WO2020231021A1 - 유기 발광 소자 - Google Patents

유기 발광 소자 Download PDF

Info

Publication number
WO2020231021A1
WO2020231021A1 PCT/KR2020/005027 KR2020005027W WO2020231021A1 WO 2020231021 A1 WO2020231021 A1 WO 2020231021A1 KR 2020005027 W KR2020005027 W KR 2020005027W WO 2020231021 A1 WO2020231021 A1 WO 2020231021A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
light emitting
organic light
layer
compound
Prior art date
Application number
PCT/KR2020/005027
Other languages
English (en)
French (fr)
Inventor
차용범
이우철
홍성길
조우진
Original Assignee
주식회사 엘지화학
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 엘지화학 filed Critical 주식회사 엘지화학
Priority to CN202080015265.2A priority Critical patent/CN113474907A/zh
Publication of WO2020231021A1 publication Critical patent/WO2020231021A1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • H10K85/6574Polycyclic condensed heteroaromatic hydrocarbons comprising only oxygen in the heteroaromatic polycondensed ring system, e.g. cumarine dyes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/14Carrier transporting layers
    • H10K50/16Electron transporting layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/40Organosilicon compounds, e.g. TIPS pentacene
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/615Polycyclic condensed aromatic hydrocarbons, e.g. anthracene
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/654Aromatic compounds comprising a hetero atom comprising only nitrogen as heteroatom
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • H10K85/6572Polycyclic condensed heteroaromatic hydrocarbons comprising only nitrogen in the heteroaromatic polycondensed ring system, e.g. phenanthroline or carbazole
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • H10K85/6576Polycyclic condensed heteroaromatic hydrocarbons comprising only sulfur in the heteroaromatic polycondensed ring system, e.g. benzothiophene
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers

Definitions

  • the present invention relates to an organic light-emitting device having a low driving voltage, high luminous efficiency, and excellent lifespan.
  • the organic light emission phenomenon refers to a phenomenon in which electrical energy is converted into light energy using an organic material.
  • An organic light-emitting device using the organic light-emitting phenomenon has a wide viewing angle, excellent contrast, and fast response time, and has excellent luminance, driving voltage, and response speed characteristics, and thus many studies are being conducted.
  • the organic light emitting device generally has a structure including an anode and a cathode, and an organic material layer between the anode and the cathode.
  • the organic material layer is often made of a multi-layered structure composed of different materials in order to increase the efficiency and stability of the organic light emitting device.For example, it may be formed of a hole injection layer, a hole transport layer, a light emitting layer, an electron transport layer, an electron injection layer, and the like.
  • a voltage is applied between the two electrodes
  • holes are injected from the anode and electrons from the cathode are injected into the organic material layer, and excitons are formed when the injected holes and electrons meet. It glows when it falls back to the ground.
  • Patent Document 0001 Korean Patent Publication No. 10-2000-0051826
  • the present invention relates to an organic light-emitting device having a low driving voltage, high luminous efficiency, and excellent lifespan.
  • the present invention provides the following organic light emitting device.
  • a negative electrode provided opposite to the positive electrode
  • a light emitting layer provided between the anode and the cathode
  • a hole transport region provided between the anode and the emission layer
  • the electron transport region includes a first compound represented by Formula 1 below,
  • the emission layer includes a second compound represented by Formula 2 below,
  • X 1 to X 3 are each independently N or CH, but at least one of X 1 to X 3 is N,
  • L 1 is a single bond; Substituted or unsubstituted C 6-60 arylene; Or substituted or unsubstituted C 2-60 heteroarylene including any one or more heteroatoms selected from the group consisting of N, O and S,
  • Ar 1 and Ar 2 are each independently a substituted or unsubstituted C 6-60 aryl; Or substituted or unsubstituted C 2-60 heteroaryl including any one or more heteroatoms selected from the group consisting of N, O and S,
  • L 2 and L 3 are each independently a single bond; Substituted or unsubstituted C 6-60 arylene; Or substituted or unsubstituted C 2-60 heteroarylene including any one or more heteroatoms selected from the group consisting of N, O and S,
  • Ar 3 and Ar 4 are each independently a substituted or unsubstituted C 6-60 aryl; Or substituted or unsubstituted C 2-60 heteroaryl including any one or more heteroatoms selected from the group consisting of N, O and S,
  • R is substituted or unsubstituted C 6-60 aryl; Substituted or unsubstituted carbazolyl; Substituted or unsubstituted dibenzofuranyl; Or substituted or unsubstituted dibenzothiophenyl.
  • the above-described organic light-emitting device includes a compound having a specific structure in each of the emission layer and the electron transport region, and may exhibit low driving voltage, high luminous efficiency, and long lifespan characteristics.
  • FIG. 1 shows an example of an organic light-emitting device comprising a substrate 10, an anode 20, a hole transport region 30, an emission layer 40, an electron transport region 50, and a cathode 60.
  • the hole transport region 30 is an anode ( A hole injection layer 31, a hole transport layer 33, and an electron blocking layer 35 are sequentially stacked from 20), and the electron transport region 50 is a hole blocking layer 51 sequentially stacked from the light emitting layer 40. ), an example of an organic light-emitting device including an electron transport layer 53 and an electron injection layer 55 is shown.
  • substituted or unsubstituted refers to deuterium; Halogen group; Cyano group; Nitro group; Hydroxy group; Carbonyl group; Ester group; Imide group; Amino group; Phosphine oxide group; Alkoxy group; Aryloxy group; Alkyl thioxy group; Arylthioxy group; Alkyl sulfoxy group; Arylsulfoxy group; Silyl group; Boron group; Alkyl group; Cycloalkyl group; Alkenyl group; Aryl group; Aralkyl group; Aralkenyl group; Alkylaryl group; Alkylamine group; Aralkylamine group; Heteroarylamine group; Arylamine group; Arylphosphine group; Or it means substituted or unsubstituted with one or more substituents selected from the group consisting of a heteroaryl group containing one or more of N, O, and S atoms, or substituted or unsubstituted with two
  • a substituent to which two or more substituents are connected may be a biphenyl group. That is, the biphenyl group may be an aryl group or may be interpreted as a substituent to which two phenyl groups are connected.
  • the number of carbon atoms of the carbonyl group is not particularly limited, but it is preferably 1 to 40 carbon atoms. Specifically, it may be a compound having the following structure, but is not limited thereto.
  • the ester group may be substituted with an oxygen of the ester group with a straight chain, branched or cyclic alkyl group having 1 to 25 carbon atoms or an aryl group having 6 to 25 carbon atoms.
  • it may be a compound of the following structural formula, but is not limited thereto.
  • the number of carbon atoms of the imide group is not particularly limited, but it is preferably 1 to 25 carbon atoms. Specifically, it may be a compound having the following structure, but is not limited thereto.
  • the silyl group is specifically trimethylsilyl group, triethylsilyl group, t-butyldimethylsilyl group, vinyldimethylsilyl group, propyldimethylsilyl group, triphenylsilyl group, diphenylsilyl group, phenylsilyl group, etc. However, it is not limited thereto.
  • the boron group specifically includes a trimethylboron group, a triethylboron group, a t-butyldimethylboron group, a triphenylboron group, and a phenylboron group, but is not limited thereto.
  • examples of the halogen group include fluorine, chlorine, bromine or iodine.
  • the alkyl group may be a linear or branched chain, and the number of carbon atoms is not particularly limited, but is preferably 1 to 40. According to an exemplary embodiment, the alkyl group has 1 to 20 carbon atoms. According to another exemplary embodiment, the alkyl group has 1 to 10 carbon atoms. According to another exemplary embodiment, the alkyl group has 1 to 6 carbon atoms.
  • alkyl group examples include methyl, ethyl, propyl, n-propyl, isopropyl, butyl, n-butyl, isobutyl, tert-butyl, sec-butyl, 1-methyl-butyl, 1-ethyl-butyl, pentyl, n -Pentyl, isopentyl, neopentyl, tert-pentyl, hexyl, n-hexyl, 1-methylpentyl, 2-methylpentyl, 4-methyl-2-pentyl, 3,3-dimethylbutyl, 2-ethylbutyl, heptyl , n-heptyl, 1-methylhexyl, cyclopentylmethyl, cyclohexylmethyl, octyl, n-octyl, tert-octyl, 1-methylheptyl, 2-ethylhexyl
  • the alkenyl group may be a linear or branched chain, and the number of carbon atoms is not particularly limited, but is preferably 2 to 40. According to an exemplary embodiment, the alkenyl group has 2 to 20 carbon atoms. According to another exemplary embodiment, the alkenyl group has 2 to 10 carbon atoms. According to another exemplary embodiment, the alkenyl group has 2 to 6 carbon atoms.
  • Specific examples include vinyl, 1-propenyl, isopropenyl, 1-butenyl, 2-butenyl, 3-butenyl, 1-pentenyl, 2-pentenyl, 3-pentenyl, 3-methyl-1- Butenyl, 1,3-butadienyl, allyl, 1-phenylvinyl-1-yl, 2-phenylvinyl-1-yl, 2,2-diphenylvinyl-1-yl, 2-phenyl-2-( Naphthyl-1-yl)vinyl-1-yl, 2,2-bis(diphenyl-1-yl)vinyl-1-yl, stilbenyl group, styrenyl group, and the like, but are not limited thereto.
  • the cycloalkyl group is not particularly limited, but is preferably 3 to 60 carbon atoms, and according to an exemplary embodiment, the cycloalkyl group has 3 to 30 carbon atoms. According to another exemplary embodiment, the cycloalkyl group has 3 to 20 carbon atoms. According to another exemplary embodiment, the cycloalkyl group has 3 to 6 carbon atoms.
  • the aryl group is not particularly limited, but is preferably 6 to 60 carbon atoms, and may be a monocyclic aryl group or a polycyclic aryl group. According to an exemplary embodiment, the aryl group has 6 to 30 carbon atoms. According to an exemplary embodiment, the aryl group has 6 to 20 carbon atoms.
  • the aryl group may be a phenyl group, a biphenyl group, or a terphenyl group, but the monocyclic aryl group is not limited thereto.
  • the polycyclic aryl group may be a naphthyl group, an anthracenyl group, a phenanthrenyl group, a pyrenyl group, a perylenyl group, a chrysenyl group, a fluorenyl group, and the like, but is not limited thereto.
  • the fluorenyl group may be substituted, and two substituents may be bonded to each other to form a spiro structure.
  • Etc When the fluorenyl group is substituted, Etc.
  • Etc it is not limited thereto.
  • heteroaryl is a heteroaryl containing at least one of O, N, Si, and S as a heterogeneous element, and the number of carbons is not particularly limited, but is preferably 2 to 60 carbon atoms.
  • heteroaryl include thiophene group, furan group, pyrrole group, imidazole group, thiazole group, oxazole group, oxadiazole group, triazole group, pyridyl group, bipyridyl group, pyrimidyl group, triazine group, acridyl group, Pyridazine group, pyrazinyl group, quinolinyl group, quinazoline group, quinoxalinyl group, phthalazinyl group, pyrido pyrimidinyl group, pyrido pyrazinyl group, pyrazino pyrazinyl group, isoquinoline group, indole group, Carbazole group, be
  • the aryl group among the aralkyl group, aralkenyl group, alkylaryl group, and arylamine group is the same as the example of the aryl group described above.
  • the alkyl group among the aralkyl group, the alkylaryl group and the alkylamine group is the same as the example of the aforementioned alkyl group.
  • heteroaryl among heteroarylamines the above-described description of heteroaryl may be applied.
  • the alkenyl group of the aralkenyl group is the same as the example of the alkenyl group described above.
  • the description of the aryl group described above may be applied except that the arylene is a divalent group.
  • the description of the above-described heteroaryl may be applied except that the heteroarylene is a divalent group.
  • the hydrocarbon ring is not a monovalent group, and the description of the aryl group or the cycloalkyl group described above may be applied except that the hydrocarbon ring is formed by bonding of two substituents.
  • the heteroaryl is not a monovalent group, and the description of the above-described heteroaryl may be applied except that the heterocycle is formed by bonding of two substituents.
  • the present invention provides an organic light emitting device having the following structure:
  • a negative electrode provided opposite to the positive electrode
  • a light emitting layer provided between the anode and the cathode and including the second compound
  • a hole transport region provided between the anode and the emission layer
  • An electron transport region provided between the light emitting layer and the cathode and including the first compound.
  • the cathode material a material having a large work function is preferable so that holes can be smoothly injected into the organic material layer.
  • the cathode material include metals such as vanadium, chromium, copper, zinc, and gold, or alloys thereof; Metal oxides such as zinc oxide, indium oxide, indium tin oxide (ITO), and indium zinc oxide (IZO); Combinations of metals and oxides such as ZnO:Al or SnO 2 :Sb; Poly(3-methylthiophene), poly[3,4-(ethylene-1,2-dioxy)thiophene] (PEDOT), conductive polymers such as polypyrrole and polyaniline, and the like, but are not limited thereto.
  • the cathode material is a material having a small work function to facilitate electron injection into the organic material layer.
  • the negative electrode material include metals such as magnesium, calcium, sodium, potassium, titanium, indium, yttrium, lithium, gadolinium, aluminum, silver, tin, and lead, or alloys thereof; There are multi-layered materials such as LiF/Al or LiO 2 /Al, but are not limited thereto.
  • the organic light emitting device includes a hole transport region provided between an anode and a light emitting layer.
  • the hole transport region is a region that receives holes from the anode and transports holes to the emission layer, and it is preferable to include a material having high mobility for holes.
  • the hole transport region includes a hole injection layer, a hole transport layer, and an electron blocking layer sequentially stacked from the anode.
  • the hole injection layer is disposed on the anode and injects holes from the anode, and includes a hole injection material.
  • a hole injection material has the ability to transport holes, has a hole injection effect at the anode, an excellent hole injection effect for the light emitting layer or the light emitting material, and prevents the movement of excitons generated in the light emitting layer to the electron injection layer or the electron injection material.
  • a compound having excellent thin film formation ability is preferable.
  • the HOMO (highest occupied molecular orbital) of the hole injection material is between the work function of the positive electrode material and the HOMO of the surrounding organic material layer.
  • hole injection material examples include metal porphyrin, oligothiophene, arylamine-based organic material, hexanitrile hexaazatriphenylene-based organic material, quinacridone-based organic material, perylene Organic materials, anthraquinone, polyaniline, and polythiophene-based conductive polymers, but are not limited thereto.
  • the hole transport layer is formed on the hole injection layer to receive holes from the hole injection layer and transport holes to the light emitting layer.
  • the hole transport layer includes a hole transport material, and a material having high mobility for holes capable of transporting holes from the anode or the hole injection layer and transferring them to the light emitting layer is suitable as the hole transport material.
  • the hole transport material include, but are not limited to, an arylamine-based organic material, a conductive polymer, and a block copolymer having a conjugated portion and a non-conjugated portion.
  • the electron blocking layer is formed on the hole transport layer and is preferably provided in contact with the light emitting layer to control hole mobility and prevent excessive movement of electrons, thereby increasing the probability of hole-electron coupling, thereby increasing the efficiency of the organic light-emitting device.
  • the electron blocking layer includes an electron blocking material, and a material having a stable structure in which electrons do not flow out of the emission layer is suitable as the electron blocking material.
  • the electron blocking material include an arylamine-based organic material, but are not limited thereto.
  • the organic light-emitting device includes an anthracene compound in which positions 2, 9, and 10, which are the second compound represented by Chemical Formula 2, are substituted as a host material.
  • the second compound has a structure in which the same or different substituents are introduced at positions 9 and 10 and a substituent is introduced at the second position, so that the material stability is higher than that of the compound in which the substituent is not introduced at the 2nd position. It is excellent and can contribute to the improvement of lifespan characteristics when used in organic light emitting devices.
  • L 2 and L 3 may each independently be a single bond, or any one selected from the group consisting of:
  • Y 1 is O, S, N(C 6-20 aryl), C(C 1-4 alkyl) 2 , or C(C 6-20 aryl) 2 .
  • Y 1 is O, S, N (phenyl), C (methyl) 2 , or C (phenyl) 2 .
  • L 2 and L 3 are each independently a single bond or phenylene.
  • Ar 3 and Ar 4 are each independently C 6-20 aryl; Or C 2-60 heteroaryl including O or S.
  • Ar 3 and Ar 4 are each independently phenyl, biphenylyl, terphenylyl, naphthyl, phenanthrenyl, dibenzofuranyl, or dibenzothiophenyl.
  • R is phenyl, biphenylyl, terphenylyl, naphthyl, phenanthrenyl, triphenylenyl, fluorenyl, carbazolyl, dibenzofuranyl, or dibenzothiophenyl,
  • R is unsubstituted or substituted with 1 to 5 substituents each independently selected from the group consisting of deuterium, C 1-10 alkyl, tri(C 1-4 alkyl) silyl and C 6-20 aryl Can be.
  • R is any one selected from the group consisting of:
  • Q is hydrogen, C 1-10 alkyl, Si(C 1-4 alkyl) 3 , or C 6-20 aryl,
  • Y 2 is O, S, N(C 6-20 aryl), C(C 1-4 alkyl) 2 , or C(C 6-20 aryl) 2 .
  • Q is hydrogen, tert-butyl, Si(methyl) 3 , phenyl, or naphthyl,
  • Y 2 is O, S, N (phenyl), C (methyl) 2 , or C (phenyl) 2 .
  • the second compound is represented by the following formula 2-1 or 2-2:
  • L 3 , Ar 4 and R are as defined in Chemical Formula 2.
  • the second compound may be prepared by a manufacturing method as shown in Scheme 2 below, for example.
  • the manufacturing method may be more specific in the manufacturing examples to be described later.
  • T is halogen, preferably bromo, or chloro, and the definition of other substituents is as described above.
  • the compound represented by Formula 2 is prepared by introducing an R substituent to a starting material through a Suzuki coupling reaction.
  • a Suzuki coupling reaction is preferably carried out in the presence of a palladium catalyst and a base, and the reactor for the Suzuki coupling reaction can be changed as known in the art.
  • the manufacturing method may be more specific in the manufacturing examples to be described later.
  • the emission layer may further include a dopant material.
  • the dopant material include aromatic amine derivatives, strylamine compounds, boron complexes, fluoranthene compounds, and metal complexes.
  • the aromatic amine derivative is a condensed aromatic ring derivative having a substituted or unsubstituted arylamino group, and includes pyrene, anthracene, chrysene, and periflanthene having an arylamino group
  • the styrylamine compound is substituted or unsubstituted
  • At least one arylvinyl group is substituted on the arylamine, one or two or more substituents selected from the group consisting of an aryl group, silyl group, alkyl group, cycloalkyl group, and arylamino group are substituted or unsubstituted.
  • the metal complex includes an iridium complex, a platinum complex, and the like, but is not limited thereto.
  • the emission layer may include an iridium complex as a dopant material.
  • the organic light-emitting device including the emission layer including the host material and the dopant material described above may exhibit a maximum wavelength ⁇ max in the emission spectrum at about 400 nm to about 500 nm. Accordingly, the organic light-emitting device is a blue light-emitting organic light-emitting device.
  • the organic light-emitting device includes an electron transport region provided between the emission layer and the cathode, and transports electrons from the cathode to the emission layer, and the electron transport region includes the first compound represented by Formula 1 above.
  • the first compound has a structure in which an N-containing 6 membered heterocyclic group, which is an electron deficient substituent, is bonded to an electron-rich spiro (fluorene-9,9'-xanthene) core, and has a low dipole moment (dipole moment) values and amorphous properties. Therefore, when such a first compound is employed in an organic light emitting device, destruction of the device due to crystallization that may be caused by heat generated during operation of the device can be prevented, and accordingly, the organic light emitting device employing the first compound has a driving voltage This can indicate low and high efficiency.
  • the first compound is represented by any one of the following formulas 1-1 to 1-4, depending on the substitution position of the N-containing-6 membered heterocyclic group:
  • L 1 , X 1 to X 3 , Ar 1 and Ar 2 are as defined in Chemical Formula 1.
  • the first compound is represented by any one of Formulas 1-1 to 1-3.
  • X 1 to X 3 are all N;
  • X 1 and X 2 are N and X 3 is CH;
  • X 1 and X 3 are N and X 2 is CH;
  • X 1 is N and X 2 and X 3 are CH; or
  • X 3 is N, and X 1 and X 2 are CH.
  • L 1 is a single bond, or any one selected from the group consisting of:
  • X is O, S, N(C 6-20 aryl), C(C 1-4 alkyl) 2 , or C(C 6-20 aryl) 2 .
  • X is O, S, N(phenyl), C(methyl) 2 , or C(phenyl) 2 .
  • L 1 is a single bond, phenylene, or biphenyldiyl.
  • L 1 is a single bond, or any one selected from the group consisting of:
  • Ar 1 and Ar 2 are each independently phenyl, biphenylyl, terphenylyl, naphthyl, phenanthrenyl, triphenylenyl, fluorenyl, spirobifluorenyl, carbazolyl, dibenzo. Furanyl or dibenzothiophenyl,
  • Ar 1 and Ar 2 are unsubstituted or independently selected from the group consisting of deuterium, cyano, halogen, Si(C 1-4 alkyl) 3, C 1-10 alkyl and C 6-20 aryl It may be substituted with 1 to 5 substituents.
  • Ar 1 and Ar 2 are each independently any one selected from the group consisting of:
  • Z is hydrogen, cyano, halogen, Si(C 1-4 alkyl) 3 , C 1-10 alkyl, or C 6-20 aryl,
  • X' is O, S, N(C 6-20 aryl), C(C 1-4 alkyl) 2 , or C(C 6-20 aryl) 2 .
  • Z is hydrogen, cyano, fluoro, Si(CH 3 ) 3, methyl, phenyl, naphthyl, or phenanthrenyl
  • X' is O, S, N(phenyl), N(naphthyl ), C(methyl) 2 , or C(phenyl) 2 .
  • the first compound may be prepared by a manufacturing method as shown in Scheme 1 below, for example.
  • the manufacturing method may be more specific in the manufacturing examples to be described later.
  • T is each independently halogen, preferably bromo or chloro, and the definition of other substituents is as described above.
  • steps 1-1 and 1-2 are steps of preparing a spiro [fluorene-9,9'-xanthene) core through a ring formation reaction after reducing the starting material in the presence of a strong base
  • the step 1 -3 is a step of introducing a reactor for performing a Suzuki coupling reaction to the prepared core
  • step 1-4 is a step of introducing an N-containing-6 membered heterocyclic group to the core through a Suzuki coupling reaction
  • This is the step of preparing the displayed compound.
  • Such a Suzuki coupling reaction is preferably carried out in the presence of a palladium catalyst and a base, and the reactor for the Suzuki coupling reaction can be changed as known in the art.
  • the manufacturing method may be more specific in the manufacturing examples to be described later.
  • the electron transport region may include a hole blocking layer and an electron transport layer sequentially stacked from the light emitting layer; Hole blocking layer and electron injection and transport layer; Alternatively, it may be composed of a hole blocking layer, an electron transport layer, and an electron injection layer.
  • the hole blocking layer is located in contact with the emission layer, and the first compound is included in the hole blocking layer or the electron transport layer. More preferably, the first compound is included in the electron transport layer.
  • the hole blocking layer is formed on the emission layer, and specifically, the hole blocking layer is provided in contact with the emission layer to prevent excessive movement of holes, thereby increasing the probability of hole-electron bonding, thereby improving the efficiency of the organic light-emitting device. Do it.
  • the hole blocking layer includes a hole blocking material, and as such a hole blocking material, a material having a stable structure in which holes do not flow out of the emission layer is suitable.
  • the first compound represented by Formula 1 is used as the hole blocking material.
  • a azine derivative including triazine as the hole blocking material Triazole derivatives; Oxadiazole derivatives; Phenanthroline derivatives;
  • a compound into which an electron withdrawing group such as a phosphine oxide derivative has been introduced may be used, but is not limited thereto.
  • the electron transport layer is formed between the light emitting layer and the cathode, preferably between the hole blocking layer and an electron injection layer to be described later to receive electrons from the electron injection layer to transport electrons to the light emitting layer.
  • the electron transport layer includes an electron transport material, and the electron transport material is a material capable of receiving electrons from the cathode and transferring them to the light emitting layer, and a material having high mobility for electrons is suitable.
  • the first compound represented by Formula 1 is used as the electron transport material.
  • a pyridine derivative as the electron transport material Pyrimidine derivatives; Triazole derivatives; Triazine derivatives; Al complex of 8-hydroxyquinoline; Complexes containing Alq 3 ; Organic radical compounds; Hydroxyflavone-metal complexes and the like may be used, but are not limited thereto.
  • the electron transport layer may include a metal complex compound together with the electron transport material.
  • the metal complex compound include lithium 8-hydroxyquinolinato, bis(8-hydroxyquinolinato)zinc, bis(8-hydroxyquinolinato)copper, bis(8-hydroxyquinolinato)manganese , Tris(8-hydroxyquinolinato)aluminum, tris(2-methyl-8-hydroxyquinolinato)aluminum, tris(8-hydroxyquinolinato)gallium, bis(10-hydroxybenzo[h ]Quinolinato)beryllium, bis(10-hydroxybenzo[h]quinolinato)zinc, bis(2-methyl-8-quinolinato)chlorogallium, bis(2-methyl-8-quinolinato) (o-cresolato)gallium, bis(2-methyl-8-quinolinato)(1-naphtholato)aluminum, bis(2-methyl-8-quinolinato)(2-naphtholato)gallium, etc. ,
  • the electron injection layer is located between the electron transport layer and the cathode, and serves to inject electrons from the cathode.
  • the electron injection layer includes an electron injection material, and a material having excellent electron injection effect with respect to the light-emitting layer or the light-emitting material while having the ability to transport electrons and having excellent thin film formation ability is suitable as the electron injection material.
  • the electron injection material include LiF, NaCl, CsF, Li 2 O, BaO, fluorenone, anthraquinodimethane, diphenoquinone, thiopyran dioxide, oxazole, oxadiazole, triazole, imidazole, Derivatives thereof, such as perylene tetracarboxylic acid, preorenylidene methane, anthrone, and the like, metal complex compounds, and nitrogen-containing 5-membered ring derivatives, but are not limited thereto.
  • FIGS. 1 and 2 The structure of the organic light emitting device according to the present invention is illustrated in FIGS. 1 and 2.
  • FIG. 1 shows an example of an organic light-emitting device comprising a substrate 10, an anode 20, a hole transport region 30, an emission layer 40, an electron transport region 50, and a cathode 60.
  • the first compound may be included in the electron transport region 50 and the second compound may be included in the emission layer 40.
  • the second compound is composed of a substrate 10, an anode 20, a hole transport region 30, a light emitting layer 40, an electron transport region 50 and a cathode 60
  • the hole transport region 30 is an anode
  • a hole injection layer 31, a hole transport layer 33, and an electron blocking layer 35 are sequentially stacked from 20
  • the electron transport region 50 is a hole blocking layer 51 sequentially stacked from the light emitting layer 40.
  • an organic light-emitting device including an electron transport layer 53 and an electron injection layer 55 is shown.
  • the first compound may be included in the hole blocking layer 51 or the electron transport layer 53
  • the second compound may be included in the emission layer 40, respectively.
  • the organic light emitting device according to the present invention can be manufactured by sequentially stacking the above-described configurations. At this time, using a PVD (physical vapor deposition) method such as sputtering or e-beam evaporation, the anode is formed by depositing a metal or a conductive metal oxide or an alloy thereof on the substrate. And, after forming each of the above-described layers thereon, it can be prepared by depositing a material that can be used as a cathode thereon. In addition to this method, an organic light-emitting device may be manufactured by sequentially depositing a cathode material, an organic material layer, and an anode material on a substrate.
  • PVD physical vapor deposition
  • the light emitting layer may be formed by a solution coating method as well as a vacuum deposition method of a host and a dopant.
  • the solution coating method refers to spin coating, dip coating, doctor blading, inkjet printing, screen printing, spray method, roll coating, and the like, but is not limited thereto.
  • an organic light-emitting device may be manufactured by sequentially depositing an organic material layer and an anode material from a cathode material on a substrate (WO 2003/012890).
  • the manufacturing method is not limited thereto.
  • the organic light-emitting device may be a top emission type, a bottom emission type, or a double-sided emission type depending on the material used.
  • a glass substrate coated with a thin film of ITO (indium tin oxide) to a thickness of 1,000 ⁇ was put in distilled water dissolved in a detergent and washed with ultrasonic waves.
  • ITO indium tin oxide
  • a product made by Fischer Co. was used as a detergent, and distilled water secondarily filtered with a filter manufactured by Millipore Co. was used as distilled water.
  • ultrasonic cleaning was performed with a solvent of isopropyl alcohol, acetone, and methanol, dried, and then transported to a plasma cleaner.
  • the substrate was transported to a vacuum evaporator.
  • a compound of the following compound HI-1 and the following compound HI-2 was thermally vacuum deposited to a thickness of 100 ⁇ in a ratio of 98:2 (molar ratio) to form a hole injection layer.
  • HT-1 (1150 ⁇ ), which is a material for transporting holes, was vacuum deposited on the hole injection layer to form a hole transport layer.
  • the following compound EB-1 was vacuum-deposited on the hole transport layer with a film thickness of 50 ⁇ to form an electron blocking layer.
  • a light emitting layer was formed by vacuum depositing the compound 2-1 (host) prepared in Preparation Example 4 and the compound BD-1 (dopant) below at a weight ratio of 40:1 on the electron blocking layer with a film thickness of 200 ⁇ .
  • a hole blocking layer was formed by vacuum depositing the following compound HB-1 with a film thickness of 50 ⁇ on the emission layer.
  • compound 1-1 prepared in Preparation Example 1 and LiQ Lithium Quinolate were vacuum-deposited at a weight ratio of 1:1 to form an electron transport layer with a thickness of 300 ⁇ .
  • Lithium fluoride (LiF) in a thickness of 12 ⁇ and aluminum in a thickness of 2,000 ⁇ were sequentially deposited on the electron transport layer to form an electron injection layer and a negative electrode, respectively.
  • the deposition rate of organic materials was maintained at 0.4 to 0.7 ⁇ /sec
  • the deposition rate of lithium fluoride at the cathode was 0.3 ⁇ /sec
  • the deposition rate of aluminum was 2 ⁇ /sec
  • the vacuum degree during deposition was 2x 10 -7 Maintaining ⁇ 5x10 -6 torr, an organic light emitting device was manufactured.
  • Example 1 The compound used in Example 1 is as follows.
  • An organic light emitting diode was manufactured in the same manner as in Example 1, except that the compounds shown in Table 1 below were used instead of the host compound 2-1 and the electron transport layer compound 1-1 in Example 1.
  • the compounds used in Examples and Comparative Examples are as follows.
  • T95 refers to the time required for the luminance to decrease from the initial luminance (1600 nit) to 95%.
  • the organic light emitting device of the embodiment in which the compound represented by Formula 1 is used as an electron transport layer material and the compound represented by Formula 2 is used as a host material of the emission layer at the same time is represented by Formulas 1 and 2 Compared to the organic light-emitting device of Comparative Example in which only one of the compounds to be displayed or neither is used, excellent characteristics are exhibited in terms of driving voltage, luminous efficiency, and lifetime.
  • the compound represented by Formula 1 is ET-1 in which a triazinyl group is connected to 9,9-diphenyl-9H-fluorene and tria to triphenylene.
  • the comparative compound ET-2 to which the genyl group is connected it can be seen that the electron injection property and the electron transfer property to the light emitting layer are superior, which contributes to the improvement of the efficiency of the device.
  • Comparative Examples 4 to 7 Comparative Examples 9 and 10
  • the compound represented by Chemical Formula 2 is material stability compared to Comparative Examples Compounds BH-1 and BH-2 which do not have a substituent at the anthracene position 2 It can be seen that this is excellent and contributes to the long life characteristics of the device.
  • the organic light emitting device of the embodiment according to the present invention employing both the compound and the compound represented by Chemical Formula 2 improves efficiency and lifetime characteristics at the same time.
  • the organic light-emitting device employing a combination of the compounds of the present invention has significantly improved device characteristics compared to the comparative example device. It can be seen that it has.
  • substrate 20 anode

Abstract

본 발명은 양극; 상기 양극에 대향하여 구비된 음극; 상기 양극과 음극 사이에 구비된 발광층; 상기 양극과 발광층 사이에 구비된 정공 수송영역 : 및 상기 발광층과 음극 사이에 구비된 전자 수송영역을 포함하고, 상기 전자수송영역은 화학식 1로 표시되는 화합물을 포함하고, 상기 발광층은 화학식 2로 표시되는 화합물을 포함하는 유기발광 소자를 제공한다.

Description

유기 발광 소자
본 출원은 2019년 5월 10일자 한국 특허 출원 제10-2019-0055219호에 기초한 우선권의 이익을 주장하며, 해당 한국 특허 출원의 문헌에 개시된 모든 내용은 본 명세서의 일부로서 포함된다.
본 발명은 구동 전압이 낮고, 발광 효율이 높으며, 수명이 우수한 유기 발광 소자에 관한 것이다.
일반적으로 유기 발광 현상이란 유기 물질을 이용하여 전기에너지를 빛에너지로 전환시켜주는 현상을 말한다. 유기 발광 현상을 이용하는 유기 발광 소자는 넓은 시야각, 우수한 콘트라스트, 빠른 응답 시간을 가지며, 휘도, 구동 전압 및 응답 속도 특성이 우수하여 많은 연구가 진행되고 있다.
유기 발광 소자는 일반적으로 양극과 음극 및 상기 양극과 음극 사이에 유기물 층을 포함하는 구조를 가진다. 상기 유기물 층은 유기 발광 소자의 효율과 안정성을 높이기 위하여 각기 다른 물질로 구성된 다층의 구조로 이루어진 경우가 많으며, 예컨대 정공주입층, 정공수송층, 발광층, 전자수송층, 전자주입층 등으로 이루어질 수 있다. 이러한 유기 발광 소자의 구조에서 두 전극 사이에 전압을 걸어주게 되면 양극에서는 정공이, 음극에서는 전자가 유기물층에 주입되게 되고, 주입된 정공과 전자가 만났을 때 엑시톤(exciton)이 형성되며, 이 엑시톤이 다시 바닥상태로 떨어질 때 빛이 나게 된다.
상기와 같은 유기 발광 소자에 사용되는 유기물에 대하여 새로운 재료의 개발이 지속적으로 요구되고 있다.
[선행기술문헌]
[특허문헌]
(특허문헌 0001) 한국특허 공개번호 제10-2000-0051826호
본 발명은 구동 전압이 낮고, 발광 효율이 높으며, 수명이 우수한 유기 발광 소자에 관한 것이다.
상기 과제를 해결하기 위하여, 본 발명은 하기의 유기 발광 소자를 제공한다.
본 발명에 따른 유기 발광 소자는,
양극;
상기 양극에 대향하여 구비된 음극;
상기 양극과 음극 사이에 구비된 발광층;
상기 양극과 발광층 사이에 구비된 정공수송영역; 및
상기 발광층과 음극 사이에 구비된 전자수송영역을 포함하고,
상기 전자수송영역은 하기 화학식 1로 표시되는 제1 화합물을 포함하고,
상기 발광층은 하기 화학식 2로 표시되는 제2 화합물을 포함하고,
[화학식 1]
Figure PCTKR2020005027-appb-img-000001
상기 화학식 1에서,
X 1 내지 X 3는 각각 독립적으로, N 또는 CH이되, X 1 내지 X 3 중 적어도 하나는 N이고,
L 1은 단일 결합; 치환 또는 비치환된 C 6-60 아릴렌; 또는 치환 또는 비치환된 N, O 및 S로 구성되는 군으로부터 선택되는 어느 하나 이상의 헤테로원자를 포함하는 C 2-60 헤테로아릴렌이고,
Ar 1 및 Ar 2는 각각 독립적으로, 치환 또는 비치환된 C 6-60 아릴; 또는 치환 또는 비치환된 N, O 및 S로 구성되는 군으로부터 선택되는 어느 하나 이상의 헤테로원자를 포함하는 C 2-60 헤테로아릴이고,
[화학식 2]
Figure PCTKR2020005027-appb-img-000002
상기 화학식 2에서,
L 2 및 L 3는 각각 독립적으로, 단일 결합; 치환 또는 비치환된 C 6-60 아릴렌; 또는 치환 또는 비치환된 N, O 및 S로 구성되는 군으로부터 선택되는 어느 하나 이상의 헤테로원자를 포함하는 C 2-60 헤테로아릴렌이고,
Ar 3 및 Ar 4는 각각 독립적으로, 치환 또는 비치환된 C 6-60 아릴; 또는 치환 또는 비치환된 N, O 및 S로 구성되는 군으로부터 선택되는 어느 하나 이상의 헤테로원자를 포함하는 C 2-60 헤테로아릴이고,
R은 치환 또는 비치환된 C 6-60 아릴; 치환 또는 비치환된 카바졸일; 치환 또는 비치환된 디벤조퓨라닐; 또는 치환 또는 비치환된 디벤조티오페닐이다.
상술한 유기 발광 소자는 발광층과 전자수송영역 각각에 특정 구조의 화합물을 각각 포함하여, 낮은 구동 전압, 높은 발광 효율 및 장수명 특성을 나타낼 수 있다.
도 1은 기판(10), 양극(20), 정공수송영역(30), 발광층(40), 전자수송영역(50) 및 음극(60)으로 이루어진 유기 발광 소자의 예를 도시한 것이다.
도 2는 기판(10), 양극(20), 정공수송영역(30), 발광층(40), 전자수송영역(50) 및 음극(60)으로 이루어지고, 상기 정공수송영역(30)은 양극(20)으로부터 차례로 적층된 정공주입층(31), 정공수송층(33) 및 전자차단층(35)을 구비하고, 상기 전자수송영역(50)은 발광층(40)으로부터 차례로 적층된 정공차단층(51), 전자수송층(53) 및 전자주입층(55)을 구비한 유기 발광 소자의 예를 도시한 것이다.
이하, 본 발명의 이해를 돕기 위하여 보다 상세히 설명한다.
본 명세서에서,
Figure PCTKR2020005027-appb-img-000003
Figure PCTKR2020005027-appb-img-000004
는 다른 치환기에 연결되는 결합을 의미한다.
본 명세서에서 "치환 또는 비치환된" 이라는 용어는 중수소; 할로겐기; 시아노기; 니트로기; 히드록시기; 카보닐기; 에스테르기; 이미드기; 아미노기; 포스핀옥사이드기; 알콕시기; 아릴옥시기; 알킬티옥시기; 아릴티옥시기; 알킬술폭시기; 아릴술폭시기; 실릴기; 붕소기; 알킬기; 사이클로알킬기; 알케닐기; 아릴기; 아르알킬기; 아르알케닐기; 알킬아릴기; 알킬아민기; 아랄킬아민기; 헤테로아릴아민기; 아릴아민기; 아릴포스핀기; 또는 N, O 및 S 원자 중 1개 이상을 포함하는 헤테로아릴기로 이루어진 군에서 선택된 1개 이상의 치환기로 치환 또는 비치환되거나, 상기 예시된 치환기 중 2 이상의 치환기가 연결된 치환 또는 비치환된 것을 의미한다. 예컨대, "2 이상의 치환기가 연결된 치환기"는 비페닐기일 수 있다. 즉, 비페닐기는 아릴기일 수도 있고, 2개의 페닐기가 연결된 치환기로 해석될 수 있다.
본 명세서에서 카보닐기의 탄소수는 특별히 한정되지 않으나, 탄소수 1 내지 40인 것이 바람직하다. 구체적으로 하기와 같은 구조의 화합물이 될 수 있으나, 이에 한정되는 것은 아니다.
Figure PCTKR2020005027-appb-img-000005
본 명세서에 있어서, 에스테르기는 에스테르기의 산소가 탄소수 1 내지 25의 직쇄, 분지쇄 또는 고리쇄 알킬기 또는 탄소수 6 내지 25의 아릴기로 치환될 수 있다. 구체적으로, 하기 구조식의 화합물이 될 수 있으나, 이에 한정되는 것은 아니다.
Figure PCTKR2020005027-appb-img-000006
본 명세서에 있어서, 이미드기의 탄소수는 특별히 한정되지 않으나, 탄소수 1 내지 25인 것이 바람직하다. 구체적으로 하기와 같은 구조의 화합물이 될 수 있으나, 이에 한정되는 것은 아니다.
Figure PCTKR2020005027-appb-img-000007
본 명세서에 있어서, 실릴기는 구체적으로 트리메틸실릴기, 트리에틸실릴기, t-부틸디메틸실릴기, 비닐디메틸실릴기, 프로필디메틸실릴기, 트리페닐실릴기, 디페닐실릴기, 페닐실릴기 등이 있으나 이에, 한정되는 것은 아니다.
본 명세서에 있어서, 붕소기는 구체적으로 트리메틸붕소기, 트리에틸붕소기, t-부틸디메틸붕소기, 트리페닐붕소기, 페닐붕소기 등이 있으나 이에, 한정되는 것은 아니다.
본 명세서에 있어서, 할로겐기의 예로는 불소, 염소, 브롬 또는 요오드가 있다.
본 명세서에 있어서, 상기 알킬기는 직쇄 또는 분지쇄일 수 있고, 탄소수는 특별히 한정되지 않으나 1 내지 40인 것이 바람직하다. 일 실시상태에 따르면, 상기 알킬기의 탄소수는 1 내지 20이다. 또 하나의 실시상태에 따르면, 상기 알킬기의 탄소수는 1 내지 10이다. 또 하나의 실시상태에 따르면, 상기 알킬기의 탄소수는 1 내지 6이다. 알킬기의 구체적인 예로는 메틸, 에틸, 프로필, n-프로필, 이소프로필, 부틸, n-부틸, 이소부틸, tert-부틸, sec-부틸, 1-메틸-부틸, 1-에틸-부틸, 펜틸, n-펜틸, 이소펜틸, 네오펜틸, tert-펜틸, 헥실, n-헥실, 1-메틸펜틸, 2-메틸펜틸, 4-메틸-2-펜틸, 3,3-디메틸부틸, 2-에틸부틸, 헵틸, n-헵틸, 1-메틸헥실, 사이클로펜틸메틸,사이클로헥실메틸, 옥틸, n-옥틸, tert-옥틸, 1-메틸헵틸, 2-에틸헥실, 2-프로필펜틸, n-노닐, 2,2-디메틸헵틸, 1-에틸-프로필, 1,1-디메틸-프로필, 이소헥실, 2-메틸펜틸, 4-메틸헥실, 5-메틸헥실 등이 있으나, 이들에 한정되지 않는다.
본 명세서에 있어서, 상기 알케닐기는 직쇄 또는 분지쇄일 수 있고, 탄소수는 특별히 한정되지 않으나, 2 내지 40인 것이 바람직하다. 일 실시상태에 따르면, 상기 알케닐기의 탄소수는 2 내지 20이다. 또 하나의 실시상태에 따르면, 상기 알케닐기의 탄소수는 2 내지 10이다. 또 하나의 실시상태에 따르면, 상기 알케닐기의 탄소수는 2 내지 6이다. 구체적인 예로는 비닐, 1-프로페닐, 이소프로페닐, 1-부테닐, 2-부테닐, 3-부테닐, 1-펜테닐, 2-펜테닐, 3-펜테닐, 3-메틸-1-부테닐, 1,3-부타디에닐, 알릴, 1-페닐비닐-1-일, 2-페닐비닐-1-일, 2,2-디페닐비닐-1-일, 2-페닐-2-(나프틸-1-일)비닐-1-일, 2,2-비스(디페닐-1-일)비닐-1-일, 스틸베닐기, 스티레닐기 등이 있으나 이들에 한정되지 않는다.
본 명세서에 있어서, 사이클로알킬기는 특별히 한정되지 않으나, 탄소수 3 내지 60인 것이 바람직하며, 일 실시상태에 따르면, 상기 사이클로알킬기의 탄소수는 3 내지 30이다. 또 하나의 실시상태에 따르면, 상기 사이클로알킬기의 탄소수는 3 내지 20이다. 또 하나의 실시상태에 따르면, 상기 사이클로알킬기의 탄소수는 3 내지 6이다. 구체적으로 사이클로프로필, 사이클로부틸, 사이클로펜틸, 3-메틸사이클로펜틸, 2,3-디메틸사이클로펜틸, 사이클로헥실, 3-메틸사이클로헥실, 4-메틸사이클로헥실, 2,3-디메틸사이클로헥실, 3,4,5-트리메틸사이클로헥실, 4-tert-부틸사이클로헥실, 사이클로헵틸, 사이클로옥틸 등이 있으나, 이에, 한정되는 것은 아니다.
본 명세서에 있어서, 아릴기는 특별히 한정되지 않으나 탄소수 6 내지 60인 것이 바람직하며, 단환식 아릴기 또는 다환식 아릴기일 수 있다. 일 실시상태에 따르면, 상기 아릴기의 탄소수는 6 내지 30이다. 일 실시상태에 따르면, 상기 아릴기의 탄소수는 6 내지 20이다. 상기 아릴기가 단환식 아릴기로는 페닐기, 비페닐기, 터페닐기 등이 될 수 있으나, 이에 한정되는 것은 아니다. 상기 다환식 아릴기로는 나프틸기, 안트라세닐기, 페난쓰레닐기, 파이레닐기, 페릴레닐기, 크라이세닐기, 플루오레닐기 등이 될 수 있으나, 이에 한정되는 것은 아니다.
본 명세서에 있어서, 플루오레닐기는 치환될 수 있고, 치환기 2개가 서로 결합하여 스피로 구조를 형성할 수 있다. 상기 플루오레닐기가 치환되는 경우,
Figure PCTKR2020005027-appb-img-000008
등이 될 수 있다. 다만, 이에 한정되는 것은 아니다.
본 명세서에 있어서, 헤테로아릴은 이종 원소로 O, N, Si 및 S 중 1개 이상을 포함하는 헤테로아릴로서, 탄소수는 특별히 한정되지 않으나, 탄소수 2 내지 60인 것이 바람직하다. 헤테로아릴의 예로는 티오펜기, 퓨란기, 피롤기, 이미다졸기, 티아졸기, 옥사졸기, 옥사디아졸기, 트리아졸기, 피리딜기, 비피리딜기, 피리미딜기, 트리아진기, 아크리딜기, 피리다진기, 피라지닐기, 퀴놀리닐기, 퀴나졸린기, 퀴녹살리닐기, 프탈라지닐기, 피리도 피리미디닐기, 피리도 피라지닐기, 피라지노 피라지닐기, 이소퀴놀린기, 인돌기, 카바졸기, 벤즈옥사졸기, 벤조이미다졸기, 벤조티아졸기, 벤조카바졸기, 벤조티오펜기, 디벤조티오펜기, 벤조퓨라닐기, 페난쓰롤린기(phenanthroline), 이소옥사졸릴기, 티아디아졸릴기, 페노티아지닐기 및 디벤조퓨라닐기 등이 있으나, 이들에만 한정되는 것은 아니다.
본 명세서에 있어서, 아르알킬기, 아르알케닐기, 알킬아릴기, 아릴아민기 중의 아릴기는 전술한 아릴기의 예시와 같다. 본 명세서에 있어서, 아르알킬기, 알킬아릴기, 알킬아민기 중 알킬기는 전술한 알킬기의 예시와 같다. 본 명세서에 있어서, 헤테로아릴아민 중 헤테로아릴은 전술한 헤테로아릴에 관한 설명이 적용될 수 있다. 본 명세서에 있어서, 아르알케닐기 중 알케닐기는 전술한 알케닐기의 예시와 같다. 본 명세서에 있어서, 아릴렌은 2가기인 것을 제외하고는 전술한 아릴기에 관한 설명이 적용될 수 있다. 본 명세서에 있어서, 헤테로아릴렌은 2가기인 것을 제외하고는 전술한 헤테로아릴에 관한 설명이 적용될 수 있다. 본 명세서에 있어서, 탄화수소 고리는 1가기가 아니고, 2개의 치환기가 결합하여 형성한 것을 제외하고는 전술한 아릴기 또는 사이클로알킬기에 관한 설명이 적용될 수 있다. 본 명세서에 있어서, 헤테로고리는 1가기가 아니고, 2개의 치환기가 결합하여 형성한 것을 제외하고는 전술한 헤테로아릴에 관한 설명이 적용될 수 있다.
본 발명은 하기 구조를 갖는 유기 발광 소자를 제공한다:
양극;
상기 양극에 대향하여 구비된 음극;
상기 양극과 음극 사이에 구비되고, 상기 제2 화합물을 포함하는 발광층;
상기 양극과 발광층 사이에 구비된 정공수송영역; 및
상기 발광층과 음극 사이에 구비되고, 상기 제1 화합물을 포함하는 전자수송영역.
이하, 각 구성 별로 본 발명을 상세히 설명한다.
양극 및 음극
상기 양극 물질로는 통상 유기물 층으로 정공 주입이 원활할 수 있도록 일함수가 큰 물질이 바람직하다. 상기 양극 물질의 구체적인 예로는 바나듐, 크롬, 구리, 아연, 금과 같은 금속 또는 이들의 합금; 아연 산화물, 인듐 산화물, 인듐주석 산화물(ITO), 인듐아연 산화물(IZO)과 같은 금속 산화물; ZnO:Al 또는 SnO 2:Sb와 같은 금속과 산화물의 조합; 폴리(3-메틸티오펜), 폴리[3,4-(에틸렌-1,2-디옥시)티오펜](PEDOT), 폴리피롤 및 폴리아닐린과 같은 전도성 고분자 등이 있으나, 이들에만 한정되는 것은 아니다.
상기 음극 물질로는 통상 유기물층으로 전자 주입이 용이하도록 일함수가 작은 물질인 것이 바람직하다. 상기 음극 물질의 구체적인 예로는 마그네슘, 칼슘, 나트륨, 칼륨, 티타늄, 인듐, 이트륨, 리튬, 가돌리늄, 알루미늄, 은, 주석 및 납과 같은 금속 또는 이들의 합금; LiF/Al 또는 LiO 2/Al과 같은 다층 구조 물질 등이 있으나, 이들에만 한정되는 것은 아니다.
정공수송영역
본 발명에 따른 유기 발광 소자는 양극과 발광층 사이에 구비된 정공수송영역을 포함한다. 상기 정공수송영역은 양극으로부터 정공을 수취하여 발광층까지 정공을 수송하는 영역으로, 정공에 대한 이동성이 큰 물질을 포함하는 것이 적합하다. 바람직하게는, 상기 정공수송영역은 상기 양극으로부터 차례로 적층되어 있는 정공주입층, 정공수송층 및 전자차단층을 포함한다.
(정공주입층)
상기 정공주입층은 상기 양극 상에 위치하여, 양극으로부터 정공을 주입하는 층으로, 정공 주입 물질을 포함한다. 이러한 정공 주입 물질로는 정공을 수송하는 능력을 가져 양극에서의 정공 주입효과, 발광층 또는 발광재료에 대하여 우수한 정공 주입 효과를 갖고, 발광층에서 생성된 여기자의 전자주입층 또는 전자주입재료에의 이동을 방지하며, 또한, 박막 형성 능력이 우수한 화합물이 바람직하다. 특히, 정공 주입 물질의 HOMO(highest occupied molecular orbital)가 양극 물질의 일함수와 주변 유기물층의 HOMO 사이인 것이 적합하다.
상기 정공 주입 물질의 구체적인 예로는 금속 포피린(porphyrin), 올리고티오펜, 아릴아민 계열의 유기물, 헥사니트릴헥사아자트리페닐렌 계열의 유기물, 퀴나크리돈(quinacridone)계열의 유기물, 페릴렌(perylene) 계열의 유기물, 안트라퀴논 및 폴리아닐린과 폴리티오펜 계열의 전도성 고분자 등이 있으나, 이에 한정되는 것은 아니다.
(정공수송층)
상기 정공수송층은 상기 정공주입층 상에 형성되어, 정공주입층으로부터 정공을 수취하여 발광층까지 정공을 수송하는 역할을 한다. 상기 정공수송층은 정공 수송 물질을 포함하고, 이러한 정공 수송 물질로는 양극이나 정공 주입층으로부터 정공을 수송받아 발광층으로 옮겨줄 수 있는 정공에 대한 이동성이 큰 물질이 적합하다.
상기 정공 수송 물질의 구체적인 예로는 아릴아민 계열의 유기물, 전도성 고분자, 및 공액 부분과 비공액 부분이 함께 있는 블록 공중합체 등이 있으나, 이에 한정되는 것은 아니다.
(전자차단층)
상기 전자차단층은 상기 정공수송층 상에 형성되어, 바람직하게는 발광층에 접하여 구비되어, 정공 이동도를 조절하고, 전자의 과다한 이동을 방지하여 정공-전자간 결합 확률을 높여줌으로써 유기 발광 소자의 효율을 개선하는 역할을 한다. 상기 전자차단층은 전자 차단 물질을 포함하고, 이러한 전자 차단 물질로는 발광층에서 전자가 흘러나오지 않을 수 있는 안정된 구조를 갖는 물질이 적합하다.
상기 전자 차단 물질의 구체적인 예로는 아릴아민 계열의 유기물 등이 있으나, 이에 한정되는 것은 아니다.
발광층
본 발명에 따른 유기 발광 소자는 상기 화학식 2로 표시되는 제2 화합물인, 2번, 9번 및 10번 위치가 치환된 안트라센 화합물을 호스트 물질로 포함한다. 특히, 상기 제2 화합물은 9번 및 10번 위치에 동일 또는 상이한 치환기가 도입됨과 동시에 2번 위치에 치환기가 도입된 구조를 가져, 2번 위치에 치환기가 도입되지 않은 화합물에 비하여, 물질 안정성이 우수하여 유기 발광 소자에 사용 시 수명 특성 향상에 기여할 수 있다.
바람직하게는, 상기 화학식 2에서, L 2 및 L 3는 각각 독립적으로, 단일결합, 또는 하기로 구성되는 군으로부터 선택되는 어느 하나일 수 있다:
Figure PCTKR2020005027-appb-img-000009
상기에서,
Y 1은 O, S, N(C 6-20 아릴), C(C 1-4 알킬) 2, 또는 C(C 6-20 아릴) 2이다.
예를 들어, Y 1은 O, S, N(페닐), C(메틸) 2, 또는 C(페닐) 2이다.
보다 바람직하게는, L 2 및 L 3는 각각 독립적으로, 단일결합, 또는 페닐렌이다.
바람직하게는, Ar 3 및 Ar 4는 각각 독립적으로, C 6-20 아릴; 또는 O 또는 S를 포함하는 C 2-60 헤테로아릴이다.
보다 바람직하게는, Ar 3 및 Ar 4는 각각 독립적으로, 페닐, 비페닐릴, 터페닐릴, 나프틸, 페난쓰레닐, 디벤조퓨라닐, 또는 디벤조티오페닐이다.
바람직하게는, R은 페닐, 비페닐릴, 터페닐릴, 나프틸, 페난쓰레닐, 트리페닐레닐, 플루오레닐, 카바졸일, 디벤조퓨라닐, 또는 디벤조티오페닐이고,
여기서, R은 비치환되거나, 또는 중수소, C 1-10 알킬, 트리(C 1-4 알킬)실릴 및 C 6-20 아릴로 구성되는 군으로부터 각각 독립적으로 선택되는 1개 내지 5개의 치환기로 치환될 수 있다.
보다 바람직하게는, R은 하기로 구성되는 군으로부터 선택되는 어느 하나이다:
Figure PCTKR2020005027-appb-img-000010
상기에서,
Q는 수소, C 1-10 알킬, Si(C 1-4 알킬) 3, 또는 C 6-20 아릴이고,
Y 2는 O, S, N(C 6-20 아릴), C(C 1-4 알킬) 2, 또는 C(C 6-20 아릴) 2이다.
예를 들어, Q는 수소, tert-부틸, Si(메틸) 3, 페닐, 또는 나프틸이고,
Y 2는 O, S, N(페닐), C(메틸) 2, 또는 C(페닐) 2이다.
바람직하게는, 상기 제2 화합물은 하기 화학식 2-1 또는 2-2로 표시된다:
[화학식 2-1]
Figure PCTKR2020005027-appb-img-000011
[화학식 2-2]
Figure PCTKR2020005027-appb-img-000012
상기 화학식 2-1 및 2-2에서,
L 3, Ar 4 및 R은 상기 화학식 2에서 정의한 바와 같다.
상기 제2 화합물의 대표적인 예는 하기와 같다:
Figure PCTKR2020005027-appb-img-000013
Figure PCTKR2020005027-appb-img-000014
Figure PCTKR2020005027-appb-img-000015
Figure PCTKR2020005027-appb-img-000016
Figure PCTKR2020005027-appb-img-000017
Figure PCTKR2020005027-appb-img-000018
Figure PCTKR2020005027-appb-img-000019
Figure PCTKR2020005027-appb-img-000020
Figure PCTKR2020005027-appb-img-000021
Figure PCTKR2020005027-appb-img-000022
Figure PCTKR2020005027-appb-img-000023
Figure PCTKR2020005027-appb-img-000024
Figure PCTKR2020005027-appb-img-000025
Figure PCTKR2020005027-appb-img-000026
Figure PCTKR2020005027-appb-img-000027
Figure PCTKR2020005027-appb-img-000028
Figure PCTKR2020005027-appb-img-000029
.
이때, 상기 제2 화합물은 일례로 하기 반응식 2와 같은 제조 방법으로 제조할 수 있다. 상기 제조 방법은 후술할 제조예에서 보다 구체화될 수 있다.
[반응식 2]
Figure PCTKR2020005027-appb-img-000030
상기 반응식 2에서, T는 할로겐이고, 바람직하게는 브로모, 또는 클로로이고, 다른 치환기에 대한 정의는 앞서 설명한 바와 같다.
구체적으로, 상기 화학식 2로 표시되는 화합물은 스즈키 커플링 반응을 통해 출발물질에 R 치환기가 도입되어 제조된다. 이러한 스즈키 커플링 반응은 팔라듐 촉매와 염기 존재 하에 수행하는 것이 바람직하며, 스즈키 커플링 반응을 위한 반응기는 당업계에 알려진 바에 따라 변경이 가능하다. 상기 제조 방법은 후술할 제조예에서 보다 구체화될 수 있다.
한편, 상기 발광층은 도펀트 재료를 더 포함할 수 있다. 상기 도펀트 재료로는 방향족 아민 유도체, 스트릴아민 화합물, 붕소 착체, 플루오란텐 화합물, 금속 착체 등이 있다. 구체적으로 방향족 아민 유도체로는 치환 또는 비치환된 아릴아미노기를 갖는 축합 방향족환 유도체로서, 아릴아미노기를 갖는 피렌, 안트라센, 크리센, 페리플란텐 등이 있으며, 스티릴아민 화합물로는 치환 또는 비치환된 아릴아민에 적어도 1개의 아릴비닐기가 치환되어 있는 화합물로, 아릴기, 실릴기, 알킬기, 사이클로알킬기 및 아릴아미노기로 이루어진 군에서 1 또는 2 이상 선택되는 치환기가 치환 또는 비치환된다. 구체적으로 스티릴아민, 스티릴디아민, 스티릴트리아민, 스티릴테트라아민 등이 있으나, 이에, 한정되는 것은 아니다. 또한, 금속 착체로는 이리듐 착체, 백금 착체 등이 있으나, 이에, 한정되는 것은 아니다. 바람직하게는, 상기 발광층은 이리듐 착체를 도펀트 재료로 포함할 수 있다.
상술한 호스트 물질과 도펀트 물질을 포함하는 발광층을 구비한 유기 발광 소자는 발광스펙트럼에서의 최대파장(λ max)을 약 400 nm 내지 약 500 nm에서 나타낼 수 있다. 따라서, 상기 유기 발광 소자는 청색 발광 유기 발광 소자이다.
전자수송영역
본 발명에 따른 유기 발광 소자는 상기 발광층과 음극 사이에 구비된, 음극에서 발광층까지 전자를 수송하는 전자수송영역을 포함하고, 상기 전자수송영역은 상기 화학식 1로 표시되는 제1 화합물을 포함한다.
상기 제1 화합물은 전자가 풍부한 스피로[플루오렌-9,9'-잔텐) 코어에 전자 부족 치환체(electron deficient substituent)인 N 함유-6원 헤테로고리기가 결합된 구조를 가져, 낮은 쌍극자 모멘트(dipole moment) 값 및 무정형 특성을 나타낸다. 따라서, 이러한 제1 화합물을 유기 발광 소자에 채용 시, 소자 작동 시 발생하는 열로 야기될 수 있는 결정화에 의한 소자 파괴가 방지될 수 있고, 이에 따라 상기 제1 화합물이 채용된 유기 발광 소자는 구동전압이 낮고 높은 효율을 나타낼 수 있다.
상기 제1 화합물은 N 함유-6원 헤테로고리기의 치환 위치에 따라, 하기 화학식 1-1 내지 1-4 중 어느 하나로 표시된다:
[화학식 1-1]
Figure PCTKR2020005027-appb-img-000031
[화학식 1-2]
Figure PCTKR2020005027-appb-img-000032
[화학식 1-3]
Figure PCTKR2020005027-appb-img-000033
[화학식 1-4]
Figure PCTKR2020005027-appb-img-000034
상기 화학식 1-1 내지 1-4에서,
L 1, X 1 내지 X 3, Ar 1 및 Ar 2는 상기 화학식 1에서 정의한 바와 같다.
바람직하게는, 상기 제1 화합물은 상기 화학식 1-1 내지 1-3 중 어느 하나로 표시된다.
바람직하게는, X 1 내지 X 3는 모두 N이거나;
X 1 및 X 2는 N이고, X 3는 CH이거나;
X 1 및 X 3는 N이고, X 2는 CH이거나;
X 1는 N이고, X 2 및 X 3는 CH이거나; 또는
X 3는 N이고, X 1 및 X 2는 CH이다.
바람직하게는, L 1은 단일결합, 또는 하기로 구성되는 군으로부터 선택되는 어느 하나이다:
Figure PCTKR2020005027-appb-img-000035
상기에서,
X는 O, S, N(C 6-20 아릴), C(C 1-4 알킬) 2, 또는 C(C 6-20 아릴) 2이다.
예를 들어, X는 O, S, N(페닐), C(메틸) 2, 또는 C(페닐) 2이다.
보다 바람직하게는, L 1은 단일결합, 페닐렌, 또는 비페닐디일이다.
가장 바람직하게는, L 1은 단일결합, 또는 하기로 구성되는 군으로부터 선택되는 어느 하나이다:
Figure PCTKR2020005027-appb-img-000036
.
바람직하게는, Ar 1 및 Ar 2는 각각 독립적으로, 페닐, 비페닐릴, 터페닐릴, 나프틸, 페난쓰레닐, 트리페닐레닐, 플루오레닐, 스피로비플루오레닐, 카바졸일, 디벤조퓨라닐, 또는 디벤조티오페닐이고,
여기서, Ar 1 및 Ar 2는 비치환되거나, 또는 중수소, 시아노, 할로겐, Si(C 1-4 알킬) 3, C 1-10 알킬 및 C 6-20 아릴로 구성되는 군으로부터 각각 독립적으로 선택되는 1개 내지 5개의 치환기로 치환될 수 있다.
보다 바람직하게는, Ar 1 및 Ar 2는 각각 독립적으로, 하기로 구성되는 군으로부터 선택되는 어느 하나이다:
Figure PCTKR2020005027-appb-img-000037
상기에서,
Z는 수소, 시아노, 할로겐, Si(C 1-4 알킬) 3, C 1-10 알킬, 또는 C 6-20 아릴이고,
X'는 O, S, N(C 6-20 아릴), C(C 1-4 알킬) 2, 또는 C(C 6-20 아릴) 2이다.
예를 들어, Z는 수소, 시아노, 플루오로, Si(CH 3) 3, 메틸, 페닐, 나프틸, 또는 페난쓰레닐이고, X'는 O, S, N(페닐), N(나프틸), C(메틸) 2, 또는 C(페닐) 2이다.
상기 제1 화합물의 대표적인 예는 하기와 같다:
Figure PCTKR2020005027-appb-img-000038
Figure PCTKR2020005027-appb-img-000039
Figure PCTKR2020005027-appb-img-000040
Figure PCTKR2020005027-appb-img-000041
Figure PCTKR2020005027-appb-img-000042
Figure PCTKR2020005027-appb-img-000043
Figure PCTKR2020005027-appb-img-000044
Figure PCTKR2020005027-appb-img-000045
Figure PCTKR2020005027-appb-img-000046
Figure PCTKR2020005027-appb-img-000047
Figure PCTKR2020005027-appb-img-000048
Figure PCTKR2020005027-appb-img-000049
Figure PCTKR2020005027-appb-img-000050
Figure PCTKR2020005027-appb-img-000051
.
이때, 상기 제1 화합물은 일례로 하기 반응식 1과 같은 제조 방법으로 제조할 수 있다. 상기 제조 방법은 후술할 제조예에서 보다 구체화될 수 있다.
[반응식 1]
Figure PCTKR2020005027-appb-img-000052
상기 반응식 1에서, T는 각각 독립적으로 할로겐이고, 바람직하게는 브로모, 또는 클로로이고, 다른 치환기에 대한 정의는 앞서 설명한 바와 같다.
구체적으로, 상기 단계 1-1 및 1-2는 강염기 존재 하에서 출발물질을 환원시킨 후, 고리형성 반응을 통해 스피로[플루오렌-9,9'-잔텐) 코어를 제조하는 단계이고, 상기 단계 1-3은 제조된 코어에 스즈키 커플링 반응을 진행하기 위한 반응기를 도입하는 단계이며, 상기 단계 1-4는 스즈키 커플링 반응을 통해서 상기 코어에 N 함유-6원 헤테로고리기를 도입하여 화학식 1로 표시되는 화합물을 제조하는 단계이다. 이러한 스즈키 커플링 반응은 팔라듐 촉매와 염기 존재 하에 수행하는 것이 바람직하며, 스즈키 커플링 반응을 위한 반응기는 당업계에 알려진 바에 따라 변경이 가능하다. 상기 제조 방법은 후술할 제조예에서 보다 구체화될 수 있다.
한편, 상기 전자수송영역은 발광층으로부터 차례로 적층되어 있는 정공차단층 및 전자수송층; 정공차단층 및 전자주입 및 수송층; 또는 정공차단층, 전자수송층 및 전자주입층으로 구성될 수 있다. 바람직하게는, 상기 정공차단층은 상기 발광층에 접하여 위치하고, 상기 제1 화합물은 상기 정공차단층 또는 상기 전자수송층에 포함된다. 보다 바람직하게는, 상기 제1 화합물은 상기 전자수송층에 포함된다.
이하, 각 유기층에 대하여 상세히 설명한다.
(정공차단층)
상기 정공차단층은 상기 발광층 상에 형성되어, 구체적으로 상기 정공차단층은 발광층에 접하여 구비되어, 정공의 과다한 이동을 방지하여 정공-전자간 결합 확률을 높여줌으로써 유기 발광 소자의 효율을 개선하는 역할을 한다. 상기 정공차단층은 정공 차단 물질을 포함하고, 이러한 정공 차단 물질로는 발광층에서 정공이 흘러나오지 않을 수 있는 안정된 구조를 갖는 물질이 적합하다.
바람직하게는, 상기 정공 차단 물질로 상기 화학식 1로 표시되는 제1 화합물을 사용한다. 또는, 상기 정공 차단 물질로 트리아진을 포함한 아진류 유도체; 트리아졸 유도체; 옥사디아졸 유도체; 페난트롤린 유도체; 포스핀옥사이드 유도체 등의 전자흡인기가 도입된 화합물을 사용할 수 있으나, 이에 한정되는 것은 아니다.
(전자수송층)
상기 전자수송층은 상기 발광층과 음극 사이, 바람직하게는 상기 정공차단층과 후술하는 전자주입층 사이에 형성되어 전자주입층으로부터 전자를 수취하여 발광층까지 전자를 수송하는 역할을 한다. 상기 전자수송층은 전자 수송 물질을 포함하고, 이러한 전자 수송 물질로는 음극으로부터 전자를 잘 주입 받아 발광층으로 옮겨줄 수 있는 물질로서, 전자에 대한 이동성이 큰 물질이 적합하다.
바람직하게는, 상기 전자 수송 물질로 상기 화학식 1로 표시되는 제1 화합물을 사용한다. 또는, 상기 전자 수송 물질로 피리딘 유도체; 피리미딘 유도체; 트리아졸 유도체; 트리아진 유도체; 8-히드록시퀴놀린의 Al 착물; Alq 3를 포함한 착물; 유기 라디칼 화합물; 히드록시플라본-금속 착물 등을 사용할 수 있으나, 이에 한정되는 것은 아니다.
또한, 상기 전자수송층은 상기 전자 수송 물질과 함께 금속 착체 화합물을 포함할 수 있다. 상기 금속 착체 화합물로는 8-하이드록시퀴놀리나토 리튬, 비스(8-하이드록시퀴놀리나토)아연, 비스(8-하이드록시퀴놀리나토)구리, 비스(8-하이드록시퀴놀리나토)망간, 트리스(8-하이드록시퀴놀리나토)알루미늄, 트리스(2-메틸-8-하이드록시퀴놀리나토)알루미늄, 트리스(8-하이드록시퀴놀리나토)갈륨, 비스(10-하이드록시벤조[h]퀴놀리나토)베릴륨, 비스(10-하이드록시벤조[h]퀴놀리나토)아연, 비스(2-메틸-8-퀴놀리나토)클로로갈륨, 비스(2-메틸-8-퀴놀리나토)(o-크레졸라토)갈륨, 비스(2-메틸-8-퀴놀리나토)(1-나프톨라토)알루미늄, 비스(2-메틸-8-퀴놀리나토)(2-나프톨라토)갈륨 등이 있으나, 이에, 한정되는 것은 아니다.
(전자주입층)
상기 전자주입층은 상기 전자수송층과 음극 사이에 위치하여, 음극으로부터 전자를 주입하는 역할을 한다. 상기 전자주입층은 전자 주입 물질을 포함하고, 이러한 전자 주입 물질로는 전자를 수송하는 능력을 가지면서, 발광층 또는 발광 재료에 대하여 우수한 전자주입 효과를 가지며, 박막형성능력이 우수한 물질이 적합하다.
상기 전자 주입 물질의 구체적인 예로는, LiF, NaCl, CsF, Li 2O, BaO, 플루오레논, 안트라퀴노다이메탄, 다이페노퀴논, 티오피란 다이옥사이드, 옥사졸, 옥사다이아졸, 트리아졸, 이미다졸, 페릴렌테트라카복실산, 프레오레닐리덴 메탄, 안트론 등과 그들의 유도체, 금속 착체 화합물 및 질소 함유 5원환 유도체 등이 있으나, 이에, 한정되는 것은 아니다.
유기 발광 소자
본 발명에 따른 유기 발광 소자의 구조를 도 1 및 도 2에 예시하였다.
도 1은 기판(10), 양극(20), 정공수송영역(30), 발광층(40), 전자수송영역(50) 및 음극(60)으로 이루어진 유기 발광 소자의 예를 도시한 것이다. 이와 같은 구조에 있어서, 상기 제1 화합물은 상기 전자수송영역(50)에, 상기 제2 화합물은 상기 발광층(40)에 각각 포함될 수 있다.
도 2는 기판(10), 양극(20), 정공수송영역(30), 발광층(40), 전자수송영역(50) 및 음극(60)으로 이루어지고, 상기 정공수송영역(30)은 양극(20)으로부터 차례로 적층된 정공주입층(31), 정공수송층(33) 및 전자차단층(35)을 구비하고, 상기 전자수송영역(50)은 발광층(40)으로부터 차례로 적층된 정공차단층(51), 전자수송층(53) 및 전자주입층(55)을 구비한 유기 발광 소자의 예를 도시한 것이다. 이와 같은 구조에 있어서, 상기 제1 화합물은 상기 정공차단층(51) 또는 전자수송층(53)에, 상기 제2 화합물은 상기 발광층(40)에 각각 포함될 수 있다.
본 발명에 따른 유기 발광 소자는 상술한 구성을 순차적으로 적층시켜 제조할 수 있다. 이때, 스퍼터링법(sputtering)이나 전자빔 증발법(e-beam evaporation)과 같은 PVD(physical Vapor Deposition)방법을 이용하여, 기판 상에 금속 또는 전도성을 가지는 금속 산화물 또는 이들의 합금을 증착시켜 양극을 형성하고, 그 위에 상술한 각 층을 형성한 후, 그 위에 음극으로 사용할 수 있는 물질을 증착시켜 제조할 수 있다. 이와 같은 방법 외에도, 기판 상에 음극 물질부터 유기물층, 양극 물질을 차례로 증착시켜 유기 발광 소자를 만들 수 있다. 또한, 발광층은 호스트 및 도펀트를 진공 증착법 뿐만 아니라 용액 도포법에 의하여 형성될 수 있다. 여기서, 용액 도포법이라 함은 스핀 코팅, 딥코팅, 닥터 블레이딩, 잉크젯 프린팅, 스크린 프린팅, 스프레이법, 롤 코팅 등을 의미하지만, 이들만으로 한정되는 것은 아니다.
이와 같은 방법 외에도, 기판 상에 음극 물질로부터 유기물층, 양극 물질을 차례로 증착시켜 유기 발광 소자를 제조할 수 있다(WO 2003/012890). 다만, 제조 방법이 이에 한정되는 것은 아니다.
한편, 본 발명에 따른 유기 발광 소자는 사용되는 재료에 따라 전면 발광형, 후면 발광형 또는 양면 발광형일 수 있다.
상기 유기 발광 소자의 제조는 이하 실시예에서 구체적으로 설명한다. 그러나 하기 실시예는 본 발명을 예시하기 위한 것이며, 본 발명의 범위가 이들에 의하여 한정되는 것은 아니다.
제조예 1: 화합물 1-1의 제조
Figure PCTKR2020005027-appb-img-000053
질소 분위기에서 500ml 둥근 바닥 플라스크에 화합물 A(12.13g, 26.49mmol), (4-(4,6-디페닐-1,3,5-트리아진-2-일)페닐)보론산(8.50g, 24.08mmol)을 테트라하이드로퓨란 200ml에 완전히 녹인 후 2M 탄산칼륨수용액(100ml)을 첨가하고, 테트라키스-(트리페닐포스핀)팔라듐(0.83g, 0.72mmol)을 넣은 후 3 시간 동안 가열 교반하였다. 상온으로 온도를 낮추고 물 층을 제거하고 무수황산마그네슘으로 건조한 후 감압농축 시키고 에틸아세테이트 280ml로 재결정하여 화합물 1-1 (11.16g, 72%)를 제조하였다.
MS[M+H] += 640
제조예 2: 화합물 1-2의 제조
Figure PCTKR2020005027-appb-img-000054
질소 분위기에서 500ml 둥근 바닥 플라스크에 화합물 B(10.70g, 23.37mmol), 2-([1,1'-비페닐]-4-일)-4-클로로-6-페닐-1,3,5-트리아진(7.5g, 21.25mmol)을 테트라하이드로퓨란 220ml에 완전히 녹인 후 2M 탄산칼륨수용액(110ml)을 첨가하고, 테트라키스-(트리페닐포스핀)팔라듐(0.74g, 0.64mmol)을 넣은 후 4 시간 동안 가열 교반하였다. 상온으로 온도를 낮추고 물 층을 제거하고 무수황산마그네슘으로 건조한 후 감압농축 시키고 에틸아세테이트 240ml로 재결정하여 화합물 1-2 (8.46g, 62%)를 제조하였다.
MS[M+H] += 640
제조예 3: 화합물 1-3의 제조
Figure PCTKR2020005027-appb-img-000055
질소 분위기에서 500ml 둥근 바닥 플라스크에 화합물 C(7.49g, 16.36mmol), 2-(4-브로모페닐)-4-(나프탈렌-1-일)-6-페닐-1,3,5-트리아진(6.50g, 14.87mmol)을 테트라하이드로퓨란 200ml에 완전히 녹인 후 2M 탄산칼륨수용액(100ml)을 첨가하고, 테트라키스-(트리페닐포스핀)팔라듐(0.52g, 0.45mmol)을 넣은 후 3시간 동안 가열 교반하였다. 상온으로 온도를 낮추고 물 층을 제거하고 무수황산마그네슘으로 건조한 후 감압농축 시키고 테트라하이드로퓨란 180ml로 재결정하여 화합물 1-3 (5.89g, 62%)를 제조하였다.
MS[M+H] += 690
제조예 4: 화합물 2-1의 제조
Figure PCTKR2020005027-appb-img-000056
질소 분위기에서 500ml 둥근 바닥 플라스크에 화합물 2-브로모-10-(나프탈렌-1-일)-9-페닐안트라센(15.50g, 33.84mmol), 나프탈렌-2-일보론산(6.40g, 37.23mmol)을 테트라하이드로퓨란 260ml에 완전히 녹인 후 2M 탄산칼륨수용액(130ml)을 첨가하고, 테트라키스-(트리페닐포스핀)팔라듐(1.17g, 1.02mmol)을 넣은 후 4시간 동안 가열 교반하였다. 상온으로 온도를 낮추고 물 층을 제거하고 무수황산마그네슘으로 건조한 후 감압농축 시키고 에틸아세테이트 250ml로 재결정하여 화합물 2-1 (8.64g, 50%)를 제조하였다.
MS[M+H] += 507
제조예 5: 화합물 2-2의 제조
Figure PCTKR2020005027-appb-img-000057
질소 분위기에서 500ml 둥근 바닥 플라스크에 화합물 2-브로모-10-(페난쓰렌-9-일)-9-페닐안트라센(9.50g, 18.70mmol), 디벤조[b,d]퓨란-2-일보론산(4.36g, 20.57mmol)을 테트라하이드로퓨란 240ml에 완전히 녹인 후 2M 탄산칼륨수용액(120ml)을 첨가하고, 테트라키스-(트리페닐포스핀)팔라듐(0.65g, 0.56mmol)을 넣은 후 4시간 동안 가열 교반하였다. 상온으로 온도를 낮추고 물 층을 제거하고 무수황산마그네슘으로 건조한 후 감압농축 시키고 에틸아세테이트 240ml로 재결정하여 화합물 2-2 (6.44g, 58%)를 제조하였다.
MS[M+H] += 597
제조예 6: 화합물 2-3의 제조
Figure PCTKR2020005027-appb-img-000058
질소 분위기에서 500ml 둥근 바닥 플라스크에 화합물 3-(3-브로모-10-페닐안트라센-9-일)디벤조[b,d]티오펜(7.50g, 14.59mmol), [1,1'-비페닐]-3-일보론산(3.18g, 16.05mmol)을 테트라하이드로퓨란 180ml에 완전히 녹인 후 2M 탄산칼륨수용액(90ml)을 첨가하고, 테트라키스-(트리페닐포스핀)팔라듐(0.51g, 0.44mmol)을 넣은 후 4시간 동안 가열 교반하였다. 상온으로 온도를 낮추고 물 층을 제거하고 무수황산마그네슘으로 건조한 후 감압농축 시키고 에틸아세테이트 270ml로 재결정하여 화합물 2-3 (5.11g, 89%)를 제조하였다.
MS[M+H] += 589
실시예 1
ITO(indium tin oxide)가 1,000Å의 두께로 박막 코팅된 유리 기판을 세제를 녹인 증류수에 넣고 초음파로 세척하였다. 이때, 세제로는 피셔사(Fischer Co.) 제품을 사용하였으며, 증류수로는 밀러포어사(Millipore Co.) 제품의 필터(Filter)로 2차로 걸러진 증류수를 사용하였다. ITO를 30분간 세척한 후 증류수로 2회 반복하여 초음파 세척을 10분간 진행하였다. 증류수 세척이 끝난 후, 이소프로필알콜, 아세톤, 메탄올의 용제로 초음파 세척을 하고 건조시킨 후 플라즈마 세정기로 수송시켰다. 또한, 산소 플라즈마를 이용하여 상기 기판을 5분간 세정한 후 진공 증착기로 기판을 수송시켰다.
이렇게 준비된 ITO 투명 전극 위에 하기 화합물 HI-1 및 하기 화합물 HI-2의 화합물을 98:2(몰비)의 비가 되도록 100Å의 두께로 열 진공 증착하여 정공주입층을 형성하였다.
상기 정공 주입층 위에 정공을 수송하는 물질인 하기 화합물 HT-1 (1150Å)를 진공 증착하여 정공 수송층을 형성하였다.
이어서, 상기 정공수송층 위에 막 두께 50Å으로 하기 화합물 EB-1를 진공 증착하여 전자차단층을 형성하였다.
이어서, 상기 전자차단층 위에 막 두께 200Å으로 상기 제조예 4에서 제조한 화합물 2-1(호스트)과 하기 화합물 BD-1(도펀트)를 40:1의 중량비로 진공증착하여 발광층을 형성하였다.
상기 발광층 위에 막 두께 50Å으로 하기 화합물 HB-1를 진공 증착하여 정공차단층을 형성하였다.
이어서, 상기 정공차단층 위에 하기 제조예 1에서 제조한 화합물 1-1과 하기 화합물 LiQ(Lithium Quinolate)를 1:1의 중량비로 진공증착하여 300Å의 두께로 전자수송층을 형성하였다.
상기 전자수송층 위에 순차적으로 12Å두께로 리튬플로라이드(LiF)와 2,000Å 두께로 알루미늄을 증착하여 각각 전자주입층 및 음극을 형성하였다.
상기의 과정에서 유기물의 증착속도는 0.4~ 0.7Å/sec를 유지하였고, 음극의 리튬플로라이드는 0.3Å/sec, 알루미늄은 2Å/sec의 증착 속도를 유지하였으며, 증착시 진공도는 2x 10 -7 ~5x10 -6 torr를 유지하여, 유기 발광 소자를 제작하였다.
상기 실시예 1에 사용된 화합물은 하기와 같다.
Figure PCTKR2020005027-appb-img-000059
실시예 2 내지 실시예 9 및 비교예 1 내지 10
상기 실시예 1에서 호스트 화합물 2-1 및 전자수송층의 화합물 1-1 대신 하기 표 1에 기재된 화합물을 각각 사용하는 것을 제외하고는, 상기 실시예 1과 동일한 방법으로 유기 발광 소자를 제조하였다. 상기 실시예 및 비교예에서 사용된 화합물은 하기와 같다.
Figure PCTKR2020005027-appb-img-000060
상기 실시예 및 비교예에서 제조한 유기 발광 소자에 20 mA/cm 2의 전류를 인가하였을 때, 상기 제조한 유기 발광 소자를 20 mA/cm 2의 전류밀도에서 구동 전압, 발광 효율, 색 좌표를 측정하였고, 20 mA/cm 2의 전류밀도에서 초기 휘도 대비 95%가 되는 시간(T95)을 측정하였다. 그 결과를 하기 표 1에 나타내었다. 이때, T95은 휘도가 초기 휘도(1600 nit)에서 95%로 감소되는데 소요되는 시간을 의미한다.
화합물(전자수송층) 화합물(발광층호스트) 전압(V@20mA/cm 2) 효율(cd/A@20mA/cm 2 색좌표(x,y) T95(hr)
실시예 1 1-1 2-1 3.51 6.69 (0.144, 0.046) 360
실시예 2 1-1 2-2 3.53 6.64 (0.145, 0.047) 345
실시예 3 1-1 2-3 3.54 6.71 (0.144, 0.048) 355
실시예 4 1-2 2-1 3.63 6.70 (0.145, 0.044) 365
실시예 5 1-2 2-2 3.64 6.63 (0.144, 0.046) 340
실시예 6 1-2 2-3 3.65 6.65 (0.146, 0.044) 335
실시예 7 1-3 2-1 3.78 6.76 (0.145, 0.046) 360
실시예 8 1-3 2-2 3.73 6.69 (0.144, 0.044) 345
실시예 9 1-3 2-3 3.72 6.64 (0.143, 0.046) 330
비교예 1 1-1 BH-1 4.00 6.36 (0.144, 0.045) 260
비교예 2 1-2 BH-1 4.01 6.35 (0.145, 0.048) 275
비교예 3 1-3 BH-1 4.02 6.33 (0.144, 0.046) 240
비교예 4 ET-1 2-1 4.18 6.00 (0.144, 0.045) 330
비교예 5 ET-1 2-2 4.17 6.06 (0.146, 0.042) 315
비교예 6 ET-1 2-3 4.15 6.04 (0.145, 0.046) 305
비교예 7 ET-2 2-1 4.62 5.83 (0.144, 0.047) 250
비교예 8 1-1 BH-2 4.46 6.21 (0.144, 0.047) 160
비교예 9 ET-2 BH-2 4.55 6.07 (0.145, 0.048) 175
비교예 10 ET-1 BH-1 4.31 5.91 (0.143, 0.046) 245
상기 표 1에 나타난 바와 같이, 상기 화학식 1로 표시되는 화합물을 전자수송층 물질로 사용하고 상기 화학식 2로 표시되는 화합물을 발광층의 호스트 물질로 동시에 사용한 실시예의 유기 발광 소자는, 상기 화학식 1 및 2로 표시되는 화합물 중 하나만을 채용하거나, 둘 다 채용하지 않는 비교예의 유기 발광 소자에 비하여, 구동 전압, 발광 효율 및 수명 측면 모두에서 우수한 특성을 나타내었다.
구체적으로, 비교예 1 내지 3 및 비교예 8 내지 10을 살펴보면, 상기 화학식 1로 표시되는 화합물은 9,9-디페닐-9H-플루오렌에 트리아지닐기가 연결된 ET-1 및 트리페닐렌에 트리아지닐기가 연결된 비교예 화합물 ET-2에 비하여, 전자주입 특성 및 발광층으로 전자를 이동시키는 특성이 우수하여 소자의 효율 향상에 기여함을 알 수 있다. 그리고, 비교예 4 내지 7, 비교예 9 및 비교예 10을 살펴보면, 상기 화학식 2로 표시되는 화합물은 안트라센 2번 위치에 치환기를 갖지 않는 비교예 화합물 BH-1 및 BH-2에 비하여, 물질 안정성이 우수하여 소자의 장수명 특성에 기여함을 알 수 있다.
또한, ET-2 및 BH-2와 ET-1 및 BH-1를 서로 조합하더라도 효율 및 수명 특성이 동시에 향상되지는 않는 비교예 9 및 10의 유기 발광 소자와는 달리, 상기 화학식 1로 표시되는 화합물과 상기 화학식 2로 표시되는 화합물을 모두 채용한 본 발명에 따른 실시예의 유기 발광 소자는 효율 및 수명 특성이 동시에 향상됨이 확인된다. 이는 일반적으로 유기 발광 소자의 발광 효율 및 수명 특성은 서로 트레이드-오프(Trade-off) 관계를 갖는 점을 고려할 때 본 발명의 화합물간의 조합을 채용한 유기 발광 소자는 비교예 소자 대비 현저히 향상된 소자 특성을 가짐을 알 수 있다.
[부호의 설명]
10: 기판 20: 양극
30: 정공수송영역 31: 정공주입층
33: 정공수송층 35: 전자차단층
40: 발광층 50: 전자수송영역
51: 정공차단층 53: 전자수송층
55: 전자주입층 60: 음극

Claims (12)

  1. 양극;
    상기 양극에 대향하여 구비된 음극;
    상기 양극과 음극 사이에 구비된 발광층;
    상기 양극과 발광층 사이에 구비된 정공수송영역; 및
    상기 발광층과 음극 사이에 구비된 전자수송영역을 포함하고,
    상기 전자수송영역은 하기 화학식 1로 표시되는 제1 화합물을 포함하고,
    상기 발광층은 하기 화학식 2로 표시되는 제2 화합물을 포함하는,
    유기 발광 소자:
    [화학식 1]
    Figure PCTKR2020005027-appb-img-000061
    상기 화학식 1에서,
    X 1 내지 X 3는 각각 독립적으로, N 또는 CH이되, X 1 내지 X 3 중 적어도 하나는 N이고,
    L 1은 단일 결합; 치환 또는 비치환된 C 6-60 아릴렌; 또는 치환 또는 비치환된 N, O 및 S로 구성되는 군으로부터 선택되는 어느 하나 이상의 헤테로원자를 포함하는 C 2-60 헤테로아릴렌이고,
    Ar 1 및 Ar 2는 각각 독립적으로, 치환 또는 비치환된 C 6-60 아릴; 또는 치환 또는 비치환된 N, O 및 S로 구성되는 군으로부터 선택되는 어느 하나 이상의 헤테로원자를 포함하는 C 2-60 헤테로아릴이고,
    [화학식 2]
    Figure PCTKR2020005027-appb-img-000062
    상기 화학식 2에서,
    L 2 및 L 3는 각각 독립적으로, 단일 결합; 치환 또는 비치환된 C 6-60 아릴렌; 또는 치환 또는 비치환된 N, O 및 S로 구성되는 군으로부터 선택되는 어느 하나 이상의 헤테로원자를 포함하는 C 2-60 헤테로아릴렌이고,
    Ar 3 및 Ar 4는 각각 독립적으로, 치환 또는 비치환된 C 6-60 아릴; 또는 치환 또는 비치환된 N, O 및 S로 구성되는 군으로부터 선택되는 어느 하나 이상의 헤테로원자를 포함하는 C 2-60 헤테로아릴이고,
    R은 치환 또는 비치환된 C 6-60 아릴; 치환 또는 비치환된 카바졸일; 치환 또는 비치환된 디벤조퓨라닐; 또는 치환 또는 비치환된 디벤조티오페닐이다.
  2. 제1항에 있어서,
    상기 제1 화합물은 하기 화학식 1-1 내지 1-3 중 어느 하나로 표시되는,
    유기 발광 소자:
    [화학식 1-1]
    Figure PCTKR2020005027-appb-img-000063
    [화학식 1-2]
    Figure PCTKR2020005027-appb-img-000064
    [화학식 1-3]
    Figure PCTKR2020005027-appb-img-000065
    상기 화학식 1-1 내지 1-3에서,
    L 1, X 1 내지 X 3, Ar 1 및 Ar 2는 제1항에서 정의한 바와 같다.
  3. 제1항에 있어서,
    X 1 내지 X 3는 모두 N이거나;
    X 1 및 X 2는 N이고, X 3는 CH이거나;
    X 1 및 X 3는 N이고, X 2는 CH이거나;
    X 1는 N이고, X 2 및 X 3는 CH이거나; 또는
    X 3는 N이고, X 1 및 X 2는 CH인,
    유기 발광 소자.
  4. 제1항에 있어서,
    L 1은 단일결합, 또는 하기로 구성되는 군으로부터 선택되는 어느 하나인,
    유기 발광 소자:
    Figure PCTKR2020005027-appb-img-000066
    .
  5. 제1항에 있어서,
    Ar 1 및 Ar 2는 각각 독립적으로, 하기로 구성되는 군으로부터 선택되는 어느 하나인,
    유기 발광 소자:
    Figure PCTKR2020005027-appb-img-000067
    상기에서,
    Z는 수소, 시아노, 할로겐, Si(C 1-4 알킬) 3, C 1-10 알킬, 또는 C 6-20 아릴이고,
    X'는 O, S, N(C 6-20 아릴), C(C 1-4 알킬) 2, 또는 C(C 6-20 아릴) 2이다.
  6. 제1항에 있어서,
    상기 제1 화합물은 하기로 구성되는 군으로부터 선택되는 어느 하나인,
    유기 발광 소자:
    Figure PCTKR2020005027-appb-img-000068
    Figure PCTKR2020005027-appb-img-000069
    Figure PCTKR2020005027-appb-img-000070
    Figure PCTKR2020005027-appb-img-000071
    Figure PCTKR2020005027-appb-img-000072
    Figure PCTKR2020005027-appb-img-000073
    Figure PCTKR2020005027-appb-img-000074
    Figure PCTKR2020005027-appb-img-000075
    Figure PCTKR2020005027-appb-img-000076
    Figure PCTKR2020005027-appb-img-000077
    Figure PCTKR2020005027-appb-img-000078
    Figure PCTKR2020005027-appb-img-000079
    Figure PCTKR2020005027-appb-img-000080
    Figure PCTKR2020005027-appb-img-000081
    .
  7. 제1항에 있어서,
    L 2 및 L 3는 각각 독립적으로, 단일결합, 또는 페닐렌인,
    유기 발광 소자.
  8. 제1항에 있어서,
    Ar 3 및 Ar 4는 각각 독립적으로, 페닐, 비페닐릴, 터페닐릴, 나프틸, 페난쓰레닐, 디벤조퓨라닐, 또는 디벤조티오페닐인,
    유기 발광 소자.
  9. 제1항에 있어서,
    R은 하기로 구성되는 군으로부터 선택되는 어느 하나인,
    유기 발광 소자:
    Figure PCTKR2020005027-appb-img-000082
    상기에서,
    Q는 수소, C 1-10 알킬, Si(C 1-4 알킬) 3, 또는 C 6-20 아릴이고,
    Y 2는 O, S, N(C 6-20 아릴), C(C 1-4 알킬) 2, 또는 C(C 6-20 아릴) 2이다.
  10. 제1항에 있어서,
    상기 제2 화합물은 하기 화학식 2-1 또는 2-2로 표시되는,
    유기 발광 소자:
    [화학식 2-1]
    Figure PCTKR2020005027-appb-img-000083
    [화학식 2-2]
    Figure PCTKR2020005027-appb-img-000084
    상기 화학식 2-1 및 2-2에서,
    L 3, Ar 4 및 R은 제1항에서 정의한 바와 같다.
  11. 제1항에 있어서,
    상기 제2 화합물은 하기로 구성되는 군으로부터 선택되는 어느 하나인,
    유기 발광 소자:
    Figure PCTKR2020005027-appb-img-000085
    Figure PCTKR2020005027-appb-img-000086
    Figure PCTKR2020005027-appb-img-000087
    Figure PCTKR2020005027-appb-img-000088
    Figure PCTKR2020005027-appb-img-000089
    Figure PCTKR2020005027-appb-img-000090
    Figure PCTKR2020005027-appb-img-000091
    Figure PCTKR2020005027-appb-img-000092
    Figure PCTKR2020005027-appb-img-000093
    Figure PCTKR2020005027-appb-img-000094
    Figure PCTKR2020005027-appb-img-000095
    Figure PCTKR2020005027-appb-img-000096
    Figure PCTKR2020005027-appb-img-000097
    Figure PCTKR2020005027-appb-img-000098
    Figure PCTKR2020005027-appb-img-000099
    Figure PCTKR2020005027-appb-img-000100
    Figure PCTKR2020005027-appb-img-000101
    .
  12. 제1항에 있어서,
    상기 전자수송영역은 정공차단층, 전자수송층 및 전자주입층을 포함하고
    상기 정공차단층은 상기 발광층에 접하여 위치하고,
    상기 제1 화합물은 상기 정공차단층 또는 상기 전자수송층에 포함되는,
    유기 발광 소자.
PCT/KR2020/005027 2019-05-10 2020-04-14 유기 발광 소자 WO2020231021A1 (ko)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202080015265.2A CN113474907A (zh) 2019-05-10 2020-04-14 有机发光器件

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020190055219A KR20200129988A (ko) 2019-05-10 2019-05-10 유기 발광 소자
KR10-2019-0055219 2019-05-10

Publications (1)

Publication Number Publication Date
WO2020231021A1 true WO2020231021A1 (ko) 2020-11-19

Family

ID=73289899

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2020/005027 WO2020231021A1 (ko) 2019-05-10 2020-04-14 유기 발광 소자

Country Status (3)

Country Link
KR (2) KR20200129988A (ko)
CN (1) CN113474907A (ko)
WO (1) WO2020231021A1 (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4135005A1 (en) * 2021-08-05 2023-02-15 SFC Co., Ltd. Organic light-emitting device

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20060050915A (ko) * 2004-09-02 2006-05-19 주식회사 엘지화학 안트라센 유도체 및 이를 발광 물질로서 이용한 유기 발광소자
KR20180111558A (ko) * 2017-03-30 2018-10-11 주식회사 엘지화학 유기 발광 소자
CN108997201A (zh) * 2018-08-06 2018-12-14 长春海谱润斯科技有限公司 一种螺芴杂蒽化合物及其有机电致发光器件
KR20190003086A (ko) * 2017-06-30 2019-01-09 주식회사 엘지화학 유기 발광 소자
KR20190014472A (ko) * 2017-08-02 2019-02-12 주식회사 엘지화학 유기 전계 발광 소자

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100430549B1 (ko) 1999-01-27 2004-05-10 주식회사 엘지화학 신규한 착물 및 그의 제조 방법과 이를 이용한 유기 발광 소자 및 그의 제조 방법
KR102316684B1 (ko) * 2015-01-21 2021-10-26 삼성디스플레이 주식회사 유기 발광 소자

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20060050915A (ko) * 2004-09-02 2006-05-19 주식회사 엘지화학 안트라센 유도체 및 이를 발광 물질로서 이용한 유기 발광소자
KR20180111558A (ko) * 2017-03-30 2018-10-11 주식회사 엘지화학 유기 발광 소자
KR20190003086A (ko) * 2017-06-30 2019-01-09 주식회사 엘지화학 유기 발광 소자
KR20190014472A (ko) * 2017-08-02 2019-02-12 주식회사 엘지화학 유기 전계 발광 소자
CN108997201A (zh) * 2018-08-06 2018-12-14 长春海谱润斯科技有限公司 一种螺芴杂蒽化合物及其有机电致发光器件

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4135005A1 (en) * 2021-08-05 2023-02-15 SFC Co., Ltd. Organic light-emitting device

Also Published As

Publication number Publication date
CN113474907A (zh) 2021-10-01
KR102600009B1 (ko) 2023-11-07
KR20220113895A (ko) 2022-08-17
KR20200129988A (ko) 2020-11-18

Similar Documents

Publication Publication Date Title
WO2021025328A9 (ko) 신규한 화합물 및 이를 이용한 유기 발광 소자
WO2020022860A1 (ko) 신규한 화합물 및 이를 이용한 유기발광 소자
WO2021091165A1 (ko) 유기 발광 소자
WO2022102992A1 (ko) 신규한 화합물 및 이를 이용한 유기발광 소자
WO2021125648A1 (ko) 신규한 화합물 및 이를 이용한 유기 발광 소자
WO2020262861A1 (ko) 신규한 화합물 및 이를 포함하는 유기발광 소자
WO2023096405A1 (ko) 신규한 화합물 및 이를 이용한 유기발광 소자
WO2022031020A1 (ko) 신규한 화합물 및 이를 이용한 유기 발광 소자
WO2022059923A1 (ko) 신규한 화합물 및 이를 이용한 유기발광 소자
WO2020231021A1 (ko) 유기 발광 소자
WO2022031013A1 (ko) 신규한 화합물 및 이를 이용한 유기 발광 소자
WO2022031016A1 (ko) 신규한 화합물 및 이를 이용한 유기 발광 소자
WO2021251661A1 (ko) 신규한 화합물 및 이를 이용한 유기발광 소자
WO2020231022A1 (ko) 유기 발광 소자
WO2021182833A1 (ko) 신규한 화합물 및 이를 이용한 유기 발광 소자
WO2021182834A1 (ko) 신규한 화합물 및 이를 이용한 유기 발광 소자
WO2020231242A1 (ko) 유기 발광 소자
WO2021194261A1 (ko) 신규한 화합물 및 이를 이용한 유기 발광 소자
WO2021034156A1 (ko) 신규한 화합물 및 이를 이용한 유기 발광 소자
WO2020246837A1 (ko) 신규한 화합물 및 이를 이용한 유기 발광 소자
WO2020246835A9 (ko) 신규한 화합물 및 이를 이용한 유기 발광 소자
WO2023085834A1 (ko) 신규한 화합물 및 이를 포함한 유기 발광 소자
WO2024043703A1 (ko) 신규한 화합물 및 이를 포함하는 유기발광 소자
WO2023096318A1 (ko) 신규한 화합물 및 이를 이용한 유기 발광 소자
WO2021080339A1 (ko) 신규한 화합물 및 이를 이용한 유기발광 소자

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20806508

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20806508

Country of ref document: EP

Kind code of ref document: A1