WO2021079977A1 - トリアジン環含有重合体およびそれを含む膜形成用組成物 - Google Patents

トリアジン環含有重合体およびそれを含む膜形成用組成物 Download PDF

Info

Publication number
WO2021079977A1
WO2021079977A1 PCT/JP2020/039866 JP2020039866W WO2021079977A1 WO 2021079977 A1 WO2021079977 A1 WO 2021079977A1 JP 2020039866 W JP2020039866 W JP 2020039866W WO 2021079977 A1 WO2021079977 A1 WO 2021079977A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
triazine ring
formula
containing polymer
carbon atoms
Prior art date
Application number
PCT/JP2020/039866
Other languages
English (en)
French (fr)
Inventor
直樹 中家
Original Assignee
日産化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日産化学株式会社 filed Critical 日産化学株式会社
Priority to US17/770,373 priority Critical patent/US20230002555A1/en
Priority to CN202080074297.XA priority patent/CN114599704A/zh
Priority to JP2021553554A priority patent/JPWO2021079977A1/ja
Priority to KR1020227016366A priority patent/KR20220095196A/ko
Priority to EP20878509.7A priority patent/EP4050049A4/en
Publication of WO2021079977A1 publication Critical patent/WO2021079977A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/20Diluents or solvents
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/0622Polycondensates containing six-membered rings, not condensed with other rings, with nitrogen atoms as the only ring hetero atoms
    • C08G73/0638Polycondensates containing six-membered rings, not condensed with other rings, with nitrogen atoms as the only ring hetero atoms with at least three nitrogen atoms in the ring
    • C08G73/0644Poly(1,3,5)triazines
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G61/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G61/12Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule
    • C08G61/122Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule derived from five- or six-membered heterocyclic compounds, other than imides
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F290/00Macromolecular compounds obtained by polymerising monomers on to polymers modified by introduction of aliphatic unsaturated end or side groups
    • C08F290/02Macromolecular compounds obtained by polymerising monomers on to polymers modified by introduction of aliphatic unsaturated end or side groups on to polymers modified by introduction of unsaturated end groups
    • C08F290/06Polymers provided for in subclass C08G
    • C08F290/065Polyamides; Polyesteramides; Polyimides
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F290/00Macromolecular compounds obtained by polymerising monomers on to polymers modified by introduction of aliphatic unsaturated end or side groups
    • C08F290/02Macromolecular compounds obtained by polymerising monomers on to polymers modified by introduction of aliphatic unsaturated end or side groups on to polymers modified by introduction of unsaturated end groups
    • C08F290/06Polymers provided for in subclass C08G
    • C08F290/067Polyurethanes; Polyureas
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F290/00Macromolecular compounds obtained by polymerising monomers on to polymers modified by introduction of aliphatic unsaturated end or side groups
    • C08F290/08Macromolecular compounds obtained by polymerising monomers on to polymers modified by introduction of aliphatic unsaturated end or side groups on to polymers modified by introduction of unsaturated side groups
    • C08F290/14Polymers provided for in subclass C08G
    • C08F290/145Polyamides; Polyesteramides; Polyimides
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F290/00Macromolecular compounds obtained by polymerising monomers on to polymers modified by introduction of aliphatic unsaturated end or side groups
    • C08F290/08Macromolecular compounds obtained by polymerising monomers on to polymers modified by introduction of aliphatic unsaturated end or side groups on to polymers modified by introduction of unsaturated side groups
    • C08F290/14Polymers provided for in subclass C08G
    • C08F290/147Polyurethanes; Polyureas
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/40High-molecular-weight compounds
    • C08G18/64Macromolecular compounds not provided for by groups C08G18/42 - C08G18/63
    • C08G18/6415Macromolecular compounds not provided for by groups C08G18/42 - C08G18/63 having nitrogen
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/70Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the isocyanates or isothiocyanates used
    • C08G18/81Unsaturated isocyanates or isothiocyanates
    • C08G18/8108Unsaturated isocyanates or isothiocyanates having only one isocyanate or isothiocyanate group
    • C08G18/8116Unsaturated isocyanates or isothiocyanates having only one isocyanate or isothiocyanate group esters of acrylic or alkylacrylic acid having only one isocyanate or isothiocyanate group
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/02Polyamines
    • C08G73/0273Polyamines containing heterocyclic moieties in the main chain
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L79/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing nitrogen with or without oxygen or carbon only, not provided for in groups C08L61/00 - C08L77/00
    • C08L79/04Polycondensates having nitrogen-containing heterocyclic rings in the main chain; Polyhydrazides; Polyamide acids or similar polyimide precursors
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D165/00Coating compositions based on macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain; Coating compositions based on derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D175/00Coating compositions based on polyureas or polyurethanes; Coating compositions based on derivatives of such polymers
    • C09D175/04Polyurethanes
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D179/00Coating compositions based on macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing nitrogen, with or without oxygen, or carbon only, not provided for in groups C09D161/00 - C09D177/00
    • C09D179/04Polycondensates having nitrogen-containing heterocyclic rings in the main chain; Polyhydrazides; Polyamide acids or similar polyimide precursors
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D4/00Coating compositions, e.g. paints, varnishes or lacquers, based on organic non-macromolecular compounds having at least one polymerisable carbon-to-carbon unsaturated bond ; Coating compositions, based on monomers of macromolecular compounds of groups C09D183/00 - C09D183/16
    • C09D4/06Organic non-macromolecular compounds having at least one polymerisable carbon-to-carbon unsaturated bond in combination with a macromolecular compound other than an unsaturated polymer of groups C09D159/00 - C09D187/00
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D5/00Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/04Optical elements characterised by the material of which they are made; Optical coatings for optical elements made of organic materials, e.g. plastics
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/10Definition of the polymer structure
    • C08G2261/12Copolymers
    • C08G2261/124Copolymers alternating
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/10Definition of the polymer structure
    • C08G2261/18Definition of the polymer structure conjugated
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/30Monomer units or repeat units incorporating structural elements in the main chain
    • C08G2261/31Monomer units or repeat units incorporating structural elements in the main chain incorporating aromatic structural elements in the main chain
    • C08G2261/312Non-condensed aromatic systems, e.g. benzene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/30Monomer units or repeat units incorporating structural elements in the main chain
    • C08G2261/31Monomer units or repeat units incorporating structural elements in the main chain incorporating aromatic structural elements in the main chain
    • C08G2261/316Monomer units or repeat units incorporating structural elements in the main chain incorporating aromatic structural elements in the main chain bridged by heteroatoms, e.g. N, P, Si or B
    • C08G2261/3162Arylamines
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/30Monomer units or repeat units incorporating structural elements in the main chain
    • C08G2261/32Monomer units or repeat units incorporating structural elements in the main chain incorporating heteroaromatic structural elements in the main chain
    • C08G2261/322Monomer units or repeat units incorporating structural elements in the main chain incorporating heteroaromatic structural elements in the main chain non-condensed
    • C08G2261/3221Monomer units or repeat units incorporating structural elements in the main chain incorporating heteroaromatic structural elements in the main chain non-condensed containing one or more nitrogen atoms as the only heteroatom, e.g. pyrrole, pyridine or triazole
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/50Physical properties
    • C08G2261/59Stability
    • C08G2261/592Stability against heat
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/90Applications
    • C08G2261/92TFT applications
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/04Oxygen-containing compounds
    • C08K5/10Esters; Ether-esters
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2201/00Properties
    • C08L2201/08Stabilised against heat, light or radiation or oxydation
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2201/00Properties
    • C08L2201/10Transparent films; Clear coatings; Transparent materials
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2203/00Applications
    • C08L2203/16Applications used for films
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2203/00Applications
    • C08L2203/20Applications use in electrical or conductive gadgets
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2312/00Crosslinking
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/542Dye sensitized solar cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/549Organic PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to a triazine ring-containing polymer and a film-forming composition containing the same.
  • liquid crystal displays organic electroluminescence (EL) elements (organic EL displays and organic EL lighting), touch panels, optical semiconductor (LED) elements, solid-state imaging elements, organic thin-film solar cells, dye-sensitized solar cells, and organic thin-film transistors
  • EL organic electroluminescence
  • LED optical semiconductor
  • solid-state imaging elements organic thin-film solar cells
  • dye-sensitized solar cells dye-sensitized solar cells
  • organic thin-film transistors organic thin-film transistors
  • a polymer containing a repeating unit having a triazine ring and an aromatic ring has a high refractive index, and the polymer alone has high heat resistance, high transparency, high refractive index, and high solubility. It has already been found that low volume shrinkage can be achieved and that it is suitable as a film-forming composition for producing electronic devices (Patent Document 1).
  • the present invention has been made in view of the above circumstances, and can form a thin film having a high refractive index and excellent transparency and solvent resistance (crack resistance), as well as a low polar solvent, a hydrophobic solvent, and a low boiling point.
  • An object of the present invention is to provide a triazine ring-containing polymer having excellent solubility in various organic solvents such as a solvent, and a film-forming composition containing the same.
  • the present inventor has at least one triazine ring terminal, and at least a part of the triazine ring terminal is sealed with an arylamino group having a cross-linking group. It has been found that by using a triazine ring-containing polymer, a thin film having a high refractive index and excellent transparency and solvent resistance can be formed, and a triazine ring-containing polymer having excellent solubility in various organic solvents can be obtained. , The present invention has been completed.
  • the present invention provides the following triazine ring-containing polymer and a film-forming composition containing the same. [1]. It contains a repeating unit structure represented by the following formula (1), has at least one triazine ring terminal, and at least a part of the triazine ring terminal is sealed with an arylamino group having a cross-linking group.
  • a characteristic triazine ring-containing polymer ⁇ In the formula, R and R'represent a hydrogen atom, an alkyl group, an alkoxy group, an aryl group, or an aralkyl group independently of each other.
  • Ar represents at least one selected from the group represented by the formulas (2) to (13).
  • R 1 to R 92 are independent of each other, a hydrogen atom, a halogen atom, a carboxyl group, a sulfo group, an alkyl group having 1 to 10 carbon atoms, an alkyl halide group having 1 to 10 carbon atoms, or a carbon.
  • R 93 and R 94 represent a hydrogen atom or an alkyl group having 1 to 10 carbon atoms.
  • W 1 and W 2 are independent of each other and single bond, CR 95 R 96 (R 95 and R 96 are independent of each other and are hydrogen atoms or alkyl groups having 1 to 10 carbon atoms (however, they are together).
  • R 97 is a hydrogen atom, an alkyl group having 1 to 10 carbon atoms, or Represents a phenyl group.
  • X 1 and X 2 are independent of each other and have a single bond, an alkylene group having 1 to 10 carbon atoms, or the formula (14).
  • R 98 to R 101 are independent of each other, hydrogen atom, halogen atom, carboxyl group, sulfo group, alkyl group having 1 to 10 carbon atoms, alkyl halide group having 1 to 10 carbon atoms, or carbon. Represents an alkoxy group of numbers 1 to 10.
  • Y 1 and Y 2 independently represent a single bond or an alkylene group having 1 to 10 carbon atoms.
  • ) Represents a group. ] [2].
  • the triazine ring-containing polymer of the formula (15) whose arylamino group has a crosslinking group is the triazine ring-containing polymer of the formula (1) or [2]. (In the formula, R 102 represents a cross-linking group.) [4].
  • a 1 represents an alkylene group having 1 to 10 carbon atoms
  • a 2 is a single bond or the following formula (j).
  • a 3 represents a divalent or trivalent aliphatic hydrocarbon group which may be substituted with a hydroxy group
  • a 4 represents a hydrogen atom or a methyl group, and a is 1 Or 2, it represents 2, and * represents a bond.
  • the cross-linking group is represented by a hydroxymethyl group, a 2-hydroxyethyl group, a (meth) acryloyloxymethyl group, a (meth) acryloyloxyethyl group, and the following formulas (i-2) to (i-5).
  • a film-forming composition containing the triazine ring-containing polymer according to any one of [1] to [12] and an organic solvent [14].
  • the film-forming composition of [13], wherein the organic solvent contains at least one selected from a glycol ester solvent, a ketone solvent, and an ester solvent.
  • An electronic device comprising a base material and a thin film of [17] formed on the base material.
  • An optical member including a base material and a thin film of [17] formed on the base material.
  • a thin film having a high refractive index and excellent transparency and solvent resistance can be formed, and triazine having excellent solubility in various organic solvents such as a low polar solvent, a hydrophobic solvent and a low boiling solvent.
  • a ring-containing polymer can be provided.
  • a composition can be prepared using an organic solvent having a low dissolving power such as a low polar solvent and a hydrophobic solvent, so that the group is easily eroded by a high polar solvent.
  • a thin film can be formed on the material without any problem.
  • the thin film transistor produced from the film-forming composition of the present invention can exhibit the characteristics of high heat resistance, high refractive index, low volume shrinkage, and solvent resistance (crack resistance).
  • the thin film produced from the film-forming composition of the present invention has high transparency and high refractive index and solvent resistance (crack resistance), so that it is used as a flattening layer or a light scattering layer for organic EL lighting.
  • the light extraction efficiency (light diffusion efficiency) can be improved, and the durability can be improved.
  • FIG. 5 is a 1 H-NMR spectrum diagram of Compound P-5 (Polymer Compound [9]) obtained in Comparative Example 1-2. It is 1 H-NMR spectrum figure of the compound P-6 (polymer compound [10]) obtained in Example 1-4.
  • Example 3 is a 1 H-NMR spectrum diagram of Compound P-13 (Polymer Compound [19]) obtained in Comparative Example 3-1. It is an optical micrograph which observed the surface of the cured film obtained in Example 3-1. It is an optical micrograph which observed the surface of the cured film obtained in Comparative Example 3-1. It is 1 H-NMR spectrum figure of the compound P-22 (polymer compound [104]) obtained in Example 5-2. 6 is an optical micrograph of the cured film obtained in Example 6-1 after being exposed to a solvent. 6 is an optical micrograph of the cured film obtained in Example 6-2 after being exposed to a solvent.
  • the triazine ring-containing polymer according to the present invention contains a repeating unit structure represented by the following formula (1).
  • the triazine ring-containing polymer is, for example, a so-called hyperbranched polymer.
  • the hyperbranched polymer is a highly branched polymer having an irregular branched structure. Irregularity here means that it is more irregular than the branched structure of the dendrimer, which is a highly branched polymer having a regular branched structure.
  • the triazine ring-containing polymer which is a hyperbranched polymer, has a structure larger than the repeating unit structure represented by the formula (1), and has each of the three bonds of the repeating unit structure represented by the formula (1).
  • the structure A is distributed throughout except for the terminal of the triazine ring-containing polymer.
  • the repeating unit structure may be essentially composed only of the repeating unit structure represented by the formula (1).
  • R and R' represent a hydrogen atom, an alkyl group, an alkoxy group, an aryl group, or an aralkyl group independently of each other, but both may be hydrogen atoms from the viewpoint of further increasing the refractive index. preferable.
  • the carbon number of the alkyl group is not particularly limited, but 1 to 20 is preferable, and considering that the heat resistance of the polymer is further enhanced, the carbon number of the alkyl group is 1 to 10. More preferably, 1 to 3 is even more preferable.
  • the structure of the alkyl group is not particularly limited, and may be, for example, chain-like, branched, cyclic, or any combination of two or more thereof.
  • alkyl groups include methyl, ethyl, n-propyl, isopropyl, cyclopropyl, n-butyl, isobutyl, s-butyl, t-butyl, cyclobutyl, 1-methyl-cyclopropyl, 2-methyl-cyclopropyl.
  • N-pentyl 1-methyl-n-butyl, 2-methyl-n-butyl, 3-methyl-n-butyl, 1,1-dimethyl-n-propyl, 1,2-dimethyl-n-propyl, 2 , 2-Dimethyl-n-propyl, 1-ethyl-n-propyl, cyclopentyl, 1-methyl-cyclobutyl, 2-methyl-cyclobutyl, 3-methyl-cyclobutyl, 1,2-dimethyl-cyclopropyl, 2,3- Dimethyl-cyclopropyl, 1-ethyl-cyclopropyl, 2-ethyl-cyclopropyl, n-hexyl, 1-methyl-n-pentyl, 2-methyl-n-pentyl, 3-methyl-n-pentyl, 4-methyl -N-pentyl, 1,1-dimethyl-n-butyl, 1,2-dimethyl-n-butyl, 1,3-dimethyl-n-butyl, 1,
  • the carbon number of the alkoxy group is not particularly limited, but 1 to 20 is preferable, and 1 to 10 is more preferable as the carbon number of the alkoxy group in consideration of further enhancing the heat resistance of the polymer. 1 to 3 are even more preferable.
  • the structure of the alkyl moiety is not particularly limited, and may be, for example, chain-like, branched, cyclic, or any combination of two or more thereof.
  • alkoxy group examples include methoxy, ethoxy, n-propoxy, isopropoxy, n-butoxy, isobutoxy, s-butoxy, t-butoxy, n-pentoxy, 1-methyl-n-butoxy, 2-methyl-n.
  • the carbon number of the aryl group is not particularly limited, but 6 to 40 is preferable, and 6 to 16 is more preferable as the carbon number of the aryl group in consideration of further enhancing the heat resistance of the polymer. 6 to 13 are even more preferable.
  • the aryl group includes an aryl group having a substituent. Examples of the substituent include a halogen atom, an alkyl group having 1 to 6 carbon atoms, an alkoxy group having 1 to 6 carbon atoms, a nitro group, a cyano group and the like.
  • aryl group examples include phenyl, o-chlorophenyl, m-chlorophenyl, p-chlorophenyl, o-fluorophenyl, p-fluorophenyl, o-methoxyphenyl, p-methoxyphenyl, p-nitrophenyl, and the like.
  • p-Cyanophenyl ⁇ -naphthyl, ⁇ -naphthyl, o-biphenylyl, m-biphenylyl, p-biphenylyl, 1-anthryl, 2-anthryl, 9-anthryl, 1-phenanthryl, 2-phenanthryl, 3-phenanthryl, 4 -Phenyl trill, 9-phenyl group and the like can be mentioned.
  • the number of carbon atoms of the aralkyl group is not particularly limited, but the number of carbon atoms is preferably 7 to 20, and the structure of the alkyl moiety thereof is not particularly limited. Any combination of In the present invention, the aralkyl group includes an aralkyl group having a substituent. Examples of the substituent include a halogen atom, an alkyl group having 1 to 6 carbon atoms, an alkoxy group having 1 to 6 carbon atoms, a nitro group, a cyano group and the like.
  • the above Ar represents at least one selected from the group represented by the formulas (2) to (13).
  • R 1 to R 92 are independent of each other, such as a hydrogen atom, a halogen atom, a carboxyl group, a sulfo group, an alkyl group having 1 to 10 carbon atoms, an alkyl halide group having 1 to 10 carbon atoms, or 1 to 10 carbon atoms.
  • R 93 and R 94 represent hydrogen atoms or alkyl groups with 1 to 10 carbon atoms
  • W 1 and W 2 are independent of each other, single bond, CR 95 R 96 (R 95).
  • halogen atom examples include a fluorine atom, a chlorine atom, a bromine atom and an iodine atom.
  • alkyl group and the alkoxy group examples include the same as the alkyl group and the alkoxy group in R and R'.
  • the alkyl halide group having 1 to 10 carbon atoms is obtained by substituting at least one hydrogen atom in the alkyl group having 1 to 10 carbon atoms with a halogen atom, and specific examples thereof include trifluoromethyl. , 2,2,2-trifluoroethyl, perfluoroethyl, 3,3,3-trifluoropropyl, 2,2,3,3,3-pentafluoropropyl, 2,2,3,3-tetrafluoropropyl , 2,2,2-trifluoro-1- (trifluoromethyl) ethyl, perfluoropropyl, 4,4,4-trifluorobutyl, 3,3,4,5,4-pentafluorobutyl, 2,2 , 3,3,4,4,4-heptafluorobutyl, perfluorobutyl, 2,2,3,3,4,5,5,5-nonafluoropentyl, 2,2,3,3,4 , 4,5,5-octafluoropenty
  • a perfluoroalkyl group having 1 to 10 carbon atoms is preferable, and a perfluoroalkyl group having 1 to 5 carbon atoms is particularly preferable, in consideration of increasing the solubility of the triazine ring-containing polymer in a low polar solvent or the like while maintaining the refractive index.
  • Perfluoroalkyl groups are more preferred, and trifluoromethyl groups are even more preferred.
  • X 1 and X 2 independently represent a single bond, an alkylene group having 1 to 10 carbon atoms, or a group represented by the formula (14).
  • the structures of these alkyl groups, alkyl halide groups, alkoxy groups, and alkylene groups are not particularly limited, and may be, for example, chain-like, branched, cyclic, or any combination of two or more thereof.
  • the R 98 to R 101 are independent of each other and have a hydrogen atom, a halogen atom, a carboxyl group, a sulfo group, an alkyl group having 1 to 10 carbon atoms, an alkyl halide group having 1 to 10 carbon atoms, or an alkyl group having 1 to 10 carbon atoms.
  • Representing 10 alkoxy groups, Y 1 and Y 2 represent a single bond or an alkylene group having 1 to 10 carbon atoms independently of each other.
  • halogen atoms, alkyl groups, alkyl halide groups, and alkoxy groups include those similar to the halogen atoms, alkyl groups, alkyl halide groups, and alkoxy groups in R 1 to R 92.
  • alkylene group having 1 to 10 carbon atoms examples include methylene, ethylene, propylene, trimethylene, tetramethylene, and pentamethylene group.
  • the structure of the alkylene group is not particularly limited, and may be, for example, chain-like, branched, cyclic, or any combination of two or more thereof.
  • R 1 to R 92 and R 98 to R 101 include a hydrogen atom, a halogen atom, a sulfo group, an alkyl group having 1 to 5 carbon atoms, an alkyl halide group having 1 to 5 carbon atoms, or a carbon number of carbon atoms.
  • Alkoxy groups of 1 to 5 are preferable, and hydrogen atoms are more preferable.
  • the triazine ring-containing polymer of the present invention preferably contains at least one halogen atom or an alkyl halide group having 1 to 10 carbon atoms in at least one aromatic ring among the aromatic rings contained in Ar. ..
  • the refractive index tends to decrease by introducing a fluorine atom into a compound, but the triazine ring-containing polymer of the present invention also has a fluorine atom introduced. Nevertheless, it maintains a refractive index of over 1.7.
  • the number of halogen atoms or alkyl halide groups in the aromatic ring can be any number that can be substituted on the aromatic ring, but considering the balance between the maintenance of the refractive index and the solubility in a solvent, 1 to 1 to Four is preferable, one or two is more preferable, and one is even more preferable.
  • the aromatic ring is a fused ring of a plurality of aromatic rings such as a naphthalene ring, it suffices to have at least one of the above groups as a whole.
  • Ar contains a plurality of aromatic rings
  • at least one aromatic ring contains at least one halogen atom or an alkyl halide group
  • all the aromatic rings contain a halogen atom or an alkyl halide group. It is preferable that all aromatic rings contain at least one halogen atom or an alkyl halide group.
  • At least one type represented by the formulas (2), (5) to (13) is preferable, and the formulas (2), (5), (7), (8), (11) to (13) are preferable. ) Is more preferable.
  • Specific examples of the aryl group represented by the above formulas (2) to (13) include, but are not limited to, those represented by the following formulas.
  • Ph represents a phenyl group
  • A represents a halogen atom or an alkyl halide group having 1 to 10 carbon atoms independently of each other, p is an integer of 0 to 4 independently of each other, and q is independent of each other.
  • An integer of 0 to 3 r is an integer of 0 to 2, independent of each other, s is an integer of 0 to 5, t is an integer of 1 to 6, and u is an integer of 1 to 4.
  • the sum of p, q, r, and s is 1 or more.
  • “Ph” represents a phenyl group.
  • the aryl group represented by the following formula is more preferable because a polymer having a higher refractive index can be obtained.
  • Ph represents a phenyl group
  • the m-phenylene group represented by the formula (17) is preferable as Ar.
  • Ar is preferably a group having a diphenyl ether skeleton represented by the formulas (18) to (20).
  • the triazine ring-containing polymer of the present invention has at least one triazine ring terminal, and at least a part of the triazine ring terminal is sealed with an arylamino group having a cross-linking group.
  • the triazine ring-containing polymer of the present invention has at least one triazine ring terminal, and the triazine ring at this terminal usually has two halogen atoms that can be substituted with the above-mentioned arylamino group having a cross-linking group. ing.
  • the arylamino group having the above-mentioned cross-linking group may be bonded to the same triazine ring terminal, or when there are a plurality of triazine ring terminals, each may be bonded to another triazine ring terminal. ..
  • Examples of the aryl group of the arylamino group having a crosslinking group include the same as above, but a phenyl group is particularly preferable.
  • the cross-linking group is bonded to an aryl group.
  • cross-linking group examples include a hydroxy-containing group, a vinyl-containing group, an epoxy-containing group, an oxetane-containing group, a carboxy-containing group, a sulfo-containing group, a thiol-containing group, a (meth) acryloyl-containing group, and the like.
  • a hydroxy-containing group and a (meth) acryloyl-containing group are preferable in consideration of improving the heat resistance of the coalescence and the solvent resistance (crack resistance) of the obtained thin film.
  • hydroxy-containing group examples include a hydroxy group and a hydroxyalkyl group, but a hydroxyalkyl group having 1 to 10 carbon atoms is preferable, a hydroxyalkyl group having 1 to 5 carbon atoms is more preferable, and a hydroxy having 1 to 3 carbon atoms is more preferable. Alkyl groups are even more preferred. Hydroxyalkyl groups having 1 to 10 carbon atoms include hydroxymethyl, 2-hydroxyethyl, 3-hydroxypropyl, 4-hydroxybutyl, 5-hydroxypentyl, 6-hydroxyhexyl, 7-hydroxyheptyl, 8-hydroxyoctyl, and the like.
  • the carbon atom to which the hydroxy group is bonded is a primary carbon atom, and among them, a hydroxyalkyl group having 1 to 5 carbon atoms is more preferable.
  • a hydroxyalkyl group having 1 to 3 carbon atoms is even more preferable, a hydroxymethyl group and a 2-hydroxyethyl group are even more preferable, and a 2-hydroxyethyl group is most preferable.
  • Examples of the (meth) acryloyl-containing group include a (meth) acryloyl group, a (meth) acryloyloxyalkyl group, and a group represented by the following formula (i), which have an alkylene group having 1 to 10 carbon atoms (meth).
  • Meta) Acryloyloxyalkyl groups and groups represented by the following formula (i) are preferable, and groups represented by the following formula (i) are more preferable.
  • a 1 represents an alkylene group having 1 to 10 carbon atoms
  • a 2 is a single bond or the following formula (j).
  • a 3 represents a divalent or trivalent aliphatic hydrocarbon group which may be substituted with a hydroxy group
  • a 4 represents a hydrogen atom or a methyl group, and a is 1 Or 2, it represents 2, and * represents a bond.
  • alkylene group contained in the (meth) acryloyloxyalkyl group having an alkylene group (alkanediyl group) having 1 to 10 carbon atoms examples include methylene, ethylene, trimethylene, propane-1,2-diyl, tetramethylene and butane-1. , 3-Diyl, butane-1,2-diyl, 2-methylpropane-1,3-diyl, pentamethylene, hexamethylene, heptamethylene, octamethylene, nonamethylene, decimethylene groups and the like.
  • those having an alkylene group having 1 to 5 carbon atoms are preferable, those having an alkylene group having 1 to 3 carbon atoms are preferable, and those having 1 to 3 carbon atoms are preferable.
  • those having 2 alkylene groups are more preferable.
  • (meth) acryloyloxyalkyl group examples include, for example, (meth) acryloyloxymethyl group, 2- (meth) acryloyloxyethyl group, 3- (meth) acryloyloxypropyl group, and 4- (meth) acryloyl.
  • Oxybutyl group is mentioned.
  • a 1 is an alkylene group having 1 to 10 carbon atoms, preferably an alkylene group having 1 to 5 carbon atoms, and more preferably a methylene group and an ethylene group.
  • alkylene group having 1 to 10 carbon atoms include those similar to the alkylene group contained in the above-mentioned (meth) acryloyloxyalkyl group.
  • a 2 represents a single bond or a group represented by the formula (j), and a group represented by the formula (j) is preferable.
  • a 3 is a divalent or trivalent aliphatic hydrocarbon group which may be substituted with a hydroxy group. Specific examples thereof include an alkylene group having 1 to 5 carbon atoms and the following formula (k-1). ) ⁇ (k-3) (In the formula, * is the same as above.) Examples thereof include groups represented by, preferably an alkylene group having 1 to 5 carbon atoms, more preferably an alkylene group having 1 to 3 carbon atoms, and further preferably a methylene group and an ethylene group. Examples of the alkylene group of A 3 include alkylene groups having 1 to 5 carbon atoms among the alkylene groups exemplified in A 1.
  • A represents 1 or 2, but 1 is preferable.
  • Preferable embodiments of the group represented by the formula (i) include those represented by the following formula (i-1).
  • More preferable embodiments of the group represented by the formula (i) include those represented by the following formulas (i-2) to (i-5).
  • Examples of the vinyl-containing group include an alkenyl group having a vinyl group at the terminal and having 2 to 10 carbon atoms. Specific examples include ethenyl, 1-propenyl, allyl, isopropenyl, 1-butenyl, 2-butenyl, 2-pentenyl group and the like.
  • epoxy-containing group examples include epoxy, glycidyl, glycidyloxy group and the like. Specific examples include glycidylmethyl, 2-glycidylethyl, 3-glycidylpropyl, 4-glycidylbutyl group and the like.
  • oxetane-containing group examples include oxetane-3-yl, (oxetane-3-yl) methyl, 2- (oxetane-3-yl) ethyl, 3- (oxetane-3-yl) propyl, and 4- (oxetane-3-yl).
  • oxetane-3-yl examples include oxetane-3-yl, (oxetane-3-yl) methyl, 2- (oxetane-3-yl) ethyl, 3- (oxetane-3-yl) propyl, and 4- (oxetane-3-yl).
  • Butyl group and the like can be mentioned.
  • Examples of the carboxy-containing group include a carboxy group and a carboxyalkyl group having 2 to 10 carbon atoms.
  • the carbon atom to which the carboxy group is bonded is preferably a primary carbon atom, and specific examples thereof include carboxymethyl, 2-carboxyethyl, 3-carboxypropyl and 4-. Examples include a carboxybutyl group.
  • the sulfo-containing group examples include a sulfo group and a sulfoalkyl group having 1 to 10 carbon atoms.
  • the carbon atom to which the sulfo group is bonded is preferably a primary carbon atom, and specific examples thereof include sulfomethyl, 2-sulfoethyl, 3-sulfopropyl and 4-sulfobutyl groups. And so on.
  • the thiol-containing group examples include a thiol group and a mercaptoalkyl group having 1 to 10 carbon atoms.
  • the carbon atom to which the thiol group is bonded is preferably a primary carbon atom, and specific examples thereof include mercaptomethyl, 2-mercaptoethyl, 3-mercaptopropyl and 4-. Examples include a mercaptobutyl group.
  • the number of cross-linking groups in the arylamino group having the above-mentioned cross-linking group is not particularly limited and may be any number substitutable on the aryl group, but the balance between solvent resistance and solubility in a solvent can be used. In consideration of, 1 to 4 is preferable, 1 to 2 is more preferable, and 1 is even more preferable.
  • Examples of the arylamino group having a suitable cross-linking group include those represented by the formula (15), and in particular, those represented by the formula (16) having a cross-linking group at the para position with respect to the amino group are preferable.
  • R 102 represents a cross-linking group.
  • R 102 has the same meaning as above.
  • arylamino group having a cross-linking group examples include those represented by the following formulas, but are not limited thereto.
  • the arylamino group having a hydroxyalkyl group can be introduced by using the corresponding hydroxyalkyl group-substituted arylamino compound in the production method described later.
  • Specific examples of the hydroxyalkyl group-substituted arylamino compound include (4-aminophenyl) methanol and 2- (4-aminophenyl) ethanol.
  • the arylamino group having a (meth) acryloyloxyalkyl group can be obtained by a method using a corresponding (meth) acryloyloxyalkyl group-substituted arylamino compound or after introducing an arylamino group having a hydroxyalkyl group into a triazine ring-containing polymer. Further, it can be introduced by a method in which (meth) acrylate halide or glycidyl (meth) acrylate is allowed to act on the hydroxy group contained in the hydroxyalkyl group.
  • the arylamino group having a group represented by the formula (i) can be prepared by a method using an arylamino compound having a desired cross-linking group or by introducing an arylamino group having a hydroxyalkyl group into a triazine ring-containing polymer. Further, it can be introduced by a method in which a (meth) acrylic acid ester compound having an isocyanate group represented by the following formula (i') is allowed to act on the hydroxy group contained in the hydroxyalkyl group.
  • the (meth) acryloyloxyalkyl group-substituted arylamino compound include the above-mentioned hydroxyalkyl group-substituted arylamino compound obtained by allowing (meth) acrylic acid halide or (meth) glycidyl acrylate to act on the hydroxy group.
  • the ester compound to be used is mentioned.
  • the (meth) acrylic acid halide include (meth) acrylic acid chloride, (meth) acrylic acid bromide, and (meth) acrylic acid iodide.
  • (meth) acrylic acid ester compound having an isocyanate group represented by the above formula (i') include 2-isocyanatoethylacrylate, 2-isocyanatoethyl methacrylate and 1,1- (bis). Acryloyloxymethyl) ethyl isocyanate can be mentioned.
  • 2-isocyanatoethylacryllate is preferable from the viewpoint of a simple synthetic method.
  • triazine ring-containing polymers include those containing repeating units represented by the formulas (21) to (28).
  • R 102 has the same meaning as above.
  • R 102 has the same meaning as above.
  • R 102 has the same meaning as above.
  • R 102 has the same meaning as above.
  • the weight average molecular weight of the polymer in the present invention is not particularly limited, but is preferably 500 to 500,000, more preferably 500 to 100,000, further improving heat resistance and lowering the shrinkage rate. From this point of view, 2,000 or more is preferable, 50,000 or less is preferable, and 30,000 or less is more preferable, and 25,000 or less is preferable from the viewpoint of further increasing the solubility and lowering the viscosity of the obtained solution. Even more preferable, 10,000 or less is most preferable.
  • the weight average molecular weight in the present invention is the average molecular weight obtained in terms of standard polystyrene by gel permeation chromatography (hereinafter referred to as GPC) analysis.
  • the triazine ring-containing polymer (hyperbranched polymer) of the present invention can be produced according to the method disclosed in International Publication No. 2010/128661 described above. That is, after reacting the trihalogenated triazine compound with the aryldiamino compound in an organic solvent, for example, an arylamino compound having a hydroxyalkyl group (hydroxy-containing group), which is an end-capping agent, or an acryloyloxyalkyl group (acryloyloxyalkyl group).
  • an organic solvent for example, an arylamino compound having a hydroxyalkyl group (hydroxy-containing group), which is an end-capping agent, or an acryloyloxyalkyl group (acryloyloxyalkyl group).
  • the triazine ring of the present invention is contained by reacting with at least one arylamino compound selected from an arylamino compound having an acryloyl-containing group) and an arylamino compound having a group represented by the formula (i) (acryloyl-containing group).
  • a polymer can be obtained.
  • the triazine ring-containing polymer (23) is prepared by reacting the triazine compound (29) and the aryldiamino compound (30) in a suitable organic solvent and then using an end-capping agent. It can be obtained by reacting with at least one arylamino compound (31) selected from an arylamino compound having a hydroxyalkyl group and an arylamino compound having a group represented by the formula (i).
  • X represents a halogen atom independently of each other, and Ra represents a hydroxyalkyl group or a group represented by the formula (i).
  • the triazine ring-containing polymer (27) is end-sealed after reacting the triazine compound (29) and the aryldiamino compound (32) in a suitable organic solvent. It can be obtained by reacting with at least one arylamino compound (31) selected from an arylamino compound having a hydroxyalkyl group and an arylamino compound having a group represented by the formula (i), which is an agent.
  • X represents a halogen atom independently of each other, and Ra represents a hydroxyalkyl group or a group represented by the formula (i).
  • the charging ratio of the aryldiamino compound (30) or (32) is arbitrary as long as the desired polymer can be obtained, but the aryldiamino compound is based on 1 equivalent of the triazine compound (29). (30) or (32) 0.01 to 10 equivalents are preferable, and 0.7 to 5 equivalents are more preferable.
  • the aryldiamino compound (30) or (32) may be added in a neat manner or in a solution dissolved in an organic solvent, but the latter method is considered in consideration of ease of operation and controllability of the reaction. Is preferable.
  • the reaction temperature may be appropriately set in the range from the melting point of the solvent to be used to the boiling point of the solvent, and is particularly preferably about ⁇ 30 to 150 ° C., more preferably ⁇ 10 to 100 ° C.
  • the triazine ring-containing polymer (23) is an aryl having a hydroxyalkyl group, which is an end-capping agent, after reacting the triazine compound (29) and the aryldiamino compound (30) in a suitable organic solvent. It is reacted with an amino compound (31') to obtain a triazine ring-containing polymer (23') (first step), and then the hydroxy of the hydroxyalkyl group further contained in the triazine ring-containing polymer (23').
  • R a1 represents a hydroxyalkyl group
  • X, A 3 , A 4 , Ra and a represent the same meanings as described above.
  • the triazine ring-containing polymer (27) is an aryl having a hydroxyalkyl group, which is a terminal sealant, after reacting the triazine compound (29) and the aryldiamino compound (32) in a suitable organic solvent. It is reacted with an amino compound (31') to obtain a triazine ring-containing polymer (27') (first step), and then the hydroxy of the hydroxyalkyl group further contained in the triazine ring-containing polymer (27').
  • R a1 represents a hydroxyalkyl group
  • X, A 3 , A 4 , Ra and a represent the same meanings as described above.
  • the charging ratio and addition method of the aryldiamino compound (30) in the first step, and the reaction temperature in the reaction until the triazine ring-containing polymer (23') is obtained are as described in Scheme 1. The same can be done.
  • the charging ratio of the (meth) acrylic acid ester compound having an isocyanate group represented by the formula (i') to the triazine ring-containing polymer (23') is the hydroxyalkyl group and the formula (i). It can be arbitrarily set according to the ratio with the group represented by, and is preferably 0.1 to 10 equivalents, more preferably 0.
  • the charging ratio is 1 equivalent of the arylamino compound having the hydroxyalkyl group used.
  • the above (meth) acrylic acid ester compound is preferably 1.0 to 10 equivalents, more preferably 1.0 to 5 equivalents, even more preferably 1.0 to 3 equivalents, still more preferably 1.0 to 1.0 to. It is 1.5 equivalents.
  • the reaction temperature in the reaction is the same as the reaction temperature in the reaction for obtaining the triazine ring-containing polymer (23'), but in consideration of preventing the (meth) acryloyl group from polymerizing during the reaction, 30 -80 ° C is preferable, 40-70 ° C is more preferable, and 50-60 ° C is even more preferable.
  • the charging ratio and addition method of the aryldiamino compound (32) in the first step, and the reaction temperature in the reaction until the triazine ring-containing polymer (27') is obtained are the same as those described in Scheme 2. Can be.
  • the charging ratio of the (meth) acrylic acid ester compound having an isocyanate group represented by the formula (i') to the triazine ring-containing polymer (27') is the hydroxyalkyl group and the formula (i). It can be arbitrarily set according to the ratio with the group represented by, and is preferably 0.1 to 10 equivalents, more preferably 0.
  • the charging ratio is 1 equivalent of the arylamino compound having the hydroxyalkyl group used.
  • the above (meth) acrylic acid ester compound is preferably 1.0 to 10 equivalents, more preferably 1.0 to 5 equivalents, even more preferably 1.0 to 3 equivalents, still more preferably 1.0 to 1.0 to. It is 1.05 equivalent.
  • the reaction temperature in the reaction is the same as the reaction temperature in the reaction for obtaining the triazine ring-containing polymer (27'), but in consideration of preventing the (meth) acryloyl group from polymerizing during the reaction, 30 -80 ° C is preferable, 40-70 ° C is more preferable, and 50-60 ° C is even more preferable.
  • the reaction may be carried out in the presence of a polymerization inhibitor in order to prevent the (meth) acryloyl group from polymerizing during the reaction.
  • a polymerization inhibitor examples include N-methyl-N-nitrosoaniline, N-nitrosophenylhydroxylamine or salts thereof, benzoquinones, phenolic polymerization inhibitors, phenothiazines and the like.
  • N-nitrosophenylhydroxylamine or salts thereof are preferable because they are excellent in the polymerization inhibitory effect.
  • N-nitrosophenylhydroxylamine salts include N-nitrosophenylhydroxyamine ammonium salt and N-nitrosophenyl hydroxyamine aluminum salt.
  • benzoquinones include p-benzoquinone and 2-methyl-1,4-benzoquinone.
  • examples of the phenolic polymerization inhibitor include hydroquinone, p-methoxyphenol, 4-t-butylcatechol, 2-t-butylhydroquinone, 2,6-di-t-butyl-4-methylphenol and the like.
  • the amount of the polymerization inhibitor used is not particularly limited, but is, for example, 1 to 200 ppm by mass ratio with respect to the (meth) acrylic acid ester compound having an isocyanate group represented by the formula (i'). It may be 10 to 100 ppm.
  • organic solvent various solvents usually used in this kind of reaction can be used, for example, tetrahydrofuran (THF), dioxane, dimethylsulfoxide; N, N-dimethylformamide, N-methyl-2-pyrrolidone, tetra.
  • THF tetrahydrofuran
  • dioxane dimethylsulfoxide
  • N N-dimethylformamide
  • N-methyl-2-pyrrolidone tetra.
  • Methylurea hexamethylphosphoramide, N, N-dimethylacetamide, N-methyl-2-piperidone, N, N-dimethylethyleneurea, N, N, N', N'-tetramethylmalonic acid amide, N- Methylcaprolactam, N-acetylpyrrolidin, N, N-diethylacetamide, N-ethyl-2-pyrrolidone, N, N-dimethylpropionic acid amide, N, N-dimethylisobutylamide, N-methylformamide, N, N'- Examples thereof include amide solvents such as dimethylpropylene urea and mixed solvents thereof.
  • N, N-dimethylformamide, dimethyl sulfoxide, N-methyl-2-pyrrolidone, N, N-dimethylacetamide, and a mixture thereof are preferable, and N, N-dimethylacetamide and N-methyl-2-pyrrolidone are particularly preferable. Is preferable.
  • various bases usually used at the time of polymerization or after polymerization may be added.
  • this base include potassium carbonate, potassium hydroxide, sodium carbonate, sodium hydroxide, sodium hydrogen carbonate, sodium ethoxydo, sodium acetate, lithium carbonate, lithium hydroxide, lithium oxide, potassium acetate, magnesium oxide, and oxidation.
  • the amount of the base added is preferably 1 to 100 equivalents, more preferably 1 to 10 equivalents, relative to 1 equivalent of the triazine compound (29). In addition, these bases may be used as an aqueous solution.
  • the product can be easily purified by a reprecipitation method or the like.
  • the amount of the end-capping agent used is preferably about 0.05 to 10 equivalents, more preferably 0.1 to 5 equivalents, relative to 1 equivalent of the halogen atom derived from the surplus triazine compound not used in the polymerization reaction.
  • 0.5 to 2 equivalents are even more preferred.
  • the reaction solvent and the reaction temperature include the same conditions as described in the first step reaction of Scheme 1 or Scheme 2, and the terminal encapsulant is an aryldiamino compound (30) or (32). It may be prepared at the same time.
  • An unsubstituted arylamino compound having no cross-linking group may be used, and terminal encapsulation may be performed with two or more kinds of groups.
  • Examples of the aryl group of this unsubstituted arylamino compound include the same as above.
  • unsubstituted arylamino group examples include those represented by the following formula (33), but the present invention is not limited thereto.
  • the unsubstituted arylamino group can be introduced by using the corresponding unsubstituted arylamino compound in the production method described later.
  • Specific examples of the unsubstituted arylamino compound include aniline and the like.
  • the ratio of the arylamino compound having a cross-linking group and the unsubstituted arylamino compound is such that the cross-linking group is used from the viewpoint of achieving a good balance between solubility in an organic solvent and yellowing resistance.
  • 0.1 to 1.0 mol of the unsubstituted arylamino compound is preferable, 0.1 to 0.5 mol is more preferable, and 0.1 to 0.3 mol is even more preferable.
  • the above-mentioned triazine ring-containing polymer of the present invention can be suitably used as a film-forming composition, and in this case, a cross-linking agent may be added.
  • the cross-linking agent is not particularly limited as long as it is a compound having a substituent capable of reacting with the cross-linking group of the above-mentioned triazine ring-containing polymer.
  • Such compounds include melamine compounds having cross-linking substituents such as methylol groups and methoxymethyl groups (eg, phenoplast compounds, aminoplast compounds, etc.), substituted urea compounds, and cross-links such as epoxy groups or oxetane groups.
  • Examples include compounds containing forming substituents (for example, polyfunctional epoxy compounds, polyfunctional oxetane compounds, etc.), compounds containing block isocyanate groups, compounds having acid anhydride groups, compounds having (meth) acrylic groups, and the like.
  • compounds containing an epoxy group, a blocked isocyanate group, and a (meth) acrylic group are preferable, and in particular, a compound having a blocked isocyanate group or a photocurable compound can be photocured without using an initiator.
  • Polyfunctional epoxy compounds and / or polyfunctional (meth) acrylic compounds that provide the same composition are preferred. It should be noted that these compounds need only have at least one cross-linking substituent when used for the terminal treatment of the polymer, and at least two cross-linking substituents when used for the cross-linking treatment between the polymers. Must have.
  • the polyfunctional epoxy compound is not particularly limited as long as it has two or more epoxy groups in one molecule. Specific examples thereof include tris (2,3-epoxypropyl) isocyanurate, 1,4-butanediol diglycidyl ether, 1,2-epoxy-4- (epoxyethyl) cyclohexane, glycerol triglycidyl ether, and diethylene glycol diglycidyl.
  • YH-434 and YH434L manufactured by Nittetsu Chemical & Materials Co., Ltd.
  • Epolide GT-401 which is an epoxy resin having a cyclohexene oxide structure
  • the polyfunctional (meth) acrylic compound is not particularly limited as long as it has two or more (meth) acrylic groups in one molecule. Specific examples thereof include ethylene glycol diacrylate, ethylene glycol dimethacrylate, polyethylene glycol diacrylate, polyethylene glycol dimethacrylate, ethoxylated bisphenol A diacrylate, ethoxylated bisphenol A dimethacrylate, ethoxylated trimethyl propantriacrylate, and ethoxylated Trimethylol propantrimethacrylate, glycerin triacrylate ethoxylated, glycerin trimethacrylate ethoxylated, pentaerythritol tetraacrylate ethoxylated, pentaerythritol tetramethacrylate ethoxylated, dipentaerythritol hexaacrylate ethoxylated, polyglycerin monoethylene oxide polyacrylate, polyglycerin Polyethylene glycol
  • the polyfunctional (meth) acrylic compound is available as a commercially available product, and specific examples thereof include NK ester A-200, A-400, A-600, A-1000, and A-. 9300 (Tris isocyanurate (2-acryloyloxyethyl)), A-9300-1CL, A-TMPT, UA-53H, 1G, 2G, 3G, 4G, 9G, 14G, 14G 23G, ABE-300, A-BPE-4, A-BPE-6, A-BPE-10, A-BPE-20, A-BPE-30, BPE-80N, BPE- 100N, BPE-200, BPE-500, BPE-900, BPE-1300N, A-GLY-3E, A-GLY-9E, A-GLY-20E, A-TMPT-3EO, A-TMPT-9EO, AT-20E, ATM-4E, ATM-35E, APG-100, APG-200 (all manufactured by Shin Nakamura Chemical Industry Co., Ltd.),
  • the above-mentioned polybasic acid-modified acrylic oligomer is also available as a commercially available product, and specific examples thereof include Aronix M-510, 520 (all manufactured by Toagosei Co., Ltd.) and the like.
  • the compound having an acid anhydride group is not particularly limited as long as it is a carboxylic acid anhydride obtained by dehydrating and condensing two molecules of carboxylic acid, and specific examples thereof include phthalic anhydride and tetrahydrophthalic anhydride. , Hexahydrophthalic anhydride, methyltetrahydrophthalic anhydride, methylhexahydrophthalic anhydride, nadic acid anhydride, methylnadic anhydride, maleic anhydride, succinic anhydride, octyl anhydride, succinic anhydride, dodecenyl anhydride, etc.
  • an isocyanate group (-NCO) has two or more blocked isocyanate groups in one molecule blocked by an appropriate protective group and is exposed to a high temperature during thermal curing, Especially limited as long as the protective group (block portion) is thermally dissociated and detached, and the generated isocyanate group causes a cross-linking reaction with the cross-linking group (for example, hydroxy-containing group) of the triazine ring-containing polymer of the present invention.
  • the cross-linking group for example, hydroxy-containing group
  • examples thereof include compounds having two or more groups represented by the following formulas in one molecule (these groups may be the same or different from each other).
  • R b represents an organic group in the block portion.
  • Such a compound can be obtained, for example, by reacting a compound having two or more isocyanate groups in one molecule with an appropriate blocking agent.
  • the compound having two or more isocyanate groups in one molecule include isophorone diisocyanate, 1,6-hexamethylene diisocyanate, methylenebis (4-cyclohexamethylene diisocyanate), polyisocyanate of trimethylhexamethylene diisocyanate, and dimer thereof. , Trimers, and reactants of these with diols, triols, diamines, or triamines.
  • the blocking agent examples include alcohols such as methanol, ethanol, isopropanol, n-butanol, 2-ethoxyhexanol, 2-N, N-dimethylaminoethanol, 2-ethoxyethanol, cyclohexanol; phenol, o-nitrophenol. , P-Chlorophenol, o-, m- or p-cresol and other phenols; ⁇ -caprolactam and other lactams, acetone oxime, methyl ethyl ketone oxime, methyl isobutyl ketone oxime, cyclohexanone oxime, acetophenone oxime, benzophenone oxime and other oximes.
  • Classes; pyrazoles such as pyrazole, 3,5-dimethylpyrazole and 3-methylpyrazole; thiols such as dodecanethiol and benzenethiol.
  • Compounds containing a blocked isocyanate group are also available as commercial products, and specific examples thereof include Takenate (registered trademark) B-830, B-815N, B-842N, B-870N, and B-874N. B-882N, B-7005, B-7030, B-7075, B-5010 (all manufactured by Mitsui Kagaku Co., Ltd.), Duranate (registered trademark) 17B-60PX, TPA-B80E, MF-B60X, same MF-K60X, E402-B80T (above, manufactured by Asahi Kasei Co., Ltd.), Karenz MOI-BM (registered trademark) (above, manufactured by Showa Denko Co., Ltd.), TRIXENE (registered trademark) BI-7950, BI-7951, Examples thereof include BI-7960, BI-7961, BI-7963, BI-7982, BI-7991, BI-7992 (manufactured by Ba
  • the aminoplast compound is not particularly limited as long as it has two or more methoxymethyl groups in one molecule, and is not particularly limited.
  • hexamethoxymethylmelamine CYMEL registered trademark
  • tetrabutoxymethylglycoluryl 1170 tetrabutoxymethylglycoluryl 1170.
  • Tetramethoxymethylbenzoguanamine 1123 (all manufactured by Nippon Cytec Industries Co., Ltd.), etc., Nikalac (registered trademark) MW-30HM, MW-390, MW-100LM, which is a methylated melamine resin, Examples thereof include MX-750LM, MX-270, which is a methylated urea resin, MX-280, and MX-290 (all manufactured by Sanwa Chemical Co., Ltd.) and other melamine compounds such as the Nicarac series.
  • the polyfunctional oxetane compound is not particularly limited as long as it has two or more oxetanyl groups in one molecule. For example, OXT-221, OX-SQ-H, and OX-SC containing an oxetane group. (The above is manufactured by Toagosei Co., Ltd.) and the like.
  • the phenoplast compound has two or more hydroxymethyl groups in one molecule, and when exposed to a high temperature during thermosetting, it undergoes a dehydration condensation reaction with the crosslinking group of the triazine ring-containing polymer of the present invention.
  • the cross-linking reaction proceeds.
  • the phenoplast compound include 2,6-dihydroxymethyl-4-methylphenol, 2,4-dihydroxymethyl-6-methylphenol, bis (2-hydroxy-3-hydroxymethyl-5-methylphenyl) methane, and the like.
  • the phenoplast compound is also available as a commercially available product, and specific examples thereof include 26DMPC, 46DMOC, DM-BIPC-F, DM-BIOC-F, TM-BIP-A, BISA-F, and BI25X-DF. , BI25X-TPA (all manufactured by Asahi Organic Materials Industry Co., Ltd.) and the like.
  • a polyfunctional (meth) acrylic compound is preferable because it can suppress a decrease in the refractive index due to the addition of a cross-linking agent and the curing reaction proceeds rapidly.
  • a triazine ring-containing polymer A polyfunctional (meth) acrylic compound having the following isocyanuric acid skeleton is more preferable because of its excellent compatibility.
  • the polyfunctional (meth) acrylic compound having such a skeleton include NK ester A-9300 and A-9300-1CL (both manufactured by Shin Nakamura Chemical Industry Co., Ltd.).
  • R 111 to R 113 are monovalent organic groups having at least one (meth) acrylic group at the end, independent of each other.
  • a polyfunctional (meth) acrylic compound (hereinafter referred to as a low-viscosity cross-linking agent) of 1 to 3,000 mPa ⁇ s, more preferably 1 to 1,000 mPa ⁇ s, even more preferably 1 to 500 mPa ⁇ s, alone or. It is preferable to use in combination of two or more kinds, or in combination with the above-mentioned polyfunctional (meth) acrylic compound having an isocyanuric acid skeleton.
  • Such a low-viscosity cross-linking agent is also available as a commercially available product.
  • polyfunctional (meth) acrylic compounds NK ester A-GLY-3E (85 mPa ⁇ s, 25 ° C.), A-GLY.
  • NK ester A-GLY-20E manufactured by Shin Nakamura Chemical Industry Co., Ltd.
  • ATM-35E manufactured by Shin Nakamura Chemical Industry Co., Ltd.
  • the above-mentioned polyfunctional (meth) acrylic compound having an isocyanuric acid skeleton are preferably used in combination.
  • a thin film made of the triazine ring-containing polymer of the present invention is laminated on a protective film such as PET or a polyolefin film and light is irradiated through the protective film, the thin film laminated film also cures well without being affected by oxygen. You can get sex.
  • the protective film needs to be peeled off after curing, it is preferable to use a polybasic acid-modified acrylic oligomer that gives a thin film having good peelability.
  • the above-mentioned cross-linking agent may be used alone or in combination of two or more.
  • the amount of the cross-linking agent used is preferably 1 to 100 parts by mass with respect to 100 parts by mass of the triazine ring-containing polymer, but the lower limit thereof is preferably 2 parts by mass, more preferably 5 parts by mass in consideration of solvent resistance. Further, in consideration of controlling the refractive index, the upper limit thereof is preferably 20 parts by mass, more preferably 15 parts by mass.
  • composition of the present invention may also contain an initiator corresponding to each cross-linking agent.
  • an initiator corresponding to each cross-linking agent.
  • photocuring proceeds to give a cured film without using an initiator.
  • Initiators may be used in some cases.
  • a photoacid generator or a photobase generator can be used.
  • the photoacid generator a known one may be appropriately selected and used.
  • an onium salt derivative such as a diazonium salt, a sulfonium salt or an iodonium salt can be used.
  • aryldiazonium salts such as phenyldiazonium hexafluorophosphate, 4-methoxyphenyldiazonium hexafluoroantimonate and 4-methylphenyldiazonium hexafluorophosphate; diphenyliodonium hexafluoroantimonate and di (4-methylphenyl).
  • Diaryliodonium salts such as iodonium hexafluorophosphate, di (4-tert-butylphenyl) iodonium hexafluorophosphate; triphenylsulfonium hexafluoroantimonate, tris (4-methoxyphenyl) sulfonium hexafluorophosphate, diphenyl-4-thiophenoxy Phenylsulfonium hexafluoroantimonate, diphenyl-4-thiophenoxyphenylsulfonium hexafluorophosphate, 4,4'-bis (diphenylsulfonio) phenylsulfide-bishexafluoroantimonate, 4,4'-bis (diphenylsulfoni) E) Phenylsulfide-bishexafluorophosphate, 4,4'-bis [di ( ⁇ -hydroxyethoxy) phenylsul
  • onium salts Commercially available products may be used as these onium salts, and specific examples thereof include Sun Aid SI-60, SI-80, SI-100, SI-60L, SI-80L, SI-100L, SI-L145, SI-. L150, SI-L160, SI-L110, SI-L147 (above, manufactured by Sanshin Chemical Industry Co., Ltd.), UVI-6950, UVI-6970, UVI-6974, UVI-6990, UVI-6992 (above, Union Carbide) CPI-100P, CPI-100A, CPI-200K, CPI-200S (manufactured by Sun Appro Co., Ltd.), Adecaca Ptomer SP-150, SP-151, SP-170, SP-171 (manufactured by Sun Appro Co., Ltd.) Asahi Denka Kogyo Co., Ltd.), Irgacure 261 (BASF), CI-2481, CI-2624, CI-2369, CI-2064
  • the photobase generator may be appropriately selected from known ones and used, for example, a Co-amine complex type, an oxime carboxylic acid ester type, a carbamic acid ester type, a quaternary ammonium salt type photobase generator and the like.
  • a Co-amine complex type for example, an oxime carboxylic acid ester type, a carbamic acid ester type, a quaternary ammonium salt type photobase generator and the like.
  • a photoacid or a base generator When a photoacid or a base generator is used, it is preferably used in the range of 0.1 to 15 parts by mass, more preferably 1 to 10 parts by mass with respect to 100 parts by mass of the polyfunctional epoxy compound. If necessary, the epoxy resin curing agent may be added in an amount of 1 to 100 parts by mass with respect to 100 parts by mass of the polyfunctional epoxy compound.
  • a photoradical polymerization initiator when a polyfunctional (meth) acrylic compound is used, a photoradical polymerization initiator can be used.
  • the photoradical polymerization initiator may also be appropriately selected from known ones and used, for example, acetophenones, benzophenones, Michler's benzoylbenzoate, amyroxime esters, oxime esters, tetramethylthium monosulfide, thioxanthones and the like. Can be mentioned.
  • a photocleavable photoradical polymerization initiator is preferable.
  • the photocleavable photoradical polymerization initiator is described in the latest UV curing technology (page 159, publisher: Kazuhiro Takausu, publisher: Technical Information Association, 1991).
  • Examples of commercially available photoradical polymerization initiators include BASF's trade names: Irgacure 127, 184, 369, 379, 379EG, 651, 500, 754, 819, 903, 907, 784, 2959, CGI1700, CGI1750, CGI1850. , CG24-61, OXE01, OXE02, DaroCure 1116, 1173, MBF, BASF Product Name: Lucillin TPO, UCB Product Name: Yubekrill P36, Flateturi Lamberti Product Name: EzaCure KIP150, KIP65LT, KIP100F Examples thereof include KT37, KT55, KTO46, and KIP75 / B.
  • a photoradical polymerization initiator When a photoradical polymerization initiator is used, it is preferably used in the range of 0.1 to 200 parts by mass, preferably in the range of 1 to 150 parts by mass with respect to 100 parts by mass of the polyfunctional (meth) acrylate compound. Is more preferable.
  • a polyfunctional thiol compound having two or more mercapto groups in the molecule may be added to the composition of the present invention for the purpose of accelerating the reaction between the triazine ring-containing polymer and the cross-linking agent.
  • a polyfunctional thiol compound represented by the following formula is preferable.
  • the above L represents a divalent to tetravalent organic group, preferably an aliphatic group having 2 to 4 valences of 2 to 12 carbon atoms or a heterocyclic group containing 2 to 4 valences, and 2 to 4 valent carbon atoms. More preferably, it is a trivalent group having up to 8 aliphatic groups or an isocyanuric acid skeleton (1,3,5-triazine-2,4,6 (1H, 3H, 5H) -trione ring) represented by the following formula. ..
  • the above n represents an integer of 2 to 4 corresponding to the valence of L.
  • Specific compounds include 1,4-bis (3-mercaptobutylyloxy) butane and 1,3,5-tris (3-mercaptobutyryloxyethyl) -1,3,5-triazine-2,4. , 6- (1H, 3H, 5H) -trione, pentaerythritol tetrakis (3-mercaptobutyrate), trimethylolpropane tris (3-mercaptobutyrate), trimethylolethane ethanetris (3-mercaptobutyrate), etc. Be done.
  • polyfunctional thiol compounds can also be obtained as commercial products, and examples thereof include Karenz MT-BD1, Karenz MT NR1, Karenz MT PE1, TPMB, and TEMB (all manufactured by Showa Denko KK). These polyfunctional thiol compounds may be used alone or in combination of two or more.
  • the amount to be added is not particularly limited as long as it does not adversely affect the obtained thin film, but in the present invention, 0.01 to 10% by mass in 100% by mass of solid content. % Is preferable, and 0.03 to 6% by mass is more preferable.
  • solvents include water, toluene, p-xylene, o-xylene, m-xylene, ethylbenzene, styrene, ethylene glycol dimethyl ether, propylene glycol monomethyl ether, ethylene glycol monomethyl ether, propylene glycol, propylene glycol monoethyl ether, and ethylene.
  • Glycol monoethyl ether ethylene glycol monoisopropyl ether, ethylene glycol methyl ether acetate, propylene glycol monomethyl ether acetate, ethylene glycol ethyl ether acetate, diethylene glycol dimethyl ether, propylene glycol monobutyl ether, ethylene glycol monobutyl ether, diethylene glycol diethyl ether, dipropylene glycol monomethyl Ether, diethylene glycol monomethyl ether, dipropylene glycol monoethyl ether, diethylene glycol monoethyl ether, triethylene glycol dimethyl ether, diethylene glycol monoethyl ether acetate, diethylene glycol, 1-octanol, ethylene glycol, hexylene glycol, trimethylene glycol, 1-methoxy- 2-Butanol, cyclohexanol, diacetone alcohol, furfuryl alcohol, tetrahydrofurfuryl alcohol, propylene glyco
  • glycols such as ethylene glycol monomethyl ether acetate, propylene glycol monomethyl ether acetate, diethylene glycol monobutyl ether acetate, and diethylene glycol monoethyl ether acetate Ester solvent;
  • Ketone solvent such as acetone, methyl ethyl ketone, methyl isobutyl ketone, diisobutyl ketone, cyclopentanone, cyclohexanone, diacetone alcohol; ethyl acetate, methyl acetate, butyl acetate, methoxybutyl acetate, cellosolve acetate, amyl acetate, acetic acid Since it dissolves well in ester solvents such as normal propyl, isopropyl acetate, methyl lactate, ethyl lactate, and butyl lactate, it is particularly suitable
  • the solid content concentration in the composition is not particularly limited as long as it does not affect the storage stability, and may be appropriately set according to the target film thickness.
  • the solid content concentration is preferably 0.1 to 50% by mass, more preferably 0.1 to 40% by mass.
  • composition of the present invention addition of other components other than the triazine ring-containing polymer, the cross-linking agent and the solvent, for example, a leveling agent, a surfactant, a silane coupling agent, etc., as long as the effects of the present invention are not impaired.
  • the agent may be included.
  • the surfactant include polyoxyethylene alkyl ethers such as polyoxyethylene lauryl ether, polyoxyethylene stearyl ether, polyoxyethylene cetyl ether, and polyoxyethylene oleyl ether; polyoxyethylene octylphenol ether, and polyoxyethylene nonylphenol.
  • Polyoxyethylene alkylallyl ethers such as ethers; polyoxyethylene / polyoxypropylene block copolymers; sorbitan monolaurate, sorbitan monopalmitate, sorbitan monostearate, sorbitan monooleate, sorbitan trioleate, sorbitan tristearate
  • sorbitan fatty acid esters polyoxyethylene sorbitan monolaurate, polyoxyethylene sorbitan monopalmitate, polyoxyethylene sorbitan monostearate, polyoxyethylene sorbitan trioleate, polyoxyethylene sorbitan tristearate, etc.
  • Nonionic surfactants such as sorbitan fatty acid esters, trade names Ftop EF301, EF303, EF352 (manufactured by Mitsubishi Materials Denshi Kasei Co., Ltd. (formerly manufactured by Gemco Co., Ltd.)), trade names Megafuck F171, F173, R- 08, R-30, R-40, F-553, F-554, RS-75, RS-72-K (manufactured by DIC Co., Ltd.), Florard FC430, FC431 (manufactured by Sumitomo 3M Co., Ltd.), trade name Fluorine-based surfactants such as Asahi Guard AG710, Surflon S-382, SC101, SC102, SC103, SC104, SC105, SC106 (manufactured by AGC Co., Ltd.), Organosiloxane polymer KP341 (manufactured by Shinetsu Chemical Industry Co., Ltd.), BYK -302, BYK-307, B
  • surfactants may be used alone or in combination of two or more.
  • the amount of the surfactant used is preferably 0.0001 to 5 parts by mass, more preferably 0.001 to 1 part by mass, and 0.01 to 0.5 parts by mass with respect to 100 parts by mass of the triazine ring-containing polymer. Even more preferable.
  • the film-forming composition of the present invention can be applied to a substrate, and then heated if necessary to evaporate the solvent, and then heated or irradiated with light to obtain a desired cured film.
  • the coating method of the composition is arbitrary, for example, spin coating method, dip method, flow coating method, inkjet method, jet dispenser method, spray method, bar coating method, gravure coating method, slit coating method, roll coating method, transfer.
  • a printing method, a brush coating method, a blade coating method, an air knife coating method, or the like can be adopted.
  • the base material silicon, glass on which indium tin oxide (ITO) is formed, glass on which indium zinc oxide (IZO) is formed, metal nanowires, polyethylene terephthalate (PET), plastic, glass, etc.
  • ITO indium tin oxide
  • IZO indium zinc oxide
  • PET polyethylene terephthalate
  • the firing temperature is not particularly limited for the purpose of evaporating the solvent, and can be performed at, for example, 110 to 400 ° C.
  • the firing method is not particularly limited, and for example, it may be evaporated using a hot plate or an oven in an atmosphere, an inert gas such as nitrogen, or an appropriate atmosphere such as in a vacuum.
  • conditions suitable for the process process of the target electronic device may be selected, and firing conditions may be selected so that the physical property values of the obtained film match the required characteristics of the electronic device.
  • the conditions for light irradiation are not particularly limited, and appropriate irradiation energy and time may be adopted depending on the triazine ring-containing polymer and the cross-linking agent used.
  • the thin film transistor and the cured film of the present invention obtained as described above can achieve high heat resistance, high refractive index, and low volume shrinkage, liquid crystal displays, organic EL elements (organic EL displays and organic EL illuminations), A member for manufacturing touch panels, optical semiconductor (LED) elements, solid-state imaging elements, organic thin film solar cells, dye-sensitized solar cells, organic thin film transistors (TFTs), lenses, prism cameras, binoculars, microscopes, semiconductor exposure devices, etc. It can be suitably used in the fields of electronic devices and optical materials.
  • LED optical semiconductor
  • TFTs organic thin film transistors
  • the thin film or cured film produced from the composition of the present invention has high transparency and high refractive index, and therefore, when used as a flattening film or a light scattering layer for organic EL illumination, its light extraction efficiency ( Light diffusion efficiency) can be improved, and its durability can be improved.
  • composition of the present invention is used for the light scattering layer of organic EL illumination
  • a known light diffusing agent can be used as the light diffusing agent, and the present invention is not particularly limited. These may be used alone, in combination of two or more of the same type, or in combination of two or more of different types.
  • Examples of the light diffusing agent include organic light diffusing agents.
  • Examples of the organic light diffusing agent include crosslinked polymethylmethacrylate (PMMA) particles, crosslinked polymethylacrylate particles, crosslinked polystyrene particles, crosslinked styrene-acrylic copolymer particles, melamine-formaldehyde particles, silicone resin particles, silica-acrylic composite particles, and nylon particles. , Benzoguanamine-formaldehyde particles, benzoguanamine / melamine / formaldehyde particles, fluororesin particles, epoxy resin particles, polyphenylene sulfide resin particles, polyether sulfone resin particles, polyacrylonitrile particles, polyurethane particles and the like.
  • PMMA polymethylmethacrylate
  • PMMA polymethylmethacrylate
  • crosslinked polystyrene particles crosslinked polystyrene-acrylic copolymer particles
  • melamine-formaldehyde particles silicone resin particles
  • 1,3-phenylenediamine [2] 35.18 g, 0.325 mol, manufactured by Amino-Chem
  • DMAc dimethylacetamide
  • 1,3-phenylenediamine [2] was dissolved in DMAc by stirring. Then, it was cooled to -10 ° C by an ethanol-dry ice bath, and 2,4,6-trichloro-1,3,5-triazine [1] (60.0 g, 0.325 mol, manufactured by Tokyo Chemical Industry Co., Ltd.).
  • the measurement result of 1 H-NMR spectrum of compound P-1 is shown in FIG.
  • the weight average molecular weight Mw of compound P-1 measured by GPC in terms of polystyrene was 6,070, and the polydispersity Mw / Mn was 2.6.
  • 1,3-phenylenediamine [2] (11.73 g, 0.108 mol, manufactured by Amino-Chem) and 204.96 g of dimethylacetamide (DMAc, manufactured by Kanto Chemical Co., Ltd.) were added. After substitution with nitrogen, 1,3-phenylenediamine [2] was dissolved in DMAc by stirring. Then, it was cooled to -10 ° C by an ethanol-dry ice bath, and 2,4,6-trichloro-1,3,5-triazine [1] (20.00 g, 0.108 mol, manufactured by Tokyo Chemical Industry Co., Ltd.). Was added while confirming that the internal temperature did not exceed 0 ° C.
  • aniline [6] (10.10 g, 0.108 mol, manufactured by Tokyo Chemical Industry Co., Ltd.) and 2- (4-aminophenyl) ethanol [3] (104.14 g, 0.759 mol, manufactured by Sugai Chemical Industry Co., Ltd., was previously dissolved in 208.29 g of DMAc, added dropwise, and the mixture was stirred for 3 hours.
  • acrylic acid chloride 14.72 g, 0.163 mol, manufactured by Tokyo Chemical Industry Co., Ltd. was added dropwise, and the mixture was further stirred for 30 minutes.
  • the recovered organic layer was added dropwise to a mixed solution of methanol (251 g) and ion-exchanged water (629 g), and the mixture was reprecipitated.
  • the obtained precipitate was filtered off and dried in a vacuum drier at 120 ° C. for 8 hours to obtain 31.0 g of the target polymer compound [7] (hereinafter referred to as P-3).
  • the measurement result of 1 H-NMR spectrum of compound P-3 is shown in FIG.
  • the weight average molecular weight Mw of compound P-3 measured by GPC in terms of polystyrene was 7,270, and the polydispersity Mw / Mn was 3.3.
  • the measurement result of 1 H-NMR spectrum of compound P-4 is shown in FIG.
  • the weight average molecular weight Mw of compound P-4 measured by GPC in terms of polystyrene was 11,580, and the polydispersity Mw / Mn was 3.7.
  • the measurement results of the 1 H-NMR spectrum of compound P-5 are shown in FIG.
  • the weight average molecular weight Mw of compound P-5 measured by GPC in terms of polystyrene was 6,182, and the polydispersity Mw / Mn was 5.8.
  • 1,3-phenylenediamine [2] (42.22 g, 0.390 mol, manufactured by Amino-Chem) and 672.62 g of dimethylacetamide (DMAc, manufactured by Kanto Chemical Co., Ltd.).
  • DMAc dimethylacetamide
  • 1,3-phenylenediamine [2] was dissolved in DMAc by stirring. Then, it was cooled to -10 ° C by an ethanol-dry ice bath, and 2,4,6-trichloro-1,3,5-triazine [1] (60.00 g, 0.325 mol, manufactured by Tokyo Chemical Industry Co., Ltd.).
  • 2-aminoethanol (59.62 g, manufactured by Tokyo Chemical Industry Co., Ltd.) was added dropwise, the temperature was lowered to room temperature, stirring was performed for 30 minutes, and then stirring was stopped.
  • THF (369 g), ammonium acetate (415 g) and ion-exchanged water (415 g) were added to the reaction solution, and the mixture was stirred for 30 minutes.
  • the solution was transferred to a separating funnel, separated into an organic layer and an aqueous layer, and the organic layer was recovered.
  • the recovered organic layer was added dropwise to a mixed solution of methanol (461 g) and ion-exchanged water (1,845 g), and the mixture was reprecipitated.
  • the obtained precipitate was filtered off and dried in a vacuum drier at 120 ° C. for 8 hours to obtain 89.3 g of the target polymer compound [10] (hereinafter referred to as P-6).
  • the measurement results of the 1 H-NMR spectrum of compound P-6 are shown in FIG.
  • the weight average molecular weight Mw of compound P-6 measured by GPC in terms of polystyrene was 23,350, and the polydispersity Mw / Mn was 6.5.
  • Example 2-1 Preparation of cross-linking agent-added film-forming composition and preparation of cured film
  • P-1 (2.40 g) obtained in Example 1-1 was dissolved in cyclopentanone (hereinafter abbreviated as CPN) (5.60 g), and ATM-35E (30% by mass CPN solution) was used as a cross-linking agent.
  • CPN cyclopentanone
  • ATM-35E (30% by mass CPN solution
  • This SP-1 solution was spin-coated on a 50 mm ⁇ 50 mm ⁇ 0.7 t non-alkali glass substrate with a spin coater at 200 rpm for 5 seconds and at 1,000 rpm for 30 seconds, and then spin-coated at 100 ° C. for 1 minute using a hot plate. After the temporary drying, a cured film (hereinafter referred to as SP-1 film) was obtained by irradiating an exposure amount of 400 mJ / cm 2 with light having a wavelength of 365 nm with a UV irradiation device.
  • Example 2-2 P-2 (1.20 g) obtained in Example 1-2 was dissolved in CPN (2.80 g), and ATM-35E (manufactured by Shin-Nakamura Chemical Industry Co., Ltd.) in a 50 mass% CPN solution as a cross-linking agent was used.
  • Example 2-3 ATM-35E (manufactured by Shin-Nakamura Chemical Industry Co., Ltd.) in which P-3 (2.40 g) obtained in Example 1-3 is dissolved in CPN (5.60 g) and a 30 mass% CPN solution is used as a cross-linking agent.
  • Residual film ratio (%) (film thickness after solvent exposure) ⁇ (film thickness before solvent exposure) x 100
  • the transmittance was also measured before the solvent was exposed.
  • the results of the refractive index, film thickness measurement, residual film ratio and average transmittance at 300 to 800 nm are shown in Table 1, and the photomicrographs of the cured film surface of Examples 2-1 to 2-3 are shown in FIGS. 7 to 9 for comparative examples. Micrographs of the surface of the cured film of 2-1 to 2-2 are shown in FIGS. 10 to 11, respectively.
  • the cured films (SP-1 to SP-3 films) of Examples 2-1 to 2-3 have a high residual film ratio, and as shown in FIGS. 7 to 9, no film roughness or cracks have occurred. Is confirmed, and it can be seen that the solvent resistance (crack resistance) is excellent.
  • the cured film (SP-4 film) of Comparative Example 2-1 was exposed to a solvent and then dried at 120 ° C. for 10 seconds using a hot plate, and then film roughness and cracks occurred (see FIG. 10). The refractive index and film thickness could not be measured.
  • the cured film (SP-5 film) of Comparative Example 2-2 had no film roughness or cracks, but the transmittance was lower than that of Examples (see FIG. 11). From these results, it can be seen that the cured film prepared from the polymer compound obtained in the examples is excellent in solvent resistance (crack resistance) and optical properties because it has a crosslinked site at the polymer terminal. ..
  • aniline [14] (73.39 g, 0.456 mol, manufactured by Tokyo Chemical Industry Co., Ltd.) and 2- (4-aminophenyl) ethanol [13] (62.49 g, 0.456 mol (manufactured by Oakwood) was previously dissolved in 124.97 g of DMAc, added dropwise, and the mixture was stirred for 3 hours. Then, the temperature was lowered to room temperature, n-propylamine (115.39 g, manufactured by Tokyo Chemical Industry Co., Ltd.) was added dropwise, and the mixture was stirred for 30 minutes and then the stirring was stopped.
  • the measurement result of 1 H-NMR spectrum of compound P-11 is shown in FIG.
  • the weight average molecular weight Mw of compound P-11 measured by GPC in terms of polystyrene was 6,070, and the polydispersity Mw / Mn was 2.6.
  • the measurement result of 1 H-NMR spectrum of compound P-13 is shown in FIG.
  • the weight average molecular weight Mw of compound P-13 measured by GPC in terms of polystyrene was 11,580, and the polydispersity Mw / Mn was 3.7.
  • Example 4-1 P-11 (2.50 g) obtained in Example 3-1 was dissolved in PGME (5.83 g), and blocked isocyanate (BI9792, 1,500 mPa ⁇ s, BAXENDEN) in a 70 mass% PGME solution as a cross-linking agent. 0.71 g, 0.25 g of Megafuck F-563 (manufactured by DIC Co., Ltd.) in a 1 mass% PGMEA solution as a surfactant, 0.71 g of PGME, and 1.70 g of THFA (tetrahydrofurfuryl alcohol) are added.
  • PGME 5.83 g
  • blocked isocyanate BI9792, 1,500 mPa ⁇ s, BAXENDEN
  • SP-11 solution a varnish having a solid content of 30% by mass was prepared (hereinafter referred to as SP-11 solution).
  • This SP-11 solution was spin-coated on a 50 mm ⁇ 50 mm ⁇ 0.7 t non-alkali glass substrate with a spin coater at 200 rpm for 5 seconds and at 1,000 rpm for 30 seconds, and then spin-coated at 100 ° C. for 1 minute using a hot plate. After the temporary drying, the film was fired at 200 ° C. for 5 minutes to obtain a cured film (hereinafter referred to as SP-11 film).
  • P-1 [4] (29.20 g) obtained in Example 1-1 and 174.84 g of cyclopentanone (CPN, manufactured by Nippon Zeon Corporation) were added to a 500 mL four-necked flask and substituted with nitrogen. After that, it was stirred and dissolved. Then, the solution was heated until the internal temperature reached 60 ° C., 14.51 g of 2-isocyanatoethylacryllate [101] (AOI-VM, manufactured by Showa Denko KK) was added dropwise, and the internal temperature was 60 ° C. The mixture was stirred at ⁇ 5 ° C. for 1 hour to prepare a CPN solution containing 30% by mass of the polymer compound [102] (hereinafter referred to as P-21 solution).
  • CPN 2-isocyanatoethylacryllate
  • 1,3-phenylenediamine [2] (43.98 g, 0.407 mol, manufactured by Amino-Chem), 2,2'-bis (trifluoromethyl) -4,4'- Diamine diphenyl ether [103] (136.75 g, 0.407 mol, manufactured by Wuhan Sunshine) and dimethylacetamide 1949.90 g (DMAc, manufactured by Kanto Kagaku Co., Ltd.) were added, substituted with nitrogen, and then stirred for 1,3.
  • DMAc dimethylacetamide 1949.90 g
  • Tetrahydrofuran (THF, 1456 g), ammonium acetate (1,311 g) and ion-exchanged water (1311 g) were added to the reaction solution, and the mixture was stirred for 30 minutes. After stopping stirring, the solution was transferred to a separating funnel, separated into an organic layer and an aqueous layer, and the organic layer was recovered. The recovered organic layer was added dropwise to methanol (1,748 g) and ion-exchanged water (4,369 g) for reprecipitation. The obtained precipitate was filtered off and dried in a vacuum drier at 150 ° C. for 8 hours to obtain 353.6 g of the target polymer compound [104] (hereinafter referred to as P-22).
  • the weight average molecular weight Mw of compound P-22 measured by GPC in terms of polystyrene was 8,083, and the polydispersity Mw / Mn was 3.2.
  • the measurement result of 1 H-NMR spectrum of compound P-22 is shown in FIG.
  • P-22 polymer compound [104] (30.00 g) and cyclopentanone 93.60 g (CPN, manufactured by Nippon Zeon Corporation) obtained in Example 5-2 were placed in a 300 mL four-necked flask. In addition, after substitution with nitrogen, the mixture was stirred and dissolved. Then, the solution was heated until the internal temperature reached 60 ° C., 10.11 g of 2-isocyanatoethylacrylate (AOI-VM, manufactured by Showa Denko KK) was added dropwise, and the internal temperature was 60 ° C. ⁇ 5 ° C. To prepare a CPN solution containing 30% by mass of the polymer compound [105] (hereinafter referred to as P-23 solution).
  • AOI-VM 2-isocyanatoethylacrylate
  • Example 6-1 P-21 solution (4.42 g) obtained in Example 5-1 and ATM-35E (manufactured by Shin-Nakamura Chemical Industry Co., Ltd.) 0.088 g as a cross-linking agent, DN-0075 (Nippon Kayaku Co., Ltd.) (Made) 0.088 g, Omnirad 2959 (manufactured by IGM Resins VV) as a photoradical polymerization initiator, 0.053 g, and Megafuck R-40 (manufactured by DIC Co., Ltd.) in a 10 mass% CPN solution as a surfactant.
  • ATM-35E manufactured by Shin-Nakamura Chemical Industry Co., Ltd.
  • DN-0075 Nippon Kayaku Co., Ltd.
  • Omnirad 2959 manufactured by IGM Resins VV
  • Megafuck R-40 manufactured by DIC Co., Ltd.
  • SP-21 solution a varnish having a solid content of 20% by mass was prepared (hereinafter referred to as SP-21 solution).
  • This SP-21 solution is spin-coated on a 50 mm ⁇ 50 mm ⁇ 0.7 t non-alkali glass substrate with a spin coater at 200 rpm for 5 seconds and at 1,000 rpm for 30 seconds, and then spin-coated at 80 ° C. for 3 minutes using a hot plate.
  • a cured film (hereinafter referred to as SP-21 film) was obtained by irradiating an exposure amount of 200 mJ / cm 2 with light having a wavelength of 365 nm with a UV irradiation device.
  • Solvent resistance (crack resistance) and transmittance measurement The substrate with the cured film prepared above was set on a spin coater, and 1 ml of CPN was applied. Next, the cured film was exposed to the solvent by rotating at 50 rpm for 60 seconds so that the liquid did not scatter from the substrate. Then, the solvent was removed from the substrate by rotating at 1,000 rpm for 30 seconds. Finally, after drying at 80 ° C.
  • Residual film ratio (%) (film thickness after solvent exposure) ⁇ (film thickness before solvent exposure) x 100
  • the transmittance was also measured before the solvent was exposed.
  • Table 3 The results of the refractive index, film thickness measurement, residual film ratio and average transmittance at 300 to 800 nm are shown in Table 3, and the photomicrograph of the surface of the cured film of Example 6-1 is shown in FIG.
  • Example 6-2 P-23 solution (13.27 g) obtained in Example 5-3, ATM-35E (manufactured by Shin-Nakamura Chemical Industry Co., Ltd.) 0.20 g as a cross-linking agent, DN-0075 (Nippon Kayaku Co., Ltd.) (Manufactured by) 0.20 g, Omnirad 2959 (manufactured by IGM Resins VV) as a photoradical polymerization initiator, 0.12 g, and Megafuck R-40 (manufactured by DIC Co., Ltd.) in a 10 mass% CPN solution as a surfactant.
  • ATM-35E manufactured by Shin-Nakamura Chemical Industry Co., Ltd.
  • DN-0075 Nippon Kayaku Co., Ltd.
  • Omnirad 2959 manufactured by IGM Resins VV
  • Megafuck R-40 manufactured by DIC Co., Ltd.
  • SP-22 solution a varnish having a solid content of 15% by mass was prepared (hereinafter referred to as SP-22 solution).
  • This SP-22 solution was spin-coated on a 50 mm ⁇ 50 mm ⁇ 0.7 t non-alkali glass substrate with a spin coater at 200 rpm for 5 seconds and at 1,000 rpm for 30 seconds, and then spin-coated at 80 ° C. for 3 minutes using a hot plate.
  • a cured film (hereinafter referred to as SP-22 film) was obtained by irradiating an exposure amount of 200 mJ / cm 2 with light having a wavelength of 365 nm with a UV irradiation device.
  • Solvent resistance (crack resistance) and transmittance measurement The substrate with the cured film prepared above was set on a spin coater, and 1 ml of CPN was applied. Next, the cured film was exposed to the solvent by rotating at 50 rpm for 60 seconds so that the liquid did not scatter from the substrate. Then, the solvent was removed from the substrate by rotating at 1,000 rpm for 30 seconds. Finally, after drying at 80 ° C.
  • Residual film ratio (%) (film thickness after solvent exposure) ⁇ (film thickness before solvent exposure) x 100
  • the transmittance was also measured before the solvent was exposed.
  • Table 4 The results of the refractive index, film thickness measurement, residual film ratio and average transmittance at 300 to 800 nm are shown in Table 4, and the photomicrograph of the surface of the cured film of Example 6-2 is shown in FIG.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Materials Engineering (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Macromolecular Compounds Obtained By Forming Nitrogen-Containing Linkages In General (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

例えば、下記式(24)で表されるような繰り返し単位構造を含むトリアジン環含有重合体。(式中、R102は、架橋基を表す。)

Description

トリアジン環含有重合体およびそれを含む膜形成用組成物
 本発明は、トリアジン環含有重合体およびそれを含む膜形成用組成物に関する。
 近年、液晶ディスプレイ、有機エレクトロルミネッセンス(EL)素子(有機ELディスプレイや有機EL照明)、タッチパネル、光半導体(LED)素子、固体撮像素子、有機薄膜太陽電池、色素増感太陽電池、および有機薄膜トランジスタ(TFT)等の電子デバイスを開発する際に、高機能な高分子材料が要求されるようになってきた。
 求められる具体的な特性としては、1)耐熱性、2)透明性、3)高屈折率、4)高溶解性、5)低体積収縮率、6)高温高湿耐性、7)高膜硬度などが挙げられる。
 この点に鑑み、本出願人は、トリアジン環および芳香環を有する繰り返し単位を含む重合体が高屈折率を有し、ポリマー単独で高耐熱性、高透明性、高屈折率、高溶解性、低体積収縮を達成でき、電子デバイスを作製する際の膜形成用組成物として好適であることを既に見出している(特許文献1)。
 ところで、有機EL照明における、平坦化層や光散乱層などでは、高屈折率材料を有機溶媒に溶かした組成物を用い、塗布法によって薄膜を作製することが一般的であるが、透明導電膜の種類によっては高極性の溶媒を使用することができない場合があった。
 また、塗布装置を用いて高屈折ポリマーを含む膜形成用組成物を塗布した後に、装置のライン洗浄溶媒として低極性溶媒等が用いられることがあり、そのような溶媒に対する溶解性が低いポリマーであると、ラインが目詰まりしてしまうという問題が生じることもあった。さらに、電子デバイスの製造時において薄膜が溶剤に暴露される際、条件によっては作製した薄膜にクラックが発生することがあり、その耐久性についてもさらなる改善が求められている。
国際公開第2010/128661号
 本発明は、上記事情に鑑みてなされたものであり、高屈折率で透明性および耐溶剤性(耐クラック性)に優れた薄膜を形成し得るとともに、低極性溶媒、疎水性溶媒、低沸点溶媒等の各種有機溶媒への溶解性に優れるトリアジン環含有重合体およびそれを含む膜形成用組成物を提供することを目的とする。
 本発明者は、上記目的を達成するために鋭意検討を重ねた結果、少なくとも1つのトリアジン環末端を有するとともに、そのトリアジン環末端の少なくとも一部が架橋基を有するアリールアミノ基で封止されたトリアジン環含有重合体を用いることで、高屈折率で透明性および耐溶剤性に優れた薄膜を形成し得るとともに、各種有機溶媒に対する溶解性に優れたトリアジン環含有重合体が得られることを見出し、本発明を完成した。
 すなわち、本発明は、下記のトリアジン環含有重合体およびそれを含む膜形成用組成物を提供する。
[1]. 下記式(1)で表される繰り返し単位構造を含み、少なくとも1つのトリアジン環末端を有し、このトリアジン環末端の少なくとも一部が、架橋基を有するアリールアミノ基で封止されていることを特徴とするトリアジン環含有重合体。
Figure JPOXMLDOC01-appb-C000012
{式中、RおよびR’は、互いに独立して、水素原子、アルキル基、アルコキシ基、アリール基、またはアラルキル基を表し、
 Arは、式(2)~(13)で示される群から選ばれる少なくとも1種を表す。
Figure JPOXMLDOC01-appb-C000013
〔式中、R~R92は、互いに独立して、水素原子、ハロゲン原子、カルボキシル基、スルホ基、炭素数1~10のアルキル基、炭素数1~10のハロゲン化アルキル基、または炭素数1~10のアルコキシ基を表し、
 R93およびR94は、水素原子または炭素数1~10のアルキル基を表し、
 WおよびWは、互いに独立して、単結合、CR9596(R95およびR96は、互いに独立して、水素原子または炭素数1~10のアルキル基(ただし、これらは一緒になって環を形成していてもよい。)を表す。)、C=O、O、S、SO、SO、またはNR97(R97は、水素原子、炭素数1~10のアルキル基またはフェニル基を表す。)を表し、
 XおよびXは、互いに独立して、単結合、炭素数1~10のアルキレン基、または式(14)
Figure JPOXMLDOC01-appb-C000014
(式中、R98~R101は、互いに独立して、水素原子、ハロゲン原子、カルボキシル基、スルホ基、炭素数1~10のアルキル基、炭素数1~10のハロゲン化アルキル基、または炭素数1~10のアルコキシ基を表し、
 YおよびYは、互いに独立して、単結合または炭素数1~10のアルキレン基を表す。)で示される基を表す。〕
[2]. 前記R~R92およびR98~R101が、互いに独立して、水素原子、ハロゲン原子または炭素数1~10のロゲン化アルキル基である[1]のトリアジン環含有重合体。
[3]. 前記架橋基を有するアリールアミノ基が、式(15)で示される[1]または[2]のトリアジン環含有重合体。
Figure JPOXMLDOC01-appb-C000015
(式中、R102は、架橋基を表す。)
[4]. 前記架橋基を有するアリールアミノ基が、式(16)で示される[3]のトリアジン環含有重合体。
Figure JPOXMLDOC01-appb-C000016
(式中、R102は、上記と同じ意味を表す。)
[5]. 前記架橋基が、ヒドロキシ含有基または(メタ)アクリロイル含有基である[1]~[4]のいずれかのトリアジン環含有重合体。
[6]. 前記架橋基が、ヒドロキシアルキル基、(メタ)アクリロイルオキシアルキル基または下記式(i)で表される基である[5]のトリアジン環含有重合体。
Figure JPOXMLDOC01-appb-C000017
(式中、Aは、炭素数1~10のアルキレン基を表し、Aは、単結合または下記式(j)
Figure JPOXMLDOC01-appb-C000018
で表される基を表し、Aは、ヒドロキシ基で置換されてもよい2価または3価の脂肪族炭化水素基を表し、Aは、水素原子またはメチル基を表し、aは、1または2を表し、*は結合手を表す。)
[7]. 前記架橋基が、ヒドロキシメチル基、2-ヒドロキシエチル基、(メタ)アクリロイルオキシメチル基、(メタ)アクリロイルオキシエチル基、および下記式(i-2)~式(i-5)で表される基から選ばれる1種以上である[6]のトリアジン環含有重合体。
Figure JPOXMLDOC01-appb-C000019
(式中、*は結合手を表す。)
[8]. 前記Ar中の少なくとも1つの芳香環中にハロゲン原子または炭素数1~10のハロゲン化アルキル基を少なくとも1つ含有する、[1]~[7]のずれかのトリアジン環含有重合体。
[9]. さらに、トリアジン環末端の一部が、無置換アリールアミノ基で封止されている[1]~[8]のいずれかのトリアジン環含有重合体。
[10]. 前記無置換アリールアミノ基が、式(33)で示される[1]~[9]のいずれかのトリアジン環含有重合体。
Figure JPOXMLDOC01-appb-C000020
[11]. 前記Arが、式(17)で示される[1]~[10]のいずれかのトリアジン環含有重合体。
Figure JPOXMLDOC01-appb-C000021
[12]
 前記Arが、式(20)で示される[1]~[10]のいずれかのトリアジン環含有重合体。
Figure JPOXMLDOC01-appb-C000022
[13]. [1]~[12]のいずれかのトリアジン環含有重合体と有機溶媒とを含む膜形成用組成物。
[14]. 前記有機溶媒が、グリコールエステル系溶媒、ケトン系溶媒、およびエステル系溶媒から選ばれる少なくとも1種を含む[13]の膜形成用組成物。
[15]. さらに架橋剤を含む[13]または[14]の膜形成用組成物。
[16]. 前記架橋剤が、多官能(メタ)アクリル化合物である[15]の膜形成用組成物。
[17]. [13]~[16]のいずれかの膜形成用組成物から得られる薄膜。
[18]. 基材と、前記基材上に形成された[17]の薄膜とを備える電子デバイス。
[19]. 基材と、前記基材上に形成された[17]の薄膜とを備える光学部材。
 本発明によれば、高屈折率で透明性および耐溶剤性に優れた薄膜を形成し得るとともに、低極性溶媒、疎水性溶媒、低沸点溶媒等の各種有機溶媒への溶解性に優れたトリアジン環含有重合体を提供できる。
 このような、本発明のトリアジン環含有重合体を用いることで、低極性溶媒、疎水性溶媒等の溶解力が低い有機溶媒を用いて組成物を調製できるため、高極性溶媒に浸食され易い基材上にも問題なく薄膜を形成することができる。
 本発明の膜形成用組成物から作製された薄膜は、高耐熱性、高屈折率、低体積収縮、耐溶剤性(耐クラック性)という特性を発揮し得るため、液晶ディスプレイ、有機EL素子(有機ELディスプレイや有機EL照明)、タッチパネル、光半導体(LED)素子、固体撮像素子、有機薄膜太陽電池、色素増感太陽電池、有機薄膜トランジスタ(TFT)、レンズ、プリズム、カメラ、双眼鏡、顕微鏡、半導体露光装置等を作製する際の一部材など、電子デバイスや光学材料の分野に好適に利用できる。
 特に、本発明の膜形成用組成物から作製された薄膜は透明性が高く、屈折率や耐溶剤性(耐クラック性)も高いため、有機EL照明の平坦化層や光散乱層として使用することで、その光取出し効率(光拡散効率)を改善することができるとともに、その耐久性を改善することができる。
実施例1-1で得られた化合物P-1(高分子化合物[4])のH-NMRスペクトル図である。 実施例1-2で得られた化合物P-2(高分子化合物[5])のH-NMRスペクトル図である。 実施例1-3で得られた化合物P-3(高分子化合物[7])のH-NMRスペクトル図である。 比較例1-1で得られた化合物P-4(高分子化合物[8])のH-NMRスペクトル図である。 比較例1-2で得られた化合物P-5(高分子化合物[9])のH-NMRスペクトル図である。 実施例1-4で得られた化合物P-6(高分子化合物[10])のH-NMRスペクトル図である。 実施例2-1で得られた硬化膜の溶剤暴露後における表面を観察した光学顕微鏡写真である。 実施例2-2で得られた硬化膜の溶剤暴露後における表面を観察した光学顕微鏡写真である。 実施例2-3で得られた硬化膜の溶剤暴露後における表面を観察した光学顕微鏡写真である。 比較例2-1で得られた硬化膜の溶剤暴露後における表面を観察した光学顕微鏡写真である。 比較例2-2で得られた硬化膜の溶剤暴露後における表面を観察した光学顕微鏡写真である。 実施例3-1で得られた化合物P-11(高分子化合物[15])の1H-NMRスペクトル図である。 実施例3-2で得られた化合物P-12(高分子化合物[16])の1H-NMRスペクトル図である。 比較例3-1で得られた化合物P-13(高分子化合物[19])の1H-NMRスペクトル図である。 実施例3-1で得られた硬化膜の表面を観察した光学顕微鏡写真である。 比較例3-1で得られた硬化膜の表面を観察した光学顕微鏡写真である。 実施例5-2で得られた化合物P-22(高分子化合物[104])のH-NMRスペクトル図である。 実施例6-1で得られた硬化膜の溶剤暴露後における表面を観察した光学顕微鏡写真である。 実施例6-2で得られた硬化膜の溶剤暴露後における表面を観察した光学顕微鏡写真である。
 以下、本発明についてさらに詳しく説明する。
 本発明に係るトリアジン環含有重合体は、下記式(1)で表される繰り返し単位構造を含むものである。
 トリアジン環含有重合体は、例えば、いわゆるハイパーブランチポリマーである。ハイパーブランチポリマーとは、不規則な分岐構造を有する高分岐ポリマーである。ここでの不規則とは、規則的な分岐構造を有する高分岐ポリマーであるデンドリマーの分岐構造よりも不規則であることを意味する。
 例えば、ハイパーブランチポリマーであるトリアジン環含有重合体は、式(1)で表される繰り返し単位構造よりも大きな構造として、式(1)で表される繰り返し単位構造の3つの結合手のそれぞれに、式(1)で表される繰り返し単位構造が結合してなる構造(構造A)を含む。ハイパーブランチポリマーであるトリアジン環含有重合体においては、構造Aがトリアジン環含有重合体の末端を除く全体に分布している。
 ハイパーブランチポリマーであるトリアジン環含有重合体においては、繰り返し単位構造が、本質的に式(1)で表される繰り返し単位構造のみからであってもよい。
Figure JPOXMLDOC01-appb-C000023
 上記式中、RおよびR’は、互いに独立して、水素原子、アルキル基、アルコキシ基、アリール基、またはアラルキル基を表すが、屈折率をより高めるという観点から、ともに水素原子であることが好ましい。
 本発明において、アルキル基の炭素数としては特に限定されるものではないが、1~20が好ましく、ポリマーの耐熱性をより高めることを考慮すると、アルキル基の炭素数としては、1~10がより好ましく、1~3がより一層好ましい。また、アルキル基の構造は、特に限定されず、例えば、鎖状、分岐状、環状、およびこれらの2以上の組み合わせのいずれでもよい。
 アルキル基の具体例としては、メチル、エチル、n-プロピル、イソプロピル、シクロプロピル、n-ブチル、イソブチル、s-ブチル、t-ブチル、シクロブチル、1-メチル-シクロプロピル、2-メチル-シクロプロピル、n-ペンチル、1-メチル-n-ブチル、2-メチル-n-ブチル、3-メチル-n-ブチル、1,1-ジメチル-n-プロピル、1,2-ジメチル-n-プロピル、2,2-ジメチル-n-プロピル、1-エチル-n-プロピル、シクロペンチル、1-メチル-シクロブチル、2-メチル-シクロブチル、3-メチル-シクロブチル、1,2-ジメチル-シクロプロピル、2,3-ジメチル-シクロプロピル、1-エチル-シクロプロピル、2-エチル-シクロプロピル、n-ヘキシル、1-メチル-n-ペンチル、2-メチル-n-ペンチル、3-メチル-n-ペンチル、4-メチル-n-ペンチル、1,1-ジメチル-n-ブチル、1,2-ジメチル-n-ブチル、1,3-ジメチル-n-ブチル、2,2-ジメチル-n-ブチル、2,3-ジメチル-n-ブチル、3,3-ジメチル-n-ブチル、1-エチル-n-ブチル、2-エチル-n-ブチル、1,1,2-トリメチル-n-プロピル、1,2,2-トリメチル-n-プロピル、1-エチル-1-メチル-n-プロピル、1-エチル-2-メチル-n-プロピル、シクロヘキシル、1-メチル-シクロペンチル、2-メチル-シクロペンチル、3-メチル-シクロペンチル、1-エチル-シクロブチル、2-エチル-シクロブチル、3-エチル-シクロブチル、1,2-ジメチル-シクロブチル、1,3-ジメチル-シクロブチル、2,2-ジメチル-シクロブチル、2,3-ジメチル-シクロブチル、2,4-ジメチル-シクロブチル、3,3-ジメチル-シクロブチル、1-n-プロピル-シクロプロピル、2-n-プロピル-シクロプロピル、1-イソプロピル-シクロプロピル、2-イソプロピル-シクロプロピル、1,2,2-トリメチル-シクロプロピル、1,2,3-トリメチル-シクロプロピル、2,2,3-トリメチル-シクロプロピル、1-エチル-2-メチル-シクロプロピル、2-エチル-1-メチル-シクロプロピル、2-エチル-2-メチル-シクロプロピル、2-エチル-3-メチル-シクロプロピル基等が挙げられる。
 上記アルコキシ基の炭素数としては特に限定されるものではないが、1~20が好ましく、ポリマーの耐熱性をより高めることを考慮すると、アルコキシ基の炭素数としては、1~10がより好ましく、1~3がより一層好ましい。また、そのアルキル部分の構造は、特に限定されず、例えば、鎖状、分岐状、環状、およびこれらの2以上の組み合わせのいずれでもよい。
 アルコキシ基の具体例としては、メトキシ、エトキシ、n-プロポキシ、イソプロポキシ、n-ブトキシ、イソブトキシ、s-ブトキシ、t-ブトキシ、n-ペントキシ、1-メチル-n-ブトキシ、2-メチル-n-ブトキシ、3-メチル-n-ブトキシ、1,1-ジメチル-n-プロポキシ、1,2-ジメチル-n-プロポキシ、2,2-ジメチル-n-プロポキシ、1-エチル-n-プロポキシ、n-ヘキシルオキシ、1-メチル-n-ペンチルオキシ、2-メチル-n-ペンチルオキシ、3-メチル-n-ペンチルオキシ、4-メチル-n-ペンチルオキシ、1,1-ジメチル-n-ブトキシ、1,2-ジメチル-n-ブトキシ、1,3-ジメチル-n-ブトキシ、2,2-ジメチル-n-ブトキシ、2,3-ジメチル-n-ブトキシ、3,3-ジメチル-n-ブトキシ、1-エチル-n-ブトキシ、2-エチル-n-ブトキシ、1,1,2-トリメチル-n-プロポキシ、1,2,2-トリメチル-n-プロポキシ、1-エチル-1-メチル-n-プロポキシ、1-エチル-2-メチル-n-プロポキシ基等が挙げられる。
 上記アリール基の炭素数としては特に限定されるものではないが、6~40が好ましく、ポリマーの耐熱性をより高めることを考慮すると、アリール基の炭素数としては、6~16がより好ましく、6~13がより一層好ましい。
 本発明において上記アリール基には、置換基を有するアリール基が含まれる。置換基としては、例えば、ハロゲン原子、炭素数1~6のアルキル基、炭素数1~6のアルコキシ基、ニトロ基、シアノ基などが挙げられる。
 アリール基の具体例としては、フェニル、o-クロルフェニル、m-クロルフェニル、p-クロルフェニル、o-フルオロフェニル、p-フルオロフェニル、o-メトキシフェニル、p-メトキシフェニル、p-ニトロフェニル、p-シアノフェニル、α-ナフチル、β-ナフチル、o-ビフェニリル、m-ビフェニリル、p-ビフェニリル、1-アントリル、2-アントリル、9-アントリル、1-フェナントリル、2-フェナントリル、3-フェナントリル、4-フェナントリル、9-フェナントリル基等が挙げられる。
 アラルキル基の炭素数としては特に限定されるものではないが、炭素数7~20が好ましく、そのアルキル部分の構造は、特に限定されず、例えば、直鎖、分岐、環状、およびこれらの2以上の組み合わせのいずれでもよい。
 本発明において、アラルキル基には、置換基を有するアラルキル基が含まれる。置換基としては、例えば、ハロゲン原子、炭素数1~6のアルキル基、炭素数1~6のアルコキシ基、ニトロ基、シアノ基などが挙げられる。
 その具体例としては、ベンジル、p-メチルフェニルメチル、m-メチルフェニルメチル、o-エチルフェニルメチル、m-エチルフェニルメチル、p-エチルフェニルメチル、2-プロピルフェニルメチル、4-イソプロピルフェニルメチル、4-イソブチルフェニルメチル、α-ナフチルメチル基等が挙げられる。
 上記Arは、式(2)~(13)で示される群から選ばれる少なくとも1種を表す。
Figure JPOXMLDOC01-appb-C000024
 上記R~R92は、互いに独立して、水素原子、ハロゲン原子、カルボキシル基、スルホ基、炭素数1~10のアルキル基、炭素数1~10のハロゲン化アルキル基、または炭素数1~10のアルコキシ基を表し、R93およびR94は、水素原子または炭素数1~10のアルキル基を表し、WおよびWは、互いに独立して、単結合、CR9596(R95およびR96は、互いに独立して、水素原子または炭素数1~10のアルキル基(ただし、これらは一緒になって環を形成していてもよい。)を表す。)、C=O、O、S、SO、SO、またはNR97(R97は、水素原子、炭素数1~10のアルキル基またはフェニル基を表す。)を表す。
 ハロゲン原子としては、フッ素原子、塩素原子、臭素原子、ヨウ素原子が挙げられる。
 なお、アルキル基、アルコキシ基としては、R,R’におけるアルキル基、アルコキシ基と同様のものが挙げられる。
 炭素数1~10のハロゲン化アルキル基は、上記炭素数1~10のアルキル基中の水素原子の少なくとも1つをハロゲン原子で置換したものであり、その具体例としては、例えば、トリフルオロメチル、2,2,2-トリフルオロエチル、パーフルオロエチル、3,3,3-トリフルオロプロピル、2,2,3,3,3-ペンタフルオロプロピル、2,2,3,3-テトラフルオロプロピル、2,2,2-トリフルオロ-1-(トリフルオロメチル)エチル、パーフルオロプロピル、4,4,4-トリフルオロブチル、3,3,4,4,4-ペンタフルオロブチル、2,2,3,3,4,4,4-ヘプタフルオロブチル、パーフルオロブチル、2,2,3,3,4,4,5,5,5-ノナフルオロペンチル、2,2,3,3,4,4,5,5-オクタフルオロペンチル、パーフルオロペンチル、2,2,3,3,4,4,5,5,6,6,6-ウンデカフルオロヘキシル、2,2,3,3,4,4,5,5,6,6-デカフルオロヘキシル、3,3,4,4,5,5,6,6,6-ノナフルオロヘキシル、およびパーフルオロヘキシル基が挙げられる。本発明では、屈折率を維持しつつトリアジン環含有重合体の低極性溶媒等に対する溶解性を高めることを考慮すると、炭素数1~10のパーフルオロアルキル基が好ましく、特に、炭素数1~5のパーフルオロアルキル基がより好ましく、トリフルオロメチル基がより一層好ましい。
 また、XおよびXは、互いに独立して、単結合、炭素数1~10のアルキレン基、または式(14)で示される基を表す。
 これらのアルキル基、ハロゲン化アルキル基、アルコキシ基、及びアルキレン基の構造は、特に限定されず、例えば、鎖状、分岐状、環状、およびこれらの2以上の組み合わせのいずれでもよい。
Figure JPOXMLDOC01-appb-C000025
 上記R98~R101は、互いに独立して、水素原子、ハロゲン原子、カルボキシル基、スルホ基、炭素数1~10のアルキル基、炭素数1~10のハロゲン化アルキル基、または炭素数1~10のアルコキシ基を表し、YおよびYは、互いに独立して、単結合または炭素数1~10のアルキレン基を表す。これらハロゲン原子、アルキル基、ハロゲン化アルキル基、アルコキシ基としては、R~R92におけるハロゲン原子、アルキル基、ハロゲン化アルキル基、アルコキシ基と同様のものが挙げられる。
 炭素数1~10のアルキレン基としては、メチレン、エチレン、プロピレン、トリメチレン、テトラメチレン、ペンタメチレン基等が挙げられる。
 上記アルキレン基の構造は、特に限定されず、例えば、鎖状、分岐状、環状、およびこれらの2以上の組み合わせのいずれでもよい。
 これらの中でも、R~R92およびR98~R101としては、水素原子、ハロゲン原子、スルホ基、炭素数1~5のアルキル基、炭素数1~5のハロゲン化アルキル基、または炭素数1~5のアルコキシ基が好ましく、水素原子がより好ましい。
 本発明のトリアジン環含有重合体は、上記Arに含まれる芳香環の中の、少なくとも1つの芳香環中にハロゲン原子または炭素数1~10のハロゲン化アルキル基を少なくとも1つ含有することが好ましい。一般的に、化合物にフッ素原子を導入することで、その屈折率は低下する傾向にあることが知られているが、本発明のトリアジン環含有重合体は、フッ素原子が導入されているにもかかわらず、1.7を超える屈折率を維持している。芳香環中のハロゲン原子またはハロゲン化アルキル基の数は、当該芳香環上に置換可能な任意の数とすることができるが、屈折率維持と溶媒に対する溶解性とのバランスを考慮すると、1~4個が好ましく、1~2個がより好ましく、1個がより一層好ましい。なお、芳香環がナフタレン環などの複数の芳香環が縮環したものである場合は、全体として少なくとも1つの上記基を有していればよい。
 また、Arが複数の芳香環を含む場合、少なくとも1つの芳香環中にハロゲン原子またはハロゲン化アルキル基を少なくとも1つ含有していればよいが、全ての芳香環がハロゲン原子またはハロゲン化アルキル基を少なくとも1つ含有していることが好ましく、全ての芳香環がハロゲン原子またはハロゲン化アルキル基を1つ含有していることがより好ましい。
 特に、Arとしては、式(2)、(5)~(13)で示される少なくとも1種が好ましく、式(2)、(5)、(7)、(8)、(11)~(13)で示される少なくとも1種がより好ましい。上記式(2)~(13)で表されるアリール基の具体例としては、下記式で示されるものが挙げられるが、これらに限定されるものではない。
Figure JPOXMLDOC01-appb-C000026
 「Ph」はフェニル基を表す。
Figure JPOXMLDOC01-appb-C000027
 (式中、Aは、互いに独立して、ハロゲン原子または炭素数1~10のハロゲン化アルキル基を表し、pは、互いに独立して、0~4の整数、qは、互いに独立して、0~3の整数、rは、互いに独立して、0~2の整数、sは、互いに独立して、0~5の整数、tは1~6の整数、uは1~4の整数を表す。ただし、それぞれの基において、p、q、r、sの合計は1以上である。「Ph」はフェニル基を表す。)
 これらの中でも、より高い屈折率のポリマーが得られることから、下記式で示されるアリール基がより好ましい。
Figure JPOXMLDOC01-appb-C000028
 「Ph」はフェニル基を表す。
Figure JPOXMLDOC01-appb-C000029
(式中、A、p、q、rおよびuは、上記と同じ意味を表す。「Ph」はフェニル基を表す。)
 特に、低極性溶剤等の有機溶媒に対するトリアジン環含有重合体の溶解性をより高めることを考慮すると、Arとしては、式(17)で示されるm-フェニレン基が好ましい。
Figure JPOXMLDOC01-appb-C000030
 特に、トリアジン環含有重合体の屈折率をより高めることを考慮すると、Arとしては、式(18)~(20)で示されるジフェニルエーテル骨格を有する基が好ましい。
Figure JPOXMLDOC01-appb-C000031
(式中、Aおよびpは、上記と同じ意味を表す。)
Figure JPOXMLDOC01-appb-C000032
(式中、Aおよびpは、上記と同じ意味を表す。)
Figure JPOXMLDOC01-appb-C000033
 また、本発明のトリアジン環含有重合体は、少なくとも1つのトリアジン環末端を有し、このトリアジン環末端の少なくとも一部が、架橋基を有するアリールアミノ基で封止されている。
 なお、本発明のトリアジン環含有重合体は、少なくとも1つのトリアジン環末端を有するが、この末端のトリアジン環は、通常、上記架橋基を有するアリールアミノ基と置換可能なハロゲン原子を2つ有している。そのため、上記架橋基を有するアリールアミノ基は、同一のトリアジン環末端に結合していてもよく、また、トリアジン環末端が複数ある場合は、それぞれが別のトリアジン環末端に結合していてもよい。
 上記架橋基を有するアリールアミノ基のアリール基としては、上記と同様のものが挙げられるが、特に、フェニル基が好ましい。
 なお、架橋基は、アリール基に結合している。
 架橋基としては、ヒドロキシ含有基、ビニル含有基、エポキシ含有基、オキセタン含有基、カルボキシ含有基、スルホ含有基、チオール含有基、(メタ)アクリロイル含有基等を挙げることができ、トリアジン環含有重合体の耐熱性、および得られる薄膜の耐溶剤性(耐クラック性)を向上させることを考慮すると、ヒドロキシ含有基および(メタ)アクリロイル含有基が好ましい。
 ヒドロキシ含有基としては、ヒドロキシ基およびヒドロキシアルキル基等が挙げられるが、炭素数1~10のヒドロキシアルキル基が好ましく、炭素数1~5のヒドロキシアルキル基がより好ましく、炭素数1~3のヒドロキシアルキル基がより一層好ましい。
 炭素数1~10のヒドロキシアルキル基としては、ヒドロキシメチル、2-ヒドロキシエチル、3-ヒドロキシプロピル、4-ヒドロキシブチル、5-ヒドロキシペンチル、6-ヒドロキシヘキシル、7-ヒドロキシヘプチル、8-ヒドロキシオクチル、9-ヒドロキシノニル、10-ヒドロキシデシル、2-ヒドロキシ-1-メチルエチル、2-ヒドロキシ-1,1-ジメチルエチル、3-ヒドロキシ-1-メチルプロピル、3-ヒドロキシ-2-メチルプロピル、3-ヒドロキシ-1,1-ジメチルプロピル、3-ヒドロキシ-1,2-ジメチルプロピル、3-ヒドロキシ-2,2-ジメチルプロピル、4-ヒドロキシ-1-メチルブチル、4-ヒドロキシ-2-メチルブチル、4-ヒドロキシ-3-メチルブチル基等のヒドロキシ基が結合する炭素原子が第1級炭素原子であるもの;1-ヒドロキシエチル、1-ヒドロキシプロピル、2-ヒドロキシプロピル、1-ヒドロキシブチル、2-ヒドロキシブチル、1-ヒドロキシヘキシル、2-ヒドロキシヘキシル、1-ヒドロキシオクチル、2-ヒドロキシオクチル、1-ヒドロキシデシル、2-ヒドロキシデシル、1-ヒドロキシ-1-メチルエチル、2-ヒドロキシ-2-メチルプロピル基等のヒドロキシ基が結合する炭素原子が第2級または第3級炭素原子であるものが挙げられる。
 特に、耐熱性および高温高湿耐性を向上させることを考慮すると、ヒドロキシ基が結合する炭素原子が第1級炭素原子であるものが好ましく、その中でも、炭素数1~5のヒドロキシアルキル基がより好ましく、炭素数1~3のヒドロキシアルキル基がより一層好ましく、ヒドロキシメチル基および2-ヒドロキシエチル基がさらに好ましく、2-ヒドロキシエチル基が最も好ましい。
 (メタ)アクリロイル含有基としては、(メタ)アクリロイル基、(メタ)アクリロイルオキシアルキル基および下記式(i)で表される基等が挙げられるが、炭素数1~10のアルキレン基を有する(メタ)アクリロイルオキシアルキル基および下記式(i)で表される基が好ましく、下記式(i)で表される基がより好ましい。
Figure JPOXMLDOC01-appb-C000034
(式中、Aは、炭素数1~10のアルキレン基を表し、Aは、単結合または下記式(j)
Figure JPOXMLDOC01-appb-C000035
で表される基を表し、Aは、ヒドロキシ基で置換されてもよい2価または3価の脂肪族炭化水素基を表し、Aは、水素原子またはメチル基を表し、aは、1または2を表し、*は結合手を表す。)
 炭素数1~10のアルキレン基(アルカンジイル基)を有する(メタ)アクリロイルオキシアルキル基に含まれるアルキレン基としては、メチレン、エチレン、トリメチレン、プロパン-1,2-ジイル、テトラメチレン、ブタン-1,3-ジイル、ブタン-1,2-ジイル、2-メチルプロパン-1,3-ジイル、ペンタメチレン、ヘキサメチレン、ヘプタメチレン、オクタメチレン、ノナメチレン、デシメチレン基等が挙げられる。耐熱性および高温高湿耐性を向上させることを考慮すると、これらの中でも、炭素数1~5のアルキレン基を有するものが好ましく、炭素数1~3のアルキレン基を有するものが好ましく、炭素数1または2のアルキレン基を有するものがより好ましい。
 上記(メタ)アクリロイルオキシアルキル基の具体例としては、例えば、(メタ)アクリロイルオキシメチル基、2-(メタ)アクリロイルオキシエチル基、3-(メタ)アクリロイルオキシプロピル基、4-(メタ)アクリロイルオキシブチル基が挙げられる。
 式(i)において、Aは、炭素数1~10のアルキレン基であるが、炭素数1~5のアルキレン基が好ましく、メチレン基およびエチレン基がより好ましい。炭素数1~10のアルキレン基としては、上記の(メタ)アクリロイルオキシアルキル基に含まれるアルキレン基と同様のものが挙げられる。
 Aは、単結合または式(j)で表される基を表すが、式(j)で表される基が好ましい。
 Aは、ヒドロキシ基で置換されてもよい2価または3価の脂肪族炭化水素基であるが、その具体例としては、例えば、炭素数1~5のアルキレン基および下記式(k-1)~(k-3)
Figure JPOXMLDOC01-appb-C000036
(式中、*は、上記と同様である。)
で表される基が挙げられ、炭素数1~5のアルキレン基が好ましく、炭素数1~3のアルキレン基がより好ましく、メチレン基およびエチレン基がより一層好ましい。Aのアルキレン基としては、Aで例示したアルキレン基のうち、炭素数1~5のアルキレン基を挙げることができる。
 aは、1または2を表すが、1が好ましい。
 式(i)で表される基の好適な態様としては、下記式(i-1)で表されるものが挙げられる。
Figure JPOXMLDOC01-appb-C000037
(式中、A、A、Aおよび*は、上記と同様である。)
 式(i)で表される基のより好適な態様としては、下記式(i-2)~(i-5)で表されるものが挙げられる。
Figure JPOXMLDOC01-appb-C000038
(式中、*は、上記と同様である。)
 ビニル含有基としては、末端にビニル基を有する炭素数2~10のアルケニル基等が挙げられる。具体例としては、エテニル、1-プロペニル、アリル、イソプロペニル、1-ブテニル、2-ブテニル、2-ペンテニル基等が挙げられる。
 エポキシ含有基としては、エポキシ、グリシジル、グリシジルオキシ基等が挙げられる。具体例としては、グリシジルメチル、2-グリシジルエチル、3-グリシジルプロピル、4-グリシジルブチル基等が挙げられる。
 オキセタン含有基としては、オキセタン-3-イル、(オキセタン-3-イル)メチル、2-(オキセタン-3-イル)エチル、3-(オキセタン-3-イル)プロピル、4-(オキセタン-3-イル)ブチル基等が挙げられる。
 カルボキシ含有基としては、カルボキシ基および炭素数2~10のカルボキシアルキル基等が挙げられる。炭素数2~10のカルボキシアルキル基としては、カルボキシ基が結合する炭素原子が第1級炭素原子であるものが好ましく、具体例として、カルボキシメチル、2-カルボキシエチル、3-カルボキシプロピルおよび4-カルボキシブチル基等が挙げられる。
 スルホ含有基としては、スルホ基および炭素数1~10のスルホアルキル基等が挙げられる。炭素数1~10のスルホアルキル基としては、スルホ基が結合する炭素原子が第1級炭素原子であるものが好ましく、具体例として、スルホメチル、2-スルホエチル、3-スルホプロピルおよび4-スルホブチル基等が挙げられる。
 チオール含有基としては、チオール基および炭素数1~10のメルカプトアルキル基等が挙げられる。炭素数1~10のメルカプトアルキル基としては、チオール基が結合する炭素原子が第1級炭素原子であるものが好ましく、具体例として、メルカプトメチル、2-メルカプトエチル、3-メルカプトプロピルおよび4-メルカプトブチル基等が挙げられる。
 上記架橋基を有するアリールアミノ基における架橋基の数は特に限定されるものではなく、アリール基上に置換可能な任意の数とすることができるが、耐溶剤性と溶媒に対する溶解性とのバランスを考慮すると、1~4個が好ましく、1~2個がより好ましく、1個がより一層好ましい。
 好適な架橋基を有するアリールアミノ基としては、式(15)で示されるものが挙げられ、特に、アミノ基に対してパラ位に架橋基を有する式(16)で示されるものが好ましい。
Figure JPOXMLDOC01-appb-C000039
(式中、R102は、架橋基を表す。)
Figure JPOXMLDOC01-appb-C000040
(式中、R102は、上記と同じ意味を表す。)
 架橋基を有するアリールアミノ基の具体例としては、下記式で示されるものが挙げられるが、これらに限定されるものではない。
Figure JPOXMLDOC01-appb-C000041
 なお、ヒドロキシアルキル基を有するアリールアミノ基は、後述の製造法において、対応するヒドロキシアルキル基置換アリールアミノ化合物を用いて導入することができる。
 ヒドロキシアルキル基置換アリールアミノ化合物の具体例としては、(4-アミノフェニル)メタノールおよび2-(4-アミノフェニル)エタノール等が挙げられる。
 (メタ)アクリロイルオキシアルキル基を有するアリールアミノ基は、対応する(メタ)アクリロイルオキシアルキル基置換アリールアミノ化合物を用いる方法や、トリアジン環含有重合体にヒドロキシアルキル基を有するアリールアミノ基を導入した後、さらに上記ヒドロキシアルキル基に含まれるヒドロキシ基に対して、(メタ)アクリル酸ハライドや(メタ)アクリル酸グリシジルを作用させる方法により導入することができる。
 式(i)で表される基を有するアリールアミノ基は、目的とする架橋基を有するアリールアミノ化合物を用いる方法や、トリアジン環含有重合体にヒドロキシアルキル基を有するアリールアミノ基を導入した後、さらに上記ヒドロキシアルキル基に含まれるヒドロキシ基に対して下記式(i’)で表されるイソシアネート基を有する(メタ)アクリル酸エステル化合物を作用させる方法により導入することができる。
Figure JPOXMLDOC01-appb-C000042
(式中、A、Aおよびaは、上記と同様である。)
 (メタ)アクリロイルオキシアルキル基置換アリールアミノ化合物の具体例としては、例えば、上記のヒドロキシアルキル基置換アリールアミノ化合物のヒドロキシ基に(メタ)アクリル酸ハライドまたは(メタ)アクリル酸グリシジルを作用させて得られるエステル化合物が挙げられる。
 上記(メタ)アクリル酸ハライドとしては、(メタ)アクリル酸クロリド、(メタ)アクリル酸ブロミドおよび(メタ)アクリル酸ヨージドを挙げることができる。
 上記式(i’)で表されるイソシアネート基を有する(メタ)アクリル酸エステル化合物の具体例としては、例えば、2-イソシアナトエチルアクリラート、2-イソシアナトエチルメタクリレートおよび1,1-(ビスアクリロイルオキシメチル)エチルイソシアネートを挙げることができる。本発明では、簡便な合成法という観点から、2-イソシアナトエチルアクリラートが好ましい。
 本発明において、特に好適なトリアジン環含有重合体としては、式(21)~(28)で示される繰り返し単位を含むものが挙げられる。
Figure JPOXMLDOC01-appb-C000043
(式中、R、R’、R~RおよびR102は、上記と同じ意味を表す。)
Figure JPOXMLDOC01-appb-C000044
(式中、R~RおよびR102は、上記と同じ意味を表す。)
Figure JPOXMLDOC01-appb-C000045
(式中、R102は、上記と同じ意味を表す。)
Figure JPOXMLDOC01-appb-C000046
(式中、R102は、上記と同じ意味を表す。)
Figure JPOXMLDOC01-appb-C000047
(式中、R、R’、R16~R23およびR102は、上記と同じ意味を表す。)
Figure JPOXMLDOC01-appb-C000048
(式中、R16~R23およびR102は、上記と同じ意味を表す。)
Figure JPOXMLDOC01-appb-C000049
(式中、R102は、上記と同じ意味を表す。)
Figure JPOXMLDOC01-appb-C000050
(式中、R102は、上記と同じ意味を表す。)
 本発明における重合体の重量平均分子量は、特に限定されるものではないが、500~500,000が好ましく、500~100,000がより好ましく、より耐熱性を向上させるとともに、収縮率を低くするという点から、2,000以上が好ましく、より溶解性を高め、得られた溶液の粘度を低下させるという点から、50,000以下が好ましく、30,000以下がより好ましく、25,000以下がより一層好ましく、10,000以下が最も好ましい。
 なお、本発明における重量平均分子量は、ゲルパーミエーションクロマトグラフィー(以下、GPCという)分析による標準ポリスチレン換算で得られる平均分子量である。
 本発明のトリアジン環含有重合体(ハイパーブランチポリマー)は、上述した国際公開第2010/128661号に開示された手法に準じて製造することができる。
 すなわち、トリハロゲン化トリアジン化合物とアリールジアミノ化合物とを有機溶媒中で反応させた後、例えば、末端封止剤である、ヒドロキシアルキル基(ヒドロキシ含有基)を有するアリールアミノ化合物、アクリロイルオキシアルキル基(アクリロイル含有基)を有するアリールアミノ化合物および式(i)で表される基(アクリロイル含有基)を有するアリールアミノ化合物から選ばれる少なくとも1種のアリールアミノ化合物と反応させることにより本発明のトリアジン環含有重合体を得ることができる。
 例えば、下記スキーム1に示されるように、トリアジン環含有重合体(23)は、トリアジン化合物(29)およびアリールジアミノ化合物(30)を適当な有機溶媒中で反応させた後、末端封止剤である、ヒドロキシアルキル基を有するアリールアミノ化合物および式(i)で表される基を有するアリールアミノ化合物から選ばれる少なくとも1種のアリールアミノ化合物(31)と反応させて得ることができる。
Figure JPOXMLDOC01-appb-C000051
(式中、Xは、互いに独立してハロゲン原子を表し、Rは、ヒドロキシアルキル基または式(i)で表される基を表す。)
 また、例えば、下記スキーム2に示されるように、トリアジン環含有重合体(27)は、トリアジン化合物(29)およびアリールジアミノ化合物(32)を適当な有機溶媒中で反応させた後、末端封止剤である、ヒドロキシアルキル基を有するアリールアミノ化合物および式(i)で表される基を有するアリールアミノ化合物から選ばれる少なくとも1種のアリールアミノ化合物(31)と反応させて得ることができる。
Figure JPOXMLDOC01-appb-C000052
(式中、Xは、互いに独立してハロゲン原子を表し、Rは、ヒドロキシアルキル基または式(i)で表される基を表す。)
 上記スキーム1またはスキーム2において、アリールジアミノ化合物(30)または(32)の仕込み比は、目的とする重合体が得られる限り任意であるが、トリアジン化合物(29)1当量に対し、アリールジアミノ化合物(30)または(32)0.01~10当量が好ましく、0.7~5当量がより好ましい。
 アリールジアミノ化合物(30)または(32)は、ニートで加えても、有機溶媒に溶かした溶液で加えてもよいが、操作の容易さや反応のコントロールのし易さなどを考慮すると、後者の手法が好適である。
 反応温度は、用いる溶媒の融点から溶媒の沸点までの範囲で適宜設定すればよいが、特に、-30~150℃程度が好ましく、-10~100℃がより好ましい。
 別の態様としては、下記スキーム3に示す手法が挙げられる。この手法では、トリアジン環含有重合体(23)は、トリアジン化合物(29)およびアリールジアミノ化合物(30)を適当な有機溶媒中で反応させた後、末端封止剤であるヒドロキシアルキル基を有するアリールアミノ化合物(31’)と反応させて、トリアジン環含有重合体(23’)を得て(第1段階)、その後、さらに当該トリアジン環含有重合体(23’)に含まれるヒドロキシアルキル基のヒドロキシ基に対して式(i’)で表されるイソシアネート基を有する(メタ)アクリル酸エステル化合物を作用させる(第2段階)ことにより得ることができる。
 なお、トリアジン環含有重合体(23’)を目的物とする場合は、第2段階の反応を実施せず、第1段階で終了すればよい。
Figure JPOXMLDOC01-appb-C000053
(式中、Ra1は、ヒドロキシアルキル基を表し、X、A、A、Rおよびaは、上記と同じ意味を表す。)
 また、別の態様としては、下記スキーム4に示す手法が挙げられる。この手法では、トリアジン環含有重合体(27)は、トリアジン化合物(29)およびアリールジアミノ化合物(32)を適当な有機溶媒中で反応させた後、末端封止剤であるヒドロキシアルキル基を有するアリールアミノ化合物(31’)と反応させて、トリアジン環含有重合体(27’)を得て(第1段階)、その後、さらに当該トリアジン環含有重合体(27’)に含まれるヒドロキシアルキル基のヒドロキシ基に対して式(i’)で表されるイソシアネート基を有する(メタ)アクリル酸エステル化合物を作用させる(第2段階)ことにより得ることができる。
 なお、トリアジン環含有重合体(27’)を目的物とする場合は、第2段階の反応を実施せず、第1段階で終了すればよい。
Figure JPOXMLDOC01-appb-C000054
(式中、Ra1は、ヒドロキシアルキル基を表し、X、A、A、Rおよびaは、上記と同じ意味を表す。)
 上記スキーム3おいて、第1段階でのアリールジアミノ化合物(30)の仕込み比および添加方法、トリアジン環含有重合体(23’)を得るまでの反応における反応温度は、スキーム1で説明したものと同様とすることができる。
 また、第2段階において、トリアジン環含有重合体(23’)に対する式(i’)で表されるイソシアネート基を有する(メタ)アクリル酸エステル化合物の仕込み比は、ヒドロキシアルキル基と式(i)で表される基との比に応じて任意に設定することができ、使用したヒドロキシアルキル基を有するアリールアミノ化合物の1当量に対して、好ましくは0.1~10当量、より好ましくは0.5~5当量、より一層好ましくは0.7~3当量、さらに好ましくは0.9~1.5当量である。例えば、トリアジン環含有重合体(23’)に含まれるヒドロキシアルキル基を全て式(i)で表される基とする場合、その仕込み比は、使用したヒドロキシアルキル基を有するアリールアミノ化合物の1当量に対して、上記(メタ)アクリル酸エステル化合物を好ましくは1.0~10当量、より好ましくは1.0~5当量、より一層好ましくは1.0~3当量、さらに好ましくは1.0~1.5当量である。
 当該反応における反応温度は、トリアジン環含有重合体(23’)を得る反応における反応温度と同様であるが、反応中に(メタ)アクリロイル基が重合を起こさないようにすることを考慮すると、30~80℃が好ましく、40~70℃がより好ましく、50~60℃がより一層好ましい。
 上記スキーム4において、第1段階でのアリールジアミノ化合物(32)の仕込み比および添加方法、トリアジン環含有重合体(27’)を得るまでの反応における反応温度は、スキーム2で説明したものと同様とすることができる。
 また、第2段階において、トリアジン環含有重合体(27’)に対する式(i’)で表されるイソシアネート基を有する(メタ)アクリル酸エステル化合物の仕込み比は、ヒドロキシアルキル基と式(i)で表される基との比に応じて任意に設定することができ、使用したヒドロキシアルキル基を有するアリールアミノ化合物の1当量に対して、好ましくは0.1~10当量、より好ましくは0.1~5当量、より一層好ましくは0.1~3当量、さらに好ましくは0.1~1.05当量である。例えば、トリアジン環含有重合体(22’)に含まれるヒドロキシアルキル基を全て式(i)で表される基とする場合、その仕込み比は、使用したヒドロキシアルキル基を有するアリールアミノ化合物の1当量に対して、上記(メタ)アクリル酸エステル化合物を好ましくは1.0~10当量、より好ましくは1.0~5当量、より一層好ましくは1.0~3当量、さらに好ましくは1.0~1.05当量である。
 当該反応における反応温度は、トリアジン環含有重合体(27’)を得る反応における反応温度と同様であるが、反応中に(メタ)アクリロイル基が重合を起こさないようにすることを考慮すると、30~80℃が好ましく、40~70℃がより好ましく、50~60℃がより一層好ましい。
 スキーム3及びスキーム4の第2段階においては、反応中に(メタ)アクリロイル基が重合を起こさないようにするために、反応を重合禁止剤存在下で行ってもよい。
 重合禁止剤としては、例えば、N-メチル-N-ニトロソアニリン、N-ニトロソフェニルヒドロキシルアミンまたはその塩類、ベンゾキノン類、フェノール系重合禁止剤、フェノチアジンなどが挙げられる。これらの中でも、重合禁止効果に優れる点で、N-ニトロソフェニルヒドロキシルアミンまたはその塩類が好ましい。
 N-ニトロソフェニルヒドロキシルアミン塩類としては、例えば、N-ニトロソフェニルヒドロキシアミンアンモニウム塩、N-ニトロソフェニルヒドロキシアミンアルミニウム塩などが挙げられる。
 ベンゾキノン類としては、例えば、p-ベンゾキノン、2-メチル-1,4-ベンゾキノンなどが挙げられる。
 フェノール系重合禁止剤としては、例えば、ヒドロキノン、p-メトキシフェノール、4-t-ブチルカテコール、2-t-ブチルヒドロキノン、2,6-ジ-t-ブチル-4-メチルフェノールなどが挙げられる。
 重合禁止剤の使用量としては、特に制限されないが、例えば、式(i’)で表されるイソシアネート基を有する(メタ)アクリル酸エステル化合物に対して、質量比で、1~200ppmであってもよいし、10~100ppmであってもよい。
 重合禁止剤を用いることで、反応温度を60~80℃程度まで上げても、(メタ)アクリロイル基の重合を抑えて第2段階の反応を行うことができる。
 有機溶媒としては、この種の反応において通常用いられる種々の溶媒を用いることができ、例えば、テトラヒドロフラン(THF)、ジオキサン、ジメチルスルホキシド;N,N-ジメチルホルムアミド、N-メチル-2-ピロリドン、テトラメチル尿素、ヘキサメチルホスホルアミド、N,N-ジメチルアセトアミド、N-メチル-2-ピペリドン、N,N-ジメチルエチレン尿素、N,N,N’,N’-テトラメチルマロン酸アミド、N-メチルカプロラクタム、N-アセチルピロリジン、N,N-ジエチルアセトアミド、N-エチル-2-ピロリドン、N,N-ジメチルプロピオン酸アミド、N,N-ジメチルイソブチルアミド、N-メチルホルムアミド、N,N’-ジメチルプロピレン尿素等のアミド系溶媒、およびそれらの混合溶媒が挙げられる。
 中でもN,N-ジメチルホルムアミド、ジメチルスルホキシド、N-メチル-2-ピロリドン、N,N-ジメチルアセトアミド、およびそれらの混合系が好ましく、特に、N,N-ジメチルアセトアミド、N-メチル-2-ピロリドンが好適である。
 また、上記スキーム1またはスキーム2の1段階目の反応では、重合時または重合後に通常用いられる種々の塩基を添加してもよい。
 この塩基の具体例としては、炭酸カリウム、水酸化カリウム、炭酸ナトリウム、水酸化ナトリウム、炭酸水素ナトリウム、ナトリウムエトキシド、酢酸ナトリウム、炭酸リチウム、水酸化リチウム、酸化リチウム、酢酸カリウム、酸化マグネシウム、酸化カルシウム、水酸化バリウム、リン酸三リチウム、リン酸三ナトリウム、リン酸三カリウム、フッ化セシウム、酸化アルミニウム、アンモニア、n-プロピルアミン、トリメチルアミン、トリエチルアミン、ジイソプロピルアミン、ジイソプロピルエチルアミン、N-メチルピペリジン、2,2,6,6-テトラメチル-N-メチルピペリジン、ピリジン、4-ジメチルアミノピリジン、N-メチルモルホリン等が挙げられる。
 塩基の添加量は、トリアジン化合物(29)1当量に対して1~100当量が好ましく、1~10当量がより好ましい。なお、これらの塩基は水溶液にして用いてもよい。
 得られる重合体には、原料成分が残存していないことが好ましいが、本発明の効果を損なわなければ一部の原料が残存していてもよい。
 反応終了後、生成物は再沈法等によって容易に精製できる。
 架橋基を有するアリールアミノ化合物を用いた末端封止方法としては、公知の方法を採用すればよい。
 この場合、末端封止剤の使用量は、重合反応に使われなかった余剰のトリアジン化合物由来のハロゲン原子1当量に対し、0.05~10当量程度が好ましく、0.1~5当量がより好ましく、0.5~2当量がより一層好ましい。
 反応溶媒や反応温度としては、上記スキーム1またはスキーム2の1段階目の反応で述べたのと同様の条件が挙げられ、また、末端封止剤は、アリールジアミノ化合物(30)または(32)と同時に仕込んでもよい。
 なお、架橋基を有しない無置換アリールアミノ化合物を用い、2種類以上の基で末端封止を行ってもよい。この無置換アリールアミノ化合物のアリール基としては上記と同様のものが挙げられる。
 具体的な無置換アリールアミノ基としては、下記式(33)で示されるものが挙げられるが、これに限定されるものではない。
Figure JPOXMLDOC01-appb-C000055
 なお、無置換アリールアミノ基は、後述の製造法において、対応する無置換アリールアミノ化合物を用いて導入することができる。
 無置換アリールアミノ化合物の具体例としては、アニリン等が挙げられる。
 また、無置換アリールアミノ基を導入する場合、架橋基を有するアリールアミノ化合物および無置換アリールアミノ化合物の比率は、有機溶媒に対する溶解性と耐黄変性とをバランスよく発揮させる観点から、架橋基を有するアリールアミノ化合物1モルに対し、無置換アリールアミノ化合物0.1~1.0モルが好ましく、0.1~0.5モルがより好ましく、0.1~0.3モルがより一層好ましい。
 上述した本発明のトリアジン環含有重合体は、膜形成用組成物として好適に用いることができ、この場合、架橋剤を添加してもよい。
 架橋剤としては、上述したトリアジン環含有重合体の架橋基と反応し得る置換基を有する化合物であれば特に限定されるものではない。
 そのような化合物としては、メチロール基、メトキシメチル基などの架橋形成置換基を有するメラミン系化合物(例えば、フェノプラスト化合物、アミノプラスト化合物など)、置換尿素系化合物、エポキシ基またはオキセタン基などの架橋形成置換基を含有する化合物(例えば、多官能エポキシ化合物、多官能オキセタン化合物など)、ブロックイソシアナート基を含有する化合物、酸無水物基を有する化合物、(メタ)アクリル基を有する化合物等が挙げられるが、耐熱性や保存安定性の観点からエポキシ基、ブロックイソシアネート基、(メタ)アクリル基を含有する化合物が好ましく、特に、ブロックイソシアネート基を有する化合物や、開始剤を用いなくとも光硬化可能な組成物を与える多官能エポキシ化合物および/または多官能(メタ)アクリル化合物が好ましい。
 なお、これらの化合物は、重合体の末端処理に用いる場合は少なくとも1個の架橋形成置換基を有していればよく、重合体同士の架橋処理に用いる場合は少なくとも2個の架橋形成置換基を有する必要がある。
 多官能エポキシ化合物としては、エポキシ基を一分子中2個以上有するものであれば特に限定されるものではない。
 その具体例としては、トリス(2,3-エポキシプロピル)イソシアヌレート、1,4-ブタンジオールジグリシジルエーテル、1,2-エポキシ-4-(エポキシエチル)シクロヘキサン、グリセロールトリグリシジルエーテル、ジエチレングリコールジグリシジルエーテル、2,6-ジグリシジルフェニルグリシジルエーテル、1,1,3-トリス[p-(2,3-エポキシプロポキシ)フェニル]プロパン、1,2-シクロヘキサンジカルボン酸ジグリシジルエステル、4,4’-メチレンビス(N,N-ジグリシジルアニリン)、3,4-エポキシシクロヘキシルメチル-3,4-エポキシシクロヘキサンカルボキシレート、トリメチロールエタントリグリシジルエーテル、ビスフェノール-A-ジグリシジルエーテル、ペンタエリスリトールポリグリシジルエーテル等が挙げられる。
 また、市販品として、少なくとも2個のエポキシ基を有するエポキシ樹脂である、YH-434、YH434L(日鉄ケミカル&マテリアル(株)製)、シクロヘキセンオキサイド構造を有するエポキシ樹脂である、エポリードGT-401、同GT-403、同GT-301、同GT-302、セロキサイド2021、同3000((株)ダイセル製)、ビスフェノールA型エポキシ樹脂である、jER1001、同1002、同1003、同1004、同1007、同1009、同1010、同828(以上、三菱ケミカル(株)製)、ビスフェノールF型エポキシ樹脂である、jER807(三菱ケミカル(株)製)、フェノールノボラック型エポキシ樹脂である、jER152、同154(以上、三菱ケミカル(株)製)、EPPN201、同202(以上、日本化薬(株)製)、クレゾールノボラック型エポキシ樹脂である、EOCN-102、同103S、同104S、同1020、同1025、同1027(以上、日本化薬(株)製)、jER180S75(三菱ケミカル(株)製)、脂環式エポキシ樹脂である、デナコールEX-252(ナガセケムテックス(株)製)、CY175、CY177、CY179(以上、CIBA-GEIGY A.G製)、アラルダイトCY-182、同CY-192、同CY-184(以上、CIBA-GEIGY A.G製)、エピクロン200、同400(以上、DIC(株)製)、jER871、同872(以上、三菱ケミカル(株)製)、ED-5661、ED-5662(以上、セラニーズコーティング(株)製)、脂肪族ポリグリシジルエーテルである、デナコールEX-611、同EX-612、同EX-614、同EX-622、同EX-411、同EX-512、同EX-522、同EX-421、同EX-313、同EX-314、同EX-321(ナガセケムテックス(株)製)等を用いることもできる。
 多官能(メタ)アクリル化合物としては、(メタ)アクリル基を一分子中2個以上有するものであれば特に限定されるものではない。
 その具体例としては、エチレングリコールジアクリレート、エチレングリコールジメタクリレート、ポリエチレングリコールジアクリレート、ポリエチレングリコールジメタクリレート、エトキシ化ビスフェノールAジアクリレート、エトキシ化ビスフェノールAジメタクリレート、エトキシ化トリメチロールプロパントリアクリレート、エトキシ化トリメチロールプロパントリメタクリレート、エトキシ化グリセリントリアクリレート、エトキシ化グリセリントリメタクリレート、エトキシ化ペンタエリスリトールテトラアクリレート、エトキシ化ペンタエリスリトールテトラメタクリレート、エトキシ化ジペンタエリスリトールヘキサアクリレート、ポリグリセリンモノエチレンオキサイドポリアクリレート、ポリグリセリンポリエチレングリコールポリアクリレート、ジペンタエリスリトールヘキサアクリレート、ジペンタエリスリトールヘキサメタクリレート、ネオペンチルグリコールジアクリレート、ネオペンチルグリコールジメタクリレート、ペンタエリスリトールトリアクリレート、ペンタエリスリトールトリメタクリレート、トリメチロールプロパントリアクリレート、トリメチロールプロパントリメタクリレート、トリシクロデカンジメタノールジアクリレート、トリシクロデカンジメタノールジメタクリレート、1,6-ヘキサンジオールジアクリレート、1,6-ヘキサンジオールジメタクリレート、ジプロピレングリコールジアクリレート、トリプロピレングリコールジアクリレート、多塩基酸変性アクリルオリゴマー等が挙げられる。
 また、多官能(メタ)アクリル化合物は、市販品として入手が可能であり、その具体例としては、NKエステルA-200、同A-400、同A-600、同A-1000、同A-9300(イソシアヌル酸トリス(2-アクリロイルオキシエチル))、同A-9300-1CL、同A-TMPT、同UA-53H、同1G、同2G、同3G、同4G、同9G、同14G、同23G、同ABE-300、同A-BPE-4、同A-BPE-6、同A-BPE-10、同A-BPE-20、同A-BPE-30、同BPE-80N、同BPE-100N、同BPE-200、同BPE-500、同BPE-900、同BPE-1300N、同A-GLY-3E、同A-GLY-9E、同A-GLY-20E、同A-TMPT-3EO、同A-TMPT-9EO、同AT-20E、同ATM-4E、同ATM-35E、APG-100、APG-200(以上、新中村化学工業(株)製)、KAYARAD(登録商標)DPEA-12、同PEG400DA、同THE-330、同RP-1040(以上、日本化薬(株)製)、アロニックスM-210、M-350(以上、東亞合成(株)製)、KAYARAD(登録商標)DPHA、同NPGDA、同PET30(以上、日本化薬(株)製)、NKエステル A-DPH、同A-TMPT、同A-DCP、同A-HD-N、同TMPT、同DCP、同NPG、同HD-N(以上、新中村化学工業(株)製)、NKオリゴ U-15HA(新中村化学工業(株)製)、NKポリマー バナレジンGH-1203(新中村化学工業(株)製)、DN-0075(日本化薬(株)製)等が挙げられる。
 上記多塩基酸変性アクリルオリゴマーも市販品として入手が可能であり、その具体例としては、アロニックスM-510,520(以上、東亞合成(株)製)等が挙げられる。
 酸無水物基を有する化合物としては、2分子のカルボン酸を脱水縮合させたカルボン酸無水物であれば、特に限定されるものではなく、その具体例としては、無水フタル酸、テトラヒドロ無水フタル酸、ヘキサヒドロ無水フタル酸、メチルテトラヒドロ無水フタル酸、メチルヘキサヒドロ無水フタル酸、無水ナジック酸、無水メチルナジック酸、無水マレイン酸、無水コハク酸、オクチル無水コハク酸、ドデセニル無水コハク酸等の分子内に1個の酸無水物基を有するもの;1,2,3,4-シクロブタンテトラカルボン酸二無水物、ピロメリット酸無水物、3,4-ジカルボキシ-1,2,3,4-テトラヒドロ-1-ナフタレンコハク酸二無水物、ビシクロ[3.3.0]オクタン-2,4,6,8-テトラカルボン酸二無水物、5-(2,5-ジオキソテトラヒドロ-3-フラニル)-3-メチル-3-シクロヘキセン-1,2-ジカルボン酸無水物、1,2,3,4-ブタンテトラカルボン酸二無水物、3,3’,4,4’-ベンゾフェノンテトラカルボン酸二無水物、3,3’,4,4’-ビフェニルテトラカルボン酸二無水物、2,2-ビス(3,4-ジカルボキシフェニル)ヘキサフルオロプロパン二無水物、1,3-ジメチル-1,2,3,4-シクロブタンテトラカルボン酸二無水物等の分子内に2個の酸無水物基を有するもの等が挙げられる。
 ブロックイソシアネート基を含有する化合物としては、イソシアネート基(-NCO)が適当な保護基によりブロックされたブロックイソシアネート基を一分子中2個以上有し、熱硬化の際の高温に曝されると、保護基(ブロック部分)が熱解離して外れ、生じたイソシアネート基が本発明のトリアジン環含有重合体の架橋基(例えば、ヒドロキシ含有基)との間で架橋反応を起こすものであれば特に限定されるものではなく、例えば、下記式で示される基を一分子中2個以上(なお、これらの基は同一のものでも、また各々異なっているものでもよい)有する化合物が挙げられる。
Figure JPOXMLDOC01-appb-C000056
(式中、Rはブロック部の有機基を表す。)
 このような化合物は、例えば、一分子中2個以上のイソシアネート基を有する化合物に対して適当なブロック剤を反応させて得ることができる。
 一分子中2個以上のイソシアネート基を有する化合物としては、例えば、イソホロンジイソシアネート、1,6-ヘキサメチレンジイソシアネート、メチレンビス(4-シクロヘキシルイソシアネート)、トリメチルヘキサメチレンジイソシアネートのポリイソシアネートや、これらの二量体、三量体、および、これらとジオール類、トリオール類、ジアミン類、またはトリアミン類との反応物などが挙げられる。
 ブロック剤としては、例えば、メタノール、エタノール、イソプロパノール、n-ブタノール、2-エトキシヘキサノール、2-N,N-ジメチルアミノエタノール、2-エトキシエタノール、シクロヘキサノール等のアルコール類;フェノール、o-ニトロフェノール、p-クロロフェノール、o-、m-またはp-クレゾール等のフェノール類;ε-カプロラクタム等のラクタム類、アセトンオキシム、メチルエチルケトンオキシム、メチルイソブチルケトンオキシム、シクロヘキサノンオキシム、アセトフェノンオキシム、ベンゾフェノンオキシム等のオキシム類;ピラゾール、3,5-ジメチルピラゾール、3-メチルピラゾール等のピラゾール類;ドデカンチオール、ベンゼンチオール等のチオール類などが挙げられる。
 ブロックイソシアネート基を含有する化合物は、市販品としても入手が可能であり、その具体例としては、タケネート(登録商標)B-830、B-815N、B-842N、B-870N、B-874N、B-882N、B-7005、B-7030、B-7075、B-5010(以上、三井化学(株)製)、デュラネート(登録商標)17B-60PX、同TPA-B80E、同MF-B60X、同MF-K60X、同E402-B80T(以上、旭化成(株)製)、カレンズMOI-BM(登録商標)(以上、昭和電工(株)製)、TRIXENE(登録商標) BI-7950、BI-7951、BI-7960、BI-7961、BI-7963、BI-7982、BI-7991、BI-7992(Baxenden chemicals LTD社製)等が挙げられる。
 アミノプラスト化合物としては、メトキシメチル基を一分子中2個以上有するものであれば、特に限定されるものではなく、例えば、ヘキサメトキシメチルメラミン CYMEL(登録商標)303、テトラブトキシメチルグリコールウリル 同1170、テトラメトキシメチルベンゾグアナミン 同1123(以上、日本サイテックインダストリーズ(株)製)等のサイメルシリーズ、メチル化メラミン樹脂であるニカラック(登録商標)MW-30HM、同MW-390、同MW-100LM、同MX-750LM、メチル化尿素樹脂である同MX-270、同MX-280、同MX-290(以上、(株)三和ケミカル製)等のニカラックシリーズ等のメラミン系化合物が挙げられる。
 多官能オキセタン化合物としては、オキセタニル基を一分子中2個以上有するものであれば、特に限定されるものではなく、例えば、オキセタニル基を含有するOXT-221、OX-SQ-H、OX-SC(以上、東亜合成(株)製)等が挙げられる。
 フェノプラスト化合物は、ヒドロキシメチル基を一分子中2個以上有し、そして熱硬化の際の高温に曝されると、本発明のトリアジン環含有重合体の架橋基との間で脱水縮合反応により架橋反応が進行するものである。
 フェノプラスト化合物としては、例えば、2,6-ジヒドロキシメチル-4-メチルフェノール、2,4-ジヒドロキシメチル-6-メチルフェノール、ビス(2-ヒドロキシ-3-ヒドロキシメチル-5-メチルフェニル)メタン、ビス(4-ヒドロキシ-3-ヒドロキシメチル-5-メチルフェニル)メタン、2,2-ビス(4-ヒドロキシ-3,5-ジヒドロキシメチルフェニル)プロパン、ビス(3-ホルミル-4-ヒドロキシフェニル)メタン、ビス(4-ヒドロキシ-2,5-ジメチルフェニル)ホルミルメタン、α,α-ビス(4-ヒドロキシ-2,5-ジメチルフェニル)-4-ホルミルトルエン等が挙げられる。
 フェノプラスト化合物は、市販品としても入手が可能であり、その具体例としては、26DMPC、46DMOC、DM-BIPC-F、DM-BIOC-F、TM-BIP-A、BISA-F、BI25X-DF、BI25X-TPA(以上、旭有機材工業(株)製)等が挙げられる。
 これらの中でも、架橋剤配合による屈折率低下を抑制し得るとともに、硬化反応が速やかに進行するという点から、多官能(メタ)アクリル化合物が好適であり、その中でも、トリアジン環含有重合体との相溶性に優れていることから、下記イソシアヌル酸骨格を有する多官能(メタ)アクリル化合物がより好ましい。
 このような骨格を有する多官能(メタ)アクリル化合物としては、例えば、NKエステルA-9300、同A-9300-1CL(いずれも、新中村化学工業(株)製)が挙げられる。
Figure JPOXMLDOC01-appb-C000057
(式中、R111~R113は、互いに独立して、末端に少なくとも1つの(メタ)アクリル基を有する一価の有機基である。)
 また、硬化速度をより向上させるとともに、得られる硬化膜の耐溶剤性および耐酸性、耐アルカリ性を高めるという観点から、25℃で液体であり、かつ、その粘度が5,000mPa・s以下、好ましくは1~3,000mPa・s、より好ましくは1~1,000mPa・s、より一層好ましくは1~500mPa・sの多官能(メタ)アクリル化合物(以下、低粘度架橋剤という)を、単独もしくは2種以上組み合わせて、または、上記イソシアヌル酸骨格を有する多官能(メタ)アクリル化合物と組み合わせて用いることが好適である。
 このような低粘度架橋剤も市販品として入手可能であり、例えば、上述した多官能(メタ)アクリル化合物のうち、NKエステルA-GLY-3E(85mPa・s,25℃)、同A-GLY-9E(95mPa・s,25℃)、同A-GLY-20E(200mPa・s,25℃)、同A-TMPT-3EO(60mPa・s,25℃)、同A-TMPT-9EO、同ATM-4E(150mPa・s,25℃)、同ATM-35E(350mPa・s,25℃)(以上、新中村化学工業(株)製)等の、(メタ)アクリル基間の鎖長が比較的長い架橋剤が挙げられる。
 さらに、得られる硬化膜の耐アルカリ性をも向上させることを考慮すると、NKエステルA-GLY-20E(新中村化学工業(株)製)、および同ATM-35E(新中村化学工業(株)製)の少なくとも一方と、上記イソシアヌル酸骨格を有する多官能(メタ)アクリル化合物と組み合わせて用いることが好適である。
 また、PETやポリオレフィンフィルム等の保護フィルムに本発明のトリアジン環含有重合体からなる薄膜を積層し、保護フィルムを介して光照射する場合、薄膜積層フィルムにおいても酸素阻害を受けることなく良好な硬化性を得ることができる。この場合、保護フィルムは硬化後に剥離する必要があるため、剥離性の良好な薄膜を与える多塩基酸変性アクリルオリゴマーを用いることが好ましい。
 上述した架橋剤は単独で使用しても、2種以上組み合わせて使用してもよい。架橋剤の使用量は、トリアジン環含有重合体100質量部に対して、1~100質量部が好ましいが、溶剤耐性を考慮すると、その下限は、好ましくは2質量部、より好ましくは5質量部であり、さらには、屈折率をコントロールすることを考慮すると、その上限は好ましくは20質量部、より好ましくは15質量部である。
 本発明の組成物には、それぞれの架橋剤に応じた開始剤を配合することもできる。なお、上述のとおり、架橋剤として多官能エポキシ化合物および/または多官能(メタ)アクリル化合物を用いる場合、開始剤を使用せずとも光硬化が進行して硬化膜を与えるものであるが、その場合に開始剤を使用しても差し支えない。
 多官能エポキシ化合物を架橋剤として用いる場合には、光酸発生剤や光塩基発生剤を用いることができる。
 光酸発生剤としては、公知のものから適宜選択して用いればよく、例えば、ジアゾニウム塩、スルホニウム塩やヨードニウム塩などのオニウム塩誘導体を用いることができる。
 その具体例としては、フェニルジアゾニウムヘキサフルオロホスフェート、4-メトキシフェニルジアゾニウムヘキサフルオロアンチモネート、4-メチルフェニルジアゾニウムヘキサフルオロホスフェート等のアリールジアゾニウム塩;ジフェニルヨードニウムヘキサフルオロアンチモネート、ジ(4-メチルフェニル)ヨードニウムヘキサフルオロホスフェート、ジ(4-tert-ブチルフェニル)ヨードニウムヘキサフルオロホスフェート等のジアリールヨードニウム塩;トリフェニルスルホニウムヘキサフルオロアンチモネート、トリス(4-メトキシフェニル)スルホニウムヘキサフルオロホスフェート、ジフェニル-4-チオフェノキシフェニルスルホニウムヘキサフルオロアンチモネート、ジフェニル-4-チオフェノキシフェニルスルホニウムヘキサフルオロホスフェート、4,4’-ビス(ジフェニルスルフォニオ)フェニルスルフィド-ビスヘキサフルオロアンチモネート、4,4’-ビス(ジフェニルスルフォニオ)フェニルスルフィド-ビスヘキサフルオロホスフェート、4,4’-ビス[ジ(β-ヒドロキシエトキシ)フェニルスルホニオ]フェニルスルフィド-ビスヘキサフルオロアンチモネート、4,4’-ビス[ジ(β-ヒドロキシエトキシ)フェニルスルホニオ]フェニルスルフィド-ビス-ヘキサフルオロホスフェート、4-[4’-(ベンゾイル)フェニルチオ]フェニル-ジ(4-フルオロフェニル)スルホニウムヘキサフルオロアンチモネート、4-[4’-(ベンゾイル)フェニルチオ]フェニル-ジ(4-フルオロフェニル)スルホニウムヘキサフルオロホスフェート等のトリアリールスルホニウム塩等が挙げられる。
 これらのオニウム塩は市販品を用いてもよく、その具体例としては、サンエイドSI-60、SI-80、SI-100、SI-60L、SI-80L、SI-100L、SI-L145、SI-L150、SI-L160、SI-L110、SI-L147(以上、三新化学工業(株)製)、UVI-6950、UVI-6970、UVI-6974、UVI-6990、UVI-6992(以上、ユニオンカーバイド社製)、CPI-100P、CPI-100A、CPI-200K、CPI-200S(以上、サンアプロ(株)製)、アデカオプトマーSP-150、SP-151、SP-170、SP-171(以上、旭電化工業(株)製)、イルガキュア 261(BASF社製)、CI-2481、CI-2624、CI-2639、CI-2064(以上、日本曹達(株)製)、CD-1010、CD-1011、CD-1012(以上、サートマー社製)、DS-100、DS-101、DAM-101、DAM-102、DAM-105、DAM-201、DSM-301、NAI-100、NAI-101、NAI-105、NAI-106、SI-100、SI-101、SI-105、SI-106、PI-105、NDI-105、BENZOIN TOSYLATE、MBZ-101、MBZ-301、PYR-100、PYR-200、DNB-101、NB-101、NB-201、BBI-101、BBI-102、BBI-103、BBI-109(以上、ミドリ化学(株)製)、PCI-061T、PCI-062T、PCI-020T、PCI-022T(以上、日本化薬(株)製)、IBPF、IBCF(三和ケミカル(株)製)等を挙げることができる。
 一方、光塩基発生剤としても、公知のものから適宜選択して用いればよく、例えば、Co-アミン錯体系、オキシムカルボン酸エステル系、カルバミン酸エステル系、四級アンモニウム塩系光塩基発生剤などを用いることができる。
 その具体例としては、2-ニトロベンジルシクロヘキシルカルバメート、トリフェニルメタノール、O-カルバモイルヒドロキシルアミド、O-カルバモイルオキシム、[[(2,6-ジニトロベンジル)オキシ]カルボニル]シクロヘキシルアミン、ビス[[(2-ニトロベンジル)オキシ]カルボニル]ヘキサン1,6-ジアミン、4-(メチルチオベンゾイル)-1-メチル-1-モルホリノエタン、(4-モルホリノベンゾイル)-1-ベンジル-1-ジメチルアミノプロパン、N-(2-ニトロベンジルオキシカルボニル)ピロリジン、ヘキサアンミンコバルト(III)トリス(トリフェニルメチルボレート)、2-ベンジル-2-ジメチルアミノ-1-(4-モルホリノフェニル)-ブタノン、2,6-ジメチル-3,5-ジアセチル-4-(2’-ニトロフェニル)-1,4-ジヒドロピリジン、2,6-ジメチル-3,5-ジアセチル-4-(2’,4’-ジニトロフェニル)-1,4-ジヒドロピリジン等が挙げられる。
 また、光塩基発生剤は市販品を用いてもよく、その具体例としては、TPS-OH、NBC-101、ANC-101(いずれも製品名、みどり化学(株)製)等が挙げられる。
 光酸または塩基発生剤を用いる場合、多官能エポキシ化合物100質量部に対して、0.1~15質量部の範囲で使用することが好ましく、より好ましくは1~10質量部の範囲である。
 なお、必要に応じてエポキシ樹脂硬化剤を、多官能エポキシ化合物100質量部に対して、1~100質量部の量で配合してもよい。
 一方、多官能(メタ)アクリル化合物を用いる場合には、光ラジカル重合開始剤を用いることができる。
 光ラジカル重合開始剤としても、公知のものから適宜選択して用いればよく、例えば、アセトフェノン類、ベンゾフェノン類、ミヒラーのベンゾイルベンゾエート、アミロキシムエステル、オキシムエステル類、テトラメチルチウラムモノサルファイドおよびチオキサントン類等が挙げられる。
 特に、光開裂型の光ラジカル重合開始剤が好ましい。光開裂型の光ラジカル重合開始剤については、最新UV硬化技術(159頁、発行人:高薄一弘、発行所:(株)技術情報協会、1991年発行)に記載されている。
 市販の光ラジカル重合開始剤としては、例えば、BASF社製 商品名:イルガキュア 127、184、369、379、379EG、651、500、754、819、903、907、784、2959、CGI1700、CGI1750、CGI1850、CG24-61、OXE01、OXE02、ダロキュア 1116、1173、MBF、BASF社製 商品名:ルシリン TPO、UCB社製 商品名:ユベクリル P36、フラテツリ・ランベルティ社製 商品名:エザキュアー KIP150、KIP65LT、KIP100F、KT37、KT55、KTO46、KIP75/B等が挙げられる。
 光ラジカル重合開始剤を用いる場合、多官能(メタ)アクリレート化合物100質量部に対して、0.1~200質量部の範囲で使用することが好ましく、1~150質量部の範囲で使用することがより好ましい。
 さらに、本発明の組成物には、トリアジン環含有重合体と架橋剤との反応を促進させることなどを目的として、分子内に2個以上のメルカプト基を有する多官能チオール化合物を添加してもよい。
 具体的には、下記式で示される多官能チオール化合物が好ましい。
Figure JPOXMLDOC01-appb-C000058
 上記Lは、2~4価の有機基を表すが、2~4価の炭素数2~12の脂肪族基または2~4価のヘテロ環含有基が好ましく、2~4価の炭素数2~8の脂肪族基、または下記式で示されるイソシアヌル酸骨格(1,3,5-トリアジン-2,4,6(1H,3H,5H)-トリオン環)を有する3価の基がより好ましい。
 上記nは、Lの価数に対応して2~4の整数を表す。
Figure JPOXMLDOC01-appb-C000059
(式中、「・」は、酸素原子との結合部を示す。)
 具体的な化合物としては、1,4-ビス(3-メルカプトブチリルオキシ)ブタン、1,3,5-トリス(3-メルカプトブチリルオキシエチル)-1,3,5-トリアジン-2,4,6-(1H,3H,5H)-トリオン、ペンタエリスリトールテトラキス(3-メルカプトブチレート)、トリメチロールプロパントリス(3-メルカプトブチレート)、トリメチロールエタントリス(3-メルカプトブチレート)等が挙げられる。
 これらの多官能チオール化合物は、市販品として入手することもでき、例えば、カレンズMT-BD1、カレンズMT NR1、カレンズMT PE1、TPMB、TEMB(以上、昭和電工(株)製)等が挙げられる。
 これらの多官能チオール化合物は、1種単独で用いても、2種以上組み合わせて用いてもよい。
 多官能チオール化合物を用いる場合、その添加量としては、得られる薄膜に悪影響を及ぼさない限り特に限定されるものではないが、本発明では、固形分100質量%中に、0.01~10質量%が好ましく、0.03~6質量%がより好ましい。
 本発明の組成物には、各種溶媒を添加し、トリアジン環含有重合体を溶解させて使用することが好ましい。
 溶媒としては、例えば、水、トルエン、p-キシレン、o-キシレン、m-キシレン、エチルベンゼン、スチレン、エチレングリコールジメチルエーテル、プロピレングリコールモノメチルエーテル、エチレングリコールモノメチルエーテル、プロピレングリコール、プロピレングリコールモノエチルエーテル、エチレングリコールモノエチルエーテル、エチレングリコールモノイソプロピルエーテル、エチレングリコールメチルエーテルアセテート、プロピレングリコールモノメチルエーテルアセテート、エチレングリコールエチルエーテルアセテート、ジエチレングリコールジメチルエーテル、プロピレングリコールモノブチルエーテル、エチレングリコールモノブチルエーテル、ジエチレングリコールジエチルエーテル、ジプロピレングリコールモノメチルエーテル、ジエチレングリコールモノメチルエーテル、ジプロピレングリコールモノエチルエーテル、ジエチレングリコールモノエチルエーテル、トリエチレングリコールジメチルエーテル、ジエチレングリコールモノエチルエーテルアセテート、ジエチレングリコール、1-オクタノール、エチレングリコール、ヘキシレングリコール、トリメチレングリコール、1-メトキシ-2-ブタノール、シクロヘキサノール、ジアセトンアルコール、フルフリルアルコール、テトラヒドロフルフリルアルコール、プロピレングリコール、ベンジルアルコール、1,3-ブタンジオール、1,4-ブタンジオール、2,3-ブタンジオール、γ-ブチロラクトン、アセトン、メチルエチルケトン、メチルイソプロピルケトン、ジエチルケトン、メチルイソブチルケトン、メチルノーマルブチルケトン、シクロペンタノン、シクロヘキサノン、酢酸エチル、酢酸イソプロピル、酢酸ノーマルプロピル、酢酸イソブチル、酢酸ノルマルブチル、乳酸エチル、メタノール、エタノール、イソプロパノール、tert-ブタノール、アリルアルコール、ノーマルプロパノール、2-メチル-2-ブタノール、イソブタノール、ノーマルブタノール、2-メチル-1-ブタノール、1-ペンタノール、2-メチル-1-ペンタノール、2-エチルヘキサノール、1-メトキシ-2-プロパノール、テトラヒドロフラン、1,4-ジオキサン、N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド(DMAc)、N-メチルピロリドン、1,3-ジメチル-2-イミダゾリジノン、ジメチルスルホキシド、N-シクロヘキシル-2-ピロリジノン等が挙げられ、これらは単独で用いても、2種以上混合して用いてもよい。
 上述したとおり、本発明のトリアジン環含有重合体は、有機溶媒に対する溶解性に優れているため、エチレングリコールモノメチルエーテルアセテート、プロピレングリコールモノメチルエーテルアセテート、ジエチレングリコールモノブチルエーテルアセテート、ジエチレングリコールモノエチルエーテルアセテート等のグリコールエステル系溶媒;アセトン、メチルエチルケトン、メチルイソブチルケトン、ジイソブチルケトン、シクロペンタノン、シクロヘキサノン、ジアセトンアルコール等のケトン系溶媒;酢酸エチル、酢酸メチル、酢酸ブチル、酢酸メトキシブチル、酢酸セロソルブ、酢酸アミル、酢酸ノルマルプロピル、酢酸イソプロピル、乳酸メチル、乳酸エチル、乳酸ブチル等のエステル系溶媒にもよく溶解するため、これらの溶媒が必要とされる部位に薄膜を形成する場合に特に適している。
 この際、組成物中の固形分濃度は、保存安定性に影響を与えない範囲であれば特に限定されず、目的とする膜の厚みに応じて適宜設定すればよい。具体的には、溶解性および保存安定性の観点から、固形分濃度0.1~50質量%が好ましく、より好ましくは0.1~40質量%である。
 本発明の組成物には、本発明の効果を損なわない限りにおいて、トリアジン環含有重合体、架橋剤および溶媒以外のその他の成分、例えば、レベリング剤、界面活性剤、シランカップリング剤などの添加剤が含まれていてもよい。
 界面活性剤としては、例えば、ポリオキシエチレンラウリルエーテル、ポリオキシエチレンステアリルエーテル、ポリオキシエチレンセチルエーテル、ポリオキシエチレンオレイルエーテル等のポリオキシエチレンアルキルエーテル類;ポリオキシエチレンオクチルフェノールエーテル、ポリオキシエチレンノニルフェノールエーテル等のポリオキシエチレンアルキルアリルエーテル類;ポリオキシエチレン・ポリオキシプロピレンブロックコポリマー類;ソルビタンモノラウレート、ソルビタンモノパルミテート、ソルビタンモノステアレート、ソルビタンモノオレエート、ソルビタントリオレエート、ソルビタントリステアレート等のソルビタン脂肪酸エステル類;ポリオキシエチレンソルビタンモノラウレート、ポリオキシエチレンソルビタンモノパルミテート、ポリオキシエチレンソルビタンモノステアレート、ポリオキシエチレンソルビタントリオレエート、ポリオキシエチレンソルビタントリステアレート等のポリオキシエチレンソルビタン脂肪酸エステル類等のノニオン系界面活性剤、商品名エフトップEF301、EF303、EF352(三菱マテリアル電子化成(株)製(旧(株)ジェムコ製))、商品名メガファックF171、F173、R-08、R-30、R-40、F-553、F-554、RS-75、RS-72-K(DIC(株)製)、フロラードFC430、FC431(住友スリーエム(株)製)、商品名アサヒガードAG710,サーフロンS-382、SC101、SC102、SC103、SC104、SC105、SC106(AGC(株)製)等のフッ素系界面活性剤、オルガノシロキサンポリマーKP341(信越化学工業(株)製)、BYK-302、BYK-307、BYK-322、BYK-323、BYK-330、BYK-333、BYK-370、BYK-375、BYK-378(ビックケミー・ジャパン(株)製)等が挙げられる。
 これらの界面活性剤は、単独で使用しても、2種以上組み合わせて使用してもよい。界面活性剤の使用量は、トリアジン環含有重合体100質量部に対して0.0001~5質量部が好ましく、0.001~1質量部がより好ましく、0.01~0.5質量部がより一層好ましい。
 本発明の膜形成用組成物は、基材に塗布し、その後、必要に応じて加熱して溶剤を蒸発させた後、加熱または光照射して所望の硬化膜とすることができる。
 組成物の塗布方法は任意であり、例えば、スピンコート法、ディップ法、フローコート法、インクジェット法、ジェットディスペンサー法、スプレー法、バーコート法、グラビアコート法、スリットコート法、ロールコート法、転写印刷法、刷毛塗り、ブレードコート法、エアーナイフコート法等の方法を採用できる。
 また、基材としては、シリコン、インジウム錫酸化物(ITO)が成膜されたガラス、インジウム亜鉛酸化物(IZO)が成膜されたガラス、金属ナノワイヤ、ポリエチレンテレフタレート(PET)、プラスチック、ガラス、石英、セラミックス等からなる基材等が挙げられ、可撓性を有するフレキシブル基材を用いることもできる。
 焼成温度は、溶媒を蒸発させる目的では特に限定されず、例えば110~400℃で行うことができる。
 焼成方法としては、特に限定されるものではなく、例えば、ホットプレートやオーブンを用いて、大気、窒素等の不活性ガス、真空中等の適切な雰囲気下で蒸発させればよい。
 焼成温度および焼成時間は、目的とする電子デバイスのプロセス工程に適合した条件を選択すればよく、得られる膜の物性値が電子デバイスの要求特性に適合するような焼成条件を選択すればよい。
 光照射する場合の条件も特に限定されるものではなく、用いるトリアジン環含有重合体および架橋剤に応じて、適宜な照射エネルギーおよび時間を採用すればよい。
 以上のようにして得られた本発明の薄膜や硬化膜は、高耐熱性、高屈折率、および低体積収縮を達成できるため、液晶ディスプレイ、有機EL素子(有機ELディスプレイや有機EL照明)、タッチパネル、光半導体(LED)素子、固体撮像素子、有機薄膜太陽電池、色素増感太陽電池、有機薄膜トランジスタ(TFT)、レンズ、プリズムカメラ、双眼鏡、顕微鏡、半導体露光装置などを作製する際の一部材など、電子デバイスや光学材料分野に好適に利用できる。
 特に、本発明の組成物から作製された薄膜や硬化膜は、透明性が高く、屈折率も高いため、有機EL照明の平坦化膜や光散乱層として用いた場合に、その光取出し効率(光拡散効率)を改善することができるとともに、その耐久性を改善することができる。
 なお、本発明の組成物を有機EL照明の光散乱層に用いる場合、光拡散剤としては公知の光拡散剤を用いることができ、特に限定されるものではない。これらはそれぞれ単独で用いても、同種の2種以上を組み合わせて用いても、異種の2種以上を組み合わせて用いてもよい。
 光拡散剤としては、例えば、有機光拡散剤が挙げられる。
 有機光拡散剤としては、架橋ポリメチルメタクリレート(PMMA)粒子、架橋ポリメチルアクリレート粒子、架橋ポリスチレン粒子、架橋スチレンアクリル共重合粒子、メラミン-ホルムアルデヒド粒子、シリコーン樹脂粒子、シリカ・アクリル複合粒子、ナイロン粒子、ベンゾグアナミン-ホルムアルデヒド粒子、ベンゾグアナミン・メラミン・ホルムアルデヒド粒子、フッ素樹脂粒子、エポキシ樹脂粒子、ポリフェニレンスルフィド樹脂粒子、ポリエーテルスルホン樹脂粒子、ポリアクリロニトリル粒子、ポリウレタン粒子等が挙げられる。
 これらの光拡散剤は、適宜な表面修飾剤により表面処理したものを用いてもよい。
 以下、実施例および比較例を挙げて、本発明をより具体的に説明するが、本発明は下記の実施例に限定されるものではない。なお、実施例で用いた各測定装置は以下のとおりである。
H-NMR]
 装置:Bruker NMR System AVANCE III HD 500(500MHz)
 測定溶媒:DMSO-d6
 基準物質:テトラメチルシラン(TMS)(δ0.0ppm)
[GPC]
 装置:東ソー(株)製 HLC-8200 GPC
 カラム:東ソーTSKgel α-3000 +東ソーTSKgel α-4000
 カラム温度:40℃
 溶媒:ジメチルホルムアミド(DMF)
 検出器:UV(271nm)
 検量線:標準ポリスチレン
[エリプソメーター]
 装置:ジェー・エー・ウーラム・ジャパン製 多入射角分光エリプソメーターVASE
[分光測色計]
 装置:コニカミノルタ製 CM-3700A
[光学顕微鏡]
 装置:オリンパス光学工業株式会社製 OLYMPUS BX51
[紫外可視近赤外分光光度計]
 装置:日本分光株式会社製 V-670
[1]トリアジン環含有重合体の合成
[実施例1-1]高分子化合物[4]の合成
Figure JPOXMLDOC01-appb-C000060
 1,000mL四口フラスコに、1,3-フェニレンジアミン[2](35.18g、0.325mol、Amino-Chem社製)、およびジメチルアセトアミド666.3g(DMAc、関東化学(株)製)を加え、窒素置換した後、攪拌して1,3-フェニレンジアミン[2]をDMAcに溶解させた。その後、エタノール-ドライアイス浴により-10℃まで冷却し、2,4,6-トリクロロ-1,3,5-トリアジン[1](60.0g、0.325mol、東京化成工業(株)製)を内温が0℃以上にならないよう確認しながら投入した。30分間撹拌後、反応溶液を、オイルバスを90~100℃に設定し、内温が85℃±5℃となるよう、昇温させた。内温85℃にて1時間撹拌後、2-(4-アミノフェニル)エタノール[3](53.56g、0.456mol、Oakwood社製)を予めDMAc107.12gに溶解させてから滴下し、3時間撹拌した。その後、2-アミノエタノール(59.62g、東京化成工業(株)製)を滴下し、室温まで降温し、30分撹拌後、撹拌を停止した。反応溶液に、THF(491g)、酢酸アンモニウム(442g)およびイオン交換水(442g)を加え、30分間攪拌した。攪拌停止後、溶液を分液ロートに移し、有機層と水層に分け、有機層を回収した。回収した有機層をメタノール(491g)およびイオン交換水(1,964g)の混合液に滴下し、再沈殿させた。得られた沈殿物をろ別し、減圧乾燥機で120℃、8時間乾燥し、目的とする高分子化合物[4](以下、P-1という)78.5gを得た。化合物P-1のH-NMRスペクトルの測定結果を図1に示す。
 化合物P-1のGPCによるポリスチレン換算で測定される重量平均分子量Mwは6,070、多分散度Mw/Mnは2.6であった。
[実施例1-2]高分子化合物[5]の合成
Figure JPOXMLDOC01-appb-C000061
 150mL四口フラスコに、実施例1-1にて合成した化合物P-1 25.0g、およびTHF100.0g(純正化学(株)製)、純水11.66gを加え、窒素置換した後、攪拌してP-1をTHFに溶解させた。その後、内温が60℃となるよう昇温し、2-イソシアナトエチルアクリラート12.70g(カレンズAOI、昭和電工(株)製)を加え、3時間攪拌した。その後、室温まで降温し、反応溶液をメタノール(149g)およびイオン交換水(448g)の混合液に滴下し、再沈殿させた。得られた沈殿物をろ別し、減圧乾燥機で80℃、3時間乾燥し、目的とする高分子化合物[5](以下、P-2という)21.6gを得た。化合物P-2のH-NMRスペクトルの測定結果を図2に示す。
 化合物P-2のGPCによるポリスチレン換算で測定される重量平均分子量Mwは6,250、多分散度Mw/Mnは3.3であった。
[実施例1-3]高分子化合物[7]の合成
Figure JPOXMLDOC01-appb-C000062
 500mL四口フラスコに、1,3-フェニレンジアミン[2](11.73g、0.108mol、Amino-Chem社製)、およびジメチルアセトアミド204.96g(DMAc、関東化学(株)製)を加え、窒素置換した後、攪拌して1,3-フェニレンジアミン[2]をDMAcに溶解させた。その後、エタノール-ドライアイス浴により-10℃まで冷却し、2,4,6-トリクロロ-1,3,5-トリアジン[1](20.00g、0.108mol、東京化成工業(株)製)を内温が0℃以上にならないよう確認しながら投入した。30分間撹拌後、反応溶液を、予めDMAc87.8gを加え、窒素置換後、オイルバスを90~100℃に設定し、内温が85℃±5℃となるよう、500mL四口フラスコに滴下した。内温85℃にて1時間撹拌後、アニリン[6](10.10g、0.108mol、東京化成工業(株)製)および2-(4-アミノフェニル)エタノール[3](104.14g、0.759mol、スガイ化学工業(株)製)を予めDMAc208.29gに溶解させてから滴下し、3時間撹拌した。3時間後、アクリル酸クロリド(14.72g、0.163mol、東京化成工業(株)製)を滴下し、さらに30分攪拌した。その後、60℃まで降温し、トリエチルアミン(54.87g、0.542mol、東京化成工業(株)製)を滴下し、30分撹拌後、撹拌を停止した。反応溶液を予め用意しておいた酢酸アンモニウム188.6gを加えたイオン交換水(188.6)とTHF(210g)に混合し、30分間攪拌した。攪拌停止後、溶液を分液ロートに移し、有機層と水層に分け、有機層を回収した。回収した有機層をメタノール(251g)およびイオン交換水(629g)の混合液に滴下し、再沈殿させた。得られた沈殿物をろ別し、減圧乾燥機で120℃、8時間乾燥し、目的とする高分子化合物[7](以下、P-3という)31.0gを得た。化合物P-3のH-NMRスペクトルの測定結果を図3に示す。
 化合物P-3のGPCによるポリスチレン換算で測定される重量平均分子量Mwは7,270、多分散度Mw/Mnは3.3であった。
[比較例1-1]高分子化合物[8]の合成
 国際公開第2010/128661号に記載の合成法に従い、高分子化合物[8](以下、P-4という)を合成した。
Figure JPOXMLDOC01-appb-C000063
 化合物P-4のH-NMRスペクトルの測定結果を図4に示す。
 化合物P-4のGPCによるポリスチレン換算で測定される重量平均分子量Mwは11,580、多分散度Mw/Mnは3.7であった。
[比較例1-2]高分子化合物[9]の合成
 国際公開第2013/094663号に記載の合成法に従い、高分子化合物[9](以下、P-5という)を合成した。
Figure JPOXMLDOC01-appb-C000064
 化合物P-5のH-NMRスペクトルの測定結果を図5に示す。
 化合物P-5のGPCによるポリスチレン換算で測定される重量平均分子量Mwは6,182、多分散度Mw/Mnは5.8であった。
[実施例1-4]高分子化合物[10]の合成
Figure JPOXMLDOC01-appb-C000065
 1,000mL四口フラスコに、1,3-フェニレンジアミン[2](42.22g、0.390mol、Amino-Chem社製)、およびジメチルアセトアミド672.62g(DMAc、関東化学(株)製)を加え、窒素置換した後、攪拌して1,3-フェニレンジアミン[2]をDMAcに溶解させた。その後、エタノール-ドライアイス浴により-10℃まで冷却し、2,4,6-トリクロロ-1,3,5-トリアジン[1](60.00g、0.325mol、東京化成工業(株)製)を内温が0℃以上にならないよう確認しながら投入した。30分間撹拌後、反応溶液を、オイルバスを90~100℃に設定し、内温が85℃±5℃となるよう、昇温させた。内温85℃にて1時間撹拌後、アニリン[6](18.18g、0.195mol、東京化成工業(株)製)および2-(4-アミノフェニル)エタノール[3](26.78g、0.195mol、Oakwood社製)を予めDMAc42.93gに溶解させてから滴下し、3時間撹拌した。その後、2-アミノエタノール(59.62g、東京化成工業(株)製)を滴下し、室温まで降温し、30分撹拌後、撹拌を停止した。反応溶液に、THF(369g)、酢酸アンモニウム(415g)およびイオン交換水(415g)を加え、30分間攪拌した。攪拌停止後、溶液を分液ロートに移し、有機層と水層に分け、有機層を回収した。回収した有機層をメタノール(461g)およびイオン交換水(1,845g)の混合液に滴下し、再沈殿させた。得られた沈殿物をろ別し、減圧乾燥機で120℃、8時間乾燥し、目的とする高分子化合物[10](以下、P-6という)89.3gを得た。化合物P-6のH-NMRスペクトルの測定結果を図6に示す。
 化合物P-6のGPCによるポリスチレン換算で測定される重量平均分子量Mwは23,350、多分散度Mw/Mnは6.5であった。
[2]架橋剤添加膜形成組成物の調製および硬化膜の作製
[実施例2-1]
 実施例1-1で得られたP-1(2.40g)をシクロペンタノン(以下、CPNと略す)(5.60g)に溶解させ、架橋剤として30質量%CPN溶液のATM-35E(新中村化学工業(株)製)0.80g、30質量%CPN溶液のDN-0075(日本化薬(株)製)0.80g、光ラジカル重合開始剤として、10質量%CPN溶液のOmnirad2959(IGM Resins B.V.社製)1.2g、界面活性剤として1質量%CPN溶液のメガファックR-40(DIC(株)製)0.24g、並びにCPN8.97g、を加えて目視で溶解したことを確認し、固形分15質量%のワニスを調製した(以下、SP-1溶液という)。
 このSP-1溶液を50mm×50mm×0.7tの無アルカリガラス基板上に、スピンコーターにて200rpmで5秒間、1,000rpmで30秒間スピンコートし、ホットプレートを用いて100℃で1分間仮乾燥後、UV照射装置にて365nmの波長の光にて、400mJ/cmの露光量を照射して硬化膜(以下、SP-1膜という)を得た。
[実施例2-2]
 実施例1-2で得られたP-2(1.20g)をCPN(2.80g)に溶解させ、架橋剤として50質量%CPN溶液のATM-35E(新中村化学工業(株)製)0.24g、50質量%CPN溶液のDN-0075(日本化薬(株)製)0.24g、光ラジカル重合開始剤として、10質量%CPN溶液のOmnirad2959(IGM Resins B.V.社製)0.6g、界面活性剤として10質量%CPN溶液のメガファックR-40(DIC(株)製)0.012g、並びにCPN4.91g、を加えて目視で溶解したことを確認し、固形分15質量%のワニスを調製した(以下、SP-2溶液という)。
 このSP-2溶液を用いて、実施例2-1と同様の手順で硬化膜(以下、SP-2膜という)を得た。
[実施例2-3]
 実施例1-3で得られたP-3(2.40g)をCPN(5.60g)に溶解させ、架橋剤として30質量%CPN溶液のATM-35E(新中村化学工業(株)製)0.80g、30質量%CPN溶液のDN-0075(日本化薬(株)製)0.80g、光ラジカル重合開始剤として、10質量%CPN溶液のOmnirad2959(IGM Resins B.V.社製)1.2g、界面活性剤として1質量%CPN溶液のメガファックR-40(DIC(株)製)0.24g、並びにCPN8.97g、を加えて目視で溶解したことを確認し、固形分15質量%のワニスを調製した(以下、SP-3溶液という)。
 このSP-3溶液を用いて、実施例2-1と同様の手順で硬化膜(以下、SP-3膜という)を得た。
[比較例2-1]
 比較例1-1で得られたP-4(1.20g)をCPN(4.80g)に溶解させ、架橋剤として30質量%CPN溶液のATM-35E(新中村化学工業(株)製)0.40g、30質量%CPN溶液のDN-0075(日本化薬(株)製)0.44g、光ラジカル重合開始剤として、10質量%CPN溶液のOmnirad2959(IGM Resins B.V.社製)0.60g、界面活性剤として1質量%CPN溶液のメガファックR-40(DIC(株)製)0.12g、並びにCPN2.49g、を加えて目視で溶解したことを確認し、固形分15質量%のワニスを調製した(以下、SP-4溶液という)。
 このSP-4溶液を用いて、実施例2-1と同様の手順で硬化膜(以下、SP-4膜という)を得た。
[比較例2-2]
 比較例1-2で得られたP-5(2.50g)をCPN(5.83g)に溶解させ、架橋剤として70質量%PGME(プロピレングリコールモノメチルエーテル)溶液のブロックイソシアネート(BI7992、1,500mPa・s、BAXENDEN社製)0.71g、界面活性剤として1質量%CPNA溶液のメガファックR-40(DIC(株)製)0.25g、並びにCPN9.76gを加えて目視で溶解したことを確認し、固形分15質量%のワニスを調製した(以下、SP-5溶液という)。
 このSP-5溶液を用いて、実施例2-1と同様の手順で硬化膜(以下、SP-5膜という)を得た。
[溶剤耐性(耐クラック性)及び透過率測定]
 上記で作製した硬化膜付きの基板をスピンコーターにセットし、CPN1mlを塗布した。次に、基板から液が飛散しないように、50rpmで60秒間回転させて硬化膜を溶剤に暴露させた。その後、1,000rpmで30秒間回転させて溶剤を基板上から除去した。最後に、ホットプレートを用いて120℃で10秒間乾燥させた後、屈折率および膜厚の測定、残膜率の算出および光学顕微鏡による膜表面の観察を行った。
 残膜率は、以下の式により算出した。
   残膜率(%)=(溶剤暴露後の膜厚)÷(溶剤暴露前の膜厚)×100
 また、溶剤暴露前には透過率も測定した。
 屈折率、膜厚測定、残膜率及び300~800nmの平均透過率の結果は表1に、実施例2-1~2-3の硬化膜表面の顕微鏡写真は図7~9に、比較例2-1~2-2の硬化膜表面の顕微鏡写真は図10~11にそれぞれ示した。
Figure JPOXMLDOC01-appb-T000066
 表1より、実施例2-1~2-3の硬化膜(SP-1~SP-3膜)は、残膜率が高く、図7~9より、膜荒れやクラックが発生していないことが確認され、耐溶剤性(耐クラック性)に優れていることがわかる。
 一方、比較例2-1の硬化膜(SP-4膜)は、溶剤暴露後、ホットプレートを用いて120℃で10秒間乾燥させた段階で膜荒れやクラックが発生し(図10参照)、屈折率および膜厚を測定できる状態ではなかった。
 さらに、比較例2-2の硬化膜(SP-5膜)は膜荒れやクラックが発生していないが、実施例よりも透過率が低下してしまうことが確認された(図11参照)。
 これらの結果より、実施例で得られた高分子化合物から作製した硬化膜は、ポリマー末端に架橋部位を有することにより、耐溶剤性(耐クラック性)、及び光学特性に優れていることがわかる。
[実施例3-1]高分子化合物[15]の合成
Figure JPOXMLDOC01-appb-C000067
 3,000mL四口フラスコに、2,2’-ビス(トリフルオロメチル)-4,4’-ジアミンジフェニルエーテル[12](218.79g、0.651mol、Wuhan Sunshine社製)、およびジメチルアセトアミド1,693.96g(DMAc、関東化学(株)製)を加え、窒素置換した後、攪拌して2,2’-ビス(トリフルオロメチル)-4,4’-ジアミンジフェニルエーテル[12]をDMAcに溶解させた。その後、エタノール-ドライアイス浴により-10℃まで冷却し、2,4,6-トリクロロ-1,3,5-トリアジン[11](120.00g、0.651mol、Amino-Chem(HK) Co.,Limited.社製)を内温が0℃以上にならないよう確認しながら投入した。30分間撹拌後、反応溶液を、予めDMAc1,693.96gを加え、窒素置換後、オイルバスを90~100℃に設定し、内温が75℃±5℃となるよう、5,000mL四口フラスコに滴下した。内温75℃にて1時間撹拌後、アニリン[14](73.39g、0.456mol、東京化成工業(株)製)および2-(4-アミノフェニル)エタノール[13](62.49g、0.456mol、Oakwood社製)を予めDMAc124.97gに溶解させてから滴下し、3時間撹拌した。その後、室温まで降温し、n-プロピルアミン(115.39g、東京化成工業(株)製)を滴下し、30分撹拌後、撹拌を停止した。反応溶液に、THF(2,051g)酢酸アンモニウム(1,846g)およびイオン交換水(1,846g)を加え、30分間攪拌した。攪拌停止後、溶液を分液ロートに移し、有機層と水層に分け、有機層を回収した。回収した有機層をメタノール(3,282g)およびイオン交換水(8,206g)の混合液に滴下し、再沈殿させた。得られた沈殿物をろ別し、減圧乾燥機で120℃、8時間乾燥し、目的とする高分子化合物[15](以下、P-11という)235.51gを得た。化合物P-11のH-NMRスペクトルの測定結果を図12に示す。
 化合物P-11のGPCによるポリスチレン換算で測定される重量平均分子量Mwは6,070、多分散度Mw/Mnは2.6であった。
[実施例3-2]高分子化合物[16]の合成
Figure JPOXMLDOC01-appb-C000068
 500mL四口フラスコに、実施例3-1にて合成した化合物P-11 30.0g、およびテトラヒドロフラン150.0g(THF、純正化学(株)製)、純水3.0gを加え、窒素置換した後、攪拌してP-11をTHFに溶解させた。その後、内温が60℃となるよう昇温し、2-イソシアナトエチルアクリラート15.0g(カレンズAOI、昭和電工(株)製)を加え、3時間攪拌した。その後、室温まで降温し、反応溶液をメタノール(158g)およびイオン交換水(396g)の混合液に滴下し、再沈殿させた。得られた沈殿物をろ別し、減圧乾燥機で80℃、8時間乾燥し、目的とする高分子化合物[16](以下、P-12という)16.8gを得た。化合物P-12のH-NMRスペクトルの測定結果を図13に示す。
 化合物P-12のGPCによるポリスチレン換算で測定される重量平均分子量Mwは7,310、多分散度Mw/Mnは2.3であった。
[比較例3-1]高分子化合物[19]の合成
 国際公開第2016/194926号に記載の合成法に従い、高分子化合物[19](以下、P-13という)を合成した。
Figure JPOXMLDOC01-appb-C000069
 化合物P-13のH-NMRスペクトルの測定結果を図14に示す。
 化合物P-13のGPCによるポリスチレン換算で測定される重量平均分子量Mwは11,580、多分散度Mw/Mnは3.7であった。
[実施例4-1]
 実施例3-1で得られたP-11(2.50g)をPGME(5.83g)に溶解させ、架橋剤として70質量%PGME溶液のブロックイソシアネート(BI7992、1,500mPa・s、BAXENDEN社製)0.71g、界面活性剤として1質量%PGMEA溶液のメガファックF-563(DIC(株)製)0.25g、並びにPGME0.71g、THFA(テトラヒドロフルフリルアルコール)1.70gを加えて目視で溶解したことを確認し、固形分30質量%のワニスを調製した(以下、SP-11溶液という)。
 このSP-11溶液を50mm×50mm×0.7tの無アルカリガラス基板上に、スピンコーターにて200rpmで5秒間、1,000rpmで30秒間スピンコートし、ホットプレートを用いて100℃で1分間仮乾燥後、200℃で5分間本焼成して硬化膜(以下、SP-11膜という)を得た。
[比較例4-1]
 比較例3-1で得られたP-13(2.50g)をCPN(5.83g)に溶解させ、架橋剤として70質量%PGME溶液のブロックイソシアネート(BI7992、1,500mPa・s、BAXENDEN社製)0.71g、界面活性剤として1質量%CPNA溶液のメガファックR-40(DIC(株)製)0.25g、並びにCPN9.76gを加えて目視で溶解したことを確認し、固形分15質量%のワニスを調製した(以下、SP-12溶液という)。
 このSP-12溶液を用いて、実施例4-1と同様の手順で硬化膜(以下、SP-12膜という)を得た。
 上記で得られた硬化膜については、屈折率、膜厚およびbを測定した。結果を表2に示す。また、光学顕微鏡で硬化膜の表面を観察した結果を図15および図16に示す。
Figure JPOXMLDOC01-appb-T000070
 表2より、比較例4-1は膜が厚く、化合物P-13が架橋部位を有していないことから、硬化膜(SP-12膜)を得た段階でクラックが発生してしまい(図16参照)、光学特性を測定することができなかった。これに対し、実施例4-1の硬化膜(SP-11膜)は、高い屈折率および高い透明性を維持しつつ、膜厚が厚くとも、クラック耐性に優れていることがわかる(図15参照)。
[実施例5-1]高分子化合物[102]の合成
Figure JPOXMLDOC01-appb-C000071
 500mL四口フラスコに、実施例1-1で得られたP-1[4](29.20g)、およびシクロペンタノン174.84g(CPN、日本ゼオン(株)製)を加え、窒素置換した後、撹拌して溶解させた。その後、内温を60℃となるまで溶液を昇温させ、2-イソシアナトエチルアクリラート[101]14.51g(AOI-VM、昭和電工(株)製)を滴下し、内温を60℃±5℃にて1時間撹拌させ、高分子化合物[102]を30質量%含むCPN溶液を調製した(以下、P-21溶液という)。
[実施例5-2]高分子化合物[104]の合成
Figure JPOXMLDOC01-appb-C000072
 3,000mL四口フラスコに、1,3-フェニレンジアミン[2](43.98g、0.407mol、Amino-Chem社製)、2,2’-ビス(トリフルオロメチル)-4,4’-ジアミンジフェニルエーテル[103](136.75g、0.407mol、Wuhan Sunshine社製)、およびジメチルアセトアミド1949.90g(DMAc、関東化学(株)製)を加え、窒素置換した後、撹拌して1,3-フェニレンジアミン[2]及び2,2’-ビス(トリフルオロメチル)-4,4’-ジアミンジフェニルエーテル[103]をDMAcに溶解させた。その後、エタノール-ドライアイス浴により-10℃まで冷却し、2,4,6-トリクロロ-1,3,5-トリアジン[1](150.00g、0.813mol、東京化成工業(株)製)を内温が0℃以上にならないよう確認しながら投入し、最後にジメチルアセトアミド114.70g(DMAc、関東化学(株)製)にて洗い流した。30分間撹拌後、内温が85℃±5℃となるまで反応溶液を昇温させた。1時間撹拌後、DMAc229.40g(関東化学(株)製)に溶解させた2-(4-アミノフェニル)エタノール[3](133.90g、0.0.976mol、Oakwood社製)を滴下し、3時間撹拌した。その後、2-アミノエタノール(154.02g、東京化成工業(株)製)を滴下し、30分撹拌後、撹拌を停止した。反応溶液に、テトラヒドロフラン(THF、1456g)、酢酸アンモニウム(1,311g)およびイオン交換水(1311g)を加え、30分撹拌した。撹拌停止後、溶液を分液ロートに移し、有機層と水層に分け、有機層を回収した。回収した有機層をメタノール(1,748g)およびイオン交換水(4,369g)に滴下し、再沈殿させた。得られた沈殿物をろ別し、減圧乾燥機で150℃、8時間乾燥し、目的とする高分子化合物[104](以下、P-22という)353.6gを得た。
 化合物P-22のGPCによるポリスチレン換算で測定される重量平均分子量Mwは8,083、多分散度Mw/Mnは3.2であった。化合物P-22のH-NMRスペクトルの測定結果を図17に示す。
[実施例5-3]高分子化合物[105]の合成
Figure JPOXMLDOC01-appb-C000073
 300mL四口フラスコに、実施例5-2で得られたP-22(高分子化合物[104])(30.00g)、およびシクロペンタノン93.60g(CPN、日本ゼオン(株)製)を加え、窒素置換した後、撹拌して溶解させた。その後、内温を60℃となるまで溶液を昇温させ、2-イソシアナトエチルアクリラート10.11g(AOI-VM、昭和電工(株)製)を滴下し、内温を60℃±5℃にて1時間撹拌させ、高分子化合物[105]を30質量%含むCPN溶液を調製した(以下、P-23溶液という)。
[実施例6-1]
 実施例5-1で得られたP-21溶液(4.42g)と、架橋剤としてATM-35E(新中村化学工業(株)製)0.088g、DN-0075(日本化薬(株)製)0.088g、光ラジカル重合開始剤として、Omnirad2959(IGM Resins B.V.社製)0.053g、界面活性剤として10質量%CPN溶液のメガファックR-40(DIC(株)製)0.018g、並びにCPN3.86g、を加えて目視で溶解したことを確認し、固形分20質量%のワニスを調製した(以下、SP-21溶液という)。
 このSP-21溶液を50mm×50mm×0.7tの無アルカリガラス基板上に、スピンコーターにて200rpmで5秒間、1,000rpmで30秒間スピンコートし、ホットプレートを用いて80℃で3分間仮乾燥後、UV照射装置にて365nmの波長の光にて、200mJ/cmの露光量を照射して硬化膜(以下、SP-21膜という)を得た。
[溶剤耐性(耐クラック性)及び透過率測定]
 上記で作製した硬化膜付きの基板をスピンコーターにセットし、CPN1mlを塗布した。次に、基板から液が飛散しないように、50rpmで60秒間回転させて硬化膜を溶剤に暴露させた。その後、1,000rpmで30秒間回転させて溶剤を基板上から除去した。最後に、ホットプレートを用いて80℃で10秒間乾燥させた後、屈折率および膜厚の測定、残膜率の算出および光学顕微鏡による膜表面の観察を行った。
 残膜率は、以下の式により算出した。
   残膜率(%)=(溶剤暴露後の膜厚)÷(溶剤暴露前の膜厚)×100
 また、溶剤暴露前には透過率も測定した。
 屈折率、膜厚測定、残膜率及び300~800nmの平均透過率の結果は表3に、実施例6-1の硬化膜表面の顕微鏡写真は図18に示した。
Figure JPOXMLDOC01-appb-T000074
[実施例6-2]
 実施例5-3で得られたP-23溶液(13.27g)と、架橋剤としてATM-35E(新中村化学工業(株)製)0.20g、DN-0075(日本化薬(株)製)0.20g、光ラジカル重合開始剤として、Omnirad2959(IGM Resins B.V.社製)0.12g、界面活性剤として10質量%CPN溶液のメガファックR-40(DIC(株)製)0.020g、並びにCPN16.19g、を加えて目視で溶解したことを確認し、固形分15質量%のワニスを調製した(以下、SP-22溶液という)。
 このSP-22溶液を50mm×50mm×0.7tの無アルカリガラス基板上に、スピンコーターにて200rpmで5秒間、1,000rpmで30秒間スピンコートし、ホットプレートを用いて80℃で3分間仮乾燥後、UV照射装置にて365nmの波長の光にて、200mJ/cmの露光量を照射して硬化膜(以下、SP-22膜という)を得た。
[溶剤耐性(耐クラック性)及び透過率測定]
 上記で作製した硬化膜付きの基板をスピンコーターにセットし、CPN1mlを塗布した。次に、基板から液が飛散しないように、50rpmで60秒間回転させて硬化膜を溶剤に暴露させた。その後、1,000rpmで30秒間回転させて溶剤を基板上から除去した。最後に、ホットプレートを用いて80℃で10秒間乾燥させた後、屈折率および膜厚の測定、残膜率の算出および光学顕微鏡による膜表面の観察を行った。
 残膜率は、以下の式により算出した。
   残膜率(%)=(溶剤暴露後の膜厚)÷(溶剤暴露前の膜厚)×100
 また、溶剤暴露前には透過率も測定した。
 屈折率、膜厚測定、残膜率及び300~800nmの平均透過率の結果は表4に、実施例6-2の硬化膜表面の顕微鏡写真は図19に示した。
Figure JPOXMLDOC01-appb-T000075

Claims (19)

  1.  下記式(1)で表される繰り返し単位構造を含み、少なくとも1つのトリアジン環末端を有し、このトリアジン環末端の少なくとも一部が、架橋基を有するアリールアミノ基で封止されていることを特徴とするトリアジン環含有重合体。
    Figure JPOXMLDOC01-appb-C000001
    {式中、RおよびR’は、互いに独立して、水素原子、アルキル基、アルコキシ基、アリール基、またはアラルキル基を表し、
     Arは、式(2)~(13)で示される群から選ばれる少なくとも1種を表す。
    Figure JPOXMLDOC01-appb-C000002
    〔式中、R~R92は、互いに独立して、水素原子、ハロゲン原子、カルボキシル基、スルホ基、炭素数1~10のアルキル基、炭素数1~10のハロゲン化アルキル基、または炭素数1~10のアルコキシ基を表し、
     R93およびR94は、水素原子または炭素数1~10のアルキル基を表し、
     WおよびWは、互いに独立して、単結合、CR9596(R95およびR96は、互いに独立して、水素原子または炭素数1~10のアルキル基(ただし、これらは一緒になって環を形成していてもよい。)を表す。)、C=O、O、S、SO、SO、またはNR97(R97は、水素原子、炭素数1~10のアルキル基またはフェニル基を表す。)を表し、
     XおよびXは、互いに独立して、単結合、炭素数1~10のアルキレン基、または式(14)
    Figure JPOXMLDOC01-appb-C000003
    (式中、R98~R101は、互いに独立して、水素原子、ハロゲン原子、カルボキシル基、スルホ基、炭素数1~10のアルキル基、炭素数1~10のハロゲン化アルキル基、または炭素数1~10のアルコキシ基を表し、
     YおよびYは、互いに独立して、単結合または炭素数1~10のアルキレン基を表す。)で示される基を表す。〕
  2.  前記R~R92およびR98~R101が、互いに独立して、水素原子、ハロゲン原子または炭素数1~10のロゲン化アルキル基である請求項1記載のトリアジン環含有重合体。
  3.  前記架橋基を有するアリールアミノ基が、式(15)で示される請求項1または2記載のトリアジン環含有重合体。
    Figure JPOXMLDOC01-appb-C000004
    (式中、R102は、架橋基を表す。)
  4.  前記架橋基を有するアリールアミノ基が、式(16)で示される請求項3記載のトリアジン環含有重合体。
    Figure JPOXMLDOC01-appb-C000005
    (式中、R102は、上記と同じ意味を表す。)
  5.  前記架橋基が、ヒドロキシ含有基または(メタ)アクリロイル含有基である請求項1~4のいずれか1項記載のトリアジン環含有重合体。
  6.  前記架橋基が、ヒドロキシアルキル基、(メタ)アクリロイルオキシアルキル基または下記式(i)で表される基である請求項5記載のトリアジン環含有重合体。
    Figure JPOXMLDOC01-appb-C000006
    (式中、Aは、炭素数1~10のアルキレン基を表し、Aは、単結合または下記式(j)
    Figure JPOXMLDOC01-appb-C000007
    で表される基を表し、Aは、ヒドロキシ基で置換されてもよい2価または3価の脂肪族炭化水素基を表し、Aは、水素原子またはメチル基を表し、aは、1または2を表し、*は結合手を表す。)
  7.  前記架橋基が、ヒドロキシメチル基、2-ヒドロキシエチル基、(メタ)アクリロイルオキシメチル基、(メタ)アクリロイルオキシエチル基、および下記式(i-2)~式(i-5)で表される基から選ばれる1種以上である請求項6記載のトリアジン環含有重合体。
    Figure JPOXMLDOC01-appb-C000008
    (式中、*は結合手を表す。)
  8.  前記Ar中の少なくとも1つの芳香環中にハロゲン原子または炭素数1~10のハロゲン化アルキル基を少なくとも1つ含有する、請求項1~7のいずれか1項記載のトリアジン環含有重合体。
  9.  さらに、トリアジン環末端の一部が、無置換アリールアミノ基で封止されている請求項1~8のいずれか1項記載のトリアジン環含有重合体。
  10.  前記無置換アリールアミノ基が、式(33)で示される請求項1~9のいずれか1項記載のトリアジン環含有重合体。
    Figure JPOXMLDOC01-appb-C000009
  11.  前記Arが、式(17)で示される請求項1~10のいずれか1項記載のトリアジン環含有重合体。
    Figure JPOXMLDOC01-appb-C000010
  12.  前記Arが、式(20)で示される請求項1~10のいずれか1項記載のトリアジン環含有重合体。
    Figure JPOXMLDOC01-appb-C000011
  13.  請求項1~12のいずれか1項記載のトリアジン環含有重合体と有機溶媒とを含む膜形成用組成物。
  14.  前記有機溶媒が、グリコールエステル系溶媒、ケトン系溶媒、およびエステル系溶媒から選ばれる少なくとも1種を含む請求項13記載の膜形成用組成物。
  15.  さらに架橋剤を含む請求項13または14記載の膜形成用組成物。
  16.  前記架橋剤が、多官能(メタ)アクリル化合物である請求項15記載の膜形成用組成物。
  17.  請求項13~16のいずれか1項記載の膜形成用組成物から得られる薄膜。
  18.  基材と、前記基材上に形成された請求項17記載の薄膜とを備える電子デバイス。
  19.  基材と、前記基材上に形成された請求項17記載の薄膜とを備える光学部材。

     
PCT/JP2020/039866 2019-10-25 2020-10-23 トリアジン環含有重合体およびそれを含む膜形成用組成物 WO2021079977A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
US17/770,373 US20230002555A1 (en) 2019-10-25 2020-10-23 Triazine ring-containing polymer and film forming composition containing same
CN202080074297.XA CN114599704A (zh) 2019-10-25 2020-10-23 含三嗪环的聚合物及含有该聚合物的膜形成用组合物
JP2021553554A JPWO2021079977A1 (ja) 2019-10-25 2020-10-23
KR1020227016366A KR20220095196A (ko) 2019-10-25 2020-10-23 트리아진환 함유 중합체 및 그것을 포함하는 막 형성용 조성물
EP20878509.7A EP4050049A4 (en) 2019-10-25 2020-10-23 TRIAZINE RING CONTAINING POLYMER AND FILM-FORMING COMPOSITION THEREFOR

Applications Claiming Priority (12)

Application Number Priority Date Filing Date Title
JP2019-193997 2019-10-25
JP2019193997 2019-10-25
JP2019-226640 2019-12-16
JP2019226640 2019-12-16
JP2020-060620 2020-03-30
JP2020-060473 2020-03-30
JP2020060620 2020-03-30
JP2020060473 2020-03-30
JP2020070202 2020-04-09
JP2020070201 2020-04-09
JP2020-070201 2020-04-09
JP2020-070202 2020-04-09

Publications (1)

Publication Number Publication Date
WO2021079977A1 true WO2021079977A1 (ja) 2021-04-29

Family

ID=75620178

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/039866 WO2021079977A1 (ja) 2019-10-25 2020-10-23 トリアジン環含有重合体およびそれを含む膜形成用組成物

Country Status (7)

Country Link
US (1) US20230002555A1 (ja)
EP (1) EP4050049A4 (ja)
JP (1) JPWO2021079977A1 (ja)
KR (1) KR20220095196A (ja)
CN (1) CN114599704A (ja)
TW (1) TW202132410A (ja)
WO (1) WO2021079977A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022210095A1 (ja) * 2021-04-02 2022-10-06 Jsr株式会社 重合体、組成物、硬化物、積層体及び電子部品
WO2022225002A1 (ja) * 2021-04-23 2022-10-27 日産化学株式会社 トリアジン環含有重合体、及びそれを含む膜形成用組成物
WO2022225001A1 (ja) * 2021-04-23 2022-10-27 日産化学株式会社 トリアジン環含有重合体、及びパターン形成用組成物

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021117692A1 (ja) * 2019-12-09 2021-06-17 日産化学株式会社 パターン形成用組成物

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0987385A (ja) * 1995-09-19 1997-03-31 Neos Co Ltd ポリアミン樹脂及びその製造方法
JP2004156001A (ja) * 2002-11-07 2004-06-03 Sanei Kagaku Kk フェノール性水酸基を含有するトリアジンジハライド及び芳香族(ポリ)グアナミン、並びにその組成物
WO2010128661A1 (ja) 2009-05-07 2010-11-11 日産化学工業株式会社 トリアジン環含有重合体およびそれを含む膜形成用組成物
WO2013094663A1 (ja) 2011-12-20 2013-06-27 日産化学工業株式会社 トリアジン環含有重合体およびそれを含む膜形成用組成物
WO2014136871A1 (ja) * 2013-03-08 2014-09-12 日産化学工業株式会社 膜形成用組成物
WO2015098787A1 (ja) * 2013-12-24 2015-07-02 日産化学工業株式会社 トリアジン環含有重合体およびそれを含む組成物
WO2015098788A1 (ja) * 2013-12-24 2015-07-02 日産化学工業株式会社 トリアジン系重合体含有組成物
WO2016024613A1 (ja) * 2014-08-13 2016-02-18 日産化学工業株式会社 トリアジン環含有重合体およびそれを含む組成物
WO2016114337A1 (ja) * 2015-01-15 2016-07-21 日産化学工業株式会社 トリアジン環含有重合体およびそれを含む組成物
WO2016194926A1 (ja) 2015-06-03 2016-12-08 日産化学工業株式会社 トリアジン環含有重合体およびそれを含む膜形成用組成物
WO2017138547A1 (ja) * 2016-02-09 2017-08-17 日産化学工業株式会社 トリアジン環含有重合体およびそれを含む組成物
JP2018199774A (ja) * 2017-05-26 2018-12-20 国立大学法人岩手大学 トリアジン環含有ハイパーブランチポリアミド及びその製造方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111315800B (zh) * 2017-11-08 2022-05-31 日产化学株式会社 含有三嗪环的聚合物和包含其的组合物
WO2019167681A1 (ja) * 2018-02-28 2019-09-06 富士フイルム株式会社 組成物、塗布膜、硬化膜、レンズ、固体撮像素子、樹脂

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0987385A (ja) * 1995-09-19 1997-03-31 Neos Co Ltd ポリアミン樹脂及びその製造方法
JP2004156001A (ja) * 2002-11-07 2004-06-03 Sanei Kagaku Kk フェノール性水酸基を含有するトリアジンジハライド及び芳香族(ポリ)グアナミン、並びにその組成物
WO2010128661A1 (ja) 2009-05-07 2010-11-11 日産化学工業株式会社 トリアジン環含有重合体およびそれを含む膜形成用組成物
WO2013094663A1 (ja) 2011-12-20 2013-06-27 日産化学工業株式会社 トリアジン環含有重合体およびそれを含む膜形成用組成物
WO2014136871A1 (ja) * 2013-03-08 2014-09-12 日産化学工業株式会社 膜形成用組成物
WO2015098787A1 (ja) * 2013-12-24 2015-07-02 日産化学工業株式会社 トリアジン環含有重合体およびそれを含む組成物
WO2015098788A1 (ja) * 2013-12-24 2015-07-02 日産化学工業株式会社 トリアジン系重合体含有組成物
WO2016024613A1 (ja) * 2014-08-13 2016-02-18 日産化学工業株式会社 トリアジン環含有重合体およびそれを含む組成物
WO2016114337A1 (ja) * 2015-01-15 2016-07-21 日産化学工業株式会社 トリアジン環含有重合体およびそれを含む組成物
WO2016194926A1 (ja) 2015-06-03 2016-12-08 日産化学工業株式会社 トリアジン環含有重合体およびそれを含む膜形成用組成物
WO2017138547A1 (ja) * 2016-02-09 2017-08-17 日産化学工業株式会社 トリアジン環含有重合体およびそれを含む組成物
JP2018199774A (ja) * 2017-05-26 2018-12-20 国立大学法人岩手大学 トリアジン環含有ハイパーブランチポリアミド及びその製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
KAZUHIRO TAKAUSU: "Japanese, Latest UV Curing Technology", 1991, TECHNICAL INFORMATION INSTITUTE CO., LTD., article "Saishin UV Koka Gijutu", pages: 159

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022210095A1 (ja) * 2021-04-02 2022-10-06 Jsr株式会社 重合体、組成物、硬化物、積層体及び電子部品
WO2022225002A1 (ja) * 2021-04-23 2022-10-27 日産化学株式会社 トリアジン環含有重合体、及びそれを含む膜形成用組成物
WO2022225001A1 (ja) * 2021-04-23 2022-10-27 日産化学株式会社 トリアジン環含有重合体、及びパターン形成用組成物

Also Published As

Publication number Publication date
US20230002555A1 (en) 2023-01-05
EP4050049A1 (en) 2022-08-31
CN114599704A (zh) 2022-06-07
JPWO2021079977A1 (ja) 2021-04-29
TW202132410A (zh) 2021-09-01
KR20220095196A (ko) 2022-07-06
EP4050049A4 (en) 2023-11-15

Similar Documents

Publication Publication Date Title
WO2021079977A1 (ja) トリアジン環含有重合体およびそれを含む膜形成用組成物
JP6638651B2 (ja) トリアジン環含有重合体およびそれを含む組成物
JP6804047B2 (ja) トリアジン環含有重合体およびそれを含む膜形成用組成物
WO2016114337A1 (ja) トリアジン環含有重合体およびそれを含む組成物
JP6468198B2 (ja) トリアジン環含有重合体およびそれを含む組成物
WO2015098788A1 (ja) トリアジン系重合体含有組成物
WO2017138547A1 (ja) トリアジン環含有重合体およびそれを含む組成物
JP7077622B2 (ja) トリアジン環含有重合体およびそれを含む膜形成用組成物
WO2021079991A1 (ja) トリアジン環含有重合体およびそれを含む膜形成用組成物
JP7484332B2 (ja) トリアジン環含有重合体およびそれを含む膜形成用組成物
WO2021117692A1 (ja) パターン形成用組成物
JP6702319B2 (ja) インクジェット塗布用膜形成用組成物
WO2022225002A1 (ja) トリアジン環含有重合体、及びそれを含む膜形成用組成物
WO2022225005A1 (ja) 無溶剤型組成物
WO2022225001A1 (ja) トリアジン環含有重合体、及びパターン形成用組成物
WO2022225015A1 (ja) トリアジン環含有重合体、及びそれを含む膜形成用組成物

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20878509

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021553554

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20227016366

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2020878509

Country of ref document: EP

Effective date: 20220525