WO2021075771A1 - 충전 상태 추정 장치 및 방법 - Google Patents

충전 상태 추정 장치 및 방법 Download PDF

Info

Publication number
WO2021075771A1
WO2021075771A1 PCT/KR2020/013498 KR2020013498W WO2021075771A1 WO 2021075771 A1 WO2021075771 A1 WO 2021075771A1 KR 2020013498 W KR2020013498 W KR 2020013498W WO 2021075771 A1 WO2021075771 A1 WO 2021075771A1
Authority
WO
WIPO (PCT)
Prior art keywords
charge
state
time
battery cell
voltage
Prior art date
Application number
PCT/KR2020/013498
Other languages
English (en)
French (fr)
Inventor
김재구
Original Assignee
주식회사 엘지화학
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 엘지화학 filed Critical 주식회사 엘지화학
Priority to EP20877787.0A priority Critical patent/EP3982137B1/en
Priority to JP2021549504A priority patent/JP7302798B2/ja
Priority to CN202080032045.0A priority patent/CN113795760B/zh
Priority to US17/442,591 priority patent/US20220187382A1/en
Publication of WO2021075771A1 publication Critical patent/WO2021075771A1/ko

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/385Arrangements for measuring battery or accumulator variables
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/3644Constructional arrangements
    • G01R31/3646Constructional arrangements for indicating electrical conditions or variables, e.g. visual or audible indicators
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/382Arrangements for monitoring battery or accumulator variables, e.g. SoC
    • G01R31/3842Arrangements for monitoring battery or accumulator variables, e.g. SoC combining voltage and current measurements
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/367Software therefor, e.g. for battery testing using modelling or look-up tables
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/382Arrangements for monitoring battery or accumulator variables, e.g. SoC
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/385Arrangements for measuring battery or accumulator variables
    • G01R31/387Determining ampere-hour charge capacity or SoC
    • G01R31/388Determining ampere-hour charge capacity or SoC involving voltage measurements
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/396Acquisition or processing of data for testing or for monitoring individual cells or groups of cells within a battery
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/425Structural combination with electronic components, e.g. electronic circuits integrated to the outside of the casing
    • H01M10/4257Smart batteries, e.g. electronic circuits inside the housing of the cells or batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/48Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/48Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte
    • H01M10/482Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte for several batteries or cells simultaneously or sequentially
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/425Structural combination with electronic components, e.g. electronic circuits integrated to the outside of the casing
    • H01M2010/4271Battery management systems including electronic circuits, e.g. control of current or voltage to keep battery in healthy state, cell balancing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2220/00Batteries for particular applications
    • H01M2220/20Batteries in motive systems, e.g. vehicle, ship, plane
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to an apparatus and method for estimating a state of charge, and more particularly, to an apparatus and method for estimating a state of charge for accurately estimating a state of charge of a battery cell.
  • Patent Document 1 a technique for estimating an open circuit voltage of a battery by linearly analyzing a first voltage and a second voltage measured during a period in which charging and discharging do not occur has been developed.
  • Patent Document 1 For example, after a large current rapidly flows through the battery for a short time, the voltage of the battery takes on a non-linear shape. In this case, applying Patent Document 1 may cause an incorrect open-circuit voltage to be estimated. Further, according to Patent Document 1, since the state of charge of the battery may be erroneously estimated by the erroneously estimated open-circuit voltage, there is a problem in that the state of the battery cannot be accurately diagnosed or judged.
  • Patent Document 1 KR 10-0805116 B1
  • the present invention has been devised to solve the above problems, and even when the voltage of the battery cell is non-linear, the charging state estimation device capable of accurately estimating the open-circuit voltage and the state of charge of the battery cell, and It aims to provide a method.
  • an apparatus for estimating a state of charge includes: a measuring unit configured to measure current and voltage of a battery cell and output the measured current information and voltage information; And receiving the current information and voltage information from the measuring unit, calculating a charge/discharge time for charging or discharging the battery cell, and a charge/discharge stop time at which the charging or discharging is stopped, and the current during the charge/discharge time.
  • a third charging state is estimated by weighted summation of the first charging state and the second charging state based on the charging/discharging interruption time, and the estimated third charging state It may include a control unit configured to determine the state of charge of the battery cell.
  • the control unit may be configured to estimate the second state of charge based on a plurality of voltage information received during the charge/discharge stop time when the charge/discharge stop time is greater than or equal to the reference time.
  • the control unit checks whether a voltage inflection point exists among a plurality of voltage information received during the charge/discharge stop time, and the second charging state only when the voltage inflection point is confirmed. Can be configured to estimate.
  • the control unit may be configured to preset the reference time to include a time during which the polarization directions of the short-term polarization component and the long-term polarization component of the battery cell are different.
  • the controller may be configured to estimate an open circuit voltage of the battery cell from a plurality of voltage information received during the charge/discharge interruption time using a function optimization technique.
  • the controller may be configured to estimate a second state of charge corresponding to the estimated open-circuit voltage based on a preset lookup table.
  • the controller sets a first weight and a second weight according to the charge/discharge stop time, adds the set first weight and the second weight to the first charge state and the second charge state, respectively, and the weight is added. It may be configured to estimate the third state of charge by summing the first state of charge and the second state of charge.
  • the control unit may be configured to set the charge/discharge stop time and the first weight to be in inverse proportion to each other, and set the charge/discharge stop time and the second weight to be proportional to each other.
  • a battery pack according to another aspect of the present invention may include an apparatus for estimating a state of charge according to an aspect of the present invention.
  • a vehicle according to another aspect of the present invention may include an apparatus for estimating a state of charge according to an aspect of the present invention.
  • a method of estimating a state of charge includes a current voltage measurement step of obtaining current information and voltage information by measuring current and voltage of a battery cell; A time calculation step of calculating a charge/discharge time at which the battery cell is charged or discharged, and a charge/discharge stop time at which the charge or discharge is stopped; A first state of charge estimating step of estimating a first state of charge of the battery cell according to the current information during the charge/discharge time; A second state of charge estimating step of estimating a second state of charge of the battery cell according to the voltage information based on a result of comparing the charge/discharge stop time and a preset reference time; A third state of charge estimating step of estimating a third state of charge by weighting and summing the first state of charge and the second state of charge based on the charge/discharge stop time; And estimating the state of charge of the battery cell, determining the estimated third state of charge as the state of charge of the battery cell.
  • the charging/discharging time is less than the reference time after the first charging state estimating step, whether a voltage inflection point is among a plurality of voltage information obtained during the charging/discharging interruption time. It may include a step of confirming the inflection point to confirm.
  • the second charging state may be estimated only when the charging/discharging stop time is greater than or equal to the reference time or when the voltage inflection point is confirmed in the inflection point checking step.
  • the apparatus for estimating a state of charge has an advantage of being able to more accurately and highly reliably estimate a state of charge of a battery cell.
  • the charging state estimation device estimates the second state of charge based on the voltage information acquired during the charging/discharging interruption time, so that the final state of charge of the battery cell can be quickly estimated even in an environment where sufficient rest periods are difficult to secure. have.
  • FIG. 1 is a diagram schematically illustrating an apparatus for estimating a state of charge according to an embodiment of the present invention.
  • FIG. 2 is a diagram schematically illustrating a battery pack including an apparatus for estimating a state of charge according to an exemplary embodiment of the present invention.
  • FIG. 3 is a diagram illustrating an exemplary configuration of a battery pack including an apparatus for estimating a state of charge according to an embodiment of the present invention.
  • FIG. 4 is a diagram schematically illustrating a first embodiment in which the size of the charge/discharge stop time is larger than the size of the reference time.
  • FIG. 5 is a diagram schematically illustrating a second embodiment in which the size of the charge/discharge stop time is smaller than the size of the reference time.
  • FIG. 6 is a diagram showing an outline of a first voltage of a battery cell after discharging is terminated.
  • FIG. 7 is a diagram showing an overview of a second voltage of a battery cell after charging is terminated.
  • FIG. 8 is a diagram showing an outline of a third voltage of a battery cell after discharging is terminated.
  • FIG. 9 is a diagram showing an outline of a fourth voltage of a battery cell after charging is completed.
  • FIG. 10 is a diagram schematically illustrating a method of estimating a state of charge according to another embodiment of the present invention.
  • FIG. 11 is a diagram schematically illustrating a method of estimating a state of charge according to another embodiment of the present invention.
  • control unit described in the specification mean a unit that processes at least one function or operation, which may be implemented as hardware or software, or a combination of hardware and software.
  • FIG. 1 is a diagram schematically illustrating an apparatus 100 for estimating a state of charge according to an embodiment of the present invention.
  • FIG. 2 is a diagram schematically illustrating a battery pack 1 including an apparatus 100 for estimating a state of charge according to an embodiment of the present invention.
  • 3 is a diagram showing an exemplary configuration of a battery pack 1 including the apparatus 100 for estimating a state of charge according to an embodiment of the present invention.
  • the battery pack 1 may include a battery cell 10 and an apparatus 100 for estimating a state of charge.
  • the battery cell 10 has a negative terminal and a positive terminal, and means one independent cell that can be physically separated.
  • one pouch-type lithium polymer cell may be regarded as the battery cell 10.
  • the battery pack 1 including one battery cell 10 is shown in FIGS. 2 and 3, the battery pack 1 includes a battery module in which one or more battery cells 10 are connected in series and/or in parallel. May be included.
  • an apparatus 100 for estimating a state of charge may include a measurement unit 110 and a control unit 120.
  • the measurement unit 110 may be configured to measure the current and voltage of the battery cell 10.
  • the measurement unit 110 may measure the voltage of the battery cell 10 by measuring the voltage of the positive terminal and the negative terminal of the battery cell 10 and calculating a difference between the measured voltages at both ends.
  • the measurement unit 110 may include a voltage measurement unit 111 that measures the voltage of the battery cell 10.
  • the voltage measurement unit 111 may measure the positive voltage of the battery cell 10 through the first sensing line SL1 and measure the negative voltage of the battery cell 10 through the second sensing line SL2. .
  • the voltage measurement unit 111 may measure the voltage of the battery cell 10 by calculating a difference between the measured positive voltage and the negative voltage of the battery cell 10.
  • the measurement unit 110 may measure the current flowing through the main path in which the battery cells 10 are disposed, and measure the current of the battery cells 10. That is, the measurement unit 110 may measure both the charging current and/or the discharge current of the battery cell 10.
  • the measurement unit 110 may include a current measurement unit 112 that measures the current of the battery cell 10.
  • an ammeter for measuring current may be disposed in the main path where the battery cells 10 are disposed.
  • a sense resistor for measuring current may be disposed in the main path.
  • the main path may be a main charge/discharge path connecting the positive terminal P+ of the battery pack 1 and the negative terminal P- of the battery pack 1. That is, the main path may be a path to which the positive terminal (P+) of the battery pack 1, the battery cell 10, and the negative terminal (P-) of the battery pack 1 are connected.
  • the current measurement unit 112 may be connected to an ammeter and/or a sense resistor through the third sensing line SL3 to measure a current flowing through the main path.
  • the current measurement unit 112 may measure the current of the battery cell 10 based on the current measured using the third sensing line SL3.
  • the measurement unit 110 may be configured to output measured current information and voltage information.
  • the measurement unit 110 may convert the measured current information and voltage information into a digital signal capable of outputting.
  • the measurement unit 110 may output measured current information and voltage information by outputting the converted digital signal.
  • the control unit 120 may be configured to receive the current information and voltage information from the measurement unit 110.
  • control unit 120 may be connected to the measurement unit 110.
  • control unit 120 may be electrically connected to the measurement unit 110 through a wired line.
  • control unit 120 may be connected to the measurement unit 110 through wireless communication.
  • the controller 120 may receive the digital signal output from the measurement unit 110 and read the received digital signal to obtain current information and voltage information measured by the measurement unit 110.
  • the control unit 120 may be configured to calculate a charge/discharge time during which the battery cell 10 is charged or discharged, and a charge/discharge stop time at which the charge or discharge is stopped.
  • the controller 120 may determine whether to charge or discharge the battery cell 10 based on the acquired current information.
  • control unit 120 may calculate a duration of charging or discharging.
  • the control unit 120 may calculate a charge/discharge stop time of the battery cell 10. That is, the control unit 120 may calculate the idle time of the battery cell 10 based on the current information received from the measurement unit 110.
  • the controller 120 determines whether the battery pack 1 and the load are energized.
  • the charge/discharge time and the charge/discharge stop time may be calculated by determining.
  • the controller 120 may be configured to estimate a first state of charge of the battery cell 10 according to the current information during the charge/discharge time.
  • the controller 120 may be configured to estimate the first charging state by integrating the charging current amount or the discharging current amount.
  • the controller 120 may estimate the first state of charge of the battery cell 10 by using a commonly used current integration method.
  • control unit 120 is configured to determine whether to estimate the second state of charge of the battery cell 10 according to the received voltage information based on a result of comparing the charge/discharge stop time and a preset reference time. Can be.
  • the preset reference time may be a time set to a predetermined size. That is, the size of the reference time may be set in advance.
  • the reference time may be set from 300 seconds to 500 seconds.
  • the reference time may be set to 300 seconds.
  • the reference time may be preset and stored in an internal memory provided in the controller 120.
  • the apparatus 100 for estimating a state of charge may further include a storage unit 130 for storing a reference time.
  • the storage unit 130 may store programs and data necessary for the control unit 120 to estimate the state of charge of the battery cell 10. That is, the storage unit 130 may store data required for each component of the charging state estimation apparatus 100 to perform an operation or function, a program, or data generated in a process of performing the operation and function.
  • the storage unit 130 is a known information storage means known to be capable of recording, erasing, updating, and reading data, there is no particular limitation on its type.
  • the information storage means may include RAM, flash memory, ROM, EEPROM, register, and the like.
  • the storage unit 130 may store program codes in which processes executable by the control unit 120 are defined.
  • the controller 120 may compare the size of the charge/discharge stop time and the size of the reference time. That is, the controller 120 may calculate a charge/discharge stop time from a time when charging or discharging of the battery cell 10 is stopped to a time when charging or discharging of the battery cell 10 is restarted. In addition, the controller 120 may determine whether to estimate the second state of charge of the battery cell 10 based on a result of comparing the calculated charge/discharge stop time and the reference time.
  • the controller 120 determines the second state of charge of the battery cell 10 based on the voltage information of the battery cell 10 acquired during the charge/discharge interruption time. Can be estimated.
  • the controller 120 may estimate the open-circuit voltage of the battery cell 10 by synthesizing the voltage information of the battery cell 10 acquired during the charge/discharge interruption time. In addition, the controller 120 may estimate a second state of charge of the battery cell 10 corresponding to the estimated open voltage by referring to a pre-stored open-circuit voltage-charge state lookup table.
  • the open-circuit voltage-charging state look-up table may be a look-up table in which open-circuit voltages and charge states corresponding to each other are mapped and stored.
  • the open-circuit voltage-charging state lookup table may be previously stored in an internal memory provided in the controller 120 or in the storage unit 130.
  • the controller 120 may be configured to estimate a third state of charge by weighting the sum of the first state of charge and the second state of charge based on the charge/discharge stop time.
  • the first state of charge is a state of charge estimated based on the current of the battery cell 10 measured during the charge/discharge time
  • the second state of charge is the voltage of the battery cell 10 measured during the charge/discharge interruption time. It may be a state of charge estimated based on it.
  • the controller 120 may estimate a third state of charge according to the charge/discharge stop time by weighting the sum of the first state of charge and the second state of charge.
  • the shorter the charge/discharge stop time the greater the proportion of the estimated first charged state in the estimated third estimated state. Conversely, as the charge/discharge stop time increases, the weight of the estimated second charging state may increase in the estimated third estimated state.
  • controller 120 may be configured to determine the estimated third state of charge as the state of charge of the battery cell 10.
  • the controller 120 when determining the final state of charge of the battery cell 10, the controller 120 comprehensively considers the current information during the charge/discharge time and the voltage information during the charge/discharge time, and the state of charge of the battery cell 10 Can be estimated.
  • the apparatus 100 for estimating the state of charge has an advantage of being able to estimate the state of charge of the battery cell 10 more accurately and with high reliability.
  • the charging state estimating device 100 estimates the second charging state based on the voltage information acquired during the charging/discharging interruption time, so that the final charging state of the battery cell 10 is quickly accelerated even in an environment where it is difficult to secure a sufficient rest period. There is an advantage that can be estimated.
  • control unit 120 provided in the charging state estimation apparatus 100 includes a processor known in the art, an application-specific integrated circuit (ASIC), another chipset, a logic circuit, etc. to execute various control logics performed in the present invention. It may optionally include a register, a communication modem, a data processing device, and the like.
  • control logic when the control logic is implemented in software, the control unit 120 may be implemented as a set of program modules.
  • the program module may be stored in a memory and executed by the controller 120.
  • the memory may be inside or outside the controller 120, and may be connected to the controller 120 by various well-known means.
  • controller 120 estimates a third charging state according to the magnitude of the charge/discharge stop time will be described with reference to FIGS. 4 and 5.
  • FIGS. 4 and 5 For convenience of explanation, an example of a situation in which the battery cell 10 is discharged is described in FIGS. 4 and 5, and it is assumed that the battery cell 10 is not charged during the time period shown in FIGS. 4 and 5.
  • FIG. 4 is a diagram schematically illustrating a first embodiment in which a charge/discharge stop time is larger than a reference time. Specifically, FIG. 4 is a diagram illustrating an exemplary time table for the first embodiment.
  • discharging of the battery cell 10 may start at time T0, and discharging of the battery cell 10 may stop at time T1. Then, the discharge of the battery cell 10 may be restarted at time T2.
  • the tref time may be a time elapsed by a reference time from time T1 at which discharging of the battery cell 10 is stopped. That is, the interval between the time T0 to the time T1 may be a charge/discharge time, and the interval between the time T1 and the T2 may be a charge/discharge stop time.
  • a vehicle equipped with the battery cell 10 may be turned on at time T0 and turned off at time T1. Thereafter, the vehicle may be turned on again at time T2.
  • the measurement unit 110 may measure the current of the battery cell 10 from a time T0 at which discharging of the battery cell 10 starts to a time T1 at which discharging is stopped.
  • the control unit 120 may estimate the first state of charge based on current information of the battery cell 10 measured by the measurement unit 110. In this case, the controller 120 may estimate the first state of charge by integrating current information measured during the time T0 to the time T1.
  • the measurement unit 110 may measure the current of the battery cell 10 from time T1 to time T2 when discharging of the battery cell 10 is stopped.
  • the estimated first state of charge is due to the current information measured from the time T0 to the time T1 and the current information measured from the time T0 to the time T2.
  • the estimated first state of charge does not show a significant difference. Therefore, hereinafter, for convenience of description, it will be described that the measuring unit 110 measures the current of the battery cell 10 only while the battery cell 10 is being discharged.
  • control unit 120 may be configured to estimate the second charge state based on a plurality of voltage information received during the charge/discharge stop time.
  • the controller 120 may calculate the charge/discharge stop time by calculating a difference between the time T1 and the time T2. In addition, when the size of the charge/discharge stop time is greater than the size of the reference time, the control unit 120 may estimate the second charging state.
  • the control unit 120 since the difference between the time T1 and the time T2 is larger than the reference time, the control unit 120 synthesizes a plurality of voltage information measured from the time T1 to the time T2 by the measurement unit 110 2 You can estimate the state of charge. That is, when the T2 time is later than the tref time, the controller 120 may estimate the second state of charge.
  • the controller 120 may estimate a third state of charge based on the estimated first state of charge and the second state of charge. Accordingly, since the state of charge of the battery cell 10 is estimated by considering both the first state of charge and the second state of charge, accuracy and reliability of the estimated state of charge of the battery cell 10 may be improved.
  • FIG. 5 is a diagram schematically illustrating a second embodiment in which a charge/discharge stop time is smaller than a reference time. Specifically, FIG. 5 is a diagram illustrating an exemplary time table for the second embodiment.
  • discharging of the battery cell 10 may be started at time T0, and discharging of the battery cell 10 may be stopped at time T1. Then, the discharge of the battery cell 10 may be restarted at time T2.
  • the tref time may be a time elapsed by a reference time from time T1 at which discharging of the battery cell 10 is stopped. That is, the interval between the time T0 to the time T1 may be a charge/discharge time, and the interval between the time T1 and the T2 may be a charge/discharge stop time.
  • the control unit 120 may estimate a first state of charge of the battery cell 10 based on current information measured by the measurement unit 110 during time T0 to time T1. Thereafter, the controller 120 may calculate a charge/discharge stop time by calculating a difference between the time T1 and the time T2.
  • the control unit 120 checks whether there is a voltage inflection point among a plurality of voltage information received during the charge/discharge stop time, and when the voltage inflection point is confirmed It may be configured to estimate only the second state of charge.
  • the control unit 120 is used during the charge/discharge stop time (time between T1 to T2). You can check whether there is a voltage inflection point.
  • the inflection point is a point at which a concave shape changes in a curve, and may generally mean a point at which the yin and yang of a curvature change in a planar curve. That is, the controller 120 may analyze the voltage information acquired during the charge/discharge stop time (a time between T1 to T2) and determine whether there is an inflection point at which the voltage increase/decrease slope changes from positive to negative or negative to positive.
  • the controller 120 is the voltage acquired during the charge/discharge interruption time (a time between T1 and T2).
  • the second state of charge may be estimated based on the information.
  • the controller 120 may estimate a third charging state based on the estimated first charging state and the second charging state. That is, in this case, when the state of charge of the battery cell 10 is estimated, both the current and the voltage of the battery cell 10 may be considered.
  • the controller 120 estimates a third charge state based on the estimated first charge state. can do. That is, in this case, the controller 120 may not estimate the second state of charge based on the obtained voltage information, but may estimate the estimated first state of charge as the third state of charge. That is, in this case, when the state of charge of the battery cell 10 is estimated, only the current of the battery cell 10 may be considered.
  • Table 1 is a table that summarizes the factors considered when estimating the third state of charge. Specifically, Table 1 is a table showing factors necessary for estimating a third state of charge according to the magnitude between the charge/discharge interruption time and the reference time, and whether a voltage inflection point exists in the voltage information obtained during the charge/discharge interruption time.
  • the control unit 120 has a voltage inflection point.
  • the third state of charge may be estimated by considering both the first state of charge and the second state of charge.
  • the control unit 120 stops charging and discharging A factor required for estimating the third state of charge may be differently configured according to whether or not a voltage inflection point exists in the voltage information measured during the time (a time between T1 and T2).
  • the controller 120 may estimate the first charging state as the third charging state. Conversely, when there is a voltage inflection point in the voltage information measured during the charging/discharging interruption time (time between T1 and T2), the controller 120 estimates the third charging state by considering both the first charging state and the second charging state. can do.
  • the apparatus 100 for estimating the state of charge estimates the state of charge of the battery cell 10 to be optimized in each case in consideration of the magnitude of the charge/discharge interruption time and the presence or absence of a voltage inflection point. There is an advantage.
  • the battery cell 10 when the battery cell 10 is provided in a driving device such as an electric vehicle as well as a test device, that is, sufficient for estimating the state of charge (in particular, the second state of charge) of the battery cell 10 Even in a situation where the rest period is not guaranteed, the state of charge of the battery cell 10 can be more accurately estimated.
  • the reference time may be a preset time in consideration of the voltage polarization reversal effect of the battery cell 10.
  • control unit 120 includes the reference to include a time period during which the polarization direction of the short-term polarization component and the long-term polarization component of the battery cell 10 are different. It can be configured to set the time in advance.
  • the short-term polarization component and the long-term polarization component may be general terms that refer to the voltage polarization component of the battery cell 10.
  • the short-term polarization component is a polarization component that moves for a large current for a short period of time, and may be a component designed for characteristics of the battery cell 10 that rapidly changes when a large current is applied for a short period of time.
  • the long-term polarization component is a polarization component that is affected by current for a long time, and may be a component designed for a characteristic in which the battery cell 10 changes from an activated state to a stable state.
  • the control unit 120 includes the reference time to include a time interval from the time when charging or discharging of the battery cell 10 is finished to the time when the sign of the short-term polarization component and the sign of the long-term polarization component are different from each other.
  • the sign of the short-term polarization component and the sign of the long-term polarization component may be different from each other when the battery cell 10 enters a rest period after rapid charging or discharging occurs. That is, after rapid charging or discharging occurs, a voltage polarization reverse effect in which the sign of the short-term polarization component and the sign of the long-term polarization component are different may occur in the battery cell 10.
  • the time at which the sign of the short-term polarization component and the sign of the long-term polarization component of the battery cell 10 are different from each other is the time when about 300 seconds have elapsed from the time when charging or discharging of the battery cell 10 is finished.
  • the control unit 120 presets the reference time to 300 to 500 seconds, so that the time at which the polarization directions of the short-term polarization component and the long-term polarization component of the battery cell 10 differ within the reference time can be included.
  • the reference time may be set to 300 seconds.
  • FIG. 6 is a diagram illustrating a first voltage outline C1 of the battery cell 10 after discharging is terminated.
  • 7 is a diagram illustrating a second voltage outline C2 of the battery cell 10 after charging is completed.
  • 8 is a diagram illustrating a third voltage outline C3 of the battery cell 10 after discharging is terminated.
  • 9 is a diagram illustrating a fourth voltage outline C4 of the battery cell 10 after charging is completed.
  • FIGS. 6 and 7 are voltage diagrams of the battery cell 10 in which the voltage polarization reversal effect has not occurred
  • FIGS. 8 and 9 are voltage diagrams of the battery cell 10 in which the voltage polarization reversal effect has occurred.
  • the open circuit voltage (OCV) of the battery cell 10 after discharging is completed may be measured as OCV1 after a sufficient rest period has passed.
  • the open-circuit voltage of the battery cell 10 in which the voltage polarization reversal effect has occurred may be measured as OCV3 after passing a sufficient rest period.
  • a voltage inflection point may appear at time Tm. That is, in the third voltage reforming C3, the sign of the short-term polarization component and the sign of the long-term polarization component may be different from each other at time Tm. Accordingly, after the time Tm, the slope of the first voltage model C1 maintains a positive slope, but the slope of the third voltage model C3 may be changed from a positive slope to a negative slope.
  • the open-circuit voltage of the battery cell 10 after charging is completed may be measured as OCV2 after passing a sufficient rest period.
  • the open-circuit voltage of the battery cell 10 in which the voltage polarization reversal effect has occurred may be measured as OCV4 after passing a sufficient rest period.
  • a voltage inflection point may appear at time Tm. That is, in the fourth voltage remodeling C4, the sign of the short-term polarization component and the sign of the long-term polarization component may be different from each other at time Tm. Accordingly, after the time Tm, the slope of the second voltage model C2 maintains a negative slope, but the slope of the fourth voltage model C4 may be changed from a negative slope to a positive slope.
  • the second state of charge estimated based on OCV1 and the state of charge estimated based on OCV3 may be very different.
  • the second state of charge estimated based on OCV2 and the state of charge estimated based on OCV4 may be very different. That is, depending on whether the voltage inflection point has occurred, the estimated open-circuit voltage and the state of charge may vary.
  • a voltage inflection point may occur after charging or discharging is terminated. That is, the apparatus 100 for estimating the state of charge according to an embodiment of the present invention sets the reference time to a time greater than or equal to the time at which the voltage inflection point can occur, so that the open-circuit voltage of the battery cell 10 is considered in consideration of the voltage polarization reversal effect. Can be accurately estimated.
  • the charging state estimation apparatus 100 may more accurately estimate the second state of charge of the battery cell 10 in consideration of the voltage polarization reversal effect.
  • the charging state estimation apparatus 100 may accurately estimate the final state of charge of the battery cell 10 based on the more accurately estimated second state of charge.
  • the controller 120 may be configured to estimate the open circuit voltage of the battery cell 10 from a plurality of voltage information received during the charge/discharge interruption time using a function optimization technique.
  • the function optimization technique may be a curve customized analysis technique that analyzes an equation of a curve based on given data. That is, the function optimization technique used in the present invention is a technique capable of deriving a final result by estimating not only a linear analysis of given data, but also a curve by the given data. For example, a Levenberg-Marguardt algorithm or an Extended Kalman Filter may be applied to the function optimization technique.
  • the controller 120 calculates a first time constant, a second time constant, a first voltage value, a second voltage value, and an open-circuit voltage from the Levenberg Marquet algorithm, based on an RC equivalent circuit model having two RC parallel circuits. Can be obtained.
  • the open-circuit voltage obtained here may be estimated as the state of charge of the battery cell 10. That is, the controller 120 may estimate the open-circuit voltage of the battery cell 10 by using information on a plurality of voltages measured during the charge/discharge interruption time as input data of the function optimization technique.
  • the R-C equivalent circuit model and the Levenberg Marquet algorithm having two RC parallel circuits are known models and algorithms, detailed descriptions thereof will be omitted.
  • a plurality of voltage information obtained by the controller 120 may include a voltage inflection point. have. Accordingly, the controller 120 may estimate the open-circuit voltage of the battery cell 10 as OCV3 or OCV4 using a function optimization technique.
  • the open-circuit voltage of the battery cell 10 can be estimated based on little voltage information.
  • the function optimization technique which is a curve tailoring technique
  • the voltage outline of the battery cell 10 is estimated as the first voltage outline (C1) or the second voltage outline (C2). It has no choice but to be. Therefore, the open-circuit voltage of the battery cell 10 must be erroneously estimated as OCV1 or OCV2. As a result, the second state of charge of the battery cell 10 is inevitably estimated by erroneous estimation of the open-circuit voltage.
  • the charging state estimation apparatus 100 has the advantage of setting a reference time in consideration of the possibility that a voltage polarization reversal effect will occur in order to secure sufficient voltage information for the battery cell 10 There is this. Accordingly, there is an advantage that the open circuit voltage and the state of charge of the battery cell 10 can be more accurately estimated.
  • the charging/discharging interruption time may be significantly shorter than the idle time for measuring the open-circuit voltage of the battery cell 10.
  • the reference time is set to 300 seconds, and the idle time for measuring the open-circuit voltage of the battery cell 10 may be 3 hours. Therefore, the charging state estimation apparatus 100 according to an embodiment of the present invention accurately estimates the open-circuit voltage of the battery cell 10 based on the voltage information of the battery cell 10 even in an environment where it is difficult to secure a sufficient idle time. There is an advantage to be able to do.
  • the charging state estimation apparatus 100 has an advantage of being able to accurately estimate the charging state of the battery cell 10 in a short time based on the estimated open-circuit voltage and current information of the battery cell 10.
  • control unit 120 obtains when discharging of the battery cell 10 is resumed from immediately after the discharging of the battery cell 10 is terminated and before the reference time elapses. It is possible to first check whether the voltage inflection point is included in the obtained voltage information.
  • the control unit 120 determines the open-circuit voltage of the battery cell 10 based on the plurality of voltage information acquired using a function customization technique. Can be estimated. That is, since the voltage inflection point information is included in the obtained voltage information, the controller 120 may estimate the open-circuit voltage of the battery cell 10 as OCV3 instead of OCV1. Thereafter, the controller 120 may estimate the second state of charge based on the estimated OCV3.
  • the charging state estimating apparatus 100 is obtained only when the voltage information acquired during the charging/discharging interruption time includes a voltage inflection point, even if the charging/discharging interruption time is shorter than the reference time.
  • the second state of charge may be estimated based on one voltage information. Accordingly, the final state of charge of the battery cell 10 may be more accurately estimated based on the first state of charge and the second state of charge.
  • the controller 120 may be configured to set a first weight and a second weight according to the charge/discharge stop time.
  • the controller 120 may be configured to set the first weight and the second weight, respectively, based on the size of the charge/discharge stop time.
  • the sum of the first weight and the second weight may be 1.
  • controller 120 may be configured to add a set first weight and a second weight to the first charging state and the second charging state, respectively.
  • the controller 120 may add the first weight to the first charging state and add the second weight to the second charging state.
  • the first weight is 0.3 and the second weight is 0.7.
  • the first state of charge is estimated to be 80% and the second state of charge is estimated to be 82%.
  • the controller 120 may calculate 24% by multiplying the first weight of 0.3 and the first charged state by 80%.
  • the controller 120 may calculate 57.4% by multiplying the second weight of 0.7 by 82%, which is the second charged state.
  • controller 120 may be configured to estimate the third charging state by summing the weighted first charging state and the second charging state.
  • the first charging state to which the first weight is added may be 24%
  • the second charging state to which the second weight is added may be 57.4%
  • the controller 120 may estimate the third state of charge as 81.4% by adding the calculated 24% and 57.4%.
  • controller 120 may estimate the estimated third state of charge as the final state of charge of the battery cell 10.
  • the charging state estimation apparatus 100 more accurately estimates the charging state of the battery cell 10 in consideration of the proportion of the charging/discharging time and the charging/discharging stop time of the battery cell 10. There is an advantage to be able to do.
  • control unit 120 may be configured to set the charging stop time and the first weight to be in inverse proportion to each other, and set the charging stop time and the second weight to be proportional to each other.
  • controller 120 may set the first weight using Equation 1 below.
  • Trest is a charge/discharge stop time
  • e may be a natural constant
  • the first weight may be set in inverse proportion to the charge/discharge stop time. That is, since the first weight is added to the first charging state, it may be set in inverse proportion to the charging/discharging stop time.
  • controller 120 may set the second weight using Equation 2 below.
  • Equation 2 ⁇ is the first weight and ⁇ is the second weight. That is, the sum of the first weight and the second weight may be 1.
  • the second weight may be set in proportion to the charge/discharge stop time. That is, the control unit 120 may increase the weight occupied by the second charging state in the third charging state by setting the second weight larger as the charging/discharging stop time increases.
  • the charging state estimating apparatus 100 has the advantage of being able to more adaptively estimate the charging state of the battery cell 10 by differentially adding weights according to the charging/discharging interruption time. .
  • the charging state estimation apparatus 100 may be applied to a battery management system (BMS). That is, the BMS according to the present invention may include the apparatus 100 for estimating the state of charge described above. In this configuration, at least some of the components of the charging state estimation apparatus 100 may be implemented by supplementing or adding functions of the components included in the conventional BMS. For example, the measurement unit 110, the control unit 120, and the storage unit 130 of the charging state estimation apparatus 100 may be implemented as components of the BMS.
  • the charging state estimation apparatus 100 may be provided in the battery pack 1.
  • the battery pack 1 according to the present invention may include the above-described charging state estimation apparatus 100 and one or more battery cells 10.
  • the battery pack 1 may further include electrical equipment (relay, fuse, etc.) and a case.
  • the charging state estimation apparatus 100 may be included in a vehicle.
  • the battery pack 1 provided with the apparatus 100 for estimating a state of charge according to an embodiment of the present invention may be included in an electric vehicle.
  • a time when the battery cell 10 is charged or a time during which the electric vehicle is operated may correspond to the charging/discharging time.
  • the time when the electric vehicle is turned off may correspond to the charge/discharge stop time.
  • the controller 120 may accurately estimate the open-circuit voltage of the battery cell 10 based on the obtained plurality of voltage information. That is, after the electric vehicle is turned off, even if it does not wait for a desired idle time (3 hours), the control unit 120 is based on the voltage information acquired during the reference time (300 seconds), the open-circuit voltage and the control unit of the battery cell 10. 2 You can estimate the state of charge. Accordingly, even in an electric vehicle environment in which it is difficult to secure a sufficient idle time for measuring an open-circuit voltage, the charging state estimation apparatus 100 according to an exemplary embodiment of the present invention has an advantage in that the charging state can be accurately and quickly estimated.
  • FIG. 10 is a diagram schematically illustrating a method of estimating a state of charge according to another embodiment of the present invention.
  • the charging state estimating method may be performed by each component of the charging state estimating apparatus 100.
  • the method of estimating a state of charge includes a current voltage measurement step (S100), a time calculation step (S200), a first state of charge estimating step (S300), a second state of charge estimating step (S400), and a third state of charge. It may include an estimating step S500 and an estimating step S600 of a state of charge of the battery cell.
  • the first state of charge is a state of charge estimated based on current information of the battery cell 10 measured during the charge/discharge time
  • the second state of charge is the voltage information of the battery cell 10 measured during the charge/discharge interruption time. It may be an estimated state of charge based on.
  • the third state of charge may be a state of charge in which the first state of charge and the second state of charge are weighted and summed, and the state of charge of the battery cell 10 may be a state of charge that is finally estimated based on the third state of charge.
  • the current voltage measurement step S100 is a step of measuring current and voltage of the battery cell 10 to obtain current information and voltage information, and may be performed by the measurement unit 110.
  • the measurement unit 110 may measure the voltage of the battery cell 10 through the voltage measurement unit 111 and measure the current of the battery cell 10 through the current measurement unit 112.
  • the measurement unit 110 may output the measured current information and voltage information to the controller 120, and the controller 120 may obtain current information and voltage information.
  • the time calculation step (S200) is a step of calculating a charge/discharge time during which the battery cell 10 is charged or discharged, and a charge/discharge stop time at which the charge or discharge is stopped, and may be performed by the controller 120. .
  • the controller 120 may determine whether the battery cell 10 is being charged or discharged based on current information received from the measurement unit 110.
  • the charge/discharge time and the charge/discharge stop time may be calculated based on the determination result.
  • the first state of charge estimating step S300 is a step of estimating a first state of charge of the battery cell 10 according to the current information during the charge/discharge time, and may be performed by the controller 120.
  • the controller 120 may estimate the first state of charge by extracting the amount of current from the current information acquired during the charging and discharging time, and accumulating the extracted amount of current.
  • the second charging state estimating step (S400) is a step of estimating a second state of charge of the battery cell 10 according to the voltage information based on a result of comparing the charging/discharging stop time and a preset reference time. It can be done by 120.
  • the control unit 120 determines a second charge state based on a plurality of voltage information received from the measurement unit 110 during the charge/discharge stop time. Can be estimated.
  • the controller 120 may estimate the open-circuit voltage from the received plurality of voltage information using a function optimization technique. In addition, the controller 120 may estimate the second charging state from the estimated open-circuit voltage by referring to the open-circuit voltage-charging state lookup table stored in the storage unit 130.
  • the third charging state estimating step (S500) is a step of estimating a third charging state by weighting and summing the first charging state and the second charging state based on the charging/discharging interruption time, performed by the control unit 120 Can be.
  • the controller 120 may set the first weight and the second weight using Equations 1 and 2 above. In addition, the controller 120 may add a first weight to the first charging state and add a second weight to the second charging state. Thereafter, the controller 120 may estimate a third charging state by summing the weighted first charging state and the second charging state.
  • Estimating the state of charge of the battery cell is a step of determining the estimated third state of charge as the state of charge of the battery cell 10, and may be performed by the controller 120.
  • the controller 120 may determine the estimated third state of charge as the final state of charge for the battery cell 10.
  • the final state of charge of the battery cell 10 is estimated by considering both current information measured during the charging/discharging time and voltage information measured during the charging/discharging interruption time, it can be environmentally adaptive and more accurate.
  • FIG. 11 is a diagram schematically illustrating a method of estimating a state of charge according to another embodiment of the present invention.
  • the charging state estimating method according to FIG. 11 may be performed by the charging state estimating apparatus 100 according to an embodiment of the present invention.
  • a method of estimating a state of charge according to another embodiment of the present invention may further include a step S700 of checking an inflection point.
  • step S700 of checking the inflection point when the charge/discharge stop time is less than the reference time, it is a step of checking whether a voltage inflection point is among a plurality of voltage information acquired during the charge/discharge stop time, and may be performed by the control unit 120.
  • the controller 120 may estimate the second charging state even if the size of the charge/discharge stop time is smaller than the size of the reference time. Conversely, when the voltage inflection point does not exist, the controller 120 may not estimate the second state of charge, but may estimate the estimated first state of charge as the third state of charge.
  • the final state of charge of the battery cell 10 can be more accurately estimated according to the magnitude of the charge/discharge interruption time and the presence or absence of a voltage inflection point.
  • the embodiments of the present invention described above are not implemented only through an apparatus and a method, but may be implemented through a program that realizes a function corresponding to the configuration of the embodiment of the present invention or a recording medium in which the program is recorded. Implementation can be easily implemented by an expert in the technical field to which the present invention belongs from the description of the above-described embodiment.
  • control unit 120 control unit

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Secondary Cells (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Tests Of Electric Status Of Batteries (AREA)

Abstract

본 발명은 배터리 셀의 전압 개형이 비선형적인 개형을 띠는 경우에도, 배터리 셀의 개방 전압 및 충전 상태를 정확하게 추정할 수 있는 충전 상태 추정 장치 및 방법을 제공하는 것을 목적으로 한다. 본 발명의 일 측면에 따르면, 충전 상태 추정 장치는 배터리 셀의 충전 상태를 보다 정확하고, 신뢰도 높게 추정할 수 있는 장점이 있다. 또한, 충전 상태 추정 장치는 충방전 중단 시간 동안 획득된 전압 정보에 기반하여 제2 충전 상태를 추정함으로써, 충분한 휴지기가 확보되기 어려운 환경에서도 배터리 셀의 최종적인 충전 상태를 빠르게 추정할 수 있는 장점이 있다.

Description

충전 상태 추정 장치 및 방법
본 출원은 2019년 10월 18일자로 출원된 한국 특허 출원번호 제10-2019-0130074호에 대한 우선권주장출원으로서, 해당 출원의 명세서 및 도면에 개시된 모든 내용은 인용에 의해 본 출원에 원용된다.
본 발명은 충전 상태 추정 장치 및 방법에 관한 것으로서, 보다 상세하게는, 배터리 셀의 충전 상태를 정확하게 추정하는 충전 상태 추정 장치 및 방법에 관한 것이다.
최근, 노트북, 비디오 카메라, 휴대용 전화기 등과 같은 휴대용 전자 제품의 수요가 급격하게 증대되고, 전기 자동차, 에너지 저장용 축전지, 로봇, 위성 등의 개발이 본격화됨에 따라, 반복적인 충방전이 가능한 고성능 배터리에 대한 연구가 활발히 진행되고 있다.
현재 상용화된 배터리로는 니켈 카드뮴 전지, 니켈 수소 전지, 니켈 아연 전지, 리튬 배터리 등이 있는데, 이 중에서 리튬 배터리는 니켈 계열의 배터리에 비해 메모리 효과가 거의 일어나지 않아 충방전이 자유롭고, 자가 방전율이 매우 낮으며 에너지 밀도가 높은 장점으로 각광을 받고 있다.
이러한 배터리를 효율적으로 사용하기 위해서는, 배터리의 현재 용량을 파악할 수 있도록 배터리의 충전 상태(State of charge, SOC)를 정확하게 추정하는 것이 필요하다. 다만, 배터리의 충전 상태는 직접 측정할 수 없는 값이기 때문에, 충전 상태를 보다 정확하게 추정하기 위한 여러 기술의 개발이 있었다.
특히, 종래에는 충전 및 방전이 발생하지 않는 기간에 측정된 제1 전압 및 제2 전압을 선형 해석하여, 배터리의 개방 전압(Open circuit voltage)을 추정하는 기술이 개발되었다(특허문헌 1).
다만, 특허문헌 1에서 이용하는 선형 방정식에 따른 개방 전압 추정은 배터리의 전압이 선형적인 개형을 띠는 경우에만 적용될 수 있으며, 배터리의 전압이 비선형적인 개형을 띠는 경우에는 적용될 수 없는 문제가 있다.
예컨대, 배터리에 큰 전류가 짧은 시간 동안 급격하게 흐른 뒤 배터리의 전압은 비선형적인 개형을 띠게 되는데, 이러한 경우에 특허문헌 1을 적용하면 잘못된 개방 전압이 추정될 수 있다. 그리고, 특허문헌 1에 따르면, 잘못 추정된 개방 전압에 의해 배터리의 충전 상태도 잘못 추정될 수 있기 때문에, 배터리의 상태를 정확하게 진단 또는 판단할 수 없는 문제가 있다.
(특허문헌 1) KR 10-0805116 B1
본 발명은, 상기와 같은 문제점을 해결하기 위해 안출된 것으로서, 배터리 셀의 전압 개형이 비선형적인 개형을 띠는 경우에도, 배터리 셀의 개방 전압 및 충전 상태를 정확하게 추정할 수 있는 충전 상태 추정 장치 및 방법을 제공하는 것을 목적으로 한다.
본 발명의 다른 목적 및 장점들은 하기의 설명에 의해서 이해될 수 있으며, 본 발명의 실시예에 의해 보다 분명하게 알게 될 것이다. 또한, 본 발명의 목적 및 장점들은 특허청구범위에 나타난 수단 및 그 조합에 의해 실현될 수 있음을 쉽게 알 수 있을 것이다.
본 발명의 일 측면에 따른 충전 상태 추정 장치는 배터리 셀의 전류 및 전압을 측정하고, 측정된 전류 정보 및 전압 정보를 출력하도록 구성된 측정부; 및 상기 측정부로부터 상기 전류 정보 및 전압 정보를 수신하고, 상기 배터리 셀이 충전 또는 방전되는 충방전 시간, 및 상기 충전 또는 방전이 중단된 충방전 중단 시간을 산출하고, 상기 충방전 시간 동안 상기 전류 정보에 따른 상기 배터리 셀의 제1 충전 상태를 추정하고, 상기 충방전 중단 시간과 미리 설정된 기준 시간을 비교한 결과에 기반하여 상기 전압 정보에 따른 상기 배터리 셀의 제2 충전 상태를 추정할지 여부를 결정하고, 상기 제2 충전 상태가 추정된 경우, 상기 충방전 중단 시간에 기반하여 상기 제1 충전 상태 및 상기 제2 충전 상태를 가중 합산하여 제3 충전 상태를 추정하고, 추정된 제3 충전 상태를 상기 배터리 셀의 충전 상태로 결정하도록 구성된 제어부를 포함할 수 있다.
상기 제어부는, 상기 충방전 중단 시간이 상기 기준 시간 이상인 경우, 상기 충방전 중단 시간 동안 수신한 복수의 전압 정보에 기반하여 상기 제2 충전 상태를 추정하도록 구성될 수 있다.
상기 제어부는, 상기 충방전 중단 시간이 상기 기준 시간 미만인 경우, 상기 충방전 중단 시간 동안 수신한 복수의 전압 정보 중에 전압 변곡점이 있는지를 확인하고, 상기 전압 변곡점이 확인된 경우에만 상기 제2 충전 상태를 추정하도록 구성될 수 있다.
상기 제어부는, 상기 배터리 셀의 숏-텀 분극 성분과 롱-텀 분극 성분의 분극 방향이 달라지는 시간이 포함되도록 상기 기준 시간을 미리 설정하도록 구성될 수 있다.
상기 제어부는, 함수 최적화 기법을 이용하여 상기 충방전 중단 시간 동안 수신한 복수의 전압 정보로부터 상기 배터리 셀의 개방 전압을 추정하도록 구성될 수 있다.
상기 제어부는, 미리 설정된 룩업 테이블에 기반하여, 추정된 개방 전압에 대응되는 제2 충전 상태를 추정하도록 구성될 수 있다.
상기 제어부는, 상기 충방전 중단 시간에 따라 제1 가중치 및 제2 가중치를 설정하고, 설정된 제1 가중치 및 제2 가중치를 상기 제1 충전 상태 및 상기 제2 충전 상태에 각각 부가하고, 가중치가 부가된 제1 충전 상태 및 제2 충전 상태를 합산하여 상기 제3 충전 상태를 추정하도록 구성될 수 있다.
상기 제어부는, 상기 충방전 중단 시간과 상기 제1 가중치는 서로 반비례하도록 설정하고, 상기 충방전 중단 시간과 상기 제2 가중치는 서로 비례하도록 설정하도록 구성될 수 있다.
본 발명의 다른 측면에 따른 배터리 팩은 본 발명의 일 측면에 따른 충전 상태 추정 장치를 포함할 수 있다.
본 발명의 또 다른 측면에 따른 자동차는 본 발명의 일 측면에 따른 충전 상태 추정 장치를 포함할 수 있다.
본 발명의 또 다른 측면에 따른 충전 상태 추정 방법은 배터리 셀의 전류 및 전압을 측정하여 전류 정보 및 전압 정보를 획득하는 전류 전압 측정 단계; 상기 배터리 셀이 충전 또는 방전되는 충방전 시간, 및 상기 충전 또는 방전이 중단된 충방전 중단 시간을 산출하는 시간 산출 단계; 상기 충방전 시간 동안 상기 전류 정보에 따른 상기 배터리 셀의 제1 충전 상태를 추정하는 제1 충전 상태 추정 단계; 상기 충방전 중단 시간과 미리 설정된 기준 시간을 비교한 결과에 기반하여, 상기 전압 정보에 따른 상기 배터리 셀의 제2 충전 상태를 추정하는 제2 충전 상태 추정 단계; 상기 충방전 중단 시간에 기반하여, 상기 제1 충전 상태 및 상기 제2 충전 상태를 가중 합산하여 제3 충전 상태를 추정하는 제3 충전 상태 추정 단계; 및 추정된 제3 충전 상태를 상기 배터리 셀의 충전 상태로 결정하는 배터리 셀의 충전 상태 추정 단계를 포함할 수 있다.
본 발명의 또 다른 측면에 따른 충전 상태 추정 방법은 상기 제1 충전 상태 추정 단계 이후, 상기 충방전 시간이 상기 기준 시간 미만인 경우, 상기 충방전 중단 시간 동안 획득된 복수의 전압 정보 중에 전압 변곡점이 있는지를 확인하는 변곡점 확인 단계를 포함할 수 있다.
상기 제2 충전 상태 추정 단계는, 상기 충방전 중단 시간이 상기 기준 시간 이상인 경우 또는 상기 변곡점 확인 단계에서 상기 전압 변곡점이 확인된 경우에만 상기 제2 충전 상태를 추정할 수 있다.
본 발명의 일 측면에 따르면, 충전 상태 추정 장치는 배터리 셀의 충전 상태를 보다 정확하고, 신뢰도 높게 추정할 수 있는 장점이 있다.
또한, 충전 상태 추정 장치는 충방전 중단 시간 동안 획득된 전압 정보에 기반하여 제2 충전 상태를 추정함으로써, 충분한 휴지기가 확보되기 어려운 환경에서도 배터리 셀의 최종적인 충전 상태를 빠르게 추정할 수 있는 장점이 있다.
본 발명의 효과들은 이상에서 언급한 효과들로 제한되지 않으며, 언급되지 않은 또 다른 효과들은 청구범위의 기재로부터 당업자에게 명확하게 이해될 수 있을 것이다.
본 명세서에 첨부되는 다음의 도면들은 후술되는 발명의 상세한 설명과 함께 본 발명의 기술사상을 더욱 이해시키는 역할을 하는 것이므로, 본 발명은 그러한 도면에 기재된 사항에만 한정되어 해석되어서는 아니 된다.
도 1은 본 발명의 일 실시예에 따른 충전 상태 추정 장치를 개략적으로 도시한 도면이다.
도 2는 본 발명의 일 실시예에 따른 충전 상태 추정 장치를 포함하는 배터리 팩을 개략적으로 도시한 도면이다.
도 3은 본 발명의 일 실시예에 따른 충전 상태 추정 장치를 포함하는 배터리 팩의 예시적 구성을 도시한 도면이다.
도 4는 충방전 중단 시간의 크기가 기준 시간의 크기보다 큰 제1 실시예를 개략적으로 도시한 도면이다.
도 5는 충방전 중단 시간의 크기가 기준 시간의 크기보다 작은 제2 실시예를 개략적으로 도시한 도면이다.
도 6은 방전이 종료된 이후 배터리 셀의 제1 전압 개형을 도시한 도면이다.
도 7은 충전이 종료된 이후 배터리 셀의 제2 전압 개형을 도시한 도면이다.
도 8은 방전이 종료된 이후 배터리 셀의 제3 전압 개형을 도시한 도면이다.
도 9는 충전이 종료된 이후 배터리 셀의 제4 전압 개형을 도시한 도면이다.
도 10은 본 발명의 다른 실시예에 따른 충전 상태 추정 방법을 개략적으로 도시한 도면이다.
도 11은 본 발명의 또 다른 실시예에 따른 충전 상태 추정 방법을 개략적으로 도시한 도면이다.
본 명세서 및 청구범위에 사용된 용어나 단어는 통상적이거나 사전적인 의미로 한정해서 해석되어서는 아니 되며, 발명자는 그 자신의 발명을 가장 최선의 방법으로 설명하기 위해 용어의 개념을 적절하게 정의할 수 있다는 원칙에 입각하여 본 발명의 기술적 사상에 부합하는 의미와 개념으로 해석되어야 한다.
따라서, 본 명세서에 기재된 실시예와 도면에 도시된 구성은 본 발명의 가장 바람직한 일 실시예에 불과할 뿐이고 본 발명의 기술적 사상을 모두 대변하는 것은 아니므로, 본 출원시점에 있어서 이들을 대체할 수 있는 다양한 균등물과 변형예들이 있을 수 있음을 이해하여야 한다.
또한, 본 발명을 설명함에 있어 관련된 공지 구성 또는 기능에 대한 구체적인 설명이 본 발명의 요지를 흐릴 수 있다고 판단되는 경우에는 그 상세한 설명은 생략한다.
제1, 제2 등과 같이 서수를 포함하는 용어들은, 다양한 구성요소들 중 어느 하나를 나머지와 구별하는 목적으로 사용되는 것이고, 그러한 용어들에 의해 구성요소들을 한정하기 위해 사용되는 것은 아니다.
명세서 전체에서, 어떤 부분이 어떤 구성요소를 "포함"한다고 할 때, 이는 특별히 반대되는 기재가 없는 한 다른 구성요소를 제외하는 것이 아니라, 다른 구성요소를 더 포함할 수 있다는 것을 의미한다.
또한, 명세서에 기재된 제어부와 같은 용어는 적어도 하나의 기능이나 동작을 처리하는 단위를 의미하며, 이는 하드웨어나 소프트웨어, 또는 하드웨어 및 소프트웨어의 결합으로 구현될 수 있다.
덧붙여, 명세서 전체에서, 어떤 부분이 다른 부분과 "연결"되어 있다고 할 때, 이는 "직접적으로 연결"되어 있는 경우뿐만 아니라, 그 중간에 다른 소자를 사이에 두고 "간접적으로 연결"되어 있는 경우도 포함한다.
이하에서는 첨부된 도면을 참조하여 본 발명의 바람직한 실시예를 상세히 설명하기로 한다.
도 1은 본 발명의 일 실시예에 따른 충전 상태 추정 장치(100)를 개략적으로 도시한 도면이다. 도 2는 본 발명의 일 실시예에 따른 충전 상태 추정 장치(100)를 포함하는 배터리 팩(1)을 개략적으로 도시한 도면이다. 도 3은 본 발명의 일 실시예에 따른 충전 상태 추정 장치(100)를 포함하는 배터리 팩(1)의 예시적 구성을 도시한 도면이다.
도 2 및 도 3을 참조하면, 배터리 팩(1)은 배터리 셀(10) 및 충전 상태 추정 장치(100)를 포함할 수 있다.
배터리 셀(10)은, 음극 단자와 양극 단자를 구비하며, 물리적으로 분리 가능한 하나의 독립된 셀을 의미한다. 일 예로, 파우치형 리튬 폴리머 셀 하나가 배터리 셀(10)로 간주될 수 있다.
또한, 도 2 및 도 3에서는 하나의 배터리 셀(10)을 포함하는 배터리 팩(1)이 도시되었지만, 배터리 팩(1)에는 하나 이상의 배터리 셀(10)이 직렬 및/또는 병렬로 연결된 배터리 모듈이 포함될 수 있다.
도 1을 참조하면, 본 발명의 일 실시예에 따른 충전 상태 추정 장치(100)는 측정부(110) 및 제어부(120)를 포함할 수 있다.
측정부(110)는 배터리 셀(10)의 전류 및 전압을 측정하도록 구성될 수 있다.
측정부(110)는 배터리 셀(10)의 양극 단자의 전압과 음극 단자의 전압을 측정하고, 측정한 양단 전압의 차이를 산출하여 배터리 셀(10)의 전압을 측정할 수 있다.
예컨대, 도 3의 실시예에서, 측정부(110)는 배터리 셀(10)의 전압을 측정하는 전압 측정 유닛(111)을 포함할 수 있다. 전압 측정 유닛(111)은 제1 센싱 라인(SL1)을 통해서 배터리 셀(10)의 양극 전압을 측정하고, 제2 센싱 라인(SL2)을 통해서 배터리 셀(10)의 음극 전압을 측정할 수 있다. 그리고, 전압 측정 유닛(111)은 측정한 배터리 셀(10)의 양극 전압 및 음극 전압 간의 차이를 산출하여, 배터리 셀(10)의 전압을 측정할 수 있다.
또한, 측정부(110)는 배터리 셀(10)이 배치된 메인 경로에 흐르는 전류를 측정하여, 배터리 셀(10)의 전류를 측정할 수 있다. 즉, 측정부(110)는 배터리 셀(10)의 충전 전류 및/또는 방전 전류를 모두 측정할 수 있다.
예컨대, 도 3의 실시예에서, 측정부(110)는 배터리 셀(10)의 전류를 측정하는 전류 측정 유닛(112)을 포함할 수 있다. 그리고, 배터리 셀(10)이 배치된 메인 경로에는 전류 측정을 위한 전류계가 배치될 수 있다. 또는 메인 경로에는 전류 측정을 위한 센스 저항이 배치될 수도 있다. 여기서, 메인 경로는 배터리 팩(1)의 양극 단자(P+)와 배터리 팩(1)의 음극 단자(P-)를 연결하는, 메인 충방전 경로일 수 있다. 즉, 메인 경로는 배터리 팩(1)의 양극 단자(P+), 배터리 셀(10) 및 배터리 팩(1)의 음극 단자(P-)가 연결된 경로일 수 있다.
전류 측정 유닛(112)은 제3 센싱 라인(SL3)을 통해 전류계 및/또는 센스 저항과 연결되어, 메인 경로를 흐르는 전류를 측정할 수 있다. 전류 측정 유닛(112)은 제3 센싱 라인(SL3)을 이용하여 측정한 전류에 기반하여, 배터리 셀(10)의 전류를 측정할 수 있다.
측정부(110)는 측정된 전류 정보 및 전압 정보를 출력하도록 구성될 수 있다.
구체적으로, 측정부(110)는 측정한 전류 정보 및 전압 정보를 출력 가능한 디지털 신호로 변환할 수 있다. 그리고, 측정부(110)는 변환한 디지털 신호를 출력함으로써, 측정한 전류 정보 및 전압 정보를 출력할 수 있다.
제어부(120)는 상기 측정부(110)로부터 상기 전류 정보 및 전압 정보를 수신하도록 구성될 수 있다.
도 3의 실시예를 참조하면, 제어부(120)는 측정부(110)와 연결될 수 있다. 예컨대, 제어부(120)는 측정부(110)와 유선 라인을 통해 전기적으로 연결될 수 있다. 다른 예로, 제어부(120)는 측정부(110)와 무선 통신을 통해 연결될 수도 있다.
제어부(120)는 측정부(110)에서 출력한 디지털 신호를 수신하고, 수신한 디지털 신호를 판독하여 측정부(110)에 의해 측정된 전류 정보 및 전압 정보를 획득할 수 있다.
제어부(120)는 상기 배터리 셀(10)이 충전 또는 방전되는 충방전 시간, 및 상기 충전 또는 방전이 중단된 충방전 중단 시간을 산출하도록 구성될 수 있다.
예컨대, 제어부(120)는 획득한 전류 정보에 기반하여, 배터리 셀(10)의 충전 또는 방전 여부를 판단할 수 있다.
만약, 제어부(120)가 획득한 전류 정보가 배터리 셀(10)이 충전 또는 방전되는 경우의 전류 정보라면, 제어부(120)는 충전 또는 방전이 지속되는 시간을 산출할 수 있다.
반대로, 제어부(120)가 획득한 전류 정보가 배터리 셀(10)이 충전 및 방전되지 않는 경우의 전류 정보라면, 제어부(120)는 배터리 셀(10)의 충방전 중단 시간을 산출할 수 있다. 즉, 제어부(120)는 측정부(110)로부터 수신한 전류 정보에 기반하여 배터리 셀(10)의 유휴 시간을 산출할 수 있다.
다른 예로, 도 3의 실시예에서, 배터리 팩(1)의 양극 단자(P+) 및 음극 단자(P-)에 부하가 연결된 경우, 제어부(120)는 배터리 팩(1)과 부하가 통전되었는지 여부를 판단하여 상기 충방전 시간 및 충방전 중단 시간을 산출할 수도 있다.
제어부(120)는 상기 충방전 시간 동안 상기 전류 정보에 따른 상기 배터리 셀(10)의 제1 충전 상태를 추정하도록 구성될 수 있다.
구체적으로, 제어부(120)는 배터리 셀(10)이 충전 또는 방전되는 경우, 충전 전류량 또는 방전 전류량을 적산하여 제1 충전 상태를 추정하도록 구성될 수 있다. 여기서, 제어부(120)는 일반적으로 사용되는 전류적산법을 이용하여, 배터리 셀(10)의 제1 충전 상태를 추정할 수 있다.
또한, 제어부(120)는 상기 충방전 중단 시간과 미리 설정된 기준 시간을 비교한 결과에 기반하여 상기 수신한 전압 정보에 따른 상기 배터리 셀(10)의 제2 충전 상태를 추정할지 여부를 결정하도록 구성될 수 있다.
여기서, 미리 설정된 기준 시간이란, 소정의 크기로 설정된 시간일 수 있다. 즉, 기준 시간의 크기는 미리 설정되어 있을 수 있다. 예컨대, 기준 시간은 300초 내지 500초 중에서 설정될 수 있다. 바람직하게, 기준 시간은 300초로 설정될 수 있다.
예컨대, 기준 시간은 제어부(120)에 구비된 내부 메모리에 미리 설정되어 저장될 수 있다.
다른 예로, 도 1 내지 도 3을 참조하면, 충전 상태 추정 장치(100)는 기준 시간을 저장하기 위한 저장부(130)를 더 포함할 수 있다. 여기서, 저장부(130)는 제어부(120)가 배터리 셀(10)의 충전 상태를 추정하는데 필요한 프로그램 및 데이터 등을 저장할 수 있다. 즉, 저장부(130)는 충전 상태 추정 장치(100)의 각 구성요소가 동작 및 기능을 수행하는데 필요한 데이터나 프로그램 또는 동작 및 기능이 수행되는 과정에서 생성되는 데이터 등을 저장할 수 있다. 저장부(130)는 데이터를 기록, 소거, 갱신 및 독출할 수 있다고 알려진 공지의 정보 저장 수단이라면 그 종류에 특별한 제한이 없다. 일 예시로서, 정보 저장 수단에는 RAM, 플래쉬 메모리, ROM, EEPROM, 레지스터 등이 포함될 수 있다. 또한, 저장부(130)는 제어부(120)에 의해 실행 가능한 프로세스들이 정의된 프로그램 코드들을 저장할 수 있다.
먼저, 제어부(120)는 충방전 중단 시간의 크기와 기준 시간의 크기를 비교할 수 있다. 즉, 제어부(120)는 배터리 셀(10)의 충전 또는 방전이 중단된 시각부터 배터리 셀(10)의 충전 또는 방전이 재시작된 시각까지의 충방전 중단 시간을 산출할 수 있다. 그리고, 제어부(120)는 산출한 충방전 중단 시간과 기준 시간 간의 크기 비교한 결과에 기반하여, 배터리 셀(10)의 제2 충전 상태를 추정할지 여부를 결정할 수 있다.
만약, 제2 충전 상태의 추정이 필요한 것으로 판단된 경우, 제어부(120)는 충방전 중단 시간 동안 획득한 배터리 셀(10)의 전압 정보에 기반하여, 배터리 셀(10)의 제2 충전 상태를 추정할 수 있다.
제2 충전 상태 추정을 위해, 제어부(120)는 상기 충방전 중단 시간 동안 획득한 배터리 셀(10)의 전압 정보를 종합하여, 배터리 셀(10)의 개방 전압을 추정할 수 있다. 그리고, 제어부(120)는 미리 저장된 개방 전압-충전 상태 룩업 테이블을 참조하여, 추정한 개방 전압에 대응되는 배터리 셀(10)의 제2 충전 상태를 추정할 수 있다. 여기서, 개방 전압-충전 상태 룩업 테이블은 서로 대응되는 개방 전압과 충전 상태가 맵핑되어 저장된 룩업 테이블일 수 있다. 그리고, 상기 개방 전압-충전 상태 룩업 테이블은 제어부(120)에 구비된 내부 메모리 또는 저장부(130)에 미리 저장되어 있을 수 있다.
제어부(120)는 상기 제2 충전 상태가 추정된 경우, 상기 충방전 중단 시간에 기반하여 상기 제1 충전 상태 및 상기 제2 충전 상태를 가중 합산하여 제3 충전 상태를 추정하도록 구성될 수 있다.
구체적으로, 제1 충전 상태는 충방전 시간 동안 측정된 배터리 셀(10)의 전류에 기반하여 추정된 충전 상태이고, 제2 충전 상태는 충방전 중단 시간 동안 측정된 배터리 셀(10)의 전압에 기반하여 추정된 충전 상태일 수 있다.
제어부(120)는 제1 충전 상태 및 제2 충전 상태를 가중 합산함으로써, 충방전 중단 시간에 따른 제3 충전 상태를 추정할 수 있다.
예컨대, 충방전 중단 시간이 짧을수록 추정된 제3 추정 상태에서 상기 추정된 제1 충전 상태의 비중이 커질 수 있다. 반대로, 충방전 중단 시간이 길수록 추정된 제3 추정 상태에서 상기 추정된 제2 충전 상태의 비중이 커질 수 있다.
마지막으로, 제어부(120)는 추정된 제3 충전 상태를 상기 배터리 셀(10)의 충전 상태로 결정하도록 구성될 수 있다.
즉, 제어부(120)는 배터리 셀(10)의 최종적인 충전 상태를 결정할 때, 충방전 시간 동안의 전류 정보 및 충방전 시간 동안의 전압 정보를 종합적으로 고려하여, 배터리 셀(10)의 충전 상태를 추정할 수 있다.
따라서, 본 발명의 일 실시예에 따른 충전 상태 추정 장치(100)는 배터리 셀(10)의 충전 상태를 보다 정확하고, 신뢰도 높게 추정할 수 있는 장점이 있다. 또한, 충전 상태 추정 장치(100)는 충방전 중단 시간 동안 획득된 전압 정보에 기반하여 제2 충전 상태를 추정함으로써, 충분한 휴지기가 확보되기 어려운 환경에서도 배터리 셀(10)의 최종적인 충전 상태를 빠르게 추정할 수 있는 장점이 있다.
한편, 충전 상태 추정 장치(100)에 구비된 제어부(120)는 본 발명에서 수행되는 다양한 제어 로직들을 실행하기 위해 당업계에 알려진 프로세서, ASIC(application-specific integrated circuit), 다른 칩셋, 논리 회로, 레지스터, 통신 모뎀, 데이터 처리 장치 등을 선택적으로 포함할 수 있다. 또한, 상기 제어 로직이 소프트웨어로 구현될 때, 상기 제어부(120)는 프로그램 모듈의 집합으로 구현될 수 있다. 이때, 프로그램 모듈은 메모리에 저장되고, 제어부(120)에 의해 실행될 수 있다. 상기 메모리는 제어부(120) 내부 또는 외부에 있을 수 있고, 잘 알려진 다양한 수단으로 제어부(120)와 연결될 수 있다.
이하에서는 도 4 및 도 5를 참조하여, 충방전 중단 시간의 크기에 따라, 제어부(120)가 제3 충전 상태를 추정하는 실시예에 대해서 설명한다. 설명의 편의를 위해, 도 4 및 도 5에서는 배터리 셀(10)이 방전되는 상황에 대한 예시를 설명하고, 도 4 및 도 5에 도시된 시간 동안 배터리 셀(10)은 충전되지 않는다고 가정한다.
먼저, 도 4는 충방전 중단 시간의 크기가 기준 시간의 크기보다 큰 제1 실시예를 개략적으로 도시한 도면이다. 구체적으로, 도 4는 제1 실시예에 대한 예시적인 타임 테이블을 도시한 도면이다.
도 4를 참조하면, T0 시각에서 배터리 셀(10)의 방전이 시작되고, T1 시각에서 배터리 셀(10)의 방전이 중단될 수 있다. 그리고, T2 시각에서 배터리 셀(10)의 방전이 재시작될 수 있다. 그리고, tref 시각은 배터리 셀(10)의 방전이 중단된 T1 시각에서 기준 시간만큼 경과한 시각일 수 있다. 즉, T0 시각 내지 T1 시각의 간격이 충방전 시간이고, T1 내지 T2 시각의 간격이 충방전 중단 시간일 수 있다.
예컨대, 배터리 셀(10)이 구비된 자동차가 T0 시각에서 시동이 켜지고, T1 시각에서 시동이 꺼질 수 있다. 이후, T2 시각에서 자동차의 시동이 다시 켜질 수 있다.
도 4의 실시예에서, 측정부(110)는 배터리 셀(10)의 방전이 시작되는 T0 시각에서부터 방전이 중단되는 T1 시각까지 배터리 셀(10)의 전류를 측정할 수 있다. 그리고, 제어부(120)는 측정부(110)에 의해 측정된 배터리 셀(10)의 전류 정보에 기반하여 제1 충전 상태를 추정할 수 있다. 이때, 제어부(120)는 T0 시각 내지 T1 시각 동안 측정된 전류 정보를 적산하여 제1 충전 상태를 추정할 수 있다.
물론, 측정부(110)는 배터리 셀(10)의 방전이 중단된 T1 시각에서부터 T2 시각까지 배터리 셀(10)의 전류를 측정할 수 있다. 하지만, 방전이 중단된 경우에는 메인 경로를 흐르는 전류가 없기 때문에, T0 시각에서부터 T1 시각까지 측정된 전류 정보에 기인하여 추정된 제1 충전 상태와 T0 시각에서부터 T2 시각까지 측정된 전류 정보에 기인하여 추정된 제1 충전 상태는 유의미한 차이를 보이지 않는다. 따라서, 이하에서는, 설명의 편의를 위해 배터리 셀(10)이 방전되는 동안에만 측정부(110)가 배터리 셀(10)의 전류를 측정하는 것으로 설명한다.
그리고, 상기 제어부(120)는, 상기 충방전 중단 시간이 상기 기준 시간 이상인 경우, 상기 충방전 중단 시간 동안 수신한 복수의 전압 정보에 기반하여 상기 제2 충전 상태를 추정하도록 구성될 수 있다.
먼저, 제어부(120)는 T1 시각과 T2 시각 간의 차이를 계산하여, 상기 충방전 중단 시간을 산출할 수 있다. 그리고, 제어부(120)는 충방전 중단 시간의 크기가 기준 시간의 크기보다 크면, 제2 충전 상태를 추정할 수 있다.
예컨대, 도 4의 실시예에서 T1 시각과 T2 시각 간의 차이가 기준 시간 보다 크기 때문에, 제어부(120)는 측정부(110)에 의해 T1 시각에서부터 T2 시각까지 측정된 복수의 전압 정보를 종합하여 제2 충전 상태를 추정할 수 있다. 즉, T2 시각이 tref 시각보다 이후일 경우, 제어부(120)는 제2 충전 상태를 추정할 수 있다.
그리고, 제어부(120)는 추정한 제1 충전 상태 및 제2 충전 상태에 기반하여, 제3 충전 상태를 추정할 수 있다. 따라서, 배터리 셀(10)의 충전 상태는 제1 충전 상태와 제2 충전 상태가 모두 고려되어 추정되기 때문에, 추정된 배터리 셀(10)의 충전 상태에 대한 정확도 및 신뢰도가 향상될 수 있다.
먼저, 도 5는 충방전 중단 시간의 크기가 기준 시간의 크기보다 작은 제2 실시예를 개략적으로 도시한 도면이다. 구체적으로, 도 5는 제2 실시예에 대한 예시적인 타임 테이블을 도시한 도면이다.
도 4에 도시된 것과 마찬가지로, 도 5의 실시예에서 T0 시각에서 배터리 셀(10)의 방전이 시작되고, T1 시각에서 배터리 셀(10)의 방전이 중단될 수 있다. 그리고, T2 시각에서 배터리 셀(10)의 방전이 재시작될 수 있다. 그리고, tref 시각은 배터리 셀(10)의 방전이 중단된 T1 시각에서 기준 시간만큼 경과한 시각일 수 있다. 즉, T0 시각 내지 T1 시각의 간격이 충방전 시간이고, T1 내지 T2 시각의 간격이 충방전 중단 시간일 수 있다.
제어부(120)는 T0 시각 내지 T1 시각 동안 측정부(110)에 의해 측정된 전류 정보에 기반하여, 배터리 셀(10)의 제1 충전 상태를 추정할 수 있다. 이후, 제어부(120)는 T1 시각과 T2 시각 간의 차이를 계산하여, 충방전 중단 시간을 산출할 수 있다.
바람직하게, 상기 제어부(120)는, 상기 충방전 중단 시간이 상기 기준 시간 미만인 경우, 상기 충방전 중단 시간 동안 수신한 복수의 전압 정보 중에 전압 변곡점이 있는지를 확인하고, 상기 전압 변곡점이 확인된 경우에만 상기 제2 충전 상태를 추정하도록 구성될 수 있다.
예컨대, 도 5의 실시예에서, 충방전 중단 시간(T1 내지 T2 사이의 시간)의 크기가 기준 시간의 크기보다 작기 때문에, 제어부(120)는 충방전 중단 시간(T1 내지 T2 사이의 시간) 동안 전압 변곡점이 있는지를 확인할 수 있다.
여기서, 변곡점이란, 곡선에서 오목한 모양이 바뀌는 지점으로서, 일반적으로 평면 곡선에서 곡률의 음양이 바뀌는 지점을 의미할 수 있다. 즉, 제어부(120)는 충방전 중단 시간(T1 내지 T2 사이의 시간) 동안 획득한 전압 정보를 분석하여, 전압 증감 기울기가 양에서 음 또는 음에서 양으로 변하는 변곡점이 있는지를 판단할 수 있다.
만약, 충방전 중단 시간(T1 내지 T2 사이의 시간) 동안 획득된 전압 정보에서 전압 변곡점이 존재하는 것으로 확인되면, 제어부(120)는 충방전 중단 시간(T1 내지 T2 사이의 시간) 동안 획득한 전압 정보에 기반하여 제2 충전 상태를 추정할 수 있다. 그리고, 제어부(120)는 추정한 제1 충전 상태와 제2 충전 상태에 기반하여, 제3 충전 상태를 추정할 수 있다. 즉, 이러한 경우에는 배터리 셀(10)의 충전 상태가 추정될 때, 배터리 셀(10)의 전류 및 전압이 모두 고려될 수 있다.
반대로, 충방전 중단 시간(T1 내지 T2 사이의 시간) 동안 획득된 전압 정보에서 전압 변곡점이 존재하지 않는 것으로 확인되면, 제어부(120)는 추정한 제1 충전 상태에 기반하여 제3 충전 상태를 추정할 수 있다. 즉, 이 경우, 제어부(120)는 획득한 전압 정보에 기반하여 제2 충전 상태를 추정하지 않고, 추정한 제1 충전 상태를 제3 충전 상태로 추정할 수 있다. 즉, 이러한 경우에는 배터리 셀(10)의 충전 상태가 추정될 때, 배터리 셀(10)의 전류만이 고려될 수 있다.
제어부(120)가 제3 충전 상태를 추정할 때 고려하는 인자를 정리하면, 아래의 표 1과 같다.
충방전 중단 시간과
기준 시간의 크기
전압 변곡점 존재 여부 제3 충전 상태 추정의
고려 인자
충방전 중단 시간
≥ 기준 시간
고려하지 않음 제1 충전 상태 및
제2 충전 상태
충방전 중단 시간
< 기준 시간
전압 변곡점 존재 제1 충전 상태 및
제2 충전 상태
전압 변곡점 존재하지 않음 제1 충전 상태
표 1은 제3 충전 상태를 추정할 때 고려되는 인자를 정리한 표이다. 구체적으로, 표 1은 충방전 중단 시간과 기준 시간 간의 크기와, 충방전 중단 시간 동안 획득된 전압 정보에 전압 변곡점이 존재하는지 여부에 따라 제3 충전 상태 추정에 필요한 인자를 나타낸 표이다.
예컨대, 표 1 및 도 4를 참조하면, 충방전 중단 시간(T1 내지 T2 사이의 시간)의 크기가 기준 시간(T1 내지 tref 사이의 시간)의 크기 이상인 경우, 제어부(120)는 전압 변곡점의 존재 여부에 관계없이 제1 충전 상태와 제2 충전 상태를 모두 고려하여 제3 충전 상태를 추정할 수 있다.
다른 예로, 표 1 및 도 5를 참조하면, 충방전 중단 시간(T1 내지 T2 사이의 시간)의 크기가 기준 시간(T1 내지 tref 사이의 시간)의 크기 미만인 경우, 제어부(120)는 충방전 중단 시간(T1 내지 T2 사이의 시간) 동안 측정된 전압 정보에 전압 변곡점이 존재하는지 여부에 따라 제3 충전 상태 추정에 필요한 인자를 다르게 구성할 수 있다.
충방전 중단 시간(T1 내지 T2 사이의 시간) 동안 측정된 전압 정보에 전압 변곡점이 없는 경우, 제어부(120)는 제1 충전 상태를 제3 충전 상태로 추정할 수 있다. 반대로, 충방전 중단 시간(T1 내지 T2 사이의 시간) 동안 측정된 전압 정보에 전압 변곡점이 있는 경우, 제어부(120)는 제1 충전 상태 및 제2 충전 상태를 모두 고려하여 제3 충전 상태를 추정할 수 있다.
정리하면, 본 발명의 일 실시예에 따른 충전 상태 추정 장치(100)는 충방전 중단 시간의 크기 및 전압 변곡점 존부를 고려하여, 각각의 경우에 최적화되도록 배터리 셀(10)의 충전 상태를 추정하는 장점이 있다.
따라서, 본 발명에 따르면, 배터리 셀(10)이 테스트 장치뿐만 아니라 전기 자동차와 같은 구동 장치에 구비된 경우, 즉, 배터리 셀(10)의 충전 상태(특히, 제2 충전 상태) 추정을 위한 충분한 휴지기가 보장되지 않는 상황에서도, 배터리 셀(10)의 충전 상태가 보다 정확하게 추정될 수 있다.
바람직하게, 기준 시간은 배터리 셀(10)의 전압 분극 반전 효과를 고려하여 미리 설정된 시간일 수 있다.
즉, 상기 제어부(120)는, 상기 배터리 셀(10)의 숏-텀 분극(Short-term polarization) 성분과 롱-텀 분극(Long-term polarization) 성분의 분극 방향이 달라지는 시간이 포함되도록 상기 기준 시간을 미리 설정하도록 구성될 수 있다.
여기서, 숏-텀 분극 성분 및 롱-텀 분극 성분이란, 배터리 셀(10)의 전압 분극 성분을 일컫는 일반적인 용어일 수 있다. 구체적으로, 숏-텀 분극 성분은 짧은 시간 동안 큰 전류에 대해 움직이는 분극 성분으로, 짧은 시간 동안 큰 전류가 인가되었을 때 급격하게 변화하는 배터리 셀(10)의 특성에 대해 설계된 성분일 수 있다. 또한, 롱-텀 분극 성분은 긴 시간 동안 전류의 영향을 받는 분극 성분으로, 배터리 셀(10)이 활성화 상태에서 안정화 상태로 변화하는 특성에 대해 설계된 성분일 수 있다.
즉, 제어부(120)는 배터리 셀(10)의 충전 또는 방전이 종료된 시각에서부터 숏-텀 분극 성분의 부호와 롱-텀 분극 성분의 부호가 서로 달라지는 시각까지의 시간 간격을 포함하도록 상기 기준 시간을 설정할 수 있다. 여기서, 숏-텀 분극 성분의 부호와 롱-텀 분극 성분의 부호는, 급격한 충전 또는 방전이 일어난 후, 배터리 셀(10)이 휴지기에 들어서면 서로 달라질 수 있다. 즉, 급격한 충전 또는 방전이 일어난 후, 배터리 셀(10)에는 숏-텀 분극 성분의 부호와 롱-텀 분극 성분의 부호가 달라지는 전압 분극 반전 효과(Voltage polarization reverse effect)가 발생될 수 있다.
예컨대, 배터리 셀(10)의 숏-텀 분극 성분의 부호와 롱-텀 분극 성분의 부호가 서로 달라지는 시각은, 배터리 셀(10)의 충전 또는 방전이 종료된 시각에서 약 300초가 경과한 시각일 수 있다. 따라서, 제어부(120)는 기준 시간을 300초 내지 500초로 미리 설정하여, 기준 시간 이내에 배터리 셀(10)의 숏-텀 분극 성분과 롱-텀 분극 성분의 분극 방향이 달라지는 시각이 포함될 수 있게 할 수 있다. 바람직하게, 기준 시간은 300초로 설정될 수 있다.
이하에서는, 도 6 내지 도 9를 참조하여, 배터리 셀(10)의 숏-텀 분극 성분과 롱-텀 분극 성분의 분극 방향이 동일한 경우와 상이한 경우에 대한 배터리 셀(10)의 전압 변동을 설명한다.
도 6은 방전이 종료된 이후 배터리 셀(10)의 제1 전압 개형(C1)을 도시한 도면이다. 도 7은 충전이 종료된 이후 배터리 셀(10)의 제2 전압 개형(C2)을 도시한 도면이다. 도 8은 방전이 종료된 이후 배터리 셀(10)의 제3 전압 개형(C3)을 도시한 도면이다. 도 9는 충전이 종료된 이후 배터리 셀(10)의 제4 전압 개형(C4)을 도시한 도면이다.
구체적으로, 도 6 및 도 7은 전압 분극 반전 효과가 발생되지 않은 배터리 셀(10)의 전압 개형이고, 도 8 및 도 9는 전압 분극 반전 효과가 발생된 배터리 셀(10)의 전압 개형이다.
먼저, 도 6을 참조하면, 방전이 종료된 배터리 셀(10)의 개방 전압(Open circuit voltage, OCV)은 충분한 휴지기를 지난 후, OCV1로 측정될 수 있다. 반면, 도 8을 참조하면, 전압 분극 반전 효과가 발생된 배터리 셀(10)의 개방 전압은 충분한 휴지기를 지난 후, OCV3으로 측정될 수 있다.
도 6에 도시된 제1 전압 개형(C1)과 도 8에 도시된 제3 전압 개형(C3)을 비교하면, 제3 전압 개형(C3)에서는 Tm 시각에 전압 변곡점이 나타날 수 있다. 즉, 제3 전압 개형(C3)에서는 Tm 시각에 숏-텀 분극 성분의 부호와 롱-텀 분극 성분의 부호가 서로 달라질 수 있다. 따라서, Tm 시각 이후, 제1 전압 개형(C1)의 기울기는 양의 기울기를 유지하지만, 제3 전압 개형(C3)의 기울기는 양의 기울기에서 음의 기울기로 변경될 수 있다.
또한, 도 7을 참조하면, 충전이 종료된 배터리 셀(10)의 개방 전압은 충분한 휴지기를 지난 후, OCV2로 측정될 수 있다. 반면, 도 9를 참조하면, 전압 분극 반전 효과가 발생된 배터리 셀(10)의 개방 전압은 충분한 휴지기를 지난 후, OCV4로 측정될 수 있다.
도 7에 도시된 제2 전압 개형(C2)과 도 9에 도시된 제4 전압 개형(C4)을 비교하면, 제4 전압 개형(C4)에서는 Tm 시각에 전압 변곡점이 나타날 수 있다. 즉, 제4 전압 개형(C4)에서는 Tm 시각에 숏-텀 분극 성분의 부호와 롱-텀 분극 성분의 부호가 서로 달라질 수 있다. 따라서, Tm 시각 이후, 제2 전압 개형(C2)의 기울기는 음의 기울기를 유지하지만, 제4 전압 개형(C4)의 기울기는 음의 기울기에서 양의 기울기로 변경될 수 있다.
또한, 개방 전압과 충전 상태는 1 대 1 관계로 대응되기 때문에, OCV1에 기반하여 추정된 제2 충전 상태와 OCV3에 기반하여 추정된 충전 상태는 매우 상이할 수 있다. 또한, OCV2에 기반하여 추정된 제2 충전 상태와 OCV4에 기반하여 추정된 충전 상태도 매우 상이할 수 있다. 즉, 전압 변곡점이 발생되었는지 여부에 따라, 추정되는 개방 전압 및 충전 상태가 달라질 수 있다.
도 6 내지 도 9를 참조하면, 전압 분극 반전 효과가 발생된 배터리 셀(10)에서는 충전 또는 방전이 종료된 후 전압 변곡점이 발생될 수 있다. 즉, 본 발명의 일 실시예에 따른 충전 상태 추정 장치(100)는 전압 변곡점이 발생될 수 있는 시간 이상의 시간으로 기준 시간을 설정함으로써, 전압 분극 반전 효과를 고려하여 배터리 셀(10)의 개방 전압을 정확하게 추정할 수 있다.
또한, 충전 상태 추정 장치(100)는 전압 분극 반전 효과를 고려하여 배터리 셀(10)의 제2 충전 상태를 보다 정확하게 추정할 수 있다.
또한, 충전 상태 추정 장치(100)는 보다 정확하게 추정한 제2 충전 상태에 기반하여, 배터리 셀(10)의 최종적인 충전 상태를 정확하게 추정할 수 있다.
상기 제어부(120)는, 함수 최적화 기법을 이용하여 상기 충방전 중단 시간 동안 수신한 복수의 전압 정보로부터 상기 배터리 셀(10)의 개방 전압을 추정하도록 구성될 수 있다.
여기서, 함수 최적화 기법이란, 주어진 데이터를 토대로 곡선의 방정식을 해석하는 곡선 맞춤형 해석 기법일 수 있다. 즉, 본 발명에서 사용되는 함수 최적화 기법은, 주어진 데이터를 선형 해석하는 것뿐만 아니라, 주어진 데이터에 의한 곡선까지 추정하여 최종적인 결과를 도출해낼 수 있는 기법이다. 예컨대, 함수 최적화 기법에는 레벤버그 마쿼트(Levenberg-Marguardt) 알고리즘 또는 확장 칼만 필터(Extended Kalman Filter)가 적용될 수 있다.
구체적인 예를 들면, 함수 최적화 기법으로 레벤버그 마쿼트가 적용되는 경우를 설명한다. 제어부(120)는 2개의 RC 병렬 회로를 구비한 R-C 등가 회로 모델에 기반하여, 레벤버그 마쿼트 알고리즘으로부터 제1 시정수, 제2 시정수, 제1 전압값, 제2 전압값 및 개방 전압을 획득할 수 있다. 여기서 획득된 개방 전압은 배터리 셀(10)의 충전 상태로 추정될 수 있다. 즉, 제어부(120)는 충방전 중단 시간 동안 측정된 복수의 전압 정보를 상기 함수 최적화 기법의 입력 데이터로 사용하여, 배터리 셀(10)의 개방 전압을 추정할 수 있다. 여기서, 2개의 RC 병렬 회로를 구비한 R-C 등가 회로 모델 및 레벤버그 마쿼트 알고리즘은 공지된 모델 및 알고리즘이므로, 이들에 대한 자세한 설명은 생략한다.
도 8 및 도 9를 참조하면, 배터리 셀(10)의 숏-텀 분극 성분의 부호와 롱-텀 성분의 부호가 달라진 경우, 제어부(120)에서 획득한 복수의 전압 정보에는 전압 변곡점이 포함될 수 있다. 따라서, 제어부(120)는 함수 최적화 기법을 이용하여, 배터리 셀(10)의 개방 전압을 OCV3 또는 OCV4로 추정할 수 있다.
만약, 전압 변곡점을 고려하지 않고 기준 시간이 설정되었다고 가정한다. 즉, 도 8 및 도 9의 실시예에서, Tm 시각 이전까지의 전압 정보만이 획득되었다고 가정한다. 이 경우, 함수 최적화 기법을 이용함으로써, 적은 전압 정보를 토대로 배터리 셀(10)의 개방 전압이 추정될 수 있다. 다만, 곡선 맞춤형 기법인 함수 최적화 기법이 이용되었다고 하더라도, 전압 변곡점에 대한 전압 정보가 없기 때문에, 배터리 셀(10)의 전압 개형은 제1 전압 개형(C1) 또는 제2 전압 개형(C2)으로 추정될 수 밖에 없다. 따라서, 배터리 셀(10)의 개방 전압은 OCV1 또는 OCV2로 잘못 추정될 수 밖에 없다. 결국, 개방 전압에 대한 잘못된 추정에 의해, 배터리 셀(10)의 제2 충전 상태도 잘못 추정될 수 밖에 없다.
반면, 본 발명의 일 실시예에 따른 충전 상태 추정 장치(100)는 배터리 셀(10)에 대한 충분한 전압 정보를 확보하기 위하여, 전압 분극 반전 효과가 발생될 가능성을 고려해서 기준 시간을 설정하는 장점이 있다. 따라서, 배터리 셀(10)의 개방 전압 및 충전 상태가 보다 정확하게 추정될 수 있는 장점이 있다.
또한, 충방전 중단 시간은 배터리 셀(10)의 개방 전압을 측정하기 위한 유휴 시간보다 현저히 짧은 시간일 수 있다. 예컨대, 기준 시간은 300초로 설정되고, 배터리 셀(10)의 개방 전압을 측정하기 위한 유휴 시간은 3시간일 수 있다. 따라서, 본 발명의 일 실시예에 따른 충전 상태 추정 장치(100)는 충분한 유휴 시간이 확보되기 어려운 환경에서도, 배터리 셀(10)의 전압 정보에 기반하여 배터리 셀(10)의 개방 전압을 정확하게 추정할 수 있는 장점이 있다. 또한, 충전 상태 추정 장치(100)는 추정한 개방 전압과 배터리 셀(10)의 전류 정보에 기반하여, 빠른 시간 내에 배터리 셀(10)의 충전 상태를 정확하게 추정할 수 있는 장점이 있다.
또한, 표 1, 도 5 및 도 8을 참조하면, 제어부(120)는 배터리 셀(10)의 방전이 종료된 직후부터 기준 시간이 경과하기 전에 배터리 셀(10)의 방전이 다시 진행된 경우, 획득된 전압 정보에 전압 변곡점이 포함되었는지 여부를 먼저 확인할 수 있다.
예컨대, 도 5 및 도 8의 실시예에서, Tm 시각은 Tref 시각 보다 이른 시각이라고 가정한다. 그리고, T2 시각은 Tm 시각 이후 Tref 시각 이전이라고 가정한다. 제어부(120)는 T1 내지 T2 사이의 시간 동안 획득한 복수의 전압 정보에 전압 변곡점에 대한 데이터가 포함되면, 함수 맞춤화 기법을 이용하여 획득한 복수의 전압 정보를 토대로 배터리 셀(10)의 개방 전압을 추정할 수 있다. 즉, 획득된 전압 정보에 전압 변곡점 정보가 포함되어 있으므로, 제어부(120)는 배터리 셀(10)의 개방 전압을 OCV1이 아니라 OCV3로 추정할 수 있다. 이후, 제어부(120)는 추정한 OCV3에 기반하여 제2 충전 상태를 추정할 수 있다.
즉, 본 발명의 일 실시예에 따른 충전 상태 추정 장치(100)는, 충방전 중단 시간 동안 획득한 전압 정보에 전압 변곡점이 포함된 경우에 한해서는, 비록 충방전 중단 시간이 기준 시간 보다 짧더라도 획득한 전압 정보에 기반하여 제2 충전 상태를 추정할 수 있다. 따라서, 제1 충전 상태 및 제2 충전 상태에 기반하여, 배터리 셀(10)의 최종 충전 상태가 보다 정확하게 추정될 수 있다.
상기 제어부(120)는, 상기 충방전 중단 시간에 따라 제1 가중치 및 제2 가중치를 설정하도록 구성될 수 있다.
즉, 제어부(120)는 충방전 중단 시간의 크기에 기반하여 제1 가중치 및 제2 가중치를 각각 설정하도록 구성될 수 있다. 바람직하게, 제1 가중치와 제2 가중치의 합은 1일 수 있다.
그리고, 제어부(120)는 설정된 제1 가중치 및 제2 가중치를 상기 제1 충전 상태 및 상기 제2 충전 상태에 각각 부가하도록 구성될 수 있다.
구체적으로, 제어부(120)는 제1 가중치를 제1 충전 상태에 부가하고, 제2 가중치를 제2 충전 상태에 부가할 수 있다.
예컨대, 제1 가중치가 0.3이고, 제2 가중치가 0.7이라고 가정한다. 또한, 제1 충전 상태는 80%로 추정되었고, 제2 충전 상태는 82%로 추정되었다고 가정한다. 제어부(120)는 제1 가중치인 0.3과 제1 충전 상태인 80%를 곱하여 24%를 산출할 수 있다. 그리고, 제어부(120)는 제2 가중치인 0.7과 제2 충전 상태인 82%를 곱하여 57.4%를 산출할 수 있다.
이후, 제어부(120)는 가중치가 부가된 제1 충전 상태 및 제2 충전 상태를 합산하여 상기 제3 충전 상태를 추정하도록 구성될 수 있다.
앞선 실시예를 참조하면, 제1 가중치가 부가된 제1 충전 상태는 24%이고, 제2 가중치가 부가된 제2 충전 상태는 57.4%일 수 있다. 제어부(120)는 산출된 24%와 57.4%를 합하여, 제3 충전 상태를 81.4%로 추정할 수 있다.
그리고, 제어부(120)는, 추정된 제3 충전 상태를 배터리 셀(10)의 최종 충전 상태로 추정할 수 있다.
즉, 본 발명의 일 실시예에 따른 충전 상태 추정 장치(100)는 배터리 셀(10)의 충방전 시간 및 충방전 중단 시간의 비중을 고려하여, 배터리 셀(10)의 충전 상태를 보다 정확하게 추정할 수 있는 장점이 있다.
바람직하게, 제어부(120)는 상기 충전 중단 시간과 상기 제1 가중치는 서로 반비례하도록 설정하고, 상기 충전 중단 시간과 상기 제2 가중치는 서로 비례하도록 설정하도록 구성될 수 있다.
구체적으로, 제어부(120)는 아래의 수학식 1을 이용하여 제1 가중치를 설정할 수 있다.
[수학식 1]
α=e -(Trest÷5)
수학식 1에서, Trest는 충방전 중단 시간이고, e는 자연상수일 수 있다.
수학식 1을 참조하면, 제1 가중치는 충방전 중단 시간에 반비례하게 설정될 수 있다. 즉, 제1 가중치는 제1 충전 상태에 부가되는 것이므로, 충방전 중단 시간에 반비례하게 설정될 수 있다.
이후, 제어부(120)는 아래의 수학식 2를 이용하여 제2 가중치를 설정할 수 있다.
[수학식 2]
β=1-α
수학식 2에서 α는 제1 가중치이고, β는 제2 가중치이다. 즉, 제1 가중치와 제2 가중치의 합은 1일 수 있다.
수학식 2를 참조하면, 제2 가중치는 충방전 중단 시간에 비례하게 설정될 수 있다. 즉, 제어부(120)는 충방전 중단 시간이 길어질수록 제2 가중치를 크게 설정함으로써, 제3 충전 상태에서 제2 충전 상태가 차지하는 비중을 증가시킬 수 있다.
즉, 본 발명의 일 실시예에 따른 충전 상태 추정 장치(100)는 충방전 중단 시간에 따라 가중치를 차등 부가함으로써, 배터리 셀(10)의 충전 상태를 보다 적응적으로 추정할 수 있는 장점이 있다.
본 발명에 따른 충전 상태 추정 장치(100)는, BMS(Battery Management System)에 적용될 수 있다. 즉, 본 발명에 따른 BMS는, 상술한 충전 상태 추정 장치(100)를 포함할 수 있다. 이러한 구성에 있어서, 충전 상태 추정 장치(100)의 각 구성요소 중 적어도 일부는, 종래 BMS에 포함된 구성의 기능을 보완하거나 추가함으로써 구현될 수 있다. 예를 들어, 충전 상태 추정 장치(100)의 측정부(110), 제어부(120) 및 저장부(130)는 BMS의 구성요소로서 구현될 수 있다.
또한, 본 발명의 일 실시예에 따른 충전 상태 추정 장치(100)는, 배터리 팩(1)에 구비될 수 있다. 예컨대, 도 2 및 도 3을 참조하면, 본 발명에 따른 배터리 팩(1)은, 상술한 충전 상태 추정 장치(100) 및 하나 이상의 배터리 셀(10)을 포함할 수 있다. 또한, 배터리 팩(1)은, 전장품(릴레이, 퓨즈 등) 및 케이스 등을 더 포함할 수 있다.
또한, 본 발명의 일 실시예에 따른 충전 상태 추정 장치(100)는 자동차에 포함될 수 있다. 바람직하게, 본 발명의 일 실시예에 따른 충전 상태 추정 장치(100)가 구비된 배터리 팩(1)이 전기 자동차에 포함될 수 있다. 이 경우, 배터리 셀(10)이 충전되는 시간 또는 전기 자동차가 운행되는 시간이 상기 충방전 시간에 대응될 수 있다. 반대로, 전기 자동차의 시동이 꺼진 시간이 상기 충방전 중단 시간에 대응될 수 있다.
예컨대, 앞선 실시예와 같이, 기준 시간이 300초로 설정되고, 배터리 셀(10)의 개방 전압을 측정하기 위한 바람직한 유휴 시간은 3시간이라고 가정한다. 이 경우, 제어부(120)는 300초 이상 충방전이 중단되면, 획득한 복수의 전압 정보를 토대로 배터리 셀(10)의 개방 전압을 정확하게 추정할 수 있다. 즉, 제어부(120)는, 전기 자동차의 시동이 꺼진 후, 바람직한 유휴 시간(3시간)까지 기다리지 않더라도, 기준 시간(300초) 동안 획득된 전압 정보를 토대로 배터리 셀(10)의 개방 전압 및 제2 충전 상태를 추정할 수 있다. 따라서, 개방 전압 측정을 위한 충분한 유휴 시간이 확보되기 어려운 전기 자동차 환경에서도, 본 발명의 일 실시예에 따른 충전 상태 추정 장치(100)는 정확하고 신속하게 충전 상태가 추정할 수 있는 장점이 있다.
도 10은 본 발명의 다른 실시예에 따른 충전 상태 추정 방법을 개략적으로 도시한 도면이다. 여기서, 충전 상태 추정 방법은 충전 상태 추정 장치(100)의 각 구성에 의해 수행될 수 있다.
도 10을 참조하면, 충전 상태 추정 방법은 전류 전압 측정 단계(S100), 시간 산출 단계(S200), 제1 충전 상태 추정 단계(S300), 제2 충전 상태 추정 단계(S400), 제3 충전 상태 추정 단계(S500) 및 배터리 셀의 충전 상태 추정 단계(S600)를 포함할 수 있다.
여기서, 제1 충전 상태는 충방전 시간 동안 측정된 배터리 셀(10)의 전류 정보에 기반해 추정된 충전 상태이고, 제2 충전 상태는 충방전 중단 시간 동안 측정된 배터리 셀(10)의 전압 정보에 기반해 추정된 충전 상태일 수 있다. 또한, 제3 충전 상태는 제1 충전 상태 및 제2 충전 상태가 가중 합산된 충전 상태이고, 배터리 셀(10)의 충전 상태는 제3 충전 상태에 기반하여 최종적으로 추정된 충전 상태일 수 있다.
전류 전압 측정 단계(S100)는 배터리 셀(10)의 전류 및 전압을 측정하여 전류 정보 및 전압 정보를 획득하는 단계로서, 측정부(110)에 의해 수행될 수 있다.
구체적으로, 측정부(110)는 전압 측정 유닛(111)을 통해서 배터리 셀(10)의 전압을 측정하고, 전류 측정 유닛(112)을 통해서 배터리 셀(10)의 전류를 측정할 수 있다.
그리고, 측정부(110)는 측정한 전류 정보 및 전압 정보를 제어부(120)로 출력하고, 제어부(120)는 전류 정보 및 전압 정보를 획득할 수 있다.
시간 산출 단계(S200)는 상기 배터리 셀(10)이 충전 또는 방전되는 충방전 시간, 및 상기 충전 또는 방전이 중단된 충방전 중단 시간을 산출하는 단계로서, 제어부(120)에 의해 수행될 수 있다.
예컨대, 제어부(120)는 측정부(110)로부터 수신한 전류 정보에 기반하여 배터리 셀(10)이 충전 또는 방전 중인지 여부를 판단할 수 있다. 그리고, 판단 결과에 기반하여 충방전 시간 및 충방전 중단 시간을 산출할 수 있다.
제1 충전 상태 추정 단계(S300)는 상기 충방전 시간 동안 상기 전류 정보에 따른 상기 배터리 셀(10)의 제1 충전 상태를 추정하는 단계로서, 제어부(120)에 의해 수행될 수 있다.
예컨대, 제어부(120)는 충방전 시간 동안 획득한 전류 정보에서 전류량을 추출하고, 추출한 전류량을 적산하여 상기 제1 충전 상태를 추정할 수 있다.
제2 충전 상태 추정 단계(S400)는 상기 충방전 중단 시간과 미리 설정된 기준 시간을 비교한 결과에 기반하여 상기 전압 정보에 따른 상기 배터리 셀(10)의 제2 충전 상태를 추정하는 단계로서, 제어부(120)에 의해 수행될 수 있다.
예컨대, 표 1을 참조하면, 충방전 중단 시간이 미리 설정된 기준 시간 이상인 경우, 제어부(120)는 충방전 중단 시간 동안 측정부(110)로부터 수신한 복수의 전압 정보에 기반하여 제2 충전 상태를 추정할 수 있다.
구체적으로, 제어부(120)는 함수 최적화 기법을 이용하여 상기 수신한 복수의 전압 정보로부터 개방 전압을 추정할 수 있다. 그리고, 제어부(120)는 저장부(130)에 저장된 개방 전압-충전 상태 룩업 테이블을 참조하여 추정한 개방 전압으로부터 제2 충전 상태를 추정할 수 있다.
제3 충전 상태 추정 단계(S500)는 상기 충방전 중단 시간에 기반하여 상기 제1 충전 상태 및 상기 제2 충전 상태를 가중 합산하여 제3 충전 상태를 추정하는 단계로서, 제어부(120)에 의해 수행될 수 있다.
제어부(120)는 상기 수학식 1 및 수학식 2를 이용하여 제1 가중치 및 제2 가중치를 설정할 수 있다. 그리고, 제어부(120)는 제1 충전 상태에 제1 가중치를 부가하고, 제2 충전 상태에 제2 가중치를 부가할 수 있다. 이후, 제어부(120)는 가중치가 부가된 제1 충전 상태 및 제2 충전 상태를 합산하여, 제3 충전 상태를 추정할 수 있다.
배터리 셀의 충전 상태 추정 단계(S600)는 추정된 제3 충전 상태를 상기 배터리 셀(10)의 충전 상태로 결정하는 단계로서, 제어부(120)에 의해 수행될 수 있다.
제어부(120)는 추정한 제3 충전 상태를 배터리 셀(10)에 대한 최종 충전 상태로 결정할 수 있다.
즉, 배터리 셀(10)의 최종 충전 상태는, 충방전 시간 동안 측정된 전류 정보 및 충방전 중단 시간 동안 측정된 전압 정보를 모두 고려하여 추정되기 때문에, 환경 적응적이고 보다 정확할 수 있다.
도 11은 본 발명의 또 다른 실시예에 따른 충전 상태 추정 방법을 개략적으로 도시한 도면이다. 도 11에 따른 충전 상태 추정 방법은 본 발명의 일 실시예에 따른 충전 상태 추정 장치(100)에 의해 수행될 수 있다.
이하에서는, 도 10을 참조하여 설명한 단계에 대한 중복 설명을 제외하고, 추가된 단계에 대해서만 설명한다.
도 11을 참조하면, 본 발명의 또 다른 실시예에 따른 충전 상태 추정 방법은 변곡점 확인 단계(S700)를 더 포함할 수 있다.
변곡점 확인 단계(S700)는 충방전 중단 시간이 기준 시간 미만인 경우, 충방전 중단 시간 동안 획득된 복수의 전압 정보 중에 전압 변곡점이 있는지를 확인하는 단계로서, 제어부(120)에 의해 수행될 수 있다.
예컨대, 도 11 및 표 1을 참조하면, 전압 변곡점이 존재하는 경우, 제어부(120)는 충방전 중단 시간의 크기가 기준 시간의 크기보다 작더라도, 제2 충전 상태를 추정할 수 있다. 반대로, 전압 변곡점이 존재하지 않는 경우, 제어부(120)는 제2 충전 상태를 추정하지 않고, 추정한 제1 충전 상태를 제3 충전 상태로 추정할 수 있다.
따라서, 충방전 중단 시간 크기 및 전압 변곡점의 유무에 따라 배터리 셀(10)의 최종 충전 상태가 보다 정확하게 추정될 수 있다.
이상에서 설명한 본 발명의 실시예는 장치 및 방법을 통해서만 구현이 되는 것은 아니며, 본 발명의 실시예의 구성에 대응하는 기능을 실현하는 프로그램 또는 그 프로그램이 기록된 기록 매체를 통해 구현될 수도 있으며, 이러한 구현은 앞서 설명한 실시예의 기재로부터 본 발명이 속하는 기술분야의 전문가라면 쉽게 구현할 수 있는 것이다.
이상에서 본 발명은 비록 한정된 실시예와 도면에 의해 설명되었으나, 본 발명은 이것에 의해 한정되지 않으며 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에 의해 본 발명의 기술사상과 아래에 기재될 특허청구범위의 균등범위 내에서 다양한 수정 및 변형이 가능함은 물론이다.
또한, 이상에서 설명한 본 발명은 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에 있어 본 발명의 기술적 사상을 벗어나지 않는 범위 내에서 여러 가지 치환, 변형 및 변경이 가능하므로 전술한 실시예 및 첨부된 도면에 의해 한정되는 것이 아니라, 다양한 변형이 이루어질 수 있도록 각 실시예들의 전부 또는 일부가 선택적으로 조합되어 구성될 수 있다.
(부호의 설명)
1: 배터리 팩
10: 배터리 셀
100: 충전 상태 추정 장치
110: 측정부
120: 제어부
130: 저장부
SL1 내지 SL3: 제1 내지 제3 센싱 라인

Claims (12)

  1. 배터리 셀의 전류 및 전압을 측정하고, 측정된 전류 정보 및 전압 정보를 출력하도록 구성된 측정부; 및
    상기 측정부로부터 상기 전류 정보 및 전압 정보를 수신하고, 상기 배터리 셀이 충전 또는 방전되는 충방전 시간, 및 상기 충전 또는 방전이 중단된 충방전 중단 시간을 산출하고, 상기 충방전 시간 동안 상기 전류 정보에 따른 상기 배터리 셀의 제1 충전 상태를 추정하고, 상기 충방전 중단 시간과 미리 설정된 기준 시간을 비교한 결과에 기반하여 상기 전압 정보에 따른 상기 배터리 셀의 제2 충전 상태를 추정할지 여부를 결정하고, 상기 제2 충전 상태가 추정된 경우, 상기 충방전 중단 시간에 기반하여 상기 제1 충전 상태 및 상기 제2 충전 상태를 가중 합산하여 제3 충전 상태를 추정하고, 추정된 제3 충전 상태를 상기 배터리 셀의 충전 상태로 결정하도록 구성된 제어부를 포함하는 것을 특징으로 하는 충전 상태 추정 장치.
  2. 제1항에 있어서,
    상기 제어부는,
    상기 충방전 중단 시간이 상기 기준 시간 이상인 경우,
    상기 충방전 중단 시간 동안 수신한 복수의 전압 정보에 기반하여 상기 제2 충전 상태를 추정하도록 구성된 것을 특징으로 하는 충전 상태 추정 장치.
  3. 제2항에 있어서,
    상기 제어부는,
    상기 충방전 중단 시간이 상기 기준 시간 미만인 경우,
    상기 충방전 중단 시간 동안 수신한 복수의 전압 정보 중에 전압 변곡점이 있는지를 확인하고, 상기 전압 변곡점이 확인된 경우에만 상기 제2 충전 상태를 추정하도록 구성된 것을 특징으로 하는 충전 상태 추정 장치.
  4. 제1항에 있어서,
    상기 제어부는,
    상기 배터리 셀의 숏-텀 분극 성분과 롱-텀 분극 성분의 분극 방향이 달라지는 시간이 포함되도록 상기 기준 시간을 미리 설정하도록 구성된 것을 특징으로 하는 충전 상태 추정 장치.
  5. 제4항에 있어서,
    상기 제어부는,
    함수 최적화 기법을 이용하여 상기 충방전 중단 시간 동안 수신한 복수의 전압 정보로부터 상기 배터리 셀의 개방 전압을 추정하도록 구성된 것을 특징으로 하는 충전 상태 추정 장치.
  6. 제5항에 있어서,
    상기 제어부는,
    미리 설정된 룩업 테이블에 기반하여, 추정된 개방 전압에 대응되는 제2 충전 상태를 추정하도록 구성된 것을 특징으로 하는 충전 상태 추정 장치.
  7. 제1항에 있어서,
    상기 제어부는,
    상기 충방전 중단 시간에 따라 제1 가중치 및 제2 가중치를 설정하고, 설정된 제1 가중치 및 제2 가중치를 상기 제1 충전 상태 및 상기 제2 충전 상태에 각각 부가하고, 가중치가 부가된 제1 충전 상태 및 제2 충전 상태를 합산하여 상기 제3 충전 상태를 추정하도록 구성된 것을 특징으로 하는 충전 상태 추정 장치.
  8. 제7항에 있어서,
    상기 제어부는,
    상기 충방전 중단 시간과 상기 제1 가중치는 서로 반비례하도록 설정하고, 상기 충방전 중단 시간과 상기 제2 가중치는 서로 비례하도록 설정하도록 구성된 것을 특징으로 하는 충전 상태 추정 장치.
  9. 제1항 내지 제8항 중 어느 한 항에 따른 충전 상태 추정 장치를 포함하는 배터리 팩.
  10. 제1항 내지 제8항 중 어느 한 항에 따른 충전 상태 추정 장치를 포함하는 자동차.
  11. 배터리 셀의 전류 및 전압을 측정하여 전류 정보 및 전압 정보를 획득하는 전류 전압 측정 단계;
    상기 배터리 셀이 충전 또는 방전되는 충방전 시간, 및 상기 충전 또는 방전이 중단된 충방전 중단 시간을 산출하는 시간 산출 단계;
    상기 충방전 시간 동안 상기 전류 정보에 따른 상기 배터리 셀의 제1 충전 상태를 추정하는 제1 충전 상태 추정 단계;
    상기 충방전 중단 시간과 미리 설정된 기준 시간을 비교한 결과에 기반하여, 상기 전압 정보에 따른 상기 배터리 셀의 제2 충전 상태를 추정하는 제2 충전 상태 추정 단계;
    상기 충방전 중단 시간에 기반하여, 상기 제1 충전 상태 및 상기 제2 충전 상태를 가중 합산하여 제3 충전 상태를 추정하는 제3 충전 상태 추정 단계; 및
    추정된 제3 충전 상태를 상기 배터리 셀의 충전 상태로 결정하는 배터리 셀의 충전 상태 추정 단계를 포함하는 것을 특징으로 하는 충전 상태 추정 방법.
  12. 제11항에 있어서,
    상기 제1 충전 상태 추정 단계 이후,
    상기 충방전 시간이 상기 기준 시간 미만인 경우, 상기 충방전 중단 시간 동안 획득된 복수의 전압 정보 중에 전압 변곡점이 있는지를 확인하는 변곡점 확인 단계를 포함하고,
    상기 제2 충전 상태 추정 단계는,
    상기 충방전 중단 시간이 상기 기준 시간 이상인 경우 또는 상기 변곡점 확인 단계에서 상기 전압 변곡점이 확인된 경우에만 상기 제2 충전 상태를 추정하는 것을 특징으로 하는 충전 상태 추정 방법.
PCT/KR2020/013498 2019-10-18 2020-10-05 충전 상태 추정 장치 및 방법 WO2021075771A1 (ko)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP20877787.0A EP3982137B1 (en) 2019-10-18 2020-10-05 Soc estimating apparatus and method
JP2021549504A JP7302798B2 (ja) 2019-10-18 2020-10-05 充電状態推定装置及び方法
CN202080032045.0A CN113795760B (zh) 2019-10-18 2020-10-05 Soc估计设备和方法
US17/442,591 US20220187382A1 (en) 2019-10-18 2020-10-05 Soc estimating apparatus and method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2019-0130074 2019-10-18
KR1020190130074A KR20210046407A (ko) 2019-10-18 2019-10-18 충전 상태 추정 장치 및 방법

Publications (1)

Publication Number Publication Date
WO2021075771A1 true WO2021075771A1 (ko) 2021-04-22

Family

ID=75537893

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2020/013498 WO2021075771A1 (ko) 2019-10-18 2020-10-05 충전 상태 추정 장치 및 방법

Country Status (6)

Country Link
US (1) US20220187382A1 (ko)
EP (1) EP3982137B1 (ko)
JP (1) JP7302798B2 (ko)
KR (1) KR20210046407A (ko)
CN (1) CN113795760B (ko)
WO (1) WO2021075771A1 (ko)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116409203A (zh) * 2021-12-30 2023-07-11 比亚迪股份有限公司 电池的管理方法及管理装置、车辆及计算机可读存储介质
KR20240041065A (ko) * 2022-09-22 2024-03-29 주식회사 엘지에너지솔루션 배터리 정보 통신 시스템 및 방법

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100805116B1 (ko) 2006-09-08 2008-02-21 삼성에스디아이 주식회사 배터리 관리 시스템 및 그 구동방법
JP2010190818A (ja) * 2009-02-20 2010-09-02 Furukawa Electric Co Ltd:The 蓄電デバイスの状態検知方法
JP2012108046A (ja) * 2010-11-18 2012-06-07 Honda Motor Co Ltd 電池容量推定装置および電池容量推定方法
WO2013031559A1 (ja) * 2011-08-30 2013-03-07 三洋電機株式会社 バッテリシステム、電動車両、移動体、電力貯蔵装置および電源装置
JP2015230169A (ja) * 2014-06-03 2015-12-21 スズキ株式会社 電池の状態検出装置
KR20190040412A (ko) * 2017-10-10 2019-04-18 주식회사 엘지화학 이차 전지의 충전 상태를 추정하기 위한 장치 및 그 방법
KR20190130074A (ko) 2013-12-23 2019-11-20 쥴 랩스, 인크. 기화 디바이스 시스템 및 방법

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3598873B2 (ja) * 1998-08-10 2004-12-08 トヨタ自動車株式会社 二次電池の状態判定方法及び状態判定装置、並びに二次電池の再生方法
JP2004260905A (ja) 2003-02-25 2004-09-16 Yanmar Co Ltd ハイブリッドシステム
JP2008116367A (ja) 2006-11-06 2008-05-22 Yazaki Corp 開回路電圧検出装置及びその方法
JP4865523B2 (ja) 2006-12-12 2012-02-01 古河電気工業株式会社 バッテリ充電率推定方法、バッテリ充電率推定装置及びバッテリ電源システム
CN102062841B (zh) * 2009-11-11 2012-12-12 北汽福田汽车股份有限公司 动力电池荷电状态的估测方法及系统
JP6155781B2 (ja) * 2012-05-10 2017-07-05 株式会社Gsユアサ 蓄電素子管理装置、及び、soc推定方法
JP5372208B2 (ja) 2012-05-11 2013-12-18 株式会社Wave Technology 二次電池の充電方法およびそれを用いた充電装置
CN104166102B (zh) * 2014-08-22 2017-02-22 科力远混合动力技术有限公司 车用动力电池组的soc使用区间的判定方法
CN104515955B (zh) * 2014-12-26 2018-01-19 湖南金杯新能源发展有限公司 恒定温度状态下电池剩余电量测量方法与系统
JP6534746B2 (ja) 2015-09-30 2019-06-26 日立オートモティブシステムズ株式会社 電池制御装置及び電池システム
JP6580784B2 (ja) * 2016-05-12 2019-09-25 日立オートモティブシステムズ株式会社 電池状態推定装置
CN106707189B (zh) * 2016-12-30 2019-08-13 中国东方电气集团有限公司 液流电池系统荷电状态的检测方法及装置
CN107064808B (zh) * 2017-02-09 2019-11-15 山东谦恒电子科技有限公司 电池的soc估计方法及装置
FI128680B (en) * 2017-03-02 2020-10-15 Tespack Oy Method, control unit and electronic charging arrangement for determining the battery charge level during battery charging
JP7000030B2 (ja) 2017-03-10 2022-01-19 株式会社デンソーテン 推定装置、推定方法、および推定プログラム
CN107422269B (zh) * 2017-06-16 2020-02-07 上海交通大学 一种锂电池在线soc测量方法
JP6927008B2 (ja) 2017-12-12 2021-08-25 トヨタ自動車株式会社 二次電池システムおよび二次電池のsoc推定方法
US11447105B2 (en) * 2018-03-29 2022-09-20 Gogoro Inc. Systems and methods for managing batteries in a battery exchange station
CN108872866B (zh) * 2018-06-04 2021-02-05 桂林电子科技大学 一种锂离子电池荷电状态动态评估与长效预测融合方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100805116B1 (ko) 2006-09-08 2008-02-21 삼성에스디아이 주식회사 배터리 관리 시스템 및 그 구동방법
JP2010190818A (ja) * 2009-02-20 2010-09-02 Furukawa Electric Co Ltd:The 蓄電デバイスの状態検知方法
JP2012108046A (ja) * 2010-11-18 2012-06-07 Honda Motor Co Ltd 電池容量推定装置および電池容量推定方法
WO2013031559A1 (ja) * 2011-08-30 2013-03-07 三洋電機株式会社 バッテリシステム、電動車両、移動体、電力貯蔵装置および電源装置
KR20190130074A (ko) 2013-12-23 2019-11-20 쥴 랩스, 인크. 기화 디바이스 시스템 및 방법
JP2015230169A (ja) * 2014-06-03 2015-12-21 スズキ株式会社 電池の状態検出装置
KR20190040412A (ko) * 2017-10-10 2019-04-18 주식회사 엘지화학 이차 전지의 충전 상태를 추정하기 위한 장치 및 그 방법

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3982137A4

Also Published As

Publication number Publication date
EP3982137B1 (en) 2024-01-31
US20220187382A1 (en) 2022-06-16
EP3982137A1 (en) 2022-04-13
JP7302798B2 (ja) 2023-07-04
CN113795760B (zh) 2024-05-17
JP2022523930A (ja) 2022-04-27
CN113795760A (zh) 2021-12-14
KR20210046407A (ko) 2021-04-28
EP3982137A4 (en) 2022-08-03

Similar Documents

Publication Publication Date Title
WO2020204584A1 (ko) 배터리 관리 장치 및 방법
WO2017142385A1 (ko) 스위치 부품의 고장 진단 장치 및 방법
WO2018093045A1 (ko) 배터리의 절연 저항 산출 장치 및 방법
WO2021118118A1 (ko) 배터리 퇴화도 진단 장치 및 방법
WO2019199064A1 (ko) 배터리 진단 장치 및 방법
WO2020189918A1 (ko) 배터리 관리 장치
WO2020189914A1 (ko) 배터리 상태 추정 장치
WO2021006708A1 (ko) 배터리 팩의 상태 진단 장치 및 방법
WO2021107655A1 (ko) 배터리 상태 진단 장치 및 방법
WO2020189919A1 (ko) 배터리 상태 추정 장치
WO2020153637A1 (ko) 배터리 관리 장치, 배터리 관리 방법 및 배터리 팩
WO2021075771A1 (ko) 충전 상태 추정 장치 및 방법
WO2021066555A1 (ko) 배터리 진단 시스템 및 방법
WO2019151674A1 (ko) 배터리의 전력 한계를 결정하기 위한 방법 및 배터리 관리 시스템
WO2022098096A1 (ko) 배터리 진단 장치 및 방법
WO2022092827A1 (ko) 배터리 관리 장치 및 방법
WO2022075708A1 (ko) 배터리 상태 진단 장치 및 방법
WO2022080837A1 (ko) 배터리 진단 장치 및 방법
WO2022265357A1 (ko) 배터리 soh 추정 장치 및 방법
WO2020166914A1 (ko) 충전 상태 추정 장치 및 방법
WO2022071776A1 (ko) 배터리 진단 장치, 방법 및 시스템
WO2021246655A1 (ko) 배터리 상태 진단 장치 및 방법
WO2021080219A1 (ko) 배터리 퇴화도 진단 장치 및 방법
WO2022015116A1 (ko) 배터리 관리 장치 및 방법
WO2021230639A1 (ko) 충전 심도 설정 장치 및 방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20877787

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021549504

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2020877787

Country of ref document: EP

Effective date: 20220104

NENP Non-entry into the national phase

Ref country code: DE