WO2022126573A1 - 桥隧纤维复合浇筑柔性防水铺装及施工方法 - Google Patents
桥隧纤维复合浇筑柔性防水铺装及施工方法 Download PDFInfo
- Publication number
- WO2022126573A1 WO2022126573A1 PCT/CN2020/137494 CN2020137494W WO2022126573A1 WO 2022126573 A1 WO2022126573 A1 WO 2022126573A1 CN 2020137494 W CN2020137494 W CN 2020137494W WO 2022126573 A1 WO2022126573 A1 WO 2022126573A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- parts
- fiber composite
- epoxy resin
- layer
- particle size
- Prior art date
Links
- 239000000835 fiber Substances 0.000 title claims abstract description 98
- 239000002131 composite material Substances 0.000 title claims abstract description 69
- 238000010276 construction Methods 0.000 title claims abstract description 18
- 239000010410 layer Substances 0.000 claims abstract description 98
- 239000003822 epoxy resin Substances 0.000 claims abstract description 90
- 229920000647 polyepoxide Polymers 0.000 claims abstract description 90
- 229920001169 thermoplastic Polymers 0.000 claims abstract description 52
- 239000004416 thermosoftening plastic Substances 0.000 claims abstract description 52
- 239000010426 asphalt Substances 0.000 claims abstract description 44
- 239000011384 asphalt concrete Substances 0.000 claims abstract description 43
- 229920000049 Carbon (fiber) Polymers 0.000 claims abstract description 37
- 239000004917 carbon fiber Substances 0.000 claims abstract description 37
- 239000000203 mixture Substances 0.000 claims abstract description 34
- 229910000831 Steel Inorganic materials 0.000 claims abstract description 31
- 229920005989 resin Polymers 0.000 claims abstract description 31
- 239000011347 resin Substances 0.000 claims abstract description 31
- 239000010959 steel Substances 0.000 claims abstract description 31
- 238000002156 mixing Methods 0.000 claims abstract description 22
- 239000000805 composite resin Substances 0.000 claims abstract description 13
- 239000004593 Epoxy Substances 0.000 claims abstract description 10
- 239000002245 particle Substances 0.000 claims description 51
- 239000003795 chemical substances by application Substances 0.000 claims description 47
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 claims description 34
- 239000004575 stone Substances 0.000 claims description 33
- 238000000576 coating method Methods 0.000 claims description 28
- 239000011248 coating agent Substances 0.000 claims description 25
- 239000004744 fabric Substances 0.000 claims description 22
- LYCAIKOWRPUZTN-UHFFFAOYSA-N Ethylene glycol Chemical compound OCCO LYCAIKOWRPUZTN-UHFFFAOYSA-N 0.000 claims description 21
- 239000000463 material Substances 0.000 claims description 17
- 238000003756 stirring Methods 0.000 claims description 17
- 239000012790 adhesive layer Substances 0.000 claims description 16
- 239000011230 binding agent Substances 0.000 claims description 16
- 235000019738 Limestone Nutrition 0.000 claims description 15
- 239000006028 limestone Substances 0.000 claims description 15
- 239000000843 powder Substances 0.000 claims description 15
- 239000012528 membrane Substances 0.000 claims description 14
- XNGIFLGASWRNHJ-UHFFFAOYSA-N phthalic acid Chemical compound OC(=O)C1=CC=CC=C1C(O)=O XNGIFLGASWRNHJ-UHFFFAOYSA-N 0.000 claims description 14
- 239000004576 sand Substances 0.000 claims description 14
- 239000004814 polyurethane Substances 0.000 claims description 13
- 229920002635 polyurethane Polymers 0.000 claims description 13
- 229930185605 Bisphenol Natural products 0.000 claims description 11
- 239000004952 Polyamide Substances 0.000 claims description 11
- IISBACLAFKSPIT-UHFFFAOYSA-N bisphenol A Chemical compound C=1C=C(O)C=CC=1C(C)(C)C1=CC=C(O)C=C1 IISBACLAFKSPIT-UHFFFAOYSA-N 0.000 claims description 11
- 229920002647 polyamide Polymers 0.000 claims description 11
- 229920002748 Basalt fiber Polymers 0.000 claims description 10
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims description 9
- BRLQWZUYTZBJKN-UHFFFAOYSA-N Epichlorohydrin Chemical compound ClCC1CO1 BRLQWZUYTZBJKN-UHFFFAOYSA-N 0.000 claims description 9
- PXKLMJQFEQBVLD-UHFFFAOYSA-N bisphenol F Chemical compound C1=CC(O)=CC=C1CC1=CC=C(O)C=C1 PXKLMJQFEQBVLD-UHFFFAOYSA-N 0.000 claims description 8
- 238000005266 casting Methods 0.000 claims description 8
- ISWSIDIOOBJBQZ-UHFFFAOYSA-N Phenol Chemical compound OC1=CC=CC=C1 ISWSIDIOOBJBQZ-UHFFFAOYSA-N 0.000 claims description 7
- GOOHAUXETOMSMM-UHFFFAOYSA-N Propylene oxide Chemical compound CC1CO1 GOOHAUXETOMSMM-UHFFFAOYSA-N 0.000 claims description 7
- 239000004721 Polyphenylene oxide Substances 0.000 claims description 6
- 229920000570 polyether Polymers 0.000 claims description 6
- -1 tolyl glycidyl ether Chemical compound 0.000 claims description 6
- 150000008065 acid anhydrides Chemical class 0.000 claims description 5
- QGBSISYHAICWAH-UHFFFAOYSA-N dicyandiamide Chemical compound NC(N)=NC#N QGBSISYHAICWAH-UHFFFAOYSA-N 0.000 claims description 5
- 239000005057 Hexamethylene diisocyanate Substances 0.000 claims description 4
- RRAMGCGOFNQTLD-UHFFFAOYSA-N hexamethylene diisocyanate Chemical compound O=C=NCCCCCCN=C=O RRAMGCGOFNQTLD-UHFFFAOYSA-N 0.000 claims description 4
- SRPWOOOHEPICQU-UHFFFAOYSA-N trimellitic anhydride Chemical compound OC(=O)C1=CC=C2C(=O)OC(=O)C2=C1 SRPWOOOHEPICQU-UHFFFAOYSA-N 0.000 claims description 4
- UPMLOUAZCHDJJD-UHFFFAOYSA-N 4,4'-Diphenylmethane Diisocyanate Chemical compound C1=CC(N=C=O)=CC=C1CC1=CC=C(N=C=O)C=C1 UPMLOUAZCHDJJD-UHFFFAOYSA-N 0.000 claims description 3
- RPNUMPOLZDHAAY-UHFFFAOYSA-N Diethylenetriamine Chemical compound NCCNCCN RPNUMPOLZDHAAY-UHFFFAOYSA-N 0.000 claims description 3
- 229910052500 inorganic mineral Inorganic materials 0.000 claims description 3
- 239000011707 mineral Substances 0.000 claims description 3
- 229920003180 amino resin Polymers 0.000 claims description 2
- 239000011229 interlayer Substances 0.000 claims description 2
- 239000004568 cement Substances 0.000 claims 1
- 125000005442 diisocyanate group Chemical group 0.000 claims 1
- CZZYITDELCSZES-UHFFFAOYSA-N diphenylmethane Chemical compound C=1C=CC=CC=1CC1=CC=CC=C1 CZZYITDELCSZES-UHFFFAOYSA-N 0.000 claims 1
- 229910052760 oxygen Inorganic materials 0.000 claims 1
- 239000001301 oxygen Substances 0.000 claims 1
- 238000005336 cracking Methods 0.000 abstract description 3
- 239000002344 surface layer Substances 0.000 abstract 3
- 238000012360 testing method Methods 0.000 description 12
- 238000005488 sandblasting Methods 0.000 description 7
- 238000005452 bending Methods 0.000 description 6
- 238000003892 spreading Methods 0.000 description 5
- 238000010521 absorption reaction Methods 0.000 description 3
- 230000003749 cleanliness Effects 0.000 description 3
- 238000007689 inspection Methods 0.000 description 3
- 238000000034 method Methods 0.000 description 3
- 230000035515 penetration Effects 0.000 description 3
- 238000007761 roller coating Methods 0.000 description 3
- 238000005096 rolling process Methods 0.000 description 3
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 3
- RTZKZFJDLAIYFH-UHFFFAOYSA-N Diethyl ether Chemical compound CCOCC RTZKZFJDLAIYFH-UHFFFAOYSA-N 0.000 description 2
- 125000006840 diphenylmethane group Chemical group 0.000 description 2
- 230000001133 acceleration Effects 0.000 description 1
- 230000032683 aging Effects 0.000 description 1
- 150000001408 amides Chemical class 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000008878 coupling Effects 0.000 description 1
- 238000010168 coupling process Methods 0.000 description 1
- 238000005859 coupling reaction Methods 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 230000018109 developmental process Effects 0.000 description 1
- 201000010099 disease Diseases 0.000 description 1
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 description 1
- JEIPFZHSYJVQDO-UHFFFAOYSA-N iron(III) oxide Inorganic materials O=[Fe]O[Fe]=O JEIPFZHSYJVQDO-UHFFFAOYSA-N 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 229920000642 polymer Polymers 0.000 description 1
- 238000003825 pressing Methods 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B26/00—Compositions of mortars, concrete or artificial stone, containing only organic binders, e.g. polymer or resin concrete
- C04B26/02—Macromolecular compounds
- C04B26/10—Macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
- C04B26/14—Polyepoxides
-
- E—FIXED CONSTRUCTIONS
- E01—CONSTRUCTION OF ROADS, RAILWAYS, OR BRIDGES
- E01D—CONSTRUCTION OF BRIDGES, ELEVATED ROADWAYS OR VIADUCTS; ASSEMBLY OF BRIDGES
- E01D19/00—Structural or constructional details of bridges
- E01D19/12—Grating or flooring for bridges; Fastening railway sleepers or tracks to bridges
-
- E—FIXED CONSTRUCTIONS
- E01—CONSTRUCTION OF ROADS, RAILWAYS, OR BRIDGES
- E01D—CONSTRUCTION OF BRIDGES, ELEVATED ROADWAYS OR VIADUCTS; ASSEMBLY OF BRIDGES
- E01D21/00—Methods or apparatus specially adapted for erecting or assembling bridges
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2111/00—Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
Definitions
- the invention relates to a steel bridge deck paving structure and method, in particular to a flexible waterproof pavement and a construction method for bridge and tunnel fiber composite pouring.
- the inventor of the present invention actively conducts research and innovation based on years of rich practical experience and professional knowledge in the engineering application of such products, and cooperates with the application of theory, in order to create a bridge and tunnel fiber composite casting flexible waterproof pavement and The construction method makes it more practical.
- the first object of the present invention is to provide a bridge and tunnel fiber composite pouring flexible waterproof pavement, improve the coordination between the steel bridge deck pavement and the steel bridge deck deformation, and solve the fatigue cracking and cracked work of epoxy asphalt steel bridge deck pavement. The problem of insufficient durability.
- the second object of the present invention is to provide a construction method for bridge and tunnel fiber composite pouring flexible waterproof pavement, which is convenient for on-site construction and can ensure the uniformity of the steel bridge deck pavement structure.
- a bridge and tunnel fiber composite pouring flexible waterproof pavement is a layered composite structure, which is composed of a steel bridge deck, a two-stage thermoplastic epoxy resin waterproof bonding layer, a fiber composite pouring type asphalt concrete lower layer, a gravel embedded layer, and a superimposed layer.
- a two-stage thermoplastic epoxy resin waterproof bonding layer is provided on the upper surface of the steel bridge deck, and the upper surface of the two-stage thermoplastic epoxy resin waterproof bonding layer is provided
- a fiber composite pouring asphalt concrete lower layer the upper surface of the fiber composite pouring asphalt concrete lower layer is simultaneously embedded with a gravel insert, and the upper surface of the gravel insert is provided with a superimposed epoxy resin bonding layer, so The upper surface of the double-layer laminated epoxy resin adhesive layer is provided with a fiber composite resin upper layer.
- the two-stage thermoplastic epoxy resin waterproof adhesive layer is composed of epoxy resin A and curing agent B, the mass ratio of which is 60:35-40, and the coating thickness is 0.5-0.6 mm.
- A includes 80-85 parts of bisphenol F-type epoxy resin, 10-15 parts of epichlorohydrin and 5-7 parts of graphite powder, and the curing agent B is one of dicyandiamide, acid anhydride and polyamide.
- the lower layer of the fiber composite cast asphalt concrete comprises 7-10 parts of asphalt binder, 25-30 parts of basalt with a particle size of 3-5 mm, 20-25 parts of basalt with a particle size of 5-10 mm, and a particle size of 1-3 mm 15-20 parts of natural sand, 20-30 parts of limestone powder, and 1-2 parts of carbon fiber, wherein the asphalt binder is blended by 30 # straight-run asphalt and lake asphalt at a ratio of 7:2.5-3.5, and the carbon fiber diameter is 6mm.
- the crushed stone embedding layer is basalt crushed stone with a particle size of 3 to 5 mm, the content of needle flakes is less than or equal to 8%, the coverage rate of crushed stone is controlled at 50% to 80%, and the crushed stone embedding layer and fiber composite pouring asphalt Concrete simultaneous construction.
- the laminated epoxy resin adhesive layer is composed of waterproof membrane, carbon fiber cloth, two-stage thermoplastic epoxy resin adhesive layer and rivets.
- the superimposed epoxy resin adhesive layer is, from bottom to top, a waterproof membrane layer with a thickness of 2.5-4 mm, a carbon fiber cloth, and a two-stage thermoplastic epoxy resin adhesive layer with a thickness of 1-2 mm, and the carbon fiber cloth is made of rivets.
- the distance between rivets along the bridge is 1.5 to 2m, and the distance between the horizontal bridge is 0.8 to 1m.
- the waterproof membrane is a solvent-free polyurethane material, which is composed of two components, A and B, with a mass ratio of 50:45 to 55.
- Component A includes 30 to 35 parts of ethylene glycol, propylene oxide polymer 20-25 parts of ether, 6-9 parts of phthalic acid, 10-14 parts of tolyl glycidyl ether, B component is one of hexamethylene diisocyanate and diphenylmethane diisocyanate.
- the thickness of the carbon fiber cloth is 0.111mm and the width is 50cm.
- the two-stage thermoplastic epoxy resin bonding layer is composed of epoxy resin A and curing agent B, and its mass ratio is 60:35 ⁇ 40, and the coating thickness is 0.5 ⁇ 0.6mm, the epoxy resin A includes 80-85 parts of bisphenol F type epoxy resin, 10-15 parts of epichlorohydrin, 5-7 parts of graphite powder, and the curing agent B is dicyandiamide, One of acid anhydride and polyamide.
- the high toughness resin is blended by the main agent: the curing agent in a ratio of 5:1 to 1.5, and the main agent includes 90 to 95 parts of bisphenol F type epoxy resin, 3 to 5 parts of phenolic epoxy, 650 parts 6-10 parts of amide, the curing agent is one of diethylenetriamine, trimellitic anhydride and amino resin, and the diameter of the carbon fiber is 6mm.
- the upper layer of the fiber composite resin comprises 7-8 parts of high toughness resin, 20-25 parts of basalt aggregate with a particle size of 4.75-9.5mm, 18-22 parts of basalt aggregate with a particle size of 2.36-4.75mm, 0.6-2.36 parts 15-20 parts of mm particle size basalt aggregate, 15-20 parts of 0.075-0.6mm particle size basalt aggregate, 19-24 parts of limestone ore powder, and 1-2 parts of basalt fiber.
- the construction method of the bridge and tunnel fiber composite pouring flexible waterproof pavement comprises the following operation steps:
- thermoplastic epoxy resin material 1) Prepare a two-stage thermoplastic epoxy resin material according to the following steps: in the first stage, weigh bisphenol F-type epoxy resin, epichlorohydrin, and graphite powder in proportion, stir and mix, and react at 60° C. for 1 hour. Step by step, add curing agent w in one step, react at 75°C for 30min, and cool to room temperature.
- thermoplastic epoxy resin material is coated on the steel bridge deck to obtain a two-stage thermoplastic epoxy resin waterproof bonding layer, and the coating thickness is controlled at 0.5-0.6mm;
- component A is one of hexamethylene diisocyanate and diphenylmethane diisocyanate, and the prepared component A and B are mixed.
- the components are stirred and mixed in a ratio of 50:45 to 55 to obtain a solvent-free polyurethane material;
- the crushed stone is pre-mixed with 0.2%-0.5% asphalt binder before the spreading and crushing of the crushed stone interlayer, and the cooled crushed stone cannot be agglomerated after pre-mixing.
- the thickness of the upper layer of the fiber composite resin is 25-35 mm.
- the present invention has the following beneficial effects:
- the present invention adopts the gradient function paving structure system of "fiber composite pouring asphalt concrete lower layer + fiber composite resin upper layer”, and uses the pouring asphalt concrete as the flexible deformation coordination layer to solve the incongruity between the paving structure and the deformation of the steel bridge deck
- the epoxy resin is used as the rigid bearing layer to solve the problems of insufficient strength of the pavement structure and poor high temperature stability under high temperature and heavy load conditions.
- the fiber composite pouring asphalt concrete used in the present invention is prepared by mixing 30 # straight asphalt and lake asphalt.
- the aging performance is better, and the fine aggregate is replaced by natural sand, which further improves the construction workability of the pouring asphalt mixture; in addition, the present invention further improves the high temperature resistance of the pouring asphalt concrete by adding carbon fibers and pressing in crushed stones.
- the rutting performance is nearly 2 times higher than that of ordinary poured asphalt concrete.
- the epoxy resin mixture has the characteristics of high strength and high modulus, it is difficult to achieve coordinated deformation with the steel bridge deck and the underlying layer, and cracks, bulges, pits and other diseases are prone to occur during use.
- the top layer of the resin improves the toughness and fatigue resistance of the epoxy resin material by adding basalt fiber, which can effectively reduce the fatigue cracking of the epoxy resin and the insufficient durability of the work with cracks in the actual use process.
- Fig. 1 is a schematic cross-sectional view of a bridge and tunnel fiber composite pouring flexible waterproof pavement in an embodiment of the present invention.
- the raw material sources adopted in the present invention are as follows:
- thermoplastic epoxy resin waterproof bonding layer Jiangsu Zhonglu Transportation Science and Technology Co., Ltd.
- Basalt crushed stone Jiangsu Maodi Group Co., Ltd.
- Basalt fiber Shandong Oude Chemical Fiber Products Co., Ltd. basalt fiber
- Carbon fiber Zhonganxin Technology Co., Ltd.
- Carbon fiber cloth Wuxi Yingken Construction Technology Co., Ltd.
- Solvent-free polyurethane Jiangsu Zhonglu Transportation Science and Technology Co., Ltd.
- High toughness resin Jiangsu Zhonglu Transportation Science and Technology Co., Ltd.
- a bridge and tunnel fiber composite pouring flexible waterproof pavement and construction method comprising the following steps:
- the two-stage thermoplastic epoxy resin waterproof bonding layer is constructed by manual roller coating on the steel bridge deck, and the coating thickness is 0.55mm. During the coating process, the appearance inspection is carried out to ensure that there is no leakage;
- a bridge and tunnel fiber composite pouring flexible waterproof pavement and construction method comprising the following steps:
- the second-stage thermoplastic epoxy resin waterproof bonding layer is constructed by manual roller coating on the steel bridge deck, and the coating thickness is 0.5mm. During the coating process, the appearance inspection is carried out to ensure that there is no leakage;
- (11) Weigh 92 parts of bisphenol F-type epoxy resin, 4 parts of phenolic epoxy, and 6 parts of 650 polyamide, react at 60°C for 1.5 hours to obtain the main agent, the curing agent is trimellitic anhydride, according to the main agent: curing agent Weigh the main agent and the curing agent in a ratio of 5:1.2, react at 75°C for 45 minutes, cool to room temperature, and prepare a high-toughness resin;
- a bridge and tunnel fiber composite pouring flexible waterproof pavement and construction method comprising the following steps:
- the second-stage thermoplastic epoxy resin waterproof bonding layer is constructed by manual roller coating on the steel bridge deck, and the coating thickness is 0.6mm. The appearance inspection is carried out during the coating process to ensure that there is no leakage;
- (11) Weigh 95 parts of bisphenol F-type epoxy resin, 5 parts of phenolic epoxy, and 9 parts of 650 polyamide, react at 60°C for 1.5 hours to obtain the main agent, the curing agent is trimellitic anhydride, according to the main agent: curing agent Weigh the main agent and the curing agent in a ratio of 5:1.5, react at 75°C for 45 minutes, and cool to room temperature to prepare a high-toughness resin;
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Structural Engineering (AREA)
- Architecture (AREA)
- Civil Engineering (AREA)
- Ceramic Engineering (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Materials Engineering (AREA)
- Organic Chemistry (AREA)
- Road Paving Structures (AREA)
- Bridges Or Land Bridges (AREA)
Abstract
Description
试验项目 | 单位 | 测试结果 |
拉伸强度(23℃) | MPa | 3.6 |
断裂伸长率(23℃) | % | ≥142 |
不透水性(0.3MPa,24h) | - | 不透水 |
吸水率 | % | 0.21 |
附着力拉拔强度(23℃) | MPa | 1.37 |
试验项目 | 单位 | 测试结果 |
刘埃尔流动性(240℃) | s | 21 |
贯入度(40℃) | mm | 2.4 |
动稳定度(60℃、0.7MPa) | 次/mm | 849 |
低温弯曲应变(-10℃,50mm/min) | με | 3185 |
试验项目 | 单位 | 测试结果 |
抗拉强度 | MPa | 3674 |
受拉弹性模量 | MPa | 2.64*10 5 |
动稳定度(60℃、0.7MPa) | 次/mm | 1.9 |
试验项目 | 单位 | 测试结果 |
拉伸强度(23℃) | MPa | 27 |
断裂伸长率(23℃) | % | 113 |
低温弯曲应变(-10℃,50mm/min) | με | 10743 |
疲劳寿命(1200με) | 万次 | >100万次 |
试验项目 | 单位 | 测试结果 |
拉伸强度(23℃) | MPa | 3.8 |
断裂伸长率(23℃) | % | ≥134 |
不透水性(0.3MPa,24h) | - | 不透水 |
吸水率 | % | 0.23 |
附着力拉拔强度(23℃) | MPa | 1.51 |
试验项目 | 单位 | 测试结果 |
刘埃尔流动性(240℃) | s | 26 |
贯入度(40℃) | mm | 1.9 |
动稳定度(60℃、0.7MPa) | 次/mm | 792 |
低温弯曲应变(-10℃,50mm/min) | με | 3052 |
试验项目 | 单位 | 测试结果 |
抗拉强度 | MPa | 3674 |
受拉弹性模量 | MPa | 2.64*105 |
伸长率 | % | 1.9 |
试验项目 | 单位 | 测试结果 |
拉伸强度(23℃) | MPa | 25.3 |
断裂伸长率(23℃) | % | 121 |
低温弯曲应变(-10℃,50mm/min) | με | 11867 |
疲劳寿命(1200με) | 万次 | >100万次 |
试验项目 | 单位 | 测试结果 |
拉伸强度(23℃) | MPa | 3.9 |
断裂伸长率(23℃) | % | ≥148 |
不透水性(0.3MPa,24h) | - | 不透水 |
吸水率 | % | 0.27 |
附着力拉拔强度(23℃) | MPa | 1.52 |
试验项目 | 单位 | 测试结果 |
刘埃尔流动性(240℃) | s | 26 |
贯入度(40℃) | mm | 2.5 |
动稳定度(60℃、0.7MPa) | 次/mm | 882 |
低温弯曲应变(-10℃,50mm/min) | με | 3308 |
试验项目 | 单位 | 测试结果 |
抗拉强度 | MPa | 3674 |
受拉弹性模量 | MPa | 2.64*105 |
伸长率 | % | 1.9 |
试验项目 | 单位 | 测试结果 |
拉伸强度(23℃) | MPa | 25 |
断裂伸长率(23℃) | % | 119 |
低温弯曲应变(-10℃,50mm/min) | με | 10993 |
疲劳寿命(1200με) | 万次 | >100万次 |
Claims (11)
- 一种桥隧纤维复合浇筑柔性防水铺装,其特征在于:所述防水铺装为层状复合结构,由钢桥面板(1)、二阶段热塑性环氧树脂防水粘结层(2)、纤维复合浇筑式沥青混凝土下面层(3)、碎石嵌层(4)、叠合型纤维环氧树脂粘结层(5)、纤维复合树脂上面层(6)组成;在钢桥面板(1)上表面设置有二阶段热塑性环氧树脂防水粘结层(2),所述二阶段热塑性环氧树脂防水粘结层(2)上表面设置有纤维复合浇注式沥青混凝土下面层(3),所述纤维复合浇注式沥青混凝土下面层(3)上表面同步嵌入碎石嵌层(4),所述碎石嵌层(4)上表面设置有叠合型环氧树脂粘结层(5),所述双层叠合型环氧树脂粘结层(5)上表面设置有纤维复合树脂上面层(6)。
- 根据权利要求1所述的桥隧纤维复合浇筑柔性防水铺装,其特征在于:所述二阶段热塑性环氧树脂防水粘结层(2)由环氧树脂A和固化剂B组成,其质量比为60:35~40,涂布厚度为0.5~0.6mm,所述环氧树脂A包括80~85份双酚F型环氧树脂、10~15份环氧氯丙烷、5~7份石墨粉,所述固化剂B为二氰二胺、酸酐、聚酰胺中的一种。
- 根据权利要求1所述的桥隧纤维复合浇筑柔性防水铺装,其特征在于:所述纤维复合浇注式沥青混凝土下面层(3)包括沥青胶结料7~10份、3~5mm粒径玄武岩25~30份、5~10mm粒径的玄武岩20~25份、1~3mm粒径的天然砂15~20份、石灰岩矿粉20~30份、碳纤维1~2份,其中所述沥青胶结料由30#直馏沥青和湖沥青按7:2.5~3.5掺配,所述碳纤维直径为6mm。
- 根据权利要求1所述的桥隧纤维复合浇筑柔性防水铺装,其特征在于:所述碎石嵌层(4)为3~5mm粒径的玄武岩碎石,针片状含量≤8%,碎石覆盖率控制在50%~80%,碎石嵌层(4)与纤维复合浇注式沥青混凝土同步施工。
- 根据权利要求1所述的桥隧纤维复合浇筑柔性防水铺装,其特征在于:所述叠合型环氧树脂粘结层(5)从下到上依次为2.5~4mm厚的防水膜层(7)、碳纤维布(8)、1~2mm厚的二阶段热塑性环氧树脂粘结层(9),碳纤维布(8)采用铆钉(10)固定,铆钉顺桥向间距1.5~2m,横桥向间距0.8~1m。
- 根据权利要求5所述的桥隧纤维复合浇筑柔性防水铺装,其特征在于:所述防水膜(7)为无溶剂型聚氨脂材料,由A、B双组分构成,质量比为50:45~55,A组分包括乙二醇30~35份、环氧丙烷聚醚20~25份、邻苯二甲酸6~9份、甲苯基缩水醚10~14份,B组分为六次甲基二异氰酸醋、二苯基甲烷二异氰酸醋中的一种,碳纤维布(8)厚度为0.111mm,宽度为50cm,所述二阶段热塑性环氧树粘结层(9)由环氧树脂A和固化剂B组成,其质量比为60:35~40,涂布厚度为0.5~0.6mm,所述环氧树脂A包括80~85份双酚F型环氧树脂、10~15份环氧氯丙烷、5~7份石墨粉,所述固化剂B为二氰二胺、酸酐、聚酰胺中的一种。
- 根据权利要求6所述的桥隧纤维复合浇筑柔性防水铺装,其特征在于:所述高韧树脂由主剂:固化剂按5:1~1.5比例掺配,主剂包括90~95份双酚F型环氧树脂、酚氧环氧3~5份、650聚酰胺6~10份,固化剂为二乙烯三胺、偏苯三酸酐、氨基树脂中的一种,所述碳纤维直径为6mm。
- 根据权利要求1所述的桥隧纤维复合浇筑柔性防水铺装,其特征在于:所述纤维复合树脂上面层(6)包括高韧树脂7~8份、4.75-9.5mm粒径玄武岩骨料20~25份、2.36-4.75mm粒径玄武岩骨料18~22份、0.6-2.36mm粒径玄武岩骨料15~20份、0.075-0.6mm粒径玄武岩骨料15~20份、石灰岩矿粉19~24份、玄武岩纤维1~2份。
- 根据权利要求1~8任一项所述的桥隧纤维复合浇筑柔性防水铺装的施工方法,其特征在于:包括如下操作步骤,S1.按照以下步骤制备二阶段热塑性环氧树脂材料:第一阶段按比例称取双酚F型环氧树脂、环氧氯丙烷、石墨粉,搅拌混合,在60℃条件下反应1h, 第二阶段迅速一次性的加入固化剂w,75℃条件下反应30min,冷却至常温。S2.钢桥面板喷砂除锈后,在钢桥面板上涂布步骤S1中制备的二阶段热塑性环氧树脂材料,得到二阶段热塑性环氧树脂防水粘结层(2),涂布厚度控制在0.5~0.6mm;S3.称取3~5mm粒径玄武岩25~30份、5~10mm粒径的玄武岩20~25份、1~3mm粒径的天然砂15~20份,在260~280℃条件下加热不少于3h,称取石灰岩矿粉20~30份,在80~120℃条件下加热不少于1h,按7:2.5~3.5比例称取30 #直馏沥青和湖沥青掺配获得沥青胶结料7~10份,混合后在165~175℃条件下加热3h,拌缸提前预热至230~250℃,将加热后的玄武岩、天然砂倒入拌缸,加入碳纤维,搅拌20~30s后,将加热的沥青倒入拌缸,搅拌60~90s,制得纤维复合浇注式沥青混凝土;S4.在所述二阶段热塑性环氧树脂防水粘结层(2)上铺筑纤维复合浇注式沥青混凝土,得到纤维复合浇筑式沥青混凝土下面层(3),在所述纤维复合浇注式沥青混凝土上撒布并碾压碎石嵌层(4);S5称取乙二醇30~35份、环氧丙烷聚醚20~25份、邻苯二甲酸6~9份、甲苯基缩水醚10~14份,加压0.8~1MPa,混合均匀,60℃条件下搅拌50~60min,制备得到A组分,B组分为六次甲基二异氰酸醋、二苯基甲烷、二异氰酸醋中的一种,将制备的A组分与B组分按50:45~55比例搅拌混合,得到无溶剂型聚氨酯材料;S6.在所述碎石嵌层(4)上涂布无溶剂型聚氨酯材料,得到防水膜层(7);S7.在所述防水膜层(7)上铺碳纤维布(8),并采用铆钉(10)进行固定;S8.在所述碳纤维布(8)上涂布1~2mm厚的二阶段热塑性环氧树脂,得到二阶段热塑性环氧树脂粘结层(9);S9.称取90~95份双酚F型环氧树脂、酚氧环氧3~5份、650聚酰胺6~10份获得主剂,60℃条件下反应1.5h,按主剂:固化剂5:1~1.5的比例加入固化剂,75℃条件下反应45min,冷却至常温,制备得到高韧树脂;S10.称取高韧树脂7~8份、4.75-9.5mm粒径玄武岩骨料20~25份、2.36-4.75mm粒径玄武岩骨料18~22份、0.6-2.36mm粒径玄武岩骨料15~20份、0.075- 0.6mm粒径玄武岩骨料15~20份、石灰岩矿粉19~24份、玄武岩纤维1~2份,常温条件下拌和均匀,制备得到纤维树脂混合料;S11.在所述二阶段热塑性环氧树脂粘结层(9)上铺筑纤维树脂混合料,得到纤维复合树脂上面层(6),常温养生后得到桥隧纤维复合浇筑柔性防水铺装。
- 根据权利要求9所述的桥隧纤维复合浇筑柔性防水铺装及施工方法,其特征在于:在所述S4撒布并碾压碎石嵌层之前,用0.2%~0.5%的所述沥青胶结料对碎石进行预拌,预拌后冷却的碎石不能结团。
- 根据权利要求9或10所述的桥隧纤维复合浇筑柔性防水铺装及施工方法,其特征在于:所述S11纤维复合树脂上面层厚度为25~35mm。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202011467728.7 | 2020-12-14 | ||
CN202011467728.7A CN112681134B (zh) | 2020-12-14 | 2020-12-14 | 桥隧纤维复合浇筑柔性防水铺装及施工方法 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2022126573A1 true WO2022126573A1 (zh) | 2022-06-23 |
Family
ID=75449425
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2020/137494 WO2022126573A1 (zh) | 2020-12-14 | 2020-12-18 | 桥隧纤维复合浇筑柔性防水铺装及施工方法 |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN112681134B (zh) |
WO (1) | WO2022126573A1 (zh) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN115637845A (zh) * | 2022-10-08 | 2023-01-24 | 连云港根森木业有限公司 | 一种建筑防水模板及其制备方法 |
CN118420267A (zh) * | 2024-04-24 | 2024-08-02 | 福建基石科技有限公司 | 一种高附着力环氧砂浆钢桥面铺装材料及其制备方法 |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113584987A (zh) * | 2021-07-14 | 2021-11-02 | 江苏长路交通工程有限公司 | 一种隧道纤维复合树脂铺装结构 |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103590331A (zh) * | 2013-10-21 | 2014-02-19 | 江阴大桥(北京)工程有限公司 | 一种钢桥桥面的复合铺装结构及其铺装方法 |
JP2014177769A (ja) * | 2013-03-13 | 2014-09-25 | Mitsubishi Plastics Inc | 床版用防水部材、床版防水構造、及び床版防水構造の施工方法 |
CN109098084A (zh) * | 2018-09-03 | 2018-12-28 | 南京交通职业技术学院 | 一种钢桥面铺装层及其制备方法 |
CN109594471A (zh) * | 2018-12-25 | 2019-04-09 | 广州珠江黄埔大桥建设有限公司 | 钢桥面的铺装结构及其施工方法 |
CN211848904U (zh) * | 2019-12-04 | 2020-11-03 | 江苏中路工程技术研究院有限公司 | 一种复合浇注式铺装结构 |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101722125B1 (ko) * | 2016-07-25 | 2017-03-31 | 현대브릿지(주) | 복합식 교면 방수층 및 이의 시공 방법 |
-
2020
- 2020-12-14 CN CN202011467728.7A patent/CN112681134B/zh active Active
- 2020-12-18 WO PCT/CN2020/137494 patent/WO2022126573A1/zh active Application Filing
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2014177769A (ja) * | 2013-03-13 | 2014-09-25 | Mitsubishi Plastics Inc | 床版用防水部材、床版防水構造、及び床版防水構造の施工方法 |
CN103590331A (zh) * | 2013-10-21 | 2014-02-19 | 江阴大桥(北京)工程有限公司 | 一种钢桥桥面的复合铺装结构及其铺装方法 |
CN109098084A (zh) * | 2018-09-03 | 2018-12-28 | 南京交通职业技术学院 | 一种钢桥面铺装层及其制备方法 |
CN109594471A (zh) * | 2018-12-25 | 2019-04-09 | 广州珠江黄埔大桥建设有限公司 | 钢桥面的铺装结构及其施工方法 |
CN211848904U (zh) * | 2019-12-04 | 2020-11-03 | 江苏中路工程技术研究院有限公司 | 一种复合浇注式铺装结构 |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN115637845A (zh) * | 2022-10-08 | 2023-01-24 | 连云港根森木业有限公司 | 一种建筑防水模板及其制备方法 |
CN115637845B (zh) * | 2022-10-08 | 2024-04-05 | 连云港根森木业有限公司 | 一种建筑防水模板及其制备方法 |
CN118420267A (zh) * | 2024-04-24 | 2024-08-02 | 福建基石科技有限公司 | 一种高附着力环氧砂浆钢桥面铺装材料及其制备方法 |
Also Published As
Publication number | Publication date |
---|---|
CN112681134A (zh) | 2021-04-20 |
CN112681134B (zh) | 2022-08-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2022126573A1 (zh) | 桥隧纤维复合浇筑柔性防水铺装及施工方法 | |
US9783940B2 (en) | Structure and method of pavement on steel deck bridge | |
CN106186922B (zh) | 半刚性沥青路面材料及其制备方法 | |
CN102392413B (zh) | 一种组合式钢桥桥面的铺装结构及其铺装方法 | |
WO2023284252A1 (zh) | 一种隧道纤维复合树脂铺装结构 | |
CN105088965B (zh) | 一种钢桥桥面铺装结构及铺装方法 | |
WO2011109956A1 (zh) | 宽温度域高性能热固性环氧沥青材料及其制备方法 | |
CN101654903B (zh) | 一种水泥混凝土桥桥面的铺装结构 | |
CN101020601A (zh) | 环氧沥青浇注式混凝土材料及制备方法 | |
Zhang et al. | Laboratory investigation on the properties of polyurethane/unsaturated polyester resin modified bituminous mixture | |
CN109594471B (zh) | 钢桥面的铺装结构及其施工方法 | |
CN101003688A (zh) | 高性能环氧沥青路面材料及其制备方法和应用 | |
CN109836096A (zh) | 一种超高性能轻质混凝土及其制备方法 | |
CN207537877U (zh) | 一种超韧性低干缩水泥基材料钢桥面铺装结构 | |
CN113621218A (zh) | 一种超韧型高温拌合型环氧树脂制备方法及其应用 | |
CN106904870A (zh) | 一种天然纤维增强环氧树脂基混凝土及其制备方法与应用 | |
CN106638294A (zh) | 一种钢桥面铺装结构 | |
CN114907802B (zh) | 一种水下混凝土构件维修养护用碳纤维浸渍胶及其制备方法 | |
CN101021058A (zh) | 桥面铺装防水体系的材料及铺装施工方法 | |
CN115010410A (zh) | 一种改性环氧树脂混凝土及其制备方法 | |
CN111411581B (zh) | 一种刚柔复合式钢桥面铺装结构及其铺装方法 | |
CN103601418B (zh) | 一种用于浇灌式路面材料制备的界面增强剂及其应用 | |
CN115448644B (zh) | 一种环氧沥青浇注式混凝土及其制备方法 | |
CN106082892A (zh) | 一种微膨胀混凝土、使用方法及其应用 | |
Cao et al. | Performance of composite modified asphalt with Trinidad lake asphalt used as waterproofing material for bridge deck pavement |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 20965589 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 20965589 Country of ref document: EP Kind code of ref document: A1 |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 20965589 Country of ref document: EP Kind code of ref document: A1 |
|
32PN | Ep: public notification in the ep bulletin as address of the adressee cannot be established |
Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205 DATED 11.12.2023) |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 20965589 Country of ref document: EP Kind code of ref document: A1 |