驱动单元中的T1、T5和T6为驱动管。图中Gn-1、Gn连接不同的栅极线,DATA连接数据线,ELVDD连接一电压源,EM连接发光扫描控制线。
需要说明的是,第一驱动单元中的电容C1和C2与驱动管相邻设置,即电容C1、C2和驱动管T2、T4均对应第一像素设置。
采用7T1C的第一驱动单元其基本的工作原理可以如下:
电容放电阶段:Gn-1为低电位,T4导通,INIT为一个低电位,电容C1放电。
补偿阶段:Gn为低电位,T2和T3导通,T1的漏极和栅极短路,且Vg>Vth,T1打开,直到Vg=Vdata-Vth。其中,Vth为薄膜晶体管的阈值电压。
发光阶段:EM为低电位,T5和T6导通,Vgs=ELVDD-(Vdata-Vth)。
其中,T2、T3、T4和T7主要起到复位和控制,实际的驱动通路是T1、T5和T6。同时7T1C的第一驱动单元可以消除2T1C驱动电路中薄膜晶体管的Vth的离散,解决显示装置的亮度分布不均匀的问题。
请继续参阅图5,第一显示区240还包括像素定义层2942,像素定义层2942具有多个像素孔2944,每一像素孔2944内设有一第一像素246。每一第一驱动单元248包括多个驱动管2482,每一第一驱动单元248的多个驱动管2482聚集设置,且相对第一像素246设置。每一第一驱动单元248包括多个控制管2484,每一第一驱动单元248的多个控制管2484聚集设置,且相对像素定义层2942设置。
第一驱动单元248可以包括多个驱动管2482和多个控制管2484,第一驱动单元248可以为5T1C或7T1C等驱动电路。其中,每一个第一驱动单元248中的驱动管2482聚集设置,且相对第一像素246设置,也可以理解为每一个第一驱动单元248中的驱动管2482设置在第一像素246下方。对应的,每一个第一驱动单元248中的控制管2484聚集设置,且相对像素定义层2942设置,也可以理解为每一个第一驱动单元248中的控制管2484设置在像素定义层2942下方。
可以将第一驱动单元248的控制管2484聚集在一起,形成更稀疏的不透光的区域,提高第一显示区240的透光率。
第一显示区240还包括驱动电路层292,驱动电路层292包括第一驱动单元248,第一像素246在驱动电路层292的正投影覆盖驱动管2482,也可以理解为第一像素246完全遮挡第一驱动单元248的多个驱动管2482,像素定义层2942在驱动电路层292的正投影覆盖控制管2484,也可以理解为像素定义层2942完全遮挡第一驱动单元248的多个控制管2484。所有的驱动管2482都设置在第一像素246下方,所有的控制管2484都设置在像素定义层2942下方,方便排布驱动管2482和控制管2484。
请继续参阅图4,多个第一驱动单元248的驱动管2482通过沿第一方向设置的第一驱动信号线282连接;多个第一驱动单元248的控制管2484通过沿第二方向设置的第二驱动信号线284连接,第一方向和第二方向垂直。
连接驱动管2482的都为第一方向的第一驱动信号线282,连接控制管2484的都为第二方向的第二驱动信号线284,方便排布驱动信号线,而且第一驱动信号线282和第二驱动信号线284的方向不同,形成不规则的布线网络,与第二显示区220中有规律的密集的布线网络相比,不容易引起光的衍射现象。
第一方向可以理解为横向,第二方向可以为纵向,当然第一方向也可以为纵向,第二方向为横向。横向可以理解为显示装置20的宽度方向,纵向可以为显示装置20的长度方向。
请参阅图9,图9为本申请实施例提供的显示装置的第一显示区的部分结构示意图。显示装置20还包括第一驱动芯片260,第一驱动信号线282通过沿第二方向设置的第三驱动信号线286与第一驱动芯片260连接。第一驱动芯片260用于驱动第一显示区240显示图像,驱动管2482先后通过第一方向的第一驱动信号线282、第二方向的第三驱动信号线286与第一驱动芯片260连接,同时,第一驱动芯片260还通过第二方向的第二驱动信号线284与控制管2484连接。第一驱动芯片260设置在第一显示区240一侧,通过第二方向的第二驱动信号线284和第三驱动信号线286,以及第一方向的第一驱动信号线282,可以方便控制所有的驱动管2482和控制管2484。
请参阅图10,图10为本申请实施例提供的显示装置的第一显示区部分第一驱动电路的第二种结构示意图。其中,第三驱动信号线与第二驱动信号线284可以相邻设置。将纵向走线聚集设置,可以将驱动信号线网络稀疏化,减弱光的衍射问题。其中,第三驱动信号线可以和第二驱动信号线284汇聚形成更大的信号线。
第二显示区的驱动信号线排布方式是有规律的,密集的网络,会引起光的衍射现象。而第一显示区中连接驱动管2482的第一驱动信号线282为横向走线,连接控制管2484的第二驱动信号线284为纵向走线,同时将连接第一驱动信号线282的第三驱动信号线和第二驱动信号线284汇集成一个大的纵向走线,从而将走线网络稀疏化,减弱光的衍射问题。
需要说明的是,第二显示区的驱动信号线排布可以为有规律的密集的网络,也可以为无规律的稀疏的网络,例如,第二显示区的驱动信号线排布与第一显示区的驱动信号线排布类似。
结合图11和图12,图11为本申请实施例提供的显示装置的第一显示区中部分第一像素的第一种结构示意图,图12为本申请实施例提供的显示装置的第一显示区中部分第一驱动单元的第三种结构示意图。
每一第一驱动单元248用于驱动一个第一像素246,第一显示区240包括多个像素集合243和多个驱动集合244,每一像素集合243包括呈矩形排布的多个第一像素246,每一驱动集合244包括第一驱动单元248的数量与一像素集合243中包括第一像素246的数量相同,每一驱动集合244驱动一像素集合243,至少一个驱动结集合中的所有控制管2484聚集设置。
每一个像素集合243可以包括呈矩形排布的多个第一像素246,如4个、8个、16个等,每一个驱动集合244也包括对应数量的第一驱动单元248,驱动集合244中每一个第一驱动单元248的驱动管2482对应设置在第一像素246下方,而驱动集合244中多个第一驱动单元248的所有控制管2484可以聚集 设置在一起,为了通过控制管2484更好的控制所有的第一像素246,控制管2484可以聚集设置在驱动集合244的中间位置。当然,控制管2484也可以聚集设置在驱动集合244的边角、侧边或不同第一驱动单元248的驱动管2482之间的间隙位置。其中,可以部分驱动集合中的每一个驱动集合的所有控制管聚集设置,也可以全部驱动集合中每一个驱动集合中所有的控制管聚集设置。
请参阅图13和图14,图13为本申请实施例提供的显示装置的第一显示区中部分第一像素的第二种结构示意图,图14为本申请实施例提供的显示装置的第一显示区中部分第一驱动单元的第四种结构示意图。每一第一驱动单元248用于驱动一个第一像素246,第一显示区240包括多个像素单元242和多个驱动集合244,每一像素单元242包括不同颜色的多个第一像素246,每一驱动集合244包括第一驱动单元248的数量与一像素单元242中包括第一像素246的数量相同,每一驱动集合244驱动一像素单元242,至少一个驱动集合244中的所有控制管2484聚集设置。
示例性地,第一像素的排列方式可以为Pentile排列时,一个像素单元242可以包括R、G、B、G四个不同颜色的第一像素246,像素单元242可以作为第一显示区240的一个显示像素点,一个像素单元242可以混色形成各种需要颜色的颜色,一个驱动集合244对应包括四个第一驱动单元248,四个第一驱动单元248分别驱动一个第一像素246,驱动集合244中每一个第一驱动单元248的驱动管2482对应设置在第一像素246下方,而驱动集合244中四个第一驱动单元248的所有控制管2484可以聚集设置在一起,为了通过控制管2484更好的控制所有的第一像素246,控制管2484可以聚集设置在驱动集合244的中间位置。当然,控制管2484也可以聚集设置在驱动集合244的边角、侧边或不同第一驱动单元248的驱动管2482之间的间隙位置。一个驱动集合244驱动一个像素单元242,因为在显示过程中,第一显示区240是通过一个个像素单元242显示对应的颜色进行显示,对应一个像素单元242设置一个驱动集合244,驱动集合244中的控制管2484聚集设置方便控制。
需要说明的是,当第一像素的排列方式为标准RGB排列或Delta排列时,一个像素单元包括R、G、B三个不同颜色的第一像素,驱动集合对应包括三个第一驱动单元,如图15所示。此外,像素单元242还可以包括R、G、B、W四个不同颜色的第一像素246,或者包括R、G、B、Y四个不同颜色的第一像素246等,驱动集合244对应的包括四个第一驱动单元248。
为了更加全面的理解本申请实施例的显示装置,请参阅图16,图16为本申请实施例提供的显示装置中第一显示区的层叠结构示意图。显示装置的第一显示区包括基板291、驱动电路层292、阳极层293、发光层294、公共电极层295、平坦化层296和触控层297。
基板291可以作为显示装置的承载平台,基板291可以采用玻璃或塑料或树脂或其他材料制成。例如基板291的材料可以采用聚酰亚胺(polyimide,PI)。
驱动电路层292设置于基板291上,驱动电路层292中包括驱动第一显示区中第一像素的第一驱动单元248,每个第一驱动单元248包括至少2个薄膜晶体管TFT。其中,薄膜晶体管的源极和漏极位于同一层,栅极位于源极和发光层之间。
阳极层293设置在驱动电路层292上,阳极层293包括第一阳极层2932、第一绝缘层2934和第二阳极层2936,第一绝缘层2934设置在第一阳极层2932和第二阳极层2936之间,用以将第一阳极层2932和第二阳极层2936分隔并绝缘。第一阳极层2932包括第一信号线(栅极线),第二阳极层2936包括第 二信号线(数据线),第一信号线和第二信号线可以设置在不同层且垂直设置,第一信号线和第二信号线分别与第一驱动单元248电性连接,显示装置的第一驱动芯片通过第一信号线和第二信号线控制第一驱动单元248。第一信号线和第二信号线可以采用透明ITO等高透光的材料制成。第一信号线可以与第一驱动单元中的薄膜晶体管的栅极位于同一层,第二信号线可以与通过位于第一过孔2935内的导电部与第一驱动单元中的部分薄膜晶体管的漏极电性连接。阳极层293还可以包括金属阳极层,金属阳极层相邻发光层294,金属阳极层的金属阳极2938和发光层294的第一像素246直接邻接并电性连接,金属阳极层和第一驱动单元248中的薄膜晶体管的源极之间具有第二绝缘层2939,金属阳极2938可以通过位于像素过孔2937内的导电部与第一驱动单元中的部分薄膜晶体管的源极电性连接。金属阳极2938可以采用透明ITO等高透光的材料制成。需要说明的是,在其他一些实施例中,金属阳极层中的金属阳极可以和第二阳极层中的第二信号线位于同一层,即,金属阳极层和第二阳极层为同一层,第一绝缘层和第二绝缘层可以为同一层;金属阳极层中的金属阳极也可以和第二阳极层位于不同层,且金属阳极层和第二阳极层之间通过第二绝缘层隔开并绝缘。
发光层294设置在阳极层293上,发光层294包括像素定义层2942,像素定义层2942具有多个像素孔,每个像素孔内设置有第一像素246,第一像素246包括有机发光材料。
公共电极层295设置在发光层294上,阳极层293和公共电极层295设置在第一像素两侧,并共同驱动第一像素。公共电极层295可以采用透明ITO等高透光的材料制成。
公共电极层295上还可以设置平坦化层296,第一像素设置在像素孔后,第一像素并未填满像素孔,公共电极层295设置在第一像素上后,会出现凹槽,平坦化层296可以将凹槽填平,并覆盖整层发光层294,用以保护发光层294等。
在平坦化层296上还可以设置触控层297,触控层297可以用于检测用户触控操作。
在触控层297上还可以设置偏光片(图中未示出),偏光片可以用于防止内部光线透射出去,防止用户看到内部的驱动单元等元件。触控层297和偏光片可以贴合在一起,然后再设置在平坦化层296上。
需要说明的是,在其他一些实施例中,可以根据需要增加或减少部分结构,本申请实施例在此不做限定。例如,可以减少触控层297、偏光片中的至少一项。又例如,可以在平坦化层296和触控层297之间增加一层保护层,保护层可以采用与基板291一样的材料。
第一显示区240内各层结构中除了驱动电路层292都采用透光材料,以提高第一显示区240的透光率。例如,第一显示区240的基板291、像素定义层2942、公共电极层295、平坦化层296、触控层297都可以采用透光材料制成,阳极层293中的驱动信号线可以采用ITO或纳米银等透光材料制。驱动电路层292的薄膜晶体管(TFT)无法采用透光材料,驱动电路层292中除了TFT其他部分也可以采用透光材料。可以理解的是,通过提高材料的透光率以及改变布线的排布以提高第一显示区240的方案均在本申请的范围内。
需要说明的是,第二显示区可以采用和第一显示区类似的层叠结构,具体可参阅上述实施例,在此不再赘述。第二显示区的基板、像素定义层、公共电极层、平坦化层、触控层等中的至少一项可以和第一显示区采用一样的透光材料,示例性地,基板可以采用玻璃或树脂等透光材料。第二显示区的基板、 像素定义层、公共电极层、平坦化层、触控层等中的至少一项可以和第一显示区采用不同的材料,例如,第二显示区的阳极层中的驱动信号线可以采用钼、钼铝钼、Ag等金属或合金材料,第二显示区金属阳极可以采用金属材料,比如Mg、Ag、Al。第二显示区的公共电极层可以采用Mg、Ag等材料。第二显示区的公共电极层和第一显示区的公共电极层边缘处是相连的,共同构成一个完整的公共电极层。
第二显示区的发光层包括多个第二像素,第二像素的材料可以和第一像素相同,透光率也相同。第一像素的材料也可以和第二像素不同,以实现第一像素的透光率大于第二像素的透光率。
为了提高第一显示区的透光率,可以设置第一显示区的第一像素的尺寸大于第二像素的尺寸,第一显示区的第一像素的尺寸大于第二像素的尺寸,第一像素之间的间距和第一像素的尺寸正相关,即,第一像素的尺寸越大,第一像素之间的间隔距离也越大,因此,第一显示区的第一像素的分布密度小于第二显示区第二像素的分布密度,第一像素之间的像素定义层的透光率大于第一像素的透光率,因此,第一像素的尺寸越大,第一显示区的透光率越高。示例性的,第二显示区的第二像素可以达到400ppi以上,第一显示区的第一像素的尺寸可以为第二像素的四倍,第一显示区的第一像素可以为200ppi。
为了提高第一显示区的透光率,还可以设置第一像素的分布密度小于第二像素的分布密度。第一显示区的第一像素的尺寸与第二像素的尺寸相同,增大第一像素之间的间隔距离,使第一像素的分布密度小于第二像素的分布密度,第一像素之间的像素定义层的透光率大于第一像素的透光率,因此,第一像素的分布密度越小,第一像素之间的间隔距离越大,第一显示区的透光率越高。示例性的,第二显示区的第二像素可以达到400ppi以上,第一像素之间的间距远大于第二像素之间的间距,第一显示区的第一像素可以为200ppi。
为了提高第一显示区的透光率,设置在第一显示区的第一驱动单元可以为简略的驱动电路。具体的,第二显示区包括多个第二驱动单元,一个第二驱动单元驱动一个第二像素。第一显示区的第一驱动单元可以为比第二显示区的第二驱动单元更简略的驱动电路,即第一驱动单元包括的薄膜晶体管的数量少于第二驱动单元的薄膜晶体管的数量。因为,薄膜晶体管不透光,第一驱动单元中不透光的薄膜晶体管的数量较少,其占据的面积也较少,驱动电路层不透光的区域也较少,驱动电路层可透光的区域的占比也较高,可以提高第一显示区的透光率。例如,第二驱动单元为7T1C驱动电路,第一驱动单元可以为5T1C或2T1C等驱动电路。
为了提高第一显示区的透光率,还可以设置第一驱动单元的分布密度小于第二驱动单元的分布密度。一个第一驱动单元可以驱动多个第一像素,一个第二驱动单元驱动一个第二像素。第二显示区中,一个第二驱动单元驱动一个第二像素。第一显示区中,一个第一驱动单元驱动多个第一像素,可以减少第一驱动单元的数量,减小第一驱动单元的分布密度,单位面积内的第一驱动单元的数量小于单位面积内第二驱动单元的数量,相对于第二显示区,可以提高第一显示区的透光率。其中,第一像素和第二像素的物理结构可以相同,第一显示区和第二显示区的发光层可以在同一工序中形成,第一显示区和第二显示区的发光层没有区别。第一像素和第二像素的物理结构相同可以理解为第一像素和第二像素的尺寸大小相同、分布密度相同、排列方式相同等。排列方式可以为标准RGB排列、Pentile排列或Delta排列中的一项。
一个第一驱动单元驱动的多个第一像素可以并联连接也可以串联连接。需要说明的是,串联连接需 要较大的驱动电压,并联连接的第一驱动单元的驱动电压和第二驱动单元的驱动单元相近,而驱动单元的驱动电压升高较难,并联连接形成的第一像素集合中第一像素的数量可以多于串联连接形成的第一像素集合。多个第一像素并联可以通过在发光层中的第一像素并联连接实现,也可以通过阳极层中的金属阳极并联连接实现。
需要说明的是,为了提高第一显示区的透光率的可以将上述多个实施例的方式结合使用,即采用增大第一像素的尺寸、减小第一像素的分布密度、第一驱动单元采用更简略的驱动电路、减小第一驱动单元的分布密度中的至少两种。
显示装置还包括偏光片,偏光片对应第一显示区可以具有第一偏光部,第一偏光部可以为通孔或透光材料。例如,先对应第一显示区设置一通孔,然后在通孔内填充透明材料形成第一偏光部。又例如,先对应第一显示区设置一通孔,然后在通孔内填充高透光低偏光性材料形成第一偏光部,使第一偏光部既可以实现高透光率的功能,又可以实现防止光线反射出去,让用户看到内部结构的功能。
第一显示区的层叠结构还可以为其他结构,本申请实施例并不对此进行限定。示例性的,在其他一些实施例中,请参阅图17,图17为本申请实施例提供的显示装置中第一显示区的另一层叠结构示意图。本实施例中第一显示区的层叠结构与上述实施例的主要区别在于驱动电路层和阳极层。第一显示区的第一驱动单元的薄膜晶体管的源极和漏极位于同一层,源极位于栅极和发光层之间。
阳极层293部分设置在驱动电路层292上,阳极层293包括第一阳极层2932、第一绝缘层2934和第二阳极层2936,第一绝缘层2934设置在第一阳极层2932和第二阳极层2936之间,用以将第一阳极层2932和第二阳极层2936分隔并绝缘,第一阳极层2932包括第一信号线(栅极线),第二阳极层2936包括第二信号线(数据线),第一信号线和第二信号线位于不同层且可以垂直设置,第一信号线和第二信号线分别与第一驱动单元电性连接,显示装置的第一驱动芯片通过第一信号线和第二信号线控制第一驱动单元。第一信号线可以与第一驱动单元中薄膜晶体管的栅极位于同一层,第二信号线可以通过过孔内的导线与第一驱动单元中薄膜晶体管的漏极连接。阳极层293还可以包括金属阳极层2938,金属阳极层2938相邻发光层294,金属阳极层2938的金属阳极和发光层294的第一像素直接邻接并电性连接,金属阳极层2938和第一驱动单元中的源极之间具有第二绝缘层2939,金属阳极可以通过像素过孔与第二驱动单元228的源极电性连接。遮光块280设置在金属阳极层2938和第二阳极层2936之间的第二绝缘层2939。
需要说明的是,显示装置可以包括第一显示区和第二显示区,显示装置也可以仅包括第一显示区。
可以理解的是,上述任意一个实施例中,第一显示区中的第一像素的尺寸和形状可以根据需要设置。例如,第一像素可以矩形,还可以为类圆形。类圆形的第一像素可以为圆形、椭圆形或圆角矩形等。类圆形的第一像素因为边缘为弧形过渡,可以改善第一显示区的衍射问题。
显示装置可以呈规则形状,如矩形、圆角矩形或圆形。当然,在一些其它可能的实施例中,显示装置也可以呈非规则形状,本申请实施例对此不作限定。
第一显示区下方可以设置一个摄像头也可以设置多个摄像头。多个摄像头可以为相互配合的摄像头,如两个相同的摄像头、一个普通摄像头和一个虚化摄像头或黑白摄像头等,第一显示区下方除了设置摄像头以外还可以设置其他功能器件,如接近传感器、光线传感器、测距传感器、指纹识别传感器等。
为了更加全面的理解本申请实施例的电子设备。下面对电子设备的结构作进一步说明。请继续参阅图1,电子设备10还包括壳体40和摄像头60。
壳体40可以包括后盖(图中未示出)和边框420,边框420围绕后盖的周缘设置。显示装置20可以设置于边框420内,显示装置20和后盖可以作为电子设备10的相对的两面。摄像头60设置在壳体40的后盖和显示装置20之间。显示装置20可以为有机发光二极管显示装置(Organic Light-Emitting Diode,OLED)显示装置。显示装置20可以为全面屏,即,显示装置20的显示面基本全部都是显示区域。显示装置20上还可以设置有盖板。盖板覆盖显示装置20,以对显示装置20进行保护,防止显示装置20被刮伤或者被水损坏。其中,盖板可以为透明玻璃盖板,从而用户可以透过盖板观察到显示装置20显示的信息。例如,盖板可以为蓝宝石材质的盖板。
电子设备还可以包括电路板、电池和中板。边框420围绕中板设置,其中,边框420可以与中板形成电子设备10的中框。中板和边框420在中板两侧各形成一个容纳腔,其中一个容纳腔用于容置显示装置20,另一个容纳腔用于容置电路板、电池和电子设备10的其他电子元件或功能组件。
其中,中板可以为薄板状或薄片状的结构,也可以为中空的框体结构。中框用于为电子设备10中的电子元件或功能组件提供支撑作用,以将电子设备10中的电子元件、功能组件安装到一起。电子设备10的摄像头60、受话器、电池等功能组件都可以安装到中框或电路板上以进行固定。可以理解的,中框的材质可以包括金属或塑胶等。
电路板可以安装在中框上。电路板可以为电子设备10的主板。其中,电路板上可以集成有麦克风、扬声器、受话器、耳机接口、加速度传感器、陀螺仪以及处理器等功能组件中的一个或多个。同时,显示装置20可以电连接至电路板,以通过电路板上的处理器对显示装置20的显示进行控制。显示装置20和摄像头60可以均与处理器电性连接;当处理器接收到拍摄指令时,处理器控制第一显示区240关闭显示,并控制摄像头60透过第一显示区240采集图像;当处理器未接收到拍摄指令,且接收到显示图像指令时,处理器控制第二显示区220和第一显示区240共同显示图像。
电池可以安装在中框上。同时,电池电连接至电路板,以实现电池为电子设备10供电。其中,电路板上可以设置有电源管理电路。电源管理电路用于将电池提供的电压分配到电子设备10中的各个电子元件。
应当理解的是,在本文中提及的“多个”是指是两个或两个以上。
以上对本申请实施例提供的显示装置及电子设备进行了详细介绍。本文中应用了具体个例对本申请的原理及实施方式进行了阐述,以上实施例的说明只是用于帮助理解本申请。同时,对于本领域的技术人员,依据本申请的思想,在具体实施方式及应用范围上均会有改变之处,综上所述,本说明书内容不应理解为对本申请的限制。

Claims (20)

  1. 一种显示装置,包括第一显示区;
    所述第一显示区包括多个第一驱动单元和多个第一像素,每一所述第一驱动单元用于驱动一个或多个所述第一像素;
    每一所述第一驱动单元包括驱动管和控制管,每一所述第一驱动单元的所述驱动管至少部分与一个所述第一像素相对设置,多个所述第一驱动单元的所述驱动管呈矩阵排布,至少两个所述第一驱动单元的所述控制管聚集设置。
  2. 根据权利要求1所述的显示装置,其中,所述第一显示区还包括像素定义层,所述像素定义层具有多个像素孔,每一所述像素孔内设有一所述第一像素;
    每一所述第一驱动单元包括多个所述驱动管,每一所述第一驱动单元的多个所述驱动管聚集设置,且相对所述第一像素设置;
    每一所述第一驱动单元包括多个所述控制管,每一所述第一驱动单元的多个所述控制管聚集设置,且相对所述像素定义层设置。
  3. 根据权利要求2所述的显示装置,其中,多个所述第一驱动单元的驱动管通过沿第一方向设置的第一驱动信号线连接;
    多个所述第一驱动单元的控制管通过沿第二方向设置的第二驱动信号线连接,所述第一方向和所述第二方向垂直。
  4. 根据权利要求3所述的显示装置,其中,所述显示装置还包括第一驱动芯片,所述第一驱动信号线通过沿第二方向设置的第三驱动信号线与所述第一驱动芯片连接。
  5. 根据权利要求4所述的显示装置,其中,所述第三驱动信号线与所述第二驱动信号线相邻设置。
  6. 根据权利要求2所述的显示装置,其中,所述第一显示区还包括驱动电路层,所述驱动电路层包括所述第一驱动单元,所述第一像素在所述驱动电路层的正投影覆盖所述驱动管,所述像素定义层在所述驱动电路层的正投影覆盖所述控制管。
  7. 根据权利要求1所述的显示装置,其中,每一所述第一驱动单元用于驱动一个所述第一像素,所述第一显示区包括多个像素集合和多个驱动集合,每一所述像素集合包括呈矩形排布的多个所述第一像素,每一所述驱动集合包括所述第一驱动单元的数量与一所述像素集合中包括所述第一像素的数量相同,每一所述驱动集合驱动一所述像素集合,至少一个所述驱动结集合中的所有所述控制管聚集设置。
  8. 根据权利要求1所述的显示装置,其中,每一所述第一驱动单元用于驱动一个所述第一像素,所述第一显示区包括多个像素单元和多个驱动集合,每一所述像素单元包括不同颜色的多个所述第一像素,每一所述驱动集合包括所述第一驱动单元的数量与一所述像素单元中包括所述第一像素的数量相同,每一所述驱动集合驱动一所述像素单元,至少一个所述驱动集合中的所有所述控制管聚集设置。
  9. 根据权利要求1所述的显示装置,其中,所述第一驱动单元还包括电容,所述电容对应所述第一像素设置,且相邻所述驱动管。
  10. 根据权利要求1所述的显示装置,其中,所述显示装置还包括第二显示区,所述第二显示区的 透光率小于所述第一显示区的透光率。
  11. 根据权利要求10所述的显示装置,其中,所述第一显示区包括多个第一像素,所述第二显示区包括多个第二像素,所述第一像素的尺寸大于所述第二像素的尺寸。
  12. 根据权利要求10所述的显示装置,其中,所述第一显示区包括多个第一像素,所述第二显示区包括多个第二像素,所述第一像素的分布密度小于所述第二像素的分布密度。
  13. 根据权利要求12所述的显示装置,其中,所述第二显示区包括第二驱动单元,第二驱动单元驱动所述多个第二像素,所述第二驱动单元的薄膜晶体管的数量大于或等于所述第一驱动单元的薄膜晶体管的数量。
  14. 根据权利要求10所述的显示装置,其中,所述第一驱动单元的分布密度小于所述第二驱动单元的分布密度
  15. 根据权利要求10所述的显示装置,其中,所述第一像素和所述第二像素的物理结构。
  16. 根据权利要求15所述的显示装置,其中,多个所述第一像素并联连接。
  17. 根据权利要求16所述的显示装置,其中,并联连接的所述多个第一像素通过阳极层中的金属阳极连接。
  18. 根据权利要求16所述的显示装置,其中,并联连接的所述多个第一像素通过一个所述第一驱动单元驱动。
  19. 根据权利要求15所述的显示装置,其中,多个所述第一像素串联连接。
  20. 一种电子设备,包括显示装置和传感器,所述显示装置如权利要求1-19任一项所述的显示装置,所述传感器用于透过所述第一显示区传输信号。
PCT/CN2020/124682 2019-10-31 2020-10-29 显示装置及电子设备 WO2021083255A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201911050482.0A CN110752240B (zh) 2019-10-31 2019-10-31 显示装置及电子设备
CN201911050482.0 2019-10-31

Publications (1)

Publication Number Publication Date
WO2021083255A1 true WO2021083255A1 (zh) 2021-05-06

Family

ID=69281431

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/124682 WO2021083255A1 (zh) 2019-10-31 2020-10-29 显示装置及电子设备

Country Status (2)

Country Link
CN (1) CN110752240B (zh)
WO (1) WO2021083255A1 (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110752240B (zh) * 2019-10-31 2022-03-01 Oppo广东移动通信有限公司 显示装置及电子设备
CN111446281B (zh) * 2020-04-28 2023-06-02 深圳市华星光电半导体显示技术有限公司 透明显示面板和透明显示装置
CN111681560B (zh) * 2020-05-22 2021-08-17 嘉兴驭光光电科技有限公司 衍射抑制显示屏以及移动终端设备
CN112071886B (zh) * 2020-09-17 2022-09-20 云谷(固安)科技有限公司 显示面板及显示装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090140253A1 (en) * 2007-12-03 2009-06-04 Semiconductor Energy Laboratory Co., Ltd. Tft arrangement for display device
CN107219700A (zh) * 2017-06-22 2017-09-29 上海天马微电子有限公司 一种液晶显示面板及显示装置
CN108873530A (zh) * 2018-07-30 2018-11-23 京东方科技集团股份有限公司 一种阵列基板、显示面板及显示装置
CN109801947A (zh) * 2019-01-31 2019-05-24 上海天马有机发光显示技术有限公司 一种显示面板及显示装置
CN110752240A (zh) * 2019-10-31 2020-02-04 Oppo广东移动通信有限公司 显示装置及电子设备

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5287111B2 (ja) * 2007-11-14 2013-09-11 ソニー株式会社 表示装置及びその駆動方法と電子機器
CN107768409B (zh) * 2017-10-20 2021-05-28 武汉华星光电技术有限公司 显示基板及其制作方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090140253A1 (en) * 2007-12-03 2009-06-04 Semiconductor Energy Laboratory Co., Ltd. Tft arrangement for display device
CN107219700A (zh) * 2017-06-22 2017-09-29 上海天马微电子有限公司 一种液晶显示面板及显示装置
CN108873530A (zh) * 2018-07-30 2018-11-23 京东方科技集团股份有限公司 一种阵列基板、显示面板及显示装置
CN109801947A (zh) * 2019-01-31 2019-05-24 上海天马有机发光显示技术有限公司 一种显示面板及显示装置
CN110752240A (zh) * 2019-10-31 2020-02-04 Oppo广东移动通信有限公司 显示装置及电子设备

Also Published As

Publication number Publication date
CN110752240A (zh) 2020-02-04
CN110752240B (zh) 2022-03-01

Similar Documents

Publication Publication Date Title
WO2021083003A1 (zh) 显示装置及电子设备
WO2021083255A1 (zh) 显示装置及电子设备
WO2021082949A1 (zh) 显示装置及电子设备
WO2021082983A1 (zh) 显示装置及电子设备
WO2020134914A1 (zh) 一种显示屏、移动终端及其控制方法
CN110648622A (zh) 显示装置及电子设备
WO2020087799A1 (zh) 显示屏及显示终端
CN107403827B (zh) 显示基板和显示装置
WO2021083007A1 (zh) 显示装置及电子设备
CN110599944A (zh) 显示装置及电子设备
US20220190084A1 (en) Display apparatus and electronic device
US11776469B2 (en) Display apparatus and electronic device
US20220190099A1 (en) Display device and electronic device
WO2022206835A1 (zh) 显示面板和电子设备
CN110648623B (zh) 显示装置及电子设备
CN110728921B (zh) 显示装置及电子设备
CN210378415U (zh) 显示装置及电子设备
CN210516182U (zh) 显示装置及电子设备
CN110752239A (zh) 显示装置及电子设备
WO2022000616A1 (zh) 显示面板、显示屏及电子设备
WO2021249015A1 (zh) 显示装置及电子设备
US20240065057A1 (en) Fanout Lines with Shielding in an Active Area
WO2021249016A1 (zh) 显示装置、显示装置的制程方法及电子设备
WO2023025055A1 (zh) 显示面板及显示装置
KR20240062171A (ko) 전자 장치 및 전자 장치 구동 방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20883316

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20883316

Country of ref document: EP

Kind code of ref document: A1