WO2021077817A1 - 一种预制超高性能混凝土钢桥面铺装结构及制备方法 - Google Patents

一种预制超高性能混凝土钢桥面铺装结构及制备方法 Download PDF

Info

Publication number
WO2021077817A1
WO2021077817A1 PCT/CN2020/102447 CN2020102447W WO2021077817A1 WO 2021077817 A1 WO2021077817 A1 WO 2021077817A1 CN 2020102447 W CN2020102447 W CN 2020102447W WO 2021077817 A1 WO2021077817 A1 WO 2021077817A1
Authority
WO
WIPO (PCT)
Prior art keywords
parts
prefabricated
density fiber
layer
steel
Prior art date
Application number
PCT/CN2020/102447
Other languages
English (en)
French (fr)
Inventor
张志祥
张辉
潘友强
陈李峰
罗瑞林
崔磊
关永胜
Original Assignee
江苏中路工程技术研究院有限公司
江苏中路交通科学技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 江苏中路工程技术研究院有限公司, 江苏中路交通科学技术有限公司 filed Critical 江苏中路工程技术研究院有限公司
Publication of WO2021077817A1 publication Critical patent/WO2021077817A1/zh

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E01CONSTRUCTION OF ROADS, RAILWAYS, OR BRIDGES
    • E01DCONSTRUCTION OF BRIDGES, ELEVATED ROADWAYS OR VIADUCTS; ASSEMBLY OF BRIDGES
    • E01D19/00Structural or constructional details of bridges
    • E01D19/12Grating or flooring for bridges; Fastening railway sleepers or tracks to bridges
    • E01D19/125Grating or flooring for bridges
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J11/00Features of adhesives not provided for in group C09J9/00, e.g. additives
    • C09J11/02Non-macromolecular additives
    • C09J11/04Non-macromolecular additives inorganic
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J11/00Features of adhesives not provided for in group C09J9/00, e.g. additives
    • C09J11/08Macromolecular additives
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J163/00Adhesives based on epoxy resins; Adhesives based on derivatives of epoxy resins

Definitions

  • the invention relates to the technical field of steel bridge deck paving, in particular to a prefabricated ultra-high performance concrete steel bridge deck paving structure and a preparation method.
  • Ultra-high performance concrete has good fatigue durability and resistance to deformation under load. It can improve the rigidity of the steel bridge deck and play a certain reinforcing effect; when it is used as a steel bridge deck paving material, it is often passed on the steel bridge deck. Welding shear rivets to achieve an effective connection with the steel bridge deck. However, when welding rivets, it will cause a certain degree of damage to the steel bridge deck and cause greater safety hazards, and the setting of the studs will also cause later maintenance and repairs. Great influence.
  • the construction of high-performance concrete steel bridge deck pavement structure generally adopts on-site pouring construction. The quality of the paving layer and its surface flatness are difficult to control, and the on-site maintenance time will also extend the construction period and affect the traffic operation.
  • the use of high-performance concrete precast slab paving structure can further shorten the maintenance period and reduce the waste of human resources.
  • the oxygen protective wear layer is laid to ensure the smoothness of the pavement while also satisfying driving comfort.
  • the inventors actively research and innovate based on years of rich practical experience and professional knowledge engaged in the engineering application of such products, and cooperate with the application of academic theory, in order to create a prefabricated ultra-high performance concrete steel bridge deck pavement structure and preparation method, so that It is more practical.
  • the purpose of the present invention is to provide a prefabricated ultra-high performance concrete steel bridge deck pavement structure and preparation method to reduce fatigue cracking of steel bridge deck paving, overcome rivet welding damage in the prior art, and ultra-high performance concrete construction steel bridge deck
  • the flatness is difficult to control, and the long construction period affects traffic operation.
  • the use of high-toughness resin contact surface full bonding method can reinforce the steel bridge deck and avoid the stress damage caused by conventional welding and rivet connection to the steel plate, and the pavement structure
  • the improved mechanical properties of the pavement layer also provide convenience for the later maintenance and repair of the pavement layer.
  • a prefabricated ultra-high performance concrete steel bridge deck pavement structure with a total pavement thickness of 5-8cm, which includes a steel panel base layer, a high-toughness resin waterproof bonding layer, a high-density fiber concrete prefabricated pavement layer and epoxy chips from bottom to top. Stone anti-skid wear layer.
  • the thickness of the high-toughness resin waterproof bonding layer is 5-10mm, including the uneven connection surface formed by the high-toughness resin and the basalt gravel with a particle size of 1-5mm, the high-strength interface adhesive injected into the reserved holes of the prefabricated plate, and the High-viscosity pads for positioning of prefabricated panels.
  • the high toughness resin includes the following components: 65 to 70 parts of bisphenol epoxy resin, 10 to 15 parts of butyl glycidyl ether reactive diluent, 12 to 16 parts of polyamide curing agent, butyl 2 to 5 parts of nitrile rubber toughening agent and 2 to 5 parts of quartz powder reinforcing agent.
  • the high-strength interface adhesive includes the following components: 65 to 70 parts of epoxy resin, 12 to 16 parts of polyamide curing agent, 5 to 10 parts of polyisocyanate adhesive, and butyl glycidol It is composed of 4-6 parts of ether active diluent and 2-5 parts of quartz water-based powder enhancer.
  • the gasket strip is a butyl rubber self-adhesive gasket strip with a length of 0.5 to 1.0 m, a width of 10 to 20 cm, a thickness of 1.0 to 2.0 cm, and a horizontal and vertical center spacing of 1.5 to 2.0 m.
  • the thickness of the high-density fiber concrete prefabricated paving layer is 4-6cm, which is composed of high-density fiber concrete prefabricated slabs spliced together, and the upper and lower edges of the opposite side locks and the lock grooves are equipped with polyurethane high-elastic sealing strips, with a width of 1 to 2cm.
  • the thickness is 0.5 ⁇ 1.0cm; the length of the prefabricated board is 1 ⁇ 5m, and the width is 3 ⁇ 4m.
  • the opposite sides of the high-density fiber concrete precast slab are respectively provided with semi-circular arc-shaped locks and lock grooves, and the diameter of the arc is 2 to 3 cm.
  • the high-density fiber concrete prefabricated slab reserves a grouting hole and a diffusion port at the bottom of the hole, the aperture size is 10-16mm, and the diameter of the diffusion port at the bottom of the hole is 30-50mm.
  • the high-density fiber-reinforced concrete precast slab is composed of steel mesh and fiber concrete, wherein the diameter of the steel mesh is 8-10mm, and the mesh spacing is 50-150mm.
  • high-density fiber concrete includes the following components: 25-30 parts of Portland cement, 6-10 parts of silica fume, 8-12 parts of quartz powder, 30-35 parts of quartz sand with a particle size of ⁇ 1mm Parts, 2 to 4 parts of composite chopped steel fiber, 4 to 8 parts of basalt fiber, 8 to 12 parts of water, and 1 to 2 parts of polycarboxylic acid superplasticizer.
  • the anti-skid wear layer of epoxy crushed stone has a thickness of 3 to 5 mm, and is formed by double-layer resin epoxy consolidating fine crushed stone particles of 1 to 3 mm.
  • the double-layer resin epoxy includes the lower reinforced epoxy and the upper protective epoxy composite bond; calculated in parts by mass, the lower reinforced epoxy includes the following components: 68-72 parts of polyurethane epoxy resin, double 12-15 parts of glycidyl ether diluent, 12-16 parts of acid anhydride curing agent and 3-7 parts of polyether resin active toughening agent; protective epoxy includes 58-62 parts of bisphenol epoxy resin and polyamide curing agent 15-20 parts, 3-8 parts of olefin or cycloaliphatic monoepoxy diluent, 2-6 parts of benzoate toughening agent, 2-6 parts of organic silicon moisture-resistant aging agent.
  • the method for preparing a prefabricated ultra-high performance concrete steel bridge deck pavement structure of the present invention includes the following steps:
  • the bottom surface of the mold is the top surface of the prefabricated slab after molding.
  • the high-density fiber concrete prefabricated slab is poured upside down.
  • the side of the mold is provided with a semicircular concave and convex surface with a diameter of 20-30mm on the opposite side of the mold.
  • the area is diagonally reserved for grouting holes with a diameter of 10-16mm and a semi-spherical diffuser with a diameter of 30-50mm at the bottom;
  • the present invention has the following beneficial effects:
  • the high-density fiber concrete prefabricated slab structure is used for on-site splicing to form a pavement layer.
  • the prefabricated paving slabs can be standardized and mass-produced in the factory, and the climatic conditions are less restricted, and the paving quality is more reliable; at the same time, it reduces the need for on-site manpower and reduces The labor intensity of personnel; and the prefabricated structure does not need to be pavement and maintenance on site, reducing some procedures, speeding up the construction progress, and greatly shortening the traffic closure time caused by construction.
  • the method of fully bonded and reinforced steel bridge deck is adopted to improve the overall rigidity of the steel deck system and delay the fatigue damage of the orthotropic steel deck and pavement;
  • the multi-angle and three-dimensional distribution of concrete can effectively reduce the stress concentration of the cracks, improve the toughness and prevent the occurrence of cracks;
  • the paving layer is equipped with steel mesh at the same time, dispersing the effect of the driving load, dissipating the tensile stress in the paving layer, and improving the overall bending and tensile resistance of the paving And anti-cracking performance.
  • the steel panel and the concrete pavement layer are cured by high-toughness resin to bond the gravel to form a rough surface. At the same time, it is combined with a high-elastic interface adhesive. With the dual effects of physical occlusion and chemical adhesive, the pavement structure is effectively interlayered. Connection; It also provides convenience for the later maintenance and repair of the pavement layer, while avoiding the stress damage to the steel plate caused by the conventional welding rivet connection.
  • the concrete paving surface is laid with epoxy resin anti-slip wear layer, and the thickness is further reduced to 3 ⁇ 5mm, which relatively reduces the dead load of the steel bridge deck.
  • the reinforced resin can enhance the effective bonding between the wear layer and the pavement layer.
  • the protective resin layer has better temperature adaptability, can prevent the direct influence of rain and sunlight, and provide better driving safety and comfort.
  • Fig. 1 is a schematic diagram of a cross-section of an ultra-high performance concrete steel bridge deck pavement in an embodiment of the present invention.
  • Figure 2 is a schematic plan view of the ultra-high performance concrete paving precast slab in the embodiment of the present invention.
  • the ultra-high performance concrete steel bridge deck pavement is composed of a steel panel base layer 1, a high-toughness resin waterproof bonding layer 2, a high-density fiber concrete paving layer 3, and an epoxy crushed stone anti-skid wear layer 4 Composed sequentially from bottom to top;
  • the high-toughness resin waterproof adhesive layer 2 includes a high-viscosity pad 5;
  • the high-density fiber concrete paving layer 3 includes a sparse reinforcement mesh 6, a lock groove 7, a reserved grouting hole and a bottom diffuser 8, and a sealing strip 9 at the joint.
  • the base layer 1 of the steel panel is obtained by shot blasting sandblasting and rust removal treatment on the upper surface of the steel bridge. Its function is to improve the cleanliness of the steel bridge surface, reduce the adhesion failure caused by the presence of contaminants, and increase The roughness of the metal surface improves the bond strength with the metal surface.
  • the high-toughness resin waterproof bonding layer 2 includes the uneven connecting surface formed by the high-toughness resin and the basalt gravel with a particle size of 1 to 5 mm, the high-strength interface adhesive injected into the preformed holes of the prefabricated plate, and the High-viscosity pad rubber strip 5 for positioning on the prefabricated board.
  • the high-toughness epoxy resin adhesive laid on the base layer of the steel panel 1 has waterproof performance, which can prevent the road surface water from contacting the steel bridge deck, reducing the probability of corrosion of the base layer of the steel panel.
  • the crushed stone particles are partially exposed to form a rough surface after curing, which effectively enhances the physical occlusal connection between the layers, and at the same time combines the injection of high-strength interface adhesives to further increase the effective bonding performance of the structural layer interface.
  • the use of this high-toughness resin waterproof adhesive layer 2 avoids the damage to the steel bridge deck caused by the use of rivets in the prior art and the impact on subsequent maintenance.
  • the high toughness resin contains 65 to 70 parts of bisphenol epoxy resin, 12 to 16 parts of polyamide curing agent, 10 to 15 parts of butyl glycidyl ether reactive diluent, 2 to 5 parts of nitrile rubber toughening agent, and Quartz powder enhancer 2 to 5 parts.
  • the fine crushed stone is formed by mechanical crushing of basalt, diabase or andesite, and the diameter of the crushed stone is 1 to 5 mm.
  • the high-strength interface adhesive consists of 65 to 70 parts of epoxy resin, 12 to 16 parts of polyamide curing agent, 5 to 10 parts of polyisocyanate adhesive, 4 to 6 parts of butyl glycidyl ether reactive diluent and quartz It is composed of 2 to 5 parts of water-based powder enhancer.
  • the gasket strip is a butyl rubber self-adhesive gasket strip with a length of 0.5 to 1.0 m, a width of 10 to 20 cm, a thickness of 1.0 to 2.0 cm, and a horizontal and vertical center spacing of 1.5 to 2.0 m.
  • the high-density fiber concrete paving layer 3 has a thickness of 4-6cm and is composed of high-density fiber concrete precast panels spliced together.
  • the opposite side locks and the upper and lower edges of the lock groove are equipped with polyurethane high-elastic sealing strips. 1 ⁇ 2cm, thickness 0.5 ⁇ 1.0cm.
  • the high-density fiber-reinforced concrete precast slab is composed of steel mesh and fiber concrete, wherein the diameter of the steel mesh is 8-10mm, and the mesh spacing is 50-150mm.
  • the length of the prefabricated slab is 1-5m and the width is 3-4m; the opposite sides of the high-density fiber concrete prefabricated slab are respectively provided with semi-circular arc locks and lock grooves 7, and the diameter of the arc is 2-3cm.
  • a grouting hole and a diffusion port 8 at the bottom of the hole are reserved in the high-density fiber concrete prefabricated slab, the aperture size is 10-16mm, and the diameter of the diffusion port at the bottom of the hole is 30-50mm.
  • the high-density fiber concrete is composed of 25-30 parts of Portland cement, 6-10 parts of silica fume, 8-12 parts of quartz powder, 30-35 parts of quartz sand with a particle size of ⁇ 1mm, and 2 ⁇ It is composed of 4 parts, 4-8 parts of basalt fiber, 8-12 parts of water, and 1-2 parts of polycarboxylic acid superplasticizer.
  • the epoxy crushed stone anti-skid wear layer 4 has a thickness of 3 to 5 mm, and is formed by double-layer resin epoxy consolidating fine crushed stone particles of 1 to 3 mm.
  • the fine crushed stone is formed by mechanical crushing of basalt, diabase or andesite, and the diameter of the crushed stone is 1 to 3 mm.
  • the double-layer resin epoxy includes a lower reinforced epoxy and an upper protective epoxy composite bond; wherein the reinforced epoxy includes 68 to 72 parts of polyurethane epoxy, 12 to 15 parts of diglycidyl ether diluent, 12-16 parts of acid anhydride curing agent, 3-7 parts of polyether resin active toughening agent; protective epoxy includes 58-62 parts of bisphenol epoxy resin, 15-20 parts of polyamide curing agent, olefin or alicyclic 3 to 8 parts of monoepoxy diluent, 2 to 6 parts of benzoate toughening agent, and 2 to 6 parts of organic silicon damp and heat resistant aging agent.
  • the reinforced epoxy includes 68 to 72 parts of polyurethane epoxy, 12 to 15 parts of diglycidyl ether diluent, 12-16 parts of acid anhydride curing agent, 3-7 parts of polyether resin active toughening agent
  • protective epoxy includes 58-62 parts of bisphenol epoxy resin, 15-20 parts of polyamide curing agent, olefin or alicyclic 3
  • the epoxy crushed stone anti-skid wear layer 4 is bonded to the bottom high-density fiber concrete pavement through reinforced resin epoxy, and at the same time, the protective resin solidifies the fine crushed stone particles to form a wear layer, which can prevent rain. As well as the direct impact of sunlight, and provide better driving safety and comfort.
  • the bottom surface of the mold is the top surface of the prefabricated slab after molding.
  • the high-density fiber concrete prefabricated slab is poured upside down.
  • the side of the mold is provided with a semicircular concave and convex surface with a diameter of 20-30mm on the opposite side of the mold.
  • the area is diagonally reserved for grouting holes with a diameter of 10-16mm and a semi-spherical diffuser with a diameter of 30-50mm at the bottom;
  • the total thickness of the resin-bonded high-density fiber concrete precast steel bridge deck paving structure is 5-8cm, and the thickness of the high-toughness resin waterproof bonding layer is 5-10mm; the thickness of the high-density fiber concrete paving layer is 4 ⁇ 6cm; The thickness of the epoxy anti-skid wear layer is 3 ⁇ 5mm.
  • a prefabricated ultra-high performance concrete steel bridge deck paving structure and a preparation method thereof include the following steps:
  • the bottom surface of the mold is the top surface of the prefabricated slab after molding.
  • the high-density fiber concrete prefabricated slab is poured upside down.
  • the side of the mold is provided with a semicircular concave and convex surface with a diameter of 20mm.
  • a grouting hole with a diameter of 16mm and a semi-spherical diffuser with a diameter of 50mm at the bottom are reserved at the diagonal position;
  • Performance unit High-density fiber concrete Ordinary concrete Shrinkage value ⁇ 1350 250 7d compressive strength MPa 124.3 68.0 7d flexural strength MPa 25.8 8.5 Elastic Modulus GPa 48.9 25 Elastic ultimate strength MPa 10.3 6.8 Linear elastic ultimate strain % 0.025 0.002
  • Test items unit Test Results Tensile strength (23°C) MPa 3.2 Elongation at break (23°C) % 26 Curing time (23°C) h 8 Bonding strength with concrete (23°C) MPa 8.9
  • a prefabricated ultra-high performance concrete steel bridge deck paving structure and a preparation method thereof include the following steps:
  • the bottom surface of the mold is the top surface of the prefabricated slab after molding.
  • the high-density fiber concrete prefabricated slab is poured upside down.
  • the side of the mold is equipped with a semicircular concave and convex surface with a diameter of 25mm.
  • a grouting hole with a diameter of 14mm and a semi-spherical diffuser with a diameter of 40mm at the bottom are reserved at the diagonal position;
  • Performance unit High-density fiber concrete Ordinary concrete Shrinkage value ⁇ 1350 250 7d compressive strength MPa 124.3 68.0 7d flexural strength MPa 25.8 8.5 Elastic Modulus GPa 48.9 25 Elastic ultimate strength MPa 10.3 6.8 Linear elastic ultimate strain % 0.025 0.002
  • Test items unit Test Results Tensile strength (23°C) MPa 4.2 Elongation at break (23°C) % 25 Curing time (23°C) h 5 Bonding strength with concrete (23°C) MPa 9.4
  • Sandblasting and roughening the surface of the high-density fiber concrete prefabricated paving layer according to 70 parts of polyurethane epoxy resin, 13 parts of diglycidyl ether diluent, 14 parts of acid anhydride curing agent, and 3 parts of polyether resin active toughening agent Prepare reinforced epoxy with a coating amount of 0.65kg/m 2 ; then add 60 parts of bisphenol epoxy resin, 18 parts of polyamide curing agent, 5 parts of olefin or cycloaliphatic monoepoxy diluent, and increase of benzoate 3 parts of toughening agent, a silicone heat aging protection agent, 3 parts of epoxy prepared, the coating amount of 0.65kg / m 2; the coating immediately after the completion of 1 ⁇ 3mm uniform fine gravel particles diabase, normal temperature regimen 1d Complete the pavement of ultra-high performance concrete steel bridge deck.
  • a prefabricated ultra-high performance concrete steel bridge deck paving structure and a preparation method thereof include the following steps:
  • the bottom surface of the mold is the top surface of the prefabricated slab after molding.
  • the high-density fiber concrete prefabricated slab is poured upside down.
  • the side of the mold is provided with a semicircular concave and convex surface with a diameter of 30mm.
  • a grouting hole with a diameter of 16mm and a semi-spherical diffuser with a diameter of 50mm at the bottom are reserved at the diagonal position;
  • Performance unit High-density fiber concrete Ordinary concrete Shrinkage value ⁇ 1420 250 7d compressive strength MPa 128.9 68.0 7d flexural strength MPa 25.2 8.5 Elastic Modulus GPa 42.5 25 Elastic ultimate strength MPa 13.8 6.8 Linear elastic ultimate strain % 0.033 0.002
  • Test items unit Test Results Tensile strength (23°C) MPa 4.8 Elongation at break (23°C) % 28 Curing time (23°C) h 6.5 Bonding strength with concrete (23°C) MPa 9.3

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Architecture (AREA)
  • Civil Engineering (AREA)
  • Structural Engineering (AREA)
  • Road Paving Structures (AREA)

Abstract

一种预制超高性能混凝土钢桥面铺装结构及制备方法,铺装结构总厚度5-8cm,自下而上依次由钢面板基层(1)、高韧树脂防水粘接层(2)、高密纤维混凝土预制铺装层(3)和环氧碎石抗滑磨耗层(4)组成;制备方法包括以下步骤:制备疏配钢筋网置于固定模具中成型高密纤维混凝土预制板;制备高密纤维新拌混凝土;浇筑高密纤维混凝土预制板;拆模后对预制板底部拉毛;对钢面板喷砂除锈清洁处理;在钢面板基层(1)上涂布自粘型垫胶条;对高密纤维混凝土预制板的榫槽上分别涂胶黏剂和粘密封胶条再拼接;成型高密纤维混凝土预制铺装层(3);喷砂粗糙处理后,先后涂布加固型环氧树脂和防护型环氧树脂以及碎石颗粒并养护。该铺装结构施工快,层间粘接牢固,耐候性强。

Description

一种预制超高性能混凝土钢桥面铺装结构及制备方法 技术领域
本发明涉及钢桥面铺装技术领域,尤其涉及一种预制超高性能混凝土钢桥面铺装结构及制备方法。
背景技术
正交异性钢桥面板由于自身的结构特性、长期行车荷载作用以及温度变化影响,钢桥面易发生疲劳开裂和铺装层损坏的问题。超高性能混凝土具有良好的疲劳耐久性能以及抵抗受荷变形能力,能够提高钢桥面板刚度,起到一定的补强作用;以此作为钢桥面铺装材料时,常通过在钢桥面上焊接抗剪铆钉来实现与钢桥面之间的有效连接,然而焊接铆钉时,会对钢桥面造成一定程度的损坏形成较大安全隐患,且栓钉的设置也会对后期的养护维修造成较大影响。高性能混凝土钢桥面铺装结构施工一般采用现场浇筑施工方式,其铺装层质量及其表面平整度情况难以控制,现场养护时间也会延长工期而影响交通运行。
鉴于上述问题的存在,同时为了加快钢桥面铺装现场施工进度,保证铺装层结构质量,采用高性能混凝土预制板铺装结构形式,可进一步缩短养护周期和减少人力资源浪费,并结合环氧防护磨耗层铺设,保证铺装平整度的同时,也满足行车舒适性。本发明人基于从事此类产品工程应用多年丰富的实务经验及专业知识,并配合学理的运用,积极加以研究创新,以期创设一种预制超高性能混凝土钢桥面铺装结构及制备方法,使其更具有实用性。
发明内容
本发明的目的是提供一种预制超高性能混凝土钢桥面铺装结构及制备方法,以减少钢桥面铺装疲劳开裂、克服现有技术中铆钉焊接损伤、超高性能混凝土施工钢桥面平整度难控制、施工周期长影响交通运行等问题,利用高韧树脂接触面全粘接方式,能够对钢桥面板进行补强,并且避免常规焊接铆钉连接对钢板造成的应力损伤,铺装结构层力学性能改善,对铺装层后期养护维修也提供便利。
本发明的上述技术目的是通过以下技术方案得以实现的:
一种预制超高性能混凝土钢桥面铺装结构,铺装总厚度5~8cm,由下至上依次包括钢面板基层、高韧树脂防水粘结层、高密纤维混凝土预制铺装层和环氧碎石抗滑磨耗层。
进一步的,高韧树脂防水粘结层厚度5~10mm,包括高韧树脂与粒径1~5mm玄武岩碎石 形成的凹凸连接面、预制板预留孔中注入的高强界面粘结剂以及用于预制板定位的高粘垫胶条。
进一步的,按照质量份数计算,高韧树脂包括如下组分:双酚环氧树脂65~70份、丁基缩水甘油醚活性稀释剂10~15份、聚酰胺固化剂12~16份、丁腈橡胶增韧剂2~5份和石英粉增强剂2~5份。
进一步的,按照质量份数计算,高强界面粘结剂包括如下组分:环氧树脂65~70份、聚酰胺固化剂12~16份、聚异氰酸酯粘合剂5~10份、丁基缩水甘油醚活性稀释剂4~6份和石英水性粉末增强剂2~5份组成。
进一步的,垫胶条为丁基橡胶自粘型垫胶条,长度0.5~1.0m,宽度10~20cm,厚度1.0~2.0cm,横纵向中心间距1.5~2.0m布置。
进一步的,高密纤维混凝土预制铺装层厚度为4~6cm,由高密纤维混凝土预制板拼接组合而成,对边锁扣和锁槽上下沿均设置聚氨酯高弹性密封胶条,宽度1~2cm,厚度0.5~1.0cm;预制板的长度1~5m,宽度3~4m。
进一步的,高密纤维混凝土预制板对边分别设置半圆弧状锁扣和锁槽,圆弧直径2~3cm。
进一步的,高密纤维混凝土预制板中预留注浆孔以及孔底扩散口,孔径大小10~16mm,孔底扩散口直径30~50mm。
进一步的,高密纤维混凝土预制板由钢筋网与纤维混凝土组成,其中钢筋网直径为8~10mm,网孔间距为50~150mm。
进一步的,按照质量份数计算,高密纤维混凝土包括如下组分:硅酸盐水泥25~30份、硅灰6~10份、石英粉料8~12份、粒径≤1mm石英砂30~35份、复合型短切钢纤维2~4份和玄武岩纤维4~8份、水8~12份和聚羧酸高效减水剂1~2份。
进一步的,环氧碎石抗滑磨耗层厚度为3~5mm,为双层树脂环氧固结1~3mm细碎石颗粒而成。
进一步的,双层树脂环氧包括下层加固型环氧和上层防护型环氧复合粘结;按照质量份数计算,下层加固型环氧包括如下组分:聚氨酯环氧树脂68~72份、双缩水甘油醚稀释剂12~15份、酸酐类固化剂12~16份和聚醚树脂活性增韧剂3~7份;防护型环氧包括双酚环氧树脂58~62份,聚酰胺固化剂15~20份、烯烃或脂环族单环氧稀释剂3~8份、苯甲酸酯类增韧剂2~6份、有机硅耐湿热老化剂2~6份。
进一步的,本发明一种预制超高性能混凝土钢桥面铺装结构的制备方法包括以下步骤:
S1.采用直径8~10mm螺纹带肋钢筋制作钢筋网片,设置横纵向钢筋间距为50~100mm,置于固定模具中成型高密纤维混凝土预制板,以焊接梯形钢筋方式控制钢筋网保护层厚度 15~20mm;
S2.称取硅酸盐水泥25~30份、硅灰6~10份、石英粉料8~12份、粒径≤1mm石英砂30~35份、复合型短切钢纤维2~4份和玄武岩纤维4~8份、水8~12份、聚羧酸高效减水剂1~2份,采用卧式搅拌机按25~35转/min速率将干混料搅拌1min,依次加入玄武岩纤维和钢纤维,然后添加减水剂和拌和用水,湿拌5~8min制备高密纤维新拌混凝土;
S3.模具底面为成型后预制板顶面,倒置浇筑高密纤维混凝土预制板,模具侧面对边设置直径20~30mm半圆状凹凸面,为成型预制板拼接的锁槽和锁扣,浇筑前按照板面积在对角位置预留直径10~16mm注浆孔和底部直径30~50mm半圆球状扩散口;
S4.待高密纤维混凝土预制板保湿养护大于1d时,拆除模具并对预制板底部(即预制板成型面)进行拉毛粗糙化处理,粗糙深度控制在0.5~2mm范围内,继续常温养护至28d后可进行铺装拼接使用;
S5.对钢面板进行抛丸除锈清洁处理,得到钢面板基层,并在2h内完成高韧树脂防水粘结层施作;
S6.以间距1.5~2.0m横纵向布置丁基橡胶自粘型垫胶条,设置垫胶条长度0.5~1.0m、宽度10~20cm、厚度1.0~2.0cm;再按双酚环氧树脂65~70份、聚酰胺固化剂12~16份、丁基缩水甘油醚活性稀释剂10~15份、丁腈橡胶增韧剂2~5份和石英粉增强剂2~5份制备高韧树脂胶结料,并以1.0~2.0kg/m 2涂布于钢面板基层上(错开已粘贴垫胶条位置),随后按3~5kg/m 2撒布1~5mm玄武岩碎石颗粒,常温养生1d后形成高韧性树脂防水粘结层;
S7.对养护好的高密纤维混凝土底面进行清洁处理,并在预制板侧边对边锁槽锁扣上下沿粘贴宽度1~2cm、厚度0.5~1.0cm的聚氨酯高弹性密封胶条,同时于圆弧凹凸面上按0.5~0.6kg/m 2刷涂高韧树脂胶黏剂,完成后立即进行预制板拼接定位;
S8.预制板拼接时适当挤压接缝处高弹性聚氨酯密封胶条并固定位置,控制挤压后厚度<5mm;以环氧树脂65~70份、聚酰胺固化剂12~16份、聚异氰酸酯粘合剂5~10份、丁基缩水甘油醚活性稀释剂4~6份和石英水性粉末增强剂2~5份制备高强界面粘结剂,采用高压注浆设备进行多孔同时灌注高强界面粘结剂,控制注浆速率0.5~1.0L/min,待预制板底部边缘树脂均匀溢出时停止注入,固定位置不动,常温养生1d后即形成高密纤维混凝土预制铺装层;
S9.对超高密纤维混凝土预制铺装层表面进行喷砂粗糙处理,按聚氨酯环氧树脂68~72份、双缩水甘油醚稀释剂12~15份、酸酐类固化剂12~16份、聚醚树脂活性增韧剂3~7份制备加固型环氧,涂布量0.5~0.8kg/m 2;随后按双酚环氧树脂58~62份,聚酰胺固化剂15~20份、烯烃或脂环族单环氧稀释剂3~8份、苯甲酸酯类增韧剂2~6份、有机硅耐湿热老化剂2~6份制备防护型环氧,涂布量0.5~0.8kg/m 2;完成涂布后立即均布1~3mm细玄武岩碎石颗粒,常 温养生1d后完成超高性能混凝土钢桥面铺装。
综上所述,本发明具有以下有益效果:
1.以高密纤维混凝土预制板结构进行现场拼接形成铺装层,预制铺装板在工厂可实现标准化大量生产,受气候条件制约小,其铺装质量更加可靠;同时减少现场人力需求,并降低人员劳动强度;并且预制结构无需现场铺装养护,减少部分工序,加快施工进度,大量缩短因施工造成的交通封闭时间。
2.依据高密纤维混凝土高模量特点,采用全粘结加固钢桥面板方式,提高钢桥面系整体刚度,延缓正交异性钢面板与铺装层的疲劳损伤;掺加的复合型纤维在混凝土多角度三维立体分布,有效降低裂缝部位的应力集中,提高韧性及阻止裂缝产生;铺装层同时配置钢筋网,分散行车荷载作用,消散铺装层中拉应力,提高铺装整体抗弯拉及抗裂性能。
3.钢面板与混凝土铺装层间通过高韧树脂固化粘结碎石形成凹凸糙面,同时配合高弹界面粘结胶,借助物理咬合和化学胶黏双重作用,实现铺装结构层间有效连接;为铺装层后期养护维修也提供便利,同时避免常规焊接铆钉连接对钢板造成的应力损伤。
4.混凝土铺装表面进行环氧树脂抗滑磨耗层铺设,厚度进一步缩小至3~5mm,相对减小钢桥面恒载,其中加固型树脂可增强磨耗层与铺装层间的有效粘结性能,防护型树脂层具有较好的温度适应性,可阻止雨水以及阳光照射的直接影响,并提供较好的行车安全感和舒适性。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明中记载的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为本发明实施例中超高性能混凝土钢桥面铺装断面示意图。
图2为本发明实施例中超高性能混凝土铺装预制板平面示意图。
附图标记:1-钢面板基层、2-高韧树脂防水粘结层、3-高密纤维混凝土铺装层、4-环氧碎石抗滑磨耗层、5-高粘垫胶、6-疏配钢筋网、7-锁扣锁槽、8-底部扩散口、9-密封接缝胶条。
具体实施方式
以下结合附图对本发明作进一步详细说明。
其中相同的零部件用相同的附图标记表示。需要说明的是,下面描述中使用的词语“前”、 “后”、“左”、“右”、“上”和“下”指的是附图中的方向,词语“底面”和“顶面”、“内”和“外”分别指的是朝向或远离特定部件几何中心的方向。
如图1所示超高性能混凝土钢桥面铺装,该结构由钢面板基层1、高韧树脂防水粘结层2、高密纤维混凝土铺装层3、环氧碎石抗滑磨耗层4由下至上依次组成;
如图1和2所示,所述高韧树脂防水粘结层2中包括高粘垫胶5;
如图1和2所示,所述高密纤维混凝土铺装层3中包括疏配钢筋网6、锁扣锁槽7、预留注浆孔及底部扩散口8、接缝处密封胶条9。
这里需要指出的是,钢面板基层1由钢桥上表面进行抛丸喷砂除锈处理得到,其作用在于提高钢桥面的清洁度,减少由于污染物存在而导致的粘接失效,并且增加金属表面的粗糙度,提高与金属表面之间的粘结强度。
作为上述实施例的优选,高韧树脂防水粘结层2包括高韧树脂与1~5mm粒径玄武岩碎石形成的凹凸连接面、预制板预留孔中注入的高强界面粘结剂、以及用于预制板定位的高粘垫胶条5。
这里需要指出的是,在钢面板基层1上铺设的高韧性环氧树脂胶黏剂本身就具有防水性能,可以阻挡路面积水与钢桥面板接触,减少钢面板基层锈蚀概率,而且由于在铺设高韧树脂防水粘结层2时,碎石颗粒固化后部分裸露形成糙面,有效增强层间物理咬合连接能力,同时结合高强界面胶黏剂注入,进一步增加结构层间界面有效粘接性能。采用此高韧树脂防水粘结层2,避免了现有技术中使用铆钉对钢桥面造成的损伤以及对后期维护造成的影响。
具体的,高韧树脂包含双酚环氧树脂65~70份、聚酰胺固化剂12~16份、丁基缩水甘油醚活性稀释剂10~15份、丁腈橡胶增韧剂2~5份和石英粉增强剂2~5份。
具体的,细碎石为玄武岩或辉绿岩或安山岩经机械破碎而成,碎石直径为1~5mm。
具体的,高强界面粘结剂由环氧树脂65~70份、聚酰胺固化剂12~16份、聚异氰酸酯粘合剂5~10份、丁基缩水甘油醚活性稀释剂4~6份和石英水性粉末增强剂2~5份组成。
具体的,垫胶条为丁基橡胶自粘型垫胶条,长度0.5~1.0m,宽度10~20cm,厚度1.0~2.0cm,横纵向中心间距1.5~2.0m布置。
作为上述实施例的优选,高密纤维混凝土铺装层3厚度为4~6cm,由高密纤维混凝土预制板拼接组合而成,对边锁扣和锁槽上下沿均设置聚氨酯高弹性密封胶条,宽度1~2cm,厚度0.5~1.0cm。
具体的,高密纤维混凝土预制板由钢筋网与纤维混凝土组成,其中钢筋网直径为8~10mm,网孔间距为50~150mm。
具体的,预制板的长度1~5m,宽度3~4m;所述高密纤维混凝土预制板对边分别设置半 圆弧状锁扣和锁槽7,圆弧直径2~3cm。
具体的,高密纤维混凝土预制板中预留注浆孔以及孔底扩散口8,孔径大小10~16mm,孔底扩散口直径30~50mm。
具体的,高密纤维混凝土由硅酸盐水泥25~30份、硅灰6~10份、石英粉料8~12份、粒径≤1mm石英砂30~35份、复合型短切钢纤维2~4份和玄武岩纤维4~8份、水8~12份、聚羧酸高效减水剂1~2份组成。
这里需要指出的是,通过在高密纤维混凝土掺入复合纤维以及布设钢筋网,有效增强混凝土铺装材料的韧性以及抗裂性能,进一步提高了桥面的整体刚度;同时采用预制板的铺装结构,能够保证高密纤维混凝土的性能满足质量要求,且表面平整度易于控制,预制板铺装施工方式减少养护施工的时间,大幅缩短工期。
作为上述实施例的优选,环氧碎石抗滑磨耗层4厚度为3~5mm,为双层树脂环氧固结1~3mm细碎石颗粒而成。
具体的,细碎石为玄武岩或辉绿岩或安山岩经机械破碎而成,碎石直径为1~3mm。
具体的,双层树脂环氧包括下层加固型环氧和上层防护型环氧复合粘结;其中加固型环氧包括聚氨酯环氧树脂68~72份、双缩水甘油醚稀释剂12~15份、酸酐类固化剂12~16份、聚醚树脂活性增韧剂3~7份;防护型环氧包括双酚环氧树脂58~62份,聚酰胺固化剂15~20份、烯烃或脂环族单环氧稀释剂3~8份、苯甲酸酯类增韧剂2~6份、有机硅耐湿热老化剂2~6份。
这里需要指出的是,环氧碎石抗滑磨耗层4通过加固型树脂环氧加强与底部高密纤维混凝土铺装层粘结,同时防护型树脂固结细碎石颗粒形成磨耗层,可阻止雨水以及阳光照射的直接影响,并提供较好的行车安全感和舒适性。
本发明实施例中预制超高性能混凝土钢桥面铺装结构及制备方法,包括以下步骤:
S1.采用直径8~10mm螺纹带肋钢筋制作钢筋网片,设置横纵向钢筋间距为50~100mm,置于固定模具中成型高密纤维混凝土预制板,以焊接梯形钢筋方式控制钢筋网保护层厚度15~20mm;
S2.称取硅酸盐水泥25~30份、硅灰6~10份、石英粉料8~12份、粒径≤1mm石英砂30~35份、复合型短切钢纤维2~4份和玄武岩纤维4~8份、水8~12份、聚羧酸高效减水剂1~2份,采用卧式搅拌机按25~35转/min速率将干混料搅拌1min,依次加入玄武岩纤维和钢纤维,然后添加减水剂和拌和用水,湿拌5~8min制备高密纤维新拌混凝土;
S3.模具底面为成型后预制板顶面,倒置浇筑高密纤维混凝土预制板,模具侧面对边设置直径20~30mm半圆状凹凸面,为成型预制板拼接的锁槽和锁扣,浇筑前按照板面积在对角位 置预留直径10~16mm注浆孔和底部直径30~50mm半圆球状扩散口;
S4.待高密纤维混凝土预制板保湿养护大于1d时,拆除模具并对预制板底部(即预制板成型面)进行拉毛粗糙化处理,粗糙深度控制在0.5~2mm范围内,继续常温养护至28d后可进行铺装拼接使用;
S5.对钢面板进行抛丸除锈清洁处理,得到钢面板基层,并在2h内完成高韧树脂防水粘结层施作;
S6.以间距1.5~2.0m横纵向布置丁基橡胶自粘型垫胶条,设置垫胶条长度0.5~1.0m、宽度10~20cm、厚度1.0~2.0cm;再按双酚环氧树脂65~70份、聚酰胺固化剂12~16份、丁基缩水甘油醚活性稀释剂10~15份、丁腈橡胶增韧剂2~5份和石英粉增强剂2~5份制备高韧树脂胶结料,并以1.0~2.0kg/m 2涂布于钢面板基层上(错开已粘贴垫胶条位置),随后按3~5kg/m 2撒布1~5mm玄武岩碎石颗粒,常温养生1d后形成高韧性树脂防水粘结层;
S7.对养护好的高密纤维混凝土底面进行清洁处理,并在预制板侧边对边锁槽锁扣上下沿粘贴宽度1~2cm、厚度0.5~1.0cm的聚氨酯高弹性密封胶条,同时于圆弧凹凸面上按0.5~0.6kg/m 2刷涂高韧树脂胶黏剂,完成后立即进行预制板拼接定位;
S8.预制板拼接时适当挤压接缝处高弹性聚氨酯密封胶条并固定位置,控制挤压后厚度<5mm;以环氧树脂65~70份、聚酰胺固化剂12~16份、聚异氰酸酯粘合剂5~10份、丁基缩水甘油醚活性稀释剂4~6份和石英水性粉末增强剂2~5份制备高强界面粘结剂,采用高压注浆设备进行多孔同时灌注高强界面粘结剂,控制注浆速率0.5~1.0L/min,待预制板底部边缘树脂均匀溢出时停止注入,固定位置不动,常温养生1d后即形成高密纤维混凝土铺装层;
S9.对高密纤维混凝土铺装层表面进行喷砂粗糙处理,按聚氨酯环氧树脂68~72份、双缩水甘油醚稀释剂12~15份、酸酐类固化剂12~16份、聚醚树脂活性增韧剂3~7份制备加固型环氧,涂布量0.5~0.8kg/m 2;随后按双酚环氧树脂58~62份,聚酰胺固化剂15~20份、烯烃或脂环族单环氧稀释剂3~8份、苯甲酸酯类增韧剂2~6份、有机硅耐湿热老化剂2~6份制备防护型环氧,涂布量0.5~0.8kg/m 2;完成涂布后立即均布1~3mm细玄武岩碎石颗粒,常温养生1d后形成树脂粘接型高密纤维混凝土预制板钢桥面铺装结构。
作为上述实施例的优选,树脂粘接型高密纤维混凝土预制板钢桥面铺装结构总厚度5~8cm,其高韧树脂防水粘结层厚度5~10mm;高密纤维混凝土铺装层厚度4~6cm;环氧抗滑磨耗层厚度为3~5mm。
在本发明实施例的以下部分,对于将上述实施例的优选条件进行组合,得到本发明预制超高性能混凝土钢桥面铺装及制备方法的优选实施例。
实施例1
一种预制超高性能混凝土钢桥面铺装结构及制备方法,包括以下步骤:
S1.采用直径8mm螺纹带肋钢筋制作钢筋网片,设置横纵向钢筋间距为50mm,置于固定模具中成型高密纤维混凝土预制板,以焊接梯形钢筋方式控制钢筋网保护层厚度20mm;
S2.称取硅酸盐水泥25份、硅灰8份、石英粉料12份、粒径≤1mm石英砂35份、复合型短切钢纤维4份和玄武岩纤维6份、水8份、聚羧酸高效减水剂2份,采用卧式搅拌机按35转/min速率将干混料搅拌1min,依次加入玄武岩纤维和钢纤维,然后添加减水剂和拌和用水,湿拌8min制备高密纤维新拌混凝土;
S3.模具底面为成型后预制板顶面,倒置浇筑高密纤维混凝土预制板,模具侧面对边设置直径20mm半圆状凹凸面,为成型预制板拼接的锁槽和锁扣,浇筑前按照板面积在对角位置预留直径16mm注浆孔和底部直径50mm半圆球状扩散口;
S4.待高密纤维混凝土预制板保湿养护大于1d时,拆除模具并对预制板底部(即预制板成型面)进行拉毛粗糙化处理,粗糙深度控制在0.5mm范围内,继续常温养护至28d后可进行铺装拼接使用;
表1高密纤维混凝土基本性能
性能指标 单位 高密纤维混凝土 普通混凝土
收缩值 με 1350 250
7d抗压强度 MPa 124.3 68.0
7d抗折强度 MPa 25.8 8.5
弹性模量 GPa 48.9 25
弹性极限强度 MPa 10.3 6.8
线弹性极限应变 0.025 0.002
S5.对钢面板进行抛丸除锈清洁处理,得到钢面板基层,并在2h内完成高韧树脂防水粘结层施作;
S6.以间距2.0m横纵向布置丁基橡胶自粘型垫胶条,设置垫胶条长度1.0m、宽度20cm、厚度1.0cm;再按双酚环氧树脂70份、聚酰胺固化剂13份、丁基缩水甘油醚活性稀释剂15份、丁腈橡胶增韧剂5份和石英粉增强剂2份制备高韧树脂胶结料,并以1.0kg/m 2涂布于钢面板基层上(错开已粘贴垫胶条位置),随后按3kg/m 2撒布1~5mm玄武岩碎石颗粒,常温养生1d后形成高韧性树脂防水粘结层;
表2碎石性能
Figure PCTCN2020102447-appb-000001
Figure PCTCN2020102447-appb-000002
S7.对养护好的高密纤维混凝土底面进行清洁处理,并在预制板侧边对边锁槽锁扣上下沿粘贴宽度1cm、厚度0.5cm的聚氨酯高弹性密封胶条,同时于圆弧凹凸面上按0.5kg/m 2刷涂高韧树脂胶黏剂,完成后立即进行预制板拼接定位;
S8.预制板拼接时适当挤压接缝处高弹性聚氨酯密封胶条并固定位置,控制挤压后厚度<5mm;以环氧树脂70份、聚酰胺固化剂16份、聚异氰酸酯粘合剂10份、丁基缩水甘油醚活性稀释剂4份和石英水性粉末增强剂2份制备高强界面粘结剂,采用高压注浆设备进行多孔同时灌注高强界面粘结剂,控制注浆速率0.5L/min,待预制板底部边缘树脂均匀溢出时停止注入,固定位置不动,常温养生1d后即形成高密纤维混凝土预制铺装层;
表3配制高强界面粘接剂性能
检测项目 单位 测试结果
抗拉强度(23℃) MPa 3.2
断裂延伸率(23℃) 26
固化时间(23℃) h 8
与混凝土粘结强度(23℃) MPa 8.9
S9.对高密纤维混凝土预制铺装层表面进行喷砂粗糙处理,按聚氨酯环氧树脂72份、双缩水甘油醚稀释剂12份、酸酐类固化剂12份、聚醚树脂活性增韧剂4份制备加固型环氧,涂布量0.5kg/m 2;随后按双酚环氧树脂62份,聚酰胺固化剂20份、烯烃或脂环族单环氧稀释剂8份、苯甲酸酯类增韧剂6份、有机硅耐湿热老化剂4份制备防护型环氧,涂布量0.5kg/m 2;完成涂布后立即均布1~3mm细玄武岩碎石颗粒,常温养生1d后完成超高性能混凝土钢桥面铺装。
实施例2
一种预制超高性能混凝土钢桥面铺装结构及制备方法,包括以下步骤:
S1.采用直径10mm螺纹带肋钢筋制作钢筋网片,设置横纵向钢筋间距为75mm,置于固定模具中成型高密纤维混凝土预制板,以焊接梯形钢筋方式控制钢筋网保护层厚度15mm;
S2.称取硅酸盐水泥27份、硅灰10份、石英粉料10份、粒径≤1mm石英砂33份、复合型短切钢纤维3份和玄武岩纤维5份、水10份、聚羧酸高效减水剂2份,采用卧式搅拌机按35转/min速率将干混料搅拌1min,依次加入玄武岩纤维和钢纤维,然后添加减水剂和拌和用水,湿拌6min制备高密纤维新拌混凝土;
S3.模具底面为成型后预制板顶面,倒置浇筑高密纤维混凝土预制板,模具侧面对边设置直径25mm半圆状凹凸面,为成型预制板拼接的锁槽和锁扣,浇筑前按照板面积在对角位置预留直径14mm注浆孔和底部直径40mm半圆球状扩散口;
S4.待高密纤维混凝土预制板保湿养护大于1d时,拆除模具并对预制板底部(即预制板成型面)进行拉毛粗糙化处理,粗糙深度控制在1.0mm范围内,继续常温养护至28d后可进行铺装拼接使用;
表4高密纤维混凝土基本性能
性能指标 单位 高密纤维混凝土 普通混凝土
收缩值 με 1350 250
7d抗压强度 MPa 124.3 68.0
7d抗折强度 MPa 25.8 8.5
弹性模量 GPa 48.9 25
弹性极限强度 MPa 10.3 6.8
线弹性极限应变 0.025 0.002
S5.对钢面板进行抛丸除锈清洁处理,得到钢面板基层,并在2h内完成高韧树脂防水粘结层施作;
S6.以间距1.5m横纵向布置丁基橡胶自粘型垫胶条,设置垫胶条长度0.5m、宽度10cm、厚度1.5cm;再按2双酚环氧树脂68份、聚酰胺固化剂14份、丁基缩水甘油醚活性稀释剂12份、丁腈橡胶增韧剂4份和石英粉增强剂2份制备高韧树脂胶结料,并以1.5kg/m 2涂布于钢面板基层上(错开已粘贴垫胶条位置),随后按4kg/m 2撒布1~5mm辉绿岩碎石颗粒,常温养生1d后形成高韧性树脂防水粘结层;
表5碎石性能
Figure PCTCN2020102447-appb-000003
Figure PCTCN2020102447-appb-000004
S7.对养护好的高密纤维混凝土底面进行清洁处理,并在预制板侧边对边锁槽锁扣上下沿粘贴宽度1.5cm、厚度0.75cm的聚氨酯高弹性密封胶条,同时于圆弧凹凸面上按0.55kg/m 2刷涂高韧树脂胶黏剂,完成后立即进行预制板拼接定位;
S8.预制板拼接时适当挤压接缝处高弹性聚氨酯密封胶条并固定位置,控制挤压后厚度<5mm;以环氧树脂68份、聚酰胺固化剂14份、聚异氰酸酯粘合剂12份、丁基缩水甘油醚活性稀释剂5份和石英水性粉末增强剂5份制备高强界面粘结剂,采用高压注浆设备进行多孔同时灌注高强界面粘结剂,控制注浆速率0.75L/min,待预制板底部边缘树脂均匀溢出时停止注入,固定位置不动,常温养生1d后即形成高密纤维混凝土预制铺装层;
表6配制高强界面粘接剂性能
检测项目 单位 测试结果
抗拉强度(23℃) MPa 4.2
断裂延伸率(23℃) 25
固化时间(23℃) h 5
与混凝土粘结强度(23℃) MPa 9.4
S9.对高密纤维混凝土预制铺装层表面进行喷砂粗糙处理,按聚氨酯环氧树脂70份、双缩水甘油醚稀释剂13份、酸酐类固化剂14份、聚醚树脂活性增韧剂3份制备加固型环氧,涂布量0.65kg/m 2;随后按双酚环氧树脂60份,聚酰胺固化剂18份、烯烃或脂环族单环氧稀释剂5份、苯甲酸酯类增韧剂3份、有机硅耐湿热老化剂3份制备防护型环氧,涂布量0.65kg/m 2;完成涂布后立即均布1~3mm细辉绿岩碎石颗粒,常温养生1d后完成超高性能混凝土钢桥面铺装。
实施例3
一种预制超高性能混凝土钢桥面铺装结构及制备方法,包括以下步骤:
S1.采用直径10mm螺纹带肋钢筋制作钢筋网片,设置横纵向钢筋间距为100mm,置于固定模具中成型高密纤维混凝土预制板,以焊接梯形钢筋方式控制钢筋网保护层厚度15mm;
S2.称取硅酸盐水泥30份、硅灰8份、石英粉料10份、粒径≤1mm石英砂30份、复合型短切钢纤维2份和玄武岩纤维8份、水12份、聚羧酸高效减水剂2份,采用卧式搅拌机按35转/min速率将干混料搅拌1min,依次加入玄武岩纤维和钢纤维,然后添加减水剂和拌和用 水,湿拌8min制备高密纤维新拌混凝土;
S3.模具底面为成型后预制板顶面,倒置浇筑高密纤维混凝土预制板,模具侧面对边设置直径30mm半圆状凹凸面,为成型预制板拼接的锁扣锁槽7,浇筑前按照板面积在对角位置预留直径16mm注浆孔和底部直径50mm半圆球状扩散口;
S4.待高密纤维混凝土预制板保湿养护大于1d时,拆除模具并对预制板底部(即预制板成型面)进行拉毛粗糙化处理,粗糙深度控制在2mm范围内,继续常温养护至28d后可进行铺装拼接使用;
表7高密纤维混凝土基本性能
性能指标 单位 高密纤维混凝土 普通混凝土
收缩值 με 1420 250
7d抗压强度 MPa 128.9 68.0
7d抗折强度 MPa 25.2 8.5
弹性模量 GPa 42.5 25
弹性极限强度 MPa 13.8 6.8
线弹性极限应变 0.033 0.002
S5.对钢面板进行抛丸除锈清洁处理,得到钢面板基层,并在2h内完成高韧树脂防水粘结层施作;
S6.以间距2.0m横纵向布置丁基橡胶自粘型垫胶条,设置垫胶条长度1.0m、宽度20cm、厚度2.0cm;再按双酚环氧树脂65份、聚酰胺固化剂15份、丁基缩水甘油醚活性稀释剂15份、丁腈橡胶增韧剂2份和石英粉增强剂3份制备高韧树脂胶结料,并以1.8kg/m 2涂布于钢面板基层上(错开已粘贴垫胶条位置),随后按5kg/m 2撒布1~5mm安山岩碎石颗粒,常温养生1d后形成高韧性树脂防水粘结层;
表8碎石性能
Figure PCTCN2020102447-appb-000005
S7.对养护好的高密纤维混凝土底面进行清洁处理,并在预制板侧边对边锁槽锁扣上下沿粘贴宽度2cm、厚度1.0cm的聚氨酯高弹性密封胶条,同时于圆弧凹凸面上按0.6kg/m 2刷涂高韧树脂胶黏剂,完成后立即进行预制板拼接定位;
S8.预制板拼接时适当挤压接缝处高弹性聚氨酯密封胶条并固定位置,控制挤压后厚度<5mm;以环氧树脂70份、聚酰胺固化剂16份、聚异氰酸酯粘合剂10份、丁基缩水甘油醚活性稀释剂2份和石英水性粉末增强剂2份制备高强界面粘结剂,采用高压注浆设备进行多孔同时灌注高强界面粘结剂,控制注浆速率1.0L/min,待预制板底部边缘树脂均匀溢出时停止注入,固定位置不动,常温养生1d后即形成高密纤维混凝土预制铺装层;
表9配制高强界面粘接剂性能
检测项目 单位 测试结果
抗拉强度(23℃) MPa 4.8
断裂延伸率(23℃) 28
固化时间(23℃) h 6.5
与混凝土粘结强度(23℃) MPa 9.3
S9.对高密纤维混凝土预制铺装层表面进行喷砂粗糙处理,按聚氨酯环氧树脂72份、双缩水甘油醚稀释剂14份、酸酐类固化剂12份、聚醚树脂活性增韧剂5份制备加固型环氧,涂布量0.8kg/m 2;随后按双酚环氧树脂62份,聚酰胺固化剂20份、烯烃或脂环族单环氧稀释剂8份、苯甲酸酯类增韧剂5份、有机硅耐湿热老化剂5份制备防护型环氧,涂布量0.8kg/m 2;完成涂布后立即均布1~3mm细安山岩碎石颗粒,常温养生1d后完成超高性能混凝土钢桥面铺装。
本具体实施例仅仅是对本发明的解释,其并不是对本发明的限制,本领域技术人员在阅读完本说明书后可以根据需要对本实施例做出没有创造性贡献的修改,但只要在本发明的权利要求范围内都受到专利法的保护。

Claims (10)

  1. 一种预制超高性能混凝土钢桥面铺装结构,其特征在于,铺装总厚度5~8cm,由钢面板基层(1)、高韧树脂防水粘结层(2)、高密纤维混凝土预制铺装层(3)、环氧碎石抗滑磨耗层(4)由下至上依次组成。
  2. 根据权利要求1所述的预制超高性能混凝土钢桥面铺装结构,其特征在于,所述高韧树脂防水粘结层(2)包括高韧树脂、凹凸连接面、高强界面粘结剂和高粘垫胶(5);所述凹凸连接面由高韧树脂与1~5mm粒径玄武岩碎石组成;所述高强界面粘结剂由预制板预留孔中注入;所述高粘垫胶(5)用于对预制板进行定位。
  3. 根据权利要求2所述的预制超高性能混凝土钢桥面铺装结构,其特征在于,按照质量份数计算,所述高韧树脂包括如下组分:双酚环氧树脂65~70份、丁基缩水甘油醚活性稀释剂10~15份、聚酰胺固化剂12~16份、丁腈橡胶增韧剂2~5份和石英粉增强剂2~5份。
  4. 根据权利要求2所述的预制超高性能混凝土钢桥面铺装结构,其特征在于,按照质量份数计算,所述高强界面粘结剂包括如下组分:环氧树脂65~70份、聚酰胺固化剂12~16份、聚异氰酸酯粘合剂5~10份、丁基缩水甘油醚活性稀释剂4~6份和石英水性粉末增强剂2~5份。
  5. 根据权利要求1所述的预制超高性能混凝土钢桥面铺装结构,其特征在于,所述高密纤维混凝土预制铺装层(3)由高密纤维混凝土预制板拼接组合而成;所述高密纤维混凝土预制板对边分别设置半圆弧状锁扣锁槽(7),所述锁扣锁槽(7)上下沿均设置聚氨酯高弹性密封胶条,所述高密纤维混凝土预制板中预留注浆孔以及孔底扩散口(8)。
  6. 根据权利要求5所述的预制超高性能混凝土钢桥面铺装结构,其特征在于,所述高密纤维混凝土预制板包括疏配钢筋网(6)和高密纤维混凝土组成, 按照质量份数计算,所述高密纤维混凝土包括如下组分:硅酸盐水泥25~30份、硅灰6~10份、石英粉料8~12份、粒径≤1mm石英砂30~35份、水8~12份、聚羧酸高效减水剂1~2份、复合型短切钢纤维2~4份和玄武岩纤维4~8份。
  7. 根据权利要求1所述的预制超高性能混凝土钢桥面铺装结构,其特征在于,所述环氧碎石抗滑磨耗层(4)由双层树脂环氧固结1~3mm细碎石颗粒组成;所述双层环氧树脂包括下层加固型环氧树脂和上层防护型环氧树脂复合粘结。
  8. 根据权利要求7所述的预制超高性能混凝土钢桥面铺装结构,其特征在于,按照质量份数计算,所述下层加固型环氧树脂包括如下组分:聚氨酯环氧树脂68~72份、双缩水甘油醚稀释剂12~15份、酸酐类固化剂12~16份、聚醚树脂活性增韧剂3~7份。
  9. 根据权利要求7所述的预制超高性能混凝土钢桥面铺装结构,其特征在于,按照质量份数计算,所述下层防护型环氧树脂包括如下组分:双酚环氧树脂58~62份,聚酰胺固化剂15~20份、烯烃或脂环族单环氧树脂稀释剂3~8份、苯甲酸酯类增韧剂2~6份和有机硅耐湿热老化剂2~6份。
  10. 一种预制超高性能混凝土钢桥面铺装结构的制备方法,其特征在于,按照质量份数计算,包括以下步骤:
    S1.采用直径8~10mm螺纹带肋钢筋制作疏配钢筋网(6),设置横纵向钢筋间距为50~100mm,置于固定模具中成型高密纤维混凝土预制板,以焊接梯形钢筋方式控制钢筋网保护层厚度15~20mm;
    S2.称取硅酸盐水泥25~30份、硅灰6~10份、石英粉料8~12份、粒径≤1mm石英砂30~35份、复合型短切钢纤维2~4份和玄武岩纤维4~8份、水8~12份、聚羧酸高效减水剂1~2份,采用卧式搅拌机按25~35转/min速率将干混料搅拌 1min,依次加入玄武岩纤维和钢纤维,然后添加减水剂和拌和用水,湿拌5~8min制备高密纤维新拌混凝土;
    S3.模具底面为成型后预制板顶面,倒置浇筑高密纤维混凝土预制板,模具侧面对边设置直径20~30mm半圆状凹凸面,为成型预制板拼接的锁扣锁槽(7),浇筑前按照板面积在对角位置预留直径10~16mm注浆孔和底部直径30~50mm半圆球状扩散口;
    S4.待高密纤维混凝土预制板保湿养护大于1d时,拆除模具并对预制板底部进行拉毛粗糙化处理,粗糙深度控制在0.5~2mm范围内,继续常温养护至28d后可进行铺装拼接使用;
    S5.对钢面板进行喷砂除锈清洁处理,得到Sa2.5级以上清洁度、60~150μm粗糙度的钢面板基层,并在2h内完成高韧树脂防水粘结层施工;
    S6.以间距1.5~2.0m横纵向布置丁基橡胶自粘型垫胶条,垫胶条长度0.5~1.0m、宽度10~20cm、厚度1.0~2.0cm;再按双酚环氧树脂65~70份、聚酰胺固化剂12~16份、丁基缩水甘油醚活性稀释剂10~15份、丁腈橡胶增韧剂2~5份和石英粉增强剂2~5份制备高韧树脂胶结料,并以1.0~2.0kg/m 2涂布于钢面板基层上(错开已粘贴垫胶条位置),随后按3~5kg/m 2撒布1~5mm玄武岩碎石颗粒,常温养生1d后形成高韧性树脂防水粘结层(2);
    S7.对养护好的高密纤维混凝土底面进行清洁处理,并在预制板侧边对边锁扣锁槽(7)上下沿粘贴宽度1~2cm、厚度0.5~1.0cm的聚氨酯高弹性密封胶条,同时于圆弧凹凸面上按0.5~0.6kg/m 2刷涂高韧树脂胶黏剂,完成后立即进行预制板拼接定位;
    S8.预制板拼接时适当挤压接缝处高弹性聚氨酯密封胶条并固定位置,控制挤压后厚度<5mm;以环氧树脂65~70份、聚酰胺固化剂12~16份、聚异氰酸酯 粘合剂5~10份、丁基缩水甘油醚活性稀释剂4~6份和石英水性粉末增强剂2~5份制备高强界面粘结剂,采用高压注浆设备进行多孔同时灌注高强界面粘结剂,控制注浆速率0.5~1.0L/min,待预制板底部边缘树脂均匀溢出时停止注入,固定位置不动,常温养生1d后即形成高密纤维混凝土预制铺装层(3);
    S9.对高密纤维混凝土预制铺装层表面进行喷砂粗糙处理,按聚氨酯环氧树脂68~72份、双缩水甘油醚稀释剂12~15份、酸酐类固化剂12~16份、聚醚树脂活性增韧剂3~7份制备加固型环氧树脂,涂布量0.5~0.8kg/m 2;随后按双酚环氧树脂58~62份,聚酰胺固化剂15~20份、烯烃或脂环族单环氧树脂稀释剂3~8份、苯甲酸酯类增韧剂2~6份、有机硅耐湿热老化剂2~6份制备防护型环氧树脂,涂布量0.5~0.8kg/m 2;完成涂布后立即均布1~3mm细玄武岩碎石颗粒,常温养生1d后完成混凝土钢桥面铺装。
PCT/CN2020/102447 2019-10-22 2020-07-16 一种预制超高性能混凝土钢桥面铺装结构及制备方法 WO2021077817A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201911006590.8 2019-10-22
CN201911006590.8A CN110714408B (zh) 2019-10-22 2019-10-22 一种预制超高性能混凝土钢桥面铺装结构及制备方法

Publications (1)

Publication Number Publication Date
WO2021077817A1 true WO2021077817A1 (zh) 2021-04-29

Family

ID=69213105

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/102447 WO2021077817A1 (zh) 2019-10-22 2020-07-16 一种预制超高性能混凝土钢桥面铺装结构及制备方法

Country Status (2)

Country Link
CN (1) CN110714408B (zh)
WO (1) WO2021077817A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113215982A (zh) * 2021-05-11 2021-08-06 中交第三公路工程局有限公司 一种uhpc组合桥的面板结构及组合方法

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110714408B (zh) * 2019-10-22 2021-05-14 中路交科科技股份有限公司 一种预制超高性能混凝土钢桥面铺装结构及制备方法
CN112458907A (zh) * 2020-11-10 2021-03-09 上海市基础工程集团有限公司 钢结构超大面积铺装超高性能混凝土层施工方法
CN113942097B (zh) * 2021-09-23 2023-01-03 重庆建工建材物流有限公司 超高性能混凝土装饰板的制备方法
CN116427954B (zh) * 2023-06-09 2023-09-08 湖南大学 基于预制uhpc构件和磷酸镁水泥的盾构快速修复方法

Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1150034A (ja) * 1997-08-05 1999-02-23 Jiro Fujimasu 道路橋床補修用パネルの接着剤組成物
US20010037533A1 (en) * 1999-04-29 2001-11-08 Composite Deck Solutions, Llc Composite deck system and method of construction
KR20020031603A (ko) * 2000-10-19 2002-05-03 이무일 섬유보강콘크리트를 이용한 프리플렉스 빔 교량구조물
EP2011922A2 (en) * 2007-07-02 2009-01-07 Ballast Nedam Infra B.V. Reinforced steal bridge
CN101712858A (zh) * 2009-11-11 2010-05-26 江苏文昌新材料科技有限公司 双组份桥面防水粘结材料的制备方法
JP2013087501A (ja) * 2011-10-18 2013-05-13 Metropolitan Expressway Co Ltd 床版補強方法
CN103410089A (zh) * 2013-08-08 2013-11-27 南京工业大学 一种正交异性钢板-纤维格栅增强混凝土组合桥面结构
CN204325919U (zh) * 2014-11-26 2015-05-13 安徽省交通投资集团有限责任公司 一种钢桥面铺装结构
CN105463988A (zh) * 2015-12-08 2016-04-06 江苏中路工程技术研究院有限公司 一种正交异性板增强的铺装结构及其制备方法
CN105463990A (zh) * 2015-11-19 2016-04-06 东南大学 钢桥面铺装结构和方法
CN109457608A (zh) * 2018-12-05 2019-03-12 上海市政工程设计研究总院(集团)有限公司 一种预制钢混组合桥面板的施工方法
CN110029550A (zh) * 2019-05-28 2019-07-19 广东金长成桥梁隧道科技有限公司 一种新型钢桥面铺装结构及其施工工艺
CN110205937A (zh) * 2019-05-23 2019-09-06 长沙理工大学 正交异性钢板-超高性能混凝土组合桥面结构及施工方法
CN110714408A (zh) * 2019-10-22 2020-01-21 江苏中路交通科学技术有限公司 一种预制超高性能混凝土钢桥面铺装结构及制备方法

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006283280A (ja) * 2005-03-31 2006-10-19 Akita Univ 鋼材を使用しないプレキャスト製繊維補強埋設型枠および床版
CN104612048B (zh) * 2015-01-21 2016-03-30 朱宏伟 Eac桥梁钢桥面铺装结构及其施工方法
CN104831617B (zh) * 2015-05-26 2016-10-05 福州大学 基于肋板式桥面的钢-超高性能混凝土组合梁及施工方法
CN105064208B (zh) * 2015-08-06 2016-10-05 福州大学 一种由预制uhpc板与钢桥面板组合的桥面板结构及其施工方法
CN107237259B (zh) * 2017-07-27 2020-02-14 长安大学 基于粘结栓钉群的钢纤维混凝土组合钢桥面板
CN108894073A (zh) * 2018-06-10 2018-11-27 重庆诚邦路面材料有限公司 一种低噪音水泥路面精细抗滑磨耗层及施工方法
CN109695203A (zh) * 2019-02-26 2019-04-30 江苏中路交通科学技术有限公司 一种常温养生型钢桥面铺装结构及其施工方法

Patent Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1150034A (ja) * 1997-08-05 1999-02-23 Jiro Fujimasu 道路橋床補修用パネルの接着剤組成物
US20010037533A1 (en) * 1999-04-29 2001-11-08 Composite Deck Solutions, Llc Composite deck system and method of construction
KR20020031603A (ko) * 2000-10-19 2002-05-03 이무일 섬유보강콘크리트를 이용한 프리플렉스 빔 교량구조물
EP2011922A2 (en) * 2007-07-02 2009-01-07 Ballast Nedam Infra B.V. Reinforced steal bridge
CN101712858A (zh) * 2009-11-11 2010-05-26 江苏文昌新材料科技有限公司 双组份桥面防水粘结材料的制备方法
JP2013087501A (ja) * 2011-10-18 2013-05-13 Metropolitan Expressway Co Ltd 床版補強方法
CN103410089A (zh) * 2013-08-08 2013-11-27 南京工业大学 一种正交异性钢板-纤维格栅增强混凝土组合桥面结构
CN204325919U (zh) * 2014-11-26 2015-05-13 安徽省交通投资集团有限责任公司 一种钢桥面铺装结构
CN105463990A (zh) * 2015-11-19 2016-04-06 东南大学 钢桥面铺装结构和方法
CN105463988A (zh) * 2015-12-08 2016-04-06 江苏中路工程技术研究院有限公司 一种正交异性板增强的铺装结构及其制备方法
CN109457608A (zh) * 2018-12-05 2019-03-12 上海市政工程设计研究总院(集团)有限公司 一种预制钢混组合桥面板的施工方法
CN110205937A (zh) * 2019-05-23 2019-09-06 长沙理工大学 正交异性钢板-超高性能混凝土组合桥面结构及施工方法
CN110029550A (zh) * 2019-05-28 2019-07-19 广东金长成桥梁隧道科技有限公司 一种新型钢桥面铺装结构及其施工工艺
CN110714408A (zh) * 2019-10-22 2020-01-21 江苏中路交通科学技术有限公司 一种预制超高性能混凝土钢桥面铺装结构及制备方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113215982A (zh) * 2021-05-11 2021-08-06 中交第三公路工程局有限公司 一种uhpc组合桥的面板结构及组合方法

Also Published As

Publication number Publication date
CN110714408B (zh) 2021-05-14
CN110714408A (zh) 2020-01-21

Similar Documents

Publication Publication Date Title
WO2021077817A1 (zh) 一种预制超高性能混凝土钢桥面铺装结构及制备方法
CN110714409B (zh) 一种树脂组合式超高性能混凝土铺装结构及施工方法
JP6328936B2 (ja) コンクリート構造の施工方法
WO1997047819A1 (fr) Procede pour renforcer une structure de beton asphaltee
CN103964767A (zh) 一种水泥基复合材料及修补混凝土裂缝的方法
WO2022126573A1 (zh) 桥隧纤维复合浇筑柔性防水铺装及施工方法
CN108951966A (zh) 玄武岩纤维网格混凝土保温装饰一体化装配式外墙板
KR101322760B1 (ko) 도로 보수용 조성물 및 그를 이용한 도로 보수 방법
CN211848904U (zh) 一种复合浇注式铺装结构
CN111705651A (zh) 一种钢桥面铺装用抗滑磨耗层、养护方法
CN109457610B (zh) 一种用于正交异性钢桥面板补强的铺装结构及施工方法
KR20090033573A (ko) 분사식 섬유보강 코팅을 이용한 콘크리트 구조물의보수/보강공법
WO2021120138A1 (zh) 一种超高性能混凝土铺装结构及其施工方法
CN108894073A (zh) 一种低噪音水泥路面精细抗滑磨耗层及施工方法
CN104894975A (zh) 一种混凝土的糙化方法
CN104532968A (zh) 防止砼结构与后砌填充墙连接部位裂缝的方法
CN212742055U (zh) 路面铺装结构
CN209412701U (zh) 一种用于正交异性钢桥面板补强的铺装结构
CN105621998A (zh) 一种修补桥涵损坏病害的建筑干混砂浆技术领域
CN109457607B (zh) 钢-超高性能混凝土组合桥面铺装接缝构造及施工方法
CN218667131U (zh) 一种组合式钢桥面铺装结构
KR102322227B1 (ko) 공동주택의 바닥충격음 저감용 고강도 모르타르패널 및 그 제조방법
CN205577464U (zh) 一种用于混凝土受弯构件加固的纤维编织网增强水泥基复合板材
JP7142868B1 (ja) 無機材料の施工方法
CN217053030U (zh) 一种足尺铺装结构

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20880180

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20880180

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 20880180

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205 DATED 22.05.2023)

122 Ep: pct application non-entry in european phase

Ref document number: 20880180

Country of ref document: EP

Kind code of ref document: A1