WO2021080339A1 - 신규한 화합물 및 이를 이용한 유기발광 소자 - Google Patents

신규한 화합물 및 이를 이용한 유기발광 소자 Download PDF

Info

Publication number
WO2021080339A1
WO2021080339A1 PCT/KR2020/014471 KR2020014471W WO2021080339A1 WO 2021080339 A1 WO2021080339 A1 WO 2021080339A1 KR 2020014471 W KR2020014471 W KR 2020014471W WO 2021080339 A1 WO2021080339 A1 WO 2021080339A1
Authority
WO
WIPO (PCT)
Prior art keywords
compound
layer
group
formula
organic
Prior art date
Application number
PCT/KR2020/014471
Other languages
English (en)
French (fr)
Inventor
김민준
이동훈
서상덕
김영석
오중석
심재훈
Original Assignee
주식회사 엘지화학
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020200137038A external-priority patent/KR102545206B1/ko
Application filed by 주식회사 엘지화학 filed Critical 주식회사 엘지화학
Priority to CN202080013712.0A priority Critical patent/CN113423706B/zh
Publication of WO2021080339A1 publication Critical patent/WO2021080339A1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D405/00Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom
    • C07D405/14Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom containing three or more hetero rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D409/00Heterocyclic compounds containing two or more hetero rings, at least one ring having sulfur atoms as the only ring hetero atoms
    • C07D409/14Heterocyclic compounds containing two or more hetero rings, at least one ring having sulfur atoms as the only ring hetero atoms containing three or more hetero rings
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers

Definitions

  • the present invention relates to a novel compound and an organic light emitting device comprising the same.
  • the organic light emission phenomenon refers to a phenomenon in which electrical energy is converted into light energy by using an organic material.
  • An organic light-emitting device using the organic light-emitting phenomenon has a wide viewing angle, excellent contrast, and fast response time, and has excellent luminance, driving voltage, and response speed characteristics, and thus many studies are being conducted.
  • An organic light-emitting device generally has a structure including an anode and a cathode, and an organic material layer between the anode and the cathode.
  • the organic material layer is often made of a multi-layered structure made of different materials in order to increase the efficiency and stability of the organic light emitting device.For example, it may be formed of a hole injection layer, a hole transport layer, a light emitting layer, an electron transport layer, an electron injection layer, and the like.
  • holes are injected from the anode and electrons from the cathode are injected into the organic material layer, and excitons are formed when the injected holes and electrons meet. When it falls back to the ground, it glows.
  • Patent Document 0001 Korean Patent Publication No. 10-2000-0051826
  • the present invention relates to a novel compound and an organic light emitting device comprising the same.
  • the present invention provides a compound represented by the following formula (1):
  • L 1 and L 2 are each independently a single bond, or a substituted or unsubstituted C 6-60 arylene,
  • Ar 1 , Ar 2 and Ar 3 are different,
  • Ar 1 is substituted or unsubstituted C 10-60 polycyclic aryl
  • Ar 2 is a substituted or unsubstituted C 5-60 heteroaryl containing any one or more heteroatoms selected from the group consisting of N, O and S,
  • Ar 3 is a substituent represented by the following formula (2),
  • X is O, or S
  • R 1, R 3 , R 5 to R 7 , R 9 and R 10 is connected to Formula 1;
  • the rest are each independently hydrogen or deuterium,
  • R 2 , R 4 and R 8 are each independently hydrogen or deuterium.
  • the present invention is an organic light emitting device comprising a first electrode, a second electrode provided opposite to the first electrode, and one or more organic material layers provided between the first electrode and the second electrode, wherein the organic material layer At least one of the layers provides an organic light-emitting device including the compound represented by Formula 1 above.
  • the compound represented by Formula 1 may be used as a material for an organic material layer of an organic light-emitting device, and may improve efficiency, low driving voltage, and/or lifetime characteristics in the organic light-emitting device.
  • the compound represented by Formula 1 may be used as a hole injection, hole transport, hole injection and transport, light emission, electron transport, or electron injection material.
  • FIG. 1 shows an example of an organic light-emitting device comprising a substrate 1, an anode 2, a hole transport layer 3, a light-emitting layer 4, an electron injection and transport layer 5, and a cathode 6.
  • FIG. 2 shows a substrate 1, an anode 2, a hole injection layer 7, a hole transport layer 3, an electron suppression layer 8, a light emitting layer 4, a hole blocking layer 9, an electron injection and transport layer ( 5) and a cathode 6 are shown as an example of an organic light-emitting device.
  • substituted or unsubstituted refers to deuterium, halogen group, cyano group, nitro group, hydroxy group, carbonyl group, ester group, imide group, amino group, phosphine oxide group, alkoxy group, aryloxy group, alkyl Thioxy group, arylthioxy group, alkylsulfoxy group, arylsulfoxy group, silyl group, boron group, alkyl group, cycloalkyl group, alkenyl group, aryl group, aralkyl group, aralkenyl group, alkylaryl group, alkylamine group, aralkylamine Group, heteroarylamine group, arylamine group, arylphosphine group, or unsubstituted or substituted with one or more substituents selected from the group consisting of heteroaryl containing at least one of N, O and S atoms, or as exemplified above It means
  • a substituent to which two or more substituents are connected may be a biphenyl group. That is, the biphenyl group may be an aryl group, or may be interpreted as a substituent to which two phenyl groups are connected.
  • the number of carbon atoms of the carbonyl group is not particularly limited, but is preferably 1 to 40 carbon atoms. Specifically, it may be a compound having the following structure, but is not limited thereto.
  • the ester group may be substituted with a C1-C25 linear, branched or cyclic alkyl group or an aryl group having 6 to 25 carbon atoms in the oxygen of the ester group.
  • it may be a compound of the following structural formula, but is not limited thereto.
  • the number of carbon atoms of the imide group is not particularly limited, but it is preferably 1 to 25 carbon atoms. Specifically, it may be a compound having the following structure, but is not limited thereto.
  • the silyl group is specifically trimethylsilyl group, triethylsilyl group, t-butyldimethylsilyl group, vinyldimethylsilyl group, propyldimethylsilyl group, triphenylsilyl group, diphenylsilyl group, phenylsilyl group, etc. However, it is not limited thereto.
  • the boron group specifically includes a trimethyl boron group, a triethyl boron group, a t-butyldimethyl boron group, a triphenyl boron group, a phenyl boron group, and the like, but is not limited thereto.
  • examples of the halogen group include fluorine, chlorine, bromine or iodine.
  • the alkyl group may be linear or branched, and the number of carbon atoms is not particularly limited, but is preferably 1 to 40. According to an exemplary embodiment, the alkyl group has 1 to 20 carbon atoms. According to another exemplary embodiment, the alkyl group has 1 to 10 carbon atoms. According to another exemplary embodiment, the alkyl group has 1 to 6 carbon atoms.
  • alkyl group examples include methyl, ethyl, propyl, n-propyl, isopropyl, butyl, n-butyl, isobutyl, tert-butyl, sec-butyl, 1-methyl-butyl, 1-ethyl-butyl, pentyl, n -Pentyl, isopentyl, neopentyl, tert-pentyl, hexyl, n-hexyl, 1-methylpentyl, 2-methylpentyl, 4-methyl-2-pentyl, 3,3-dimethylbutyl, 2-ethylbutyl, heptyl , n-heptyl, 1-methylhexyl, cyclopentylmethyl, cycloheptylmethyl, octyl, n-octyl, tert-octyl, 1-methylheptyl, 2-ethylhex
  • the alkenyl group may be a linear or branched chain, and the number of carbon atoms is not particularly limited, but is preferably 2 to 40. According to an exemplary embodiment, the alkenyl group has 2 to 20 carbon atoms. According to another exemplary embodiment, the alkenyl group has 2 to 10 carbon atoms. According to another exemplary embodiment, the alkenyl group has 2 to 6 carbon atoms.
  • Specific examples include vinyl, 1-propenyl, isopropenyl, 1-butenyl, 2-butenyl, 3-butenyl, 1-pentenyl, 2-pentenyl, 3-pentenyl, 3-methyl-1- Butenyl, 1,3-butadienyl, allyl, 1-phenylvinyl-1-yl, 2-phenylvinyl-1-yl, 2,2-diphenylvinyl-1-yl, 2-phenyl-2-( Naphthyl-1-yl)vinyl-1-yl, 2,2-bis(diphenyl-1-yl)vinyl-1-yl, stilbenyl group, styrenyl group, and the like, but are not limited thereto.
  • the cycloalkyl group is not particularly limited, but preferably has 3 to 60 carbon atoms, and according to an exemplary embodiment, the cycloalkyl group has 3 to 30 carbon atoms. According to another exemplary embodiment, the cycloalkyl group has 3 to 20 carbon atoms. According to another exemplary embodiment, the cycloalkyl group has 3 to 6 carbon atoms.
  • the aryl group is not particularly limited, but preferably has 6 to 60 carbon atoms, and may be a monocyclic aryl group or a polycyclic aryl group having aromaticity. According to an exemplary embodiment, the aryl group has 6 to 30 carbon atoms. According to an exemplary embodiment, the aryl group has 6 to 20 carbon atoms.
  • the aryl group may be a monocyclic aryl group such as a phenyl group, a biphenyl group, or a terphenyl group, but is not limited thereto.
  • the polycyclic aryl group may be a naphthyl group, an anthracenyl group, a phenanthrenyl group, a triphenylenyl group, a pyrenyl group, a perylenyl group, or a chrysenyl group, but is not limited thereto.
  • heteroaryl is a heteroaryl containing at least one of O, N, Si, and S as a heterogeneous element, and the number of carbon atoms is not particularly limited, but it is preferably 2 to 60 carbon atoms.
  • heteroaryl include thiophene group, furan group, pyrrole group, imidazole group, thiazole group, oxazole group, oxadiazole group, triazole group, pyridyl group, bipyridyl group, pyrimidyl group, triazine group, acridyl group, Pyridazine group, pyrazinyl group, quinolinyl group, quinazoline group, quinoxalinyl group, phthalazinyl group, pyrido pyrimidinyl group, pyrido pyrazinyl group, pyrazino pyrazinyl group, isoquinoline group, indole group, Carbazole
  • the aryl group among the aralkyl group, aralkenyl group, alkylaryl group, arylamine group, and arylsilyl group is the same as the example of the aryl group described above.
  • the alkyl group among the aralkyl group, the alkylaryl group and the alkylamine group is the same as the example of the aforementioned alkyl group.
  • the heteroaryl among the heteroarylamines may be described above for heteroaryl.
  • the alkenyl group of the aralkenyl group is the same as the example of the alkenyl group described above.
  • the description of the aryl group described above may be applied except that the arylene is a divalent group.
  • the description of the above-described heteroaryl may be applied except that the heteroarylene is a divalent group.
  • the hydrocarbon ring is not a monovalent group, and the description of the aryl group or cycloalkyl group described above may be applied except that the hydrocarbon ring is formed by bonding of two substituents.
  • the heterocycle is not a monovalent group, and the description of the above-described heteroaryl may be applied except that the heterocycle is formed by bonding of two substituents.
  • the present invention provides a compound represented by Chemical Formula 1.
  • the compound represented by Formula 1 has 1,3,5-triazine as a core, and has a structure in which three different substituents are bonded.
  • three different substituents bonded to the core are selected from the group consisting of substituted or unsubstituted C 10-60 polycyclic aryl (Ar 1 ), substituted or unsubstituted N, O, and S.
  • An organic light-emitting device including the compound represented by Formula 1 as a constituent element of an organic layer may exhibit high efficiency and long life characteristics as a synergy effect obtained by combining the three different substituents.
  • L 1 is a single bond or phenylene.
  • Ar 1 is naphthyl, phenanthrenyl or fluoranthenyl.
  • L 2 is a single bond.
  • Ar 2 is dibenzofuranyl, dibenzothiophenyl, carbazol-9-yl, or 9-phenyl-9H-carbazolyl.
  • X is O.
  • any one of R 1 , R 3 , R 5 , R 6 , R 7 and R 10 is connected with Formula 1;
  • the rest are each independently hydrogen.
  • R 2 , R 4 and R 8 are each independently hydrogen.
  • the compound represented by Chemical Formula 1 can be prepared by a manufacturing method as shown in Scheme 1 below.
  • the present invention provides an organic light-emitting device including the compound represented by Formula 1 above.
  • the present invention is an organic light emitting device comprising a first electrode, a second electrode provided opposite to the first electrode, and one or more organic material layers provided between the first electrode and the second electrode, wherein the At least one of the organic material layers provides an organic light-emitting device including the compound represented by Formula 1 above.
  • the organic material layer of the organic light emitting device of the present invention may have a single-layer structure, but may have a multilayer structure in which two or more organic material layers are stacked.
  • the organic light emitting device of the present invention may have a structure including a hole injection layer, a hole transport layer, a light emitting layer, an electron transport layer, an electron injection layer, and the like as an organic material layer.
  • the structure of the organic light emitting device is not limited thereto and may include a smaller number of organic layers.
  • the organic material layer may include a hole injection layer, a hole transport layer, or a layer that simultaneously injects and transports holes, and the hole injection layer, a hole transport layer, or a layer that simultaneously injects and transports holes is represented by Formula 1 above. Including the indicated compound.
  • the organic material layer may include an emission layer, and the emission layer includes a compound represented by Formula 1.
  • the organic material layer of the organic light emitting device of the present invention may have a single-layer structure, but may have a multilayer structure in which two or more organic material layers are stacked.
  • the organic light emitting device of the present invention further includes a hole injection layer and a hole transport layer between the first electrode and the emission layer, and an electron transport layer and an electron injection layer between the emission layer and the second electrode in addition to the emission layer as an organic material layer. It can have a structure to do.
  • the structure of the organic light emitting device is not limited thereto, and may include a smaller number or a larger number of organic layers.
  • the first electrode is an anode and the second electrode is a cathode, and an anode, one or more organic material layers, and a cathode are sequentially stacked on a substrate (normal type). It may be a device.
  • the first electrode is a cathode and the second electrode is an anode, and a cathode, one or more organic material layers, and an anode are sequentially stacked on a substrate. It may be a light emitting device.
  • FIGS. 1 and 2 the structure of an organic light-emitting device according to an embodiment of the present invention is illustrated in FIGS. 1 and 2.
  • FIG. 1 shows an example of an organic light-emitting device comprising a substrate 1, an anode 2, a hole transport layer 3, a light-emitting layer 4, an electron injection and transport layer 5, and a cathode 6.
  • the compound represented by Formula 1 may be included in the hole transport layer.
  • the compound represented by Formula 1 may be included in the hole injection layer, the hole transport layer, or the electron suppression layer.
  • the organic light-emitting device according to the present invention may be manufactured by materials and methods known in the art, except that at least one of the organic material layers includes the compound represented by Chemical Formula 1.
  • the organic material layers may be formed of the same material or different materials.
  • the organic light emitting device may be manufactured by sequentially stacking a first electrode, an organic material layer, and a second electrode on a substrate.
  • a PVD (physical vapor deposition) method such as sputtering or e-beam evaporation
  • the anode is formed by depositing a metal or a conductive metal oxide or an alloy thereof on the substrate.
  • an organic material layer including a hole injection layer, a hole transport layer, a light emitting layer, and an electron transport layer thereon it can be prepared by depositing a material that can be used as a cathode thereon.
  • an organic light-emitting device may be manufactured by sequentially depositing a cathode material, an organic material layer, and an anode material on a substrate.
  • the compound represented by Formula 1 may be formed as an organic material layer by a solution coating method as well as a vacuum deposition method when manufacturing an organic light emitting device.
  • the solution coating method refers to spin coating, dip coating, doctor blading, inkjet printing, screen printing, spray method, roll coating, and the like, but is not limited thereto.
  • an organic light emitting device may be manufactured by sequentially depositing an organic material layer and an anode material from a cathode material on a substrate (WO 2003/012890).
  • the manufacturing method is not limited thereto.
  • the first electrode is an anode
  • the second electrode is a cathode
  • the first electrode is a cathode
  • the second electrode is an anode
  • the anode material a material having a large work function is preferable so that holes can be smoothly injected into the organic material layer.
  • the anode material include metals such as vanadium, chromium, copper, zinc, and gold, or alloys thereof, zinc oxide, indium oxide, indium tin oxide (ITO), metal oxide such as indium zinc oxide (IZO), ZnO: Combination of metals and oxides such as Al or SnO 2 :Sb, poly(3-methylthiophene), poly[3,4-(ethylene-1,2-dioxy)thiophene] (PEDOT), polypyrrole and polyaniline There are the same conductive polymers, but are not limited thereto.
  • the cathode material is a material having a small work function to facilitate electron injection into the organic material layer.
  • the negative electrode material include metals such as magnesium, calcium, sodium, potassium, titanium, indium, yttrium, lithium, gadolinium, aluminum, silver, tin, and lead, or alloys thereof, such as LiF/Al or LiO 2 /Al. There are multi-layered materials and the like, but are not limited thereto.
  • the hole injection layer is a layer that injects holes from an electrode, and has the ability to transport holes as a hole injection material, so that it has a hole injection effect at the anode, an excellent hole injection effect for a light emitting layer or a light emitting material, A compound that prevents the movement of excitons to the electron injection layer or the electron injection material and has excellent thin film formation ability is preferable. It is preferable that the HOMO (highest occupied molecular orbital) of the hole injection material is between the work function of the positive electrode material and the HOMO of the surrounding organic material layer.
  • hole injection materials include metal porphyrin, oligothiophene, arylamine-based organic substances, hexanitrile hexaazatriphenylene-based organic substances, quinacridone-based organic substances, and perylene-based organic substances.
  • the hole transport layer is a layer that receives holes from the hole injection layer and transports holes to the emission layer.
  • the hole transport material is a material capable of transporting holes from the anode or the hole injection layer to the emission layer, and has high mobility for holes. The material is suitable.
  • a compound represented by Formula 1 may be used, or an arylamine-based organic material, a conductive polymer, and a block copolymer having a conjugated portion and a non-conjugated portion may be used, but the present invention is not limited thereto. .
  • the electron suppression layer is formed on the hole transport layer and is preferably provided in contact with the light emitting layer to control hole mobility and prevent excessive movement of electrons to increase the probability of hole-electron coupling, thereby increasing the efficiency of the organic light-emitting device. It refers to the layer that plays a role in improving the value.
  • the electron-suppression layer includes an electron-blocking material, and examples of such an electron-blocking material may include a compound represented by Formula 1 or an arylamine-based organic material, but are not limited thereto.
  • the light-emitting material a material capable of emitting light in a visible light region by transporting and combining holes and electrons from the hole transport layer and the electron transport layer, respectively, and a material having good quantum efficiency for fluorescence or phosphorescence is preferable.
  • 8-hydroxy-quinoline aluminum complex (Alq 3 ) carbazole-based compounds, dimerized styryl compounds, BAlq, 10-hydroxybenzoquinoline-metal compounds, benzoxazole, benzthiazole and benz
  • imidazole-based compounds poly(p-phenylenevinylene) (PPV)-based polymers, spiro compounds, polyfluorene, rubrene, and the like, but are not limited thereto.
  • the emission layer may include a host material and a dopant material.
  • the host material may further include a condensed aromatic ring derivative or a heterocyclic compound.
  • condensed aromatic ring derivatives include anthracene derivatives, pyrene derivatives, naphthalene derivatives, pentacene derivatives, phenanthrene compounds, and fluoranthene compounds
  • heterocycle-containing compounds include carbazole derivatives, dibenzofuran derivatives, ladder type Furan compounds, pyrimidine derivatives, and the like, but are not limited thereto.
  • the light-emitting layer alone contains the compound represented by the above-described formula (1) as a host;
  • the compound represented by Formula 1 may be included, and the second host may further include a compound represented by Formula 4:
  • A is a substituted or unsubstituted naphthalene ring
  • Ar 4 is substituted or unsubstituted C 6-60 aryl
  • L 3 and L 4 are each independently a single bond, or a substituted or unsubstituted C 6-60 arylene,
  • Ar 5 and Ar 6 are each independently substituted or unsubstituted C 6-60 aryl, substituted or unsubstituted C 2-60 including any one or more heteroatoms selected from the group consisting of N, O and S Heteroaryl, or adamantyl,
  • p is an integer from 0 to 9.
  • the formula 4 is represented by any one of the following formulas 4-1 to 4-3:
  • Ar 4 is phenyl, biphenylyl, or naphthyl; Ar 4 is unsubstituted or substituted with one or more tert-butyl or phenyl.
  • L 3 and L 4 are each independently a single bond, phenylene or naphthalenediyl; Each of L 3 and L 4 is independently unsubstituted or substituted with one or more phenyl.
  • Ar 5 and Ar 6 are each independently phenyl, biphenylyl, terphenylyl, naphthyl, dibenzofuranyl, dibenzothiophenyl, fluorenyl, 9,9-dimethylfluorenyl or Adamantyl; Ar 5 and Ar 6 are each independently unsubstituted or substituted with one or more tert-butyl or phenyl.
  • p is 0.
  • Dopant materials include aromatic amine derivatives, strylamine compounds, boron complexes, fluoranthene compounds, and metal complexes.
  • the aromatic amine derivative is a condensed aromatic ring derivative having a substituted or unsubstituted arylamino group, and includes pyrene, anthracene, chrysene, periflanthene and the like having an arylamino group
  • the styrylamine compound is substituted or unsubstituted
  • the aromatic amine derivative is a condensed aromatic ring derivative having a substituted or unsubstituted arylamino group, and includes pyrene, anthracene, chrysene, periflanthene and the like having an arylamino group
  • the styrylamine compound is substituted or unsubstituted
  • at least one arylvinyl group is substituted on the arylamine, one or two or more substituents selected from
  • styrylamine styryldiamine
  • styryltriamine styryltetraamine
  • metal complex examples include an iridium complex and a platinum complex, but are not limited thereto.
  • dopant material is as follows:
  • the hole blocking layer is formed on the emission layer and is preferably provided in contact with the emission layer to improve the efficiency of the organic light-emitting device by increasing the probability of hole-electron bonding by controlling electron mobility and preventing excessive movement of holes. It means the layer that plays a role.
  • the hole-blocking layer includes a hole-blocking material, and examples of such hole-blocking materials include triazine-containing azine derivatives, triazole derivatives, oxadiazole derivatives, phenanthroline derivatives, and phosphine oxide derivatives. The compound can be used, but is not limited thereto.
  • the electron injection and transport layer is a layer that simultaneously serves as an electron transport layer and an electron injection layer for injecting electrons from an electrode and transporting received electrons to the emission layer, and is formed on the emission layer or the hole blocking layer.
  • an electron injection and transport material a material capable of receiving electrons from the cathode and transferring them to the light emitting layer is suitable, and a material having high mobility for electrons is suitable.
  • specific electron injection and transport materials include , but are not limited to, an Al complex of 8-hydroxyquinoline, a complex including Alq 3 , an organic radical compound, a hydroxyflavone-metal complex, and a triazine derivative.
  • fluorenone anthraquinodimethane, diphenoquinone, thiopyran dioxide, oxazole, oxadiazole, triazole, imidazole, perylenetetracarboxylic acid, preorenylidene methane, anthrone, and their derivatives, metal complex compounds , Or nitrogen-containing 5-membered cyclic derivatives may be used together, but the present invention is not limited thereto.
  • the metal complex compound examples include lithium 8-hydroxyquinolinato, bis(8-hydroxyquinolinato)zinc, bis(8-hydroxyquinolinato)copper, bis(8-hydroxyquinolinato)manganese, Tris(8-hydroxyquinolinato)aluminum, tris(2-methyl-8-hydroxyquinolinato)aluminum, tris(8-hydroxyquinolinato)gallium, bis(10-hydroxybenzo[h] Quinolinato)beryllium, bis(10-hydroxybenzo[h]quinolinato)zinc, bis(2-methyl-8-quinolinato)chlorogallium, bis(2-methyl-8-quinolinato)( o-cresolato)gallium, bis(2-methyl-8-quinolinato)(1-naphtholato)aluminum, bis(2-methyl-8-quinolinato)(2-naphtholato)gallium, etc. It is not limited thereto.
  • the organic light emitting device may be a top emission type, a bottom emission type, or a double-sided emission type depending on the material used.
  • the compound represented by Formula 1 may be included in an organic solar cell or an organic transistor in addition to the organic light emitting device.
  • subA-1 15g, 32.8mmol
  • sub8 (10.3g, 36mmol) were added to 300ml of THF and stirred and refluxed. Thereafter, potassium carbonate (13.6g, 98.3mmol) was dissolved in 41ml of water, and after sufficiently stirring, bis(tri-tert-butylphosphine)palladium(0) (0.2g, 0.3mmol) was added. After the reaction for 11 hours, the mixture was cooled to room temperature, the organic layer and the water layer were separated, and the organic layer was distilled.
  • subA-1 15g, 32.8mmol
  • sub9 8.2g, 36mmol
  • potassium carbonate 13.6g, 98.3mmol
  • bis(tri-tert-butylphosphine)palladium(0) 0.2g, 0.3mmol
  • subA-2 15g, 29.5mmol
  • sub10 (6.9g, 32.5mmol) were added to 300ml of THF and stirred and refluxed.
  • potassium carbonate (12.2g, 88.6mmol) was dissolved in 37ml of water, and after sufficiently stirring, bis(tri-tert-butylphosphine)palladium(0) (0.2g, 0.3mmol) was added.
  • the reaction for 11 hours the mixture was cooled to room temperature, the organic layer and the water layer were separated, and the organic layer was distilled.
  • subA-3 15g, 28.1mmol
  • sub11 6.6g, 30.9mmol
  • potassium carbonate 11.6g, 84.3mmol
  • bis(tri-tert-butylphosphine)palladium(0) 0.1g, 0.3mmol
  • subA-4 15g, 28.2mmol
  • sub9 7.g, 31mmol
  • potassium carbonate 11.7g, 84.6mmol
  • bis(tri-tert-butylphosphine)palladium(0) 0.1g, 0.3mmol
  • subB-1 15g, 32.8mmol
  • sub9 8.2g, 36mmol
  • potassium carbonate 13.6g, 98.3mmol
  • bis(tri-tert-butylphosphine)palladium(0) 0.2g, 0.3mmol
  • subB-2 (15g, 32.8mmol) and sub12 (8.2g, 36mmol) were added to 300ml of THF and stirred and refluxed. Thereafter, potassium carbonate (13.6g, 98.3mmol) was dissolved in 41ml of water, and after sufficiently stirring, bis(tri-tert-butylphosphine)palladium(0) (0.2g, 0.3mmol) was added. After the reaction for 8 hours, the mixture was cooled to room temperature, the organic layer and the water layer were separated, and the organic layer was distilled.
  • subB-4 15g, 29.5mmol
  • sub11 (6.9g, 32.5mmol) were added to 300ml of THF and stirred and refluxed.
  • potassium carbonate (12.2g, 88.6mmol) was dissolved in 37ml of water, and after sufficiently stirring, bis(tri-tert-butylphosphine)palladium(0) (0.2g, 0.3mmol) was added.
  • the reaction for 8 hours the mixture was cooled to room temperature, the organic layer and the water layer were separated, and the organic layer was distilled.
  • subB-2 (15g, 32.8mmol) and sub14 (10.3g, 36mmol) were added to 300ml of THF and stirred and refluxed. Thereafter, potassium carbonate (13.6g, 98.3mmol) was dissolved in 41ml of water, and after sufficiently stirring, bis(tri-tert-butylphosphine)palladium(0) (0.2g, 0.3mmol) was added. After the reaction for 8 hours, the mixture was cooled to room temperature, the organic layer and the water layer were separated, and the organic layer was distilled.
  • subC-1 15g, 32.8mmol
  • sub11 7.6g, 36mmol
  • potassium carbonate 13.6g, 98.3mmol
  • bis(tri-tert-butylphosphine)palladium(0) 0.2g, 0.3mmol
  • subC-2 (15g, 28.1mmol) and sub15 (7g, 30.9mmol) were added to 300ml of THF and stirred and refluxed. After that, potassium carbonate (11.6g, 84.3mmol) was dissolved in 35ml of water, and after sufficiently stirring, bis(tri-tert-butylphosphine)palladium(0) (0.1g, 0.3mmol) was added. After the reaction for 8 hours, the mixture was cooled to room temperature, the organic layer and the water layer were separated, and the organic layer was distilled.
  • subC-1 15g, 32.8mmol
  • sub10 7.6g, 36mmol
  • potassium carbonate 13.6g, 98.3mmol
  • bis(tri-tert-butylphosphine)palladium(0) 0.2g, 0.3mmol
  • subC-2 15g, 28.1mmol
  • sub16 8.9g, 30.9mmol
  • potassium carbonate 11.6g, 84.3mmol
  • bis(tri-tert-butylphosphine)palladium(0) 0.1g, 0.3mmol
  • subD-1 15g, 32.8mmol
  • sub11 7.6g, 36mmol
  • potassium carbonate 13.6g, 98.3mmol
  • bis(tri-tert-butylphosphine)palladium(0) 0.2g, 0.3mmol
  • subD-1 15g, 32.8mmol
  • sub15 8.2g, 36mmol
  • potassium carbonate 13.6g, 98.3mmol
  • bis(tri-tert-butylphosphine)palladium(0) 0.2g, 0.3mmol
  • subE-1 15g, 32.8mmol
  • sub11 7.6g, 36mmol
  • potassium carbonate 13.6g, 98.3mmol
  • bis(tri-tert-butylphosphine)palladium(0) 0.2g, 0.3mmol
  • subE-1 15g, 32.8mmol
  • sub17 8.2g, 36mmol
  • potassium carbonate 13.6g, 98.3mmol
  • bis(tri-tert-butylphosphine)palladium(0) 0.2g, 0.3mmol
  • subE-1 15g, 32.8mmol
  • sub10 7.6g, 36mmol
  • potassium carbonate 13.6g, 98.3mmol
  • bis(tri-tert-butylphosphine)palladium(0) 0.2g, 0.3mmol
  • subE-1 15g, 32.8mmol
  • sub18 (10.3g, 36mmol) were added to 300ml of THF and stirred and refluxed. Thereafter, potassium carbonate (13.6g, 98.3mmol) was dissolved in 41ml of water, and after sufficiently stirring, bis(tri-tert-butylphosphine)palladium(0) (0.2g, 0.3mmol) was added. After the reaction for 11 hours, the mixture was cooled to room temperature, the organic layer and the water layer were separated, and the organic layer was distilled.
  • subE-1 15g, 32.8mmol
  • sub14 (10.3g, 36mmol) were added to 300ml of THF and stirred and refluxed. Thereafter, potassium carbonate (13.6g, 98.3mmol) was dissolved in 41ml of water, and after sufficiently stirring, bis(tri-tert-butylphosphine)palladium(0) (0.2g, 0.3mmol) was added. After the reaction for 10 hours, the mixture was cooled to room temperature, the organic layer and the water layer were separated, and the organic layer was distilled.
  • subF-1 15g, 32.8mmol
  • sub9 8.2g, 36mmol
  • potassium carbonate 13.6g, 98.3mmol
  • bis(tri-tert-butylphosphine)palladium(0) 0.2g, 0.3mmol
  • subF-1 15g, 32.8mmol
  • sub11 7.6g, 36mmol
  • potassium carbonate 13.6g, 98.3mmol
  • bis(tri-tert-butylphosphine)palladium(0) 0.2g, 0.3mmol
  • subF-1 15g, 32.8mmol
  • sub19 (10.3g, 36mmol) were added to 300ml of THF and stirred and refluxed.
  • potassium carbonate (13.6g, 98.3mmol) was dissolved in 41ml of water, and after sufficiently stirring, bis(tri-tert-butylphosphine)palladium(0) (0.2g, 0.3mmol) was added.
  • the reaction for 9 hours it was cooled to room temperature, the organic layer and the water layer were separated, and the organic layer was distilled.
  • subF-1 15g, 32.8mmol
  • sub14 (10.3g, 36mmol) were added to 300ml of THF and stirred and refluxed. Thereafter, potassium carbonate (13.6g, 98.3mmol) was dissolved in 41ml of water, and after sufficiently stirring, bis(tri-tert-butylphosphine)palladium(0) (0.2g, 0.3mmol) was added. After the reaction for 9 hours, it was cooled to room temperature, the organic layer and the water layer were separated, and the organic layer was distilled.
  • a glass substrate coated with a thin film of ITO (indium tin oxide) to a thickness of 1,000 ⁇ was put in distilled water dissolved in a detergent and washed with ultrasonic waves.
  • Fischer Co. product was used as a detergent, and distilled water secondarily filtered with a filter made by Millipore Co. was used as distilled water.
  • ultrasonic washing was performed with a solvent of isopropyl alcohol, acetone, and methanol, dried, and then transported to a plasma cleaner.
  • the substrate was transported to a vacuum evaporator.
  • the following HI-1 compound was formed as a hole injection layer on the prepared ITO transparent electrode to a thickness of 1150 ⁇ , but the following compound A-1 was p-doped at a concentration of 1.5%.
  • the following HT-1 compound was vacuum-deposited on the hole injection layer to form a hole transport layer having a thickness of 800 ⁇ .
  • the following EB-1 compound having a thickness of 150 ⁇ was vacuum deposited on the hole transport layer to form an electron suppressing layer.
  • the following compound 1 and the following Dp-7 compound were vacuum-deposited at a weight ratio of 98:2 on the EB-1 deposition film to form a red light emitting layer having a thickness of 400 ⁇ .
  • a hole blocking layer was formed by vacuum vapor deposition of the following HB-1 compound having a thickness of 30 ⁇ on the light emitting layer. Subsequently, the following ET-1 compound and the following LiQ compound were vacuum-deposited at a weight ratio of 2:1 on the hole blocking layer to form an electron injection and transport layer with a thickness of 300 ⁇ . Lithium fluoride (LiF) in a thickness of 12 ⁇ and aluminum in a thickness of 1,000 ⁇ were sequentially deposited on the electron injection and transport layer to form a negative electrode.
  • LiF lithium fluoride
  • the deposition rate of the organic material was maintained at 0.4 ⁇ 0.7 ⁇ /sec
  • the deposition rate of lithium fluoride at the cathode was 0.3 ⁇ /sec
  • the deposition rate of aluminum was 2 ⁇ /sec
  • the vacuum degree during deposition was 2X10 -7 ⁇ Maintaining 5X10 -6 torr, an organic light-emitting device was fabricated.
  • Organic light-emitting devices of Examples 2 to 26 were manufactured in the same manner as in Example 1, except that the compound shown in Table 1 below was used instead of Compound 1 in the organic light-emitting device of Example 1.
  • Organic light-emitting devices of Comparative Examples 1 to 10 were manufactured in the same manner as in Example 1, except that the compound shown in Table 1 below was used instead of Compound 1 in the organic light-emitting device of Example 1.
  • Example 1 In the organic light-emitting device of Example 1, instead of Compound 1, the first host and the second host described in Table 2 were vacuum co-deposited at a 1:1 ratio, except for this, Examples 27 to The organic light emitting device of 78 was manufactured.
  • Example 1 is a structure in which compound [EB-1] is used as an electron blocking layer and compound 1 /Dp-7 is used as a red light emitting layer.
  • compound [EB-1] is used as an electron blocking layer
  • compound 1 /Dp-7 is used as a red light emitting layer.
  • an organic light-emitting device was manufactured using C-1 to C-10 instead of Compound 1.
  • the results in Table 2 show the results of co-depositing two types of hosts. When the first host and the second host are used in a 1:1 ratio, the results are better than the results of using only the first host. As the amount of holes increased as the second host was used, it was confirmed that electrons and holes in the red light emitting layer maintained a more stable balance, and the efficiency and lifespan increased a lot.
  • the compound of the present invention when used as a host of a red emission layer, the driving voltage, luminous efficiency, and lifetime characteristics of the organic light emitting device can be improved.
  • substrate 2 anode
  • hole transport layer 4 light emitting layer

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

본 발명은 신규한 화합물 및 이를 이용한 유기발광 소자를 제공한다.

Description

신규한 화합물 및 이를 이용한 유기발광 소자
관련 출원(들)과의 상호 인용
본 출원은 2019년 10월 22일자 한국 특허 출원 제10-2019-0131709호 및 2020년 10월 21일자 한국 특허 출원 제10-2020-0137038호에 기초한 우선권의 이익을 주장하며, 해당 한국 특허 출원들의 문헌에 개시된 모든 내용은 본 명세서의 일부로서 포함된다.
본 발명은 신규한 화합물 및 이를 포함하는 유기 발광 소자에 관한 것이다.
일반적으로 유기 발광 현상이란 유기 물질을 이용하여 전기에너지를 빛에너지로 전환시켜주는 현상을 말한다. 유기 발광 현상을 이용하는 유기 발광 소자는 넓은 시야각, 우수한 콘트라스트, 빠른 응답 시간을 가지며, 휘도, 구동 전압 및 응답 속도 특성이 우수하여 많은 연구가 진행되고 있다.
유기 발광 소자는 일반적으로 양극과 음극 및 상기 양극과 음극 사이에 유기물층을 포함하는 구조를 가진다. 상기 유기물층은 유기 발광 소자의 효율과 안정성을 높이기 위하여 각기 다른 물질로 구성된 다층의 구조로 이루어진 경우가 많으며, 예컨대 정공주입층, 정공수송층, 발광층, 전자수송층, 전자주입층 등으로 이루어질 수 있다. 이러한 유기 발광 소자의 구조에서 두 전극 사이에 전압을 걸어주게 되면 양극에서는 정공이, 음극에서는 전자가 유기물층에 주입되게 되고, 주입된 정공과 전자가 만났을 때 엑시톤(exciton)이 형성되며, 이 엑시톤이 다시 바닥상태로 떨어질 때 빛이 나게 된다.
상기와 같은 유기 발광 소자에 사용되는 유기물에 대하여 새로운 재료의 개발이 지속적으로 요구되고 있다.
[선행기술문헌]
[특허문헌]
(특허문헌 0001) 한국특허 공개번호 제10-2000-0051826호
본 발명은 신규한 화합물 및 이를 포함하는 유기 발광 소자에 관한 것이다.
본 발명은 하기 화학식 1로 표시되는 화합물을 제공한다:
[화학식 1]
Figure PCTKR2020014471-appb-img-000001
상기 화학식 1에서,
L 1 및 L 2 는 각각 독립적으로, 단일 결합, 또는 치환 또는 비치환된 C 6-60 아릴렌이고,
Ar 1, Ar 2 및 Ar 3는 상이하고,
Ar 1은 치환 또는 비치환된 C 10-60 다환식 아릴이고,
Ar 2는 치환 또는 비치환된 N, O 및 S로 구성되는 군으로부터 선택되는 어느 하나 이상의 헤테로원자를 포함하는 C 5-60 헤테로아릴이고,
Ar 3는 하기 화학식 2로 표시되는 치환기이고,
[화학식 2]
Figure PCTKR2020014471-appb-img-000002
상기 화학식 2에서,
X는 O, 또는 S이고,
R 1, R 3, R 5 내지 R 7, R 9 및 R 10 중 어느 하나는 상기 화학식 1과 연결되고; 나머지는 각각 독립적으로 수소 또는 중수소이고,
R 2, R 4 및 R 8은 각각 독립적으로 수소 또는 중수소이다.
또한, 본 발명은 제1 전극, 상기 제1 전극과 대향하여 구비된 제2 전극, 및 상기 제1 전극과 상기 제2 전극 사이에 구비된 1층 이상의 유기물층을 포함하는 유기 발광 소자로서, 상기 유기물층 중 1층 이상은 상기 화학식 1로 표시되는 화합물을 포함하는, 유기 발광 소자를 제공한다.
상술한 화학식 1로 표시되는 화합물은 유기 발광 소자의 유기물층의 재료로서 사용될 수 있으며, 유기 발광 소자에서 효율의 향상, 낮은 구동전압 및/또는 수명 특성을 향상시킬 수 있다.
특히, 상술한 화학식 1로 표시되는 화합물은 정공주입, 정공수송, 정공주입 및 수송, 발광, 전자수송, 또는 전자주입 재료로 사용될 수 있다.
도 1은 기판(1), 양극(2), 정공수송층(3), 발광층(4), 전자주입 및 수송층(5) 및 음극(6)으로 이루어진 유기 발광 소자의 예를 도시한 것이다.
도 2는 기판(1), 양극(2), 정공주입층(7), 정공수송층(3), 전자억제층(8), 발광층(4), 정공저지층(9), 전자주입 및 수송층(5) 및 음극(6)으로 이루어진 유기 발광 소자의 예를 도시한 것이다.
이하, 본 발명의 이해를 돕기 위하여 보다 상세히 설명한다.
(용어의 정의)
본 명세서에서,
Figure PCTKR2020014471-appb-img-000003
Figure PCTKR2020014471-appb-img-000004
는 다른 치환기에 연결되는 결합을 의미한다.
본 명세서에서 "치환 또는 비치환된" 이라는 용어는 중수소, 할로겐기, 시아노기, 니트로기, 히드록시기, 카보닐기, 에스테르기, 이미드기, 아미노기, 포스핀옥사이드기, 알콕시기, 아릴옥시기, 알킬티옥시기, 아릴티옥시기, 알킬술폭시기, 아릴술폭시기, 실릴기, 붕소기, 알킬기, 사이클로알킬기, 알케닐기, 아릴기, 아르알킬기, 아르알케닐기, 알킬아릴기, 알킬아민기, 아랄킬아민기, 헤테로아릴아민기, 아릴아민기, 아릴포스핀기, 또는 N, O 및 S 원자 중 1개 이상을 포함하는 헤테로아릴로 이루어진 군에서 선택된 1개 이상의 치환기로 치환 또는 비치환되거나, 상기 예시된 치환기 중 2 이상의 치환기가 연결된 치환 또는 비치환된 것을 의미한다. 예컨대, "2 이상의 치환기가 연결된 치환기"는 비페닐기일 수 있다. 즉, 비페닐이기는 아릴기일 수도 있고, 2개의 페닐기가 연결된 치환기로 해석될 수도 있다.
본 명세서에서 카보닐기의 탄소수는 특별히 한정되지 않으나, 탄소수 1 내지 40인 것이 바람직하다. 구체적으로 하기와 같은 구조의 화합물이 될 수 있으나, 이에 한정되는 것은 아니다.
Figure PCTKR2020014471-appb-img-000005
본 명세서에 있어서, 에스테르기는 에스테르기의 산소가 탄소수 1 내지 25의 직쇄, 분지쇄 또는 고리쇄 알킬기 또는 탄소수 6 내지 25의 아릴기로 치환될 수 있다. 구체적으로, 하기 구조식의 화합물이 될 수 있으나, 이에 한정되는 것은 아니다.
Figure PCTKR2020014471-appb-img-000006
본 명세서에 있어서, 이미드기의 탄소수는 특별히 한정되지 않으나, 탄소수 1 내지 25인 것이 바람직하다. 구체적으로 하기와 같은 구조의 화합물이 될 수 있으나, 이에 한정되는 것은 아니다.
Figure PCTKR2020014471-appb-img-000007
본 명세서에 있어서, 실릴기는 구체적으로 트리메틸실릴기, 트리에틸실릴기, t-부틸디메틸실릴기, 비닐디메틸실릴기, 프로필디메틸실릴기, 트리페닐실릴기, 디페닐실릴기, 페닐실릴기 등이 있으나 이에 한정되지 않는다.
본 명세서에 있어서, 붕소기는 구체적으로 트리메틸붕소기, 트리에틸붕소기, t-부틸디메틸붕소기, 트리페닐붕소기, 페닐붕소기 등이 있으나 이에 한정되지 않는다.
본 명세서에 있어서, 할로겐기의 예로는 불소, 염소, 브롬 또는 요오드가 있다.
본 명세서에 있어서, 상기 알킬기는 직쇄 또는 분지쇄일 수 있고, 탄소수는 특별히 한정되지 않으나 1 내지 40인 것이 바람직하다. 일 실시상태에 따르면, 상기 알킬기의 탄소수는 1 내지 20이다. 또 하나의 실시상태에 따르면, 상기 알킬기의 탄소수는 1 내지 10이다. 또 하나의 실시상태에 따르면, 상기 알킬기의 탄소수는 1 내지 6이다. 알킬기의 구체적인 예로는 메틸, 에틸, 프로필, n-프로필, 이소프로필, 부틸, n-부틸, 이소부틸, tert-부틸, sec-부틸, 1-메틸-부틸, 1-에틸-부틸, 펜틸, n-펜틸, 이소펜틸, 네오펜틸, tert-펜틸, 헥실, n-헥실, 1-메틸펜틸, 2-메틸펜틸, 4-메틸-2-펜틸, 3,3-디메틸부틸, 2-에틸부틸, 헵틸, n-헵틸, 1-메틸헥실, 사이클로펜틸메틸, 사이클로헥틸메틸, 옥틸, n-옥틸, tert-옥틸, 1-메틸헵틸, 2-에틸헥실, 2-프로필펜틸, n-노닐, 2,2-디메틸헵틸, 1-에틸-프로필, 1,1-디메틸-프로필, 이소헥실, 2-메틸펜틸, 4-메틸헥실, 5-메틸헥실 등이 있으나, 이들에 한정되지 않는다.
본 명세서에 있어서, 상기 알케닐기는 직쇄 또는 분지쇄일 수 있고, 탄소수는 특별히 한정되지 않으나, 2 내지 40인 것이 바람직하다. 일 실시상태에 따르면, 상기 알케닐기의 탄소수는 2 내지 20이다. 또 하나의 실시상태에 따르면, 상기 알케닐기의 탄소수는 2 내지 10이다. 또 하나의 실시상태에 따르면, 상기 알케닐기의 탄소수는 2 내지 6이다. 구체적인 예로는 비닐, 1-프로페닐, 이소프로페닐, 1-부테닐, 2-부테닐, 3-부테닐, 1-펜테닐, 2-펜테닐, 3-펜테닐, 3-메틸-1-부테닐, 1,3-부타디에닐, 알릴, 1-페닐비닐-1-일, 2-페닐비닐-1-일, 2,2-디페닐비닐-1-일, 2-페닐-2-(나프틸-1-일)비닐-1-일, 2,2-비스(디페닐-1-일)비닐-1-일, 스틸베닐기, 스티레닐기 등이 있으나 이들에 한정되지 않는다.
본 명세서에 있어서, 사이클로알킬기는 특별히 한정되지 않으나, 탄소수 3 내지 60인 것이 바람직하며, 일 실시상태에 따르면, 상기 사이클로알킬기의 탄소수는 3 내지 30이다. 또 하나의 실시상태에 따르면, 상기 사이클로알킬기의 탄소수는 3 내지 20이다. 또 하나의 실시상태에 따르면, 상기 사이클로알킬기의 탄소수는 3 내지 6이다. 구체적으로 사이클로프로필, 사이클로부틸, 사이클로펜틸, 3-메틸사이클로펜틸, 2,3-디메틸사이클로펜틸, 사이클로헥실, 3-메틸사이클로헥실, 4-메틸사이클로헥실, 2,3-디메틸사이클로헥실, 3,4,5-트리메틸사이클로헥실, 4-tert-부틸사이클로헥실, 사이클로헵틸, 사이클로옥틸 등이 있으나, 이에 한정되지 않는다.
본 명세서에 있어서, 아릴기는 특별히 한정되지 않으나 탄소수 6 내지 60인 것이 바람직하며, 방향족성(aromaticity)을 갖는 단환식 아릴기 또는 다환식 아릴기일 수 있다. 일 실시상태에 따르면, 상기 아릴기의 탄소수는 6 내지 30이다. 일 실시상태에 따르면, 상기 아릴기의 탄소수는 6 내지 20이다. 상기 아릴기가 단환식 아릴기로는 페닐기, 비페닐이기, 터페닐기 등이 될 수 있으나, 이에 한정되는 것은 아니다. 상기 다환식 아릴기로는 나프틸기, 안트라세닐기, 페난쓰레닐기, 트리페닐레닐기, 파이레닐기, 페릴레닐기, 크라이세닐기 등이 될 수 있으나, 이에 한정되는 것은 아니다.
본 명세서에 있어서, 헤테로아릴은 이종 원소로 O, N, Si 및 S 중 1개 이상을 포함하는 헤테로아릴로서, 탄소수는 특별히 한정되지 않으나, 탄소수 2 내지 60인 것이 바람직하다. 헤테로아릴의 예로는 티오펜기, 퓨란기, 피롤기, 이미다졸기, 티아졸기, 옥사졸기, 옥사디아졸기, 트리아졸기, 피리딜기, 비피리딜기, 피리미딜기, 트리아진기, 아크리딜기, 피리다진기, 피라지닐기, 퀴놀리닐기, 퀴나졸린기, 퀴녹살리닐기, 프탈라지닐기, 피리도 피리미디닐기, 피리도 피라지닐기, 피라지노 피라지닐기, 이소퀴놀린기, 인돌기, 카바졸기, 벤조옥사졸기, 벤조이미다졸기, 벤조티아졸기, 벤조카바졸기, 벤조티오펜기, 디벤조티오펜기, 벤조퓨라닐기, 페난쓰롤린기(phenanthroline), 이소옥사졸릴기, 티아디아졸릴기, 페노티아지닐기 및 디벤조퓨라닐기 등이 있으나, 이들에만 한정되는 것은 아니다.
본 명세서에 있어서, 아르알킬기, 아르알케닐기, 알킬아릴기, 아릴아민기, 아릴실릴기 중의 아릴기는 전술한 아릴기의 예시와 같다. 본 명세서에 있어서, 아르알킬기, 알킬아릴기, 알킬아민기 중 알킬기는 전술한 알킬기의 예시와 같다. 본 명세서에 있어서, 헤테로아릴아민 중 헤테로아릴은 전술한 헤테로아릴에 관한 설명이 적용될 수 있다. 본 명세서에 있어서, 아르알케닐기 중 알케닐기는 전술한 알케닐기의 예시와 같다. 본 명세서에 있어서, 아릴렌은 2가기인 것을 제외하고는 전술한 아릴기에 관한 설명이 적용될 수 있다. 본 명세서에 있어서, 헤테로아릴렌은 2가기인 것을 제외하고는 전술한 헤테로아릴에 관한 설명이 적용될 수 있다. 본 명세서에 있어서, 탄화수소 고리는 1가기가 아니고, 2개의 치환기가 결합하여 형성한 것을 제외하고는 전술한 아릴기 또는 사이클로알킬기에 관한 설명이 적용될 수 있다. 본 명세서에 있어서, 헤테로고리는 1가기가 아니고, 2개의 치환기가 결합하여 형성한 것을 제외하고는 전술한 헤테로아릴에 관한 설명이 적용될 수 있다.
(화합물)
본 발명은 상기 화학식 1로 표시되는 화합물을 제공한다.
구체적으로, 상기 화학식 1로 표시되는 화합물은, 1,3,5-트리아진(triazine)을 코어로 하며, 세 개의 서로 다른 치환기가 결합된 구조이다.
보다 구체적으로, 상기 코어에 결합된 세 개의 서로 다른 치환기는, 치환 또는 비치환된 C 10-60 다환식 아릴(Ar 1), 치환 또는 비치환된 N, O 및 S로 구성되는 군으로부터 선택되는 어느 하나 이상의 헤테로원자를 포함하는 C 5-60 헤테로아릴(Ar 2), 그리고 벤조나프토퓨라닐(Ar 3)이다:
상기 화학식 1로 표시되는 화합물을 유기층의 구성 요소로 포함하는 유기 발광 소자는, 상기 세 개의 서로 다른 치환기가 조합되어 나타내는 시너지 효과로, 고효율 및 장수명 특성을 나타낼 수 있다.
이하, 상기 화학식 1 및 이 화학식으로 표시되는 화합물을 상세히 설명하면 다음과 같다.
바람직하게는, L 1은 단일 결합 또는 페닐렌이다.
바람직하게는, Ar 1은 나프틸, 페난쓰레닐 또는 플루오란테닐이다.
바람직하게는, L 2는 단일 결합이다.
바람직하게는, Ar 2는 디벤조퓨라닐, 디벤조티오페닐, 카바졸-9-일, 또는 9-페닐-9H-카바졸릴이다.
바람직하게는, X는 O이다.
바람직하게는, R 1, R 3, R 5, R 6, R 7 및 R 10 중 어느 하나는 상기 화학식 1과 연결되고; 나머지는 각각 독립적으로 수소이다.
또한, 바람직하게는, R 2, R 4 및 R 8은 각각 독립적으로 수소이다.
상기 화학식 1로 표시되는 화합물의 대표적인 예는 다음과 같다:
Figure PCTKR2020014471-appb-img-000008
Figure PCTKR2020014471-appb-img-000009
Figure PCTKR2020014471-appb-img-000010
Figure PCTKR2020014471-appb-img-000011
Figure PCTKR2020014471-appb-img-000012
Figure PCTKR2020014471-appb-img-000013
Figure PCTKR2020014471-appb-img-000014
Figure PCTKR2020014471-appb-img-000015
Figure PCTKR2020014471-appb-img-000016
Figure PCTKR2020014471-appb-img-000017
Figure PCTKR2020014471-appb-img-000018
Figure PCTKR2020014471-appb-img-000019
Figure PCTKR2020014471-appb-img-000020
Figure PCTKR2020014471-appb-img-000021
Figure PCTKR2020014471-appb-img-000022
.
상기 화학식 1로 표시되는 화합물은 하기 반응식 1과 같은 제조 방법으로 제조할 수 있다.
[반응식 1]
Figure PCTKR2020014471-appb-img-000023
상기 반응식 1에서, Ar 1 내지 Ar 3, L 1 및 L 2는 앞서 정의한 바와 같다. 상기 제조 방법은 후술할 제조예에서 보다 구체화될 수 있다.
(유기 발광 소자)
한편, 본 발명은 상기 화학식 1로 표시되는 화합물을 포함하는 유기 발광 소자를 제공한다. 일례로, 본 발명은 제1 전극, 상기 제1 전극과 대향하여 구비된 제2 전극, 및 상기 제1 전극과 상기 제2 전극 사이에 구비된 1층 이상의 유기물층을 포함하는 유기 발광 소자로서, 상기 유기물층 중 1층 이상은 상기 화학식 1로 표시되는 화합물을 포함하는, 유기 발광 소자를 제공한다.
본 발명의 유기 발광 소자의 유기물층은 단층 구조로 이루어질 수도 있으나, 2층 이상의 유기물층이 적층된 다층 구조로 이루어질 수 있다. 예컨대, 본 발명의 유기 발광 소자는 유기물층으로서 정공주입층, 정공수송층, 발광층, 전자수송층, 전자주입층 등을 포함하는 구조를 가질 수 있다. 그러나 유기 발광 소자의 구조는 이에 한정되지 않고 더 적은 수의 유기층을 포함할 수 있다.
또한, 상기 유기물 층은 정공주입층, 정공수송층, 또는 정공 주입과 수송을 동시에 하는 층을 포함할 수 있고, 상기 정공주입층, 정공수송층, 또는 정공 주입과 수송을 동시에 하는 층은 상기 화학식 1로 표시되는 화합물을 포함한다.
또한, 상기 유기물층은 발광층을 포함할 수 있고, 상기 발광층은 상기 화학식 1로 표시되는 화합물을 포함한다.
본 발명의 유기 발광 소자의 유기물 층은 단층 구조로 이루어질 수도 있으나, 2층 이상의 유기물층이 적층된 다층 구조로 이루어질 수 있다. 예컨대, 본 발명의 유기 발광 소자는 유기물 층으로서 발광층 이외에, 상기 제1전극과 상기 발광층 사이의 정공주입층 및 정공수송층, 및 상기 발광층과 상기 제2전극 사이의 전자수송층 및 전자주입층을 더 포함하는 구조를 가질 수 있다. 그러나 유기 발광 소자의 구조는 이에 한정되지 않고 더 적은 수 또는 더 많은 수의 유기층을 포함할 수 있다.
또한, 본 발명에 따른 유기 발광 소자는, 상기 제1 전극이 양극이고 상기 제2 전극은 음극인, 기판 상에 양극, 1층 이상의 유기물층 및 음극이 순차적으로 적층된 구조(normal type)의 유기 발광 소자일 수 있다. 또한, 본 발명에 따른 유기 발광 소자는, 상기 제1 전극이 음극이고 상기 제2 전극은 양극인, 기판 상에 음극, 1층 이상의 유기물층 및 양극이 순차적으로 적층된 역방향 구조(inverted type)의 유기 발광 소자일 수 있다. 예컨대, 본 발명의 일실시예에 따른 유기 발광 소자의 구조는 도 1 및 2에 예시되어 있다.
도 1은 기판(1), 양극(2), 정공수송층(3), 발광층(4), 전자주입 및 수송층(5) 및 음극(6)으로 이루어진 유기 발광 소자의 예를 도시한 것이다. 이와 같은 구조에 있어서, 상기 화학식 1로 표시되는 화합물은 상기 정공수송층에 포함될 수 있다.
도 2는 기판(1), 양극(2), 정공주입층(7), 정공수송층(3), 전자억제층(8), 발광층(4), 정공저지층(9), 전자주입 및 수송층(5) 및 음극(6)으로 이루어진 유기 발광 소자의 예를 도시한 것이다. 이와 같은 구조에 있어서, 상기 화학식 1로 표시되는 화합물은 상기 정공주입층, 정공수송층, 또는 전자억제층에 포함될 수 있다.
본 발명에 따른 유기 발광 소자는, 상기 유기물층 중 1층 이상이 상기 화학식 1로 표시되는 화합물을 포함하는 것을 제외하고는 당 기술분야에 알려져 있는 재료와 방법으로 제조될 수 있다. 또한, 상기 유기 발광 소자가 복수개의 유기물층을 포함하는 경우, 상기 유기물층은 동일한 물질 또는 다른 물질로 형성될 수 있다.
예컨대, 본 발명에 따른 유기 발광 소자는 기판 상에 제1 전극, 유기물층 및 제2 전극을 순차적으로 적층시켜 제조할 수 있다. 이때, 스퍼터링법(sputtering)이나 전자빔 증발법(e-beam evaporation)과 같은 PVD(physical Vapor Deposition)방법을 이용하여, 기판 상에 금속 또는 전도성을 가지는 금속 산화물 또는 이들의 합금을 증착시켜 양극을 형성하고, 그 위에 정공 주입층, 정공 수송층, 발광층 및 전자수송층을 포함하는 유기물층을 형성한 후, 그 위에 음극으로 사용할 수 있는 물질을 증착시켜 제조할 수 있다. 이와 같은 방법 외에도, 기판 상에 음극 물질부터 유기물층, 양극 물질을 차례로 증착시켜 유기 발광 소자를 만들 수 있다.
또한, 상기 화학식 1로 표시되는 화합물은 유기 발광 소자의 제조시 진공 증착법 뿐만 아니라 용액 도포법에 의하여 유기물층으로 형성될 수 있다. 여기서, 용액 도포법이라 함은 스핀 코팅, 딥코팅, 닥터 블레이딩, 잉크젯 프린팅, 스크린 프린팅, 스프레이법, 롤 코팅 등을 의미하지만, 이들만으로 한정되는 것은 아니다.
이와 같은 방법 외에도, 기판 상에 음극 물질로부터 유기물층, 양극 물질을 차례로 증착시켜 유기 발광 소자를 제조할 수 있다(WO 2003/012890). 다만, 제조 방법이 이에 한정되는 것은 아니다.
일례로, 상기 제1 전극은 양극이고, 상기 제2 전극은 음극이거나, 또는 상기 제1 전극은 음극이고, 상기 제2 전극은 양극이다.
상기 양극 물질로는 통상 유기물층으로 정공 주입이 원활할 수 있도록 일함수가 큰 물질이 바람직하다. 상기 양극 물질의 구체적인 예로는 바나듐, 크롬, 구리, 아연, 금과 같은 금속 또는 이들의 합금, 아연 산화물, 인듐 산화물, 인듐주석 산화물(ITO), 인듐아연 산화물(IZO)과 같은 금속 산화물, ZnO:Al 또는 SnO 2:Sb와 같은 금속과 산화물의 조합, 폴리(3-메틸티오펜), 폴리[3,4-(에틸렌-1,2-디옥시)티오펜](PEDOT), 폴리피롤 및 폴리아닐린과 같은 전도성 고분자 등이 있으나, 이들에만 한정되는 것은 아니다.
상기 음극 물질로는 통상 유기물층으로 전자 주입이 용이하도록 일함수가 작은 물질인 것이 바람직하다. 상기 음극 물질의 구체적인 예로는 마그네슘, 칼슘, 나트륨, 칼륨, 티타늄, 인듐, 이트륨, 리튬, 가돌리늄, 알루미늄, 은, 주석 및 납과 같은 금속 또는 이들의 합금, LiF/Al 또는 LiO 2/Al과 같은 다층 구조 물질 등이 있으나, 이들에만 한정되는 것은 아니다.
상기 정공주입층은 전극으로부터 정공을 주입하는 층으로, 정공 주입 물질로는 정공을 수송하는 능력을 가져 양극에서의 정공 주입효과, 발광층 또는 발광재료에 대하여 우수한 정공 주입 효과를 갖고, 발광층에서 생성된 여기자의 전자주입층 또는 전자주입재료에의 이동을 방지하며, 또한, 박막 형성 능력이 우수한 화합물이 바람직하다. 정공 주입 물질의 HOMO(highest occupied molecular orbital)가 양극 물질의 일함수와 주변 유기물층의 HOMO 사이인 것이 바람직하다. 정공 주입 물질의 구체적인 예로는 금속 포피린(porphyrin), 올리고티오펜, 아릴아민 계열의 유기물, 헥사니트릴헥사아자트리페닐렌 계열의 유기물, 퀴나크리돈(quinacridone)계열의 유기물, 페릴렌(perylene) 계열의 유기물, 안트라퀴논 및 폴리아닐린과 폴리티오펜 계열의 전도성 고분자 등이 있으나, 이들에만 한정 되는 것은 아니다.
상기 정공수송층은 정공주입층으로부터 정공을 수취하여 발광층까지 정공을 수송하는 층으로, 정공 수송 물질로는 양극이나 정공 주입층으로부터 정공을 수송받아 발광층으로 옮겨줄 수 있는 물질로 정공에 대한 이동성이 큰 물질이 적합하다. 상기 정공 수송 물질로 상기 화학식 1로 표시되는 화합물을 사용하거나, 또는 아릴아민 계열의 유기물, 전도성 고분자, 및 공액 부분과 비공액 부분이 함께 있는 블록 공중합체 등을 사용할 수 있으나, 이에 한정되는 것은 아니다.
상기 전자억제층은 상기 정공수송층 상에 형성되어, 바람직하게는 발광층에 접하여 구비되어, 정공이동도를 조절하고, 전자의 과다한 이동을 방지하여 정공-전자간 결합 확률을 높여줌으로써 유기 발광 소자의 효율을 개선하는 역할을 하는 층을 의미한다. 상기 전자억제층은 전자저지물질을 포함하고, 이러한 전자저지물질의 예로 상기 화학식 1로 표시되는 화합물을 사용하거나, 또는 아릴아민 계열의 유기물 등을 사용할 수 있으나, 이에 한정되는 것은 아니다.
상기 발광 물질로는 정공 수송층과 전자 수송층으로부터 정공과 전자를 각각 수송받아 결합시킴으로써 가시광선 영역의 빛을 낼 수 있는 물질로서, 형광이나 인광에 대한 양자 효율이 좋은 물질이 바람직하다. 구체적인 예로 8-히드록시-퀴놀린 알루미늄 착물(Alq 3), 카르바졸 계열 화합물, 이량체화 스티릴(dimerized styryl) 화합물, BAlq, 10-히드록시벤조 퀴놀린-금속 화합물, 벤족사졸, 벤즈티아졸 및 벤즈이미다졸 계열의 화합물, 폴리(p-페닐렌비닐렌)(PPV) 계열의 고분자, 스피로(spiro) 화합물, 폴리플루오렌, 루브렌 등이 있으나, 이에 한정되는 것은 아니다.
상기 발광층은 상술한 바와 같이 호스트 재료 및 도펀트 재료를 포함할 수 있다. 호스트 재료는 축합 방향족환 유도체 또는 헤테로환 함유 화합물 등을 더 포함할 수 있다. 구체적으로 축합 방향족환 유도체로는 안트라센 유도체, 피렌 유도체, 나프탈렌 유도체, 펜타센 유도체, 페난트렌 화합물, 플루오란텐 화합물 등이 있고, 헤테로환 함유 화합물로는 카바졸 유도체, 디벤조퓨란 유도체, 래더형 퓨란 화합물, 피리미딘 유도체 등이 있으나, 이에 한정되는 것은 아니다.
일 예로, 상기 발광층은 호스트로서 전술한 화학식 1로 표시되는 화합물을 단독으로 포함하거나; 제1 호스트로서 전술한 화학식 1로 표시되는 화합물을 포함함과 동시에 제2 호스트로서 하기 화학식 4로 표시되는 화합물을 더 포함할 수 있다:
[화학식 4]
Figure PCTKR2020014471-appb-img-000024
상기 화학식 4에서,
A는 치환 또는 비치환된 나프탈렌 고리이고,
Ar 4는 치환 또는 비치환된 C 6-60 아릴이고,
L 3 및 L 4는 각각 독립적으로, 단일 결합, 또는 치환 또는 비치환된 C 6-60 아릴렌이고,
Ar 5 및 Ar 6은 각각 독립적으로, 치환 또는 비치환된 C 6-60 아릴, 치환 또는 비치환된 N, O 및 S로 구성되는 군으로부터 선택되는 어느 하나 이상의 헤테로원자를 포함하는 C 2-60 헤테로아릴, 또는 아다만틸이며,
p는 0 내지 9인 정수이다.
바람직하게는, 상기 화학식 4는 하기 화학식 4-1 내지 4-3 중 어느 하나로 표시된다:
[화학식 4-1]
Figure PCTKR2020014471-appb-img-000025
[화학식 4-2]
Figure PCTKR2020014471-appb-img-000026
[화학식 4-3]
Figure PCTKR2020014471-appb-img-000027
상기 화학식 4-1 내지 4-3에서, Ar 4 내지 Ar 6, L 3, L 4, 및 p의 정의는 전술한 바와 같다.
바람직하게는, Ar 4는 페닐, 비페닐릴, 또는 나프틸이고; 상기 Ar 4는 비치환되거나, 하나 이상의 터트-부틸 또는 페닐로 치환된다.
바람직하게는, L 3 및 L 4는 각각 독립적으로, 단일 결합, 페닐렌 또는 나프탈렌디일이고; 상기 L 3 및 L 4는 각각 독립적으로 비치환되거나, 하나 이상의 페닐로 치환된다.
바람직하게는, Ar 5 및 Ar 6은 각각 독립적으로, 페닐, 비페닐릴, 터페닐릴, 나프틸, 디벤조퓨라닐, 디벤조티오페닐, 플루오레닐, 9,9-디메틸플루오레닐 또는 아다만틸이고; 상기 Ar 5 및 Ar 6은 각각 독립적으로 비치환되거나, 하나 이상의 터트-부틸 또는 페닐로 치환된다.
바람직하게는, p는 0이다.
상기 화학식 4로 표시되는 화합물의 대표적인 예는 하기와 같다:
Figure PCTKR2020014471-appb-img-000028
Figure PCTKR2020014471-appb-img-000029
Figure PCTKR2020014471-appb-img-000030
Figure PCTKR2020014471-appb-img-000031
Figure PCTKR2020014471-appb-img-000032
Figure PCTKR2020014471-appb-img-000033
Figure PCTKR2020014471-appb-img-000034
Figure PCTKR2020014471-appb-img-000035
Figure PCTKR2020014471-appb-img-000036
Figure PCTKR2020014471-appb-img-000037
Figure PCTKR2020014471-appb-img-000038
Figure PCTKR2020014471-appb-img-000039
Figure PCTKR2020014471-appb-img-000040
Figure PCTKR2020014471-appb-img-000041
Figure PCTKR2020014471-appb-img-000042
Figure PCTKR2020014471-appb-img-000043
Figure PCTKR2020014471-appb-img-000044
Figure PCTKR2020014471-appb-img-000045
Figure PCTKR2020014471-appb-img-000046
Figure PCTKR2020014471-appb-img-000047
Figure PCTKR2020014471-appb-img-000048
Figure PCTKR2020014471-appb-img-000049
..
도펀트 재료로는 방향족 아민 유도체, 스트릴아민 화합물, 붕소 착체, 플루오란텐 화합물, 금속 착체 등이 있다. 구체적으로 방향족 아민 유도체로는 치환 또는 비치환된 아릴아미노기를 갖는 축합 방향족환 유도체로서, 아릴아미노기를 갖는 피렌, 안트라센, 크리센, 페리플란텐 등이 있으며, 스티릴아민 화합물로는 치환 또는 비치환된 아릴아민에 적어도 1개의 아릴비닐기가 치환되어 있는 화합물로, 아릴기, 실릴기, 알킬기, 사이클로알킬기 및 아릴아미노기로 이루어진 군에서 1 또는 2 이상 선택되는 치환기가 치환 또는 비치환된다. 구체적으로 스티릴아민, 스티릴디아민, 스티릴트리아민, 스티릴테트라아민 등이 있으나, 이에 한정되는 것은 아니다. 또한, 금속 착체로는 이리듐 착체, 백금 착체 등이 있으나, 이에 한정되는 것은 아니다.
상기 도펀트 재료의 대표적인 예는 하기와 같다:
Figure PCTKR2020014471-appb-img-000050
Figure PCTKR2020014471-appb-img-000051
Figure PCTKR2020014471-appb-img-000052
Figure PCTKR2020014471-appb-img-000053
.
상기 정공저지층은 발광층 상에 형성되어, 바람직하게는 발광층에 접하여 구비되어, 전자이동도를 조절하고 정공의 과다한 이동을 방지하여 정공-전자간 결합 확률을 높여줌으로써 유기 발광 소자의 효율을 개선하는 역할을 하는 층을 의미한다. 상기 정공저지층은 정공저지물질을 포함하고, 이러한 정공저지물질의 예로 트리아진을 포함한 아진류유도체, 트리아졸 유도체, 옥사디아졸 유도체, 페난트롤린 유도체, 포스핀옥사이드 유도체 등의 전자흡인기가 도입된 화합물을 사용할 수 있으나, 이에 한정되는 것은 아니다.
상기 전자 주입 및 수송층은 전극으로부터 전자를 주입하고, 수취된 전자를 발광층까지 수송하는 전자수송층 및 전자주입층의 역할을 동시에 수행하는 층으로, 상기 발광층 또는 상기 정공저지층 상에 형성된다. 이러한 전자 주입 및 수송물질로는 음극으로부터 전자를 잘 주입 받아 발광층으로 옮겨줄 수 있는 물질로서, 전자에 대한 이동성이 큰 물질이 적합하다. 구체적인 전자 주입 및 수송물질의 예로는 8-히드록시퀴놀린의 Al 착물, Alq 3를 포함한 착물, 유기 라디칼 화합물, 히드록시플라본-금속 착물, 트리아진 유도체 등이 있으나, 이들에만 한정되는 것은 아니다. 또는 플루오레논, 안트라퀴노다이메탄, 다이페노퀴논, 티오피란 다이옥사이드, 옥사졸, 옥사다이아졸, 트리아졸, 이미다졸, 페릴렌테트라카복실산, 프레오레닐리덴 메탄, 안트론 등과 그들의 유도체, 금속 착체 화합물, 또는 질소 함유 5원환 유도체 등과 함께 사용할 수도 있으나, 이에 한정되는 것은 아니다.
상기 금속 착체 화합물로서는 8-하이드록시퀴놀리나토 리튬, 비스(8-하이드록시퀴놀리나토)아연, 비스(8-하이드록시퀴놀리나토)구리, 비스(8-하이드록시퀴놀리나토)망간, 트리스(8-하이드록시퀴놀리나토)알루미늄, 트리스(2-메틸-8-하이드록시퀴놀리나토)알루미늄, 트리스(8-하이드록시퀴놀리나토)갈륨, 비스(10-하이드록시벤조[h]퀴놀리나토)베릴륨, 비스(10-하이드록시벤조[h]퀴놀리나토)아연, 비스(2-메틸-8-퀴놀리나토)클로로갈륨, 비스(2-메틸-8-퀴놀리나토)(o-크레졸라토)갈륨, 비스(2-메틸-8-퀴놀리나토)(1-나프톨라토)알루미늄, 비스(2-메틸-8-퀴놀리나토)(2-나프톨라토)갈륨 등이 있으나, 이에 한정되는 것은 아니다.
본 발명에 따른 유기 발광 소자는 사용되는 재료에 따라 전면 발광형, 후면 발광형 또는 양면 발광형일 수 있다.
또한, 상기 화학식 1로 표시되는 화합물은 유기 발광 소자 외에도 유기 태양 전지 또는 유기 트랜지스터에 포함될 수 있다.
상기 화학식 1로 표시되는 화합물 및 이를 포함하는 유기 발광 소자의 제조는 이하 실시예에서 구체적으로 설명한다. 그러나 하기 실시예는 본 발명을 예시하기 위한 것이며, 본 발명의 범위가 이들에 의하여 한정되는 것은 아니다.
합성예 1
Figure PCTKR2020014471-appb-img-000054
질소 분위기에서 sub1 (15g, 56.2mmol)와 화학식A (14.7g, 56.2mmol)를 THF 300ml에 넣고 교반 및 환류하였다. 이 후 potassium carbonate(23.3g, 168.5mmol)를 물 70ml에 녹여 투입하고 충분히 교반한 후 Tetrakis(triphenylphosphine)palladium(0) (0.5g, 0.5mmol) (0.6g, 0.6mmol)을 투입하였다. 10시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 subA-1를 19.3g 제조하였다. (수율 75%, MS: [M+H]+= 458)
질소 분위기에서 subA-1 (15g, 32.8mmol)와 sub8 (10.3g, 36mmol)를 THF 300ml에 넣고 교반 및 환류하였다. 이 후 potassium carbonate(13.6g, 98.3mmol)를 물 41ml에 녹여 투입하고 충분히 교반한 후 bis(tri-tert-butylphosphine)palladium(0) (0.2g, 0.3mmol)을 투입하였다. 11시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물1를 13.3g 제조하였다. (수율 61%, MS: [M+H]+= 665)
합성예 2
Figure PCTKR2020014471-appb-img-000055
질소 분위기에서 sub2 (15g, 46mmol)와 화학식A (12.1g, 46mmol)를 THF 300ml에 넣고 교반 및 환류하였다. 이 후 potassium carbonate(19.1g, 138mmol)를 물 57ml에 녹여 투입하고 충분히 교반한 후 Tetrakis(triphenylphosphine)palladium(0) (0.5g, 0.5mmol) (0.5g, 0.5mmol)을 투입하였다. 11시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 subA-2를 16.6g 제조하였다. (수율 71%, MS: [M+H]+= 508)
질소 분위기에서 subA-1 (15g, 32.8mmol)와 sub9 (8.2g, 36mmol)를 THF 300ml에 넣고 교반 및 환류하였다. 이 후 potassium carbonate(13.6g, 98.3mmol)를 물 41ml에 녹여 투입하고 충분히 교반한 후 bis(tri-tert-butylphosphine)palladium(0) (0.2g, 0.3mmol)을 투입하였다. 8시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물2를 14.9g 제조하였다. (수율 75%, MS: [M+H]+= 606)
합성예 3
Figure PCTKR2020014471-appb-img-000056
질소 분위기에서 sub3 (15g, 42.6mmol)와 화학식A (11.2g, 42.6mmol)를 THF 300ml에 넣고 교반 및 환류하였다. 이 후 potassium carbonate(17.7g, 127.8mmol)를 물 53ml에 녹여 투입하고 충분히 교반한 후 Tetrakis(triphenylphosphine)palladium(0) (0.5g, 0.5mmol) (0.5g, 0.4mmol)을 투입하였다. 8시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 subA-2를 14.1g 제조하였다. (수율 62%, MS: [M+H]+= 534)
질소 분위기에서 subA-2 (15g, 29.5mmol)와 sub10 (6.9g, 32.5mmol)를 THF 300ml에 넣고 교반 및 환류하였다. 이 후 potassium carbonate(12.2g, 88.6mmol)를 물 37ml에 녹여 투입하고 충분히 교반한 후 bis(tri-tert-butylphosphine)palladium(0) (0.2g, 0.3mmol)을 투입하였다. 11시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물3를 14g 제조하였다. (수율 74%, MS: [M+H]+= 640)
합성예 4
Figure PCTKR2020014471-appb-img-000057
질소 분위기에서 sub3 (15g, 42.6mmol)와 화학식A (11.2g, 42.6mmol)를 THF 300ml에 넣고 교반 및 환류하였다. 이 후 potassium carbonate(17.7g, 127.8mmol)를 물 53ml에 녹여 투입하고 충분히 교반한 후 Tetrakis(triphenylphosphine)palladium(0) (0.5g, 0.5mmol) (0.5g, 0.4mmol)을 투입하였다. 11시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 subA-3를 15.9g 제조하였다. (수율 70%, MS: [M+H]+= 534)
질소 분위기에서 subA-3 (15g, 28.1mmol)와 sub11 (6.6g, 30.9mmol)를 THF 300ml에 넣고 교반 및 환류하였다. 이 후 potassium carbonate(11.6g, 84.3mmol)를 물 35ml에 녹여 투입하고 충분히 교반한 후 bis(tri-tert-butylphosphine)palladium(0) (0.1g, 0.3mmol)을 투입하였다. 11시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물4를 13.3g 제조하였다. (수율 71%, MS: [M+H]+= 666)
합성예 5
Figure PCTKR2020014471-appb-img-000058
질소 분위기에서 sub4 (15g, 42.8mmol)와 화학식A (11.2g, 42.8mmol)를 THF 300ml에 넣고 교반 및 환류하였다. 이 후 potassium carbonate(17.8g, 128.5mmol)를 물 53ml에 녹여 투입하고 충분히 교반한 후 Tetrakis(triphenylphosphine)palladium(0) (0.5g, 0.5mmol) (0.5g, 0.4mmol)을 투입하였다. 12시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 subA-4를 16.4g 제조하였다. (수율 72%, MS: [M+H]+= 532)
질소 분위기에서 subA-4 (15g, 28.2mmol)와 sub9 (7.1g, 31mmol)를 THF 300ml에 넣고 교반 및 환류하였다. 이 후 potassium carbonate(11.7g, 84.6mmol)를 물 35ml에 녹여 투입하고 충분히 교반한 후 bis(tri-tert-butylphosphine)palladium(0) (0.1g, 0.3mmol)을 투입하였다. 10시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물5를 12.4g 제조하였다. (수율 65%, MS: [M+H]+= 680)
합성예 6
Figure PCTKR2020014471-appb-img-000059
질소 분위기에서 sub5 (15g, 54.3mmol)와 화학식B (14.2g, 54.3mmol)를 THF 300ml에 넣고 교반 및 환류하였다. 이 후 potassium carbonate(22.5g, 163mmol)를 물 68ml에 녹여 투입하고 충분히 교반한 후 Tetrakis(triphenylphosphine)palladium(0) (0.5g, 0.5mmol) (0.6g, 0.5mmol)을 투입하였다. 11시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 subB-1를 15.1g 제조하였다. (수율 61%, MS: [M+H]+= 458)
질소 분위기에서 subB-1 (15g, 32.8mmol)와 sub9 (8.2g, 36mmol)를 THF 300ml에 넣고 교반 및 환류하였다. 이 후 potassium carbonate(13.6g, 98.3mmol)를 물 41ml에 녹여 투입하고 충분히 교반한 후 bis(tri-tert-butylphosphine)palladium(0) (0.2g, 0.3mmol)을 투입하였다. 12시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물6를 13.7g 제조하였다. (수율 69%, MS: [M+H]+= 606)
합성예 7
Figure PCTKR2020014471-appb-img-000060
질소 분위기에서 sub1 (15g, 56.2mmol)와 화학식B (14.7g, 56.2mmol)를 THF 300ml에 넣고 교반 및 환류하였다. 이 후 potassium carbonate(23.3g, 168.5mmol)를 물 70ml에 녹여 투입하고 충분히 교반한 후 Tetrakis(triphenylphosphine)palladium(0) (0.5g, 0.5mmol) (0.6g, 0.6mmol)을 투입하였다. 8시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 subB-2를 15.4g 제조하였다. (수율 60%, MS: [M+H]+= 458)
질소 분위기에서 subB-2 (15g, 32.8mmol)와 sub12 (8.2g, 36mmol)를 THF 300ml에 넣고 교반 및 환류하였다. 이 후 potassium carbonate(13.6g, 98.3mmol)를 물 41ml에 녹여 투입하고 충분히 교반한 후 bis(tri-tert-butylphosphine)palladium(0) (0.2g, 0.3mmol)을 투입하였다. 8시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물7를 14.5g 제조하였다. (수율 73%, MS: [M+H]+= 606)
합성예 8
Figure PCTKR2020014471-appb-img-000061
질소 분위기에서 sub6 (15g, 46mmol)와 화학식B (12.1g, 46mmol)를 THF 300ml에 넣고 교반 및 환류하였다. 이 후 potassium carbonate(19.1g, 138mmol)를 물 57ml에 녹여 투입하고 충분히 교반한 후 Tetrakis(triphenylphosphine)palladium(0) (0.5g, 0.5mmol) (0.5g, 0.5mmol)을 투입하였다. 8시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 subB-3를 15.6g 제조하였다. (수율 67%, MS: [M+H]+= 508)
질소 분위기에서 sub-3 (10 g, 19.7mmol), sub13 (3.6g, 21.7 mmol), potassium phosphate (12.5 g, 59.1 mmol) 을 Toluene200 ml에 넣고 교반 및 환류했다. 이 후 Z (0.2 g, 0.4 mmol)을 투입했다. 3시간 후 반응이 종결 되어서 상온으로 식히고 감압하여 용매를 제거했다. 이 후 화합물을 다시 클로로포름에 완전히 녹이고 물로 2회 세척 후에 유기층을 분리하여 무수황산마그네슘 처리 후 여과하여 여액을 감압 증류했다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제해서 화합물8 6.3g 을 얻었다. (수율 50%, MS: [M+H]+= 639)
합성예 9
Figure PCTKR2020014471-appb-img-000062
질소 분위기에서 sub2 (15g, 46mmol)와 화학식B (12.1g, 46mmol)를 THF 300ml에 넣고 교반 및 환류하였다. 이 후 potassium carbonate(19.1g, 138mmol)를 물 57ml에 녹여 투입하고 충분히 교반한 후 Tetrakis(triphenylphosphine)palladium(0) (0.5g, 0.5mmol) (0.5g, 0.5mmol)을 투입하였다. 12시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 subB-4를 17.7g 제조하였다. (수율 76%, MS: [M+H]+= 508)
질소 분위기에서 subB-4 (15g, 29.5mmol)와 sub11 (6.9g, 32.5mmol)를 THF 300ml에 넣고 교반 및 환류하였다. 이 후 potassium carbonate(12.2g, 88.6mmol)를 물 37ml에 녹여 투입하고 충분히 교반한 후 bis(tri-tert-butylphosphine)palladium(0) (0.2g, 0.3mmol)을 투입하였다. 8시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물9를 13.6g 제조하였다. (수율 72%, MS: [M+H]+= 640)
합성예 10
Figure PCTKR2020014471-appb-img-000063
질소 분위기에서 subB-2 (15g, 32.8mmol)와 sub14 (10.3g, 36mmol)를 THF 300ml에 넣고 교반 및 환류하였다. 이 후 potassium carbonate(13.6g, 98.3mmol)를 물 41ml에 녹여 투입하고 충분히 교반한 후 bis(tri-tert-butylphosphine)palladium(0) (0.2g, 0.3mmol)을 투입하였다. 8시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물10를 15.2g 제조하였다. (수율 70%, MS: [M+H]+= 665)
합성예 11
Figure PCTKR2020014471-appb-img-000064
질소 분위기에서 sub1 (15g, 56.2mmol)와 화학식C (14.7g, 56.2mmol)를 THF 300ml에 넣고 교반 및 환류하였다. 이 후 potassium carbonate(23.3g, 168.5mmol)를 물 70ml에 녹여 투입하고 충분히 교반한 후 Tetrakis(triphenylphosphine)palladium(0) (0.5g, 0.5mmol) (0.6g, 0.6mmol)을 투입하였다. 10시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 subC-1를 15.7g 제조하였다. (수율 61%, MS: [M+H]+= 458)
질소 분위기에서 subC-1 (15g, 32.8mmol)와 sub11 (7.6g, 36mmol)를 THF 300ml에 넣고 교반 및 환류하였다. 이 후 potassium carbonate(13.6g, 98.3mmol)를 물 41ml에 녹여 투입하고 충분히 교반한 후 bis(tri-tert-butylphosphine)palladium(0) (0.2g, 0.3mmol)을 투입하였다. 9시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물11를 14.5g 제조하였다. (수율 75%, MS: [M+H]+= 590)
합성예 12
Figure PCTKR2020014471-appb-img-000065
질소 분위기에서 sub7 (15g, 42.6mmol)와 화학식C (11.2g, 42.6mmol)를 THF 300ml에 넣고 교반 및 환류하였다. 이 후 potassium carbonate(17.7g, 127.8mmol)를 물 53ml에 녹여 투입하고 충분히 교반한 후 Tetrakis(triphenylphosphine)palladium(0) (0.5g, 0.5mmol) (0.5g, 0.4mmol)을 투입하였다. 12시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 subC-2를 17g 제조하였다. (수율 75%, MS: [M+H]+= 534)
질소 분위기에서 subC-2 (15g, 28.1mmol)와 sub15 (7g, 30.9mmol)를 THF 300ml에 넣고 교반 및 환류하였다. 이 후 potassium carbonate(11.6g, 84.3mmol)를 물 35ml에 녹여 투입하고 충분히 교반한 후 bis(tri-tert-butylphosphine)palladium(0) (0.1g, 0.3mmol)을 투입하였다. 8시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물12를 13g 제조하였다. (수율 68%, MS: [M+H]+= 682)
합성예 13
Figure PCTKR2020014471-appb-img-000066
질소 분위기에서 subC-1 (15g, 32.8mmol)와 sub10 (7.6g, 36mmol)를 THF 300ml에 넣고 교반 및 환류하였다. 이 후 potassium carbonate(13.6g, 98.3mmol)를 물 41ml에 녹여 투입하고 충분히 교반한 후 bis(tri-tert-butylphosphine)palladium(0) (0.2g, 0.3mmol)을 투입하였다. 9시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물13를 15.1g 제조하였다. (수율 78%, MS: [M+H]+= 590)
합성예 14
Figure PCTKR2020014471-appb-img-000067
질소 분위기에서 subC-2 (15g, 28.1mmol)와 sub16 (8.9g, 30.9mmol)를 THF 300ml에 넣고 교반 및 환류하였다. 이 후 potassium carbonate(11.6g, 84.3mmol)를 물 35ml에 녹여 투입하고 충분히 교반한 후 bis(tri-tert-butylphosphine)palladium(0) (0.1g, 0.3mmol)을 투입하였다. 11시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물14를 15g 제조하였다. (수율 72%, MS: [M+H]+= 741)
합성예 15
Figure PCTKR2020014471-appb-img-000068
질소 분위기에서 subC-2 (10 g, 18.7mmol), sub13 (3.4g, 20.6 mmol), potassium phosphate (11.9 g, 56.2 mmol) 을 Toluene200 ml에 넣고 교반 및 환류했다. 이 후 Z (0.2 g, 0.4 mmol)을 투입했다. 2시간 후 반응이 종결 되어서 상온으로 식히고 감압하여 용매를 제거했다. 이 후 화합물을 다시 클로로포름에 완전히 녹이고 물로 2회 세척 후에 유기층을 분리하여 무수황산마그네슘 처리 후 여과하여 여액을 감압 증류했다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제해서 화합물15 6.8g 을 얻었다. (수율 55%, MS: [M+H]+= 665)
합성예 16
Figure PCTKR2020014471-appb-img-000069
질소 분위기에서 sub1 (15g, 56.2mmol)와 화학식D (14.7g, 56.2mmol)를 THF 300ml에 넣고 교반 및 환류하였다. 이 후 potassium carbonate(23.3g, 168.5mmol)를 물 70ml에 녹여 투입하고 충분히 교반한 후 Tetrakis(triphenylphosphine)palladium(0) (0.5g, 0.5mmol) (0.6g, 0.6mmol)을 투입하였다. 12시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 subD-1를 18g 제조하였다. (수율 70%, MS: [M+H]+= 458)
질소 분위기에서 subD-1 (15g, 32.8mmol)와 sub11 (7.6g, 36mmol)를 THF 300ml에 넣고 교반 및 환류하였다. 이 후 potassium carbonate(13.6g, 98.3mmol)를 물 41ml에 녹여 투입하고 충분히 교반한 후 bis(tri-tert-butylphosphine)palladium(0) (0.2g, 0.3mmol)을 투입하였다. 11시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물16를 13.5g 제조하였다. (수율 70%, MS: [M+H]+= 590)
합성예 17
Figure PCTKR2020014471-appb-img-000070
질소 분위기에서 subD-1 (15g, 32.8mmol)와 sub15 (8.2g, 36mmol)를 THF 300ml에 넣고 교반 및 환류하였다. 이 후 potassium carbonate(13.6g, 98.3mmol)를 물 41ml에 녹여 투입하고 충분히 교반한 후 bis(tri-tert-butylphosphine)palladium(0) (0.2g, 0.3mmol)을 투입하였다. 9시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물17를 12.1g 제조하였다. (수율 61%, MS: [M+H]+= 606)
합성예 18
Figure PCTKR2020014471-appb-img-000071
질소 분위기에서 sub1 (15g, 56.2mmol)와 화학식E (14.7g, 56.2mmol)를 THF 300ml에 넣고 교반 및 환류하였다. 이 후 potassium carbonate(23.3g, 168.5mmol)를 물 70ml에 녹여 투입하고 충분히 교반한 후 Tetrakis(triphenylphosphine)palladium(0) (0.5g, 0.5mmol) (0.6g, 0.6mmol)을 투입하였다. 12시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 subE-1를 16.7g 제조하였다. (수율 65%, MS: [M+H]+= 458)
질소 분위기에서 subE-1 (15g, 32.8mmol)와 sub11 (7.6g, 36mmol)를 THF 300ml에 넣고 교반 및 환류하였다. 이 후 potassium carbonate(13.6g, 98.3mmol)를 물 41ml에 녹여 투입하고 충분히 교반한 후 bis(tri-tert-butylphosphine)palladium(0) (0.2g, 0.3mmol)을 투입하였다. 11시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물18를 12.4g 제조하였다. (수율 64%, MS: [M+H]+= 590)
합성예 19
Figure PCTKR2020014471-appb-img-000072
질소 분위기에서 subE-1 (15g, 32.8mmol)와 sub17 (8.2g, 36mmol)를 THF 300ml에 넣고 교반 및 환류하였다. 이 후 potassium carbonate(13.6g, 98.3mmol)를 물 41ml에 녹여 투입하고 충분히 교반한 후 bis(tri-tert-butylphosphine)palladium(0) (0.2g, 0.3mmol)을 투입하였다. 10시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물19를 13.9g 제조하였다. (수율 70%, MS: [M+H]+= 606)
합성예 20
Figure PCTKR2020014471-appb-img-000073
질소 분위기에서 subE-1 (15g, 32.8mmol)와 sub10 (7.6g, 36mmol)를 THF 300ml에 넣고 교반 및 환류하였다. 이 후 potassium carbonate(13.6g, 98.3mmol)를 물 41ml에 녹여 투입하고 충분히 교반한 후 bis(tri-tert-butylphosphine)palladium(0) (0.2g, 0.3mmol)을 투입하였다. 11시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물20를 12.5g 제조하였다. (수율 65%, MS: [M+H]+= 590)
합성예 21
Figure PCTKR2020014471-appb-img-000074
질소 분위기에서 subE-1 (15g, 32.8mmol)와 sub18 (10.3g, 36mmol)를 THF 300ml에 넣고 교반 및 환류하였다. 이 후 potassium carbonate(13.6g, 98.3mmol)를 물 41ml에 녹여 투입하고 충분히 교반한 후 bis(tri-tert-butylphosphine)palladium(0) (0.2g, 0.3mmol)을 투입하였다. 11시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물21를 16.3g 제조하였다. (수율 75%, MS: [M+H]+= 665)
합성예 22
Figure PCTKR2020014471-appb-img-000075
질소 분위기에서 subE-1 (15g, 32.8mmol)와 sub14 (10.3g, 36mmol)를 THF 300ml에 넣고 교반 및 환류하였다. 이 후 potassium carbonate(13.6g, 98.3mmol)를 물 41ml에 녹여 투입하고 충분히 교반한 후 bis(tri-tert-butylphosphine)palladium(0) (0.2g, 0.3mmol)을 투입하였다. 10시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물22를 16.3g 제조하였다. (수율 75%, MS: [M+H]+= 665)
합성예 23
Figure PCTKR2020014471-appb-img-000076
질소 분위기에서 sub1 (15g, 56.2mmol)와 화학식F (14.7g, 56.2mmol)를 THF 300ml에 넣고 교반 및 환류하였다. 이 후 potassium carbonate(23.3g, 168.5mmol)를 물 70ml에 녹여 투입하고 충분히 교반한 후 Tetrakis(triphenylphosphine)palladium(0) (0.5g, 0.5mmol) (0.6g, 0.6mmol)을 투입하였다. 11시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 subF-1를 16.7g 제조하였다. (수율 65%, MS: [M+H]+= 458)
질소 분위기에서 subF-1 (15g, 32.8mmol)와 sub9 (8.2g, 36mmol)를 THF 300ml에 넣고 교반 및 환류하였다. 이 후 potassium carbonate(13.6g, 98.3mmol)를 물 41ml에 녹여 투입하고 충분히 교반한 후 bis(tri-tert-butylphosphine)palladium(0) (0.2g, 0.3mmol)을 투입하였다. 8시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물23를 13.9g 제조하였다. (수율 70%, MS: [M+H]+= 606)
합성예 24
Figure PCTKR2020014471-appb-img-000077
질소 분위기에서 subF-1 (15g, 32.8mmol)와 sub11 (7.6g, 36mmol)를 THF 300ml에 넣고 교반 및 환류하였다. 이 후 potassium carbonate(13.6g, 98.3mmol)를 물 41ml에 녹여 투입하고 충분히 교반한 후 bis(tri-tert-butylphosphine)palladium(0) (0.2g, 0.3mmol)을 투입하였다. 9시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물24를 14.5g 제조하였다. (수율 75%, MS: [M+H]+= 590)
합성예 25
Figure PCTKR2020014471-appb-img-000078
질소 분위기에서 subF-1 (15g, 32.8mmol)와 sub19 (10.3g, 36mmol)를 THF 300ml에 넣고 교반 및 환류하였다. 이 후 potassium carbonate(13.6g, 98.3mmol)를 물 41ml에 녹여 투입하고 충분히 교반한 후 bis(tri-tert-butylphosphine)palladium(0) (0.2g, 0.3mmol)을 투입하였다. 9시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물25를 15.2g 제조하였다. (수율 70%, MS: [M+H]+= 665)
합성예 26
Figure PCTKR2020014471-appb-img-000079
질소 분위기에서 subF-1 (15g, 32.8mmol)와 sub14 (10.3g, 36mmol)를 THF 300ml에 넣고 교반 및 환류하였다. 이 후 potassium carbonate(13.6g, 98.3mmol)를 물 41ml에 녹여 투입하고 충분히 교반한 후 bis(tri-tert-butylphosphine)palladium(0) (0.2g, 0.3mmol)을 투입하였다. 9시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물26를 14.6g 제조하였다. (수율 67%, MS: [M+H]+= 665)
실시예 1
ITO(indium tin oxide)가 1,000Å의 두께로 박막 코팅된 유리 기판을 세제를 녹인 증류수에 넣고 초음파로 세척했다. 이때, 세제로는 피셔사(Fischer Co.) 제품을 사용하였으며, 증류수로는 밀러포어사(Millipore Co.) 제품의 필터(Filter)로 2차로 걸러진 증류수를 사용했다. ITO를 30분간 세척한 후 증류수로 2회 반복하여 초음파 세척을 10분간 진행했다. 증류수 세척이 끝난 후, 이소프로필알콜, 아세톤, 메탄올의 용제로 초음파 세척을 하고 건조시킨 후 플라즈마 세정기로 수송시켰다. 또한, 산소 플라즈마를 이용하여 상기 기판을 5분간 세정한 후 진공 증착기로 기판을 수송시켰다.
이렇게 준비된 ITO 투명 전극 위에 정공주입층으로 하기 HI-1 화합물을 1150Å의 두께로 형성하되 하기 A-1 화합물을 1.5% 농도로 p-doping 했다. 상기 정공주입층 위에 하기 HT-1 화합물을 진공 증착하여 막 두께 800Å 의 정공수송층을 형성했다. 이어서, 상기 정공수송층 위에 막 두께 150Å으로 하기 EB-1 화합물을 진공 증착하여 전자억제층을 형성했다. 이어서, 상기 EB-1 증착막 위에 하기 화합물 1과 하기 Dp-7 화합물을 98:2의 중량비로 진공 증착하여 400Å 두께의 적색 발광층을 형성했다. 상기 발광층 위에 막 두께 30Å으로 하기 HB-1 화합물을 진공 증착하여 정공저지층을 형성했다. 이어서, 상기 정공저지층 위에 하기 ET-1 화합물과 하기 LiQ 화합물을 2:1의 중량비로 진공 증착하여 300Å의 두께로 전자 주입 및 수송층을 형성했다. 상기 전자 주입 및 수송층 위에 순차적으로 12Å 두께로 리튬플로라이드(LiF)와 1,000Å 두께로 알루미늄을 증착하여 음극을 형성했다.
상기의 과정에서 유기물의 증착속도는 0.4~0.7Å/sec를 유지하였고, 음극의 리튬플로라이드는 0.3Å/sec, 알루미늄은 2Å/sec의 증착 속도를 유지하였으며, 증착시 진공도는 2X10 -7 ~ 5X10 -6 torr를 유지하여, 유기 발광 소자를 제작했다.
Figure PCTKR2020014471-appb-img-000080
Figure PCTKR2020014471-appb-img-000081
실시예 2 내지 26
실시예 1의 유기 발광 소자에서 화합물 1 대신 하기 표 1에 기재된 화합물을 사용하는 것을 제외하고는, 상기 실시예 1과 동일한 방법으로 실시예 2 내지 26의 유기 발광 소자를 제조했다.
비교예 1 내지 10
실시예 1의 유기 발광 소자에서 화합물 1 대신 하기 표 1에 기재된 화합물을 사용하는 것을 제외하고는, 상기 실시예 1과 동일한 방법으로 비교예 1 내지 10의 유기 발광 소자를 제조했다.
실시예 27 내지 78
실시예 1의 유기 발광 소자에서 화합물 1 대신 하기 표 2에 기재된 제1호스트와 제2호스트를 1:1 비율로 진공 공증착 진행 했으며 이것을 제외하고는 상기 실시예 1과 동일한 방법으로 실시예 27 내지 78의 유기 발광 소자를 제조했다.
비교예 11 내지 30
실시예 1의 유기 발광 소자에서 화합물 1 대신 하기 표 2에 기재된 제1호스트와 제2호스트를 1:1 비율로 진공 공증착 진행 했으며 이것을 제외하고는 상기 실시예 1과 동일한 방법으로 비교예 11 내지 30의 유기 발광 소자를 제조했다.
상기 실시예 1 내지 78 및 비교예 1 내지 30에서 제조한 유기 발광 소자에 전류를 인가하였을 때, 전압, 효율을 측정(15mA/cm 2 기준)하고 그 결과를 하기 표1, 표2에 나타냈다. 수명 T95는 휘도가 초기 휘도(7000 nit)에서 95%로 감소되는데 소요되는 시간을 의미한다.
구분 물질 효율(cd/A) 수명 T95(hr) 발광색
실시예 1 화합물 1 21.8 141 적색
실시예 2 화합물 2 21.9 133 적색
실시예 3 화합물 3 20.8 145 적색
실시예 4 화합물 4 21.1 157 적색
실시예 5 화합물 5 22.5 140 적색
실시예 6 화합물 6 21.3 152 적색
실시예 7 화합물 7 22.9 143 적색
실시예 8 화합물 8 22.5 142 적색
실시예 9 화합물 9 21.3 158 적색
실시예 10 화합물 10 22.7 141 적색
실시예 11 화합물 11 21.8 151 적색
실시예 12 화합물 12 20.3 160 적색
실시예 13 화합물 13 22.9 159 적색
실시예 14 화합물 14 23.1 163 적색
실시예 15 화합물 15 22.0 173 적색
실시예 16 화합물 16 21.2 194 적색
실시예 17 화합물 17 22.6 175 적색
실시예 18 화합물 18 23.5 172 적색
실시예 19 화합물 19 20.1 151 적색
실시예 20 화합물 20 22.3 164 적색
실시예 21 화합물 21 23.9 173 적색
실시예 22 화합물 22 23.1 157 적색
실시예 23 화합물 23 23.1 157 적색
실시예 24 화합물 24 23.1 157 적색
실시예 25 화합물 25 23.1 157 적색
실시예 26 화합물 26 23.1 157 적색
비교예 1 C-1 18.5 154 적색
비교예 2 C-2 17.4 133 적색
비교예 3 C-3 17.1 110 적색
비교예 4 C-4 18.1 138 적색
비교예 5 C-5 17.2 76 적색
비교예 6 C-6 17.9 134 적색
비교예 7 C-7 17.1 112 적색
비교예 8 C-8 16.9 98 적색
비교예 9 C-9 15.1 101 적색
비교예 10 C-10 16.8 129 적색
구분 제1호스트 제2호스트 구동전압
(V)
효율
(cd/A)
수명 T95(hr) 발광색
실시예 27 화합물 1 Z-1 3.60 25.4 303 적색
실시예 28 화합물 2 Z-1 3.58 24.3 323 적색
실시예 29 화합물 3 Z-1 3.53 24.7 335 적색
실시예 30 화합물 4 Z-1 3.52 23.2 327 적색
실시예 31 화합물 5 Z-1 3.53 24.8 341 적색
실시예 32 화합물 6 Z-1 3.54 26.3 322 적색
실시예 33 화합물 7 Z-1 3.56 27.2 325 적색
실시예 34 화합물 8 Z-1 3.57 24.4 340 적색
실시예 35 화합물 9 Z-1 3.59 25.5 323 적색
실시예 36 화합물 10 Z-1 3.60 24.6 311 적색
실시예 37 화합물 11 Z-1 3.61 26.7 297 적색
실시예 38 화합물 12 Z-1 3.62 25.2 322 적색
실시예 39 화합물 13 Z-1 3.64 25.1 315 적색
실시예 40 화합물 14 Z-1 3.63 24.4 323 적색
실시예 41 화합물 15 Z-1 3.65 25.5 293 적색
실시예 42 화합물 16 Z-1 3.72 26.3 305 적색
실시예 43 화합물 17 Z-1 3.68 27.1 306 적색
실시예 44 화합물 18 Z-1 3.50 25.2 324 적색
실시예 45 화합물 19 Z-1 3.51 25.0 296 적색
실시예 46 화합물 20 Z-1 3.68 26.4 327 적색
실시예 47 화합물 21 Z-1 3.72 25.7 314 적색
실시예 48 화합물 22 Z-1 3.69 27.2 323 적색
실시예 49 화합물 23 Z-1 3.53 26.3 348 적색
실시예 50 화합물 24 Z-1 3.60 25.4 301 적색
실시예 51 화합물 25 Z-1 3.64 27.1 299 적색
실시예 52 화합물 26 Z-1 3.57 26.2 328 적색
실시예 53 화합물 1 Z-2 3.63 25.3 311 적색
실시예 54 화합물 2 Z-2 3.55 24.0 324 적색
실시예 55 화합물 3 Z-2 3.56 24.1 329 적색
실시예 56 화합물 4 Z-2 3.53 24.0 318 적색
실시예 57 화합물 5 Z-2 3.50 24.1 324 적색
실시예 58 화합물 6 Z-2 3.57 27.4 319 적색
실시예 59 화합물 7 Z-2 3.55 27.8 322 적색
실시예 60 화합물 8 Z-2 3.58 24.0 310 적색
실시예 61 화합물 9 Z-2 3.52 25.9 329 적색
실시예 62 화합물 10 Z-2 3.54 24.8 302 적색
실시예 63 화합물 11 Z-2 3.64 26.1 312 적색
실시예 64 화합물 12 Z-2 3.63 26.0 303 적색
실시예 65 화합물 13 Z-2 3.64 25.5 306 적색
실시예 66 화합물 14 Z-2 3.66 24.7 343 적색
실시예 67 화합물 15 Z-2 3.61 26.3 327 적색
실시예 68 화합물 16 Z-2 3.70 26.8 323 적색
실시예 69 화합물 17 Z-2 3.71 27.0 289 적색
실시예 70 화합물 18 Z-2 3.55 25.9 302 적색
실시예 71 화합물 19 Z-2 3.53 24.6 279 적색
실시예 72 화합물 20 Z-2 3.69 26.7 307 적색
실시예 73 화합물 21 Z-2 3.73 25.3 304 적색
실시예 74 화합물 22 Z-2 3.67 27.0 311 적색
실시예 75 화합물 23 Z-2 3.55 26.8 345 적색
실시예 76 화합물 24 Z-2 3.57 25.1 321 적색
실시예 77 화합물 25 Z-2 3.66 27.5 304 적색
실시예 78 화합물 26 Z-2 3.53 26.7 332 적색
비교예 11 C-1 Z-1 3.83 22.5 251 적색
비교예 12 C-2 Z-1 3.95 21.4 197 적색
비교예 13 C-3 Z-1 3.84 22.5 226 적색
비교예 14 C-4 Z-1 3.99 21.3 218 적색
비교예 15 C-5 Z-1 4.08 19.2 174 적색
비교예 16 C-6 Z-1 3.95 20.9 193 적색
비교예 17 C-7 Z-1 3.91 21.1 182 적색
비교예 18 C-8 Z-1 3.93 18.4 168 적색
비교예 19 C-9 Z-1 3.87 19.8 203 적색
비교예 20 C-10 Z-1 3.85 20.5 228 적색
비교예 21 C-1 Z-2 3.98 22.6 242 적색
비교예 22 C-2 Z-2 3.95 20.8 211 적색
비교예 23 C-3 Z-2 3.90 22.8 234 적색
비교예 24 C-4 Z-2 4.09 20.7 227 적색
비교예 25 C-5 Z-2 4.01 20.5 190 적색
비교예 26 C-6 Z-2 3.93 19.2 204 적색
비교예 27 C-7 Z-2 3.97 20.7 191 적색
비교예 28 C-8 Z-2 4.04 19.3 184 적색
비교예 29 C-9 Z-2 3.99 20.3 209 적색
비교예 30 C-10 Z-2 4.08 20.1 233 적색
실시예 1 내지 78 및 비교예 1 내지 30에 의해 제작된 유기 발광 소자에 전류를 인가하였을 때, 상기 표 1 및 2의 결과를 얻었다.
상기 실시예 1은 전자 차단층으로 화합물 [EB-1], 적색 발광층으로 화합물 1 /Dp-7을 사용하는 구조이다. 비교예 1 내지 30은 화합물 1 대신 C-1 내지 C-10를 사용하여 유기 발광 소자를 제조했다.
상기 표 1의 결과를 보면 본 발명의 화합물이 적색 발광층의 호스트로 사용 헸을 때 비교예 물질에 비해서 효율 측면에서 크게 상승을 한 것으로 보아 호스트에서 적색 도판트로의 에너지 전달이 잘 이뤄진다는 것을 알 수 있었다. 또한 높은 효율을 유지하면서도 수명 특성을 2배 가까이 크게 개선 시킬 수 있는 것을 알 수 있었다. 이것은 결국 비교예 화합물 보다 본 발명의 화합물이 전자와 정공에 대한 안정도가 높기 때문이라 판단 할 수 있다.
상기 표 2의 결과는 두가지 종류의 호스트를 공증착 한 결과를 나타냈는데 제1호스트와 제2호스트를 1:1 비율로 사용했을 때 제1호스트만 사용한 결과 보다 더 우수한 결과를 나타냈다. 제2호스트를 사용함에 따라 정공의 양이 많아지면서 적색 발광층내에 전자와 정공이 더 안정적인 균형을 유지하게 되고 효율과 수명이 많이 상승 하는 것을 확인 할 수 있었다.
결론적으로 본 발명의 화합물을 적색 발광층의 호스트로 사용하였을 때 유기 발광 소자의 구동전압, 발광 효율 및 수명 특성을 개선할 수 있다는 것을 확인할 수 있다.
[부호의 설명]
1: 기판 2: 양극
3: 정공수송층 4: 발광층
5: 전자주입 및 수송층 6: 음극
7: 정공주입층 8: 전자억제층
9: 정공저지층

Claims (17)

  1. 하기 화학식 1로 표시되는 화합물:
    [화학식 1]
    Figure PCTKR2020014471-appb-img-000082
    상기 화학식 1에서,
    L 1 및 L 2 는 각각 독립적으로, 단일 결합, 또는 치환 또는 비치환된 C 6-60 아릴렌이고,
    Ar 1, Ar 2 및 Ar 3는 상이하고,
    Ar 1은 치환 또는 비치환된 C 10-60 다환식 아릴이고,
    Ar 2는 치환 또는 비치환된 N, O 및 S로 구성되는 군으로부터 선택되는 어느 하나 이상의 헤테로원자를 포함하는 C 5-60 헤테로아릴이고,
    Ar 3는 하기 화학식 2로 표시되는 치환기이고,
    [화학식 2]
    Figure PCTKR2020014471-appb-img-000083
    상기 화학식 2에서,
    X는 O, 또는 S이고,
    R 1, R 3, R 5 내지 R 7, R 9 및 R 10 중 어느 하나는 상기 화학식 1과 연결되고; 나머지는 각각 독립적으로 수소 또는 중수소이고,
    R 2, R 4 및 R 8은 각각 독립적으로 수소 또는 중수소이다.
  2. 제1항에 있어서,
    L 1은 단일 결합 또는 페닐렌인,
    화합물.
  3. 제1항에 있어서,
    Ar 1은 나프틸, 페난쓰레닐 또는 플루오란테닐인,
    화합물.
  4. 제1항에 있어서,
    L 2는 단일 결합인,
    화합물.
  5. 제1항에 있어서,
    Ar 2는 디벤조퓨라닐, 디벤조티오페닐, 카바졸-9-일, 또는 9-페닐-9H-카바졸릴인,
    화합물.
  6. 제1항에 있어서,
    X는 O인,
    화합물.
  7. 제1항에 있어서,
    R 1, R 3, R 5, R 6, R 7 및 R 10 중 어느 하나는 상기 화학식 1과 연결되고; 나머지는 각각 독립적으로 수소인,
    화합물.
  8. 제1항에 있어서,
    상기 화합물은 하기 화합물로 구성되는 군으로부터 선택되는 어느 하나인,
    화합물:
    Figure PCTKR2020014471-appb-img-000084
    Figure PCTKR2020014471-appb-img-000085
    Figure PCTKR2020014471-appb-img-000086
    Figure PCTKR2020014471-appb-img-000087
    Figure PCTKR2020014471-appb-img-000088
    Figure PCTKR2020014471-appb-img-000089
    Figure PCTKR2020014471-appb-img-000090
    Figure PCTKR2020014471-appb-img-000091
    Figure PCTKR2020014471-appb-img-000092
    Figure PCTKR2020014471-appb-img-000093
    Figure PCTKR2020014471-appb-img-000094
    Figure PCTKR2020014471-appb-img-000095
    Figure PCTKR2020014471-appb-img-000096
    Figure PCTKR2020014471-appb-img-000097
    Figure PCTKR2020014471-appb-img-000098
    .
  9. 제1 전극, 상기 제1 전극과 대향하여 구비된 제2 전극, 및 상기 제1 전극과 상기 제2 전극 사이에 구비된 1층 이상의 유기물층을 포함하는 유기 발광 소자로서, 상기 유기물층 중 1층 이상은 제1항 내지 제8항 중 어느 하나의 항에 따른 화합물을 포함하는 것인, 유기 발광 소자.
  10. 제9항에 있어서,
    상기 유기물층은 발광층을 포함하고,
    상기 발광층은 호스트로서 제1항 내지 제8항 중 어느 하나의 항에 따른 화합물을 포함하는,
    유기 발광 소자.
  11. 제9항에 있어서,
    상기 유기물층은 발광층을 포함하고,
    상기 발광층은 제1 호스트로서 제1항 내지 제8항 중 어느 하나의 항에 따른 화합물을 포함하고, 제2 호스트로서 하기 화학식 4로 표시되는 화합물을 더 포함하는,
    유기 발광 소자:
    [화학식 4]
    Figure PCTKR2020014471-appb-img-000099
    상기 화학식 4에서,
    A는 치환 또는 비치환된 나프탈렌 고리이고,
    Ar 4는 치환 또는 비치환된 C 6-60 아릴이고,
    L 3 및 L 4는 각각 독립적으로, 단일 결합, 또는 치환 또는 비치환된 C 6-60 아릴렌이고,
    Ar 5 및 Ar 6은 각각 독립적으로, 치환 또는 비치환된 C 6-60 아릴, 치환 또는 비치환된 N, O 및 S로 구성되는 군으로부터 선택되는 어느 하나 이상의 헤테로원자를 포함하는 C 2-60 헤테로아릴, 또는 아다만틸이며,
    p는 0 내지 9인 정수이다.
  12. 제11항에 있어서,
    상기 화학식 4는 하기 화학식 4-1 내지 4-3 중 어느 하나로 표시되는,
    유기 발광 소자:
    [화학식 4-1]
    Figure PCTKR2020014471-appb-img-000100
    [화학식 4-2]
    Figure PCTKR2020014471-appb-img-000101
    [화학식 4-3]
    Figure PCTKR2020014471-appb-img-000102
    상기 화학식 4-1 내지 4-3에서, Ar 4 내지 Ar 6, L 3, L 4, 및 p의 정의는 제11항과 같다.
  13. 제11항에 있어서,
    Ar 4는 페닐, 비페닐릴 또는 나프틸이고;
    상기 Ar 4는 비치환되거나, 하나 이상의 터트-부틸 또는 페닐로 치환되는,
    유기 발광 소자:
  14. 제11항에 있어서,
    L 3 및 L 4는 각각 독립적으로, 단일 결합, 페닐렌 또는 나프탈렌디일이고;
    상기 L 3 및 L 4는 각각 독립적으로 비치환되거나, 하나 이상의 페닐로 치환되는,
    유기 발광 소자.
  15. 제11항에 있어서,
    Ar 5 및 Ar 6은 각각 독립적으로, 페닐, 비페닐릴, 터페닐릴, 나프틸, 디벤조퓨라닐, 디벤조티오페닐, 플루오레닐, 9,9-디메틸플루오레닐 또는 아다만틸이고;
    상기 Ar 5 및 Ar 6은 각각 독립적으로 비치환되거나, 하나 이상의 터트-부틸 또는 페닐로 치환되는,
    유기 발광 소자.
  16. 제11항에 있어서,
    상기 화학식 4로 표시되는 화합물은 하기 화합물로 구성되는 군으로부터 선택되는 어느 하나인,
    유기 발광 소자:
    Figure PCTKR2020014471-appb-img-000103
    Figure PCTKR2020014471-appb-img-000104
    Figure PCTKR2020014471-appb-img-000105
    Figure PCTKR2020014471-appb-img-000106
    Figure PCTKR2020014471-appb-img-000107
    Figure PCTKR2020014471-appb-img-000108
    Figure PCTKR2020014471-appb-img-000109
    Figure PCTKR2020014471-appb-img-000110
    Figure PCTKR2020014471-appb-img-000111
    Figure PCTKR2020014471-appb-img-000112
    Figure PCTKR2020014471-appb-img-000113
    Figure PCTKR2020014471-appb-img-000114
    Figure PCTKR2020014471-appb-img-000115
    Figure PCTKR2020014471-appb-img-000116
    Figure PCTKR2020014471-appb-img-000117
    Figure PCTKR2020014471-appb-img-000118
    Figure PCTKR2020014471-appb-img-000119
    Figure PCTKR2020014471-appb-img-000120
    Figure PCTKR2020014471-appb-img-000121
    Figure PCTKR2020014471-appb-img-000122
    Figure PCTKR2020014471-appb-img-000123
    Figure PCTKR2020014471-appb-img-000124
    .
  17. 제9항에 있어서,
    상기 유기물층은 정공주입층, 정공수송층, 전자억제층, 발광층, 정공저지층, 전자주입 및 수송층으로 이루어진 군에서 선택되는 1층 또는 2층 이상을 더 포함하는,
    유기 발광 소자.
PCT/KR2020/014471 2019-10-22 2020-10-22 신규한 화합물 및 이를 이용한 유기발광 소자 WO2021080339A1 (ko)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202080013712.0A CN113423706B (zh) 2019-10-22 2020-10-22 新型化合物及包含其的有机发光器件

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR10-2019-0131709 2019-10-22
KR20190131709 2019-10-22
KR1020200137038A KR102545206B1 (ko) 2019-10-22 2020-10-21 신규한 화합물 및 이를 이용한 유기발광 소자
KR10-2020-0137038 2020-10-21

Publications (1)

Publication Number Publication Date
WO2021080339A1 true WO2021080339A1 (ko) 2021-04-29

Family

ID=75619900

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2020/014471 WO2021080339A1 (ko) 2019-10-22 2020-10-22 신규한 화합물 및 이를 이용한 유기발광 소자

Country Status (1)

Country Link
WO (1) WO2021080339A1 (ko)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20170101577A (ko) * 2016-02-29 2017-09-06 주식회사 엘지화학 함질소 화합물 및 이를 포함하는 유기 발광 소자
CN107827807A (zh) * 2017-10-23 2018-03-23 长春海谱润斯科技有限公司 一种含有咔唑结构的衍生物及其制备方法和有机电致发光器件
KR101857632B1 (ko) * 2018-02-02 2018-05-14 덕산네오룩스 주식회사 유기전기소자용 화합물, 이를 이용한 유기전기소자 및 그 전자 장치
CN109134443A (zh) * 2018-09-12 2019-01-04 陕西莱特光电材料股份有限公司 一种新型有机电致发光层材料及其制备方法与应用
CN109879812A (zh) * 2019-04-22 2019-06-14 吉林奥来德光电材料股份有限公司 蒽类有机发光化合物及其制备方法和应用
WO2020116816A1 (ko) * 2018-12-06 2020-06-11 덕산네오룩스 주식회사 유기전기 소자용 화합물, 이를 이용한 유기전기소자 및 그 전자 장치

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20170101577A (ko) * 2016-02-29 2017-09-06 주식회사 엘지화학 함질소 화합물 및 이를 포함하는 유기 발광 소자
CN107827807A (zh) * 2017-10-23 2018-03-23 长春海谱润斯科技有限公司 一种含有咔唑结构的衍生物及其制备方法和有机电致发光器件
KR101857632B1 (ko) * 2018-02-02 2018-05-14 덕산네오룩스 주식회사 유기전기소자용 화합물, 이를 이용한 유기전기소자 및 그 전자 장치
CN109134443A (zh) * 2018-09-12 2019-01-04 陕西莱特光电材料股份有限公司 一种新型有机电致发光层材料及其制备方法与应用
WO2020116816A1 (ko) * 2018-12-06 2020-06-11 덕산네오룩스 주식회사 유기전기 소자용 화합물, 이를 이용한 유기전기소자 및 그 전자 장치
CN109879812A (zh) * 2019-04-22 2019-06-14 吉林奥来德光电材料股份有限公司 蒽类有机发光化合物及其制备方法和应用

Similar Documents

Publication Publication Date Title
WO2021025328A1 (ko) 신규한 화합물 및 이를 이용한 유기 발광 소자
WO2021125649A1 (ko) 유기 발광 소자
WO2022031036A1 (ko) 유기 발광 소자
WO2020262861A1 (ko) 신규한 화합물 및 이를 포함하는 유기발광 소자
WO2022102992A1 (ko) 신규한 화합물 및 이를 이용한 유기발광 소자
WO2021125648A1 (ko) 신규한 화합물 및 이를 이용한 유기 발광 소자
WO2020231242A1 (ko) 유기 발광 소자
WO2023096405A1 (ko) 신규한 화합물 및 이를 이용한 유기발광 소자
WO2022250386A1 (ko) 유기 발광 소자
WO2022039518A1 (ko) 신규한 화합물 및 이를 이용한 유기 발광 소자
WO2022031020A1 (ko) 신규한 화합물 및 이를 이용한 유기 발광 소자
WO2022059923A1 (ko) 신규한 화합물 및 이를 이용한 유기발광 소자
WO2021182833A1 (ko) 신규한 화합물 및 이를 이용한 유기 발광 소자
WO2021251661A1 (ko) 신규한 화합물 및 이를 이용한 유기발광 소자
WO2021182834A1 (ko) 신규한 화합물 및 이를 이용한 유기 발광 소자
WO2021034156A1 (ko) 신규한 화합물 및 이를 이용한 유기 발광 소자
WO2020231022A1 (ko) 유기 발광 소자
WO2020246837A1 (ko) 신규한 화합물 및 이를 이용한 유기 발광 소자
WO2020246835A1 (ko) 신규한 화합물 및 이를 이용한 유기 발광 소자
WO2020231021A1 (ko) 유기 발광 소자
WO2021080339A1 (ko) 신규한 화합물 및 이를 이용한 유기발광 소자
WO2023003146A1 (ko) 신규한 화합물 및 이를 이용한 유기 발광 소자
WO2021080340A1 (ko) 신규한 화합물 및 이를 이용한 유기발광 소자
WO2023085834A1 (ko) 신규한 화합물 및 이를 포함한 유기 발광 소자
WO2023085789A1 (ko) 신규한 화합물 및 이를 포함하는 유기 발광 소자

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20878939

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20878939

Country of ref document: EP

Kind code of ref document: A1