WO2021078238A1 - 具有扭转减振器的液力变矩器和包括其的机动车辆 - Google Patents

具有扭转减振器的液力变矩器和包括其的机动车辆 Download PDF

Info

Publication number
WO2021078238A1
WO2021078238A1 PCT/CN2020/123120 CN2020123120W WO2021078238A1 WO 2021078238 A1 WO2021078238 A1 WO 2021078238A1 CN 2020123120 W CN2020123120 W CN 2020123120W WO 2021078238 A1 WO2021078238 A1 WO 2021078238A1
Authority
WO
WIPO (PCT)
Prior art keywords
torque converter
stop
converter according
turbine
boss
Prior art date
Application number
PCT/CN2020/123120
Other languages
English (en)
French (fr)
Inventor
李茂辉
胡勋
殷英
李璐
孟腾
应学军
韩冬梅
Original Assignee
法雷奥凯佩科液力变矩器(南京)有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN201911023452.0A external-priority patent/CN112709799A/zh
Priority claimed from CN201911023454.XA external-priority patent/CN112709797B/zh
Priority claimed from CN201911022770.5A external-priority patent/CN112709798B/zh
Application filed by 法雷奥凯佩科液力变矩器(南京)有限公司 filed Critical 法雷奥凯佩科液力变矩器(南京)有限公司
Priority to JP2022524274A priority Critical patent/JP2022554224A/ja
Priority to KR1020227015975A priority patent/KR102678851B1/ko
Publication of WO2021078238A1 publication Critical patent/WO2021078238A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H41/00Rotary fluid gearing of the hydrokinetic type
    • F16H41/04Combined pump-turbine units
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H41/00Rotary fluid gearing of the hydrokinetic type
    • F16H41/24Details
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H45/00Combinations of fluid gearings for conveying rotary motion with couplings or clutches
    • F16H45/02Combinations of fluid gearings for conveying rotary motion with couplings or clutches with mechanical clutches for bridging a fluid gearing of the hydrokinetic type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H45/00Combinations of fluid gearings for conveying rotary motion with couplings or clutches
    • F16H45/02Combinations of fluid gearings for conveying rotary motion with couplings or clutches with mechanical clutches for bridging a fluid gearing of the hydrokinetic type
    • F16H2045/0221Combinations of fluid gearings for conveying rotary motion with couplings or clutches with mechanical clutches for bridging a fluid gearing of the hydrokinetic type with damping means

Definitions

  • the present disclosure relates to a hydraulic torque converter with a torsional vibration damper.
  • the present disclosure also relates to a motor vehicle including such a torque converter.
  • a torque converter is provided between the engine and the transmission of an automatic transmission motor vehicle.
  • the torque converter is used to transmit the driving power of the engine to the transmission, and can play a role in transmitting torque and torque conversion.
  • the torque converter includes a cover driven by a driving component on the engine side, a pump wheel fixedly connected to the cover in rotation, and a turbine connected to the transmission input shaft, and can be switched between a fluid transmission mode and a mechanical transmission mode through a piston disc .
  • the torque converter works in fluid transmission mode.
  • the pump wheel of the torque converter drives the turbine through fluid (usually oil).
  • the torque converter switches to mechanical transmission mode.
  • torque is mechanically transferred from the cover to the turbine through the piston disc and/or other transmission mechanism without passing through the pump wheel.
  • the torque produced by the engine of a motor vehicle is usually not constant.
  • this non-constant torque may be transmitted to the transmission, causing vibration of the transmission gear box, and thus generating particularly undesirable noise or impact.
  • a torque converter In order to reduce the adverse effects of vibration and improve the driving comfort of motor vehicles, it is known to equip a torque converter with a torsional vibration damper.
  • Torsional shock absorbers can allow to absorb and reduce the vibration generated by the car engine.
  • the torsion damper is usually arranged between the piston disk and the turbine, and includes an elastic member such as a spring to transmit torque between the two.
  • Chinese patent CN104235301B discloses a hydraulic torque converter with a torsional vibration damper mounted on a piston disk.
  • the holding plate for holding the spring is fixed on the piston disk by rivets.
  • a radially extending holding portion is formed on the holding plate, and a plurality of transmission claws are welded and fixed to the turbine for transmitting torque between the piston disk and the turbine.
  • Japanese patent application JPH06147294A also discloses a similar hydraulic torque converter with a torsional vibration damper mounted on a piston disk.
  • the annular drive disk that holds the spring of the torsion damper and transmits torque is fixed on the piston disk by rivets, and the turbine is fixedly provided with a plurality of tabs for transmitting torque.
  • the fixing of the annular drive disc to the piston disc requires a special riveting process, and the fixing of the tabs to the turbine requires a special welding process. This makes the manufacturing process of the torque converter complicated.
  • the tabs welded to the turbine are prone to deform or even fall off.
  • Korean patent application KR20070096471A also discloses a torque converter with a torsional vibration damper mounted on a piston disk. Similarly, an annular drive disc that holds the spring of the torsion damper and transmits torque is fixed to the piston disc by rivets.
  • the turbine shell is provided with a plurality of protrusions integrally formed with the turbine shell for torque transmission, so that the welding process of the torque transmission element can be omitted.
  • the tabs are arranged at the radial edge of the turbine shell, thereby increasing the outline diameter of the turbine shell, increasing the material consumed in manufacturing the turbine shell, and causing an increase in cost.
  • the torsion damper is usually arranged between the piston disk and the turbine.
  • the US patent application US6056093A discloses a hydraulic torque converter in which a torsional vibration damper is arranged between the turbine and the output hub.
  • a cover disc element for holding the spring of the torsion damper is fixed to the turbine housing, and the cover disc element includes a protrusion that engages with the piston disc, thereby transmitting torque to the turbine.
  • the output hub includes a flange integrally extending radially outward, which, together with the protrusion on the turbine housing, holds the spring in the circumferential direction and transmits torque.
  • the aforementioned Chinese Patent CN104235301B discloses a torque converter including two torsion dampers and two stop mechanisms.
  • the holding plate for holding the spring of the torsion shock absorber is respectively fixed on the piston disk and the turbine by rivets.
  • a through notch is formed on the holding plate, a plurality of transmission claws are welded and fixed on the turbine, and the transmission claws extend into the notch and engage with the notch.
  • the two constitute a first stop mechanism.
  • the rivet for fixing the retaining plate on the turbine extends into the through hole formed on the output side plate of the turbine hub, thereby constituting a second stopper mechanism.
  • the two stop parts included in the first and second stop mechanisms are of different types and require different processes (for example, the transfer claw needs to be welded, the rivet needs to be riveted, and the cut part needs to be stamped or machined). This makes the manufacturing process of the torque converter complicated and easy to damage.
  • additional components such as the retaining plate and the input side plate need to be arranged in the axial direction, which increases the axial size of the torque converter and compresses the space for installing other torque transmitting components such as the transmission.
  • the holding element and the torque transmitting element arranged in the axial direction increase the axial size of the torque converter, compressing the space for installing other torque transmitting components such as a transmission.
  • the present disclosure aims to solve the above-mentioned problems in the conventional hydraulic torque converter, and its purpose is to provide a hydraulic torque converter, which can save manufacturing cost, reduce the size, and increase the installation space of other torque transmission components. .
  • a hydraulic torque converter including a torsional vibration damper which includes: a cover, which is rotationally driven by a driving component on the engine side of a motor vehicle, so as to convert the torque around the hydraulic force.
  • the rotation axis of the motor rotates;
  • the pump wheel is rotationally fixedly connected with the cover so as to rotate together with the cover;
  • the turbine which includes a turbine casing and blades, which is driven to rotate around the rotation axis and transmits torque to the transmission of the motor vehicle
  • the piston disc which includes a friction surface, the piston disc can be actuated to make the hydraulic torque converter operatively switch between the fluid transmission mode and the mechanical transmission mode, in the fluid transmission mode, the pump wheel
  • the rotation of the axis of rotation generates fluid flow, which then drives the turbine.
  • the friction surface abuts the cover, so that the cover and the piston disk rotate integrally; at least one torsion damper is held between the piston disk and the turbine.
  • the torque is transmitted from the piston disk to the turbine, and the torsion damper includes at least one spring.
  • the torque converter according to the present disclosure may also have one or more of the following features alone or in combination.
  • the piston disk is provided with an annular groove formed integrally with the piston disk, and the compression and resetting of the spring is guided by the annular groove during torque transmission.
  • the piston disc may cooperate with the turbine to hold the spring of the torsion damper in the annular groove. Since the piston disc itself can guide the spring and cooperate with the turbine to hold the torsion damper, there is no need to provide a special torsion damper holding and guiding component in the hydraulic torque converter. This design thus allows to reduce the size of the torque converter, especially the axial size, and reduce the number of required components, reduce the manufacturing cost of the torque converter, and make it easier to install.
  • the annular groove has a substantially rectangular cross-sectional shape, including an inner side wall located on the radially inner side, an outer side wall located on the radially outer side, and a bottom surface connecting the inner side wall and the outer side wall.
  • the outer side wall of the annular groove constitutes the radial outer edge of the piston disk, that is, the annular groove is located at the radially outermost part of the piston disk.
  • the bottom surface of the annular groove is a flat bottom surface, and the friction surface is arranged on the axially opposite surface of the bottom surface.
  • the end of the outer side wall of the annular groove includes an inward curling edge.
  • the inward curling can reduce the opening of the annular groove.
  • the opening of the annular groove can be narrowed by crimping to just fit the spring. This design makes it possible to install the spring and to prevent the spring from falling out of the annular groove together with the turbine wheel.
  • the annular groove may also have a cross section of other shapes.
  • the cross-section of the annular groove is semicircular, and its diameter is slightly larger than the diameter of the spring of the torsion damper, so as to facilitate accommodating and holding the spring.
  • the friction surface can be provided at other positions of the piston disc.
  • the annular groove is provided with one or more spring driving parts, and the spring driving part can carry the spring seat part, thereby driving the spring accommodated in the annular groove to transmit torque.
  • the piston disk itself can drive the spring without providing a drive disk or other torque transmission components dedicated to drive the spring. This can further reduce the number of components of the torque converter and reduce manufacturing costs.
  • the spring driving portion includes an inner boss projecting radially outward on the inner side wall of the annular groove, and an outer boss projecting radially inward on the outer side wall of the annular groove.
  • the inner boss and the outer boss face each other in the radial direction.
  • the inner boss and the outer boss thus define a narrowed portion of the annular groove, the narrowed portion having a width smaller than the diameter of the spring.
  • the spring seat can abut the corresponding side walls of the inner boss and the outer boss.
  • the corresponding side walls of the inner boss and the outer boss are located on the same radial plane passing through the rotation axis of the torque converter.
  • the inner boss and the outer boss correspond to the same central angle of the piston disk.
  • the bottom surface of the spring seat that abuts against the corresponding side walls of the inner boss and the outer boss is also located on the radial plane, so that the spring seat can be uniformly stressed, which is beneficial to enhance the smoothness of torque transmission.
  • the spring driving part may also be a protruding piece extending from the inner side wall and/or the outer side wall of the annular groove to the inside of the annular groove.
  • the side wall of the tab carries the seat of the spring to drive the spring and transmit torque. This arrangement can simplify the design of the spring drive part and reduce the steps required to manufacture the piston disk.
  • the annular groove is provided with three spring driving parts evenly distributed in the circumferential direction.
  • the three spring driving parts can divide the annular groove into three groove segments, and each groove segment can accommodate a spring.
  • the torsion damper includes three springs. It is conceivable that the annular groove can also be provided with a different number of spring driving parts, such as two spring driving parts, four spring driving parts, five spring driving parts, or more. Correspondingly, the number of springs included in the torsion shock absorber is therefore different.
  • the turbine shell includes a curved body having a curvature and corresponding to the blade in an axial direction, and the curved body is provided with a protrusion integrally formed with the turbine shell to receive the piston disk
  • the torque transmitted via the torsion damper, that is, the protrusion can act as a torque transmitting portion.
  • the turbine shell itself can receive the torque transmitted by the torsion damper, so there is no need to provide a special drive disc, and there is no need to weld or otherwise attach a torque transmission element to the turbine shell.
  • This design thus allows to reduce the number of required components, reduce the size of the torque converter, including axial and radial dimensions, save the material consumed in manufacturing the turbine shell, and reduce the manufacturing cost of the torque converter.
  • the protrusion is a boss formed on the curved body of the turbine shell.
  • the radial position of the boss corresponds to the radial position of the spring of the torsion damper.
  • the seat of the spring can abut against the side wall of the boss to apply a biasing force in the tangential direction of the circumference to the boss to realize torque transmission.
  • the side wall of the boss is located on a radial plane passing through the rotation axis of the torque converter.
  • the bottom surface of the spring seat against the side wall of the boss is also located on the radial plane, so that the spring seat can be uniformly stressed, which is beneficial to enhance the smoothness of torque transmission.
  • the protrusion is a hook formed on the curved body of the turbine shell.
  • the radial position of the hook corresponds to the radial position of the spring of the torsion damper.
  • the seat of the spring can abut against the side of the hook to apply a biasing force in the tangential direction of the circumference to the hook to realize torque transmission.
  • the side of the hook is located on a radial plane passing through the rotation axis of the torque converter.
  • the bottom surface of the spring seat against the side of the boss is also located on the radial plane, so that the spring seat can be uniformly stressed, which is beneficial to enhance the smoothness of torque transmission.
  • the turbine is provided with three protrusions uniformly distributed in the circumferential direction. Specifically, the radial positions of the three protrusions on the curved main body of the turbine shell are the same, and the spring of the torsion damper is located between two adjacent protrusions. Accordingly, the torsion damper includes three springs. It is conceivable that the turbine can also be provided with a different number of protrusions, such as two protrusions, four protrusions, five protrusions, or more. Correspondingly, the number of springs included in the torsion shock absorber is therefore different.
  • the piston disk is provided with one or more first stop protrusions integrally formed with the piston disk
  • the turbine shell is provided with one or more first stop protrusions integrally formed with the turbine shell.
  • the second stopper protrusion, and the first stopper protrusion and the second stopper protrusion can cooperate with each other to limit the compression amount of the spring of the torsion damper. Specifically, when the compression amount of the spring reaches a predetermined threshold, the first stop protrusion and the second stop protrusion interfere, limiting the relative displacement between the turbine shell and the piston disk in the circumferential direction, so that the spring cannot be compressed.
  • first stopper protrusion and the second stopper protrusion are of the same type and can be manufactured by the same process, the manufacturing steps of the torque converter can be simplified.
  • the first stop protrusion and the second stop protrusion are integrally arranged on the piston disk and the turbine shell, respectively, and there is no need to provide additional special holding elements and torque transmission elements to set the stop mechanism, thereby compressing the torque converter
  • the axial size increases the installation space of other torque transmission components.
  • the first stop protrusion is a first stop boss that protrudes from the piston disk toward the turbine shell
  • the second stop protrusion is a second stop protrusion that protrudes from the turbine shell toward the piston disk. Stop boss.
  • the radial positions of the first stop boss and the second stop boss correspond to each other.
  • the side walls of the first stop boss and the second stop boss are located on a radial plane passing through the rotation axis of the torque converter.
  • the piston disk includes an axially extending portion extending toward the turbine at its radially inner edge, and the first stop protrusion is axially extending at an end of the axially extending portion And the second stop protrusion is a second stop tooth extending radially at the radially inner edge of the turbine shell.
  • the compression amount of the spring reaches the predetermined threshold value
  • the opposite side walls of the first stop tooth and the second stop tooth abut against each other, thereby realizing the function of limiting the compression amount of the spring of the torsion damper.
  • the side walls of the first stop tooth and the second stop tooth are located on a radial plane passing through the rotation axis of the torque converter.
  • the piston disk is provided with three first stop protrusions uniformly distributed in the circumferential direction
  • the turbine shell is provided with three second stop protrusions uniformly distributed in the circumferential direction. It is conceivable that the piston disk can also be provided with a different number of first stop protrusions, and/or the turbine shell can also be provided with a different number of second stop protrusions.
  • the torque converter may also include multiple torsional vibration dampers to further enhance the vibration damping effect.
  • the torsional vibration damper located on the radially outer side is a first torsional vibration damper
  • the hydraulic torque converter further includes a second torsional vibration damper located on the radially inner side.
  • the second torsional vibration damper may have a configuration similar to that of the first torsional vibration damper.
  • the piston disk and/or the turbine shell of the torque converter are manufactured by stamping.
  • the first stop boss and the second stop boss are formed by respectively pressing the piston disc and the turbine shell in the axial direction.
  • the piston disc and the turbine shell are not broken during the punching process, and the punch used is selected to be suitable for the shape of the first and second stop bosses.
  • the first stop tooth may be formed by punching and removing part of the material at the axial extension of the piston disk in the radial direction
  • the second stop tooth may be formed by punching in the axial direction to remove the radial inner portion of the turbine shell. Part of the material at the edge.
  • the thickness of some parts of the piston disk and/or turbine shell will be reduced accordingly.
  • the piston disk and/or turbine shell may be strengthened by a heat treatment process.
  • the present disclosure also relates to a motor vehicle including the hydraulic torque converter as described above.
  • Fig. 1 is a partially cut-away schematic diagram of a torque converter according to an embodiment of the present disclosure.
  • FIG. 2A-2C show a piston disk according to an embodiment of the present disclosure, wherein FIG. 2A shows the side of the piston disk facing the turbine, FIG. 2B shows the side of the piston disk facing the cover, and FIG. 2C shows Sectional view of the annular groove part of the piston disc.
  • 3A and 3B show in detail the spring driving part of the piston disk shown in FIGS. 2A-2C.
  • FIGS. 4A and 4B show a partial cross-sectional view of a hydraulic torque converter according to two different embodiments of the present disclosure, which show in detail the torque converter provided on the turbine shell for receiving the torque transmitted by the piston disk via the torsion damper Protruding.
  • 5A and 5B respectively show a piston disk provided with a first stop protrusion and a turbine shell provided with a second stop protrusion according to an embodiment of the present disclosure.
  • 6A and 6B show partial cross-sectional views of the torque converter in the assembled configuration and the compression amount of the spring reaches a predetermined threshold.
  • FIG. 7A-7C show a first stop protrusion and a second stop protrusion according to another embodiment of the present disclosure.
  • Fig. 8 shows a schematic partial cutaway view of a hydraulic torque converter according to another embodiment of the present disclosure.
  • Fig. 1 is a partially cut-away schematic diagram of a torque converter according to an embodiment of the present disclosure.
  • a number of components in the structure of the torque converter that are not relevant to understanding the technical solution of the present disclosure have been omitted.
  • the hydraulic torque converter includes a cover 1, a pump wheel 2, a turbine 3, a piston disk 4, a torsion damper 5 and a stator 6 arranged between the turbine and the piston disk.
  • the cover 1 is rotationally driven by a driving part on the engine side of the motor vehicle, and the pump wheel 2 is rotationally fixedly connected to the cover 1, for example by welding. In this way, torque is input to the torque converter through the cover 1 and the pump impeller 2.
  • the turbine 3 is driven to rotate about the rotation axis RO and transmits torque to the input shaft of the transmission of the motor vehicle through the turbine hub 30, that is, the torque is output from the torque converter through the turbine 3 and the turbine hub 30.
  • the torque transmission from the cover 1 and the pump wheel 2 to the turbine 3 can be switched between the fluid transmission mode and the mechanical transmission mode.
  • This switching is achieved by actuating (for example, hydraulically actuating) the piston disk 4 in the axial direction.
  • the pump wheel 2, the turbine 3, and the stator 6 define an annular passage, and the working fluid of the torque converter circulates in the annular passage.
  • the piston disk 4 is actuated to be out of contact with the cover 1, and the two can rotate freely relative to each other.
  • the rotation of the pump wheel 2 around the rotation axis RO drives the flow of the working fluid, thereby driving the turbine 3.
  • the torque transmission path of the torque converter is: torque input ⁇ cap 1 ⁇ pump wheel 2 ⁇ (working fluid) ⁇ turbine 3 ⁇ turbine hub 30 ⁇ torque output.
  • the solid line in FIG. 1 shows the torque transmission path in the fluid transmission mode.
  • the piston disk 4 In the mechanical transmission mode, the piston disk 4 is actuated toward the cover 1 so that the friction surface 41 abuts the cover 1. Through the frictional contact between the piston disk 4 and the cover 1, the two rotate integrally.
  • the piston disk 4 transmits torque to the turbine 3 through the torsion damper 5. That is, in the mechanical transmission mode, the torque transmission path of the torque converter is: torque input ⁇ cap 1 ⁇ piston disk 4 ⁇ (torsion damper 5) ⁇ turbine 3 ⁇ turbine hub 30 ⁇ torque output.
  • the dotted line in FIG. 1 shows the torque transmission path in the mechanical transmission mode.
  • the torsion damper 5 includes one or more springs 51, such as helical compression springs.
  • the piston disk 4 compresses the spring 51, and the spring 51 further applies elastic force to the turbine 3, thereby realizing torque transmission from the piston disk 4 to the turbine 3.
  • the spring 51 is held in the annular groove 42 of the piston disk 4 by the piston disk 4 and the turbine 3, and its compression and reset are guided by the annular groove 42.
  • the spring 51 further applies elastic force to the protrusion 33 provided on the turbine shell 31 of the turbine 3, thereby realizing torque transmission from the piston disk 4 to the turbine 3.
  • the protrusion 33 is provided on the curved main body 31A of the turbine shell 31.
  • FIG. 2A shows the side of the piston disk 4 facing the turbine 3
  • FIG. 2B shows the side of the piston disk 4 facing the cover 1
  • FIG. 2C shows a partial cross-sectional view of the piston disk 4.
  • the annular groove 42 is recessed from the turbine 3 toward the cover 1.
  • the annular groove 42 has a substantially rectangular cross-sectional shape, and includes an inner side wall 42 a located on the radially inner side, an outer side wall 42 b located on the radially outer side, and a bottom surface 42 c connecting the inner side wall 42 a and the outer side wall 42 b.
  • the width of the annular groove 42 is slightly larger than the diameter of the spring 51, so it is suitable for accommodating the spring 51.
  • the annular groove 42 is located at the radially outermost part of the piston disk 4, so that its outer side wall 42 b constitutes the radial outer edge of the piston disk 4.
  • the bottom surface 42c of the annular groove 42 is flat and constitutes the part of the piston disk 4 closest to the cover 1 in the axial direction.
  • the friction surface 41 is provided on the axially opposite surface of the bottom surface 42c.
  • the positioning of the annular groove 42 on the radially outermost portion of the piston disk 4 also enables the friction surface 41 to be positioned on the radially outermost portion of the piston disk 4, which facilitates the torque transmission between the piston disk 4 and the cover 1.
  • the end of the outer side wall 42b of the annular groove 41 includes an inward curl 43, that is, it is wound from the outer side wall 42b toward the inner side wall 42a. Therefore, the inward curling 43 can narrow the opening of the annular groove 41.
  • the opening of the annular groove 41 can be narrowed by the crimping 43 to just fit the spring. This design not only facilitates the installation of the spring, but also prevents the spring from falling out of the annular groove 41 together with the turbine 3.
  • annular groove 41 may also have a cross-section of other shapes.
  • the cross-section of the annular groove 41 may be semicircular, and its diameter is slightly larger than the diameter of the spring 51 of the torsion damper 5 to facilitate accommodating and holding the spring 51.
  • the annular groove 41 is further provided with three spring driving parts 44, and the annular groove 41 is divided into three sections, and a spring 51 is placed in each section.
  • the spring driving portion 44 defines a narrowed portion of the annular groove 41, and the narrowed portion has a width smaller than the diameter of the spring 51. Therefore, the spring driving portion 44 can support the seat portion of the spring 51, thereby driving the spring 51 to transmit torque. In this way, the piston disk 4 can drive the spring 51 by itself, without additionally providing a drive disk or other torque transmission components dedicated to drive the spring.
  • FIG. 3A shows a spring driving part 44 in detail.
  • the spring driving portion 44 includes an inner boss 44a protruding radially outward on the inner side wall 42a of the annular groove 41, and an inner boss 44a protruding radially inward on the outer side wall 42b of the annular groove 41 Out of the outer boss 44b.
  • the inner boss 44a and the outer boss 44b face each other in the radial direction.
  • the angular positions of the inner boss 44a and the outer boss 44b of the same spring driving portion 44 are the same.
  • the inner boss 44a and the outer boss 44b may have different circumferential lengths. As shown in FIG. 3B, the inner boss 44 a and the outer boss 44 b correspond to the same central angle of the piston disk 4. In this way, the corresponding side walls of the inner boss 44a and the outer boss 44b are located on the same radial plane passing through the rotation axis RO of the torque converter. The spring seats that abut the corresponding side walls of the inner boss 44a and the outer boss 44b are therefore also located on this radial plane. In this way, the spring seat can be uniformly stressed, which is beneficial to enhance the smoothness of torque transmission.
  • the spring driving portion 44 may also have other forms.
  • a part of the inner side wall and/or the outer side wall of the annular groove 42 forms a tab extending toward the inside of the annular groove, and leaves an opening or a hole on the corresponding side wall of the annular groove 42.
  • the tab may form a spring drive part.
  • 4A and 4B show in detail the protrusion 33 provided on the turbine shell 31 for receiving the torque transmitted by the piston disk 4 via the torsion damper 5.
  • the protrusion 33 has the form of a boss 33A protruding from the curved body 31A of the turbine shell 31 toward the piston disk 4.
  • the curved body 31A refers to a portion of the turbine shell 31 having a curvature, which is opposed to the blade 32 in the axial direction.
  • the radial position of the boss 33A corresponds to the radial position of the spring 51 of the torsion damper 5.
  • the seat of the spring 51 abuts against the side wall of the boss 33A, so that a biasing force can be applied to the boss 33A in the circumferential tangential direction.
  • the side wall of the boss 33A is located on a radial plane passing through the rotation axis RO of the torque converter.
  • the bottom surface of the spring seat that abuts against the side wall of the boss 33A is also located on the radial plane. In this way, the spring seat can be uniformly stressed, which is beneficial to enhance the smoothness of torque transmission.
  • the protrusion 33 has a form of a hook portion 33B protruding from the curved body 31A of the turbine shell 31 toward the piston disk 4.
  • the radial position of the hook 33B corresponds to the radial position of the spring 51 of the torsion damper 5.
  • the seat portion of the spring 51 abuts on the side of the hook portion 33B, so that a biasing force can be applied to the hook portion 33B in the circumferential tangential direction.
  • the side of the hook 33B is also located on a radial plane passing through the rotation axis RO of the torque converter, so that the bottom surface of the spring seat is also located on the radial plane to enhance the smoothness of torque transmission Sex.
  • FIG. 5B shows the arrangement of the protrusion 33 on the turbine shell 31 as a whole.
  • the spring of the torsion damper 5 is located between two adjacent protrusions 33. Accordingly, the torsion damper 5 includes three springs.
  • the turbine 3 may also have a different number of protrusions 33, such as two protrusions, four protrusions, five protrusions, or more. Accordingly, the number of springs included in the torsion damper 5 is also different.
  • the compression amount of the spring 51 should not exceed a predetermined threshold.
  • a first stop protrusion 8 and a second stop protrusion 9 are provided on the piston disk 4 and the turbine shell 31, respectively.
  • the first stop protrusion 8 and the second stop protrusion 6 abut each other, thereby restricting the relative displacement between the turbine shell 31 and the piston disk 4 in the circumferential direction, so that the spring 51 Unable to continue compression.
  • the first stop protrusion 8 has the form of a boss protruding from the piston disk 4, that is, the first stop protrusion is a first stop boss 81.
  • the second stop protrusion 9 has the form of a boss protruding from the turbine shell 31, that is, the second stop protrusion is the second stop boss 91.
  • the piston disk 4 is provided with three first stop bosses 81 evenly distributed in the circumferential direction
  • the turbine shell 31 is provided with three second stop bosses 91 evenly distributed in the circumferential direction. It is conceivable that the piston disk 4 and the turbine shell 31 may also have different numbers of first stop bosses 81 and second stop bosses 91, respectively.
  • FIGS. 6A and 6B show partial cross-sectional views of the torque converter in an assembled configuration and the compression amount of the spring 51 reaches a predetermined threshold.
  • the radial positions of the first stop boss 81 and the second stop boss 91 correspond to each other, and their opposite side walls abut against each other, so that the spring 51 cannot be compressed further.
  • the side walls of the first stop boss 81 and the second stop boss 91 are located on a radial plane passing through the central axis of the torque converter. In this way, the opposite side walls of the two can be pressed against each other closely, which increases the contact area and reduces possible damage to the stop boss when the torque is too large.
  • the piston disk 4 includes an axial extension 42 extending toward the turbine 3 at its radially inner edge.
  • An axially extending protrusion is provided at the end of the axially extending portion 42, that is, the first stop tooth 82 serving as the first stop protrusion 8.
  • the turbine shell 31 is provided with a radially inwardly extending protrusion at its radial inner edge, that is, the second stop tooth 92 serving as the second stop protrusion 9.
  • the piston disk 4 is provided on the axial extension 42 with three first stop teeth 82 evenly distributed in the circumferential direction, and the turbine shell 31 is provided with three second stop teeth 92 evenly distributed in the circumferential direction. It is conceivable by those skilled in the art that the piston disk 4 and the turbine shell 31 may also have different numbers of first stop teeth 82 and second stop teeth 92, respectively.
  • FIG. 7C shows the assembled structure of the turbine shell 3 and the piston disk 4. As shown in the figure, the first stop tooth 82 axially extends into the gap of the adjacent second stop tooth 92. If the compression amount of the spring 51 reaches its predetermined threshold, the side wall of the first stop tooth 82 abuts against the side wall of the second stop tooth 92, so that the spring 51 cannot be compressed further.
  • the side walls of the first stop tooth 82 and the second stop tooth 92 are also located on a radial plane passing through the central axis of the torque converter, thereby increasing the contact area, Reduce possible damage to the stop teeth when the torque is too large.
  • the torque converter may be provided with the stopper protrusion according to the first embodiment and the second embodiment of the present disclosure at the same time.
  • the piston disk 4 and the turbine shell 3 are respectively provided with a first stop boss 81 and a second stop boss 91 at their radially intermediate positions, and a first stop boss 81 and a second stop boss 91 are respectively provided at their radially inner positions. Stop teeth 82 and second stop teeth 92.
  • the stop mechanism depicted in FIGS. 5A-7C includes two stop members of the same type, such as the first stop boss 81 and the second stop boss 91, or the first stop tooth 82 and the second stop ⁇ 92 ⁇ Block teeth 92. In this way, the two stop parts can be manufactured in the same process, which simplifies the manufacturing steps of the torque converter.
  • Figure 8 shows a torque converter including two torsional vibration dampers to further enhance the damping effect.
  • the torsional vibration damper 5 described above is located on the radially outer side and is the first torsional vibration damper.
  • the second torsional vibration damper 7 is located on the radially inner side, and has a structure similar to the first torsional vibration damper.
  • the piston disk 4 is arranged with an additional annular groove for the second torsional vibration damper 7 at the radially inner side
  • the turbine shell 3 is arranged with an additional protrusion for the second torsional vibration damper 7 at the radially inner side.
  • the first stop protrusion 8 and the second stop protrusion 9 as described above can also prevent the spring compression of the second torsion damper 7 from exceeding a predetermined threshold.
  • the piston disk 4 and/or the turbine shell 31 can be manufactured by stamping.
  • the annular groove 42 on the piston disk 4 can be formed by punching the piston disk 4
  • the spring driving portion 44 can be formed by punching the side wall of the annular groove 42.
  • the spring driving part 44 in the form of a boss may be formed, and in the case of breaking through the side wall, the spring driving part 44 in the form of a tab may be formed.
  • the protrusion 33 is formed by punching the bent main body 31A in the axial direction.
  • both the first stop boss 81 and the second stop boss 91 can also be manufactured on the piston disk 4 and the turbine shell 31 by stamping in the axial direction, respectively.
  • the punch used can be selected to have a shape suitable for forming the first stop boss 81 and the second stop boss 91.
  • the first stop tooth 82 can be formed by stamping and removing a part of the material at the axial extension 42 of the piston disk 4 in the radial direction
  • the second stop tooth 92 can be formed by stamping and removing the diameter of the turbine shell 31 in the axial direction. Part of the material at the inner edge is formed.
  • the protrusion 33 is located on the curved body of the turbine shell, but does not extend beyond the curved body of the turbine shell at the outer edge, the material consumed in manufacturing the turbine shell can also be saved.
  • the material thickness of some parts of the turbine shell 31 will be correspondingly reduced due to stamping. After stamping, the thickness of some parts of the piston disk 4 and/or the turbine shell 31 will be reduced accordingly.
  • the piston disk 4 and/or the turbine shell 31 may be strengthened by a heat treatment process after stamping.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Mechanical Operated Clutches (AREA)

Abstract

一种液力变矩器和包括其的机动车辆,液力变矩器包括:盖(1),由机动车辆的发动机侧的驱动部件驱动,以绕液力变矩器的旋转轴线(RO)旋转;与盖(1)旋转固定地连接的泵轮(2);涡轮(3),其被驱动以绕旋转轴线(RO)旋转,以将扭矩输出至机动车辆的变速器的输入轴;包括摩擦面(41)的活塞盘(4),其可被致动以使得液力变矩器在流体传动模式与机械传动模式之间切换,在机械传动模式中,摩擦面(41)抵靠盖(1),使得盖(1)与活塞盘(4)一体旋转;保持在活塞盘(4)与涡轮(3)之间的至少一个扭转减振器(5),其包括至少一个弹簧(51)。该液力变矩器可以节省制造成本,并且压缩尺寸,增加其他扭矩传递部件的安装空间。

Description

具有扭转减振器的液力变矩器和包括其的机动车辆 技术领域
本公开涉及一种具有扭转减振器的液力变矩器。本公开还涉及一种包括这样的液力变矩器的机动车辆。
背景技术
通常,在自动变速的机动车辆的发动机和变速器之间设置液力变矩器。液力变矩器用于将发动机的驱动动力传递到变速器,可以起到传递扭矩和变矩的作用。液力变矩器包括由发动机侧的驱动部件驱动的盖、与盖旋转固定地连接的泵轮以及连接到变速器输入轴的涡轮,并且能够通过活塞盘在流体传动模式与机械传动模式之间切换。在机动车辆的起步阶段,液力变矩器工作在流体传动模式下。此时,液力变矩器的泵轮通过流体(通常为油)驱动涡轮。在发动机达到较高转速之后,液力变矩器切换为机械传动模式。在机械传动模式下,扭矩通过活塞盘和/或其他传动机构从盖机械地传递到涡轮,而无需经过泵轮。
在机动车辆发动机产生的扭矩通常是不恒定的。特别地,在机械传动模式中,这种不恒定的扭矩可被传递到变速器中,造成变速器齿轮箱的振动,并且因而产生特别不期望的噪音或撞击等。为了减少振动的不利影响并且提高机动车辆的驾驶舒适性,在液力变矩器中配备扭转减振器是已知的。扭转减振器可以允许吸收并减轻汽车发动机产生的振动。扭转减振器通常布置在活塞盘与涡轮之间,并且包括诸如弹簧的弹性部件以在二者之间传递扭矩。
中国专利CN104235301B公开了扭转减振器安装在活塞盘上的液力变矩器。用于保持弹簧的保持板通过铆钉固定在活塞盘上。此外,保持板上形成有径向延伸的保持部,涡轮上焊接固定多个传递爪,用于在活塞盘与涡轮之间传递扭矩。
日本专利申请JPH06147294A也公开了类似的扭转减振器安装在活塞盘上的液力变矩器。具体地,保持扭转减振器的弹簧并传递扭矩的环形驱动盘通过铆钉固定在活塞盘上,涡轮上则固定地设置用于传递扭矩的多个突片。环形驱动盘到活塞盘的固定需要专门的铆接工序,而突片到涡轮上的固定需要专门的焊接工序。这使得液力变矩器的制造工艺复杂。另外,焊接到涡轮 上的突片容易出现变形,甚至掉落。
韩国专利申请KR20070096471A也公开了扭转减振器安装在活塞盘上的液力变矩器。类似地,保持扭转减振器的弹簧并传递扭矩的环形驱动盘通过铆钉固定在活塞盘上。涡轮则在涡轮壳上设置有与涡轮壳是一体形成的用于传递扭矩的多个突片,据此可以省去扭矩传递元件的焊接工序。但是,在KR20070096471A中,突片设置在涡轮壳的径向边缘处,从而增大了涡轮壳的轮廓直径,增加了制造涡轮壳所消耗的材料,造成了成本的上升。
如上所述,扭转减振器通常布置在活塞盘与涡轮之间。然而,将扭转减振器布置在液力变矩器的扭矩传递路径的其他位置也是可以设想的。美国专利申请US6056093A公开了一种液力变矩器,其中,扭转减振器设置在涡轮与输出轮毂之间。具体地,用于保持扭转减振器的弹簧的覆盖盘元件固定到涡轮壳体,并且该覆盖盘元件包括与活塞盘接合的突起部,从而将扭矩传递到涡轮。输出轮毂包括径向向外一体延伸的凸缘,其与涡轮壳体上的凸起一起在圆周方向上保持弹簧,并传递扭矩。
此外,为了避免由于扭转减震器传递过大的扭矩而缩短扭转减震器的使用寿命,已知的是设置止挡机构以使得弹性部件的压缩量不超过预定阈值。上文提及的中国专利CN104235301B公开了包括两个扭转减振器和两个止挡机构的液力变矩器。用于保持扭转减震器的弹簧的保持板通过铆钉分别固定在活塞盘和涡轮上。保持板上形成有贯穿的切口部,涡轮上焊接固定多个传递爪,传递爪延伸到切口部内并与切口部卡合,二者构成第一止挡机构。此外,在涡轮上用于固定保持板的铆钉延伸到在涡轮轮毂的输出侧板上形成的贯穿孔内,从而构成第二止挡机构。可以看出,第一和第二止挡机构所包括两个止挡部件类型不同,需要不同的工艺(例如,传递爪需要焊接,铆钉需要铆接,而切口部需要冲压或机械加工)制造,从而使得液力变矩器的制造工艺复杂,容易损坏。此外,还需要在轴向方向上布置诸如保持板和输入侧板的额外部件,这增加了液力变矩器的轴向尺寸,压缩了用于安装诸如变速器的其他扭矩传递部件的空间。
因此,在现有的液力变矩器中,为了保持扭转减振器并传递扭矩,通常需要设置多个保持元件及扭矩传递元件。这使得液力变矩器的制造工艺复杂,容易损坏。此外,在轴向方向上布置的保持元件和扭矩传递元件增加了液力变矩器的轴向尺寸,压缩了用于安装诸如变速器的其他扭矩传递部件的 空间。
发明内容
因此,本公开旨在解决常规的液力变矩器中存在的上述问题,其目的在于提供一种液力变矩器,其可以节省制造成本,并且压缩尺寸,增加其他扭矩传递部件的安装空间。
所述目的是通过根据本公开的一个实施例的包括扭转减振器的液力变矩器实现的,其包括:盖,由机动车辆的发动机侧的驱动部件旋转驱动,从而绕液力变矩器的旋转轴线旋转;泵轮,与盖旋转固定地连接,从而与盖一起旋转;涡轮,包括涡轮壳和叶片,其被驱动以绕所述旋转轴线旋转,并将扭矩传递至机动车辆的变速器的输入轴;活塞盘,其包括摩擦面,该活塞盘能够被致动以使得液力变矩器在流体传动模式与机械传动模式之间可操作地切换,在流体传动模式中,泵轮绕旋转轴线的旋转产生流体的流动,进而驱动涡轮,在机械传动模式中,所述摩擦面抵靠盖,使得盖与活塞盘一体旋转;至少一个扭转减振器,其保持在活塞盘与涡轮之间,并将扭矩由活塞盘传递至涡轮,所述扭转减振器包括至少一个弹簧。
根据本公开的液力变矩器还可以单独或组合地具有以下特征中的一个或多个。
根据本公开的一个实施例,活塞盘设置有与该活塞盘一体地形成的环形凹槽,在扭矩传递的过程中,弹簧的压缩与复位由该环形凹槽引导。另外,该活塞盘可以与涡轮相配合以将扭转减振器的弹簧保持在该环形凹槽中。由于活塞盘自身可以引导弹簧,并且与涡轮相配合以保持扭转减振器,因此无需在液力变矩器中设置专门的扭转减振器保持和引导部件。这种设计因而允许减小液力变矩器的尺寸,特别是轴向尺寸,并减少所需部件数量,降低液力变矩器的制造成本,并使其安装更加简便。
根据本公开的一个实施例,该环形凹槽具有大致矩形的横截面形状,包括位于径向内侧的内侧壁、位于径向外侧的外侧壁以及连接所述内侧壁和外侧壁的底面。优选地,环形凹槽的外侧壁构成活塞盘的径向外缘,也就是说,环形凹槽位于活塞盘的径向最外部。环形凹槽的底面是平坦底面,并且摩擦面设置在该底面的轴向相对面上。通过这样的布置,所述活塞盘上无需构造专用于布置摩擦面的突出部,从而节省了制造活塞盘时的工序。
根据本公开的一个优选实施例,所述环形凹槽的外侧壁的端部包括向内的卷边。该向内的卷边可以缩小环形凹槽的开口。例如,环形凹槽的开口可以通过卷边缩小为恰好可以放入弹簧。这种设计使得既能够安装弹簧,又便利于与涡轮一起防止弹簧从环形凹槽脱出。
可选地,该环形凹槽也可以具有其他形状的横截面。例如,该环形凹槽的横截面是半圆形的,其直径略大于扭转减振器的弹簧的直径,以便利于容纳并保持所述弹簧。在这种构造中,摩擦面可以设置在活塞盘的其他位置。
根据本公开的一个实施例,所述环形凹槽设置有一个或多个弹簧驱动部,弹簧驱动部可以承载弹簧座部,从而驱动容纳在环形凹槽中的弹簧,以传递扭矩。也就是说,所述活塞盘自身能够驱动弹簧,而无需另外提供专用于驱动弹簧的驱动盘或其他扭矩传递部件。这可以进一步减少液力变矩器的部件数量,降低制造成本。
可选地,所述弹簧驱动部包括在环形凹槽的内侧壁上径向向外凸出的内凸台,和在环形凹槽的外侧壁上径向向内凸出的外凸台。该内凸台和外凸台在径向方向上相互面对。也就是说,内凸台和外凸台的周向位置相同。所述内凸台和外凸台因此限定了环形凹槽的收窄部分,该收窄部分的宽度小于弹簧的直径。弹簧座部可以抵靠内凸台和外凸台的对应侧壁。优选地,所述内凸台和外凸台的对应侧壁位于通过液力变矩器的旋转轴线的同一径向平面上。也就是说,在平面图中,所述内凸台和外凸台对应活塞盘的同一圆心角。由此,抵靠内凸台和外凸台的对应侧壁的弹簧座部的底面也位于该径向平面上,使得弹簧座部能够均匀受力,有利于增强扭矩传递的平稳性。
可选地,所述弹簧驱动部也可以是从环形凹槽的内侧壁和/或外侧壁上向环形凹槽的内部延伸的突片。该突片的侧壁承载弹簧的座部,以驱动弹簧并传递扭矩。这种布置可以简化弹簧驱动部的设计,减少了制造活塞盘所需的步骤。
根据本公开的一个实施例,所述环形凹槽设置有沿圆周方向均匀分布的三个弹簧驱动部。这三个弹簧驱动部可以将环形凹槽分成三个凹槽段,每个凹槽段可以容纳一个弹簧。据此,所述扭转减振器包括三个弹簧。可以设想的是,所述环形凹槽也能够设置不同数量的弹簧驱动部,例如两个弹簧驱动部、四个弹簧驱动部、五个弹簧驱动部,或者更多。相应地,扭转减振器包括的弹簧的数量也因此而不同。
根据本公开的一个实施例,所述涡轮壳包括弯曲主体,该弯曲主体具有曲率,且与叶片在轴向方向相对应,该弯曲主体上设置有与涡轮壳一体形成的突起,以接收活塞盘经由扭转减振器传递的扭矩,即该突起可以充当扭矩传递部。通过上述设计,涡轮壳自身可以接收由扭转减振器传递的扭矩,从而无需提供专门的驱动盘,也无需在涡轮壳上焊接或以其他方式附接扭矩传递元件。这种设计因而允许减少所需部件数量,减小液力变矩器的尺寸,包括轴向尺寸和径向尺寸,节省制造涡轮壳所消耗的材料,降低液力变矩器的制造成本。
根据本公开的一个实施例,所述突起是形成在涡轮壳的弯曲主体上的凸台。所述凸台的径向位置与扭转减振器的弹簧的径向位置对应。该弹簧的座部可以抵靠在凸台的侧壁上,以向凸台施加沿圆周切线方向的偏置力,实现扭矩传递。优选地,所述凸台的侧壁位于通过液力变矩器的旋转轴线的径向平面上。由此,抵靠凸台的所述侧壁的弹簧座部的底面也位于该径向平面上,使得弹簧座部能够均匀受力,有利于增强扭矩传递的平稳性。
根据本公开的一个实施例,所述突起是形成在涡轮壳的弯曲主体上的钩部。所述钩部的径向位置与扭转减振器的弹簧的径向位置对应。该弹簧的座部可以抵靠在钩部的侧边上,以向钩部施加沿圆周切线方向的偏置力,实现扭矩传递。优选地,所述钩部的侧边位于通过液力变矩器的旋转轴线的径向平面上。由此,抵靠凸台的所述侧边的弹簧座部的底面也位于该径向平面上,使得弹簧座部能够均匀受力,有利于增强扭矩传递的平稳性。
根据本公开的一个实施例,所述涡轮设置有沿圆周方向均匀分布的三个突起。具体地,所述三个突起在涡轮壳的弯曲主体上的径向位置相同,扭转减振器的弹簧处于相邻的两个突起之间。据此,所述扭转减振器包括三个弹簧。可以设想的是,所述涡轮也能够设置不同数量的突起,例如两个突起、四个突起、五个突起,或者更多。相应地,扭转减振器包括的弹簧的数量也因此而不同。
根据本公开的一个实施例,所述活塞盘设置有与该活塞盘一体地形成的一个或多个第一止挡突起,所述涡轮壳设置有与该涡轮壳一体地形成的一个或多个第二止挡突起,并且第一止挡突起和第二止挡突起能够相互配合,以限制扭转减振器的弹簧的压缩量。具体地,当弹簧的压缩量达到预定阈值时,第一止挡突起和第二止挡突起发生干涉,限制了涡轮壳与活塞盘之间沿圆周 方向的相对位移,从而使得弹簧无法继续压缩。由于第一止挡突起和第二止挡突起的类型相同,能够以相同的工艺制造,液力变矩器的制造步骤得以简化。同时,第一止挡突起和第二止挡突起分别一体地设置在活塞盘和涡轮壳上,无需另外提供专门的保持元件和扭矩传递元件以设置止挡机构,从而压缩了液力变矩器的轴向尺寸,增加其他扭矩传递部件的安装空间。
根据本公开的一个实施例,所述第一止挡突起是从活塞盘朝向涡轮壳突出的第一止挡凸台,并且所述第二止挡突起是从涡轮壳朝向活塞盘突出的第二止挡凸台。所述第一止挡凸台和第二止挡凸台的径向位置相互对应。当弹簧的压缩量达到预定阈值时,第一止挡凸台和第二止挡凸台的相对侧壁相互抵靠,实现了限制扭转减振器的弹簧的压缩量的功能。优选地,所述第一止挡凸台和第二止挡凸台的侧壁位于通过液力变矩器的旋转轴线的径向平面上。由此,第一止挡凸台和第二止挡凸台的相对侧壁的可以贴合地抵靠,增加接触面积,减少扭矩过大时可能对止挡凸台造成的损坏。
根据本公开的另一实施例,所述活塞盘包括在其径向内缘处朝向涡轮延伸的轴向延伸部,所述第一止挡突起是在轴向延伸部的端部处轴向延伸的第一止挡齿,并且所述第二止挡突起是在涡轮壳的径向内缘处径向延伸的第二止挡齿。当弹簧的压缩量达到预定阈值时,第一止挡齿和第二止挡齿的相对侧壁相互抵靠,实现了限制扭转减振器的弹簧的压缩量的功能。优选地,所述第一止挡齿和第二止挡齿的侧壁位于通过液力变矩器的旋转轴线的径向平面上。由此,第一止挡齿和第二止挡齿的相对侧壁的可以贴合地抵靠,增加接触面积,减少扭矩过大时可能对止挡齿造成的损坏。
根据本公开的一个实施例,所述活塞盘设置有沿圆周方向均匀分布的三个第一止挡突起,并且所述涡轮壳设置有沿圆周方向均匀分布的三个第二止挡突起。可以设想的是,所述活塞盘也能够设置不同数量的第一止挡突起,和/或涡轮壳也能够设置不同数量的第二止挡突起。
液力变矩器也可以包括多个扭转减振器,以进一步增强减振效果。例如,位于径向外侧的扭转减振器是第一扭转减振器,而液力变矩器还包括位于径向内侧的第二扭转减振器。该第二扭转减振器可以具有与第一扭转减振器类似的构造。
根据本公开的一个实施例,所述液力变矩器的活塞盘和/或涡轮壳通过冲压制造。具体地,所述第一止挡凸台和第二止挡凸台通过沿轴向方向分别冲 压活塞盘和涡轮壳而形成。活塞盘和涡轮壳在冲压过程中未被冲破,并且所使用的冲头选择为适于第一和第二止挡凸台的形状。所述第一止挡齿可通过沿径向方向冲压去除活塞盘的轴向延伸部处的一部分材料而形成,所述第二止挡齿可通过沿轴向方向冲压去除涡轮壳的径向内缘处的一部分材料而形成。在冲压之后,活塞盘和/或涡轮壳上的一些部分的厚度会相应减少。优选地,为了增加活塞盘和/或涡轮壳的强度,在冲压之后,所述活塞盘和/或涡轮壳可以通过热处理工艺进行强化。
本公开还涉及一种机动车辆,其包括如上所述的液力变矩器。
从以下结合附图进行本教导的最佳模式的详细描述中,本教导的上述特征和优点以及其他特征和优点将变得显而易见。
附图说明
图1是根据本公开一个实施例的液力变矩器的部分剖切示意图。
图2A-2C示出了根据本公开一个实施例的活塞盘,其中,图2A示出了活塞盘面对涡轮的一面,图2B示出了活塞盘面对盖的一面,图2C示出了活塞盘的环形凹槽部分的剖面图。
图3A和图3B详细示出了图2A-2C所示的活塞盘的弹簧驱动部。
图4A和图4B示出了根据本公开两个不同实施例的液力变矩器的部分剖视图,其中详细示出了设置在涡轮壳上用于接收活塞盘经由扭转减振器传递的扭矩的突起。
图5A和图5B分别示出了根据本公开一个实施例的设置有第一止挡突起的活塞盘和设置有第二止挡突起的涡轮壳。
图6A和图6B示出了处于组装构造中且弹簧的压缩量达到预定阈值的液力变矩器的部分剖视图。
图7A-7C示出了根据本公开另一实施例的第一止挡突起和第二止挡突起。
图8示出了根据本公开另一实施例的液力变矩器的部分剖切示意图。
在各个图中,相同或相似的部件由相同的参考标记表示。
具体实施方式
为了使本公开的实施例的目的、技术方案和优点更加清楚,下面将结合 本公开实施例的附图对本公开的实施例的技术方案进行清楚、完整的描述。
除非另作定义,本文使用的技术术语或者科学术语应当为本公开所属领域内普通技术人员所理解的通常意义。本公开专利申请说明书以及权利要求书中使用的“一个”、“一”或者“该”等类似词语也不表示数量限制,而是表示存在至少一个。“包括”或者“包含”等类似的词语意指出现该词前面的元件或者物件涵盖出现在该词后面列举的元件或者物件及其等同物,而不排除其他元件或者物件。“轴向”、“径向”和“周向”等方向相对于液力变矩器的旋转轴线RO定义,轴向即旋转轴线RO延伸的方向,径向是与旋转轴线RO垂直的方向,而周向是围绕旋转轴线RO的圆周方向。
图1是根据本公开一个实施例的液力变矩器的部分剖切示意图。为了清晰起见,液力变矩器的结构中与理解本公开的技术方案无关的多个部件已被省略。
如图1所示,所述液力变矩器包括盖1、泵轮2、涡轮3、活塞盘4、布置在涡轮与活塞盘之间的扭转减振器5和定子6。盖1被机动车辆的发动机侧的驱动部件旋转驱动,而泵轮2例如通过焊接而旋转固定地连接到盖1。这样,扭矩通过盖1和泵轮2而输入液力变矩器。涡轮3被驱动以绕旋转轴线RO旋转,并将扭矩通过涡轮轮毂30传递至机动车辆的变速器的输入轴,即,扭矩通过涡轮3和涡轮轮毂30而从液力变矩器输出。
根据机动车辆的行驶状况的不同,从盖1和泵轮2到涡轮3的扭矩传递可以在流体传动模式与机械传动模式二者之间切换。这种切换是通过沿轴向致动(例如,液压致动)活塞盘4而实现的。
具体地,泵轮2、涡轮3和定子6限定了环状通道,液力变矩器的工作流体在该环状通道内循环流动。在流体传动模式中,活塞盘4被致动为与盖1脱离接触,二者之间可相对彼此自由转动。此时,泵轮2绕旋转轴线RO的旋转带动工作流体的流动,进而驱动涡轮3。也就是说,在流体传动模式中,液力变矩器的扭矩传递路径是:扭矩输入→盖1→泵轮2→(工作流体)→涡轮3→涡轮轮毂30→扭矩输出。图1中的实线示出了流体传动模式下的扭矩传递路径。
在机械传动模式中,活塞盘4被朝向盖1致动,使得摩擦面41抵靠盖1。通过活塞盘4与盖1之间的摩擦接触,二者一体旋转。活塞盘4通过扭转减振器5传递扭矩至涡轮3。也就是说,在机械传动模式中,液力变矩器的扭 矩传递路径是:扭矩输入→盖1→活塞盘4→(扭转减振器5)→涡轮3→涡轮轮毂30→扭矩输出。图1中的虚线示出了机械传动模式下的扭矩传递路径。
为了传递扭矩,并减轻传递到扭矩输出的扭矩变动,扭转减振器5包括一个或多个弹簧51,例如螺旋压缩弹簧。活塞盘4压缩弹簧51,该弹簧51进一步施加弹性力到涡轮3,从而实现了从活塞盘4到涡轮3的扭矩传递。如图2A-2C和图4A-4B所示,弹簧51通过被活塞盘4和涡轮3保持在活塞盘4的环形凹槽42中,其压缩与复位由该环形凹槽42引导。当活塞盘4压缩弹簧51时,该弹簧51进一步施加弹性力到设置在涡轮3的涡轮壳31上的突起33,从而实现了从活塞盘4到涡轮3的扭矩传递。特别地,该突起33设置在涡轮壳31的弯曲主体31A上。
图2A示出了活塞盘4面对涡轮3的一面,图2B示出了活塞盘4面对盖1的一面,图2C示出了活塞盘4的部分剖视图。可以看出的是,环形凹槽42由涡轮3向盖1凹进。该环形凹槽42具有大致矩形的横截面形状,包括位于径向内侧的内侧壁42a、位于径向外侧的外侧壁42b,以及连接内侧壁42a和外侧壁42b的底面42c。环形凹槽42的宽度略大于弹簧51的直径,因此适于容纳弹簧51。环形凹槽42位于活塞盘4的径向最外部,从而其外侧壁42b构成了活塞盘4的径向外缘。环形凹槽42的底面42c是平坦的,其在轴向上构成活塞盘4上最靠近盖1的部分。摩擦面41设置在该底面42c的轴向相对面上。通过这样的布置,当活塞盘4被朝向盖1致动时,摩擦面41首先与盖1抵接,从而将活塞盘4与盖1旋转锁定。此外,环形凹槽42在活塞盘4的径向最外部的定位也使得摩擦面41定位在活塞盘4的径向最外部,便利于活塞盘4与盖1之间的扭矩传递。通过这样的设计,活塞盘4上无需构造专用于布置摩擦面41的突出部,从而节省了制造活塞盘4时的工序。
如图2C所示,所述环形凹槽41的外侧壁42b的端部包括向内的卷边43,即从外侧壁42b朝向内侧壁42a卷绕。因此,该向内的卷边43可以收窄环形凹槽41的开口。例如,环形凹槽41的开口可以通过卷边43收窄为恰好可以放入弹簧。这种设计使得既便利于安装弹簧,又能够与涡轮3一起防止弹簧从环形凹槽41脱出。
虽然未在附图中示出,但本领域技术人员可以设想的是,该环形凹槽41 也可以具有其他形状的横截面。例如,该环形凹槽41的横截面可以是半圆形的,其直径略大于扭转减振器5的弹簧51的直径,以便利于容纳并保持所述弹簧51。
如图2A所示,环形凹槽41还设置有三个弹簧驱动部44,并将环形凹槽41分为三段,每段放置一个弹簧51。虽然未示出,但不同数量的弹簧驱动部也是可以设想的。弹簧驱动部44限定了环形凹槽41的收窄部分,该收窄部分的宽度小于弹簧51的直径。因此,弹簧驱动部44可以承载弹簧51的座部,从而驱动弹簧51,以传递扭矩。这样,所述活塞盘4自身能够驱动弹簧51,而无需另外提供专用于驱动弹簧的驱动盘或其他扭矩传递部件。
图3A详细示出了一个弹簧驱动部44。在所示实施例中,弹簧驱动部44包括在环形凹槽41的内侧壁42a上径向向外凸出的内凸台44a,和在环形凹槽41的外侧壁42b上径向向内凸出的外凸台44b。该内凸台44a和外凸台44b在径向方向上相互面对。同一弹簧驱动部44的内凸台44a和外凸台44b的角度位置相同。
内凸台44a和外凸台44b可以具有不同的周向长度。如图3B所示,所述内凸台44a和外凸台44b对应活塞盘4的同一圆心角。这样,内凸台44a和外凸台44b的对应侧壁位于通过液力变矩器的旋转轴线RO的同一径向平面上。抵靠内凸台44a和外凸台44b的对应侧壁的弹簧座部也因此位于该径向平面上。这样,弹簧座部能够均匀受力,有利于增强扭矩传递的平稳性。
虽然未在附图中示出,但本领域技术人员可以设想的是,弹簧驱动部44也可以具有其他的形式。例如,环形凹槽42的内侧壁和/或外侧壁的一部分形成向环形凹槽的内部延伸的突片,并在环形凹槽42的对应侧壁上留下开口或开孔。该突片可形成弹簧驱动部。
图4A和图4B详细示出了设置在涡轮壳31上用于接收活塞盘4经由扭转减振器5传递的扭矩的突起33。
在图4A所示的实施例中,所述突起33具有从涡轮壳31的弯曲主体31A向活塞盘4突出的凸台33A的形式。弯曲主体31A指的是涡轮壳31的具有曲率的部分,其在轴向上与叶片32相对。该凸台33A的径向位置则与扭转减振器5的弹簧51的径向位置相对应。弹簧51的座部抵靠在凸台33A的侧壁上,从而可以沿圆周切线方向对凸台33A施加偏置力。凸台33A的侧壁位于通过液力变矩器的旋转轴线RO的径向平面上。由此,抵靠凸台33A的 侧壁的弹簧座部的底面也位于该径向平面上。这样,弹簧座部能够均匀受力,有利于增强扭矩传递的平稳性。
在图4B所示的实施例中,所述突起33具有从涡轮壳31的弯曲主体31A向活塞盘4突出的钩部33B的形式。该钩部33B的径向位置与扭转减振器5的弹簧51的径向位置相对应。弹簧51的座部抵靠在钩部33B的侧边上,从而可以沿圆周切线方向对钩部33B施加偏置力。类似于凸台33A,钩部33B的侧边也位于通过液力变矩器的旋转轴线RO的径向平面上,使得弹簧座部的底面也位于该径向平面上,以增强扭矩传递的平稳性。
图5B从整体上示出了突起33在涡轮壳31上的布置。如图所示,在对应于弹簧51的径向位置处,涡轮壳31上布置有沿圆周方向均匀分布的三个突起33。在液力变矩器的组装好的构造中,扭转减振器5的弹簧处于相邻的两个突起33之间。据此,所述扭转减振器5包括三个弹簧。虽然未示出,但本领域技术人员可以设想的是,所述涡轮3也可以具有不同数量的突起33,例如两个突起、四个突起、五个突起,或者更多。相应地,扭转减振器5包括的弹簧的数量也不同。
为了延长扭转减振器的寿命,弹簧51的压缩量不应超过预定阈值。为此,在活塞盘4和涡轮壳31上分别设置有第一止挡突起8和第二止挡突起9。当弹簧51的压缩量达到预定阈值时,第一止挡突起8和第二止挡突起6彼此抵接,从而限制了涡轮壳31与活塞盘4之间沿圆周方向的相对位移,使得弹簧51无法继续压缩。
图5A和5B分别示出了根据本公开第一实施例的设置有第一止挡突起8的活塞盘4和设置有第二止挡突起9的涡轮壳31。在所示的实施例中,所述第一止挡突起8具有从活塞盘4突出的凸台的形式,即该第一止挡突起是第一止挡凸台81。类似地,所述第二止挡突起9具有从涡轮壳31突出的凸台的形式,即该第二止挡突起是第二止挡凸台91。活塞盘4上设置有沿圆周方向均匀分布的三个第一止挡凸台81,并且涡轮壳31上设置有沿圆周方向均匀分布的三个第二止挡凸台91。可以设想的是,活塞盘4和涡轮壳31也可以分别地具有不同数量的第一止挡凸台81和第二止挡凸台91。
图6A和图6B示出了处于组装构造中且弹簧51的压缩量达到预定阈值的液力变矩器的部分剖视图。如图所示,第一止挡凸台81和第二止挡凸台91的径向位置相互对应,并且其相对侧壁相互抵靠,使得弹簧51无法进一 步压缩。在图6B的放大视图中,第一止挡凸台81和第二止挡凸台91的侧壁位于通过液力变矩器的中心轴线的径向平面上。这样,二者的相对侧壁的可以贴合地抵靠,增加了接触面积,减少扭矩过大时可能对止挡凸台造成的损坏。
图7A-7C示出了根据本公开第二实施例的具有止挡齿形式的第一止挡突起8和第二止挡突起9。在该第二实施例中,如图7A所示,活塞盘4在其径向内缘处包括朝向涡轮3延伸的轴向延伸部42。在该轴向延伸部42的端部处设置轴向延伸的突起,即作为第一止挡突起8的第一止挡齿82。轴向延伸部42相对应地,如图7B所示,涡轮壳31在其径向内缘处设置径向向内延伸的突起,即作为第二止挡突起9的第二止挡齿92。活塞盘4在轴向延伸部42上设置有沿圆周方向均匀分布的三个第一止挡齿82,并且涡轮壳31上设置有沿圆周方向均匀分布的三个第二止挡齿92。本领域技术人员可以设想的是,活塞盘4和涡轮壳31也可以分别地具有不同数量的第一止挡齿82和第二止挡齿92。图7C示出了涡轮壳3和活塞盘4的组装构造。如图所示,第一止挡齿82轴向延伸到相邻的第二止挡齿92的间隙内。如果弹簧51的压缩量达到其预定阈值,则第一止挡齿82的侧壁抵靠第二止挡齿92的侧壁,使得弹簧51无法进一步压缩。类似于图5A-5B所示的实施例,第一止挡齿82和第二止挡齿92的侧壁也位于通过液力变矩器的中心轴线的径向平面上,从而增加接触面积,减少扭矩过大时可能对止挡齿造成的损坏。
虽然未示出,可以设想的是,液力变矩器可以同时设置有根据本公开第一实施例和第二实施例的止挡突起。也就是说,活塞盘4和涡轮壳3在其径向中间位置处分别设置有第一止挡凸台81和第二止挡凸台91,并且在其径向内部位置处分别设置有第一止挡齿82和第二止挡齿92。
图5A-图7C所描绘的止挡机构所包含的两个止挡部件类型相同,如第一止挡凸台81和第二止挡凸台91,或者第一止挡齿82和第二止挡齿92。这样,这两个止挡部件能够以相同的工艺制造,使得液力变矩器的制造步骤简化。
图8示出了包括两个扭转减振器的液力变矩器,以进一步增强减振效果。上文所描述的扭转减振器5位于径向外侧,是第一扭转减振器。第二扭转减振器7位于径向内侧,具有与第一扭转减振器类似的构造。活塞盘4在径向内侧处布置有用于第二扭转减振器7的额外的环形凹槽,且涡轮壳3在径向 内侧处布置有用于第二扭转减振器7的额外的突起。如上所述的第一止挡突起8和第二止挡突起9同样可以防止第二扭转减振器7的弹簧压缩超过预定阈值。上面描述的液力变矩器所具有的一个特别的优势在于活塞盘4和/或涡轮壳31可以通过冲压制造。在制作出活塞盘4的主体之后,活塞盘4上的环形凹槽42可以通过冲压活塞盘4而形成,且弹簧驱动部44可以通过冲压环形凹槽42的侧壁而形成。特别地,在不冲破环形凹槽的侧壁的情况下,可以形成凸台形式的弹簧驱动部44,在冲破侧壁的情况下,可以形成突片形式的弹簧驱动部44。类似地,在形成涡轮壳31之后,突起33通过沿轴向方向冲压弯曲主体31A而形成。具体地,在不冲破涡轮壳31的弯曲主体31A的情况下,可以形成凸台形式的突起33,在冲破所述弯曲主体31A的情况下,可以形成钩部形式的突起33。此外,第一止挡凸台81和第二止挡凸台91也都可以通过沿轴向方向冲压而分别在活塞盘4和涡轮壳31上制造。所使用的冲头可以选择为适于形成第一止挡凸台81和第二止挡凸台91的形状。第一止挡齿82可通过沿径向方向冲压去除活塞盘4的轴向延伸部42处的一部分材料而形成,而第二止挡齿92可通过沿轴向方向冲压去除涡轮壳31的径向内缘处的一部分材料而形成。这样,活塞盘4和涡轮壳31的主体以及其上的各种构造都可以通过冲压制造,从而无需加入其他工序,也无需准备专门的扭转减震器保持元件、扭矩传递元件和止挡机构。此外,由于突起33位于涡轮壳的弯曲主体上,而未在外缘处超出涡轮壳的弯曲主体,也可以节省制造涡轮壳所消耗的材料。涡轮壳31上的一些部分的材料厚度会因为冲压而相应减少。在冲压之后,活塞盘4和/或涡轮壳31上的一些部分的厚度会相应减少。优选地,为了增加活塞盘4和/或涡轮壳31的强度,所述活塞盘4和/或涡轮壳31可以在冲压之后通过热处理工艺进行强化。
应当理解的是,上面描述的和在附图中示出的结构仅是本公开的示例,其可通过表现出用于获得所需最终结果的相同或相似功能的其他结构代替。另外,应当理解的是,上面描述的和附图所示的实施例应被视为仅组成本公开的非限制性示例,并且它可在专利权利要求的范围内以多种方式进行修改。

Claims (27)

  1. 一种用于机动车辆的液力变矩器,其特征在于,所述液力变矩器包括:
    盖(1),其由机动车辆的发动机侧的驱动部件驱动,以绕液力变矩器的旋转轴线(RO)旋转;
    泵轮(2),其与盖(1)旋转固定地连接;
    涡轮(3),包括涡轮壳(31)和叶片(32),所述涡轮(3)被驱动以绕所述旋转轴线(RO)旋转,以将扭矩输出至机动车辆的变速器的输入轴;
    活塞盘(4),其包括摩擦面(41),所述活塞盘(4)能够被致动以使得液力变矩器在流体传动模式与机械传动模式之间可操作地切换,在流体传动模式中,泵轮(2)绕旋转轴线(RO)的旋转产生流体的流动,进而驱动涡轮(3),在机械传动模式中,所述摩擦面(41)抵靠盖(1),使得盖(1)与活塞盘(4)一体旋转;以及
    至少一个扭转减振器(5),其保持在活塞盘(4)与涡轮(3)之间,并将扭矩由活塞盘(4)传递至涡轮(3),所述扭转减振器(5)包括至少一个弹簧(51)。
  2. 根据权利要求1所述的液力变矩器,其特征在于,
    所述活塞盘(4)设置有与该活塞盘(4)一体地形成的环形凹槽(42),该环形凹槽(42)用于容纳并引导所述弹簧(51),并且所述弹簧(51)通过涡轮(3)而被保持在所述环形凹槽(42)中。
  3. 根据权利要求2所述的液力变矩器,其中,
    所述环形凹槽(42)包括位于径向内侧的内侧壁(42a)、位于径向外侧的外侧壁(42b)以及连接所述内侧壁和外侧壁的底面(42c)。
  4. 根据权利要求3所述的液力变矩器,其中,
    所述外侧壁(42b)构成活塞盘(4)的径向外缘。
  5. 根据权利要求3或4所述的液力变矩器,其中,
    所述底面(42c)是平坦的,并且摩擦面(41)设置在该底面的轴向相对面上。
  6. 根据权利要求3至5中的任一项所述的液力变矩器,其中,
    所述环形凹槽(42)的外侧壁(42b)的端部包括向内的卷边(43)。
  7. 根据权利要求2至6中的任一项所述的液力变矩器,其中,
    所述环形凹槽(42)设置有一个或多个弹簧驱动部(44)。
  8. 根据权利要求7所述的液力变矩器,其中,
    所述弹簧驱动部(44)包括在环形凹槽的内侧壁(42a)上径向向外凸出的内凸台(44a),和在环形凹槽的外侧壁(42b)上径向向内凸出的外凸台(44b),该内凸台(44a)和外凸台(44b)在径向方向上相互面对。
  9. 根据权利要求8所述的液力变矩器,其中,
    所述内凸台(44a)和外凸台(44b)的对应侧壁位于通过液力变矩器的旋转轴线(RO)的同一径向平面上。
  10. 根据权利要求7所述的液力变矩器,其中,
    所述弹簧驱动部(44)是从环形凹槽(42)的内侧壁(42a)和/或外侧壁(42b)上向环形凹槽的内部延伸的突片。
  11. 根据权利要求7至10中的任一项所述的液力变矩器,其中,
    所述环形凹槽(42)设置有沿圆周方向均匀分布的三个弹簧驱动部(44)。
  12. 根据权利要求1至11中的任一项所述的液力变矩器,其特征在于,所述涡轮壳(31)包括弯曲主体(31A),该弯曲主体(31A)具有曲率,且与叶片(32)在轴向方向相对应,并且所述涡轮壳(31)在其弯曲主体(31A)上设置有与该涡轮壳(31)一体形成的突起(33),以接收活塞盘(4)经由扭转减振器(5)传递的扭矩。
  13. 根据权利要求12所述的液力变矩器,其中,
    所述突起(33)是形成在涡轮壳(31)的弯曲主体(31A)上的凸台(33A)。
  14. 根据权利要求13所述的液力变矩器,其中,
    所述凸台(33A)的侧壁位于通过液力变矩器的旋转轴线(RO)的径向平面上。
  15. 根据权利要求12所述的液力变矩器,其中,
    所述突起(33)是形成在涡轮壳(31)的弯曲主体(31A)上的钩部(33B)。
  16. 根据权利要求15所述的液力变矩器,其中,
    所述钩部(33B)的侧边位于通过液力变矩器的旋转轴线(RO)的径向平面上。
  17. 根据权利要求12至16中的任一项所述的液力变矩器,其中,
    所述涡壳(31)设置有沿圆周方向均匀分布的三个突起(33)。
  18. 根据权利要求1至17中的任一项所述的液力变矩器,其特征在于,
    所述活塞盘(4)设置有与该活塞盘(4)一体地形成的一个或多个第一止挡突起(8),所述涡轮壳(31)设置有与该涡轮壳(31)一体地形成的一个或多个第二止挡突起(9),所述第一止挡突起(8)和第二止挡突起(9)相互配合,以限制所述弹簧(51)的压缩量。
  19. 根据权利要求18所述的液力变矩器,其中,
    所述第一止挡突起(8)是从活塞盘(4)朝向涡轮壳(31)突出的第一止挡凸台(81),并且所述第二止挡突起(9)是从涡轮壳(31)朝向活塞盘(4)突出的第二止挡凸台(91)。
  20. 根据权利要求19所述的液力变矩器,其中,
    所述第一止挡凸台(81)和第二止挡凸台(91)的侧壁位于通过液力变矩器的旋转轴线(RO)的径向平面上。
  21. 根据权利要求18所述的液力变矩器,其中,
    所述活塞盘(4)包括在其径向内缘处朝向涡轮(3)延伸的轴向延伸部(42),所述第一止挡突起(8)是在轴向延伸部(42)的端部处轴向延伸的第一止挡齿(82),所述第二止挡突起(9)是在涡轮壳(31)的径向内缘处径向延伸的第二止挡齿(92)。
  22. 根据权利要求21所述的液力变矩器,其中,
    所述第一止挡齿(82)和第二止挡齿(92)的侧壁位于通过液力变矩器的旋转轴线(RO)的径向平面上。
  23. 根据权利要求18至22中的任一项所述的液力变矩器,其中,
    所述活塞盘(4)具有沿圆周方向均匀分布的3个第一止挡突起(8),且所述涡轮壳(31)具有沿圆周方向均匀分布的3个第二止挡突起(9)。
  24. 根据权利要求1至23中的任一项所述的液力变矩器,其中,
    所述扭转减振器(5)是第一扭转减振器,并且所述液力变矩器还包括位于该第一扭转减振器(5)的径向内侧的第二扭转减振器(7)。
  25. 根据权利要求1至24中的任一项所述的液力变矩器,其中,
    所述涡轮壳(31)和/或活塞盘(4)通过冲压制造。
  26. 根据权利要求25所述的液力变矩器,其中,
    所述涡轮壳(31)和/或活塞盘(4)在冲压之后通过热处理工艺进行强化。
  27. 一种机动车辆,其包括根据前述权利要求中的任一项所述的液力变矩器。
PCT/CN2020/123120 2019-10-25 2020-10-23 具有扭转减振器的液力变矩器和包括其的机动车辆 WO2021078238A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2022524274A JP2022554224A (ja) 2019-10-25 2020-10-23 トーショナルダンパを備えた流体トルクコンバータおよびこれを含む自動車
KR1020227015975A KR102678851B1 (ko) 2019-10-25 2020-10-23 토셔널 댐퍼를 구비한 유체 토크 컨버터 및 이를 포함한 자동차

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
CN201911023452.0A CN112709799A (zh) 2019-10-25 2019-10-25 具有扭转减振器的液力变矩器和包括其的机动车辆
CN201911022770.5 2019-10-25
CN201911023454.XA CN112709797B (zh) 2019-10-25 2019-10-25 具有扭转减振器的液力变矩器和包括其的机动车辆
CN201911022770.5A CN112709798B (zh) 2019-10-25 2019-10-25 具有扭转减振器的液力变矩器和包括其的机动车辆
CN201911023452.0 2019-10-25
CN201911023454.X 2019-10-25

Publications (1)

Publication Number Publication Date
WO2021078238A1 true WO2021078238A1 (zh) 2021-04-29

Family

ID=75619669

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/123120 WO2021078238A1 (zh) 2019-10-25 2020-10-23 具有扭转减振器的液力变矩器和包括其的机动车辆

Country Status (2)

Country Link
JP (1) JP2022554224A (zh)
WO (1) WO2021078238A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4382765A1 (en) * 2022-12-08 2024-06-12 Valeo Kapec Co., Ltd. Shock absorber with mechanical stop for torque converter

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6056093A (en) * 1997-12-09 2000-05-02 Mannesmann Sachs Ag Torque converter with a turbine shell integrated with a torsional vibration damper
KR20070096471A (ko) * 2006-03-24 2007-10-02 현대자동차주식회사 자동변속기용 터빈
KR20140009849A (ko) * 2012-07-13 2014-01-23 한국파워트레인 주식회사 트윈 매스 댐퍼를 구비한 토크 컨버터
CN104235301A (zh) * 2013-06-20 2014-12-24 本田技研工业株式会社 流体传动装置
CN105443712A (zh) * 2015-12-18 2016-03-30 陕西航天动力高科技股份有限公司 一种超扁平汽车用液力变矩器
CN107588172A (zh) * 2016-07-07 2018-01-16 现代自动车株式会社 用于车辆变矩器的减震器
US20180283516A1 (en) * 2017-03-31 2018-10-04 Valeo Embrayages Hydrokinetic torque coupling device having turbine-piston lockup clutch, and related methods
CN109642649A (zh) * 2016-05-25 2019-04-16 株式会社法雷奥凯佩科 用于车辆的变矩器
CN110100118A (zh) * 2016-12-21 2019-08-06 株式会社法雷奥凯佩科 具有扭转振动阻尼器和单向涡轮离合器的扭矩联接装置及其制造方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0723852U (ja) * 1993-10-07 1995-05-02 株式会社大金製作所 トルクコンバータのロックアップ装置
US5667042A (en) * 1994-04-26 1997-09-16 Luk Lamellen Und Kupplungsbau Gmbh Torque transmitting apparatus with hydrokinetic torque converter
JP2012036994A (ja) * 2010-08-09 2012-02-23 Aisin Aw Co Ltd 流体伝動装置
JP6176997B2 (ja) * 2013-05-08 2017-08-09 株式会社エクセディ トルクコンバータのロックアップ装置

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6056093A (en) * 1997-12-09 2000-05-02 Mannesmann Sachs Ag Torque converter with a turbine shell integrated with a torsional vibration damper
KR20070096471A (ko) * 2006-03-24 2007-10-02 현대자동차주식회사 자동변속기용 터빈
KR20140009849A (ko) * 2012-07-13 2014-01-23 한국파워트레인 주식회사 트윈 매스 댐퍼를 구비한 토크 컨버터
CN104235301A (zh) * 2013-06-20 2014-12-24 本田技研工业株式会社 流体传动装置
CN105443712A (zh) * 2015-12-18 2016-03-30 陕西航天动力高科技股份有限公司 一种超扁平汽车用液力变矩器
CN109642649A (zh) * 2016-05-25 2019-04-16 株式会社法雷奥凯佩科 用于车辆的变矩器
CN107588172A (zh) * 2016-07-07 2018-01-16 现代自动车株式会社 用于车辆变矩器的减震器
CN110100118A (zh) * 2016-12-21 2019-08-06 株式会社法雷奥凯佩科 具有扭转振动阻尼器和单向涡轮离合器的扭矩联接装置及其制造方法
US20180283516A1 (en) * 2017-03-31 2018-10-04 Valeo Embrayages Hydrokinetic torque coupling device having turbine-piston lockup clutch, and related methods

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4382765A1 (en) * 2022-12-08 2024-06-12 Valeo Kapec Co., Ltd. Shock absorber with mechanical stop for torque converter

Also Published As

Publication number Publication date
JP2022554224A (ja) 2022-12-28
KR20220078699A (ko) 2022-06-10

Similar Documents

Publication Publication Date Title
US6571929B2 (en) Torque converter with lockup device
US7172509B2 (en) Damper mechanism and damper disk assembly
US7416067B2 (en) Power transmission unit
US7222706B2 (en) Lockup device for hydraulic torque transmission device
WO2011070852A1 (ja) トルクコンバータ
JP4773553B2 (ja) トルクコンバータ用ロックアップ装置
WO2011055622A1 (ja) トルクコンバータの動力伝達装置
US4588062A (en) Torsion damping assembly for automotive friction clutch plate
JP5419059B2 (ja) ピストンに直接取り付けられたカバープレートを備えたトルクコンバータ
JP4395343B2 (ja) ロックアップ装置のダンパー機構
WO2021078238A1 (zh) 具有扭转减振器的液力变矩器和包括其的机动车辆
US20050241901A1 (en) Torque converter for vehicle
JP5688113B2 (ja) トルクコンバータ用のロックアップ装置
JPH1182582A (ja) ロックアップダンパー用コイルスプリング組立体
CN212509409U (zh) 用于机动车辆的液力变矩器和包括其的机动车辆
CN212564292U (zh) 用于机动车辆的液力变矩器和包括其的机动车辆
CN212564291U (zh) 用于机动车辆的液力变矩器和包括其的机动车辆
JP4956496B2 (ja) 捩り振動低減装置
US6068096A (en) Dampening mechanism
KR102678851B1 (ko) 토셔널 댐퍼를 구비한 유체 토크 컨버터 및 이를 포함한 자동차
CN112709797B (zh) 具有扭转减振器的液力变矩器和包括其的机动车辆
CN112709798B (zh) 具有扭转减振器的液力变矩器和包括其的机动车辆
JP2000234661A (ja) トルクコンバータのロックアップ装置
KR101738065B1 (ko) 차량용 토크 컨버터
KR101552436B1 (ko) 토크 리미터 기능을 갖춘 듀얼 매스 댐퍼

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20880316

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022524274

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20227015975

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 20880316

Country of ref document: EP

Kind code of ref document: A1