WO2021079625A1 - 絶縁型dcdcコンバータ - Google Patents

絶縁型dcdcコンバータ Download PDF

Info

Publication number
WO2021079625A1
WO2021079625A1 PCT/JP2020/033163 JP2020033163W WO2021079625A1 WO 2021079625 A1 WO2021079625 A1 WO 2021079625A1 JP 2020033163 W JP2020033163 W JP 2020033163W WO 2021079625 A1 WO2021079625 A1 WO 2021079625A1
Authority
WO
WIPO (PCT)
Prior art keywords
arm
switch element
conductive path
diode
phase
Prior art date
Application number
PCT/JP2020/033163
Other languages
English (en)
French (fr)
Inventor
匠 植村
Original Assignee
株式会社オートネットワーク技術研究所
住友電装株式会社
住友電気工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社オートネットワーク技術研究所, 住友電装株式会社, 住友電気工業株式会社 filed Critical 株式会社オートネットワーク技術研究所
Publication of WO2021079625A1 publication Critical patent/WO2021079625A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/22Conversion of dc power input into dc power output with intermediate conversion into ac
    • H02M3/24Conversion of dc power input into dc power output with intermediate conversion into ac by static converters
    • H02M3/28Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac

Definitions

  • the present disclosure relates to an isolated DCDC converter.
  • the full bridge circuit consists of two arms. Of the arms, the arm that turns on and off first is called the phase advance, and the arm that turns on and off later is called the slow phase.
  • the arm on the slow phase side has a larger loss in the elements constituting the arm than the arm on the phase advance side, and an imbalance occurs in the loss between the arms.
  • Patent Document 1 two types of PWM signals used to drive each of the phase advance arm and the slow phase arm are independently prepared, and each arm is switched at each specific cycle. The loss in the elements constituting each arm is balanced by switching the phase-advancing and slow-phase operations.
  • the isolated DCDC converter incorporates a protection circuit that protects the elements constituting each arm from the current flowing to the primary side due to the surge (hereinafter, also referred to as surge current).
  • surge current a protection circuit that protects the elements constituting each arm from the current flowing to the primary side due to the surge.
  • a protection circuit there is a method of connecting a circuit composed of one inductor and two diodes to a full bridge circuit.
  • a configuration in which a protection circuit (clamp circuit) is connected to the leading phase and a configuration in which the protection circuit (clamp circuit) is connected to the slow phase side can be considered.
  • the present inventors have focused on the fact that which is preferable depends on the operating state.
  • the present disclosure provides a more efficient isolated DCDC converter.
  • the first disclosed isolated DCDC converter is A transformer with a primary coil and a secondary coil, A full-bridge type switching circuit including a first switch element, a second switch element, a third switch element, and a fourth switch element, and A protection circuit having a first diode and a second diode, A control unit that controls the operation of the switching circuit, With inductor The output circuit connected to the secondary coil and With The first switch element and the second switch element are connected in series between the first conductive path and the second conductive path to form a first arm. The third switch element and the fourth switch element are connected in series between the first conductive path and the second conductive path to form a second arm. One end of the inductor is electrically connected to a first connection point between the first switch element and the second switch element.
  • the other end of the inductor is electrically connected to one end of the primary coil, the anode of the first diode, and the cathode of the second diode.
  • the other end of the primary coil is electrically connected to the second connection point between the third switch element and the fourth switch element.
  • the cathode of the first diode is electrically connected to the first conductive path,
  • a phase-shift type isolated DCDC converter in which the anode of the second diode is electrically connected to the second conductive path.
  • a current detection unit that detects the current value of the current flowing through the output circuit is provided.
  • the control unit switches between a first operation in which the first arm is in the advancing phase and the second arm is in the slow phase, and a second operation in which the second arm is in the advancing phase and the first arm is in the slow phase. Control is performed, and based on the current value detected by the current detection unit, when at least the current value is less than a predetermined threshold value, the first arm and the second arm are made to perform the second operation.
  • the second disclosed isolated DCDC converter is A transformer with a primary coil and a secondary coil, A full-bridge type switching circuit including a first switch element, a second switch element, a third switch element, and a fourth switch element, and A protection circuit having a first diode and a second diode, A control unit that controls the operation of the switching circuit, With an inductor
  • the output circuit connected to the secondary coil and With The first switch element and the second switch element are connected in series between the first conductive path and the second conductive path to form a first arm.
  • the third switch element and the fourth switch element are connected in series between the first conductive path and the second conductive path to form a second arm.
  • One end of the inductor is electrically connected to a first connection point between the first switch element and the second switch element.
  • the other end of the inductor is electrically connected to one end of the primary coil, the anode of the first diode, and the cathode of the second diode.
  • the other end of the primary coil is electrically connected to the second connection point between the third switch element and the fourth switch element.
  • the cathode of the first diode is electrically connected to the first conductive path,
  • a phase-shift type isolated DCDC converter in which the anode of the second diode is electrically connected to the second conductive path.
  • a current detection unit that detects the current value of the current flowing through the output circuit is provided.
  • the control unit switches between a first operation in which the first arm is in the advancing phase and the second arm is in the slow phase, and a second operation in which the second arm is in the advancing phase and the first arm is in the slow phase. Control is performed, and when at least the current value is larger than a predetermined threshold value based on the current value detected by the current detection unit, the first arm and the second arm are made to perform the first operation.
  • FIG. 1 is a circuit diagram showing an isolated DCDC converter according to the first embodiment.
  • FIG. 2 is a timing chart showing the timing of switching each of the first switch element, the second switch element, the third switch element, and the fourth switch element on and off in the isolated DCDC converter of the first embodiment. ..
  • FIG. 3 shows an enlarged view of the timing charts of the first switch element and the second switch element at the time T2 in FIG. 2 on the upper side, and shows the voltage applied between the drain and the source of the second switch element at the time T2. The graph showing the change is shown at the bottom.
  • FIG. 4 is a circuit diagram showing a path of current flowing to the primary side and the secondary side of the transformer when the first switch element and the fourth switch element are in the ON state in the isolated DCDC converter of the first embodiment.
  • FIG. 5 shows a state in which the first switch element and the third switch element are on in a state in which the first arm operates as the slow phase side arm and the second arm operates as the phase advance side arm in the isolated DCDC converter of the first embodiment.
  • It is a circuit diagram which shows the path of the current which flows on the primary side of the transformer at the time.
  • FIG. 6 is a circuit diagram showing a path of current flowing to the primary side and the secondary side of the transformer when the second switch element and the third switch element are in the ON state in the isolated DCDC converter of the first embodiment.
  • FIG. 7 shows a state in which the second switch element and the fourth switch element are on in a state in which the first arm operates as the slow phase side arm and the second arm operates as the phase advance side arm in the isolated DCDC converter of the first embodiment. It is a circuit diagram which shows the path of the current which flows on the primary side of the transformer at the time.
  • FIG. 8 shows a state in which the second switch element and the fourth switch element are on in a state in which the first arm operates as a phase-advancing side arm and the second arm operates as a slow-phase side arm in the isolated DCDC converter of the first embodiment. It is a circuit diagram which shows the path of the current which flows on the primary side of the transformer at the time.
  • FIG. 9 shows a state in which the first switch element and the third switch element are on in a state in which the first arm operates as a phase-advancing side arm and the second arm operates as a slow-phase side arm in the isolated DCDC converter of the first embodiment.
  • FIG. 10 is a timing chart showing the timing of switching each of the first switch element, the second switch element, the third switch element, and the fourth switch element on and off in the isolated DCDC converter of the first embodiment. .. Specifically, at a predetermined time, from the state in which the first arm is the slow phase arm and the second arm is the phase advance side arm, the first arm is the phase advance side arm and the second arm is the slow phase side arm.
  • FIG. 11 is an example of experimental results showing the efficiency when the output current is changed when the inductor is connected to the arm on the phase advance side and when it is connected to the arm on the slow phase side.
  • the isolated DCDC converter of the first disclosure includes a transformer, a switching circuit, a protection circuit, a control unit, an inductor, and an output circuit.
  • the transformer has a primary coil and a secondary coil.
  • the switching circuit is a full bridge type including a first switch element, a second switch element, a third switch element, and a fourth switch element.
  • the protection circuit has a first diode and a second diode.
  • the control unit controls the operation of the switching circuit.
  • the output circuit is connected to the secondary coil.
  • the first switch element and the second switch element are connected in series between the first conductive path and the second conductive path to form the first arm.
  • a third switch element and a fourth switch element are connected in series between the first conductive path and the second conductive path to form a second arm.
  • One end of the inductor is electrically connected to the first connection point between the first switch element and the second switch element.
  • the other end of the inductor is electrically connected to one end of the primary coil, the anode of the first diode, and the cathode of the second diode.
  • the other end of the primary coil is electrically connected to the second connection point between the third switch element and the fourth switch element.
  • the cathode of the first diode is electrically connected to the first conductive path.
  • the first disclosed isolated DCDC converter is a phase shift type isolated DCDC converter in which the anode of the second diode is electrically connected to the second conductive path.
  • the isolated DCDC converter of the first disclosure includes a current detection unit that detects the current value of the current flowing through the output circuit.
  • the control unit controls to switch between a first operation in which the first arm is in the advancing phase and the second arm is in the slow phase, and a second operation in which the second arm is in the advancing phase and the first arm is in the slow phase. Based on the current value detected by the current detection unit, the control unit causes the first arm and the second arm to perform a second operation when at least the current value is less than a predetermined threshold value.
  • this insulated DCDC converter can absorb the recovery surge generated in the secondary coil of the transformer by the protection circuit.
  • this isolated DCDC converter operates as a slow phase when the current value detected by the current detector is less than a predetermined threshold value (that is, the current flowing through the load is assumed to be relatively small). The current will be supplied to the current through the inductor.
  • a predetermined threshold value that is, the current flowing through the load is assumed to be relatively small.
  • the current will be supplied to the current through the inductor.
  • ZVS Zero Voltage Switching
  • electrically connected is preferably configured to be connected in a state of being electrically connected to each other (a state in which a current can flow) so that both potentials of the connection target are equal.
  • the configuration is not limited to this.
  • electrically connected may be a configuration in which both connection targets are connected in a state in which both connection targets can be electrically connected while an electric component is interposed between the two connection targets.
  • the isolated DCDC converter of the second disclosure includes a transformer, a switching circuit, a protection circuit, a control unit, an inductor, and an output circuit.
  • the transformer has a primary coil and a secondary coil.
  • the switching circuit is a full bridge type including a first switch element, a second switch element, a third switch element, and a fourth switch element.
  • the protection circuit has a first diode and a second diode.
  • the control unit controls the operation of the switching circuit.
  • the output circuit is connected to the secondary coil.
  • the first switch element and the second switch element are connected in series between the first conductive path and the second conductive path to form the first arm.
  • a third switch element and a fourth switch element are connected in series between the first conductive path and the second conductive path to form a second arm.
  • the inductor is electrically connected to the first connection point between the first switch element and the second switch element.
  • the other end of the inductor is electrically connected to one end of the primary coil, the anode of the first diode, and the cathode of the second diode.
  • the other end of the primary coil is electrically connected to the second connection point between the third switch element and the fourth switch element.
  • the cathode of the first diode is electrically connected to the first conductive path.
  • the first disclosed isolated DCDC converter is a phase shift type isolated DCDC converter in which the anode of the second diode is electrically connected to the second conductive path.
  • the isolated DCDC converter of the first disclosure includes a current detection unit that detects the current value of the current flowing through the output circuit.
  • the control unit controls to switch between a first operation in which the first arm is in the advancing phase and the second arm is in the slow phase, and a second operation in which the second arm is in the advancing phase and the first arm is in the slow phase. Based on the current value detected by the current detection unit, the control unit causes the first arm and the second arm to perform the first operation when at least the current value is larger than a predetermined threshold value.
  • this insulated DCDC converter can absorb the recovery surge generated in the secondary coil of the transformer by the protection circuit.
  • a predetermined threshold value that is, the current flowing through the load is assumed to be relatively large
  • the current flowing through the inductor becomes large.
  • the inductor can store enough energy to realize ZVS in the second arm that operates as a slow phase. Further, by operating the first arm to which the inductor is connected as a phase advance, it is possible to prevent current from flowing between the first diode and the second diode during the reflux period. Therefore, the efficiency can be improved because the conduction loss that occurs when the current flows through the first diode and the second diode does not occur.
  • the control unit of the isolated DCDC converter of the first disclosure performs the first operation on the first arm and the second arm when the current value is larger than the threshold value based on the current value detected by the current detection unit. I can let you. According to this configuration, the efficiency can be increased both when the current value is less than a predetermined threshold value and when the current value is large.
  • the threshold values of the first and second disclosed isolated DCDC converters are the case where the first arm and the second arm are subjected to the first operation and the case where the first arm and the second arm are second. It can be a value based on the output current value when the efficiency, which is the ratio of the output power to the input power, is the same as when the operation is performed. According to this configuration, by using such a threshold value, the operation of the first arm and the second arm can be appropriately switched so as to increase the efficiency in both the region below the threshold value and the region above the threshold value.
  • the isolated DCDC converter 100 of the first embodiment (hereinafter, also simply referred to as a converter 100) generates electric power for driving an electric drive device (motor or the like) in a vehicle such as a hybrid vehicle or an electric vehicle (EV (Electric Vehicle)). It is used as an output power source.
  • the converter 100 transforms the input voltage Vin given between the first conductive path 1 and the second conductive path 2 to generate an output voltage Vout, which is between the third conductive path 3 and the fourth conductive path 4. Apply to.
  • the converter 100 includes a transformer 10, a switching circuit 20 provided between the first conductive path 1 and the transformer 10, and an output circuit connected between the transformer 10 and the third conductive path 3. 30 and a control unit 40 for controlling the operation of the switching circuit 20 are provided.
  • a DC power supply (not shown) is connected between the first conductive path 1 and the second conductive path 2, and a load is applied between the third conductive path 3 and the fourth conductive path 4. 6 is connected. Further, an input capacitor 7 for stabilizing the input voltage Vin is connected between the first conductive path 1 and the second conductive path 2.
  • the transformer 10 includes a primary coil 11 and secondary coils 12A and 12B.
  • the number of turns of the primary coil 11 is N1.
  • the number of turns of the secondary coil 12A and 12B is N2.
  • the secondary coils 12A and 12B are electrically connected in series with each other at the third connection point P3.
  • the turns ratio N of the transformer 10 is represented by N2 / N1.
  • the switching circuit 20 converts the input voltage Vin, which is a DC voltage given to the first conductive path 1 and the second conductive path 2, into alternating current and supplies it to the primary coil 11 of the transformer 10.
  • the switching circuit 20 has a configuration in which the first switch element 20A, the second switch element 20B, the third switch element 20C, and the fourth switch element 20D (hereinafter, also referred to as switch elements 20A, 20B, 20C, 20D) are fully bridge-connected. Has.
  • the switching circuit 20 has switch elements 20A, 20B, 20C, 20D, a first diode 20E, a second diode 20F, and an inductor 13.
  • switch elements 20A, 20B, 20C, and 20D can be used for the switch elements 20A, 20B, 20C, and 20D, but it is preferable to use a MOSFET (Metal Oxide Semiconductor Field Effect Transistor).
  • MOSFET Metal Oxide Semiconductor Field Effect Transistor
  • Each of the switch elements 20A, 20B, 20C, and 20D is provided with parasitic diodes 20G, 20H, 20J, and 20K, which are parasitic components.
  • the cathodes of the parasitic diodes 20G, 20H, 20J, and 20K are electrically connected to the drain side, and the anode is electrically connected to the source side. ..
  • a diode may be added as a separate element.
  • Parasitic capacitors which are parasitic components, are electrically connected in parallel to each of the switch elements 20A, 20B, 20C, and 20D (not shown). Specifically, one terminal of each parasitic capacitor is electrically connected to the drain of each of the switch elements 20A, 20B, 20C, and 20D, and the other terminal of each parasitic capacitor is electrically connected to the source. .. In addition to the parasitic capacitor, a capacitor may be added as a separate element.
  • the first switch element 20A and the second switch element 20B are connected in series between the first conductive path 1 and the second conductive path 2 that input an input voltage to the switching circuit 20, and are connected to each other at the first connection point P1. It is electrically connected.
  • the third switch element 20C and the fourth switch element 20D are connected in series between the first conductive path 1 and the second conductive path 2, and are electrically connected to each other at the second connection point P2.
  • the first arm A1 is composed of the first switch element 20A and the second switch element 20B
  • the second arm A2 is composed of the third switch element 20C and the fourth switch element 20D.
  • the cathode of the first diode 20E is electrically connected to the first conductive path 1 (the conductive path on the high potential side), and the anode terminal of the second diode 20F is electrically connected to the second conductive path 2 (the conductive path on the low potential side). Is connected.
  • the anode terminal of the first diode 20E and the cathode terminal of the second diode 20F are electrically connected.
  • the first diode 20E and the second diode 20F together with the inductor 13 cause a current flowing to the primary side of the transformer 10 due to a surge generated in the fifth switch element 30A and the sixth switch element 30B on the secondary side of the transformer 10. It constitutes a protection circuit 21 that absorbs (hereinafter, also referred to as a surge current).
  • the inductor 13 is electrically connected to the first connection point P1.
  • the other end of the inductor 13 is electrically connected to the anode terminal of the first diode 20E, the cathode terminal of the second diode 20F, and one end of the primary coil 11 of the transformer 10.
  • the second connection point P2 is electrically connected to the other end of the primary coil 11.
  • the inductor 13 is provided for the purpose of LC resonance with a parasitic capacitor in order to reduce the switching loss generated in the switching circuit 20.
  • the value of the inductance of the inductor 13 is preferably set to a value sufficiently larger than the leakage inductance of the transformer 10 (not shown).
  • the output circuit 30 rectifies and smoothes the AC voltage appearing in the secondary coils 12A and 12B of the transformer 10 to generate an output voltage Vout which is a DC voltage, and uses this output voltage Vout as the third conductive path 3 and the fourth conductive path 3. It is applied between the road 4 and the road 4.
  • the output circuit 30 includes a fifth switch element 30A, a sixth switch element 30B, a rectified output path 30C, a choke coil 33, and an output capacitor 34.
  • the fifth switch element 30A is connected between one end of the secondary coil 12A of the transformer 10 and the ground path G.
  • the sixth switch element 30B is connected between one end of the secondary coil 12B of the transformer 10 and the ground path G.
  • One end of the rectified output path 30C is electrically connected to the third connection point P3 where the other end of the secondary coil 12A and the other end of the secondary coil 12B are electrically connected.
  • One end of the choke coil 33 is electrically connected to the other end of the rectified output path 30C.
  • the other end of the choke coil 33 (that is, the end on the side away from the third connection point P3 side) is electrically connected to the third conductive path 3 and electrically connected to the fourth conductive path 4 via the output capacitor 34. Is connected. That is, the choke coil 33 is interposed between the third connection point P3 and the third conductive path 3.
  • the output capacitor 34 is electrically connected between the third conductive path 3 and the fourth conductive path 4.
  • the fourth conductive path 4 is electrically connected to the ground path G.
  • the drain of the fifth switch element 30A is electrically connected to one end of the secondary coil 12A, and the source is electrically connected to the ground path G.
  • the drain of the sixth switch element 30B is electrically connected to one end of the secondary coil 12B, and the source is electrically connected to the ground path G.
  • Each of the fifth switch element 30A and the sixth switch element 30B is provided with a parasitic diode which is a parasitic component. Specifically, in each of the fifth switch element 30A and the sixth switch element 30B, the cathode of the parasitic diode is electrically connected to the drain side and the anode is electrically connected to the source side.
  • the fifth switch element 30A and the sixth switch element 30B form a rectifier circuit that rectifies the AC voltage appearing in the secondary coil 12A and 12B of the transformer 10.
  • the choke coil 33 and the output capacitor 34 smooth the rectified output appearing in the rectified output path 30C.
  • the control unit 40 is mainly composed of, for example, a microcomputer, and includes an arithmetic unit such as a CPU (Central Processing Unit), a memory such as a ROM (Read Only Memory) or a RAM (Random Access Memory), an A / D converter, and the like. have.
  • the control unit 40 is configured so that the voltage value of the first conductive path 1 can be grasped by the first voltage detection unit 40A.
  • the control unit 40 is configured so that the voltage value of the third conductive path 3 can be grasped by the second voltage detection unit 40B.
  • the first voltage detection unit 40A and the second voltage detection unit 40B are configured as known voltage detection circuits.
  • the control unit 40 is configured so that the first current detection unit 40C can grasp the current value flowing through the first conductive path 1.
  • the control unit 40 is configured so that the second current detection unit 40D can grasp the current value flowing through the third conductive path 3.
  • the first current detection unit 40C and the second current detection unit 40D are configured as known current detection circuits using, for example, a current transformer or a shunt resistor.
  • the control unit 40 uses a phase shift method based on the values input from the first voltage detection unit 40A, the second voltage detection unit 40B, the first current detection unit 40C, and the second current detection unit 40D.
  • a PWM signal is output toward each of the gates of 20C and 20D.
  • the switch elements 20A, 20B, 20C, and 20D perform switching operations by the phase shift method.
  • the control unit 40 is the fifth switch element 30A and the sixth switch based on the values input from the first voltage detection unit 40A, the second voltage detection unit 40B, the first current detection unit 40C, and the second current detection unit 40D.
  • the configuration is such that a switching signal at a predetermined timing can be output toward each gate of the element 30B.
  • the control unit 40 outputs a PWM signal to each of the switch elements 20A, 20B, 20C, and 20D, and outputs a switching signal at a predetermined timing to each of the fifth switch element 30A and the sixth switch element 30B.
  • the converter 100 performs a switching operation by a phase shift method in which the first arm A1 and the second arm A2 operate in a phase shift system in which the turn-on and turn-off timings of the switch elements constituting the first arm A1 and the second arm A2 are shifted by a predetermined phase from each other.
  • the switch element of one of the first arm A1 and the second arm A2 turns on and off first
  • the other arm turns on and off with a predetermined phase delay with respect to this arm.
  • the arm on which the switch element turns on and off first is called a phase advance side arm that operates as a phase advance.
  • An arm in which the switch element turns on and off with a predetermined phase delay with respect to the phase-advancing arm is called a slow-phase arm that operates as a slow phase.
  • the converter 100 is between the first switch element 20A and the fourth switch element 20D, between the second switch element 20B and the third switch element 20C, and between the switch elements 20A, 20B, 20C, and 20D.
  • the timing of the on / off operation is shifted (see FIG. 2).
  • the time between the start point of the time T1 and the start point of the time T2 is the phase ⁇ between the first arm A1 and the second arm A2.
  • the switch element 20A of the first arm A1 (that is, the switch element on the low side side) of the second arm A2 is on (after rising and before falling). That is, the on period of the switch element on the high side side) starts. Then, during the off period (after the fall and before the rise), the switch element 20D of the second arm A2 (that is, the switch element on the low side side) is turned off (that is, the switch element 20A on the high side side). On period ends.
  • the switch element 20A of the first arm A1 (that is, the switch element on the high side side) is in the on period (after the rise and before the fall) of the second arm A2.
  • the on period of the switch element 20D (that is, the switch element on the low side side) of the above is started.
  • the switch element 20A of the first arm A1 (that is, the switch element on the high side side) is turned off (that is, the switch element 20D on the high side side). ) On period ends.
  • the first arm A1 is the slow phase side arm
  • the second arm A2 is the phase advance side arm.
  • ZVS can be realized when the switch elements 20A, 20B, 20C, and 20D are switched from off to on, and the converter 100 can be operated with higher efficiency.
  • either the high level or the low level of the PWM signal corresponds to the on of the switch elements 20A, 20B, 20C, 20D
  • the high level of the PWM signal corresponds to the off of the switch elements 20A, 20B, 20C, 20D.
  • Either the level or the low level corresponds.
  • a DC input voltage Vin is applied between the drain and the source of the second switch element 20B before the time T2S (that is, the first switch element 20A is on). (See the bottom of FIG. 3). At this time, the DC input voltage Vin is also applied to the parasitic capacitor of the second switch element 20B.
  • the control unit 40 inputs the current value of the current flowing through the third conductive path 3 (that is, the current flowing through the output circuit) by the second current detecting unit 40D.
  • the control unit 40 compares the current value input from the second current detection unit 40D (hereinafter, also simply grasped current value) with the threshold value stored in its own memory or the like (hereinafter, simply referred to as the threshold value). To do.
  • the threshold value is determined based on the specifications of the inductor 13 and the transformer 10.
  • the threshold value is when the first arm A1 is operated as the phase-advancing side arm and the second arm A2 is operated as the slow-phase side arm, and when the first arm A1 is operated as the slow-phase side arm and the second arm A2 is advanced. It is a value based on the output current value when the efficiency is the same as when it is operated as the phase side arm.
  • FIG. 11 shows an example of the result of measuring the efficiency when the inductor is connected to each of the slow phase arm and the advanced phase arm.
  • the present inventors have the ratio of the magnitude of the output power to the input power when the DCDC converter is operated in each of the case where one end of the inductor is connected to the phase-advancing side arm and the case where it is connected to the slow-phase side arm. That is, it was found that the efficiency) is different.
  • connecting one end of the inductor to the phase-advancing side arm is more efficient than connecting one end of the inductor to the slow-phase side arm. ..
  • connecting one end of the inductor to the slow-phase side arm is more efficient than connecting one end of the inductor to the phase-advancing side arm. That is, the present inventors have found that the magnitude of the output current is switched at a predetermined value K depending on whether the inductor is connected to the slow-phase side arm or the inductor is connected to the phase-advancing side arm. ..
  • the threshold value stored in the memory or the like of the control unit 40 is based on this value K. That is, the threshold value is the output with respect to the input power when the first arm A1 and the second arm A2 are subjected to the first operation and when the first arm A1 and the second arm A2 are subjected to the second operation. It is a value based on the output current value when the efficiency, which is the ratio of electric power, becomes the same.
  • the threshold value may be the value K itself, or may be a value obtained by adding or subtracting a predetermined value to the value K to provide a margin.
  • the control unit 40 determines that the input current value is less than the threshold value (that is, the current output toward the load 6 is small)
  • the control unit 40 operates the first arm A1 as the slow-phase side arm and operates the second arm A2.
  • a PWM signal is output toward each gate of the switch elements 20A, 20B, 20C, and 20D so as to operate as a phase-advancing arm. That is, the control unit 40 controls the first arm A1 and the second arm A2 so as to perform the second operation with the second arm A2 as the advancing phase and the first arm A1 as the slowing phase.
  • the first switch element 20A and the fourth switch element 20D of the switching circuit 20 and the second switch element 20B and the third switch element 20C are alternately turned on based on the PWM signal output from the control unit 40. And off repeatedly. As a result, it is possible to operate so as to apply an AC voltage from the DC power supply to the primary coil 11 of the transformer 10 to generate an output voltage on the output circuit 30 side.
  • the switching circuit 20 side (primary of the transformer 10).
  • a current flows along the path indicated by the arrow C1 on the side).
  • the path indicated by the arrow C1 is the path of the first conductive path 1 ⁇ the first switch element 20A ⁇ the inductor 13 ⁇ the primary coil 11 ⁇ the fourth switch element 20D ⁇ the second conductive path 2.
  • the inductor 13 stores electrical energy when a current flows through it.
  • a current flows in the path indicated by the arrow C2 on the output circuit 30 side (secondary side of the transformer 10) corresponding to the current flowing in the path indicated by the arrow C1.
  • the path indicated by the arrow C2 is the path of the fourth conductive path 4 ⁇ the sixth switch element 30B ⁇ the secondary coil 12B ⁇ the rectified output path 30C ⁇ the choke coil 33 ⁇ the third conductive path 3. At this time, it is a transmission period in which electric power is transmitted from the primary side of the transformer 10 to the secondary side of the transformer 10.
  • the switch elements 20C and 20D of the second arm A2 turn on and off. Specifically, first, the fourth switch element 20D is turned off, and both the switch elements 20C and 20D are turned off. Then, the parasitic capacitor of the fourth switch element 20D is stored, and the electric charge stored in the parasitic capacitor of the third switch element 20C is discharged. Then, the third switch element 20C turns on. Then, the electric energy stored in the inductor 13 causes a current to flow to the switching circuit 20 side (primary side of the transformer 10) along the path indicated by the arrow C3 (see FIG. 5).
  • the path indicated by the arrow C3 is the path of the inductor 13 ⁇ the primary coil 11 ⁇ the third switch element 20C ⁇ the first conductive path 1 ⁇ the first switch element 20A. Further, the arrow C3 is branched between the inductor 13 and the primary coil 11, and a current also flows in the path of the primary coil 11 ⁇ the first diode 20E ⁇ the first conductive path 1 (see FIG. 5). At this time, it is a reflux period in which a current flows through an annular path on the primary side of the transformer 10.
  • the switch elements 20A and 20B of the first arm A1 turn on and off. Specifically, first, the first switch element 20A is turned off, and both the switch elements 20A and 20B are turned off. Then, the parasitic capacitor of the first switch element 20A is charged, and the electric charge stored in the parasitic capacitor of the second switch element 20B is discharged. At this time, the decrease in the current flowing through the inductor 13 is suppressed by the current flowing through the first diode 20E. Then, the second switch element 20B turns on. At this time, since the decrease in the current flowing through the inductor 13 is suppressed, the turn-on loss when the second switch element 20B is turned on is suppressed.
  • a conduction loss occurs when a current flows through the first diode 20E, but even if a conduction loss occurs, there is a great advantage in suppressing the turn-on loss in the second switch element 20B.
  • a current flows through the switching circuit 20 side (primary side of the transformer 10) along the path indicated by the arrow C4 (see FIG. 6).
  • the path indicated by the arrow C4 is the path of the first conductive path 1 ⁇ the third switch element 20C ⁇ the primary coil 11 ⁇ the inductor 13 ⁇ the second switch element 20B ⁇ the second conductive path 2 (see FIG. 6).
  • the inductor 13 stores electrical energy when a current flows through it.
  • the path indicated by the arrow C5 is the path of the fourth conductive path 4 ⁇ the fifth switch element 30A ⁇ the secondary coil 12A ⁇ the rectified output path 30C ⁇ the choke coil 33 ⁇ the third conductive path 3.
  • a surge is generated in the fifth switch element 30A and the sixth switch element 30B on the secondary side of the transformer 10.
  • the surge current Sc flows from the second diode 20F toward the other end of the inductor 13 (see FIG. 6). At this time, it is a transmission period in which electric power is transmitted from the primary side of the transformer 10 to the secondary side of the transformer 10.
  • the switch elements 20C and 20D of the second arm A2 turn on and off. Specifically, first, the third switch element 20C is turned off, and both the switch elements 20C and 20D are turned off. Then, the parasitic capacitor of the third switch element 20C is stored, and the electric charge stored in the parasitic capacitor of the fourth switch element 20D is discharged. Then, the fourth switch element 20D turns on. Then, the electric energy stored in the inductor 13 causes a current to flow to the switching circuit 20 side (primary side of the transformer 10) along the path indicated by the arrow C6 (see FIG. 7).
  • the path indicated by the arrow C6 is the path of the inductor 13 ⁇ the second switch element 20B ⁇ the second conductive path 2 ⁇ the fourth switch element 20D ⁇ the primary coil 11. Further, the arrow C6 is branched at the second conductive path 2, and a current also flows in the path of the second conductive path 2 ⁇ the second diode 20F ⁇ the inductor 13 (see FIG. 7). At this time, it is a reflux period in which a current flows through an annular path on the primary side of the transformer 10.
  • the switch elements 20A and 20B of the first arm A1 turn on and off. Specifically, first, the second switch element 20B is turned off, and both the switch elements 20A and 20B are turned off. Then, the parasitic capacitor of the second switch element 20B is charged, and the electric charge stored in the parasitic capacitor of the first switch element 20A is discharged. At this time, the decrease in the current flowing through the inductor 13 is suppressed by the current flowing through the second diode 20F. Then, the first switch element 20A turns on. At this time, since the decrease in the current flowing through the inductor 13 is suppressed, the turn-on loss when the first switch element 20A is turned on is suppressed.
  • a conduction loss occurs when a current flows through the second diode 20F, but even if a conduction loss occurs, there is a great advantage in suppressing the turn-on loss in the second switch element 20B.
  • the surge current Sc flows from the first diode 20E toward the first conductive path 1 (see FIG. 4). In this way, when the grasped current value is less than the threshold value in the control unit 40, the current flows repeatedly in the paths shown in FIGS. 4 to 7.
  • the switching circuit 20 side (primary of the transformer 10).
  • a current flows along the path indicated by the arrow C1 on the side).
  • the path indicated by the arrow C1 is the path of the first conductive path 1 ⁇ the first switch element 20A ⁇ the inductor 13 ⁇ the primary coil 11 ⁇ the fourth switch element 20D ⁇ the second conductive path 2.
  • the inductor 13 stores electrical energy when a current flows through it.
  • a current flows in the path indicated by the arrow C2 on the output circuit 30 side (secondary side of the transformer 10) corresponding to the current flowing in the path indicated by the arrow C1.
  • the path indicated by the arrow C2 is the path of the fourth conductive path 4 ⁇ the sixth switch element 30B ⁇ the secondary coil 12B ⁇ the rectified output path 30C ⁇ the choke coil 33 ⁇ the third conductive path 3. At this time, it is a transmission period in which electric power is transmitted from the primary side of the transformer 10 to the secondary side of the transformer 10.
  • the switch elements 20A and 20B of the first arm A1 turn on and off. Specifically, first, the first switch element 20A is turned off, and both the switch elements 20A and 20B are turned off. Then, the parasitic capacitor of the first switch element 20A is charged, and the electric charge stored in the parasitic capacitor of the second switch element 20B is discharged. Then, the second switch element 20B turns on. Then, the electric energy stored in the inductor 13 causes a current to flow to the switching circuit 20 side (primary side of the transformer 10) along the path indicated by the arrow C7 (see FIG. 8).
  • the path indicated by the arrow C7 is the path of the inductor 13 ⁇ the primary coil 11 ⁇ the fourth switch element 20D ⁇ the second conductive path 2 ⁇ the second switch element 20B (see FIG. 8). At this time, it is a reflux period in which a current flows through an annular path on the primary side of the transformer 10.
  • the switch elements 20C and 20D of the second arm A2 turn on and off. Specifically, first, the fourth switch element 20D is turned off, and both the switch elements 20C and 20D are turned off. Then, the parasitic capacitor of the fourth switch element 20D is stored, and the electric charge stored in the parasitic capacitor of the third switch element 20C is discharged. At this time, the current flowing through the inductor 13 sharply decreases. At this time, since no current flows through the first diode 20E and the second diode 20F, no conduction loss occurs in the first diode 20E and the second diode 20F. Then, the third switch element 20C turns on.
  • a current flows through the switching circuit 20 side (primary side of the transformer 10) along the path indicated by the arrow C4 (see FIG. 6).
  • the path indicated by the arrow C4 is the path of the first conductive path 1 ⁇ the third switch element 20C ⁇ the primary coil 11 ⁇ the inductor 13 ⁇ the second switch element 20B ⁇ the second conductive path 2 (see FIG. 6).
  • the inductor 13 stores electrical energy when a current flows through it.
  • the path indicated by the arrow C5 is the path of the fourth conductive path 4 ⁇ the fifth switch element 30A ⁇ the secondary coil 12A ⁇ the rectified output path 30C ⁇ the choke coil 33 ⁇ the third conductive path 3.
  • a surge is generated in the fifth switch element 30A and the sixth switch element 30B on the secondary side of the transformer 10.
  • the surge current Sc flows from the second diode 20F toward the other end of the inductor 13 (see FIG. 6). At this time, it is a transmission period in which electric power is transmitted from the primary side of the transformer 10 to the secondary side of the transformer 10.
  • the switch elements 20A and 20B of the first arm A1 turn on and off. Specifically, first, the second switch element 20B is turned off, and both the switch elements 20A and 20B are turned off. Then, the parasitic capacitor of the second switch element 20B is charged, and the electric charge stored in the parasitic capacitor of the first switch element 20A is discharged. Then, the first switch element 20A turns on. Then, the electric energy stored in the inductor 13 causes a current to flow to the switching circuit 20 side (primary side of the transformer 10) along the path indicated by the arrow C8 (see FIG. 9).
  • the path indicated by the arrow C8 is the path of the inductor 13 ⁇ the first switch element 20A ⁇ the first conductive path 1 ⁇ the third switch element 20C ⁇ the primary coil 11 (see FIG. 9). At this time, it is a reflux period in which a current flows through an annular path on the primary side of the transformer 10.
  • the switch elements 20C and 20D of the second arm A2 turn on and off. Specifically, first, the third switch element 20C is turned off, and both the switch elements 20C and 20D are turned off. Then, the parasitic capacitor of the third switch element 20C is stored, and the electric charge stored in the parasitic capacitor of the fourth switch element 20D is discharged. At this time, the current flowing through the inductor 13 sharply decreases. At this time, since no current flows through the first diode 20E and the second diode 20F, no conduction loss occurs in the first diode 20E and the second diode 20F. Then, the fourth switch element 20D turns on.
  • the control unit 40 determines that the grasped current value has changed from a state of being less than the threshold value to a state of being large. Then, the control unit 40 operates the switch elements 20A, 20B, 20C so that the first arm A1 operates from the slow phase side arm as the phase advance side arm and the second arm A2 operates from the phase advance side arm as the slow phase side arm. , 20D is output as a PWM signal toward each gate.
  • control unit 40 has a first operation in which the first arm A1 is in the advancing phase and the second arm A2 is in the slow phase, and a second operation in which the second arm A2 is in the advancing phase and the first arm A1 is in the slow phase.
  • Control to switch For example, as shown in FIG. 10, from time S to time B, the control unit 40 operates the switch element 20A so that the first arm A1 serves as the slow phase arm and the second arm A2 operates as the phase advance side arm.
  • a PWM signal is output toward each of the gates of 20B, 20C, and 20D. From time S to time B, the first arm A1 is delayed by phase ⁇ 1 with respect to the second arm A2.
  • the control unit 40 determines that the current value grasped by the control unit 40 has changed to a state larger than the threshold value at time B. Then, after time B, the control unit 40 operates each of the switch elements 20A, 20B, 20C, and 20D so that the first arm A1 operates as the phase-advancing side arm and the second arm A2 operates as the slow-phase side arm. A PWM signal is output toward the gate. After the time B, the second arm A2 is delayed by the phase ⁇ 2 with respect to the first arm A1.
  • the phases ⁇ 1 and ⁇ 2 may be the same or different.
  • the switch elements 20A and 20B of the first arm A1 turn on and off. Specifically, first, the first switch element 20A turns off. Then, the parasitic capacitor of the first switch element 20A is charged, and the electric charge stored in the parasitic capacitor of the second switch element 20B is discharged. Then, the second switch element 20B turns on. Then, the electric energy stored in the inductor 13 causes a current to flow to the switching circuit 20 side (primary side of the transformer 10) along the path indicated by the arrow C4 (see FIG. 6).
  • the switch elements 20A and 20B of the first arm A1 turn on and off. Specifically, first, the second switch element 20B is turned off, and then the first switch element 20A is turned on.
  • the switch elements 20C and 20D of the second arm A2 turn on and off. Specifically, first, the third switch element 20C is turned off, and then the fourth switch element 20D is turned on. Then, a current flows in the path shown by the arrow C1 shown in FIG. In this way, when the grasped current value is larger than the threshold value in the control unit 40, the current flows repeatedly in the paths shown in FIGS. 4, 8, 6, and 9.
  • the isolated DCDC converter 100 of the first disclosure includes a transformer 10, a switching circuit 20, a protection circuit 21, a control unit 40, an inductor 13, and an output circuit 30.
  • the transformer 10 has a primary coil 11 and secondary coils 12A and 12B.
  • the switching circuit 20 is a full bridge type including a first switch element 20A, a second switch element 20B, a third switch element 20C, and a fourth switch element 20D.
  • the protection circuit 21 has a first diode 20E and a second diode 20F.
  • the control unit 40 controls the operation of the switching circuit 20.
  • the output circuit 30 is connected to the secondary coils 12A and 12B.
  • the first switch element 20A and the second switch element 20B are connected in series between the first conductive path 1 and the second conductive path 2 to form the first arm A1.
  • the third switch element 20C and the fourth switch element 20D are connected in series between the first conductive path 1 and the second conductive path 2 to form the second arm A2.
  • One end of the inductor 13 is electrically connected to the first connection point P1 between the first switch element 20A and the second switch element 20B.
  • the other end of the inductor 13 is electrically connected to one end of the primary coil 11 and the anode of the first diode 20E and the cathode of the second diode 20F.
  • the other end of the primary coil 11 is electrically connected to the second connection point P2 between the third switch element 20C and the fourth switch element 20D.
  • the cathode of the first diode 20E is electrically connected to the first conductive path 1.
  • the first disclosed isolated DCDC converter 100 is a phase shift type isolated DCDC converter in which the anode of the second diode 20F is electrically connected to the second conductive path 2.
  • the isolated DCDC converter 100 of the first disclosure includes a second current detection unit 40D that detects the current value of the current flowing through the output circuit 30.
  • the control unit 40 switches between a first operation in which the first arm A1 is in the advancing phase and the second arm A2 is in the slow phase, and a second operation in which the second arm A2 is in the advancing phase and the first arm A1 is in the slow phase. Take control.
  • the control unit 40 causes the first arm A1 and the second arm A2 to perform a second operation when the current value is less than a predetermined threshold value based on the current value detected by the second current detection unit 40D.
  • the isolated DCDC converter 100 can absorb the recovery surge generated in the secondary coils 12A and 12B of the transformer 10 by the protection circuit 21.
  • the isolated DCDC converter 100 is set as a slow phase.
  • a current is supplied to the operating first arm A1 via the inductor 13.
  • the effect of reducing the turn-on loss of the first arm A1 operating as a slow phase is effective. growing.
  • the second disclosed isolated DCDC converter 100 includes a transformer 10, a switching circuit 20, a protection circuit 21, a control unit 40, an inductor 13, and an output circuit 30.
  • the transformer 10 has a primary coil 11 and secondary coils 12A and 12B.
  • the switching circuit 20 is a full bridge type including a first switch element 20A, a second switch element 20B, a third switch element 20C, and a fourth switch element 20D.
  • the protection circuit 21 has a first diode 20E and a second diode 20F.
  • the control unit 40 controls the operation of the switching circuit 20.
  • the output circuit 30 is connected to the secondary coils 12A and 12B.
  • the first switch element 20A and the second switch element 20B are connected in series between the first conductive path 1 and the second conductive path 2 to form the first arm A1.
  • the third switch element 20C and the fourth switch element 20D are connected in series between the first conductive path 1 and the second conductive path 2 to form the second arm A2.
  • One end of the inductor 13 is electrically connected to the first connection point P1 between the first switch element 20A and the second switch element 20B.
  • the other end of the inductor 13 is electrically connected to one end of the primary coil 11 and the anode of the first diode 20E and the cathode of the second diode 20F.
  • the other end of the primary coil 11 is electrically connected to the second connection point P2 between the third switch element 20C and the fourth switch element 20D.
  • the cathode of the first diode 20E is electrically connected to the first conductive path 1.
  • the second disclosed isolated DCDC converter 100 is a phase shift type isolated DCDC converter in which the anode of the second diode 20F is electrically connected to the second conductive path 2.
  • the isolated DCDC converter 100 of the second disclosure includes a second current detection unit 40D that detects the current value of the current flowing through the output circuit 30.
  • the control unit 40 switches between a first operation in which the first arm A1 is in the advancing phase and the second arm A2 is in the slow phase, and a second operation in which the second arm A2 is in the advancing phase and the first arm A1 is in the slow phase. Take control.
  • the control unit 40 causes the first arm A1 and the second arm A2 to perform the first operation when the current value is larger than a predetermined threshold value based on the current value detected by the second current detection unit 40D.
  • the isolated DCDC converter 100 can absorb the recovery surge generated in the secondary coils 12A and 12B of the transformer 10 by the protection circuit 21.
  • the current value detected by the second current detection unit 40D is larger than a predetermined threshold value (that is, the current flowing through the load 6 is assumed to be relatively large)
  • the isolated DCDC converter 100 flows through the inductor 13. Since the current becomes large, the inductor 13 can store enough energy to realize ZVS in the second arm A2 that operates as a slow phase.
  • the first arm A1 to which the inductor 13 is connected as a phase advance it is possible to prevent current from flowing through the first diode 20E and the second diode 20F during the reflux period. Therefore, the efficiency can be increased because the conduction loss that occurs when the current flows through the first diode 20E and the second diode 20F does not occur.
  • the magnitude of the output current is switched at a predetermined value K as compared with the case where the inductor is connected to the phase-advancing arm.
  • the output current is greater than a predetermined value K
  • connecting the inductor to the phase-advancing arm is more efficient than connecting the inductor to the slow-phase arm.
  • the control unit 40 of the isolated DCDC converter 100 of the present disclosure sets the first arm A1 and the second arm A2 to the first arm A1 and the second arm A2 when the current value is larger than a predetermined threshold value based on the current value detected by the second current detection unit 40D. Make one operation. According to this configuration, the efficiency can be increased both when the current value is less than a predetermined threshold value and when the current value is large. Further, since the control unit 40 controls the operation of each arm, there is no need for a mechanism for actually switching the connection at one end of the inductor 13. That is, the isolated DCDC converter 100 of the present disclosure can switch the phase advance or the slow phase in each arm without adding a component.
  • the threshold value of the isolated DCDC converter of the present disclosure is the case where the first arm A1 and the second arm A2 are subjected to the first operation and the case where the first arm A1 and the second arm A2 are subjected to the second operation. It is a value based on the output current value when the efficiency, which is the ratio of the output power to the input power, is the same. According to this configuration, by using such a threshold value, the operation of the first arm A1 and the second arm A2 can be appropriately switched so as to increase the efficiency in both the region below the threshold value and the region above the threshold value. ..
  • the control unit 40 switches the operation of the first arm A1 and the second arm A2 at the time B between the time T6 and the time T7, but the operation of the first arm A1 and the second arm A2 is performed.
  • the switching timing may be other timing.
  • the MOSFET is used for the fifth switch element 30A and the sixth switch element 30B, but a diode may be used.
  • control unit 40 is mainly composed of a microcomputer, but it may be realized by a plurality of hardware circuits other than the microcomputer.
  • the current value detected by the second current detection unit 40E and the threshold value are compared, but the current value detected by the first current detection unit 40C, the first voltage detection unit 40A or the second voltage detection unit
  • the current flowing through the output circuit may be obtained based on the voltage value detected at 40B.
  • the first arm A1 is advanced when the current output toward the load 6 becomes larger than the threshold value.
  • the second arm A2 is switched to the slow phase arm as the phase side arm.
  • the first arm A1 is delayed.
  • the second arm A2 may be switched to the phase advance arm as the phase side arm.
  • FIG. 11 illustrates an example of the result of measuring the efficiency when the inductor 13 is connected to each of the slow phase arm and the advanced phase arm, but the present disclosure is not limited to the measurement result.
  • Rectification output path 33 ... Chalk coil 34 ... Output capacitor 40 ... Control unit 40A ... 1st voltage detection unit (voltage detection unit) ) 40C ... First current detection unit (current detection unit) 100 ... Insulated DCDC converter G ... Ground path P1 ... First connection point P2 ... Second connection point P3 ... Third connection point A1 ... First arm A2 ... Second arm Vin ... Input voltage Vout ... Output voltage

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Dc-Dc Converters (AREA)

Abstract

より高効率な絶縁型DCDCコンバータを提供する。 絶縁型DCDCコンバータ(100)は第1導電路(1)と第2導電路(2)との間に第1スイッチ素子(20A)と第2スイッチ素子(20B)とが直列に接続されて第1アーム(A1)が構成され、第1導電路(1)と第2導電路(2)との間に第3スイッチ素子(20C)と第4スイッチ素子(20D)とが直列に接続されて第2アーム(A2)が構成され、制御部(40)は第1アーム(A1)を進相とし第2アーム(A2)を遅相とする第1動作と、第2アーム(A2)を進相とし第1アーム(A1)を遅相とする第2動作とを切り替える制御を行い、電流値が所定の閾値未満のとき、第1アーム(A1)を遅相として動作させ、第2アーム(A2)を進相として動作させる。

Description

絶縁型DCDCコンバータ
 本開示は、絶縁型DCDCコンバータに関するものである。
 高圧用の絶縁型DCDCコンバータに用いられる1つの回路の形態としてフルブリッジ回路がある。フルブリッジ回路は2つのアームで構成されている。各アームの内、先にターンオン及びターンオフするアームを進相、遅れてターンオン及びターンオフするアームを遅相と呼ぶ。一般的に遅相側のアームのほうが進相側のアームよりもアームを構成する素子における損失が大きく、アーム間での損失にアンバランスが発生する。特許文献1では、進相用のアーム、及び遅相用のアームの各々を駆動するために用いる2種類のPWM信号を独立して用意しておき、特定の周期毎に切り替えることで各アームの進相、遅相の動作を切り替えて各アームを構成する素子における損失をバランスさせている。
欧州特許公報第1998432号
 このようなフルブリッジ回路では2次側で生じるサージに起因する電流が1次側に流れる場合がある。したがって、絶縁型DCDCコンバータには、サージに起因して1次側に流れる電流(以下、サージ電流ともいう)から各アームを構成する素子を保護する保護回路を組み込むことが好ましい。例えば、保護回路の一例として、1つのインダクタと2つのダイオードとで構成された回路をフルブリッジ回路に接続する方法がある。
 このような構成のものでは、保護回路(クランプ回路)を進相に接続する構成と遅相側に接続する構成とが考えられる。本発明者らはどちらが望ましいかは動作状態によって変わり得ることに着目するに至った。
 そこで、本開示ではより高効率な絶縁型DCDCコンバータを提供する。
 1つ目の開示の絶縁型DCDCコンバータは、
 一次側コイル及び二次側コイルを有するトランスと、
 第1スイッチ素子と第2スイッチ素子と第3スイッチ素子と第4スイッチ素子とを備えるフルブリッジ型のスイッチング回路と、
 第1ダイオードと第2ダイオードとを有する保護回路と、
 前記スイッチング回路の動作を制御する制御部と、
 インダクタと、
 前記二次側コイルに接続される出力回路と、
 を備え、
 第1導電路と第2導電路との間に前記第1スイッチ素子と前記第2スイッチ素子とが直列に接続されて第1アームが構成され、
 前記第1導電路と前記第2導電路との間に前記第3スイッチ素子と前記第4スイッチ素子とが直列に接続されて第2アームが構成され、
 前記インダクタの一端が、前記第1スイッチ素子と前記第2スイッチ素子との間の第1接続点に電気的に接続され、
 前記インダクタの他端が、前記一次側コイルの一端と前記第1ダイオードのアノードと前記第2ダイオードのカソードとに電気的に接続され、
 前記第3スイッチ素子と前記第4スイッチ素子との間の第2接続点に前記一次側コイルの他端が電気的に接続され、
 前記第1ダイオードのカソードが前記第1導電路に電気的に接続され、
 前記第2ダイオードのアノードが前記第2導電路に電気的に接続された位相シフト方式の絶縁型DCDCコンバータであって、
 前記出力回路に流れる電流の電流値を検出する電流検出部と、を備え、
 前記制御部は、前記第1アームを進相とし前記第2アームを遅相とする第1動作と、前記第2アームを進相とし前記第1アームを遅相とする第2動作とを切り替える制御を行い、前記電流検出部が検出した前記電流値に基づき、少なくとも前記電流値が所定の閾値未満のとき、前記第1アームと前記第2アームとに前記第2動作をさせる。
 2つ目の開示の絶縁型DCDCコンバータは、
 一次側コイル及び二次側コイルを有するトランスと、
 第1スイッチ素子と第2スイッチ素子と第3スイッチ素子と第4スイッチ素子とを備えるフルブリッジ型のスイッチング回路と、
 第1ダイオードと第2ダイオードとを有する保護回路と、
 前記スイッチング回路の動作を制御する制御部と、
 インダクタと、
 前記二次側コイルに接続される出力回路と、
 を備え、
 第1導電路と第2導電路との間に前記第1スイッチ素子と前記第2スイッチ素子とが直列に接続されて第1アームが構成され、
 前記第1導電路と前記第2導電路との間に前記第3スイッチ素子と前記第4スイッチ素子とが直列に接続されて第2アームが構成され、
 前記インダクタの一端が、前記第1スイッチ素子と前記第2スイッチ素子との間の第1接続点に電気的に接続され、
 前記インダクタの他端が、前記一次側コイルの一端と前記第1ダイオードのアノードと前記第2ダイオードのカソードとに電気的に接続され、
 前記第3スイッチ素子と前記第4スイッチ素子との間の第2接続点に前記一次側コイルの他端が電気的に接続され、
 前記第1ダイオードのカソードが前記第1導電路に電気的に接続され、
 前記第2ダイオードのアノードが前記第2導電路に電気的に接続された位相シフト方式の絶縁型DCDCコンバータであって、
 前記出力回路に流れる電流の電流値を検出する電流検出部と、を備え、
 前記制御部は、前記第1アームを進相とし前記第2アームを遅相とする第1動作と、前記第2アームを進相とし前記第1アームを遅相とする第2動作とを切り替える制御を行い、前記電流検出部が検出した前記電流値に基づき、少なくとも前記電流値が所定の閾値より大きいとき、前記第1アームと前記第2アームとに前記第1動作をさせる。
 これらの開示によれば、より高効率な絶縁型DCDCコンバータを実現することができる。
図1は、実施形態1の絶縁型DCDCコンバータを示す回路図である。 図2は、実施形態1の絶縁型DCDCコンバータにおいて、第1スイッチ素子、第2スイッチ素子、第3スイッチ素子、及び第4スイッチ素子のそれぞれをオンとオフとに切り替えるタイミングを示すタイミングチャートである。 図3は、図2における時間T2の第1スイッチ素子、第2スイッチ素子のタイミングチャートの拡大図を上側に示し、時間T2における第2スイッチ素子のドレインとソースとの間に印加される電圧の変化を示すグラフを下側に示す。 図4は、実施形態1の絶縁型DCDCコンバータにおいて、第1スイッチ素子及び第4スイッチ素子がオン状態のときのトランスの一次側、二次側に流れる電流の経路を示す回路図である。 図5は、実施形態1の絶縁型DCDCコンバータにおいて、第1アームが遅相側アーム、第2アームが進相側アームとして動作した状態において、第1スイッチ素子、第3スイッチ素子がオン状態のときのトランスの一次側に流れる電流の経路を示す回路図である。 図6は、実施形態1の絶縁型DCDCコンバータにおいて、第2スイッチ素子及び第3スイッチ素子がオン状態のときのトランスの一次側、二次側に流れる電流の経路を示す回路図である。 図7は、実施形態1の絶縁型DCDCコンバータにおいて、第1アームが遅相側アーム、第2アームが進相側アームとして動作した状態において、第2スイッチ素子、第4スイッチ素子がオン状態のときのトランスの一次側に流れる電流の経路を示す回路図である。 図8は、実施形態1の絶縁型DCDCコンバータにおいて、第1アームが進相側アーム、第2アームが遅相側アームとして動作した状態において、第2スイッチ素子、第4スイッチ素子がオン状態のときのトランスの一次側に流れる電流の経路を示す回路図である。 図9は、実施形態1の絶縁型DCDCコンバータにおいて、第1アームが進相側アーム、第2アームが遅相側アームとして動作した状態において、第1スイッチ素子、第3スイッチ素子がオン状態のときのトランスの一次側に流れる電流の経路を示す回路図である。 図10は、実施形態1の絶縁型DCDCコンバータにおいて、第1スイッチ素子、第2スイッチ素子、第3スイッチ素子、及び第4スイッチ素子のそれぞれをオンとオフとに切り替えるタイミングを示すタイミングチャートである。詳しくは、所定の時刻において、第1アームを遅相側アームとし、第2アームを進相側アームとして動作した状態から、第1アームを進相側アームとし、第2アームを遅相側アームとして動作した状態に切り替えた状態を示すタイミングチャートである。 図11は、インダクタを進相側のアームに接続したとき及び遅相側のアームに接続したときの各々で出力電流を変化させた場合における効率を示す実験結果の一例である。
[本開示の実施形態の説明]
 最初に本開示の実施態様を列記して説明する。
(1)1つ目の開示の絶縁型DCDCコンバータは、トランス、スイッチング回路、保護回路、制御部、インダクタ、及び出力回路を備えている。トランスは一次側コイル及び二次側コイルを有する。スイッチング回路は第1スイッチ素子と第2スイッチ素子と第3スイッチ素子と第4スイッチ素子とを備えるフルブリッジ型である。保護回路は第1ダイオードと第2ダイオードとを有する。制御部は前記スイッチング回路の動作を制御する。出力回路は二次側コイルに接続される。第1導電路と第2導電路との間に第1スイッチ素子と前記第2スイッチ素子とが直列に接続されて第1アームが構成されている。第1導電路と第2導電路との間に第3スイッチ素子と第4スイッチ素子とが直列に接続されて第2アームが構成されている。インダクタの一端が第1スイッチ素子と第2スイッチ素子との間の第1接続点に電気的に接続されている。インダクタの他端が一次側コイルの一端と第1ダイオードのアノードと第2ダイオードのカソードとに電気的に接続されている。第3スイッチ素子と第4スイッチ素子との間の第2接続点に一次側コイルの他端が電気的に接続されている。第1ダイオードのカソードが第1導電路に電気的に接続されている。1つ目の開示の絶縁型DCDCコンバータは第2ダイオードのアノードが第2導電路に電気的に接続された位相シフト方式の絶縁型DCDCコンバータである。1つ目の開示の絶縁型DCDCコンバータは出力回路に流れる電流の電流値を検出する電流検出部を備えている。制御部は、第1アームを進相とし第2アームを遅相とする第1動作と、第2アームを進相とし第1アームを遅相とする第2動作とを切り替える制御を行う。制御部は、電流検出部が検出した電流値に基づき、少なくとも電流値が所定の閾値未満のとき、第1アームと第2アームとに第2動作をさせる。
 このため、この絶縁型DCDCコンバータはトランスの二次側コイルで発生するリカバリーサージを保護回路によって吸収することができる。これと共に、この絶縁型DCDCコンバータは電流検出部で検出した電流値が所定の閾値未満である(すなわち、負荷に流れる電流が比較的小さいと想定される)とき、遅相として動作する第1アームにインダクタを介して電流を供給することになる。このとき、第1ダイオード及び第2ダイオードに電流が流れることによってインダクタに流れる電流の大きさが維持し易くなるため、遅相として動作する第1アームのターンオン損失を低減する効果が大きくなる。これにより第1アームのZVS(Zero Voltage Switching)を実現し易くなるため、効率を高くすることができる。この場合、第1ダイオード及び第2ダイオードに電流が流れることによって導通損が生じることになるが、この導通損以上に第1アームのターンオン損失を低減する利点が大きい。
 本開示において、「電気的に接続される」とは、接続対象の両方の電位が等しくなるように互いに導通した状態(電流を流せる状態)で接続される構成であることが望ましい。ただし、この構成に限定されない。例えば、「電気的に接続される」とは、両接続対象の間に電気部品が介在しつつ両接続対象が導通し得る状態で接続された構成であってもよい。
(2)2つ目の開示の絶縁型DCDCコンバータは、トランス、スイッチング回路、保護回路、制御部、インダクタ、及び出力回路を備えている。トランスは一次側コイル及び二次側コイルを有する。スイッチング回路は第1スイッチ素子と第2スイッチ素子と第3スイッチ素子と第4スイッチ素子とを備えるフルブリッジ型である。保護回路は第1ダイオードと第2ダイオードとを有する。制御部は前記スイッチング回路の動作を制御する。出力回路は二次側コイルに接続される。第1導電路と第2導電路との間に第1スイッチ素子と前記第2スイッチ素子とが直列に接続されて第1アームが構成されている。第1導電路と第2導電路との間に第3スイッチ素子と第4スイッチ素子とが直列に接続されて第2アームが構成されている。インダクタの一端が第1スイッチ素子と第2スイッチ素子との間の第1接続点に電気的に接続されている。インダクタの他端が一次側コイルの一端と第1ダイオードのアノードと第2ダイオードのカソードとに電気的に接続されている。第3スイッチ素子と第4スイッチ素子との間の第2接続点に一次側コイルの他端が電気的に接続されている。第1ダイオードのカソードが第1導電路に電気的に接続されている。1つ目の開示の絶縁型DCDCコンバータは第2ダイオードのアノードが第2導電路に電気的に接続された位相シフト方式の絶縁型DCDCコンバータである。1つ目の開示の絶縁型DCDCコンバータは出力回路に流れる電流の電流値を検出する電流検出部を備えている。制御部は、第1アームを進相とし第2アームを遅相とする第1動作と、第2アームを進相とし第1アームを遅相とする第2動作とを切り替える制御を行う。制御部は、電流検出部が検出した電流値に基づき、少なくとも電流値が所定の閾値より大きいとき、第1アームと第2アームとに第1動作をさせる。
 このため、この絶縁型DCDCコンバータはトランスの二次側コイルで発生するリカバリーサージを保護回路によって吸収することができる。これと共に、この絶縁型DCDCコンバータは電流検出部で検出した電流値が所定の閾値より大きい(すなわち、負荷に流れる電流が比較的大きいと想定される)とき、インダクタに流れる電流が大きくなるため、遅相として動作する第2アームにおけるZVSを実現できるだけのエネルギーをインダクタが蓄えることができる。さらに、インダクタが接続される第1アームを進相として動作させることによって、還流期間中に第1ダイオードと第2ダイオードとに電流が流れないようにすることができる。したがって、第1ダイオードと第2ダイオードとに電流が流れる際に生じる導通損が生じないため、効率を高くすることができる。
(3)1つ目の開示の絶縁型DCDCコンバータの制御部は、電流検出部が検出した電流値に基づき、電流値が閾値より大きいとき、第1アームと第2アームとに第1動作をさせ得る。
 この構成によれば、電流値が所定の閾値未満であるとき及び大きいときの両方で効率を高くすることができる。
(4)1つ目及び2つ目の開示の絶縁型DCDCコンバータの閾値は、第1アームと第2アームとに第1動作をさせた場合と、第1アームと第2アームとに第2動作をさせた場合とで、入力電力に対する出力電力の割合である効率が同じになる場合の出力電流値に基づく値であり得る。
 この構成によれば、このような閾値を用いることによって、閾値未満の領域と大きい領域の両方で効率が高くなるように第1アームと第2アームとの動作を適切に切り替えることができる。
[本開示の実施形態の詳細]
<実施形態1>
〔絶縁型DCDCコンバータの概要〕
 実施形態1の絶縁型DCDCコンバータ100(以下、単にコンバータ100ともいう)は、ハイブリッド自動車又は電気自動車(EV(Electric Vehicle))などの車両における電動駆動装置(モータ等)を駆動するための電力を出力する電源として用いられる。コンバータ100は第1導電路1と第2導電路2との間に与えられる入力電圧Vinを変圧して出力電圧Voutを生成し、これを第3導電路3と第4導電路4との間に印加する。コンバータ100は、図1に示すように、トランス10、第1導電路1とトランス10との間に設けられたスイッチング回路20、トランス10と第3導電路3との間に接続された出力回路30、及びスイッチング回路20の動作を制御する制御部40を備えている。実使用時においては、第1導電路1と第2導電路2との間には直流電源(図示せず)が接続され、第3導電路3と第4導電路4との間には負荷6が接続される。また、第1導電路1と第2導電路2との間には入力電圧Vinを安定化させるための入力コンデンサ7が接続されている。
 トランス10は、一次側コイル11及び二次側コイル12A,12Bを備えている。一次側コイル11の巻き数はN1である。二次側コイル12A,12Bの巻き数は共にN2である。二次側コイル12A,12Bは第3接続点P3において互いに電気的に直列に接続されている。トランス10の巻数比NはN2/N1で表される。
 スイッチング回路20は、第1導電路1と第2導電路2とに与えられる直流電圧である入力電圧Vinを交流に変換し、トランス10の一次側コイル11に供給する。スイッチング回路20は第1スイッチ素子20A、第2スイッチ素子20B、第3スイッチ素子20C、及び第4スイッチ素子20D(以下、スイッチ素子20A,20B,20C,20Dともいう)がフルブリッジ接続された構成を有する。
 スイッチング回路20は、スイッチ素子20A,20B,20C,20D、第1ダイオード20E、第2ダイオード20F、及びインダクタ13を有している。スイッチ素子20A,20B,20C,20Dには、公知である種々のスイッチ素子を用いることができるが、MOSFET(Metal Oxide Semiconductor Field Effect Transistor)を用いることが好ましい。
 スイッチ素子20A,20B,20C,20Dのそれぞれには寄生成分である寄生ダイオード20G,20H,20J,20Kが設けられた構成とされている。具体的には、スイッチ素子20A,20B,20C,20Dのそれぞれにおいて、各寄生ダイオード20G,20H,20J,20Kのカソードはドレイン側、アノードがソース側に電気的に接続される構成とされている。なお、寄生ダイオード20G,20H,20J,20Kに加えて、ダイオードを別個の素子として付加してもよい。
 スイッチ素子20A,20B,20C,20Dのそれぞれには寄生成分である寄生コンデンサが電気的に並列に接続されている(図示せず。)。具体的には、スイッチ素子20A,20B,20C,20Dのそれぞれのドレインに各寄生コンデンサの一方の端子が電気的に接続され、ソースに各寄生コンデンサの他方の端子が電気的に接続されている。なお、寄生コンデンサに加えて、コンデンサを別個の素子として付加してもよい。
 第1スイッチ素子20A及び第2スイッチ素子20Bは、スイッチング回路20に入力電圧を入力する第1導電路1と第2導電路2との間に直列に接続され、互いが第1接続点P1において電気的に接続している。第3スイッチ素子20C及び第4スイッチ素子20Dは、第1導電路1と第2導電路2との間に直列に接続され、互いが第2接続点P2において電気的に接続している。スイッチング回路20は第1スイッチ素子20A及び第2スイッチ素子20Bによって第1アームA1が構成され、第3スイッチ素子20C及び第4スイッチ素子20Dによって第2アームA2が構成されている。
 第1ダイオード20Eのカソードは第1導電路1(高電位側の導電路)に電気的に接続され、第2ダイオード20Fのアノード端子は第2導電路2(低電位側の導電路)に電気的に接続されている。第1ダイオード20Eのアノード端子と第2ダイオード20Fのカソード端子とが電気的に接続している。第1ダイオード20E及び第2ダイオード20Fはインダクタ13と共に、トランス10の二次側の第5スイッチ素子30A、及び第6スイッチ素子30Bに発生するサージに起因してトランス10の1次側に流れる電流(以下、サージ電流ともいう)を吸収する保護回路21を構成している。
 インダクタ13の一端は第1接続点P1に電気的に接続されている。インダクタ13の他端は、第1ダイオード20Eのアノード端子、第2ダイオード20Fのカソード端子、及びトランス10の一次側コイル11の一端に電気的に接続されている。第2接続点P2は一次側コイル11の他端に電気的に接続されている。インダクタ13はスイッチング回路20において発生するスイッチングロスを低減するために寄生コンデンサとLC共振させる目的で設けられている。インダクタ13のインダクタンスの値はトランス10の漏れインダクタンス(図示せず)よりも十分大きい値としておくことが好ましい。
 出力回路30は、トランス10の二次側コイル12A,12Bに現れる交流電圧を整流・平滑して直流電圧である出力電圧Voutを生成し、この出力電圧Voutを第3導電路3と第4導電路4との間に印加する。出力回路30は第5スイッチ素子30A、第6スイッチ素子30B、整流出力経路30C、チョークコイル33、及び出力コンデンサ34を備えている。第5スイッチ素子30Aはトランス10の二次側コイル12Aの一端とグラウンド経路Gとの間に接続されている。第6スイッチ素子30Bはトランス10の二次側コイル12Bの一端とグラウンド経路Gとの間に接続されている。
 整流出力経路30Cの一端は二次側コイル12Aの他端と二次側コイル12Bの他端とが電気的に接続する第3接続点P3に電気的に接続される。整流出力経路30Cの他端にはチョークコイル33の一端が電気的に接続される。チョークコイル33の他端(すなわち、第3接続点P3側から離れた側の端)は第3導電路3に電気的に接続されると共に、出力コンデンサ34を介して第4導電路4に電気的に接続されている。つまり、チョークコイル33は第3接続点P3と第3導電路3との間に介在する。出力コンデンサ34は第3導電路3と第4導電路4との間に電気的に接続されている。第4導電路4はグラウンド経路Gに電気的に接続されている。
 第5スイッチ素子30A及び第6スイッチ素子30Bには、公知である種々のスイッチ素子を用いることができるが、MOSFETを用いることが好ましい。第5スイッチ素子30Aのドレインは二次側コイル12Aの一端に電気的に接続され、ソースはグラウンド経路Gに電気的に接続されている。第6スイッチ素子30Bのドレインは二次側コイル12Bの一端に電気的に接続され、ソースはグラウンド経路Gに電気的に接続されている。第5スイッチ素子30A、及び第6スイッチ素子30Bのそれぞれには寄生成分である寄生ダイオードが設けられた構成とされている。具体的には、第5スイッチ素子30A及び第6スイッチ素子30Bのそれぞれにおいて、寄生ダイオードのカソードはドレイン側、アノードがソース側に電気的に接続される構成とされている。
 このような構成を有する出力回路30の内、第5スイッチ素子30A及び第6スイッチ素子30Bはトランス10の二次側コイル12A,12Bに現れる交流電圧を整流する整流回路を構成する。チョークコイル33及び出力コンデンサ34は整流出力経路30Cに現れる整流出力を平滑する。
 制御部40は、例えばマイクロコンピュータを主体として構成されており、CPU(Central Processing Unit)などの演算装置、ROM(Read Only Memory)又はRAM(Random Access Memory)などのメモリ、A/D変換器等を有している。制御部40は第1電圧検出部40Aによって第1導電路1の電圧値を把握し得る構成とされている。制御部40は第2電圧検出部40Bによって第3導電路3の電圧値を把握し得る構成とされている。第1電圧検出部40A及び第2電圧検出部40Bは公知の電圧検出回路として構成される。制御部40は第1電流検出部40Cによって第1導電路1に流れる電流値を把握し得る構成とされている。制御部40は第2電流検出部40Dによって第3導電路3に流れる電流値を把握し得る構成とされている。第1電流検出部40C及び第2電流検出部40Dは、例えばカレントトランスやシャント抵抗等を用いた公知の電流検出回路として構成される。
 制御部40は第1電圧検出部40A、第2電圧検出部40B、第1電流検出部40C、及び第2電流検出部40Dから入力される値に基づいて位相シフト方式によってスイッチ素子20A,20B,20C,20Dの各々のゲートに向けてPWM信号を出力する。これにより、スイッチ素子20A,20B,20C,20Dは位相シフト方式によりスイッチング動作をする。制御部40は第1電圧検出部40A、第2電圧検出部40B、第1電流検出部40C、及び第2電流検出部40Dから入力される値等に基づいて第5スイッチ素子30A及び第6スイッチ素子30Bの各々のゲートに向けて所定のタイミングのスイッチング信号を出力し得る構成とされている。
〔絶縁型DCDCコンバータの動作〕
 次に、コンバータ100の動作を説明する。コンバータ100が搭載された車両において、例えば、イグニッションスイッチがオフ状態からオン状態に切り替えられる。すると、制御部40からスイッチ素子20A,20B,20C,20DのそれぞれにPWM信号が出力され、第5スイッチ素子30A及び第6スイッチ素子30Bのそれぞれに所定のタイミングのスイッチング信号を出力する。
 コンバータ100は、第1アームA1及び第2アームA2が、それぞれを構成するスイッチ素子のターンオン及びターンオフするタイミングが互いに所定の位相ずれて動作する位相シフト方式によりスイッチング動作をする。位相シフト方式は、第1アームA1及び第2アームA2の内の一方のアームのスイッチ素子が先にターンオン及びターンオフし、このアームに対して所定の位相遅れて他方のアームがターンオン及びターンオフする。第1アームA1及び第2アームA2の内、スイッチ素子が先にターンオン及びターンオフするアームは進相として動作する進相側アームと呼ぶ。進相側アームに対して所定の位相遅れてスイッチ素子がターンオン及びターンオフするアームは遅相として動作する遅相側アームと呼ぶ。
 詳しくは、コンバータ100は第1スイッチ素子20Aと第4スイッチ素子20Dとの間、第2スイッチ素子20Bと第3スイッチ素子20Cとの間、及びスイッチ素子20A,20B,20C,20Dの互いの間においてオンオフ動作のタイミングをずらして動作する(図2参照。)。図2において時間T1の開始点と時間T2の開始点との間の時間が第1アームA1と第2アームA2との間の位相θである。
 第2アームA2が進相側アームであり、第1アームA1が遅相側アームである場合について説明する。この場合、図2に示すように、第2アームA2のスイッチ素子20D(すなわちローサイド側のスイッチ素子)がオン期間(立ち上がりの後、且つ立ち下がりの前)に第1アームA1のスイッチ素子20A(すなわちハイサイド側のスイッチ素子)のオン期間が開始する。そして、第2アームA2のスイッチ素子20D(すなわちローサイド側のスイッチ素子)がオフ期間(立ち下がりの後、且つ立ち上がりの前)に第1アームA1のスイッチ素子20A(すなわちハイサイド側のスイッチ素子)のオン期間が終了する。
 第1アームA1が進相側アームであり、第2アームA2が遅相側アームである場合について説明する。この場合、図10における時刻B以降に示すように、第1アームA1のスイッチ素子20A(すなわちハイサイド側のスイッチ素子)がオン期間(立ち上がりの後、且つ立ち下がりの前)に第2アームA2のスイッチ素子20D(すなわちローサイド側のスイッチ素子)のオン期間が開始する。そして、第1アームA1のスイッチ素子20A(すなわちハイサイド側のスイッチ素子)がオフ期間(立ち下がりの後、且つ立ち上がりの前)に第2アームA2のスイッチ素子20D(すなわちハイサイド側のスイッチ素子)のオン期間が終了する。
 図2において第1アームA1は遅相側アームであり、第2アームA2は進相側アームである。これにより、スイッチ素子20A,20B,20C,20Dがオフからオンにスイッチングする際にZVSを実現し、コンバータ100をより高効率に動作させることができる。図2において、スイッチ素子20A,20B,20C,20DのオンにはPWM信号のハイレベル又はローレベルのいずれか一方が対応し、スイッチ素子20A,20B,20C,20DのオフにはPWM信号のハイレベル又はローレベルのいずれか他方が対応している。
 ここで、時間T2に着目して、第1デッドタイムにおいて第2スイッチ素子20Bがオフからオンに切り替わる場合について説明する。図3に示すように、時刻T2Sより前(すなわち、第1スイッチ素子20Aがオン)において、第2スイッチ素子20Bのドレインとソースとの間には直流の入力電圧Vinが印加された状態である(図3の下側参照。)。このとき、第2スイッチ素子20Bの寄生コンデンサにも直流の入力電圧Vinが印加された状態である。
 そして、時刻T2Sにおいて、第1スイッチ素子20Aがオンからオフに切り替わると、第1スイッチ素子20Aには電流が流れなくなる。このとき、第2スイッチ素子20Bの寄生コンデンサとインダクタ13との間でLC共振が開始し、第2スイッチ素子20Bのドレインとソースとの間の電圧が直流の入力電圧Vinの半分の大きさに近づいていく。第2スイッチ素子20Bのドレインとソースとの間の電圧はLC共振が開始して最初に電圧が降下した時刻T2Eに0Vに最も近くなる(図3下側参照。)。従って、第2スイッチ素子20Bをオフからオンに切り替える時刻をT2Eとすることによって、第2スイッチ素子20BにおけるZVSを実現することができる。このZVSの動作は図2における他の時間T1、T3、T4、T5、T6、T7、T8、及び他のスイッチ素子20A,20C,20Dがオフからオンに切り替わる場合についても同様である。
〔制御部が把握した電流値が閾値未満であるときの動作〕
 制御部40は第2電流検出部40Dによって第3導電路3に流れる電流(すなわち、出力回路に流れる電流)の電流値が入力される。制御部40は第2電流検出部40Dから入力された電流値(以下、単に把握した電流値ともいう)と、自身のメモリ等に記憶している閾値(以下、単に閾値ともいう)とを比較する。閾値はインダクタ13やトランス10の仕様等に基づいて決定される。閾値は第1アームA1を進相側アームとして動作させ且つ第2アームA2を遅相側アームとして動作させた場合と、第1アームA1を遅相側アームとして動作させ且つ第2アームA2を進相側アームとして動作させた場合とで、効率が同じになる場合の出力電流値に基づく値である。
 インダクタを遅相のアームと進相のアームとの各々に接続した場合の効率を測定した結果の一例を図11に示す。本発明者らはインダクタの一端を進相側アームに接続した場合と遅相側アームに接続した場合との各々で、DCDCコンバータを動作させた場合における入力電力に対する出力電力の大きさの割合(すなわち、効率)が異なることを見出した。
 具体的には、図11に示すように、所定の出力電流値より大きい領域ではインダクタの一端を進相側アームに接続した方がインダクタの一端を遅相側アームに接続した場合より効率が高い。そして、所定の出力電流値未満の領域ではインダクタの一端を遅相側アームに接続した方がインダクタの一端を進相側アームに接続した場合より効率が高い。つまり、本発明者らは、インダクタを遅相側アームに接続した場合と、インダクタを進相側アームに接続した場合とで、出力電流が所定の値Kにおいて大小が入れ替わることを見出したのである。制御部40のメモリ等に記憶している閾値はこの値Kに基づいている。つまり、閾値は、第1アームA1と第2アームA2とに第1動作をさせた場合と、第1アームA1と第2アームA2とに第2動作をさせた場合とで、入力電力に対する出力電力の割合である効率が同じになる場合の出力電流値に基づく値である。閾値は値Kそのものでもよく、値Kに所定の値を加算又は減算してマージンを設けた値でもよい。制御部40は、入力された電流値が閾値未満(すなわち、負荷6に向けて出力する電流が小さい)であると判別すると、第1アームA1を遅相側アームとして動作させ、第2アームA2を進相側アームとして動作させるようにスイッチ素子20A,20B,20C,20Dの各々のゲートに向けてPWM信号を出力する。つまり、制御部40は、第2アームA2を進相とし第1アームA1を遅相とする第2動作を行うように第1アームA1及び第2アームA2を制御する。
 具体的には、制御部40から出力されたPWM信号に基づいてスイッチング回路20の第1スイッチ素子20A及び第4スイッチ素子20Dと、第2スイッチ素子20B及び第3スイッチ素子20Cとが交互にオンとオフとを繰り返す。これにより直流電源からトランス10の一次側コイル11に交流の電圧を印加するように動作して出力回路30側に出力電圧を発生させることができる。
 先ず、図4に示すように、第1スイッチ素子20A及び第4スイッチ素子20Dがオンして第2スイッチ素子20B及び第3スイッチ素子20Cがオフした状態では、スイッチング回路20側(トランス10の一次側)に矢印C1に示す経路で電流が流れる。矢印C1に示す経路は第1導電路1→第1スイッチ素子20A→インダクタ13→一次側コイル11→第4スイッチ素子20D→第2導電路2の経路である。インダクタ13は自身に電流が流れることによって電気エネルギーを蓄積する。矢印C1に示す経路に流れる電流に対応して出力回路30側(トランス10の二次側)に矢印C2に示す経路で電流が流れる。矢印C2に示す経路は、第4導電路4→第6スイッチ素子30B→二次側コイル12B→整流出力経路30C→チョークコイル33→第3導電路3の経路である。このとき、トランス10の一次側からトランス10の二次側に電力が伝達する伝達期間である。
 次に、第2アームA2のスイッチ素子20C,20Dがターンオン及びターンオフする。具体的には、先ず、第4スイッチ素子20Dがターンオフして、スイッチ素子20C,20Dが共にオフした状態になる。すると、第4スイッチ素子20Dの寄生コンデンサが蓄電されると共に、第3スイッチ素子20Cの寄生コンデンサに蓄電されていた電荷が放電される。そして、第3スイッチ素子20Cがターンオンする。すると、インダクタ13に蓄えられた電気エネルギーによってスイッチング回路20側(トランス10の一次側)に矢印C3に示す経路で電流が流れる(図5参照。)。矢印C3に示す経路はインダクタ13→一次側コイル11→第3スイッチ素子20C→第1導電路1→第1スイッチ素子20Aの経路である。また、矢印C3はインダクタ13と一次側コイル11との間で分岐しており、一次側コイル11→第1ダイオード20E→第1導電路1の経路でも電流が流れる(図5参照。)。このとき、トランス10の一次側において環状の経路を電流が流れる還流期間である。
 次に、第1アームA1のスイッチ素子20A,20Bがターンオン及びターンオフする。具体的には、先ず、第1スイッチ素子20Aがターンオフして、スイッチ素子20A,20Bが共にオフした状態になる。すると、第1スイッチ素子20Aの寄生コンデンサが蓄電されると共に、第2スイッチ素子20Bの寄生コンデンサに蓄電されていた電荷が放電される。このとき、第1ダイオード20Eに電流が流れることによってインダクタ13に流れる電流の減少は抑えられる。そして、第2スイッチ素子20Bがターンオンする。このとき、インダクタ13に流れる電流の減少が抑えられているため、第2スイッチ素子20Bがターンオンする際のターンオン損失は抑えられる。第1ダイオード20Eに電流が流れることによって導通損が生じることになるが、導通損が生じても、第2スイッチ素子20Bにおけるターンオン損失を抑えることの利点が大きい。すると、スイッチング回路20側(トランス10の一次側)に矢印C4に示す経路で電流が流れる(図6参照。)。矢印C4に示す経路は、第1導電路1→第3スイッチ素子20C→一次側コイル11→インダクタ13→第2スイッチ素子20B→第2導電路2の経路である(図6参照。)。インダクタ13は自身に電流が流れることによって電気エネルギーを蓄積する。
 矢印C4に示す経路に流れる電流に対応して出力回路30側(トランス10の二次側)に矢印C5に示す経路で電流が流れる(図6参照。)。矢印C5に示す経路は、第4導電路4→第5スイッチ素子30A→二次側コイル12A→整流出力経路30C→チョークコイル33→第3導電路3の経路である。矢印C5に示す経路に電流が流れ始めると、トランス10の二次側の第5スイッチ素子30A、及び第6スイッチ素子30Bにサージが発生する。すると、サージ電流Scが第2ダイオード20Fからインダクタ13の他端に向けて流れる(図6参照。)。このとき、トランス10の一次側からトランス10の二次側に電力が伝達する伝達期間である。
 次に、第2アームA2のスイッチ素子20C,20Dがターンオン及びターンオフする。具体的には、先ず、第3スイッチ素子20Cがターンオフして、スイッチ素子20C,20Dが共にオフした状態になる。すると、第3スイッチ素子20Cの寄生コンデンサが蓄電されると共に、第4スイッチ素子20Dの寄生コンデンサに蓄電されていた電荷が放電される。そして、第4スイッチ素子20Dがターンオンする。すると、インダクタ13に蓄えられた電気エネルギーによってスイッチング回路20側(トランス10の一次側)に矢印C6に示す経路で電流が流れる(図7参照。)。矢印C6に示す経路はインダクタ13→第2スイッチ素子20B→第2導電路2→第4スイッチ素子20D→一次側コイル11の経路である。また、矢印C6は第2導電路2で分岐しており、第2導電路2→第2ダイオード20F→インダクタ13の経路でも電流が流れる(図7参照。)。このとき、トランス10の一次側において環状の経路を電流が流れる還流期間である。
 そして、第1アームA1のスイッチ素子20A,20Bがターンオン及びターンオフする。具体的には、先ず、第2スイッチ素子20Bがターンオフして、スイッチ素子20A,20Bが共にオフした状態になる。すると、第2スイッチ素子20Bの寄生コンデンサが蓄電されると共に、第1スイッチ素子20Aの寄生コンデンサに蓄電されていた電荷が放電される。このとき、第2ダイオード20Fに電流が流れることによってインダクタ13に流れる電流の減少は抑えられる。そして、第1スイッチ素子20Aがターンオンする。このとき、インダクタ13に流れる電流の減少が抑えられているため、第1スイッチ素子20Aがターンオンする際のターンオン損失は抑えられる。第2ダイオード20Fに電流が流れることによって導通損が生じることになるが、導通損が生じても、第2スイッチ素子20Bにおけるターンオン損失を抑えることの利点が大きい。第1スイッチ素子20Aがターンオンした後、矢印C2に示す経路で電流が流れ始めると、トランス10の二次側の第5スイッチ素子30A、及び第6スイッチ素子30Bにサージが発生する。すると、サージ電流Scが第1ダイオード20Eから第1導電路1に向けて流れる(図4参照。)。こうして、制御部40において、把握した電流値が閾値未満である場合、図4~図7に示す経路で電流が流れることを繰り返す。
〔制御部が把握した電流値が閾値より大きいときの動作〕
 制御部40は把握した電流値が閾値より大きい(すなわち、負荷6に向けて出力する電流が大きい)と判別すると、第1アームA1を進相側アームとして動作させ、第2アームA2を遅相側アームとして動作させるようにスイッチ素子20A,20B,20C,20Dの各々のゲートに向けてPWM信号を出力する。つまり、制御部40は、第1アームA1を進相とし第2アームA2を遅相とする第1動作を行うように第1アームA1及び第2アームA2を制御する。これにより、スイッチング回路20の第1スイッチ素子20A及び第4スイッチ素子20Dと、第2スイッチ素子20B及び第3スイッチ素子20Cとが交互にオンとオフとを繰り返す。
 先ず、図4に示すように、第1スイッチ素子20A及び第4スイッチ素子20Dがオンして第2スイッチ素子20B及び第3スイッチ素子20Cがオフした状態では、スイッチング回路20側(トランス10の一次側)に矢印C1に示す経路で電流が流れる。矢印C1に示す経路は第1導電路1→第1スイッチ素子20A→インダクタ13→一次側コイル11→第4スイッチ素子20D→第2導電路2の経路である。インダクタ13は自身に電流が流れることによって電気エネルギーを蓄積する。矢印C1に示す経路に流れる電流に対応して出力回路30側(トランス10の二次側)に矢印C2に示す経路で電流が流れる。矢印C2に示す経路は、第4導電路4→第6スイッチ素子30B→二次側コイル12B→整流出力経路30C→チョークコイル33→第3導電路3の経路である。このとき、トランス10の一次側からトランス10の二次側に電力が伝達する伝達期間である。
 次に、第1アームA1のスイッチ素子20A,20Bがターンオン及びターンオフする。具体的には、先ず、第1スイッチ素子20Aがターンオフして、スイッチ素子20A,20Bが共にオフした状態になる。すると、第1スイッチ素子20Aの寄生コンデンサが蓄電されると共に、第2スイッチ素子20Bの寄生コンデンサに蓄電されていた電荷が放電される。そして、第2スイッチ素子20Bがターンオンする。すると、インダクタ13に蓄えられた電気エネルギーによってスイッチング回路20側(トランス10の一次側)に矢印C7に示す経路で電流が流れる(図8参照。)。矢印C7に示す経路はインダクタ13→一次側コイル11→第4スイッチ素子20D→第2導電路2→第2スイッチ素子20Bの経路である(図8参照。)。このとき、トランス10の一次側において環状の経路を電流が流れる還流期間である。
 次に、第2アームA2のスイッチ素子20C,20Dがターンオン及びターンオフする。具体的には、先ず、第4スイッチ素子20Dがターンオフして、スイッチ素子20C,20Dが共にオフした状態になる。すると、第4スイッチ素子20Dの寄生コンデンサが蓄電されると共に、第3スイッチ素子20Cの寄生コンデンサに蓄電されていた電荷が放電される。このとき、インダクタ13に流れる電流は急激に減少する。このとき、第1ダイオード20E、第2ダイオード20Fには電流が流れないため、第1ダイオード20E、第2ダイオード20Fにおいて導通損は生じない。そして、第3スイッチ素子20Cがターンオンする。すると、スイッチング回路20側(トランス10の一次側)に矢印C4に示す経路で電流が流れる(図6参照。)。矢印C4に示す経路は、第1導電路1→第3スイッチ素子20C→一次側コイル11→インダクタ13→第2スイッチ素子20B→第2導電路2の経路である(図6参照。)。インダクタ13は自身に電流が流れることによって電気エネルギーを蓄積する。
 矢印C4に示す経路に流れる電流に対応して出力回路30側(トランス10の二次側)に矢印C5に示す経路で電流が流れる(図6参照。)。矢印C5に示す経路は、第4導電路4→第5スイッチ素子30A→二次側コイル12A→整流出力経路30C→チョークコイル33→第3導電路3の経路である。矢印C5に示す経路に電流が流れ始めると、トランス10の二次側の第5スイッチ素子30A、及び第6スイッチ素子30Bにサージが発生する。するとサージ電流Scが第2ダイオード20Fからインダクタ13の他端に向けて流れる(図6参照。)。このとき、トランス10の一次側からトランス10の二次側に電力が伝達する伝達期間である。
 次に、第1アームA1のスイッチ素子20A,20Bがターンオン及びターンオフする。具体的には、先ず、第2スイッチ素子20Bがターンオフして、スイッチ素子20A,20Bが共にオフした状態になる。すると、第2スイッチ素子20Bの寄生コンデンサが蓄電されると共に、第1スイッチ素子20Aの寄生コンデンサに蓄電されていた電荷が放電される。そして、第1スイッチ素子20Aがターンオンする。すると、インダクタ13に蓄えられた電気エネルギーによってスイッチング回路20側(トランス10の一次側)に矢印C8に示す経路で電流が流れる(図9参照。)。矢印C8に示す経路はインダクタ13→第1スイッチ素子20A→第1導電路1→第3スイッチ素子20C→一次側コイル11の経路である(図9参照。)。このとき、トランス10の一次側において環状の経路を電流が流れる還流期間である。
 そして、第2アームA2のスイッチ素子20C,20Dがターンオン及びターンオフする。具体的には、先ず、第3スイッチ素子20Cがターンオフして、スイッチ素子20C,20Dが共にオフした状態になる。すると、第3スイッチ素子20Cの寄生コンデンサが蓄電されると共に、第4スイッチ素子20Dの寄生コンデンサに蓄電されていた電荷が放電される。このとき、インダクタ13に流れる電流は急激に減少する。このとき、第1ダイオード20E、第2ダイオード20Fには電流が流れないため、第1ダイオード20E、第2ダイオード20Fにおいて導通損は生じない。そして、第4スイッチ素子20Dがターンオンする。第4スイッチ素子20Dがターンオンした後、矢印C2に示す経路で電流が流れ始めると、トランス10の二次側の第5スイッチ素子30A、及び第6スイッチ素子30Bにサージが発生する。すると、サージ電流Scが第1ダイオード20Eから第1導電路1に向けて流れる(図4参照。)。こうして、制御部40において、把握した電流値が閾値より大きい場合、図4、8、6、9に示す経路で電流が流れることを繰り返す。
〔制御部が把握した電流値が閾値未満である状態から大きい状態に変化したときの動作〕
 制御部40は把握した電流値が閾値未満である状態から大きい状態に変化したと判別する。すると、制御部40は第1アームA1を遅相側アームから進相側アームとして動作させ、第2アームA2を進相側アームから遅相側アームとして動作させるようにスイッチ素子20A,20B,20C,20Dの各々のゲートに向けてPWM信号を出力する。つまり、制御部40は、第1アームA1を進相とし第2アームA2を遅相とする第1動作と、第2アームA2を進相とし第1アームA1を遅相とする第2動作とを切り替える制御を行う。例えば、図10に示すように、時刻Sから時刻Bまでは、制御部40は第1アームA1を遅相側アームとし、第2アームA2を進相側アームとして動作させるようにスイッチ素子20A,20B,20C,20Dの各々のゲートに向けてPWM信号を出力する。時刻Sから時刻Bまでの間は、第2アームA2に対して第1アームA1は位相θ1遅れた状態である。
 時刻Bに制御部40が把握した電流値が閾値より大きい状態に変化したと判別する。すると、時刻B以降では、制御部40は第1アームA1を進相側アームとして動作させ、第2アームA2を遅相側アームとして動作させるようにスイッチ素子20A,20B,20C,20Dの各々のゲートに向けてPWM信号を出力する。時刻B以降は、第1アームA1に対して第2アームA2が位相θ2遅れた状態である。位相θ1,θ2は同じでもよく、異なっていてもよい。
 時間T6において、第1アームA1のスイッチ素子20A,20Bがターンオン及びターンオフする。具体的には、先ず、第1スイッチ素子20Aがターンオフする。すると、第1スイッチ素子20Aの寄生コンデンサが蓄電されると共に、第2スイッチ素子20Bの寄生コンデンサに蓄電されていた電荷が放電される。そして、第2スイッチ素子20Bがターンオンする。すると、インダクタ13に蓄えられた電気エネルギーによってスイッチング回路20側(トランス10の一次側)に矢印C4に示す経路で電流が流れる(図6参照。)。
 そして、時刻Bに制御部40が把握した電流値が閾値より大きい状態に変化したと判別する。すると、時間T7において、第1アームA1のスイッチ素子20A,20Bがターンオン及びターンオフする。具体的には、先ず、第2スイッチ素子20Bがターンオフした後、第1スイッチ素子20Aがターンオンする。
 そして、時間T8において、第2アームA2のスイッチ素子20C,20Dがターンオン及びターンオフする。具体的には、先ず、第3スイッチ素子20Cがターンオフした後、第4スイッチ素子20Dがターンオンする。すると、図4に示す矢印C1に示す経路で電流が流れる。こうして、制御部40において、把握した電流値が閾値より大きい場合、図4、8、6、9に示す経路で電流が流れることを繰り返すのである。
 次に、本構成の効果を例示する。
 1つ目の開示の絶縁型DCDCコンバータ100は、トランス10、スイッチング回路20、保護回路21、制御部40、インダクタ13、及び出力回路30を備えている。トランス10は一次側コイル11及び二次側コイル12A,12Bを有する。スイッチング回路20は第1スイッチ素子20Aと第2スイッチ素子20Bと第3スイッチ素子20Cと第4スイッチ素子20Dとを備えるフルブリッジ型である。保護回路21は第1ダイオード20Eと第2ダイオード20Fとを有する。制御部40はスイッチング回路20の動作を制御する。出力回路30は二次側コイル12A,12Bに接続される。第1導電路1と第2導電路2との間に第1スイッチ素子20Aと第2スイッチ素子20Bとが直列に接続されて第1アームA1が構成されている。第1導電路1と第2導電路2との間に第3スイッチ素子20Cと第4スイッチ素子20Dとが直列に接続されて第2アームA2が構成されている。第1スイッチ素子20Aと第2スイッチ素子20Bとの間の第1接続点P1にインダクタ13の一端が電気的に接続されている。インダクタ13の他端が、一次側コイル11の一端と第1ダイオード20Eのアノードと第2ダイオード20Fのカソードとに電気的に接続されている。第3スイッチ素子20Cと第4スイッチ素子20Dとの間の第2接続点P2に一次側コイル11の他端が電気的に接続されている。第1ダイオード20Eのカソードが第1導電路1に電気的に接続されている。1つ目の開示の絶縁型DCDCコンバータ100は第2ダイオード20Fのアノードが第2導電路2に電気的に接続された位相シフト方式の絶縁型DCDCコンバータである。1つ目の開示の絶縁型DCDCコンバータ100は出力回路30に流れる電流の電流値を検出する第2電流検出部40Dを備えている。制御部40は、第1アームA1を進相とし第2アームA2を遅相とする第1動作と、第2アームA2を進相とし第1アームA1を遅相とする第2動作とを切り替える制御を行う。制御部40は、第2電流検出部40Dが検出した電流値に基づき、電流値が所定の閾値未満のとき、第1アームA1と第2アームA2とに第2動作をさせる。
 このため、この絶縁型DCDCコンバータ100はトランス10の二次側コイル12A,12Bで発生するリカバリーサージを保護回路21によって吸収することができる。これと共に、この絶縁型DCDCコンバータ100は第2電流検出部40Dで検出した電流値が所定の閾値未満である(すなわち、負荷6に流れる電流が比較的小さいと想定される)とき、遅相として動作する第1アームA1にインダクタ13を介して電流を供給することになる。このとき、第1ダイオード20E及び第2ダイオード20Fに電流が流れることによってインダクタ13に流れる電流の大きさが維持し易くなるため、遅相として動作する第1アームA1のターンオン損失を低減する効果が大きくなる。これにより第1アームA1のZVSを実現し易くなるため、効率を高くすることができる。この場合、第1ダイオード20E及び第2ダイオード20Fに電流が流れることによって導通損が生じることになるが、この導通損以上に第1アームA1のターンオン損失を低減する利点が大きい。
 2つ目の開示の絶縁型DCDCコンバータ100は、トランス10、スイッチング回路20、保護回路21、制御部40、インダクタ13、及び出力回路30を備えている。トランス10は一次側コイル11及び二次側コイル12A,12Bを有する。スイッチング回路20は第1スイッチ素子20Aと第2スイッチ素子20Bと第3スイッチ素子20Cと第4スイッチ素子20Dとを備えるフルブリッジ型である。保護回路21は第1ダイオード20Eと第2ダイオード20Fとを有する。制御部40はスイッチング回路20の動作を制御する。出力回路30は二次側コイル12A,12Bに接続される。第1導電路1と第2導電路2との間に第1スイッチ素子20Aと第2スイッチ素子20Bとが直列に接続されて第1アームA1が構成されている。第1導電路1と第2導電路2との間に第3スイッチ素子20Cと第4スイッチ素子20Dとが直列に接続されて第2アームA2が構成されている。第1スイッチ素子20Aと第2スイッチ素子20Bとの間の第1接続点P1にインダクタ13の一端が電気的に接続されている。インダクタ13の他端が、一次側コイル11の一端と第1ダイオード20Eのアノードと第2ダイオード20Fのカソードとに電気的に接続されている。第3スイッチ素子20Cと第4スイッチ素子20Dとの間の第2接続点P2に一次側コイル11の他端が電気的に接続されている。第1ダイオード20Eのカソードが第1導電路1に電気的に接続されている。2つ目の開示の絶縁型DCDCコンバータ100は第2ダイオード20Fのアノードが第2導電路2に電気的に接続された位相シフト方式の絶縁型DCDCコンバータである。2つ目の開示の絶縁型DCDCコンバータ100は出力回路30に流れる電流の電流値を検出する第2電流検出部40Dを備えている。制御部40は、第1アームA1を進相とし第2アームA2を遅相とする第1動作と、第2アームA2を進相とし第1アームA1を遅相とする第2動作とを切り替える制御を行う。制御部40は、第2電流検出部40Dが検出した電流値に基づき、電流値が所定の閾値より大きいとき、第1アームA1と第2アームA2とに第1動作をさせる。
 このため、この絶縁型DCDCコンバータ100はトランス10の二次側コイル12A,12Bで発生するリカバリーサージを保護回路21によって吸収することができる。これと共に、この絶縁型DCDCコンバータ100は第2電流検出部40Dで検出した電流値が所定の閾値より大きい(すなわち、負荷6に流れる電流が比較的大きいと想定される)とき、インダクタ13に流れる電流が大きくなるため、遅相として動作する第2アームA2におけるZVSを実現できるだけのエネルギーをインダクタ13が蓄えることができる。さらに、インダクタ13が接続される第1アームA1を進相として動作させることによって、還流期間中に第1ダイオード20Eと第2ダイオード20Fとに電流が流れないようにすることができる。したがって、第1ダイオード20Eと第2ダイオード20Fとに電流が流れる際に生じる導通損が生じないため、効率を高くすることができる。
 図11に示すように、インダクタを遅相のアームに接続した場合、インダクタを進相のアームに接続した場合とでは、出力電流が所定の値Kにおいて大小が入れ替わる。特に、出力電流が所定の値Kよりも大きい場合、インダクタを進相のアームに接続する方がインダクタを遅相のアームに接続するよりも効率が高い。図11に示す結果は、上記した作用及び効果によってもたらされたことを示している。
 本開示の絶縁型DCDCコンバータ100の制御部40は、第2電流検出部40Dが検出した電流値に基づき、電流値が所定の閾値より大きいとき、第1アームA1と第2アームA2とに第1動作をさせる。
 この構成によれば、電流値が所定の閾値未満であるとき及び大きいときの両方で効率を高くすることができる。また、制御部40によって各アームの動作を制御する構成であるため、実際にインダクタ13の一端の接続を切り替えるような仕組みは必要としない。つまり、本開示の絶縁型DCDCコンバータ100は部品を追加することなく各アームにおける進相又は遅相を切り替えることができる。
 本開示の絶縁型DCDCコンバータの閾値は、第1アームA1と第2アームA2とに第1動作をさせた場合と、第1アームA1と第2アームA2とに第2動作をさせた場合とで、入力電力に対する出力電力の割合である効率が同じになる場合の出力電流値に基づく値である。
 この構成によれば、このような閾値を用いることによって、閾値未満の領域と大きい領域の両方で効率が高くなるように第1アームA1と第2アームA2との動作を適切に切り替えることができる。
 <他の実施形態>
 本構成は上記記述及び図面によって説明した実施形態に限定されるものではなく、例えば次のような実施形態も本発明の技術的範囲に含まれる。
 実施形態1では、時間T6と時間T7との間の時刻Bで制御部40が第1アームA1及び第2アームA2の動作を切り替えているが、第1アームA1及び第2アームA2の動作を切り替えるタイミングは他のタイミングで行ってもよい。なお、スイッチ素子20A,20Dがオンしている期間で第1アームA1及び第2アームA2の動作を切り替える場合には、スイッチ素子20A,20Dがオンしている状態を所定の時間よりも長く継続させておく必要がある。
 実施形態1では、第5スイッチ素子30A及び第6スイッチ素子30BにMOSFETを用いているが、ダイオードを用いる構成としてもよい。
 実施形態1では、制御部40がマイクロコンピュータを主体として構成されているが、マイクロコンピュータ以外の複数のハードウェア回路によって実現されてもよい。
 実施形態1では、第2電流検出部40Eで検出した電流値と閾値とを比較しているが、第1電流検出部40Cで検出した電流値、第1電圧検出部40A又は第2電圧検出部40Bで検出した電圧値に基づいて出力回路に流れる電流を求めてもよい。
 実施形態1では、第1アームA1を遅相側アームとし第2アームA2を進相アームとした状態から、負荷6に向けて出力する電流が閾値より大きくなったときに第1アームA1を進相側アームとし第2アームA2を遅相アームに切り替えている。これに対して、第1アームA1を進相側アームとし第2アームA2を遅相アームとした状態から、負荷6に向けて出力する電流が閾値より小さくなったときに第1アームA1を遅相側アームとし第2アームA2を進相アームに切り替えてもよい。
 図11にインダクタ13を遅相のアームと進相のアームとの各々に接続した場合の効率を測定した結果の一例を例示したが、本開示は測定結果に限定されない。
 今回開示された実施の形態は全ての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は、今回開示された実施の形態に限定されるものではなく、特許請求の範囲によって示され、特許請求の範囲と均等の意味及び範囲内での全ての変更が含まれることが意図される。
1…第1導電路
2…第2導電路
3…第3導電路
4…第4導電路
6…負荷
7…入力コンデンサ
10…トランス
11…一次側コイル
12A,12B…二次側コイル
13…インダクタ
14…励磁インダクタンス
20…スイッチング回路
20A…第1スイッチ素子
20B…第2スイッチ素子
20C…第3スイッチ素子
20D…第4スイッチ素子
20E…第1ダイオード
20F…第2ダイオード
20G,20H,20J,20K…寄生ダイオード
21…保護回路
30…出力回路
30A…第5スイッチ素子
30B…第6スイッチ素子
30C…整流出力経路
33…チョークコイル
34…出力コンデンサ
40…制御部
40A…第1電圧検出部(電圧検出部)
40C…第1電流検出部(電流検出部)
100…絶縁型DCDCコンバータ
G…グラウンド経路
P1…第1接続点
P2…第2接続点
P3…第3接続点
A1…第1アーム
A2…第2アーム
Vin…入力電圧
Vout…出力電圧

Claims (4)

  1.  一次側コイル及び二次側コイルを有するトランスと、
     第1スイッチ素子と第2スイッチ素子と第3スイッチ素子と第4スイッチ素子とを備えるフルブリッジ型のスイッチング回路と、
     第1ダイオードと第2ダイオードとを有する保護回路と、
     前記スイッチング回路の動作を制御する制御部と、
     インダクタと、
     前記二次側コイルに接続される出力回路と、
     を備え、
     第1導電路と第2導電路との間に前記第1スイッチ素子と前記第2スイッチ素子とが直列に接続されて第1アームが構成され、
     前記第1導電路と前記第2導電路との間に前記第3スイッチ素子と前記第4スイッチ素子とが直列に接続されて第2アームが構成され、
     前記インダクタの一端が、前記第1スイッチ素子と前記第2スイッチ素子との間の第1接続点に電気的に接続され、
     前記インダクタの他端が、前記一次側コイルの一端と前記第1ダイオードのアノードと前記第2ダイオードのカソードとに電気的に接続され、
     前記第3スイッチ素子と前記第4スイッチ素子との間の第2接続点に前記一次側コイルの他端が電気的に接続され、
     前記第1ダイオードのカソードが前記第1導電路に電気的に接続され、
     前記第2ダイオードのアノードが前記第2導電路に電気的に接続された位相シフト方式の絶縁型DCDCコンバータであって、
     前記出力回路に流れる電流の電流値を検出する電流検出部と、を備え、
     前記制御部は、前記第1アームを進相とし前記第2アームを遅相とする第1動作と、前記第2アームを進相とし前記第1アームを遅相とする第2動作とを切り替える制御を行い、前記電流検出部が検出した前記電流値に基づき、少なくとも前記電流値が所定の閾値未満のとき、前記第1アームと前記第2アームとに前記第2動作をさせる絶縁型DCDCコンバータ。
  2.  一次側コイル及び二次側コイルを有するトランスと、
     第1スイッチ素子と第2スイッチ素子と第3スイッチ素子と第4スイッチ素子とを備えるフルブリッジ型のスイッチング回路と、
     第1ダイオードと第2ダイオードとを有する保護回路と、
     前記スイッチング回路の動作を制御する制御部と、
     インダクタと、
     前記二次側コイルに接続される出力回路と、
     を備え、
     第1導電路と第2導電路との間に前記第1スイッチ素子と前記第2スイッチ素子とが直列に接続されて第1アームが構成され、
     前記第1導電路と前記第2導電路との間に前記第3スイッチ素子と前記第4スイッチ素子とが直列に接続されて第2アームが構成され、
     前記インダクタの一端が、前記第1スイッチ素子と前記第2スイッチ素子との間の第1接続点に電気的に接続され、
     前記インダクタの他端が、前記一次側コイルの一端と前記第1ダイオードのアノードと前記第2ダイオードのカソードとに電気的に接続され、
     前記第3スイッチ素子と前記第4スイッチ素子との間の第2接続点に前記一次側コイルの他端が電気的に接続され、
     前記第1ダイオードのカソードが前記第1導電路に電気的に接続され、
     前記第2ダイオードのアノードが前記第2導電路に電気的に接続された位相シフト方式の絶縁型DCDCコンバータであって、
     前記出力回路に流れる電流の電流値を検出する電流検出部と、を備え、
     前記制御部は、前記第1アームを進相とし前記第2アームを遅相とする第1動作と、前記第2アームを進相とし前記第1アームを遅相とする第2動作とを切り替える制御を行い、前記電流検出部が検出した前記電流値に基づき、少なくとも前記電流値が所定の閾値より大きいとき、前記第1アームと前記第2アームとに前記第1動作をさせる絶縁型DCDCコンバータ。
  3.  前記制御部は、前記電流検出部が検出した前記電流値に基づき、前記電流値が前記閾値より大きいとき、前記第1アームと前記第2アームとに前記第1動作をさせる請求項1に記載の絶縁型DCDCコンバータ。
  4.  前記閾値は、前記第1アームと前記第2アームとに前記第1動作をさせた場合と、前記第1アームと前記第2アームとに前記第2動作をさせた場合とで、入力電力に対する出力電力の割合である効率が同じになる場合の出力電流値に基づく値である請求項1から請求項3のいずれか一項に記載の絶縁型DCDCコンバータ。
PCT/JP2020/033163 2019-10-21 2020-09-02 絶縁型dcdcコンバータ WO2021079625A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019-191729 2019-10-21
JP2019191729A JP2021069165A (ja) 2019-10-21 2019-10-21 絶縁型dcdcコンバータ

Publications (1)

Publication Number Publication Date
WO2021079625A1 true WO2021079625A1 (ja) 2021-04-29

Family

ID=75620494

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/033163 WO2021079625A1 (ja) 2019-10-21 2020-09-02 絶縁型dcdcコンバータ

Country Status (2)

Country Link
JP (1) JP2021069165A (ja)
WO (1) WO2021079625A1 (ja)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004074258A (ja) * 2002-08-22 2004-03-11 Daihen Corp アーク加工用電源装置
US20080298087A1 (en) * 2007-05-30 2008-12-04 Mozipo Aurelien T Switching sequence control method for a PS-ZVT bridge converter
JP2011166949A (ja) * 2010-02-10 2011-08-25 Hitachi Ltd 電源装置、ハードディスク装置、及び電源装置のスイッチング方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004074258A (ja) * 2002-08-22 2004-03-11 Daihen Corp アーク加工用電源装置
US20080298087A1 (en) * 2007-05-30 2008-12-04 Mozipo Aurelien T Switching sequence control method for a PS-ZVT bridge converter
JP2011166949A (ja) * 2010-02-10 2011-08-25 Hitachi Ltd 電源装置、ハードディスク装置、及び電源装置のスイッチング方法

Also Published As

Publication number Publication date
JP2021069165A (ja) 2021-04-30

Similar Documents

Publication Publication Date Title
EP3787171A1 (en) Isolated dc/dc converters for wide output voltage range and control methods thereof
US9160242B2 (en) Electric power conversion device
US9431917B2 (en) Switching power supply including a rectifier circuit having switching elements, and electric power converter
JP5590124B2 (ja) Dc−dcコンバータ
US20080043506A1 (en) Dc-ac converter
US7242595B2 (en) Switching power supply circuit
US10566909B2 (en) DC-DC converter and method for operating same
US9537412B2 (en) Direct current voltage conversion device and clamping circuit
CN109874375B (zh) 电力变换装置
US20100220500A1 (en) Power converter and method for controlling power converter
US20080037290A1 (en) Ac-dc converter and method for driving for ac-dc converter
US10622905B2 (en) DC-DC converter
US10090752B2 (en) Power conversion device
JP2015181329A (ja) 電力変換装置
KR102453825B1 (ko) 직류-직류 컨버터
JP6033649B2 (ja) Dc−dcコンバータ
US11296607B2 (en) DC-DC converter
JP2001333576A (ja) Dc/dcコンバータの制御方法
JP6458235B2 (ja) スイッチング電源装置
JP5105819B2 (ja) Dc−dcコンバータ
WO2021079625A1 (ja) 絶縁型dcdcコンバータ
US20080037299A1 (en) Method for driving dc-ac converter
CN108141142B (zh) 供电装置
JP4635584B2 (ja) スイッチング電源装置
JP2019057978A (ja) 電力変換装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20879367

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20879367

Country of ref document: EP

Kind code of ref document: A1