WO2021079841A1 - 制御装置、電動圧縮機、制御方法、プログラム - Google Patents

制御装置、電動圧縮機、制御方法、プログラム Download PDF

Info

Publication number
WO2021079841A1
WO2021079841A1 PCT/JP2020/039217 JP2020039217W WO2021079841A1 WO 2021079841 A1 WO2021079841 A1 WO 2021079841A1 JP 2020039217 W JP2020039217 W JP 2020039217W WO 2021079841 A1 WO2021079841 A1 WO 2021079841A1
Authority
WO
WIPO (PCT)
Prior art keywords
rotation speed
motor
value
threshold value
equal
Prior art date
Application number
PCT/JP2020/039217
Other languages
English (en)
French (fr)
Inventor
服部 誠
豊久 川島
渡邊 恭平
Original Assignee
三菱重工サーマルシステムズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱重工サーマルシステムズ株式会社 filed Critical 三菱重工サーマルシステムズ株式会社
Priority to US17/768,169 priority Critical patent/US20240102465A1/en
Priority to CN202080072672.7A priority patent/CN114599881B/zh
Publication of WO2021079841A1 publication Critical patent/WO2021079841A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B49/00Control, e.g. of pump delivery, or pump pressure of, or safety measures for, machines, pumps, or pumping installations, not otherwise provided for, or of interest apart from, groups F04B1/00 - F04B47/00
    • F04B49/06Control using electricity
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B35/00Piston pumps specially adapted for elastic fluids and characterised by the driving means to their working members, or by combination with, or adaptation to, specific driving engines or motors, not otherwise provided for
    • F04B35/04Piston pumps specially adapted for elastic fluids and characterised by the driving means to their working members, or by combination with, or adaptation to, specific driving engines or motors, not otherwise provided for the means being electric
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B39/00Component parts, details, or accessories, of pumps or pumping systems specially adapted for elastic fluids, not otherwise provided for in, or of interest apart from, groups F04B25/00 - F04B37/00
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B49/00Control, e.g. of pump delivery, or pump pressure of, or safety measures for, machines, pumps, or pumping installations, not otherwise provided for, or of interest apart from, groups F04B1/00 - F04B47/00
    • F04B49/02Stopping, starting, unloading or idling control
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B49/00Control, e.g. of pump delivery, or pump pressure of, or safety measures for, machines, pumps, or pumping installations, not otherwise provided for, or of interest apart from, groups F04B1/00 - F04B47/00
    • F04B49/10Other safety measures
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B49/00Control, e.g. of pump delivery, or pump pressure of, or safety measures for, machines, pumps, or pumping installations, not otherwise provided for, or of interest apart from, groups F04B1/00 - F04B47/00
    • F04B49/20Control, e.g. of pump delivery, or pump pressure of, or safety measures for, machines, pumps, or pumping installations, not otherwise provided for, or of interest apart from, groups F04B1/00 - F04B47/00 by changing the driving speed
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P23/00Arrangements or methods for the control of AC motors characterised by a control method other than vector control
    • H02P23/04Arrangements or methods for the control of AC motors characterised by a control method other than vector control specially adapted for damping motor oscillations, e.g. for reducing hunting
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P29/00Arrangements for regulating or controlling electric motors, appropriate for both AC and DC motors

Definitions

  • the present disclosure relates to a control device, an electric compressor, a control method, and a program.
  • the present application claims priority based on Japanese Patent Application No. 2019-193964 filed in Japan on October 24, 2019, the contents of which are incorporated herein by reference.
  • Patent Document 1 discloses a technique for detecting a ripple voltage of an alternator for a vehicle and determining that the alternator is out of order when the difference between the maximum value and the minimum value of the ripple voltage exceeds a predetermined value. ing.
  • the present disclosure provides a control device, an electric compressor, a control method, and a program capable of solving the above-mentioned problems.
  • the control device of the present disclosure includes a detection unit that detects the ripple voltage of a battery-powered electric compressor, a determination unit that determines whether or not the value of the ripple voltage is equal to or higher than a predetermined threshold value, and a detection unit whose value is equal to or higher than the threshold value.
  • the electric compressor is provided with a control unit for reducing the rotation speed of the motor of the electric compressor to a predetermined first target rotation speed larger than 0.
  • the electric compressor of the present disclosure includes the above control device.
  • the control method of the present disclosure detects the ripple voltage of a battery-powered electric compressor, determines whether or not the value of the ripple voltage is equal to or higher than a predetermined threshold value, and if the value is equal to or higher than the threshold value, the electric compressor.
  • the rotation speed of the motor is reduced to a predetermined first target rotation speed larger than 0.
  • the program of the present disclosure is a means for detecting the ripple voltage of an electric compressor driven by a battery in a computer, a means for determining whether or not the value of the ripple voltage is equal to or higher than a predetermined threshold, and when the value is equal to or higher than the threshold. It functions as a means for reducing the rotation speed of the motor of the electric compressor to a predetermined first target rotation speed larger than 0.
  • the operation of the electric compressor can be continued while avoiding resonance due to ripple.
  • FIG. 1 shows an example of a schematic configuration of the electric compressor 20 included in the vehicle air conditioner 30.
  • the illustrated battery 1, the vehicle air conditioner 30, the vehicle equipment 40, and the electric circuit for driving them are mounted on the vehicle.
  • the inductors 5a and 5b indicate the inductor components of the electric circuit including the battery 1, the vehicle air conditioner 30, and the vehicle equipment 40.
  • the battery 1 is a power supply unit mounted on a vehicle (outside the vehicle air conditioner 30).
  • the battery 1 supplies high-voltage DC power to the vehicle air conditioner 30 and the vehicle equipment 40.
  • the vehicle device 40 includes a capacitor 2, an inverter 3, and a load 4 connected to the inverter 3.
  • the vehicle air conditioner 30 includes an electric compressor 20.
  • the electric compressor 20 is an inverter-integrated electric compressor in which the inverter 7 is integrally incorporated.
  • the electric compressor 20 includes a power supply circuit 8 including a capacitor 6 and an inverter 7, a motor 9, a control device 10, a voltmeter 11, and a compression unit 12.
  • the electric compressor 20 is driven by converting the high-voltage DC power supplied from the battery 1 into three-phase AC power by the inverter 7 and applying it to the motor 9.
  • the inverter 7 and the motor 9 are connected by a power line.
  • the inverter 7 converts the DC power supplied from the battery 1 into three-phase AC and supplies it to the motor 9.
  • the inverter 7 is controlled by the control device 10.
  • the control device 10 includes a microcomputer, and controls the motor 9 to a desired operation via an inverter 7 based on a control signal acquired from an ECU (Electric Control Unit) or the like (not shown). For example, the control device 10 controls the rotation speed of the motor 9.
  • the compression unit 12 compresses the refrigerant and supplies the refrigerant to the refrigerant circuit (not shown) included in the vehicle air conditioner 30.
  • the inverter 7, the voltmeter 11, and the control device 10 are connected by a signal line.
  • the voltmeter 11 detects the DC voltage input to the inverter 7 and outputs the detected voltage value to the control device 10.
  • the voltage value measured by the voltmeter 11 includes a ripple component.
  • the value obtained by subtracting the DC voltage value derived from the battery 1 from the voltage value measured by the voltmeter 11 is called a ripple voltage.
  • the ripple voltage becomes large, resonance occurs in the resonance circuit formed by the capacitors 2 and 6 and the inductors 5a and 5b, and an excessive current flows in the electric circuit including the vehicle air conditioner 30 and the vehicle equipment 40. Therefore, the control device 10 monitors the fluctuation of the voltage value measured by the voltmeter 11, and when the ripple voltage value W becomes equal to or higher than a predetermined threshold value, the motor 9 is decelerated to suppress the ripple voltage.
  • the control device 10 includes a detection unit 101, a determination unit 102, and a control unit 103.
  • the detection unit 101 acquires the voltage value measured by the voltmeter 11.
  • the detection unit 101 detects the difference between the maximum value and the minimum value of the acquired voltage value in a predetermined minute time. This value is called the ripple voltage value W.
  • the detection unit 101 detects the value W of the ripple voltage every minute time.
  • the frequency of the ripple voltage to be detected by the detection unit 101 is equal to the carrier frequency of the inverter 7 and is constant.
  • the determination unit 102 compares the ripple voltage value W calculated by the detection unit 101 with a predetermined threshold value. When the value W of the ripple voltage is equal to or greater than the threshold value, the determination unit 102 determines to perform resonance protection control.
  • the resonance protection control is a control that reduces the rotation speed of the motor 9 to suppress the value W of the ripple voltage to less than the threshold value.
  • the control unit 103 instructs the inverter 7 to rotate the motor 9.
  • the control unit 103 reduces the rotation speed of the motor 9 to a predetermined target rotation speed.
  • the control unit 103 performs control so as to continue the operation of the motor 9 as much as possible while preventing the occurrence of resonance.
  • FIG. 2 is a first diagram illustrating resonance protection control in one embodiment.
  • FIG. 2 The vertical axis in the upper figure shows the ripple voltage value W, and the horizontal axis shows time.
  • FIG. 2 The vertical axis in the lower figure shows the rotation speed of the motor 9, and the horizontal axis shows the time. The same position on the horizontal axis in the upper figure of FIG. 2 and the lower figure of FIG. 2 indicates the same time.
  • FIG. 2 X (rpm) in the lower figure is the minimum rotation speed of the motor 9. As will be described later, if the value W is equal to or greater than the threshold value even when the rotation speed of the motor 9 is reduced to the minimum rotation speed X (rpm), the control unit 103 stops the motor 9. These things are the same in FIGS. 3 to 4.
  • FIG. 2 With reference to the upper figure, the value W of the ripple voltage at time t0 is 0. With reference to the lower figure of FIG. 2, the rotation speed of the motor 9 at time t0 is Y (rpm). Y (rpm) is a rotation speed determined by the ECU of the vehicle based on the set temperature of heating and cooling set by the user.
  • the determination unit 102 When the rotation speed of the motor 9 becomes Y1 (rpm), the determination unit 102 again determines whether or not the value W is equal to or greater than the threshold value. In the illustrated example, the value W at time t1-1 is still greater than or equal to the threshold. Therefore, the determination unit 102 instructs the control unit 103 to further reduce the rotation speed.
  • the control unit 103 sets the rotation speed Y2 (rpm) (Y2 ⁇ Y1) to the target rotation speed, and instructs the inverter 7 to rotate the rotation speed Y2.
  • the rotation speed of the motor 9 gradually decreases and reaches Y2 (rpm) at time t1-2.
  • the determination unit 102 compares the value W with the threshold value again, and instructs the control unit 103 to reduce the rotation speed based on the value W of the ripple voltage ⁇ threshold value.
  • the control unit 103 instructs the inverter 7 at the rotation speed Y3 (rpm) (Y3 ⁇ Y2).
  • the operation of the vehicle air conditioner 30 returns to the operating state according to the load before the start of the resonance protection control (time t2-2).
  • the detection unit 101 continues to detect the ripple voltage, and the determination unit 102 determines whether or not the value W of the ripple voltage is equal to or greater than the threshold value in a predetermined control cycle. If the value W does not exceed the threshold value, the vehicle air conditioner 30 continues the operating state according to the load.
  • the determination unit 102 instructs the control unit 103 to start the resonance protection control based on the fact that the value W becomes equal to or higher than the threshold value.
  • the control unit 103 may gradually reduce the rotation speed of the motor 9 up to the minimum rotation speed X (rpm), but here, another control method by the control unit 103 is used. explain.
  • the control unit 103 instructs the inverter 7 to set the rotation speed of the motor 9 to the minimum rotation speed X (rpm).
  • the rotation speed of the motor 9 becomes X (rpm).
  • the determination unit 102 determines whether or not the ripple voltage value W is equal to or greater than the threshold value. In the illustrated example, the value W at time t3-1 is less than the threshold. The determination unit 102 instructs the control unit 103 to release the resonance protection control. The control unit 103 maintains the rotation speed of the motor 9 at X (rpm) for a predetermined time Tw.
  • the control unit 103 instructs the inverter 7 to increase the rotation speed of the motor 9.
  • the control unit 103 may instruct the inverter 7 at the rotation speed Y according to the load, but here, another control method will be described.
  • the control unit 103 gradually increases the rotation speed of the motor 9 toward the rotation speed Y required by the load. For example, the control unit 103 instructs the inverter 7 at the rotation speed Y3. If the value W is less than the threshold value when the rotation speed of the time t4-1 motor 9 reaches the rotation speed Y3, the control unit 103 further increases the rotation speed to Y2.
  • the control unit 103 instructs the inverter 7 to gradually increase the rotation speed of the motor 9.
  • the control unit 103 maintains the rotation speed Y of the motor 9, and the determination unit 102 determines whether or not the ripple voltage value W is equal to or greater than the threshold value in a predetermined control cycle.
  • the operation of the vehicle air conditioner 30 can be continued while avoiding the occurrence of resonance due to the ripple voltage.
  • Two types of methods for controlling the decrease in the rotation speed of the motor 9 are described, one is a method of gradually decreasing the rotation speed to X, and the other is a method of decreasing the rotation speed to X at a time.
  • Two types of methods a method of increasing the rotation speed Y required by the load and a method of increasing the rotation speed Y at a time, are described. If the rotation speed is gradually reduced to X, the time for driving the motor 9 at a high rotation speed can be lengthened, but the increase in the ripple voltage may not be suppressed.
  • the rotation speed of the motor 9 is temporarily greatly reduced, but the resonance due to the ripple voltage can be more reliably avoided by that amount.
  • the control unit 103 may gradually decrease the rotation speed and gradually increase the rotation speed, or gradually decrease the rotation speed and increase the rotation speed Y (rpm) at a time. May be good.
  • control unit 103 may reduce the rotation speed to X (rpm) at a time and gradually increase the rotation speed, or reduce the rotation speed to X (rpm) at a time and increase the rotation speed at a time. It may be increased to Y (rpm).
  • Y rpm
  • FIG. 2 Control to stop the motor
  • FIG. 3 is a second diagram illustrating resonance protection control in one embodiment.
  • the determination unit 102 determines whether or not the value W of the ripple voltage is equal to or greater than the threshold value. Since the value W at time t2 is equal to or greater than the threshold value, the determination unit 102 instructs the control unit 103 to further reduce the rotation speed.
  • the control unit 103 stops the motor 9.
  • the determination unit 102 compares the value W with the threshold value again. Since the value W is less than the threshold value, the determination unit 102 instructs the cancellation of the resonance protection control.
  • control unit 103 may reduce the rotation speed of the motor 9 to the minimum rotation speed X at a time at time t1. After time t3, the control unit 103 may gradually increase the rotation speed of the motor 9. When the value W becomes equal to or higher than the threshold value in the process of gradually increasing the rotation speed, the control unit 103 again decreases the rotation speed of the motor 9.
  • FIG. 4 is a third diagram illustrating resonance protection control in one embodiment.
  • the determination unit 102 determines whether or not the value W of the ripple voltage is equal to or greater than the threshold value. Since the ripple voltage value W at time t2 is equal to or greater than the threshold value, the control unit 103 stops the motor 9 (first stop). When a predetermined time elapses after the motor 9 is stopped (time t2 + 1), the determination unit 102 compares the value W of the ripple voltage with the threshold value. Since the value W is less than the threshold value, the determination unit 102 instructs the cancellation of the resonance protection control. The control unit 103 instructs the inverter 7 of the target rotation speed Y after a predetermined time Tw has elapsed from the stop of the motor 9.
  • the control unit 103 determines that the start of the motor 9 is not repeated when the number of times the start and stop of the motor 9 are continuously repeated is N times or more. If the value W of the ripple voltage increases even after repeating the start and stop of the motor 9 N times, the control device 10 temporarily stops the restart of the motor 9. At this time, the control device 10 may output an alarm. The stop control for restarting the motor 9 is continued until, for example, the vehicle air conditioner 30 is once stopped and the vehicle air conditioner 30 is newly started to operate next time. As a result, when the electric circuit illustrated in FIG. 1 continues to be in a state where resonance can occur for a long time, the electric compressor 20 can be locked to avoid a failure due to resonance.
  • FIG. 5 is a flowchart showing an example of resonance protection control in one embodiment.
  • the motor 9 is driven at a required rotation speed Y according to the air conditioning load of the vehicle air conditioner 30.
  • the control device 10 performs the following processing in a predetermined control cycle during the operation of the vehicle air conditioner 30.
  • the detection unit 101 detects the ripple voltage (step S10). Specifically, the detection unit 101 detects the ripple voltage value W from the voltage value measured by the voltmeter 11 at a predetermined time. The detection unit 101 outputs the value W to the determination unit 102.
  • the determination unit 102 determines whether or not the value W is equal to or greater than the threshold value (step S11). When the value W is less than the threshold value (step S11; No), the process from step S10 is repeated.
  • the determination unit 102 instructs the control unit 103 to start the resonance protection control.
  • the control unit 103 reduces the rotation speed of the motor 9 to the target rotation speed (step S12).
  • the target rotation speed may be the minimum rotation speed X (rpm), or may be a rotation speed (for example, Y1 to Y3) set stepwise between the required rotation speed Y and the minimum rotation speed X.
  • the control unit 103 selects a value smaller than the current rotation speed and closest to the current rotation speed, and instructs the inverter 7 to that rotation speed.
  • the detection unit 101 detects the ripple voltage after the rotation speed decreases (step S13).
  • the determination unit 102 determines whether or not the value W of the ripple voltage is equal to or greater than the threshold value (step S14). When the value W is less than the threshold value (step S14; No), the process proceeds to step S19 described later.
  • step S14 When the value W is equal to or greater than the threshold value (step S14; Yes), the determination unit 102 instructs the control unit 103 to reduce the rotation speed.
  • the control unit 103 compares the current rotation speed with the minimum rotation speed X (step S15). When the current rotation speed is not equal to the minimum rotation speed X (greater than the minimum rotation speed X) (step S15; No), the process from step S12 is repeated.
  • step S16 When the current rotation speed is equal to the minimum rotation speed X (step S15; Yes), the control unit 103 stops the motor 9 (step S16).
  • the control unit 103 determines whether or not the conditions for restarting and stopping the motor 9 are satisfied (step S17). For example, the control unit 103 determines that the condition for restarting and stopping the motor 9 is satisfied when the motor is continuously started and stopped N times. Alternatively, the control unit 103 determines that the condition for restarting and stopping the motor 9 is satisfied when the motor is repeatedly started and stopped N times within a predetermined time.
  • the control unit 103 keeps the motor 9 stopped (step S18).
  • the control device 10 may output an alarm notifying the abnormality of the electric compressor 20.
  • the control unit 103 waits for a predetermined time Tw after the motor is stopped (step S19). When the time Tw elapses, the control unit 103 starts the motor 9 and raises the rotation speed to the target rotation speed (step S20).
  • the target rotation speed may be the required rotation speed Y, or may be a rotation speed (for example, X, Y1 to Y3) set stepwise from the minimum rotation speed X to the required rotation speed Y.
  • the control unit 103 selects a value larger than the current rotation speed and closest to the current rotation speed, and instructs the inverter 7 of the rotation speed.
  • the detection unit 101 detects the ripple voltage after the rotation speed has increased (step S21).
  • the determination unit 102 determines whether or not the value W of the ripple voltage is equal to or greater than the threshold value (step S22). When the value W is equal to or greater than the threshold value (step S22; Yes), the processing from step S12 is repeated.
  • step S22; No When the value W is less than the threshold value (step S22; No), the control unit 103 compares the current rotation speed with the required rotation speed Y (step S23). When the current rotation speed is equal to the required rotation speed Y (step S23; No), the process from step S10 is repeated. When the current rotation speed is not equal to the required rotation speed Y (required rotation speed Y or less) (step S23; No), the process from step S20 is repeated.
  • the value W of the ripple voltage becomes equal to or higher than the threshold value
  • it is determined that resonance may occur in the circuit and the rotation speed of the motor 9 of the electric compressor 20 is reduced.
  • resonance occurring in the circuit can be prevented, and damage to the electric compressor 20 and the like can be prevented.
  • the operation is continued without stopping the electric compressor 20, so that the air conditioning by the vehicle air conditioner 30 is continued and the deterioration of the user's comfort can be suppressed. it can.
  • a predetermined time elapses after the rotation speed of the motor 9 is lowered and the ripple voltage value W becomes less than the threshold value, it is determined that the transient factor that increases the ripple voltage value W may have been removed.
  • the rotation speed of the motor 9 is increased again toward the required rotation speed Y required by the vehicle air conditioner 30.
  • the operating state of the vehicle air conditioner 30 can be brought closer to the operating state according to the load, so that the comfort of the user can be restored.
  • the rotation speed of the motor 9 is lowered, if the value W of the ripple voltage becomes equal to or higher than the threshold value, the motor 9 is stopped, so that the occurrence of resonance can be reliably prevented. If the value W of the ripple voltage exceeds the threshold value even if the motor 9 is stopped and restarted several times, the motor 9 is not restarted, so that the occurrence of resonance can be reliably prevented. it can.
  • FIG. 6 is a diagram showing an example of the hardware configuration of the control device in one embodiment.
  • the computer 900 includes a CPU 901, a main storage device 902, an auxiliary storage device 903, an input / output interface 904, and a communication interface 905.
  • the control device 10 described above is mounted on the computer 900.
  • Each of the above-mentioned functions is stored in the auxiliary storage device 903 in the form of a program.
  • the CPU 901 reads the program from the auxiliary storage device 903, expands it to the main storage device 902, and executes the above processing according to the program.
  • the CPU 901 reserves a storage area in the main storage device 902 according to the program.
  • the CPU 901 secures a storage area for storing the data being processed in the auxiliary storage device 903 according to the program.
  • Each function unit is recorded by recording a program for realizing all or a part of the functions of the control device 10 on a computer-readable recording medium, causing the computer system to read the program recorded on the recording medium, and executing the program. May be performed by.
  • the term "computer system” as used herein includes hardware such as an OS and peripheral devices.
  • the "computer system” shall also include a homepage providing environment (or display environment) if a WWW system is used.
  • the "computer-readable recording medium” refers to a portable medium such as a CD, DVD, or USB, or a storage device such as a hard disk built in a computer system.
  • the distributed computer 900 may expand the program to the main storage device 902 and execute the above processing.
  • the above-mentioned program may be for realizing a part of the above-mentioned functions, and may further realize the above-mentioned functions in combination with a program already recorded in the computer system.
  • control device 10 The control device 10, the electric compressor 20, the control method, and the program described in each embodiment are grasped as follows, for example.
  • the control device 10 determines whether or not the value W of the ripple voltage is equal to or higher than a predetermined threshold value with the detection unit 101 that detects the ripple voltage of the electric compressor 20 driven by the battery 1.
  • the determination unit 102 and the control unit 103 reduce the rotation speed of the motor 9 of the electric compressor 20 to a predetermined first target rotation speed (Y1 or X) larger than 0. And.
  • the control device 10 when the value of the ripple voltage reaches a predetermined threshold value W, the rotation speed of the motor 9 is lowered, so that it is possible to avoid the occurrence of resonance in the circuit driving the electric compressor 20. Further, in order to avoid the occurrence of resonance, the motor 9 is not stopped immediately, so that the operation of the electric compressor 20 can be continued.
  • the control device 10 is the control device 10 of (1), and the first target rotation speeds Y1 to Y4 are from the current rotation speed Y to a predetermined minimum rotation speed X. It is one of the predetermined rotation speeds determined stepwise in the meantime. By gradually reducing the rotation speed, the rotation speed of the motor 9 can be maintained as high as possible.
  • the control device 10 is the control device 10 of (1) to (2), and the first target rotation speed is a predetermined minimum rotation speed X.
  • the control device 10 is the control device 10 of (2) to (3), and in the determination unit 102, the rotation speed of the motor 9 is the first target rotation speed (X). , Y1 to Y4), it is determined whether the value W is equal to or higher than a predetermined threshold value, and the control unit 103 determines whether the value W is equal to or higher than the threshold value and the first target rotation speed (X). , Y1 to Y4) is the minimum rotation speed X, the motor 9 is stopped, and when the first target rotation speed is higher than the minimum rotation speed X, the rotation speed of the motor 9 is further increased to a predetermined second. Reduce to the target rotation speed (Y2 to Y4). Even if the rotation speed of the motor 9 is lowered to the first target rotation speed, when the value W of the ripple voltage is equal to or higher than the threshold value, the rotation speed of the motor 9 is further lowered, so that the occurrence of resonance can be prevented.
  • the control device 10 is the control device 10 of (2) to (3), and the determination unit 102 reduces the rotation speed of the motor 9 to the first target rotation speed. Then, it is determined whether or not the magnitude of the value W is equal to or greater than a predetermined threshold value, and when the value W is less than the threshold value, the required rotation speed Y requested by the load for the rotation speed of the motor 9. Raise towards. If the ripple voltage value W drops below the threshold after lowering the rotation speed of the motor 9, the transient factor that increases the ripple voltage value W may have been removed, so the rotation speed again. To raise. As a result, the electric compressor 20 can be operated in a state close to the demand.
  • the control device 10 according to the sixth aspect is the control device 10 of (5), and the control unit 103 gradually increases the rotation speed of the motor 9 to the required rotation speed Y. .. By increasing the rotation speed of the motor 9 step by step, the rotation speed of the motor 9 can be brought close to the required rotation speed Y.
  • the control device 10 is the control device 10 of (5) to (6), and after stopping the motor 9 and starting the motor 9 again, the value W When the number of times exceeds the threshold value more than a predetermined number of times, the control unit 103 keeps the motor 9 stopped. If the ripple voltage increases even after the motor 9 is repeatedly restarted, the occurrence of resonance can be avoided by keeping the motor 9 stopped.
  • the electric compressor 20 according to the eighth aspect includes the control devices (1) to (7).
  • the control method detects the ripple voltage of the electric compressor driven by the battery, determines whether or not the value W of the ripple voltage is equal to or higher than a predetermined threshold value, and the value W is the threshold value. In the above case, the rotation speed of the motor of the electric compressor is reduced to a predetermined first target rotation speed larger than 0.
  • the program according to the tenth aspect includes means for detecting the ripple voltage of an electric compressor driven by a battery in a computer, means for determining whether or not the value W of the ripple voltage is equal to or higher than a predetermined threshold value, and the above-mentioned value.
  • W When W is equal to or higher than the threshold value, it functions as a means for reducing the rotation speed of the motor of the electric compressor to a predetermined first target rotation speed larger than 0.
  • the operation of the electric compressor can be continued while avoiding resonance due to ripple.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Control Of Ac Motors In General (AREA)
  • Compressor (AREA)
  • Control Of Positive-Displacement Pumps (AREA)
  • Control Of Electric Motors In General (AREA)

Abstract

リップル電圧の大きさが所定の閾値を超えても電動圧縮機の運転を継続する方法を提供する。電動圧縮機の制御装置は、バッテリで駆動する電動圧縮機のリップル電圧を検出する検出部と、前記リップル電圧の値が所定の閾値以上かどうかを判定する判定部と、前記値が前記閾値以上の場合、前記電動圧縮機のモータの回転数を0より大きい所定の第1目標回転数まで低下させる制御部と、を備える。

Description

制御装置、電動圧縮機、制御方法、プログラム
 本開示は、制御装置、電動圧縮機、制御方法、プログラムに関する。
 本願は、2019年10月24日に、日本に出願された特願2019-193694号に基づき優先権を主張し、その内容をここに援用する。
 車両に搭載されたカーエアコンの構成要素の1つに電動圧縮機がある。電動圧縮機を駆動する駆動回路では、所定の周期で振動するリップル電圧が発生する。リップル電圧が大きくなると共振が生じ、過大な電流が流れる。
 特許文献1には、車両用交流発電機のリップル電圧を検出し、リップル電圧の最大値と最小値の差が所定値を超えると、交流発電機が故障していると判断する技術が開示されている。
特開2004-135393号公報
 リップル電圧の共振による過大な電流から機器を保護するためには、電動圧縮機のモータを停止する制御が考えられる。しかし、電動圧縮機のモータを停止すると、カーエアコンの運転が停止し、ユーザの快適性が損なわれる。
 本開示は、上述の課題を解決することのできる制御装置、電動圧縮機、制御方法、プログラムを提供する。
 本開示の制御装置は、バッテリで駆動する電動圧縮機のリップル電圧を検出する検出部と、前記リップル電圧の値が所定の閾値以上かどうかを判定する判定部と、前記値が前記閾値以上の場合、前記電動圧縮機のモータの回転数を0より大きい所定の第1目標回転数まで低下させる制御部と、を備える。
 本開示の電動圧縮機は、上記の制御装置を備える。
 本開示の制御方法は、バッテリで駆動する電動圧縮機のリップル電圧を検出し、前記リップル電圧の値が所定の閾値以上かどうかを判定し、前記値が前記閾値以上の場合、前記電動圧縮機のモータの回転数を0より大きい所定の第1目標回転数まで低下させる。
 本開示のプログラムは、コンピュータを、バッテリで駆動する電動圧縮機のリップル電圧を検出する手段、前記リップル電圧の値が所定の閾値以上かどうかを判定する手段、前記値が前記閾値以上の場合、前記電動圧縮機のモータの回転数を0より大きい所定の第1目標回転数まで低下させる手段、として機能させる。
 上述の制御装置、電動圧縮機、制御方法、プログラムによれば、リップルによる共振を回避しつつ、電動圧縮機の運転を継続することができる。
一実施形態における電動圧縮機の一例を示す図である。 一実施形態における共振保護制御を説明する第1の図である。 一実施形態における共振保護制御を説明する第2の図である。 一実施形態における共振保護制御を説明する第3の図である。 一実施形態における共振保護制御の一例を示すフローチャートである。 一実施形態における制御装置のハードウェア構成の一例を示す図である。
<実施形態>
 以下、一実施形態に係る電動圧縮機について、図1~図6を参照しながら説明する。
(構成)
 図1に、車両空調機30が備える電動圧縮機20の概略構成の一例を示す。図示するバッテリ1と、車両空調機30と、車両機器40と、これらを駆動する電気回路は、車両に搭載される。インダクタ5a、5bは、バッテリ1と車両空調機30および車両機器40を含む電気回路のインダクタ成分を示す。
 バッテリ1は、車両(車両空調機30の外部)に搭載された電源ユニットである。バッテリ1は、車両空調機30と車両機器40に高圧の直流電力を供給する。車両機器40は、コンデンサ2およびインバータ3、インバータ3に接続された負荷4を備える。車両空調機30は、電動圧縮機20を備えている。電動圧縮機20は、インバータ7が一体に組み込まれたインバータ一体型電動圧縮機である。電動圧縮機20は、コンデンサ6およびインバータ7を含む電源回路8と、モータ9と、制御装置10と、電圧計11と、圧縮部12と、を備える。電動圧縮機20は、バッテリ1から供給される高電圧の直流電力をインバータ7で三相交流電力に変換し、それをモータ9に印加することによって駆動される。インバータ7とモータ9は電力線で接続される。インバータ7は、バッテリ1から供給された直流電力を三相交流に変換し、モータ9へ供給する。インバータ7は、制御装置10によって制御される。制御装置10は、マイコンを備え、図示しないECU(Electric Control Unit)等から取得した制御信号に基づいて、インバータ7を介してモータ9を所望の動作に制御する。例えば、制御装置10は、モータ9の回転数を制御する。モータ9がインバータ7からの指示によって回転駆動することにより、圧縮部12が冷媒を圧縮し、車両空調機30が備える冷媒回路(図示せず)へ冷媒を供給する。インバータ7および電圧計11と制御装置10とは信号線で接続されている。電圧計11は、インバータ7に入力される直流電圧を検出し、検出した電圧値を制御装置10へ出力する。電圧計11が計測する電圧値には、リップル成分が含まれる。電圧計11が計測する電圧値から、バッテリ1由来の直流電圧値を差し引いた値をリップル電圧と呼ぶ。リップル電圧が大きくなると、コンデンサ2、6およびインダクタ5a、5bで形成される共振回路で共振が生じ、車両空調機30および車両機器40を含む電気回路中に過大な電流が流れる。そこで、制御装置10は、電圧計11が計測した電圧値の変動を監視し、リップル電圧の値Wが所定の閾値以上となると、モータ9を減速させ、リップル電圧を抑制する制御を行う。
 制御装置10は、検出部101と、判定部102と、制御部103とを備える。
 検出部101は、電圧計11が計測した電圧値を取得する。検出部101は、所定の微小時間における取得した電圧値の最大値と最小値の差を検出する。この値をリップル電圧の値Wと呼ぶ。検出部101は、微小時間ごとにリップル電圧の値Wを検出する。検出部101が検出対象とするリップル電圧の周波数は、インバータ7のキャリア周波数と等しく、一定である。
 判定部102は、検出部101が演算したリップル電圧の値Wと所定の閾値とを比較する。リップル電圧の値Wが閾値以上の場合、判定部102は、共振保護制御を行うことを決定する。共振保護制御とは、モータ9の回転数を低下させて、リップル電圧の値Wを閾値未満に抑制する制御である。
 制御部103は、インバータ7にモータ9の回転数を指示する。判定部102が、共振保護制御を行うことを決定すると、制御部103は、モータ9の回転数を、所定の目標回転数へ低下させる。ここで、モータ9を停止すると、共振の発生を防ぐことができるが、ユーザの快適性が損なわれる。従って、制御部103は、共振の発生を防ぎつつ、なるべくモータ9の運転を継続するような制御を行う。
(モータの回転数を低下させる制御)
 次に図2~図4を参照して、本実施形態の共振保護制御について説明する。
 図2は、一実施形態における共振保護制御を説明する第1の図である。
 図2上図の縦軸はリップル電圧の値Wを示し、横軸は時間を示す。図2下図の縦軸はモータ9の回転数を示し、横軸は時間を示す。図2上図および図2下図の横軸の同じ位置は、同じ時刻を示す。図2下図のX(rpm)はモータ9の最低回転数である。後述するように、モータ9の回転数を最低回転数X(rpm)まで低下させても値Wが閾値以上となる場合、制御部103は、モータ9を停止させる。これらのことは、図3~図4においても同様である。
(時刻t0)
 図2上図を参照すると、時刻t0のリップル電圧の値Wは0である。図2下図を参照すると、時刻t0のモータ9の回転数はY(rpm)である。Y(rpm)は、ユーザが設定した冷暖房の設定温度に基づき車両のECUが決定した回転数である。
(時刻t1)
 時刻t1に至ると、リップル電圧の値Wは閾値以上となっている。判定部102は、値Wが閾値以上となったことに基づいて、共振保護制御の開始を制御部103に指示する。すると、制御部103は、Yより小さな値であるY1(rpm)を目標回転数に設定して、回転数Y1をインバータ7に指示する。時刻t1に回転数Y1を指示すると、モータ9の回転数は徐々に低下し、時刻t1-1にY1(rpm)となる。モータ9の回転数がY1(rpm)となると、判定部102は、再び値Wが閾値以上か否かを判定する。図示する例では、時刻t1-1における値Wは、依然として閾値以上である。そこで、判定部102は、回転数を更に低下するよう制御部103に指示する。制御部103は、回転数Y2(rpm)(Y2<Y1)を目標回転数に設定して、回転数Y2をインバータ7に指示する。モータ9の回転数は徐々に低下し、時刻t1-2にY2(rpm)となる。判定部102は、再び値Wと閾値を比較し、リップル電圧の値W≧閾値に基づいて、回転数の低下を制御部103に指示する。制御部103は、回転数Y3(rpm)(Y3<Y2)をインバータ7に指示する。
(時刻t2)
 上記制御により、時刻t2において、モータ9の回転数はY3(rpm)となり、リップル電圧の値Wは閾値未満となる。値Wが閾値未満となると、判定部102は、共振保護制御の解除を制御部103に指示する。制御部103は、所定の時間だけ、モータ9の回転数を維持する。所定の時間だけモータ9の回転数を維持するのは、リップル電圧の値Wを増加させる過渡的な要因が消滅するのを待機するためである。時刻t2-1に、所定の時間Twが経過すると、制御部103は、負荷が要求する回転数Yをインバータ7に指示する。これにより、車両空調機30の運転は、共振保護制御開始前における負荷に応じた運転状態に戻る(時刻t2-2)。この後も、検出部101は、リップル電圧の検出を継続し、判定部102は、所定の制御周期で、リップル電圧の値Wが閾値以上か否かを判定する。値Wが閾値以上とならなければ、車両空調機30は、負荷に応じた運転状態を継続する。
(時刻t3)
 時刻t3に、再び、値Wが閾値以上となると、判定部102は、値Wが閾値以上となったことに基づいて、共振保護制御の開始を制御部103に指示する。上記で説明したように、制御部103は、最低回転数X(rpm)に至るまで段階的にモータ9の回転数を低下させてもよいが、ここでは、制御部103による別の制御方法を説明する。判定部102が、共振保護制御の開始を指示すると、制御部103は、モータ9の回転数を最低回転数X(rpm)とするようインバータ7に指示する。時刻t3-1に、モータ9の回転数はX(rpm)となる。モータ9の回転数がX(rpm)となると、判定部102は、リプル電圧の値Wが閾値以上か否かを判定する。図示する例では、時刻t3-1における値Wは、閾値未満である。判定部102は、共振保護制御の解除を制御部103に指示する。制御部103は、所定の時間Twだけ、モータ9の回転数をX(rpm)に維持する。
(時刻t4)
 時刻t4に、所定の時間Twが経過すると、制御部103は、モータ9の回転数の上昇をインバータ7に指示する。時刻t2-1の例で説明したように、制御部103は、負荷に応じた回転数Yをインバータ7に指示してもよいが、ここでは、別の制御方法を説明する。制御部103は、負荷が要求する回転数Yに向けて、段階的にモータ9の回転数を上昇させる。例えば、制御部103は、回転数Y3をインバータ7に指示する。時刻t4-1モータ9の回転数が回転数Y3に至ったときに値Wが閾値未満であれば、制御部103は、さらに回転数をY2まで上昇させる。その後も同様にして、リップル電圧の値Wが閾値未満の間は、制御部103は、段階的にモータ9の回転数の上昇をインバータ7に指示する。時刻t5に回転数Yに到達すると、制御部103は、モータ9の回転数Yを維持し、判定部102は、所定の制御周期でリップル電圧の値Wが閾値以上か否かを判定する。このように、本実施形態によれば、リップル電圧による共振の発生を回避しつつ、車両空調機30の運転を継続することができる。
 モータ9の回転数の低下の制御方法として、段階的に回転数Xまで低下させる方法、1度に回転数Xまで低下させる方法の2種類を記載し、回転数上昇の制御方法として、段階的に負荷が要求する回転数Yまで上昇させる方法、1度に回転数Yまで上昇させる方法の2種類を記載した。段階的に回転数Xまで低下させると、高い回転数でモータ9を駆動する時間を長くすることができるが、リップル電圧の増大を抑制しきれない可能性がある。一方、1度に回転数Xまで低下させる方法の場合、モータ9の回転数は一時的に大きく低下するが、その分、リップル電圧による共振をより確実に回避することができる。回転数を上昇させる場合、一度に回転数Yまで上昇させれば、速やかに車両空調機30の空調能力を回復させることができるが、リップル電圧の値Wが再び増大するリスクが大きくなる。一方、段階的に回転数を上昇させる方法であれば、要求される空調能力を発揮できるまでに時間が掛かるが、リップル電圧の挙動に応じた速度でモータ9を駆動することができる。回転数の低下、上昇の制御方法の組合せは任意である。つまり、制御部103は、段階的に回転数を低下させ、段階的に回転数を上昇させてもよいし、段階的に回転数を低下させ、一度に回転数Y(rpm)まで上昇させてもよい。あるいは、制御部103は、一度に回転数をX(rpm)まで低下させ、段階的に回転数を上昇させてもよいし、一度に回転数をX(rpm)まで低下させ、一度に回転数Y(rpm)まで上昇させてもよい。図2の例では、回転数を低下させる場合も、上昇させる場合もY1~Y3から選択して回転数を変化させることとしたが、低下用と上昇用それぞれに対して個別に段階的な回転数が設定されていてもよい。
(モータを停止させる制御)
 図2では、モータ9の回転数を最低回転数X(rpm)まで低下することにより、リップル電圧の増大を抑制できる例を説明した。次に、図3を用いて、モータ9の回転数を最低回転数X(rpm)まで低下させても、リップル電圧の値Wを閾値未満に制御できない場合の制御について説明する。
 図3は、一実施形態における共振保護制御を説明する第2の図である。
(時刻t1)
 図2の説明と同様にして、判定部102は、時刻t1にリップル電圧の値Wが閾値以上となったことを検知すると、共振保護制御の開始を指示する。制御部103は、段階的に、モータ9の回転数をY1、Y2、Y3と低下させる。図2の例の場合と異なり、回転数をY3(rpm)まで低下させても、値Wが閾値未満とならない為、制御部103は、モータ9の回転数を最低回転数X(rpm)まで低下させる。
(時刻t2)
 時刻t2に回転数がX(rpm)となると、判定部102は、リップル電圧の値Wが閾値以上か否かを判定する。時刻t2における値Wは閾値以上の為、判定部102は、回転数を更に低下するよう制御部103に指示する。現在の回転数が最低回転数Xのときに回転数を低下させる指示を受けると、制御部103は、モータ9を停止させる。モータ9の停止後、所定の時間が経過すると(時刻t2+1)、判定部102は、再び値Wと閾値を比較する。値Wが閾値未満となっているので、判定部102は、共振保護制御の解除を指示する。
(時刻t3)
 モータ9の停止後、時間Twが経過し、時刻t3を迎えると、制御部103は、モータ9の回転数の上昇をインバータ7に指示する。制御部103は、回転数Yをインバータ7に指示する。時刻t4に回転数Yに到達すると、リップル電圧の値Wが閾値未満の間、制御部103は、モータ9の回転数Yを維持する。
 上記で説明したように、制御部103は、時刻t1にて、モータ9の回転数を1度に最低回転数Xまで低下させてもよい。時刻t3以降、制御部103は、段階的にモータ9の回転数を上昇させてもよい。回転数を段階的に上昇させる過程で、値Wが閾値以上となると、制御部103は、再び、モータ9の回転数を低下させる。
(モータの再起動を停止する制御)
 図3では、モータ9を一旦停止させることにより、リップル電圧の値Wの抑制に成功する例を説明した。次に、図4を用いて、モータ9を停止させても、再起動するたびにリップル電圧の値Wが閾値以上となってしまう場合の制御について説明する。
 図4は、一実施形態における共振保護制御を説明する第3の図である。
(時刻t1)
 図3の説明と同様にして、判定部102は、時刻t1にリップル電圧の値Wが閾値以上となったことを検知すると、共振保護制御の開始を指示する。制御部103は、段階的に、モータ9の回転数をY1、Y2、Y3、Xと低下させる。
(時刻t2)
 時刻t2に回転数がX(rpm)となると、判定部102は、リップル電圧の値Wが閾値以上か否かを判定する。時刻t2におけるリップル電圧の値Wは閾値以上の為、制御部103は、モータ9を停止させる(停止1回目)。モータ9の停止後、所定の時間が経過すると(時刻t2+1)、判定部102は、リップル電圧の値Wと閾値を比較する。値Wが閾値未満となっているので、判定部102は、共振保護制御の解除を指示する。制御部103は、モータ9の停止から所定の時間Twが経過した後、目標回転数Yをインバータ7に指示する。
(時刻t3、t4)
 時刻t3にモータ9を起動し、時刻t3+1にリップル電圧の値Wが閾値以上となると、判定部102は、共振保護制御の開始を指示する。制御部103は、時刻t3+1のモータ9の回転数が最低回転数Xの為、モータ9を再び停止する(停止2回目)。制御部103は、同様の処理を時刻T4に実行し、時刻t4+1にモータ9を再び停止する(停止3回目)。
(時刻t5)
 その後、モータ9の起動と停止を何度か繰り返し、時刻t5に制御部103が、モータ9を起動し、回転数を上昇させる。今回の起動では、最低回転数Xを超えても、リップル電圧の値Wが閾値を超えず、時刻t5+1に回転数がY2に至ったときに閾値を超えたとする。すると、判定部102は、共振保護制御の開始を指示し、制御部103は、モータ9の回転数をX(rpm)まで低下させる。回転数をX(rpm)まで低下させても、リップル電圧の値Wが閾値以上となっているので、制御部103は、モータ9を停止する(停止N回目)。ここで、制御部103は、連続して、モータ9の起動と停止を繰り返した回数が、N回以上となると、モータ9の起動を繰り返さないことを決定する。モータ9の起動と停止をN回繰り返しても、リップル電圧の値Wが増大してしまうような場合、制御装置10は、モータ9の再起動を一旦停止する。このとき、制御装置10は、アラームを出力するようにしてもよい。モータ9の再起動の停止制御は、例えば、一旦、車両空調機30が停止され、次回、新たに車両空調機30が運転を開始するときまで継続される。これにより、図1に例示する電気回路で共振が発生し得る状態が長く続く場合には、電動圧縮機20をロックし、共振による故障を回避することができる。
 次に本実施形態の電動圧縮機20の共振保護制御の流れについて説明する。
 図5は、一実施形態における共振保護制御の一例を示すフローチャートである。
 電動圧縮機20では、モータ9が車両空調機30の空調負荷に応じた要求回転数Yで駆動している。制御装置10は、車両空調機30の運転中、以下の処理を所定の制御周期で行う。
 まず、検出部101が、リップル電圧を検出する(ステップS10)。具体的には、検出部101が、電圧計11が所定の時間に計測した電圧値から、リップル電圧の値Wを検出する。検出部101は、判定部102に値Wを出力する。判定部102は、値Wが閾値以上か否かを判定する(ステップS11)。値Wが閾値未満の場合(ステップS11;No)、ステップS10からの処理を繰り返す。
 値Wが閾値以上の場合(ステップS11;Yes)、判定部102は、共振保護制御の開始を制御部103へ指示する。制御部103は、モータ9の回転数を目標回転数まで低下させる(ステップS12)。目標回転数は、最低回転数X(rpm)でもよいし、要求回転数Yと最低回転数Xまでの間で段階的に設定された回転数(例えば、Y1~Y3)であってもよい。段階的に回転数を低下させる場合、制御部103は、現在の回転数より小さく、現在の回転数に最も近い値を選択して、その回転数をインバータ7へ指示する。
 次に検出部101が、回転数低下後のリップル電圧を検出する(ステップS13)。判定部102は、そのリップル電圧の値Wが閾値以上か否かを判定する(ステップS14)。値Wが閾値未満の場合(ステップS14;No)、後述するステップS19の処理に進む。
 値Wが閾値以上の場合(ステップS14;Yes)、判定部102は、回転数の低下を制御部103へ指示する。制御部103は、現在の回転数を最低回転数Xと比較する(ステップS15)。現在の回転数が最低回転数Xと等しくない(最低回転数Xより大きい)場合(ステップS15;No)、ステップS12からの処理を繰り返す。
 現在の回転数が最低回転数Xと等しい場合(ステップS15;Yes)、制御部103は、モータ9を停止させる(ステップS16)。制御部103は、モータ9の再起動停止条件を満たすかどうかを判定する(ステップS17)。例えば、制御部103は、連続してN回モータの起動と停止を繰り返している場合、モータ9の再起動停止条件を満たすと判定する。あるいは、制御部103は、所定時間内にN回モータの起動と停止を繰り返している場合、モータ9の再起動停止条件を満たすと判定する。再起動停止条件を満たす場合(ステップS17;Yes)、制御部103は、モータ9を停止したまま維持する(ステップS18)。制御装置10は、電動圧縮機20の異常を通知するアラームを出力してもよい。
 再起動停止条件を満たさない場合(ステップS17;No)、制御部103は、モータ停止後、所定の時間Twだけ待機する(ステップS19)。時間Twが経過すると、制御部103は、モータ9を起動し、回転数を目標回転数まで上昇させる(ステップS20)。目標回転数は、要求回転数Yでもよいし、最低回転数Xから要求回転数Yまでの間で段階的に設定された回転数(例えば、X、Y1~Y3)であってもよい。段階的に回転数を上昇させる場合、制御部103は、現在の回転数より大きく、現在の回転数に最も近い値を選択して、その回転数をインバータ7へ指示する。
 次に検出部101が、回転数上昇後のリップル電圧を検出する(ステップS21)。判定部102は、リップル電圧の値Wが閾値以上か否かを判定する(ステップS22)。値Wが閾値以上の場合(ステップS22;Yes)、ステップS12からの処理を繰り返す。
 値Wが閾値未満の場合(ステップS22;No)、制御部103は、現在の回転数を要求回転数Yと比較する(ステップS23)。現在の回転数が要求回転数Yと等しい場合(ステップS23;No)、ステップS10からの処理を繰り返す。
 現在の回転数が要求回転数Yと等しくない(要求回転数Y以下)の場合(ステップS23;No)、ステップS20からの処理を繰り返す。
 本実施形態によれば、リップル電圧の値Wが閾値以上となると、回路に共振が生じる可能性があると判断し、電動圧縮機20のモータ9の回転数を低下させる。これにより、回路に生じる共振を防ぎ、電動圧縮機20等の破損を防止することができる。共振が生じる可能性があると判断した際に、電動圧縮機20を停止させること無く、運転を継続するので、車両空調機30による空調が継続され、ユーザの快適性の低下を抑制することができる。モータ9の回転数を低下させ、リップル電圧の値Wが閾値未満となってから所定時間が経過すると、リップル電圧の値Wを増大させる過渡的な要因が取り除かれた可能性があると判断し、モータ9の回転数を、再び、車両空調機30が要求する要求回転数Yへ向けて上昇させる。これにより、車両空調機30の運転状態を、負荷に応じた運転状態へ近づけることができるので、ユーザの快適性を回復することができる。モータ9の回転数を低下させても、リップル電圧の値Wが閾値以上となるような場合には、モータ9を停止させるので、共振の発生を確実に防ぐことができる。モータ9の停止と再起動を何回か繰り返しても、リップル電圧の値Wが閾値以上となるような場合には、モータ9の再起動を行わないので、共振の発生を確実に防ぐことができる。
 図6は、一実施形態における制御装置のハードウェア構成の一例を示す図である。
 コンピュータ900は、CPU901、主記憶装置902、補助記憶装置903、入出力インタフェース904、通信インタフェース905を備える。
 上述の制御装置10は、コンピュータ900に実装される。そして、上述した各機能は、プログラムの形式で補助記憶装置903に記憶されている。CPU901は、プログラムを補助記憶装置903から読み出して主記憶装置902に展開し、当該プログラムに従って上記処理を実行する。CPU901は、プログラムに従って、記憶領域を主記憶装置902に確保する。CPU901は、プログラムに従って、処理中のデータを記憶する記憶領域を補助記憶装置903に確保する。
 制御装置10の全部または一部の機能を実現するためのプログラムをコンピュータ読み取り可能な記録媒体に記録して、この記録媒体に記録されたプログラムをコンピュータシステムに読み込ませ、実行することにより各機能部による処理を行ってもよい。ここでいう「コンピュータシステム」とは、OSや周辺機器等のハードウェアを含むものとする。「コンピュータシステム」は、WWWシステムを利用している場合であれば、ホームページ提供環境(あるいは表示環境)も含むものとする。「コンピュータ読み取り可能な記録媒体」とは、CD、DVD、USB等の可搬媒体、コンピュータシステムに内蔵されるハードディスク等の記憶装置のことをいう。このプログラムが通信回線によってコンピュータ900に配信される場合、配信を受けたコンピュータ900が当該プログラムを主記憶装置902に展開し、上記処理を実行しても良い。上記プログラムは、前述した機能の一部を実現するためのものであっても良く、さらに前述した機能をコンピュータシステムにすでに記録されているプログラムとの組み合わせで実現できるものであってもよい。
 以上のとおり、本開示に係るいくつかの実施形態を説明したが、これら全ての実施形態は、例として提示したものであり、発明の範囲を限定することを意図していない。これらの実施形態は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で種々の省略、置き換え、変更を行うことができる。これらの実施形態及びその変形は、発明の範囲や要旨に含まれると同様に、特許請求の範囲に記載された発明とその均等の範囲に含まれる。
<付記>
 各実施形態に記載の制御装置10、電動圧縮機20、制御方法、プログラムは、例えば以下のように把握される。
(1)第1の態様に係る制御装置10は、バッテリ1で駆動する電動圧縮機20のリップル電圧を検出する検出部101と、前記リップル電圧の値Wが所定の閾値以上かどうかを判定する判定部102と、前記値Wが前記閾値以上の場合、前記電動圧縮機20のモータ9の回転数を0より大きい所定の第1目標回転数(Y1、又は、X)まで低下させる制御部103と、を備える。
 制御装置10によれば、リップル電圧の値が所定の閾値Wとなると、モータ9の回転数を低下させるので、電動圧縮機20を駆動する回路に共振が発生することを回避することができる。また、共振の発生を回避するために、直ちにモータ9を停止することが無いので、電動圧縮機20の運転を継続することができる。
(2)第2の態様に係る制御装置10は、(1)の制御装置10であって、前記第1目標回転数Y1~Y4が、現在の回転数Yから所定の最低回転数Xまでの間に段階的に定められた所定の回転数のうちの1つである。
 回転数を段階的に低下させることにより、モータ9の回転数をできるだけ高速に維持することができる。
(3)第3の態様に係る制御装置10は、(1)~(2)の制御装置10であって、前記第1目標回転数が、所定の最低回転数Xである。
 モータ9の回転数を一度で最低回転数Xまで低下させることにより、より確実に共振を回避しつつ、電動圧縮機20の運転を継続することができる。
(4)第4の態様に係る制御装置10は、(2)~(3)の制御装置10であって、前記判定部102は、前記モータ9の回転数が前記第1目標回転数(X,Y1~Y4)まで低下すると、前記値Wが所定の閾値以上かどうかを判定し、前記制御部103は、前記値Wが前記閾値以上の場合であって、前記第1目標回転数(X,Y1~Y4)が前記最低回転数Xのときは前記モータ9を停止させ、前記第1目標回転数が前記最低回転数Xより高速のときは前記モータ9の回転数をさらに所定の第2目標回転数(Y2~Y4)まで低下させる。
 モータ9の回転数を第1目標回転数まで低下させても、リップル電圧の値Wが閾値以上のときには、さらにモータ9の回転数を低下させるので、共振の発生を防ぐことができる。
(5)第5の態様に係る制御装置10は、(2)~(3)の制御装置10であって、前記判定部102は、前記モータ9の回転数が前記第1目標回転数まで低下すると、前記値Wの大きさが所定の閾値以上かどうかを判定し、前記制御部103は、前記値Wが前記閾値未満の場合、前記モータ9の回転数を負荷が要求する要求回転数Yに向けて上昇させる。
 モータ9の回転数を低下させた後にリップル電圧の値Wが閾値未満に低下した場合、リップル電圧の値Wを増大させる過渡的な要因が取り除かれている可能性があるため、再び、回転数を上昇させる。これにより、要求に近い状態で電動圧縮機20を運転することができる。
(6)第6の態様に係る制御装置10は、(5)の制御装置10であって、前記制御部103は、前記モータ9の回転数を、前記要求回転数Yまで段階的に上昇させる。
 モータ9の回転数を段階的に上昇させることで、モータ9の回転数を要求回転数Yに近づけることができる。
(7)第5の態様に係る制御装置10は、(5)~(6)の制御装置10であって、前記モータ9を停止して、再度、前記モータ9を起動した後に、前記値Wが前記閾値以上となることが所定の回数以上、発生した場合、前記制御部103は、前記モータ9を停止させたまま維持する。
 繰り返しモータ9を再起動しても、リップル電圧の増大が生じるような場合、モータ9を停止させたまま維持することで、共振の発生を回避することができる。
(8)第8の態様に係る電動圧縮機20は、(1)~(7)の制御装置を備える。
(9)第9の態様に係る制御方法は、バッテリで駆動する電動圧縮機のリップル電圧を検出し、前記リップル電圧の値Wが所定の閾値以上かどうかを判定し、前記値Wが前記閾値以上の場合、前記電動圧縮機のモータの回転数を0より大きい所定の第1目標回転数まで低下させる。
(10)第10の態様に係るプログラムは、コンピュータを、バッテリで駆動する電動圧縮機のリップル電圧を検出する手段、前記リップル電圧の値Wが所定の閾値以上かどうかを判定する手段、前記値Wが前記閾値以上の場合、前記電動圧縮機のモータの回転数を0より大きい所定の第1目標回転数まで低下させる手段、として機能させる。
 上述の制御装置、電動圧縮機、制御方法、プログラムによれば、リップルによる共振を回避しつつ、電動圧縮機の運転を継続することができる。
1・・・バッテリ
2・・・コンデンサ
3・・・インバータ
4・・・負荷
5a、5b・・・インダクタ
6・・・コンデンサ
7・・・インバータ
8・・・電源回路
9・・・モータ
10・・・制御装置
101・・・検出部
102・・・判定部
103・・・制御部
11・・・電圧計
12・・・圧縮部
30・・・車両空調機
20・・・電動圧縮機
40・・・車両機器
900・・・コンピュータ
901・・・CPU
902・・・主記憶装置
903・・・補助記憶装置
904・・・入出力インタフェース
905・・・通信インタフェース

Claims (10)

  1.  バッテリで駆動する電動圧縮機のリップル電圧を検出する検出部と、
     前記リップル電圧の値が所定の閾値以上かどうかを判定する判定部と、
     前記値が前記閾値以上の場合、前記電動圧縮機のモータの回転数を0より大きい所定の第1目標回転数まで低下させる制御部と、
     を備える制御装置。
  2.  前記第1目標回転数が、現在の回転数から所定の最低回転数までの間に段階的に定められた所定の回転数のうちの1つである、
     請求項1に記載の制御装置。
  3.  前記第1目標回転数が、所定の最低回転数である、
     請求項1に記載の制御装置。
  4.  前記判定部は、前記モータの回転数が前記第1目標回転数まで低下すると、前記値が所定の閾値以上かどうかを判定し、
     前記制御部は、前記値が前記閾値以上の場合であって、前記第1目標回転数が前記最低回転数のときは前記モータを停止させ、前記第1目標回転数が前記最低回転数より高速のときは前記モータの回転数をさらに所定の第2目標回転数まで低下させる、
     請求項2または請求項3に記載の制御装置。
  5.  前記判定部は、前記モータの回転数が前記第1目標回転数まで低下すると、前記値が所定の閾値以上かどうかを判定し、
     前記制御部は、前記値が前記閾値未満の場合、前記モータの回転数を負荷が要求する要求回転数に向けて上昇させる、
     請求項2または請求項3に記載の制御装置。
  6.  前記制御部は、前記モータの回転数を、前記要求回転数まで段階的に上昇させる、
     請求項5に記載の制御装置。
  7.  前記モータを停止して、再度、前記モータを起動した後に、前記値が前記閾値以上となることが所定の回数以上、発生した場合、
     前記制御部は、前記モータを停止させたまま維持する、
     請求項5または請求項6に記載の制御装置。
  8.  請求項1から請求項7の何れか1項に記載の制御装置を備える、電動圧縮機。
  9.  バッテリで駆動する電動圧縮機のリップル電圧を検出し、
     前記リップル電圧の値が所定の閾値以上かどうかを判定し、
     前記値が前記閾値以上の場合、前記電動圧縮機のモータの回転数を0より大きい所定の第1目標回転数まで低下させる、
     制御方法。
  10.  コンピュータを、
     バッテリで駆動する電動圧縮機のリップル電圧を検出する手段、
     前記リップル電圧の値が所定の閾値以上かどうかを判定する手段、
     前記値が前記閾値以上の場合、前記電動圧縮機のモータの回転数を0より大きい所定の第1目標回転数まで低下させる手段、
     として機能させるためのプログラム。
PCT/JP2020/039217 2019-10-24 2020-10-19 制御装置、電動圧縮機、制御方法、プログラム WO2021079841A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US17/768,169 US20240102465A1 (en) 2019-10-24 2020-10-19 Control device, electric compressor, control method, and program
CN202080072672.7A CN114599881B (zh) 2019-10-24 2020-10-19 控制装置、电动压缩机、控制方法及计算机可读取的记录介质

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019193694A JP7408345B2 (ja) 2019-10-24 2019-10-24 制御装置、電動圧縮機、制御方法、プログラム
JP2019-193694 2019-10-24

Publications (1)

Publication Number Publication Date
WO2021079841A1 true WO2021079841A1 (ja) 2021-04-29

Family

ID=75620515

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/039217 WO2021079841A1 (ja) 2019-10-24 2020-10-19 制御装置、電動圧縮機、制御方法、プログラム

Country Status (4)

Country Link
US (1) US20240102465A1 (ja)
JP (1) JP7408345B2 (ja)
CN (1) CN114599881B (ja)
WO (1) WO2021079841A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114370727A (zh) * 2021-12-28 2022-04-19 青岛海尔空调电子有限公司 压缩机控制方法、控制装置及空调器

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014157629A1 (ja) * 2013-03-29 2014-10-02 アイシン・エィ・ダブリュ株式会社 回転電機駆動装置
WO2015140867A1 (ja) * 2014-03-15 2015-09-24 三菱電機株式会社 モータ駆動制御装置、圧縮機、送風機、及び空気調和機
JP2016077150A (ja) * 2015-12-28 2016-05-12 サンデンホールディングス株式会社 インバータ装置
JP2017180211A (ja) * 2016-03-29 2017-10-05 株式会社豊田自動織機 車載用電動圧縮機の制御方法

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3345563B2 (ja) * 1997-03-31 2002-11-18 三菱電機株式会社 電動機の制御装置
JPH1169882A (ja) * 1997-08-27 1999-03-09 Mitsubishi Electric Corp 空気調和機のモータ駆動装置
JP4691820B2 (ja) * 2001-04-25 2011-06-01 アイシン精機株式会社 モータの制御装置
JP3833600B2 (ja) * 2002-10-08 2006-10-11 三菱電機株式会社 車両用交流発電機故障判定装置
JP4564508B2 (ja) * 2003-09-03 2010-10-20 株式会社東芝 電気車制御装置
JP4757680B2 (ja) * 2006-03-24 2011-08-24 三菱電機株式会社 空気調和装置
RU2584606C2 (ru) * 2011-03-18 2016-05-20 Хитачи Коки Ко., Лтд. Электроинструмент
JP5818600B2 (ja) * 2011-09-16 2015-11-18 三菱電機株式会社 電動機駆動用装置及び冷凍サイクル装置
JP6138413B2 (ja) * 2011-11-10 2017-05-31 三菱重工業株式会社 モータ駆動装置
JP5748694B2 (ja) * 2012-03-28 2015-07-15 三菱電機株式会社 モータ駆動制御装置、及び冷凍空気調和装置
JP5984470B2 (ja) * 2012-04-11 2016-09-06 三菱電機株式会社 電力変換装置、圧縮機、送風機、空気調和装置、及び冷蔵庫
JP6439310B2 (ja) * 2014-08-01 2018-12-19 株式会社デンソー 車両用電動圧縮機
US9312800B2 (en) * 2014-08-25 2016-04-12 Fca Us Llc Control techniques for an interior permanent magnet synchronous motor of an electrified vehicle
JP6354466B2 (ja) * 2014-09-01 2018-07-11 株式会社デンソー 車両空調機用モータ制御装置
JP6672902B2 (ja) * 2016-03-04 2020-03-25 株式会社富士通ゼネラル モータ制御装置
CN110289756A (zh) * 2019-06-26 2019-09-27 海矽微(厦门)电子有限公司 一种电器及其待机电源

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014157629A1 (ja) * 2013-03-29 2014-10-02 アイシン・エィ・ダブリュ株式会社 回転電機駆動装置
WO2015140867A1 (ja) * 2014-03-15 2015-09-24 三菱電機株式会社 モータ駆動制御装置、圧縮機、送風機、及び空気調和機
JP2016077150A (ja) * 2015-12-28 2016-05-12 サンデンホールディングス株式会社 インバータ装置
JP2017180211A (ja) * 2016-03-29 2017-10-05 株式会社豊田自動織機 車載用電動圧縮機の制御方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114370727A (zh) * 2021-12-28 2022-04-19 青岛海尔空调电子有限公司 压缩机控制方法、控制装置及空调器
WO2023124012A1 (zh) * 2021-12-28 2023-07-06 青岛海尔空调电子有限公司 压缩机控制方法、控制装置及空调器

Also Published As

Publication number Publication date
CN114599881B (zh) 2024-04-05
JP7408345B2 (ja) 2024-01-05
JP2021067233A (ja) 2021-04-30
US20240102465A1 (en) 2024-03-28
CN114599881A (zh) 2022-06-07

Similar Documents

Publication Publication Date Title
WO2021079888A1 (ja) 制御装置、電動圧縮機、リップル電圧異常の原因判別方法及びプログラム
JP5482840B2 (ja) 電源装置
JP6555172B2 (ja) 車載用電動圧縮機の制御方法
JP5748694B2 (ja) モータ駆動制御装置、及び冷凍空気調和装置
JP6649239B2 (ja) 無停電電源システム
WO2021079841A1 (ja) 制御装置、電動圧縮機、制御方法、プログラム
JP2024026362A (ja) 制御装置、電動圧縮機、リップル電圧の検出方法及びプログラム
JP5339985B2 (ja) 直流電動機駆動用のインバータ制御装置
JP5630236B2 (ja) 蓄電装置
JP5195884B2 (ja) 圧縮機駆動方法および圧縮機駆動装置
CN111033041B (zh) 电动压缩机的控制装置、电动压缩机、移动体用空调装置及电动压缩机的控制方法
JP5168931B2 (ja) 電動機制御装置
JP4561493B2 (ja) 空気調和機
JP5168925B2 (ja) 電動機制御装置
JPH11211193A (ja) 室外ファンの制御装置
JP3218459U (ja) 車載用冷凍装置
JP2005318701A (ja) 電動機の駆動装置
JPH0947084A (ja) 空気調和機の制御方法およびその装置
JPH0947072A (ja) ブラシレスモータの制御方法
JP2007014075A (ja) 電動機駆動装置
JP2005027399A (ja) 電源装置
JP2013024150A (ja) 空気調和装置
JP2008075999A (ja) 空調機の制御装置
JP2007244196A (ja) 圧縮機駆動方法およびその装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20879363

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 17768169

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20879363

Country of ref document: EP

Kind code of ref document: A1