WO2021077548A1 - 量子点荧光探测装置、量子点荧光监测仪及其监测方法 - Google Patents

量子点荧光探测装置、量子点荧光监测仪及其监测方法 Download PDF

Info

Publication number
WO2021077548A1
WO2021077548A1 PCT/CN2019/122448 CN2019122448W WO2021077548A1 WO 2021077548 A1 WO2021077548 A1 WO 2021077548A1 CN 2019122448 W CN2019122448 W CN 2019122448W WO 2021077548 A1 WO2021077548 A1 WO 2021077548A1
Authority
WO
WIPO (PCT)
Prior art keywords
quantum dot
fluorescence
detection module
test strip
line
Prior art date
Application number
PCT/CN2019/122448
Other languages
English (en)
French (fr)
Inventor
王升启
肖瑞
王东风
荣振
董建
王封
孙美洁
Original Assignee
中国人民解放军军事科学院军事医学研究院
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国人民解放军军事科学院军事医学研究院 filed Critical 中国人民解放军军事科学院军事医学研究院
Publication of WO2021077548A1 publication Critical patent/WO2021077548A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/01Arrangements or apparatus for facilitating the optical investigation
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • G01N21/6428Measuring fluorescence of fluorescent products of reactions or of fluorochrome labelled reactive substances, e.g. measuring quenching effects, using measuring "optrodes"
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2201/00Features of devices classified in G01N21/00
    • G01N2201/02Mechanical
    • G01N2201/022Casings

Definitions

  • This application relates to the technical fields of biological science research and medical examination applications, and specifically to a quantum dot fluorescence detection device, a quantum dot fluorescence monitor and a monitoring method thereof.
  • quantum dots are far superior to the existing organic fluorescent dyes, and they have the advantages of high sensitivity, good stability, and long validity period.
  • labeled probes they are widely used in high sensitivity, live/in vivo long-term dynamic observation, Technical fields such as simultaneous detection of multiple indicators.
  • quantum dot labeled probes are usually set on test strips, and the test strips generally include control lines and detection lines, which are often referred to as C lines and T lines.
  • the purpose of this application includes providing a quantum dot fluorescence detection device, which can adjust the detection position of the detection module according to the positional relationship between the T line and the C line on the test strip, so as to achieve accurate determination of the analyte on the test strip.
  • Another object of the present application includes providing a quantum dot fluorescence monitor, which can accurately collect fluorescence data on the T line and C line to improve the effects of monitoring, comparison and analysis.
  • a quantum dot fluorescence detection device which includes a base, a guide post and a detection module; the guide post is erected on the base, the detection module is movably arranged on the guide post, and the detection module can be opposed to each other.
  • the base moves along the length of the guide post; the detection module includes an emission light source and a fluorescence probe; the emission light source is configured to illuminate the test strip, and the fluorescence probe is configured to collect Fluorescence.
  • the lifting movement of the detection module on the guide post is controlled to be sequentially at the same distance and angle Illuminate the T-line and C-line and collect the fluorescence information on the T-line and C-line respectively for analysis and determination, which improves the accuracy of detection and comparative analysis.
  • the quantum dot fluorescence detection device further includes a lift drive device, the lift drive device is fixed to the base, and the drive end of the lift drive device is connected to the detection module and is configured to drive the The detection module moves along the length direction of the guide post.
  • the lifting driving device includes a stepping motor; the stepping motor is arranged on the base, and the driving end of the stepping motor is connected to the detection module and is configured to drive the detection module along The guide post moves.
  • the technical effect is: because the distance between the T line and the C line on the test strip is generally a constant value, the stepper motor can be used to lift the detection module according to a specific distance, which improves the positioning speed and experiment efficiency of the detection module.
  • the driving end of the stepping motor is connected with a lifting column, the guiding column is provided with a guiding hole, and the lifting column passes through the guiding hole; the detection module is arranged on the lifting column, the The stepping motor is configured to drive the lifting column to move along the axis of the guide hole.
  • the technical effect is that: the cooperation of the guide hole and the lifting column can prevent the position deviation of the detection module in frequent activities, and ensure the accurate positioning of the detection module.
  • the lifting driving device includes a nut and a screw rod, the screw rod is pivotally connected to the guide post, and the length direction of the screw rod is parallel to the length direction of the guide post, and the nut is threadedly connected to the guide post.
  • the screw; the detection module is fixed to the nut, and the detection module is slidably connected to the guide post along the length direction of the guide post.
  • one of the detection module and the guide post is provided with a guide rail, and the other is provided with a guide groove, and the guide rail is slidably connected to the guide groove, and the guide groove and the guide rail The length direction of each is parallel to the length direction of the guide post.
  • an adjusting arm is fixedly connected to the driving end of the lifting driving device, and the detection module is installed on the adjusting arm.
  • the exit light source includes an LED light source.
  • the LED light source has low heat generation, low energy consumption, small installation space, and long service life.
  • the LED lamp beads should be arranged inside the integrated structure of the detection module, and pass through a narrow strip. The holes let out light to accurately illuminate the test strip.
  • the fluorescence probe includes a photodiode detector.
  • the photodiode detector can accurately and quickly reflect the light intensity of the fluorescence, and at the same time, the photodiode detector has a compact structure and small installation space.
  • the above-mentioned LED light source and photodiode detector should be fixed and installed in sequence according to the length direction of the test strip, and the light emission direction of the LED light source and the orientation direction of the photodiode detector form a certain angle and intersect. The intersection position can directly correspond to the T line or C line of the test strip.
  • a quantum dot fluorescence monitor includes a housing, a test paper placement member and the quantum dot fluorescence detection device described above.
  • the test paper placement member and the base are both set inside the housing; a test strip is placed on the test paper In the placing part, the length direction of the test strip is parallel to the movement direction of the detection module; the detection module is driven to move, and the light from the outgoing light source can sequentially irradiate the T line and C line on the test strip.
  • the fluorescence probe can sequentially collect the fluorescence emitted by the T line and the fluorescence emitted by the C line on the test strip.
  • the test paper placement member includes a rotating seat and a rotating cylinder arranged on the rotating seat; the rotating seat is arranged in an inner cavity of the housing and configured to drive the rotating cylinder to rotate; the rotating cylinder Multiple test strips can be placed on it.
  • the technical effect is: because multiple test strips can be placed in the rotating drum, and the rotating drum is rotated by the rotating seat, the T line and C line of one test strip can be measured immediately after the other test strip is measured. . Therefore, in one measurement cycle, the quantum dot fluorescence monitor can detect multiple test strips, which greatly improves the monitoring efficiency of the experiment.
  • the housing is recessed downwardly with an installation groove, the bottom of the installation groove is provided with an installation hole, and the rotating cylinder extends into the installation groove through the installation hole; the side wall of the installation groove is provided with There is a bar-shaped through hole corresponding to the rotating cylinder, the bar-shaped through hole extends along the length of the guide post, the exit light source can illuminate the test strip through the bar-shaped through hole, and the fluorescent light The probe can collect the fluorescence generated on the test strip through the strip through hole.
  • the rotating cylinder is detachably inserted into the rotating seat.
  • the rotating drum is provided with a plurality of accommodating cavities, and the plurality of accommodating cavities all extend along the axial direction of the rotating drum, and the plurality of accommodating cavities are arranged at even intervals along the axial direction of the rotating drum.
  • the outer wall of each accommodating cavity is provided with a display window, the display window is configured to display the C line and T line of the test strip.
  • each accommodating cavity is provided with a label.
  • the rotating seat further includes a resetting device; the resetting device is arranged at the bottom of the rotating seat.
  • the resetting device is arranged at the bottom of the rotating seat.
  • a support cushion is provided at the bottom of the shell.
  • the technical effect is that during the experiment, the stepper motor frequently raises and lowers the detection module.
  • the support cushion can play a buffering role and reduce the negative impact of vibration.
  • the flip cover is arranged at the position of the housing corresponding to the rotating seat, and the rotating cylinder can be replaced by opening the flip cover, which is convenient and quick.
  • the present application also provides a monitoring method configured to use the above quantum dot fluorescence monitor to detect the test strip, and the detection step includes:
  • test paper strip to be detected into the test paper holder
  • the detection module is driven to move along the length of the guide column to a position corresponding to the C line on the test strip.
  • the light from the outgoing light source irradiates the C line on the test strip, and the C line generates fluorescence; the fluorescence probe collects the C line Fluorescence emitted and processed and analyzed;
  • the detection module is driven to move along the length of the guide column to a position corresponding to the T line on the test strip.
  • the light from the outgoing light source irradiates the T line on the test strip, and the T line generates fluorescence; the fluorescence probe collects the T line Fluorescence emitted and processed and analyzed.
  • the rotating seat drives the rotating cylinder to rotate, and the next test strip reaches the detection position, and the detection module detects the C line and T line of the test strip.
  • the quantum dot fluorescence detection device of the present application integrates the emission light source and the fluorescence probe as the detection module, which can adjust the detection position of the detection module according to the positional relationship between the T line and the C line on the test strip, and control the up and down of the detection module. Obtain the fluorescence generated by the T line and C line on the test strip, and accurately determine the analyte on the test strip by calculating and comparing the fluorescence intensity.
  • the quantum dot fluorescence monitor of the present application has the advantages of the aforementioned quantum dot fluorescence detection device, and at the same time, the test strip placement component and the detection device are centrally built in the housing to form a complete and closed monitoring mechanism, which effectively improves the experiment Reliability and independence.
  • FIG. 1 is a schematic diagram of a three-dimensional structure of a quantum dot fluorescence detection device provided by an embodiment of the application;
  • Figure 2 is a front view of a quantum dot fluorescence detection device provided by an embodiment of the application.
  • Figure 3 is a right side view of the quantum dot fluorescence detection device provided by an embodiment of the application.
  • FIG. 4 is a schematic diagram of the internal structure of the quantum dot fluorescence monitor (with the rotating base and the rotating cylinder removed) provided by an embodiment of the application;
  • FIG. 5 is a schematic diagram of the internal structure of a quantum dot fluorescence monitor provided by an embodiment of the application.
  • FIG. 6 is a schematic diagram of the appearance and structure of a quantum dot fluorescence monitor provided by an embodiment of the application.
  • Fig. 7 is a front view of a quantum dot fluorescence monitor provided by an embodiment of the application.
  • horizontal does not mean that the component is required to be absolutely horizontal or overhanging, but may be slightly inclined.
  • horizontal only means that its direction is more horizontal than “vertical”, and it does not mean that the structure must be completely horizontal, but can be slightly inclined.
  • FIG. 1 is a schematic diagram of the three-dimensional structure of a quantum dot fluorescence detection device provided by an embodiment of the application
  • FIG. 2 is a front view of the quantum dot fluorescence detection device provided by an embodiment of the application
  • FIG. 3 is a quantum dot fluorescence detection device provided by an embodiment of the application Right view of the device.
  • this embodiment provides a quantum dot fluorescence detection device, which includes a base 1, a guide post 2 and a detection module; the guide post 2 is erected on the base 1, and the detection module is movably arranged on the guide post 2.
  • the detection module can move relative to the base 1 along the length of the guide column 2; the detection module includes an emission light source 3 and a fluorescent probe 4; the light emission direction of the emission light source 3 and the direction of the fluorescent probe 4 can intersect with each other.
  • the outgoing light source 3 is configured to illuminate the test strip, and the fluorescence probe 4 is configured to collect the fluorescence generated on the test strip.
  • the quantum dot fluorescence detection device may further include a lifting driving device, the lifting driving device is fixed on the base, and the driving end of the lifting driving device is connected with the detection module, and is configured to drive the detection module to move along the length direction of the guide column 2. .
  • the lifting height of the detection module can be controlled by controlling the lifting drive device, thereby improving the convenience of using the quantum dot fluorescence detection device.
  • the lifting driving device may include a stepping motor 5; the stepping motor 5 is arranged on the base 1 and configured to drive the detection module to move along the guide column 2.
  • the lifting driving device of the detection module can also choose to use a nut and a screw rod, the screw rod is pivotally connected to the guide column, and the length direction of the screw rod is parallel to the length direction of the guide column, and the nut is threaded to the screw rod; the detection module It is fixed to the nut, and the detection module is slidably connected to the guide post 2 along the length direction of the guide post 2.
  • the nut moves along the axial direction of the screw under the driving action of the screw and the limit action of the guide column 2, and at the same time drives the detection module to move up and down synchronously with it; specifically, the nut can be controlled by controlling the rotation direction of the screw The lifting direction.
  • the drive end of the stepping motor 5 can be fixedly connected to the lifting column 6 (the drive shaft of the stepping motor 5 can also be used as the lifting column 6), and the guide column 2 is provided with a guide hole 7 ,
  • the lifting column 6 passes through the guide hole 7;
  • the detection module is arranged on the lifting column 6, and the stepping motor 5 is configured to drive the lifting column 6 to move along the axis of the guide hole 7.
  • the guide hole 7 limits and guides the position of the lifting column 6, thereby improving the lifting position accuracy of the lifting column, thereby improving the lifting position accuracy of the detection module, and ensuring the emergent light source 3 and fluorescence The detection accuracy of the probe 4 on the test strip.
  • the combined structure of the guide hole 7 and the lifting column 6 can also be replaced by a combined structure of a guide rail and a guide groove (the two can also exist at the same time for secondary guide limit), and a guide groove is provided on the guide column 2.
  • a guide rail is provided on the detection module, or a guide rail is provided on the guide post 2 and a guide groove is provided on the detection module, and the guide post 2 is used to guide the detection module to move back and forth in a specific direction.
  • an adjusting arm 20 may be fixedly connected to the driving end of the lifting driving device, and the detection module is installed on the adjusting arm 20.
  • the exit light source 3 includes an LED light source.
  • the LED lamp bead is preferably arranged inside the integrated structure of the detection module, and transmits light through a narrow strip-shaped through hole to accurately illuminate the test strip.
  • the light range formed by the shape of the strip through hole corresponds to the T line and the C line of the test strip.
  • the fluorescence probe 4 includes a photodiode detector.
  • the above-mentioned LED light source and photodiode detector should be fixed and installed in sequence according to the length direction in which the test strip is placed, and the light emission direction of the LED light source and the direction of the photodiode detector form a certain angle and intersect, and the position of the intersection is It can directly correspond to the T line or C line of the test strip.
  • the working principle of the quantum dot fluorescence detection device is as follows: First, the outgoing light source 3 illuminates the T line position (or C line position) of the test strip, and the sample to be tested on the test strip is irradiated to produce fluorescence, and the fluorescence probe 4 collects immediately The fluorescence signal is processed and analyzed. Then, the detection module changes its height position so that the outgoing light source 3 illuminates the C-line position (or T-line position) of the test strip. The sample to be tested on the test strip generates fluorescence after being irradiated, and the fluorescence probe 4 immediately collects the fluorescence. Signal and process and analyze. Through the calculation and comparison of the fluorescence intensity, the analyte on the test strip can be accurately determined.
  • the quantum dot fluorescence detection device controls the lifting movement of the detection module on the guide column 2 according to the positional relationship between the T line and the C line on the test strip when detecting a test strip.
  • the sum angle irradiates the T line and the C line in turn, and collects the fluorescence information on the T line and the C line respectively for analysis and determination, which improves the accuracy of detection and comparative analysis.
  • FIG. 4 is a schematic diagram of the internal structure of a quantum dot fluorescence monitor (with the rotating base 9 and the rotating drum 10 removed) provided by an embodiment of the application;
  • FIG. 5 is a schematic diagram of the internal structure of a quantum dot fluorescence monitor provided by an embodiment of the application;
  • 6 is a schematic diagram of the appearance and structure of the quantum dot fluorescence monitor provided by the embodiment of the application;
  • FIG. 7 is the front view of the quantum dot fluorescence monitor provided by the embodiment of the application. 4-7, this embodiment provides a quantum dot fluorescence monitor, which includes a housing 8, a test paper placement member and the aforementioned quantum dot fluorescence detection device. The test paper placement member and the base 1 are both set inside the housing 8.
  • the test strip is placed in the test strip holder, the length of the test strip is parallel to the movement direction of the detection module; the detection module is driven to move, and the light from the light source 3 can sequentially irradiate the T line and C line on the test strip,
  • the fluorescence probe 4 can sequentially collect the fluorescence emitted by the T line and the fluorescence emitted by the C line on the test strip.
  • This embodiment also provides a monitoring method, which is configured to use the quantum dot fluorescence monitor to detect the test strip.
  • the detection step includes: putting the test strip to be detected into the test paper placement member; driving the detection module along the guide post Move the length direction to the position corresponding to the C line on the test strip, the light from the light source irradiates the C line on the test strip, and the C line produces fluorescence; the fluorescence probe collects the fluorescence emitted by the C line and processes and analyzes it; drive The detection module moves along the length of the guide column to the position corresponding to the T line on the test strip. The light from the light source irradiates the T line on the test strip, and the T line produces fluorescence; the fluorescence probe collects the fluorescence emitted by the T line And for processing analysis.
  • the test paper placement member may include a rotating seat 9 and a rotating drum 10 arranged on the rotating seat 9; the rotating seat 9 is arranged in the inner cavity of the housing 8 and is configured to drive the rotating drum 10 to rotate; A plurality of test strips can be placed on the rotating drum 10.
  • the rotating seat drives the rotating cylinder to rotate, and the next test strip reaches the detection position, and the detection module detects the C line and T line of the test strip. That is, the quantum dot fluorescence monitor can detect multiple test strips at one time, thereby effectively improving its detection efficiency.
  • the housing 8 may be recessed downwardly with a mounting groove 14.
  • the bottom of the mounting groove 14 is provided with a mounting hole 15, and the rotating cylinder 10 extends into the mounting groove 14 through the mounting hole 15;
  • the side wall is provided with a bar-shaped through hole 16 corresponding to the rotating cylinder 10, and the bar-shaped through hole 16 extends along the length of the guide column 2.
  • the exit light source 3 can illuminate the test strip through the bar-shaped through hole 16, and the fluorescent probe 4 can The fluorescent light generated on the test strip is collected through the strip through hole 16.
  • the rotating cylinder 10 is detachably inserted into the rotating base 9.
  • the rotating drum 10 carrying the test strips is accommodated in the installation groove 14, which can protect the rotating drum; secondly, the monitoring personnel can remove the rotating drum, and then disassemble and assemble the test strips on the rotating drum. , Thereby improving the convenience of disassembly and assembly of the test strip.
  • the rotating drum 10 may be provided with multiple accommodating cavities 17, all of which extend along the axial direction of the rotating drum 10, and the multiple accommodating cavities 17 are along the axial direction of the rotating drum 10.
  • the outer wall of each accommodating cavity 17 is provided with a display window 18 configured to display the C line and the T line of the test strip.
  • the rotating cylinder carries test strips. Multiple test strips are accommodated in a plurality of accommodating cavities one by one, and the accommodating cavities play a role in limiting and protecting the test strips.
  • each accommodating cavity 17 is provided with a reference number 19.
  • the setting of the label can facilitate the inspection personnel to distinguish the labels of the test strips, so as to reduce errors caused by the mismatch of the corresponding labels of the test strips.
  • the reset device 11 also includes a reset device 11; the reset device 11 is arranged at the bottom of the rotating seat 9.
  • the reset device 11 can be a galvanic rotary positioning device, or a magnetized directional return device.
  • a support cushion 12 is provided at the bottom of the housing 8.
  • the number of support cushions 12 should be set to 3, 4, 5 or 6, etc., and they should be evenly distributed on the bottom surface of the housing 8.
  • a flip cover 13 is further included, and the flip cover 13 is provided on the housing 8.
  • the mounting groove is set on the edge of the housing, that is, the opening of the mounting groove faces upwards and one side of the housing.
  • the flap can be rotated for operation; there is no need to use the monitor or during the detection process, the flap can be rotated
  • the cover is arranged in the installation slot to protect the components inside.
  • the flip cover 13 can also choose to use a pull-out cover plate to reduce the operating space of the device.
  • the detection module can move up and down to detect the C line and T line at different positions on the test strip, and the detection accuracy is high.

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Immunology (AREA)
  • General Health & Medical Sciences (AREA)
  • Pathology (AREA)
  • General Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Optics & Photonics (AREA)
  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)

Abstract

本申请提供了一种量子点荧光探测装置、量子点荧光监测仪及其监测方法,涉及生物科学研究与医学检验应用技术领域。该量子点荧光探测装置包括基座、导向柱和探测模块;导向柱竖立于基座上,探测模块活动设置在导向柱上,探测模块能够相对于基座沿导向柱的长度方向移动;探测模块包括出射光源和荧光探头;出射光源配置成照射试纸条,荧光探头配置成收集试纸条上产生的荧光。本申请的量子点荧光探测装置,将出射光源和荧光探头集成设置为探测模块,控制探测模块的上下升降可分别获取试纸条上T线和C线产生的荧光,通过对荧光强度的计算和比对,准确测定试纸条上的被检分析物。

Description

量子点荧光探测装置、量子点荧光监测仪及其监测方法
相关申请的交叉引用
本申请要求于2019年10月22日提交中国专利局的申请号为2019110156165、名称为“一种量子点荧光探测装置及量子点荧光监测仪”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及生物科学研究与医学检验应用技术领域,具体而言,涉及一种量子点荧光探测装置、量子点荧光监测仪及其监测方法。
背景技术
量子点的物理、光学、电学特性远优于现有有机荧光染料,具有灵敏度高、稳定性好、有效期长等优势,作为标记探针广泛应用于高灵敏度、活体/在体长时间动态观察、多指标同时检测等技术领域。
临床上通常在试纸条上设置量子点标记探针,而试纸条一般包括控制线和探测线,即常说的C线和T线。
常规的量子点测定设备和方法通常利用紫外光源或者可见光照射试纸条,再通过摄像设备或者光电感应设备一并获取试纸条上产生的荧光进行分析测定。但是,由于试纸条上的C线和T线存在一定的间距,而光源(或者摄像设备、光电感应设备)与C线和T线的距离一定存在差异,并且光线的出射和入射角度也不相同。在样品测定过程中,笼统地利用特定一个固定位置发出的光线来照射T线和C线、特定一个固定位置收集T线和C线上的荧光数据,其实验结果的准确性将难以保证。
发明内容
本申请的目的包括提供一种量子点荧光探测装置,其能够根据试纸条上T线和C线的位置关系来调整探测模块的探测位置,以实现对试纸条上分析物的准确测定。
本申请的另一个目的包括提供一种量子点荧光监测仪,其具有准确收集T线和C线上荧光数据以提高监测、对比和分析的效果。
本申请的实施例是这样实现的:
一种量子点荧光探测装置,其包括基座、导向柱和探测模块;所述导向柱竖立于所述 基座上,所述探测模块活动设置在所述导向柱上,所述探测模块能够相对于所述基座沿所述导向柱的长度方向移动;所述探测模块包括出射光源和荧光探头;所述出射光源配置成照射试纸条,所述荧光探头配置成收集试纸条上产生的荧光。
采用上述量子点荧光探测装置,根据试纸条上T线和C线的位置关系,在对一个试纸条进行探测时,控制探测模块在导向柱上的升降活动,以同样的距离和角度依次照射T线和C线并分别收集T线和C线上的荧光信息以供分析测定,提高了探测和对比分析的准确性。
可选地,所述量子点荧光探测装置还包括升降驱动装置,所述升降驱动装置固设于所述基座,且所述升降驱动装置的驱动端与所述探测模块连接,配置成驱动所述探测模块沿所述导向柱的长度方向移动。
可选地,所述升降驱动装置包括步进电机;所述步进电机设置在所述基座上,所述步进电机的驱动端与所述探测模块连接,配置成驱动所述探测模块沿所述导向柱移动。其技术效果在于:由于试纸条上T线和C线的距离一般都为恒定数值,利用步进电机能够将探测模块按照特定的距离进行升降,提高了探测模块的定位速度和实验效率。
可选地,所述步进电机的驱动端连接有升降柱,所述导向柱设置导向孔,所述升降柱穿过所述导向孔;所述探测模块设置在所述升降柱上,所述步进电机配置成驱动所述升降柱沿所述导向孔的轴线方向移动。其技术效果在于:导向孔和升降柱的配合能够防止探测模块在频繁的活动中发生位置的偏移,保证了探测模块的准确定位。
可选地,所述升降驱动装置包括螺母和丝杆,所述丝杆枢接于导向柱,且所述丝杆的长度方向与所述导向柱的长度方向平行,所述螺母螺纹连接于所述丝杆;所述探测模块固接于所述螺母,且所述探测模块沿所述导向柱的长度方向滑接于所述导向柱。
可选地,所述探测模块和所述导向柱中的一者设有导轨,另一者设有导槽,所述导轨配合滑接于所述导槽,且所述导槽及所述导轨的长度方向均与所述导向柱的长度方向平行。
可选地,所述升降驱动装置的驱动端固接有调节臂,所述探测模块安装于所述调节臂。
可选地,所述出射光源包括LED光源。其技术效果在于:LED光源发热量小、能耗低、安装空间小,并且使用寿命长,优选地,应当将LED灯珠设置在探测模块的集成结构内部,并通过一个窄小的条形通孔透出光线,以准确照射试纸条。
可选地,所述荧光探头包括光电二极管探测器。其技术效果在于:与传统的拍照成像方案不同,光电二极管探测器能够准确并迅速地反映荧光的光线强度,同时,光电二极管探测器结构紧凑安装空间小。需要说明的是,上述LED光源和光电二极管探测器应当按照试纸条放置的长度方向来依次固定安装,且LED光源的光线射出方向与光电二极管探测器的朝向方向形成一定夹角并相交,其交点位置能够直接对应试纸条的T线或者C线。
一种量子点荧光监测仪,其包括外壳、试纸放置件以及上述的量子点荧光探测装置,所述试纸放置件、所述基座均设置在所述外壳内部;试纸条放置在所述试纸放置件中,试纸条的长度方向与所述探测模块的活动方向平行;驱动所述探测模块移动,所述出射光源的光线能够依次照射到试纸条上的T线和C线,所述荧光探头能够依次收集到试纸条上T线发出的荧光和C线发出的荧光。
可选地,所述试纸放置件包括旋转座以及设置在所述旋转座上的旋转筒;所述旋转座设置在所述外壳的内腔,配置成带动所述旋转筒转动;所述旋转筒上能够放置多个试纸条。其技术效果在于:由于旋转筒内可放置多个试纸条,而旋转筒由旋转座带动旋转,对一个试纸条的T线和C线完成测定后随即能够对另一个试纸条开始测定。故在一个测定周期内,量子点荧光监测仪能够对多个试纸条进行探测,大大提高了实验的监测效率。
可选地,所述外壳向下凹陷有安装槽,所述安装槽的槽底设有安装孔,所述旋转筒经所述安装孔伸入所述安装槽;所述安装槽的侧壁设有与所述旋转筒相对应的条形通孔,所述条形通孔沿所述导向柱的长度方向延伸,所述出射光源能够通过所述条形通孔照射试纸条,所述荧光探头能够通过所述条形通孔收集试纸条上产生的荧光。
可选地,所述旋转筒可拆卸式插接于所述旋转座。
可选地,所述旋转筒设有多个容纳腔,多个所述容纳腔均沿所述旋转筒的轴向延伸,且多个所述容纳腔沿所述旋转筒的轴向均匀间隔排布;各所述容纳腔的外壁均设有显示窗口,所述显示窗口配置成显示试纸条的C线和T线。
可选地,各所述容纳腔对应的外壁均设有标号。
可选地,还包括复位装置;所述复位装置设置在所述旋转座的底部。其技术效果在于:在一个旋转筒中的全部试纸条测定完毕后,通过复位装置能够将旋转座恢复至初始位置,以方便下一个旋转筒初始位置的确定。
可选地,所述外壳的底部设置支撑软垫。其技术效果在于:在实验过程中,步进电机频繁升降探测模块,为了保持设备的稳定,支撑软垫可以起到缓冲的作用,减少震动带来的消极影响。
可选地,还包括翻盖,所述翻盖设置在所述外壳上。其技术效果在于:翻盖设置在外壳对应于旋转座的位置,开启翻盖即可完成旋转筒的更换,方便快捷。
本申请还提供一种监测方法,配置成使用上述量子点荧光监测仪对试纸条进行探测,探测步骤包括:
将需要探测的试纸条放入所述试纸放置件;
驱动所述探测模块沿导向柱的长度方向移动至与试纸条上的C线相应的位置,出射光源的光线照射到试纸条上的C线,C线产生荧光;荧光探头收集到C线发出的荧光并进行 处理分析;
驱动所述探测模块沿导向柱的长度方向移动至与试纸条上的T线相应的位置,出射光源的光线照射到试纸条上的T线,T线产生荧光;荧光探头收集到T线发出的荧光并进行处理分析。
可选地,旋转座上的一张试纸条探测完成后,旋转座带动旋转筒转动,下一张试纸条到达探测位置,探测模块对该试纸条的C线和T线进行探测。
本申请实施例的有益效果包括:
本申请的量子点荧光探测装置,将出射光源和荧光探头集成设置为探测模块,能够根据试纸条上T线和C线的位置关系来调整探测模块的探测位置,控制探测模块的上下升降可分别获取试纸条上T线和C线产生的荧光,通过对荧光强度的计算和比对,准确测定试纸条上的被检分析物。
本申请的量子点荧光监测仪,在具有上述量子点荧光探测装置的优点的同时,将试纸条放置部件和探测装置集中内置于外壳中,形成一个完整并封闭的监测机构,有效提升了实验的可靠性和独立性。
附图说明
为了更清楚地说明本申请实施例的技术方案,下面将对实施例中所需要使用的附图作简单地介绍,应当理解,以下附图仅示出了本申请的某些实施例,因此不应被看作是对范围的限定,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他相关的附图。
图1为本申请实施例提供的量子点荧光探测装置的立体结构示意图;
图2为本申请实施例提供的量子点荧光探测装置的主视图;
图3为本申请实施例提供的量子点荧光探测装置的右视图;
图4为本申请实施例提供的量子点荧光监测仪(拆下旋转座和旋转筒)的内部结构示意图;
图5为本申请实施例提供的量子点荧光监测仪的内部结构示意图;
图6为本申请实施例提供的量子点荧光监测仪的外形结构示意图;
图7为本申请实施例提供的量子点荧光监测仪的主视图。
图中:1-基座;2-导向柱;3-出射光源;4-荧光探头;5-步进电机;6-升降柱;7-导向孔;8-外壳;9-旋转座;10-旋转筒;11-复位装置;12-支撑软垫;13-翻盖;14-安装槽;15-安装孔;16-条形通孔;17-容纳腔;18-显示窗口;19-标号;20-调节臂。
具体实施方式
为使本申请实施例的目的、技术方案和优点更加清楚,下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本申请一部分实施例,而不是全部的实施例。通常在此处附图中描述和示出的本申请实施例的组件能够以各种不同的配置来布置和设计。
因此,以下对在附图中提供的本申请的实施例的详细描述并非旨在限制要求保护的本申请的范围,而是仅仅表示本申请的选定实施例。基于本申请中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
应注意到:相似的标号和字母在下面的附图中表示类似项,因此,一旦某一项在一个附图中被定义,则在随后的附图中不需要对其进行进一步定义和解释。
在本申请的描述中,需要说明的是,术语“中心”、“上”、“下”、“左”、“右”、“竖直”、“水平”、“内”、“外”等指示的方位或位置关系为基于附图所示的方位或位置关系,或者是该发明产品使用时惯常摆放的方位或位置关系,仅是为了便于描述本申请和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本申请的限制。
此外,术语“水平”、“竖直”、“悬垂”等术语并不表示要求部件绝对水平或悬垂,而是可以稍微倾斜。如“水平”仅仅是指其方向相对“竖直”而言更加水平,并不是表示该结构一定要完全水平,而是可以稍微倾斜。
在本申请的描述中,还需要说明的是,除非另有明确的规定和限定,术语“设置”、“安装”、“相连”、“连接”应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或一体地连接;可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通。对于本领域的普通技术人员而言,可以具体情况理解上述术语在本申请中的具体含义。
下面结合附图,对本申请的一些实施方式作详细说明。在不冲突的情况下,下述的实施例及实施例中的特征可以相互组合。
图1为本申请实施例提供的量子点荧光探测装置的立体结构示意图;图2为本申请实施例提供的量子点荧光探测装置的主视图;图3为本申请实施例提供的量子点荧光探测装置的右视图。
请参照图1-图3,本实施例提供一种量子点荧光探测装置,其包括基座1、导向柱2和探测模块;导向柱2竖立于基座1,探测模块活动设置在导向柱2上,探测模块能够相对于基座1沿导向柱2的长度方向移动;探测模块包括出射光源3和荧光探头4;出射光 源3的光线射出方向与荧光探头4的朝向所在的直线能够相互交叉于一个焦点,出射光源3配置成照射试纸条,荧光探头4配置成收集试纸条上产生的荧光。
可选地,量子点荧光探测装置还可以包括升降驱动装置,升降驱动装置固设于基座,且升降驱动装置的驱动端与探测模块连接,配置成驱动探测模块沿导向柱2的长度方向移动。使用时,通过控制升降驱动装置能够实现对探测模块升降高度的控制,从而提高量子点荧光探测装置的使用便捷度。
其中,如图1、图2、图3所示,升降驱动装置可以包括步进电机5;步进电机5设置在基座1上,配置成驱动探测模块沿导向柱2移动。
可选地,探测模块的升降驱动装置也可以选择使用螺母和丝杆,丝杆枢接于导向柱,且丝杆的长度方向与导向柱的长度方向平行,螺母螺纹连接于丝杆;探测模块固接于螺母,且探测模块沿导向柱2的长度方向滑接于导向柱2。通过转动丝杆,螺母在丝杆的驱动作用及导向柱2的限位作用下沿丝杆的轴向运动,同时带动探测模块与其同步升降;具体地,通过控制丝杆的转动方向能够控制螺母的升降方向。
其中,如图1、图2、图3所示,步进电机5的驱动端可以固接升降柱6(步进电机5的驱动轴也可以作为升降柱6),导向柱2设置导向孔7,升降柱6穿过导向孔7;探测模块设置在升降柱6上,步进电机5配置成驱动升降柱6沿导向孔7的轴线方向移动。升降柱6带动探测模块升降的过程中,导向孔7对升降柱6的位置进行限位和导向,从而提高升降柱的升降位置精度,进而提高探测模块的升降位置精度,确保出射光源3和荧光探头4对试纸条的探测精确度。
可选地,导向孔7和升降柱6的组合结构还可以采用导轨和导槽的组合结构替换(两者也可以同时存在,进行二次导向限位),在导向柱2上设置导槽而在探测模块上设置导轨,或在导向柱2上设置导轨而在探测模块上设置导槽,利用导向柱2引导探测模块按照特定的方向来回移动。
可选地,如图1所示,升降驱动装置的驱动端可以固接有调节臂20,探测模块安装于调节臂20。
其中,如图1、图3所示,出射光源3包括LED光源。优选地,LED灯珠优选设置在探测模块的集成结构内部,并通过一个窄小的条形通孔透出光线,以准确照射试纸条。该条形通孔的形状形成的光照范围与试纸条的T线和C线相互对应。
其中,如图1、图3所示,荧光探头4包括光电二极管探测器。
优选地,上述LED光源和光电二极管探测器应当按照试纸条放置的长度方向来依次固定安装,且LED光源的光线射出方向与光电二极管探测器的朝向方向形成一定夹角并相交,其交点位置能够直接对应试纸条的T线或者C线。
量子点荧光探测装置的工作原理是:首先,出射光源3照射试纸条的T线位置(或者C线位置),试纸条上的待测样品收到照射后产生荧光,荧光探头4即时收集该荧光信号并进行处理分析。然后,探测模块改变其高度位置,使得出射光源3照射试纸条的C线位置(或者T线位置),试纸条上的待测样品收到照射后产生荧光,荧光探头4即时收集该荧光信号并进行处理分析。通过对荧光强度的计算和比对,准确测定试纸条上的被检分析物。在该过程中,量子点荧光探测装置根据试纸条上T线和C线的位置关系,在对一个试纸条进行探测时,控制探测模块在导向柱2上的升降活动,以同样的距离和角度依次照射T线和C线并分别收集T线和C线上的荧光信息以供分析测定,提高了探测和对比分析的准确性。
图4为本申请实施例提供的量子点荧光监测仪(拆下旋转座9和旋转筒10)的内部结构示意图;图5为本申请实施例提供的量子点荧光监测仪的内部结构示意图;图6为本申请实施例提供的量子点荧光监测仪的外形结构示意图;图7为本申请实施例提供的量子点荧光监测仪的主视图。请参照图4~图7,本实施例提供一种量子点荧光监测仪,其包括外壳8、试纸放置件以及上述的量子点荧光探测装置,试纸放置件、基座1均设置在外壳8内部;试纸条放置在试纸放置件中,试纸条的长度方向与探测模块的活动方向平行;驱动探测模块移动,出射光源3的光线能够依次照射到试纸条上的T线和C线,荧光探头4能够依次收集到试纸条上T线发出的荧光和C线发出的荧光。
本实施例还提供一种监测方法,配置成使用上述量子点荧光监测仪对试纸条进行探测,探测步骤包括:将需要探测的试纸条放入试纸放置件;驱动探测模块沿导向柱的长度方向移动至与试纸条上的C线相应的位置,出射光源的光线照射到试纸条上的C线,C线产生荧光;荧光探头收集到C线发出的荧光并进行处理分析;驱动探测模块沿导向柱的长度方向移动至与试纸条上的T线相应的位置,出射光源的光线照射到试纸条上的T线,T线产生荧光;荧光探头收集到T线发出的荧光并进行处理分析。
其中,如图4、图5所示,试纸放置件可以包括旋转座9以及设置在旋转座9上的旋转筒10;旋转座9设置在外壳8的内腔,配置成带动旋转筒10转动;旋转筒10上能够放置多个试纸条。当旋转座上的一张试纸条探测完成后,旋转座带动旋转筒转动,下一张试纸条到达探测位置,探测模块对该试纸条的C线和T线进行探测。即量子点荧光监测仪能够一次实现对多个试纸条的探测,从而有效提高其探测效率。
可选地,如图6所示,外壳8可以向下凹陷有安装槽14,安装槽14的槽底设有安装孔15,旋转筒10经安装孔15伸入安装槽14;安装槽14的侧壁设有与旋转筒10相对应的条形通孔16,条形通孔16沿导向柱2的长度方向延伸,出射光源3能够通过条形通孔16照射试纸条,荧光探头4能够通过条形通孔16收集试纸条上产生的荧光。旋转筒10可拆 卸式插接于旋转座9。首先,承载试纸条的旋转筒10容纳于安装槽14内,安装槽14能够对旋转筒起到保护作用;其次,监测人员能够将旋转筒拆下,然后在旋转筒上拆装试纸条,从而提高试纸条拆装的便捷度。
可选地,如图6所示,旋转筒10可以设有多个容纳腔17,多个容纳腔17均沿旋转筒10的轴向延伸,且多个容纳腔17沿旋转筒10的轴向均匀间隔排布;各容纳腔17的外壁均设有显示窗口18,显示窗口18配置成显示试纸条的C线和T线。这里是旋转筒承载试纸条的一种具体形式,多个试纸条一一对应容纳于多个容纳腔中,容纳腔对试纸条起到限位及保护作用。
可选地,如图6所示,各容纳腔17对应的外壁均设有标号19。标号的设置能够便于检测人员对试纸条的标号的区分,以减少试纸条对应标号混错造成的错误。
其中,如图4、图5所示,还包括复位装置11;复位装置11设置在旋转座9的底部。可选地,复位装置11可以选用电偶类旋转定位的装置,也可以选用磁铁性的定向回位装置。
其中,如图7所示,外壳8的底部设置支撑软垫12。支撑软垫12的数量应设置为3个、4个、5个或者6个等,均匀地分布在外壳8的底面。
其中,如图6所示,还包括翻盖13,翻盖13设置在外壳8上。具体地,安装槽设置在外壳的边缘,即安装槽的开口朝向上方以及外壳的一侧,需要更换旋转座时,转动翻板进行操作;无需使用监测仪或探测过程中,可以将翻板转动盖设于安装槽,以对其内的部件起到保护作用。可选地,翻盖13也可以选择使用抽拉式盖板,以减小设备的操作空间。
以上仅为本申请的优选实施例而已,并不用于限制本申请,对于本领域的技术人员来说,本申请可以有各种更改和变化。凡在本申请的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本申请的保护范围之内。
工业实用性
本实施例提供的量子点荧光探测装置、量子点荧光监测仪及其监测方法,探测模块能够升降运动,以对试纸条上不同位置的C线和T线进行探测,探测准确性高。

Claims (20)

  1. 一种量子点荧光探测装置,其特征在于,包括基座(1)、导向柱(2)和探测模块;
    所述导向柱(2)竖立于所述基座(1)上,所述探测模块活动设置在所述导向柱(2)上,所述探测模块能够相对于所述基座(1)沿所述导向柱(2)的长度方向移动;
    所述探测模块包括出射光源(3)和荧光探头(4);所述出射光源(3)配置成照射试纸条,所述荧光探头(4)配置成收集试纸条上产生的荧光。
  2. 根据权利要求1所述的量子点荧光探测装置,其特征在于,所述量子点荧光探测装置还包括升降驱动装置,所述升降驱动装置固设于所述基座,且所述升降驱动装置的驱动端与所述探测模块连接,配置成驱动所述探测模块沿所述导向柱(2)的长度方向移动。
  3. 根据权利要求2所述的量子点荧光探测装置,其特征在于,所述升降驱动装置包括步进电机(5);所述步进电机(5)设置在所述基座(1)上,所述步进电机(5)的驱动端与所述探测模块连接,配置成驱动所述探测模块沿所述导向柱(2)移动。
  4. 根据权利要求3所述的量子点荧光探测装置,其特征在于,所述步进电机(5)的驱动端连接有升降柱(6),所述导向柱(2)设置导向孔(7),所述升降柱(6)穿过所述导向孔(7);所述探测模块设置在所述升降柱(6)上,所述步进电机(5)配置成驱动所述升降柱(6)沿所述导向孔(7)的轴线方向移动。
  5. 根据权利要求2所述的量子点荧光探测装置,其特征在于,所述升降驱动装置包括螺母和丝杆,所述丝杆枢接于导向柱,且所述丝杆的长度方向与所述导向柱的长度方向平行,所述螺母螺纹连接于所述丝杆;所述探测模块固接于所述螺母,且所述探测模块沿所述导向柱(2)的长度方向滑接于所述导向柱(2)。
  6. 根据权利要求1-5任一项所述的量子点荧光探测装置,其特征在于,所述探测模块和所述导向柱(2)中的一者设有导轨,另一者设有导槽,所述导轨配合滑接于所述导槽,且所述导槽及所述导轨的长度方向均与所述导向柱(2)的长度方向平行。
  7. 根据权利要求2-5任一项所述的量子点荧光探测装置,其特征在于,所述升降驱动装置的驱动端固接有调节臂(20),所述探测模块安装于所述调节臂(20)。
  8. 根据权利要求1-7任一项所述的量子点荧光探测装置,其特征在于,所述出射光源(3)包括LED光源。
  9. 根据权利要求1-8任一项所述的量子点荧光探测装置,其特征在于,所述荧光探头(4)包括光电二极管探测器。
  10. 一种量子点荧光监测仪,其特征在于,包括外壳(8)、试纸放置件以及如权利要求1-9任一项所述的量子点荧光探测装置,所述试纸放置件、所述基座(1)均设置在所述 外壳(8)内部;试纸条放置在所述试纸放置件中,试纸条的长度方向与所述探测模块的活动方向平行;
    驱动所述探测模块移动,所述出射光源(3)的光线能够依次照射到试纸条上的T线和C线,所述荧光探头(4)能够依次收集到试纸条上T线发出的荧光和C线发出的荧光。
  11. 根据权利要求10所述的量子点荧光监测仪,其特征在于,所述试纸放置件包括旋转座(9)以及设置在所述旋转座(9)上的旋转筒(10);所述旋转座(9)设置在所述外壳(8)的内腔,配置成带动所述旋转筒(10)转动;所述旋转筒(10)上能够放置多个试纸条。
  12. 根据权利要求11所述的量子点荧光监测仪,其特征在于,所述外壳(8)向下凹陷有安装槽(14),所述安装槽(14)的槽底设有安装孔(15),所述旋转筒(10)经所述安装孔(15)伸入所述安装槽(14);所述安装槽(14)的侧壁设有与所述旋转筒(10)相对应的条形通孔(16),所述条形通孔(16)沿所述导向柱(2)的长度方向延伸,所述出射光源(3)能够通过所述条形通孔(16)照射试纸条,所述荧光探头(4)能够通过所述条形通孔(16)收集试纸条上产生的荧光。
  13. 根据权利要求12所述的量子点荧光监测仪,其特征在于,所述旋转筒(10)可拆卸式插接于所述旋转座(9)。
  14. 根据权利要求11-13任一项所述的量子点荧光监测仪,其特征在于,所述旋转筒(10)设有多个容纳腔(17),多个所述容纳腔(17)均沿所述旋转筒(10)的轴向延伸,且多个所述容纳腔(17)沿所述旋转筒(10)的轴向均匀间隔排布;各所述容纳腔(17)的外壁均设有显示窗口(18),所述显示窗口(18)配置成显示试纸条的C线和T线。
  15. 根据权利要求14所述的量子点荧光监测仪,其特征在于,各所述容纳腔(17)对应的外壁均设有标号(19)。
  16. 根据权利要求11-15任一项所述的量子点荧光监测仪,其特征在于,还包括复位装置(11);所述复位装置(11)设置在所述旋转座(9)的底部。
  17. 根据权利要求10-16任一项所述的量子点荧光监测仪,其特征在于,所述外壳(8)的底部设置支撑软垫(12)。
  18. 根据权利要求10-17任一项所述的量子点荧光监测仪,其特征在于,还包括翻盖(13),所述翻盖(13)设置在所述外壳(8)上。
  19. 一种监测方法,其特征在于,配置成使用权利要求10-18任一项所述的量子点荧光监测仪对试纸条进行探测,探测步骤包括:
    将需要探测的试纸条放入所述试纸放置件;
    驱动所述探测模块沿导向柱的长度方向移动至与试纸条上的C线相应的位置,出射光 源的光线照射到试纸条上的C线,C线产生荧光;荧光探头收集到C线发出的荧光并进行处理分析;
    驱动所述探测模块沿导向柱的长度方向移动至与试纸条上的T线相应的位置,出射光源的光线照射到试纸条上的T线,T线产生荧光;荧光探头收集到T线发出的荧光并进行处理分析。
  20. 根据权利要求19所述的监测方法,其特征在于,旋转座上的一张试纸条探测完成后,旋转座带动旋转筒转动,下一张试纸条到达探测位置,探测模块对该试纸条的C线和T线进行探测。
PCT/CN2019/122448 2019-10-22 2019-12-02 量子点荧光探测装置、量子点荧光监测仪及其监测方法 WO2021077548A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201911015616.5A CN110567930A (zh) 2019-10-22 2019-10-22 一种量子点荧光探测装置及量子点荧光监测仪
CN201911015616.5 2019-10-22

Publications (1)

Publication Number Publication Date
WO2021077548A1 true WO2021077548A1 (zh) 2021-04-29

Family

ID=68785854

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/122448 WO2021077548A1 (zh) 2019-10-22 2019-12-02 量子点荧光探测装置、量子点荧光监测仪及其监测方法

Country Status (2)

Country Link
CN (1) CN110567930A (zh)
WO (1) WO2021077548A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114166804A (zh) * 2020-09-10 2022-03-11 浙江啄云智能科技有限公司 一种可连续监测的荧光探测仪及探测方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102680692A (zh) * 2012-05-16 2012-09-19 北京润博福得生物科技发展有限公司 基于近红外荧光标记物的免疫层析定量检测试剂
WO2013158505A1 (en) * 2012-04-17 2013-10-24 Ehrenkranz Joel R L Device for performing an enzyme-based diagnostic test and methods for use thereof
CN108693146A (zh) * 2017-04-05 2018-10-23 上海点联医疗科技有限公司 掌上型生化反应荧光分析仪
CN208833653U (zh) * 2018-08-22 2019-05-07 江苏达骏生物科技有限公司 光信号检测装置及用于待测物中的特定物质含量检测的系统
CN209280567U (zh) * 2018-11-09 2019-08-20 江苏达骏生物科技有限公司 光信号检测装置及特定物质含量检测系统

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106706572A (zh) * 2015-07-26 2017-05-24 广州瑞至生物科技有限公司 一种便携式荧光检测装置
CN106353289A (zh) * 2016-09-19 2017-01-25 苏州微析生物科技有限公司 一种poct荧光定量分析仪的光路系统及分析方法
CN206684046U (zh) * 2017-04-27 2017-11-28 南京微测生物科技有限公司 便携式食品安全荧光定量快速分析仪
CN207764228U (zh) * 2017-12-30 2018-08-24 天津博硕东创科技发展有限公司 一种用于荧光免疫分析仪的传动机构及分析仪
CN108181456B (zh) * 2018-01-18 2020-06-30 南京岚煜生物科技有限公司 手持式荧光免疫分析装置
CN210742131U (zh) * 2019-10-22 2020-06-12 中国人民解放军军事科学院军事医学研究院 一种量子点荧光探测装置及量子点荧光监测仪

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013158505A1 (en) * 2012-04-17 2013-10-24 Ehrenkranz Joel R L Device for performing an enzyme-based diagnostic test and methods for use thereof
CN102680692A (zh) * 2012-05-16 2012-09-19 北京润博福得生物科技发展有限公司 基于近红外荧光标记物的免疫层析定量检测试剂
CN108693146A (zh) * 2017-04-05 2018-10-23 上海点联医疗科技有限公司 掌上型生化反应荧光分析仪
CN208833653U (zh) * 2018-08-22 2019-05-07 江苏达骏生物科技有限公司 光信号检测装置及用于待测物中的特定物质含量检测的系统
CN209280567U (zh) * 2018-11-09 2019-08-20 江苏达骏生物科技有限公司 光信号检测装置及特定物质含量检测系统

Also Published As

Publication number Publication date
CN110567930A (zh) 2019-12-13

Similar Documents

Publication Publication Date Title
CN102313692B (zh) 对一种或多种材料进行测量的系统及方法
US9354155B2 (en) Cell counting systems and methods
JP6513802B2 (ja) ナノ粒子検出のためのレーザー光結合
US20120153188A1 (en) Microscope accessory and microplate apparatus for measuring phosphorescence and cellular oxygen consumption
US10132743B2 (en) Fixed optics photo-thermal spectroscopy reader and method of use
US9243996B2 (en) LED densitometer for microtiter plate
WO2021077548A1 (zh) 量子点荧光探测装置、量子点荧光监测仪及其监测方法
EP2463675A1 (en) Test apparatus for power supply unit
CN210742131U (zh) 一种量子点荧光探测装置及量子点荧光监测仪
CN104237128A (zh) 透光率测定的固定装置及测定方法
CN107003290A (zh) 用于色谱样品的光学传感的方法和装置
CN110823908A (zh) 一种柱面内壁检测设备
KR101188217B1 (ko) 휴대용 분광 분석 장치
JP2014077714A (ja) X線分析装置
CN101427125B (zh) 光学测量设备
JP2003139703A (ja) カソードルミネッセンス用試料ホルダ、及びカソードルミネッセンス分光分析装置
WO2004086010A1 (ja) 吸光度読取装置、吸光度読取装置制御方法及び吸光度算出プログラム
JP7260127B2 (ja) 細菌検出方法及び細菌検出装置
CN105547172B (zh) 基于针刺光照法测量工业机器人重复精度的系统和方法
CN104697971B (zh) 光源模块及使用该光源模块的体外检测分析装置
JP2021192108A (ja) 画像取得装置及び画像取得方法
CN114088606A (zh) 细胞分析装置
JP2017021020A5 (zh)
JP2005006553A (ja) 細胞培養検出装置
CN2874483Y (zh) X荧光测硫仪

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19949746

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19949746

Country of ref document: EP

Kind code of ref document: A1