WO2021075538A1 - 二環性ホスホロアミダイトの製造方法 - Google Patents

二環性ホスホロアミダイトの製造方法 Download PDF

Info

Publication number
WO2021075538A1
WO2021075538A1 PCT/JP2020/039050 JP2020039050W WO2021075538A1 WO 2021075538 A1 WO2021075538 A1 WO 2021075538A1 JP 2020039050 W JP2020039050 W JP 2020039050W WO 2021075538 A1 WO2021075538 A1 WO 2021075538A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
compound
formula
general formula
substituted
Prior art date
Application number
PCT/JP2020/039050
Other languages
English (en)
French (fr)
Inventor
誠 道田
和利 鵜飼
祐三 阿部
萌 松本
誠 山岡
慧 倉橋
Original Assignee
第一三共株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 第一三共株式会社 filed Critical 第一三共株式会社
Priority to CA3155028A priority Critical patent/CA3155028A1/en
Priority to KR1020227012762A priority patent/KR20220083707A/ko
Priority to JP2021552461A priority patent/JPWO2021075538A1/ja
Priority to BR112022007437A priority patent/BR112022007437A2/pt
Priority to IL292286A priority patent/IL292286A/en
Priority to CN202080072429.5A priority patent/CN114502565A/zh
Priority to EP20877640.1A priority patent/EP4047005A4/en
Priority to US17/769,483 priority patent/US20230348522A1/en
Publication of WO2021075538A1 publication Critical patent/WO2021075538A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07HSUGARS; DERIVATIVES THEREOF; NUCLEOSIDES; NUCLEOTIDES; NUCLEIC ACIDS
    • C07H19/00Compounds containing a hetero ring sharing one ring hetero atom with a saccharide radical; Nucleosides; Mononucleotides; Anhydro-derivatives thereof
    • C07H19/02Compounds containing a hetero ring sharing one ring hetero atom with a saccharide radical; Nucleosides; Mononucleotides; Anhydro-derivatives thereof sharing nitrogen
    • C07H19/04Heterocyclic radicals containing only nitrogen atoms as ring hetero atom
    • C07H19/16Purine radicals
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D493/00Heterocyclic compounds containing oxygen atoms as the only ring hetero atoms in the condensed system
    • C07D493/02Heterocyclic compounds containing oxygen atoms as the only ring hetero atoms in the condensed system in which the condensed system contains two hetero rings
    • C07D493/08Bridged systems
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07HSUGARS; DERIVATIVES THEREOF; NUCLEOSIDES; NUCLEOTIDES; NUCLEIC ACIDS
    • C07H1/00Processes for the preparation of sugar derivatives
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07HSUGARS; DERIVATIVES THEREOF; NUCLEOSIDES; NUCLEOTIDES; NUCLEIC ACIDS
    • C07H13/00Compounds containing saccharide radicals esterified by carbonic acid or derivatives thereof, or by organic acids, e.g. phosphonic acids
    • C07H13/02Compounds containing saccharide radicals esterified by carbonic acid or derivatives thereof, or by organic acids, e.g. phosphonic acids by carboxylic acids
    • C07H13/04Compounds containing saccharide radicals esterified by carbonic acid or derivatives thereof, or by organic acids, e.g. phosphonic acids by carboxylic acids having the esterifying carboxyl radicals attached to acyclic carbon atoms
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07HSUGARS; DERIVATIVES THEREOF; NUCLEOSIDES; NUCLEOTIDES; NUCLEIC ACIDS
    • C07H19/00Compounds containing a hetero ring sharing one ring hetero atom with a saccharide radical; Nucleosides; Mononucleotides; Anhydro-derivatives thereof
    • C07H19/02Compounds containing a hetero ring sharing one ring hetero atom with a saccharide radical; Nucleosides; Mononucleotides; Anhydro-derivatives thereof sharing nitrogen
    • C07H19/04Heterocyclic radicals containing only nitrogen atoms as ring hetero atom
    • C07H19/06Pyrimidine radicals
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07HSUGARS; DERIVATIVES THEREOF; NUCLEOSIDES; NUCLEOTIDES; NUCLEIC ACIDS
    • C07H21/00Compounds containing two or more mononucleotide units having separate phosphate or polyphosphate groups linked by saccharide radicals of nucleoside groups, e.g. nucleic acids
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07HSUGARS; DERIVATIVES THEREOF; NUCLEOSIDES; NUCLEOTIDES; NUCLEIC ACIDS
    • C07H3/00Compounds containing only hydrogen atoms and saccharide radicals having only carbon, hydrogen, and oxygen atoms
    • C07H3/10Anhydrosugars, e.g. epoxides
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/11DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07BGENERAL METHODS OF ORGANIC CHEMISTRY; APPARATUS THEREFOR
    • C07B2200/00Indexing scheme relating to specific properties of organic compounds
    • C07B2200/13Crystalline forms, e.g. polymorphs
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/55Design of synthesis routes, e.g. reducing the use of auxiliary or protecting groups

Definitions

  • the present invention produces a plurality of ENA monomers containing pyrimidine bases or purine bases such as A, G, T, C, which are raw materials for oligonucleotides containing 2'-O, 4'-C-ethylene crosslinked nucleic acid (ENA).
  • a novel crystalline common intermediate for this purpose a method for stereoselectively synthesizing a ⁇ -adduct in glycosylation using the intermediate, a method for producing the production intermediate, and the production intermediate were used.
  • the manufacturing method of ENA monomer was used.
  • ENA monomer is an important compound for producing modified nucleic acid drugs / diagnostic agents.
  • the important steps in ENA production are 2,4-crosslinking reaction and glycosylation reaction to form the basic skeleton.
  • Patent Documents 3 to 4 a method of introducing a base with an acyloxy group at the 2-position before 2,4-ethyleneoxylation is used (Patent Documents 3 to 4). , See Non-Patent Documents 1 and 2).
  • An object of the present invention is to provide a crystalline 2,4-crosslinked common intermediate useful for producing each ENA monomer, to provide a three-dimensionally selective production method for the intermediate, and to provide a method for producing the intermediate. , To provide an efficient method for producing each ENA monomer using the intermediate.
  • the present inventors have found a novel crystalline 2,4-crosslinked common intermediate, a method for producing the common intermediate, and the common intermediate.
  • the method for producing the ENA monomer used was found, and the present invention was completed. Since the common intermediate is a crystal and can be purified by crystallization, it is suitable for industrial production. Further, since the method for producing the common intermediate uses easily available and inexpensive raw materials and is carried out without isolating a plurality of steps, the common intermediate can be obtained in a small number of steps and in a high yield.
  • a 2,4-crosslinked skeleton can be constructed before the glycosylation step, so that the step after the introduction of the base can be shortened and the yield can be improved, and a plurality of ENAs can be used. It is possible to efficiently produce different monomers. Furthermore, in glycosylation using the intermediate, by substituting the hydroxyl group at the 1-position with an iodine atom or a bromine atom, the ⁇ -form is selectively selected by controlling the steric structure even without the adjacent group effect of the acyl group at the 2-position. It became possible to manufacture in. In the amidite formation, which is the final step in the production of the ENA monomer, the equivalent amount of the amidite reagent can be reduced by using a specific activator and desiccant, and the ENA monomer can be efficiently produced. ..
  • Z 1 and Z 2 represent the same or different hydroxyl-protecting group, R represents a hydrogen atom or an aliphatic acyl group, and n represents an integer of 0 to 4.
  • the compound according to (1) or (2) which is a methyl group or a silyl group in which an aryl group is substituted with 1 to 3 aryl groups; (4) The compound according to (1) or (2), wherein Z 1 and Z 2 are the same or different, and are a benzyl group, a p-methoxybenzyl group, a t-butyldiphenylsilyl group or a t-butyldimethylsilyl group. ; (5) The compound according to (1) or (2), wherein Z 1 and Z 2 are benzyl groups; (6) The compound according to any one of (1) to (5), wherein n is 1. (7) Compound represented by formula (I');
  • Z 1 and Z 2 represent the same or different protecting group of the hydroxyl group
  • Y is a methyl group substituted with 1 to 3 aryl groups, a lower alkyl, a lower alkoxy, a halogen or a cyano group. Indicates a methyl group, a lower alkoxymethyl group, a tetrahydropyranyl group or a silyl group in which the aryl ring is substituted with 1 to 3 aryl groups, and n represents an integer of 0 to 4.
  • Z 1 and Z 2 are the same or different, with an aliphatic acyl group, an aromatic acyl group, a methyl group substituted with 1 to 3 aryl groups, a lower alkyl, a lower alkoxy, a halogen or a cyano group.
  • Z 1 , Z 2 and n have the same meaning as described above, and Y is an aryl ring with a methyl group substituted with 1 to 3 aryl groups, a lower alkyl, a lower alkoxy, a halogen or a cyano group. Indicates a methyl group substituted with 1 to 3 aryl groups substituted with, a lower alkoxymethyl group, a tetrahydropyranyl group or a silyl group.
  • the acetal moiety of the compound represented by] is solvolyzed in a lower alkyl alcohol solvent to deprotect Y.
  • the step of hydrolyzing the anomeric position of the compound represented by A method characterized by including; (10) Z 1 and Z 2 are the same or different, with an aliphatic acyl group, an aromatic acyl group, a methyl group substituted with 1 to 3 aryl groups, a lower alkyl, a lower alkoxy, a halogen or a cyano group.
  • the acid catalyst is sulfuric acid, p-toluenesulfonic acid or methanesulfonic acid.
  • Step (ii) was performed using a trivalent phosphorus reagent and an azodicarboxylic acid ester.
  • the acid catalyst is sulfuric acid, p-toluenesulfonic acid or methanesulfonic acid.
  • Step (ii) was performed using a trivalent phosphorus reagent and an azodicarboxylic acid ester.
  • the trivalent phosphorus reagent used in step (ii) is triphenylphosphine or tri (n-butyl) phosphine.
  • the azodicarboxylic acid ester used in the step (ii) is diethyl azodicarboxylate, diisopropyl azodicarboxylate or dit-butyl azodicarboxylate.
  • the step (iii) is carried out with an acid and The method according to (9), wherein the acid used in step (iii) is hydrochloric acid, sulfuric acid, trifluoroacetic acid, methanesulfonic acid or p-toluenesulfonic acid; (9e) Z 1 and Z 2 are benzyl groups and A is a methyl group Y is a trityl group, n is 1,
  • the acid catalyst is sulfuric acid, p-toluenesulfonic acid or methanesulfonic acid.
  • Step (ii) was performed using a trivalent phosphorus reagent and an azodicarboxylic acid ester.
  • the trivalent phosphorus reagent used in step (ii) is triphenylphosphine or tri (n-butyl) phosphine.
  • the azodicarboxylic acid ester used in the step (ii) is diethyl azodicarboxylate, diisopropyl azodicarboxylate or dit-butyl azodicarboxylate.
  • step (iii) is carried out with an acid and The method according to (9), wherein the acid used in step (iii) is hydrochloric acid, sulfuric acid, trifluoroacetic acid, methanesulfonic acid or p-toluenesulfonic acid; (24) General formula (VI)
  • R 1 represents a lower alkyl group or a hydrogen atom
  • R 2 represents an amino group protected by a hydroxyl group, an amino group or an aliphatic acyl group or an aromatic acyl group
  • P 1 represents 1 to 1 to Indicates a trityl group which may be substituted with 3 lower alkoxy groups, where n represents an integer of 0-4.
  • n represents an integer of 0-4.
  • Z 1 and Z 2 represent the protecting group of the hydroxyl group, which is the same or different, and n represents an integer of 0 to 4.
  • a step of stereoselectively obtaining the compound represented by] or a salt thereof A method characterized by including; (25) Z 1 and Z 2 are the same or different, with an aliphatic acyl group, an aromatic acyl group, a methyl group substituted with 1 to 3 aryl groups, a lower alkyl, a lower alkoxy, a halogen or a cyano group.
  • Z 1 , Z 2 , R 1 , R 2 and n have the same meaning as described above.
  • the salt is reacted with a primary hydroxyl group protecting reagent, and the general formula (VI) is used.
  • n 1, The method according to (24), wherein R 1 is a methyl group and R 2 is a benzoyl amino group; (24c)
  • the activator is acetic anhydride, benzoic anhydride, trichloroacetonitrile, carbonyldiimidazole or diphenyl chlorophosphate.
  • halogenating agent is chlorotrimethylsilane, bromotrimethylsilane or iodotrimethylsilane;
  • Z 1 and Z 2 are benzyl groups and P 1 is a 4,4'-dimethoxytrityl group, X 1 is an iodine atom, an acetoxy group or a trichloroacetimideoxy group.
  • n is 1, R 1 is a methyl group, R 2 is a benzoyl amino group, Activators are acetic anhydride, benzoic anhydride, trichloroacetonitrile, carbonyldiimidazole or diphenyl chlorophosphate.
  • the halogenating agent is chlorotrimethylsilane, bromotrimethylsilane or iodotrimethylsilane; (39)
  • X General formula (X)
  • R 3 represents an aliphatic acyl group or an aromatic acyl group
  • P 1 represents a trityl group which may be substituted with 1 to 3 lower alkoxy groups
  • n is 0 to 4. Indicates an integer. ], Which is a method for producing a compound represented by [] or a salt thereof.
  • a step of stereoselectively obtaining the compound represented by] or a salt thereof A method characterized by including; (39a) The method according to (39), which is isomerized by heating in step (iii); (40) Z 1 and Z 2 are the same or different, with an aliphatic acyl group, an aromatic acyl group, a methyl group substituted with 1 to 3 aryl groups, a lower alkyl, a lower alkoxy, a halogen or a cyano group.
  • aryl ring is a methyl group or a silyl group substituted with 1 to 3 aryl groups.
  • Z 1 and Z 2 are the same or different, a benzyl group, a p-methoxybenzyl group, a t-butyldiphenylsilyl group or a t-butyldimethylsilyl group;
  • Z 1 and Z 2 are benzyl groups;
  • P 1 is a 4,4'-dimethoxytrityl group;
  • X 2 is a halogen atom, an aliphatic acyloxy group, a halogen-substituted lower alkylimideoxy group, or a halogen-substituted lower alkylsulfonyl
  • Z 1 , Z 2 , R 3 and n have the same meaning as described above.
  • the general formula (X) is obtained by reacting a salt with a primary hydroxyl group protecting reagent to selectively protect the primary hydroxyl group.
  • R 3 is a benzoyl group
  • the activator is acetic anhydride, benzoic anhydride, trichloroacetonitrile, carbonyldiimidazole or diphenyl chlorophosphate.
  • the method according to (39), wherein the acid reagents are trimethylsilyl trifluoromethanesulfonate and trifluoroacetic acid;
  • Z 1 and Z 2 are benzyl groups and P 1 is a 4,4'-dimethoxytrityl group, X 2 is an acetoxy group and n is 1.
  • R 3 is a benzoyl group
  • Activators are acetic anhydride, benzoic anhydride, trichloroacetonitrile, carbonyldiimidazole or diphenyl chlorophosphate.
  • the method according to (39), wherein the acid reagents are trimethylsilyl trifluoromethanesulfonate and trifluoroacetic acid; (52) General formula (XIV)
  • Z 1 and Z 2 represent the protecting group of the hydroxyl group, which is the same or different, and n represents an integer of 0 to 4.
  • the compound represented by] or a salt thereof; (53) Z 1 and Z 2 are the same or different, with an aliphatic acyl group, an aromatic acyl group, a methyl group substituted with 1 to 3 aryl groups, a lower alkyl, a lower alkoxy, a halogen or a cyano group.
  • P 1 represents a trityl group which may be substituted with 1 to 3 lower alkoxy groups
  • R 3 represents an aliphatic acyl group or an aromatic acyl group
  • n is 1 to 4 Indicates an integer of. ]
  • n has the same meaning as described above.
  • R 3 is A method according to any one of an acetyl group or a benzoyl group (58) to (63); (65) The method according to any one of (58) to (63), wherein R 3 is a benzoyl group; (66) (iii) General formula (XVI) obtained in step (ii)
  • Z 1 and Z 2 are benzyl groups.
  • P 1 is a 4,4'-dimethoxytrityl group
  • n is 1
  • R 3 is a benzoyl group
  • the aminating agent is ammonia, aqueous ammonia solution, ammonium carbonate or ammonium acetate.
  • the metal catalyst is palladium, palladium hydroxide or platinum,
  • the reducing agent is hydrogen, formic acid or ammonium formate,
  • the method according to (58), wherein the acylating agent is benzoyl chloride or benzoic anhydride; (71) General formula (XVIII)
  • P 1 represents a trityl group which may be substituted with 1 to 3 lower alkoxy groups
  • R 4 represents an aliphatic acyl group or an aromatic acyl group
  • n is 1 to 4 Indicates an integer of. ]
  • Z 1 and Z 2 represent the protecting group of the hydroxyl group, which is the same or different, and n represents an integer of 0 to 4.
  • a benzyl alcohol which may be substituted with a lower alkyl, a lower alkoxy, a halogen or a cyano group in a solvent in the presence of a base to obtain a chlorine atom at the 6-position of the purine ring.
  • Lower alkyl, lower alkoxy, halogen or step of substituting with a benzyloxy group optionally substituted with a cyano group (Ii) General formula (XIX) obtained in step (i)
  • Z 1 , Z 2 and n have the same meanings as described above, and R 5 indicates a benzyl group which may be substituted with a lower alkyl, lower alkoxy, halogen or cyano group.
  • R 5 indicates a benzyl group which may be substituted with a lower alkyl, lower alkoxy, halogen or cyano group.
  • Z 1 , Z 2 , R 4 , R 5 and n have the same meanings as described above.
  • the step of obtaining the compound represented by] or a salt thereof, A method characterized by including; (72) Z 1 and Z 2 are the same or different, with an aliphatic acyl group, an aromatic acyl group, a methyl group substituted with 1 to 3 aryl groups, a lower alkyl, a lower alkoxy, a halogen or a cyano group.
  • R 4 is, according to any one of isobutyryl group (71) to (76) METHOD;
  • R 5 is, according to any one of a benzyl group (71) to (77) METHOD; (79) (iii) General formula (XX) obtained in step (ii)
  • Z 1 and Z 2 are benzyl groups and P 1 is a 4,4'-dimethoxytrityl group, n is 1, R 4 is isobutyryl group,
  • the base is sodium hydroxide, sodium carbonate, cesium carbonate, triethylamine, pyridine or 1,8-diazabicyclo [5.4.0] undec-7-ene.
  • the palladium catalyst is tris (dibenzylideneacetone) (chloroform) dipalladium, palladium (II) acetate or tris (dibenzylideneacetone) dipalladium (0).
  • Phosphine ligands are 4,5'-bis (diphenylphosphino) -9,9'dimethylxanthene, 1,1'-bis (diphenylphosphino) ferrocene, 1,2-bis (diphenylphosphino) ethane or 2-Dicyclohexylphosphino-2'-(N, N-dimethylamino) biphenyl,
  • the amidating agent is acetylamide, benzoylamide or isobutyramide
  • the hydroxyl group deprotecting reagents are a metal catalyst supported on carbon and hydrogen. The method according to (71), wherein the metal catalyst is palladium, palladium hydroxide or platinum; (87) General formula
  • R 1 represents a lower alkyl group or a hydrogen atom
  • R 6 represents an aliphatic acyl group or an aromatic acyl group
  • P 1 is substituted with 1 to 3 lower alkoxy groups. It represents a good trityl group, where n represents an integer from 0 to 4.
  • XXIII General formula (XXIII)
  • the catalyst is N, N-dimethylaminopyridine or 1,8-diazabicyclo [5.4.0] undec-7-ene.
  • the activator is p-toluenesulfonyl chloride or 2,4,6-triisopropylbenzenesulfonyl chloride.
  • the aminating agent is ammonia, aqueous ammonia solution, ammonium carbonate or ammonium acetate.
  • the method according to (87), wherein the acylating agent is benzoyl chloride or benzoic anhydride; (87c)
  • P 1 , R 1 , R 6 and n have the same meaning as described above.
  • P 1 is a trityl group
  • Z 3 is an acetyl group
  • n is 1
  • R 1 is a methyl group or a hydrogen atom
  • R 6 is a benzoyl group.
  • the catalyst is N, N-dimethylaminopyridine or 1,8-diazabicyclo [5.4.0] undec-7-ene.
  • the activator is p-toluenesulfonyl chloride or 2,4,6-triisopropylbenzenesulfonyl chloride.
  • the aminating agent is ammonia, aqueous ammonia solution, ammonium carbonate or ammonium acetate.
  • P 1 represents a trityl group which may be substituted with 1 to 3 lower alkoxy groups
  • B has 1 or 2 or more substituents selected from the following ⁇ group. May also represent a 2-oxo-pyrimidine-1-yl group or a purine-9-yl group, where n represents an integer of 0-4.
  • the amidite-forming reagent is reacted with the compound represented by] or a salt thereof.
  • the activator is pyridinetrifluoroacetate, N-methylimidazole trifluoroacetic acid, N-isopropylimidazole trifluoroacetate, 5-benzylthiotetrazole, 5-phenyltetrazole, 4,5-dicyanoimidazole or The method according to any one of (99) to (103), which is 2,4,5-tetrabromoimidazole; (105) The method according to any one of (99) to (103), wherein the activator is 4,5-dicyanoimidazole; (106) Any one of (99) to (105) that the amidite-forming reagent is 2-cyanoethyl N, N, N', N'-tetraisopropylphosphorodiamidite or 2-cyanoethyldiisopropylchlorophosphoroamidite.
  • B is 2-oxo-4-hydroxy-5-methylpyrimidine-1-yl group, 2-oxo-4-benzoylamino-pyrimidine-1-yl group, 4-benzoylamino-5-methyl-2-oxo- It is a pyrimidin-1-yl group, a 6-benzoylaminopurine-9-yl group, or a 2-isobutyrylamino-6-hydroxypurine-9-yl group.
  • n is 1.
  • the activator is pyridinetrifluoroacetate, N-methylimidazole trifluoroacetate, N-isopropylimidazole trifluoroacetate, 5-benzylthiotetrazole, 5-phenyltetrazole, 4,5-dicyanoimidazole or 2,4,5-Tetrabromoimidazole,
  • the amidite reagent is 2-cyanoethyl N, N, N', N'-tetraisopropylphosphorodiamidite or 2-cyanoethyldiisopropylchlorophosphoroamidite.
  • P 1 is a 4,4'-dimethoxytrityl group.
  • B is 2-oxo-4-hydroxy-5-methylpyrimidine-1-yl group, 2-oxo-4-benzoylamino-pyrimidine-1-yl group, 4-benzoylamino-5-methyl-2-oxo- It is a pyrimidin-1-yl group, a 6-benzoylaminopurine-9-yl group, or a 2-isobutyrylamino-6-hydroxypurine-9-yl group.
  • n 1
  • the activator is pyridinetrifluoroacetate, N-methylimidazole trifluoroacetate, N-isopropylimidazole trifluoroacetate, 5-benzylthiotetrazole, 5-phenyltetrazole, 4,5-dicyanoimidazole or 2,4. , 5-Tetrabromoimidazole,
  • the amidite reagent is 2-cyanoethyl N, N, N', N'-tetraisopropylphosphorodiamidite or 2-cyanoethyldiisopropylchlorophosphoroamidite.
  • a method for producing an oligonucleotide which comprises the following steps.
  • oligonucleotide consists of a sequence represented by any one of the following formulas selected from DMD AO01 to DMD AO15.
  • DMD AO01 HO-C e2s -A m1s -G m1s -T e2s -T e2s -U m1s -G m1s -C e2s -C e2s -G m1s -C e2s -T e2s -G m1s -C e2s -C e2s -C e2s -C e2s -A m1s -A m1s -CH 2 CH 2 OH (SEQ ID NO: 1)
  • DMD AO02 HO-T e2s -G m1s -T e2s -T e2s -C e2s -T e2s -G m1s
  • Represents adenosine, guanosine, cytidine, uridine and thymidine that are phosphorothioate-linked to a structural unit. Attached to each nucleotide or nucleoside, e2s has D-ribofuranose 2'-O, 4'-C-ethylene crosslinked, and the 3'position is -OP ( S) (-OH) -O- on the right side. Represents binding to the 5'carbon atom of an adjacent nucleotide or nucleoside, where e2t is 2'-O, 4'-C-ethylene crosslinked with D-ribofuranose and -O- at the 3'position at the 3'end.
  • D-ribofuranose is 2'-O-methylated
  • m1t means that D-ribofuranose is 2'-O-methylated and the 3'position is -O- and binds to the hydrogen atom at the 3'end. .. ] (111)
  • the oligonucleotide consists of a sequence represented by any one of the following formulas selected from GSD AO01 to GSD AO16, and the ligand is represented by X 18 or X 20 of the following formula.
  • Represents adenosine, guanosine, cytidine, uridine and thymidine that are phosphorothioate-linked to a structural unit. Attached to each nucleotide or nucleoside, e2s has D-ribofuranose 2'-O, 4'-C-ethylene crosslinked, and the 3'position is -OP ( S) (-OH) -O- on the right side. Represents binding to the 5'carbon atom of an adjacent nucleotide or nucleoside, where e2t is 2'-O, 4'-C-ethylene crosslinked with D-ribofuranose and -O- at the 3'position at the 3'end.
  • D-ribofuranose is 2'-O-methylated
  • m1t means that D-ribofuranose is 2'-O-methylated and the 3'position is -O- and binds to the hydrogen atom at the 3'end.
  • X 18 and X 20 represent the GalNAc unit represented by the following equation.
  • the bond attached to the phosphate group represents that it binds to the carbon atom at the 5'end of the oligonucleotide to form a phosphate diester bond.
  • the "protecting groups for hydroxyl groups" of Z 1 and Z 2 and the protecting groups of "protected hydroxyl groups” of the ⁇ group are chemicals such as hydrogenation, hydrolysis, electrolysis and photolysis.
  • Such protective groups include, for example, formyl, acetyl, propionyl, butyryl, isobutyryl, pentanoyl, pivaloyl, valeryl, isovaleryl, octanoyl, nonanoyl, decanoyl, 3-methylnonanoyl, 8-methylnonanoyl, 3-ethyloctanoyl, 3, 7-Dimethyloctanoyl, undecanoyl, dodecanoyl, tridecanoyl, tetradecanoyl, pentadecanoyl, hexadecanoyl, 1-methylpentadecanoyl, 14-methylpentadecanoyl, 13,13-dimethyltetradecanoyl, heptadecanoyl, 15 -Alkylcarbonyl groups such as methylhexadecanoyl, octadecanoyl, 1-methylhept
  • Arylcarbonyl groups such as benzoyl, ⁇ -naphthoyl, ⁇ -naphthoyl, halogenoarylcarbonyl groups such as 2-bromobenzoyl and 4-chlorobenzoyl, lower alkyls such as 2,4,6-trimethylbenzoyl and 4-toluoil.
  • aliphatic acyl group preferably, "aliphatic acyl group”, “aromatic acyl group”, “methyl group substituted with 1 to 3 aryl groups”, " A "methyl group substituted with 1 to 3 aryl groups” or “silyl group” in which the aryl ring is substituted with a lower alkyl, lower alkoxy, halogen, or cyano group, and more preferably, an acetyl group, a benzoyl group, and the like.
  • the "protected hydroxyl group" of the ⁇ group is an "aliphatic acyl group” or an “aromatic acyl group", and more preferably a benzoyl group.
  • A the "lower alkyl group" of R 1 and ⁇ group, a linear or branched alkyl group having 1 to 6 carbon atoms, such as methyl group, ethyl group, n- propyl group , Isopropyl group, n-butyl group, isobutyl group, s-butyl group, t-butyl group, n-pentyl group, isopentyl group, 2-methylbutyl group, neopentyl group, 1-ethylpropyl group, n-hexyl group, isohexyl Group, 4-methylpentyl group, 3-methylpentyl group, 2-methylpentyl group, 1-methylpentyl group, 3,3-dimethylbutyl group, 2,2-dimethylbutyl group, 1,1-dimethylbutyl group, Examples thereof include 1,2-dimethylbutyl group, 1,3-dimethylbutyl group, 2,3-
  • the "lower alkyl group" of A is preferably a methyl group, an ethyl group or a propyl group, and more preferably a methyl group.
  • the "lower alkyl group" of R 1 is preferably a methyl group.
  • the "lower alkoxy group" of the ⁇ group means a group in which the above-mentioned "lower alkyl group” is bonded to an oxygen atom, for example, methoxy, ethoxy, n-propoxy, isopropoxy, n-butoxy, isobutoxy, and the like.
  • s-Butoxy or t-Butoxy can be mentioned, preferably a methoxy or ethoxy group.
  • the protecting group of the "protected mercapto group" of the ⁇ group for example, in addition to the above-mentioned protecting group for the hydroxyl group, an alkylthio group such as methylthio, ethylthio, t-butylthio, benzylthio and the like.
  • alkylthio group such as methylthio, ethylthio, t-butylthio, benzylthio and the like.
  • groups thereof include "groups forming a disulfide” such as an arylthio group, preferably an "aliphatic acyl group” or an "aromatic acyl group", and more preferably a benzoyl group.
  • the "lower alkylthio group" of the ⁇ group means a group in which the above “lower alkyl group” is bonded to a sulfur atom, for example, methylthio, ethylthio, propylthio, isopropylthio, butylthio, isobutylthio, and the like. Examples thereof include s-butylthio and t-butylthio, preferably a methylthio or ethylthio group.
  • examples of the protective group of the "protected amino group" of the ⁇ group include formyl, acetyl, propionyl, butyryl, isobutyryl, pentanoyl, pivaloyl, valeryl, isovaleryl, octanoyl, nonanoyl, decanoyl, 3-methylnonanoyl, and the like.
  • 8-Methylnonanoyl 3-ethyloctanoyl, 3,7-dimethyloctanoyl, undecanoyl, dodecanoyl, tridecanoyl, tetradecanoyl, pentadecanoyl, hexadecanoyl, 1-methylpentadecanoyl, 14-methylpentadecanoyl, Alkylcarbonyl groups such as 13,13-dimethyltetradecanoyl, heptadecanoyl, 15-methylhexadecanoyl, octadecanoyl, 1-methylheptadecanoyl, nonadecanoyle, aikosanoyl and henaicosanoyl, carboxy such as succinoyl, glutaroyl, adipoyl.
  • Alkylcarbonyl groups chloroacetyls, dichloroacetyls, trichloroacetyls, halogeno lower alkylcarbonyl groups such as trifluoroacetyls, lower alkoxy lower alkylcarbonyl groups such as methoxyacetyls, (E) -2-methyl-2-butenoyl "Adioxy acyl groups" such as unsaturated alkylcarbonyl groups; Arylcarbonyl groups such as benzoyl, ⁇ -naphthoyl, ⁇ -naphthoyl, halogenoarylcarbonyl groups such as 2-bromobenzoyl and 4-chlorobenzoyl, lower alkyls such as 2,4,6-trimethylbenzoyl and 4-toluoil.
  • Arylcarbonyl group, lower alkoxylated arylcarbonyl group such as 4-anisoil, 2-carboxybenzoyl, 3-carboxybenzoyl, carboxylated arylcarbonyl group such as 4-carboxybenzoyl, 4-nitrobenzoyl, 2-nitrobenzoyl Nitrylated arylcarbonyl groups such as; "aromatic acyl groups” such as lower alkoxycarbonylated arylcarbonyl groups such as 2- (methoxycarbonyl) benzoyl, arylated arylcarbonyl groups such as 4-phenylbenzoyl; "Lower alkoxycarbonyl groups” such as methoxycarbonyl, ethoxycarbonyl, t-butoxycarbonyl, isobutoxycarbonyl; "Lower alkoxycarbonyl groups substituted with halogen or tri-lower alkylsilyl groups” such as 2,2,2-trichloroethoxycarbonyl, 2-trimethyl
  • the "lower alkylamino group" in the ⁇ group indicates a group in which one or two hydrogen atoms of the amino group are substituted with the above “lower alkyl group", for example, methylamino, ethylamino, propyl.
  • Amino, isopropylamino, butylamino, isobutylamino, s-butylamino, t-butylamino, dimethylamino, diethylamino, dipropylamino, diisopropylamino, dibutylamino, diisobutylamino, di (s-butyl) amino, di (t) -Butyl) amino can be mentioned, preferably methylamino, ethylamino, dimethylamino, diethylamino or diisopropylamino groups.
  • halogen atom in X 1, X 2 and ⁇ group includes, for example, fluorine atom, chlorine atom, bromine atom or iodine atom.
  • examples of the "group forming a leaving group" of X 1 and X 2 include a halogen atom, an aliphatic acyloxy group, a halogen-substituted lower alkylimideoxy group, or a halogen-substituted lower alkylsulfonyloxy group. Can be done.
  • an iodine atom, an acetoxy group or a trichloroacetimideoxy group is preferable.
  • X 2 in the "group which forms a leaving group" is preferably acetoxy group.
  • the "methyl group substituted with 1 to 3 aryl groups" of Y includes, for example, benzyl, ⁇ -naphthylmethyl, ⁇ -naphthylmethyl, diphenylmethyl, trityl, ⁇ -naphthyldiphenylmethyl or 9 -Anthrylmethyl group can be mentioned, preferably a trityl group.
  • Y "a methyl group substituted with 1 to 3 aryl groups in which the aryl ring is substituted with a lower alkyl, lower alkoxy, halogen or cyano group” is, for example, 4-methylbenzyl, 2, 4,6-trimethylbenzyl, 3,4,5-trimethylbenzyl, 4-methoxybenzyl, 4-methoxyphenyldiphenylmethyl, 4,4'-dimethoxytriphenylmethyl (4,4'-dimethoxytrityl), 2-nitro Benzyl, 4-nitrobenzyl, 4-chlorobenzyl, 4-bromobenzyl or 4-cyanobenzyl group can be mentioned.
  • the "lower alkoxymethyl group" of Y is a group in which a methyl group is bonded to the above "lower alkoxy group".
  • a methyl group is bonded to the above "lower alkoxy group”.
  • methoxymethyl, 1,1-dimethyl-1-methoxymethyl, ethoxymethyl, propoxymethyl, isopropoxymethyl, butoxymethyl, t-butoxymethyl can be mentioned, and a methoxymethyl group is preferable.
  • examples of the "tetrahydropyranyl group" of Y include tetrahydropyran-2-yl, 3-bromotetrahydropyran-2-yl and 4-methoxytetrahydropyran-4-yl group.
  • a tetrahydropyran-2-yl group is preferred.
  • the "silyl group" of Y includes, for example, trilower alkylsilyls such as trimethylsilyl, triethylsilyl, isopropyldimethylsilyl, t-butyldimethylsilyl, methyldiisopropylsilyl, methyldi-t-butylsilyl and triisopropylsilyl.
  • trilower alkylsilyls such as trimethylsilyl, triethylsilyl, isopropyldimethylsilyl, t-butyldimethylsilyl, methyldiisopropylsilyl, methyldi-t-butylsilyl and triisopropylsilyl.
  • Examples include tri-lower alkylsilyl groups substituted with one or two aryl groups such as groups, diphenylmethylsilyl, diphenylbutylsilyl, diphenylisopropylsilyl, phenyldiisopropylsilyl, preferably t-butyldiphenylsilyl. Group or t-butyldimethylsilyl group.
  • the "one to three good trityl group optionally substituted with lower alkoxy group” P 1, 1 to 3 hydrogen atoms of the phenyl group in the trityl group is substituted with the above "lower alkoxy group” group
  • a trityl group, a monomethoxytrityl group or a dimethoxytrityl group can be mentioned, and a 4,4'-dimethoxytrityl group is preferable.
  • the "aliphatic acyl group" of R, R 3 , R 4 , R 6 and Z 3 includes, for example, formyl, acetyl, propionyl, butyryl, isobutyryl, pentanoyl, pivaloyl, valeryl, isovaleryl, octanoyl and nonanoyl.
  • the "aliphatic acyl group" of R, R 3 , R 6 and Z 3 is preferably an acetyl group.
  • the "aliphatic acyl group" of R 4 preferably, isobutyryl group.
  • the "aromatic acyl groups" of R 3 , R 4 , R 6 and Z 3 include, for example, arylcarbonyl groups such as benzoyl, ⁇ -naphthoyl and ⁇ -naphthoyl, 2-bromobenzoyl and 4-.
  • Halogenoarylcarbonyl groups such as chlorobenzoyl, 2,4,6-trimethylbenzoyl, lower alkylated arylcarbonyl groups such as 4-toluoil, lower alkoxylated arylcarbonyl groups such as 4-anisoil, 2-carboxybenzoyl, Carboxylated arylcarbonyl groups such as 3-carboxybenzoyl, 4-carboxybenzoyl, nitrylated arylcarbonyl groups such as 4-nitrobenzoyl, 2-nitrobenzoyl; lower alkoxycarbonylation such as 2- (methoxycarbonyl) benzoyl
  • Arylcarbonyl groups, arylated arylcarbonyl groups such as 4-phenylbenzoyl can be mentioned.
  • the "aromatic acyl group" of R 3 , R 4 , R 6 and Z 3 is preferably a benzoyl group.
  • amino group protected with an aliphatic acyl group or aromatic acyl group and the R 2, an amino group substituted by the above “aliphatic acyl group” or “aromatic acyl group” group Shown.
  • the "aliphatic amino group protected with an acyl group” R 2 for example, formylamino, acetylamino, propionylamino, butyrylamino, isobutyrylamino, pentanoylamino, pivaloylamino, valerylamino, chloroacetyl amino, dichloroacetyl Amino, trichloroacetylamino, trifluoroacetylamino, methoxyacetylamino or (E) -2-methyl-2-butenoylamino group can be mentioned.
  • aromatic amino group protected with an acyl group for example, benzoylamino, alpha-naphthoylamino, beta-naphthoylamino, 2-bromo-benzoylamino, 4-chloro-benzoylamino, 2, 4 , 6-trimethylbenzoylamino, 4-toluoilamino, 4-anisoilamino, 2-carboxybenzoylamino, 3-carboxybenzoylamino, 4-carboxybenzoylamino, 4-nitrobenzoylamino, 2-nitrobenzoylamino, 2 -(Methoxycarbonyl) benzoylamino or 4-phenylbenzoylamino group can be mentioned, preferably a benzoylamino group.
  • the R 5 as "lower alkyl, lower alkoxy, a benzyl group which may be substituted by halogen or cyano group", for example, benzyl, 4-methylbenzyl, 2,4,6-trimethylbenzyl, 3 , 4,5-trimethylbenzyl, 4-methoxybenzyl, 4-chlorobenzyl, 4-bromobenzyl or 4-cyanobenzyl, preferably a benzyl group.
  • B "a purine-9-yl group which may have one or more substituents selected from the ⁇ group” is preferably 6-.
  • Aminopurine-9-yl ie, adeninyl
  • B "2-oxo-pyrimidine-1-yl group which may have 1 or 2 or more substituents selected from the ⁇ group" is preferably used.
  • 2-Oxo-4-amino-pyrimidine-1-yl ie, cytosynyl
  • 2-oxo-4-amino-pyrimidine-1-yl with protected amino groups 2-oxo-4-amino-5 -Fluoro-pyrimidine-1-yl, amino group protected 2-oxo-4-amino-5-fluoro-pyrimidine-1-yl, 4-amino-2-oxo-5-chloro-pyrimidine-1-yl , 2-oxo-4-methoxy-pyrimidine-1-yl, 2-oxo-4-mercapto-pyrimidine-1-yl, 2-oxo-4-hydroxy-pyrimidine-1-yl (ie, uracinyl), 2-yl Oxo-4-hydroxy-5
  • n is an integer of 0 to 4, preferably 0 or 1, and more preferably 1.
  • the salt means a salt thereof because the compound of the present invention can be made into a salt, and the salt thereof is preferably an alkali metal salt such as a sodium salt, a potassium salt or a lithium salt.
  • Alkaline earth metal salts such as calcium salt, magnesium salt, metal salts such as aluminum salt, iron salt, zinc salt, copper salt, nickel salt, cobalt salt; inorganic salt such as ammonium salt, t-octylamine salt , Dibenzylamine salt, morpholine salt, glucosamine salt, phenylglycine alkyl ester salt, ethylenediamine salt, N-methylglucamine salt, guanidine salt, diethylamine salt, triethylamine salt, dicyclohexylamine salt, N, N'-dibenzylethylenediamine salt , Chloroprocine salts, prokine salts, diethanolamine salts, N-benzyl-phenethylamine salts, piperazine salt
  • Organic salts such as acid salts, citrates, tartrates, oxalates, maleates; and amino acid salts such as glycine salts, lysine salts, arginine salts, ornithine salts, glutamates, asparaginates. Can be done.
  • the carbonyl group of the thymine derivative or the guanine derivative can be a "tautomer".
  • a tautomer is one of two or more structural isomers that exist in equilibrium and is a mixture of tautomers in solution that is easily converted from one isomer to another. Exists as. Under conditions where tautomerization is possible, the chemical equilibrium of the tautomer is reached, the exact ratio of which depends on several factors, including temperature, solvent and pH. The concept of tautomers that can be converted to each other by tautomerization is called tautomerism.
  • the "hydroxyl group protecting reagent” refers to a reagent used to introduce the "hydroxyl protecting group” into the hydroxyl group of the nucleoside analog and its production intermediate.
  • “hydroxyl protecting group” (1) For benzyl group: benzyl chloride, benzyl bromide, benzyl iodide, benzyl trichloroacetoimidate (2) For trityl group: trityl chloride, tritilt refluorosulfonate, (3) In the case of t-butyldimethylsilyl group: t-butyldimethylsilyl chloride, (4) In the case of an acetyl group: acetic anhydride and acetyl chloride.
  • the "primary hydroxyl group protective reagent” is used to introduce the above-mentioned "trityl group optionally substituted with 1 to 3 lower alkoxy groups” into the sugar hydroxyl group at the 5-position of the nucleoside analog.
  • Reagents used include, for example, trityl chloride, tritilt refluorosulfonate, 4-monomethoxytrityl chloride, 4,4'-dimethoxytrityl chloride, 4,4'-dimethoxytritilt difluorosulfonate. Preferred is 4,4'-dimethoxytrityl chloride.
  • the "hydroxyl deprotecting reagent” is a reaction aid added to desorb the "hydroxyl protecting group", and for example, the "hydroxyl protecting group” is used.
  • Metal catalyst such as palladium, palladium hydroxide, platinum, reducing agent such as hydrogen, formic acid, ammonium formate, iron (III) chloride, boron trichloride
  • reducing agent such as hydrogen
  • boron trichloride for benzyl group: Metal catalyst such as palladium, palladium hydroxide, platinum, reducing agent such as hydrogen, formic acid, ammonium formate, iron (III) chloride, boron trichloride
  • trityl group sulfuric acid, Acid catalysts such as p-toluenesulfonic acid and methanesulfonic acid
  • Inorganic bases such as sodium hydroxide, potassium hydroxide and sodium carbonate, and
  • the metal catalyst can be a metal catalyst supported on a carrier (preferably carbon) or not supported on a carrier, and preferably a metal catalyst supported on carbon (preferably supported on carbon).
  • a metal catalyst supported on carbon preferably supported on carbon.
  • the "acylating agent” is a reagent used for introducing the above-mentioned "protecting group of amino group” into the amino group of a nucleoside analog, for example.
  • acetyl group acetic anhydride
  • acetyl chloride In the case of acetyl group: acetic anhydride, acetyl chloride
  • benzoyl group benzoyl chloride
  • benzoic acid anhydride benzoic acid
  • isobutyryl group isobutyl chloride isobutyric acid anhydride.
  • the "amination agent” is a reagent used to replace the chlorine atom at the 6-position of the purine ring or the carbonyl group at the 4-position of the pyrimidine ring with an amino group, and is, for example, ammonia, an aqueous ammonia solution or Ammonia salts such as ammonium carbonate and ammonium acetate, preferably an aqueous ammonia solution.
  • the "amidating agent” is a reagent used for converting the chlorine atom at the 6-position of the purine ring into an aliphatic amide or an aromatic amide in the cross-coupling reaction, and is, for example, acetylamide or benzoyl. Amides, isobutyramides, preferably isobutyramides.
  • the "activator" in the glycosylation reaction is a reagent used to convert the hydroxyl group at the 1-position of the sugar into the above-mentioned "group forming a elimination group", and is, for example, acetic anhydride or anhydrous. It is benzoic acid, trichloroacetonitrile, carbonyldiimidazole, diphenyl chlorophosphate, preferably acetic anhydride or trichloroacetonitrile.
  • the "halogenating agent" in the glycosylation reaction is a reagent used for halogenating the above-mentioned "group forming a leaving group” in order to allow the glycosylation reaction to proceed stereoselectively, for example.
  • a reagent used for halogenating the above-mentioned “group forming a leaving group” in order to allow the glycosylation reaction to proceed stereoselectively, for example.
  • examples thereof include chlorotrimethylsilane (TMSCl), bromotrimethylsilane (TMSBr), and iodotrimethylsilane (TMSI), and TMSI is preferable.
  • the "activator" in the amination reaction is a reagent used for converting a hydroxyl group into a leaving group, for example, p-toluenesulfonyl chloride, 2,4,6-triisopropylbenzenesulfonyl. It is a chloride, preferably 2,4,6-triisopropylbenzenesulfonyl chloride.
  • the "activator" in the amidation reaction is a reagent used to form an active intermediate of the amidite reagent, for example, 5-benzylthiotetrazole, 5-phenyltetrazole, dibromoimidazole, dicyano. Examples thereof include imidazole, N-alkylimidazole trifluoroacetate, and the like, preferably 4,5-dicyanoimidazole.
  • the amount of activator used is 0.01 to 1.0 equivalents, preferably 0.1 to 0.5 equivalents, relative to the compound of the general formula (XXVII).
  • the "amidite-forming reagent" in the amidite-forming reaction is used to introduce a group containing a phosphorus atom useful for forming an inter-nucleoside bond into the sugar hydroxyl group at the 3-position of the nucleoside analog.
  • Reagents such as 2-cyanoethyl N, N, N', N'-tetraisopropylphosphorodiamidite, 2-cyanoethyldiisopropylchlorophosphoroamidite, preferably 2-cyanoethyl N, N, N'. , N'-tetraisopropylphosphorodiamidite.
  • the amount of amidite-forming reagent used is 1.0 to 1.5 equivalents, preferably 1.1 to 1.3 equivalents, relative to the compound of the general formula (XXVII).
  • the "desiccant" in the amidite reaction is a reagent used for absorbing water in the reaction solution, for example, molecular sheave 3A, molecular sieve 4A, or molecular sieve 5A, preferably. , Molecular Sieve 4A.
  • the compound (2A) of the present invention can be produced by the method A described below. (A method)
  • Z 1 and Z 2 show stable hydroxyl protecting groups under Y deprotection conditions.
  • alcohol solvent used examples include alcohols such as methanol, ethanol, and propanol, but methanol is preferable.
  • Examples of the acid catalyst to be used include sulfuric acid, p-toluenesulfonic acid, methanesulfonic acid and the like, but sulfuric acid is preferable.
  • the reaction temperature is usually 0 ° C to 100 ° C, preferably 40 to 60 ° C.
  • the reaction time varies depending on the type and amount of the acid catalyst used, but is usually 1 hour to 48 hours, preferably 10 hours to 24 hours.
  • the alcohol solution of the target compound (14A) of this reaction is obtained by neutralizing the reaction solution with triethylamine and adding water to crystallize the co-product methoxytriphenylmethane and remove it by filtration. This separates the hydrous alcohol solution containing the target compound. Further, water and toluene are added to the hydrous alcohol solution obtained by liquid separation washing with n-heptane to separate the liquid, and the obtained toluene solution obtained by concentrating the organic layer is used as it is in the next step. can do.
  • This step is a step of producing the compound (15A) by carrying out a cyclization reaction of the diol moiety of the compound (14A) produced in the A-1 step using a trivalent phosphorus reagent and an azodicarboxylate in a solvent. is there.
  • solvent used examples include halogenated hydrocarbons such as methylene chloride, chloroform and 1,2-dichloroethane, hydrocarbons such as benzene and toluene, and ethers such as tetrahydrofuran and dimethyl ether. However, it is preferably toluene.
  • trivalent phosphorus reagent examples include triphenylphosphine and tri (n-butyl) phosphine, but triphenylphosphine is preferable.
  • Examples of the azodicarboxylic acid ester used include diethyl azodicarboxylate, diisopropyl azodicarboxylate, and dit-butyl azodicarboxylate, and diisopropyl azodicarboxylate is preferable.
  • the reaction temperature is usually 0 ° C to 50 ° C, preferably 10 to 40 ° C.
  • the reaction time varies depending on the type and amount of the trivalent phosphorus reagent used, but is usually 1 hour to 24 hours, preferably 1 hour to 3 hours.
  • the toluene solution of the target compound (15A) of this reaction is obtained by, for example, adding magnesium chloride to the reaction solution and stirring to form a sparingly soluble phosphine complex, thereby filtering the co-product phosphine oxide. Can be removed by Further, the hydrazine diester, which is another co-product, can also be effectively removed by washing the toluene layer with methanol water. The toluene solution obtained by concentrating the obtained organic layer can be used as it is in the next step.
  • This step is a step of producing the compound (2A) by hydrolyzing the anomer position of the compound (15A) produced in the A-2 step by allowing an acid to act in the solvent.
  • solvent used examples include water-soluble solvents such as acetic acid, water and alcohol, halogenated hydrocarbons such as methylene chloride, chloroform and 1,2-dichloroethane, hydrocarbons such as benzene and toluene, tetrahydrofuran, and the like.
  • Ethers such as dimethyl ether can be mentioned, but acetate is preferred.
  • Examples of the acid used include hydrochloric acid, sulfuric acid, trifluoroacetic acid, methanesulfonic acid, p-toluenesulfonic acid and the like, but hydrochloric acid is preferable.
  • the reaction temperature is usually 0 ° C to 50 ° C, preferably 20 to 30 ° C.
  • the reaction time varies depending on the type and amount of acid used, but is usually 1 hour to 24 hours, preferably 1 hour to 3 hours.
  • the target compound (2A) of this reaction can be crystallized by, for example, adding water to the reaction solution, cooling and stirring.
  • the obtained compound can be further purified by a conventional method, for example, recrystallization, silica gel chromatography, etc., if necessary.
  • A, Z 1 and Z 2 have the same meaning as described above.
  • This step is a step of producing the compound (14A') using the compound (1B) produced according to the production method of the compound (7) of WO00 / 47599.
  • the compound (14A') can be produced by deprotecting the protecting groups of the hydroxyl groups at the 1st and 2nd positions of the compound (1B) according to the step A-1 of the method A.
  • X is a group that forms a leaving group together with the oxygen atom.
  • Y, Z 1 and Z 2 have the same meaning as described above.
  • Examples of X include lower alkyl sulfonyl groups such as methanesulfonyl and ethanesulfonyl, halogen-substituted lower alkylsulfonyl groups such as trifluoromethanesulfonyl groups, and arylsulfonyl groups such as p-toluenesulfonyl, which are suitable. Is a methanesulfonyl group or a p-toluenesulfonyl group.
  • This step is a step of producing compound (5) by reacting compound (4) with an acetone solvent in the presence of an acid catalyst.
  • Examples of the acid catalyst to be used include sulfuric acid, p-toluenesulfonic acid, methanesulfonic acid and the like, but sulfuric acid is preferable.
  • the reaction temperature varies depending on the acid catalyst used, but is usually 0 ° C to 50 ° C, preferably 30 to 40 ° C.
  • the reaction time varies depending on the type and amount of the acid catalyst used, but is usually 10 minutes to 24 hours, preferably 10 hours to 20 hours.
  • the target compound (5) of this reaction can be obtained, for example, by neutralizing the reaction solution, concentrating the reaction mixture, and distilling off the solvent.
  • This step is a step of reacting the leaving group-introducing reagent with the compound (5) produced in the C-1 step in a solvent in the presence of a base to produce the compound (6).
  • Examples of the solvent used include amides such as dimethylacetamide and dimethylformamide, halogenated hydrocarbons such as methylene chloride, chloroform and 1,2-dichloroethane, hydrocarbons such as benzene and toluene, tetrahydrofuran, and the like.
  • Examples include ethers such as dimethyl ether and esters such as methyl acetate, ethyl acetate and propyl acetate, with dimethylacetamide being preferred.
  • Examples of the base used include bases such as triethylamine, pyridine, and dimethylaminopyridine 1-methylimidazole, but 1-methylimidazole is preferable.
  • Examples of the leaving group introducing reagent used include p-toluenesulfonyl chloride, methanesulfonyl chloride, trifluoromethanesulfonic anhydride and the like, and p-toluenesulfonyl chloride is preferable.
  • the reaction temperature varies depending on the leaving group-introducing reagent used, but is usually 0 ° C to 50 ° C, preferably 20 to 30 ° C.
  • the reaction time varies depending on the type and amount of the leaving group-introducing reagent, but is usually 10 minutes to 24 hours, preferably 1 hour to 5 hours.
  • the target compound (6) of this reaction can be obtained, for example, by adding water to the reaction solution and crystallizing it.
  • This step is a step of reacting the compound (6) produced in the C-2 step with a hydride reducing agent in a solvent to produce the compound (7).
  • solvent used examples include halogenated hydrocarbons such as methylene chloride, chloroform and 1,2-dichloroethane, hydrocarbons such as benzene and toluene, and ethers such as tetrahydrofuran and dimethyl ether.
  • halogenated hydrocarbons such as methylene chloride, chloroform and 1,2-dichloroethane
  • hydrocarbons such as benzene and toluene
  • ethers such as tetrahydrofuran and dimethyl ether.
  • tetrahydrofuran is preferable.
  • Examples of the hydride reducing agent used include sodium bis (2-methoxyethoxy) aluminum, lithium aluminum hydride, and diisobutylaluminum hydride, but bis (2-methoxyethoxy) hydride is preferable. It is sodium aluminum.
  • the reaction time varies depending on the type and amount of the hydride reducing agent, but is usually 10 minutes to 24 hours, preferably 1 hour to 3 hours.
  • This step is a step of producing the compound (8) by selectively introducing a protecting group into the primary hydroxyl group of the compound (7) produced in the C-3 step in a solvent in the presence of a base.
  • solvent used examples include amides such as dimethylacetamide and dimethylformamide, hydrocarbons such as benzene and toluene, halogenated hydrocarbons such as methylene chloride, chloroform, 1,2-dichloroethane, tetrahydrofuran, etc.
  • amides such as dimethylacetamide and dimethylformamide
  • hydrocarbons such as benzene and toluene
  • halogenated hydrocarbons such as methylene chloride, chloroform, 1,2-dichloroethane, tetrahydrofuran, etc.
  • ethers such as dimethyl ether and esters such as methyl acetate, ethyl acetate and propyl acetate, but toluene is preferred.
  • Examples of the base used include bases such as triethylamine, pyridine, dimethylaminopyridine 1-methylimidazole, and 4-methylmorpholine, but 4-methylmorpholine is preferable.
  • Examples of the primary hydroxyl group protection reagent used include trityl chloride, 4,4'-dimethoxytrityl chloride, and the like, and trityl chloride is preferable.
  • the reaction temperature varies depending on the protective reagent used, but is usually 0 ° C to 50 ° C, preferably 20 to 30 ° C.
  • the reaction time varies depending on the type and amount of the primary hydroxyl group protective reagent used, but is usually 10 minutes to 24 hours, preferably 1 hour to 5 hours.
  • the target compound (8) of this reaction can be obtained, for example, by adding water to the reaction solution, separating the organic layer containing the target compound, washing with water, and distilling off the solvent.
  • the obtained compound can be further purified by a conventional method, for example, recrystallization, silica gel chromatography and the like, if necessary.
  • C-5 step the secondary hydroxyl group at the 3-position of the compound (8) produced in the C-4 step is oxidized in the solvent in the presence of a base, an oxidizing agent, an oxidation catalyst and a co-catalyst to produce the compound (9). It is a process.
  • solvent used examples include amides such as dimethylacetamide and dimethylformamide, hydrocarbons such as benzene and toluene, halogenated hydrocarbons such as methylene chloride, chloroform, 1,2-dichloroethane, tetrahydrofuran, etc.
  • Ethers such as dimethyl ether and esters such as methyl acetate, ethyl acetate and propyl acetate can be raised, but toluene is preferred.
  • Examples of the base used include inorganic bases such as sodium hydroxide, potassium hydroxide, baking soda, and sodium carbonate, and organic bases such as triethylamine, pyridine, dimethylaminopyridine 1-methylimidazole, and 4-methylmorpholin. However, it is preferably baking soda.
  • oxidation catalyst used examples include 2,2,6,6-tetramethylpiperidin 1-oxyl, 2-azaadamantane-N-oxyl, 9-azanoradamantane-N-oxyl and the like, which are preferable. Is 9-azanor adamantane-N-oxyl.
  • Examples of the co-catalyst used include potassium bromide, tetrabutylammonium bromide, etc., but potassium bromide is preferable.
  • oxidizing agent used examples include sodium hypochlorite, iodobenzenediacetate and the like, but sodium hypochlorite is preferable.
  • the reaction temperature varies depending on the oxidation catalyst and co-catalyst used, but is usually 0 ° C to 50 ° C, preferably 0 to 10 ° C.
  • the reaction time varies depending on the type and amount of the oxidation catalyst and co-catalyst, but is usually 10 minutes to 24 hours, preferably 1 hour to 3 hours.
  • the toluene solution of the target compound (9) of this reaction can be obtained, for example, by allowing the reaction solution to stand and then removing the aqueous layer to separate the organic layer containing the target compound and washing with water. It can be used as it is in the next process.
  • the obtained compound can be further purified by a conventional method, for example, recrystallization, silica gel chromatography and the like, if necessary.
  • C-6 process In this step, the carbon at the 4-position of compound (9) produced in the C-5 step in the presence of a base and an alkylating agent is sterically hydroxymethylated with epimerization. This is a step of producing compound (10).
  • solvent used examples include amides such as dimethylacetamide and dimethylformamide, hydrocarbons such as benzene and toluene, halogenated hydrocarbons such as methylene chloride, chloroform, 1,2-dichloroethane, tetrahydrofuran, etc.
  • amides such as dimethylacetamide and dimethylformamide
  • hydrocarbons such as benzene and toluene
  • halogenated hydrocarbons such as methylene chloride, chloroform, 1,2-dichloroethane, tetrahydrofuran, etc.
  • ethers such as dimethyl ether and esters such as methyl acetate, ethyl acetate and propyl acetate, but toluene is preferred.
  • Examples of the base used include inorganic bases such as sodium hydroxide, potassium hydroxide, sodium bicarbonate, sodium carbonate, triethylamine, pyridine, and 1,8-diazabicyclo [5.4.0] undec-7-ene.
  • Organic bases can be mentioned, but 1,8-diazabicyclo [5.4.0] undec-7-ene is preferable.
  • alkylating agent used examples include paraformaldehyde, an aqueous solution of formaldehyde, and the like, and an aqueous solution of formaldehyde is preferable.
  • the reaction temperature varies depending on the base used, but is usually 0 ° C to 50 ° C, preferably 20 to 30 ° C.
  • the reaction time varies depending on the type of base and the amount used, but is usually 10 minutes to 24 hours, preferably 1 hour to 3 hours.
  • the toluene solution of the target compound (10) of this reaction can be obtained, for example, by allowing the reaction solution to stand and then removing the aqueous layer to separate the organic layer containing the target compound and washing with water. It can be used as it is in the next process. Further, the cyclized product (11) partially produced at this time is converted into the compound (12) in the next step.
  • This step is a step of reacting a hydride reducing agent with the compound (10) produced in the C-6 step in a solvent to produce a compound (12) in which the hydroxyl group at the 3-position is sterically controlled.
  • solvent used examples include halogenated hydrocarbons such as methylene chloride, chloroform and 1,2-dichloroethane, hydrocarbons such as benzene and toluene, and ethers such as tetrahydrofuran and dimethyl ether. However, it is preferably toluene.
  • hydride reducing agent examples include sodium bis (2-methoxyethoxy) aluminum hydride, lithium aluminum hydride, diisobutylaluminum hydride, and sodium borohydride, but sodium borohydride is preferable. Is.
  • the reaction temperature varies depending on the hydride reducing agent used, but is usually 0 ° C to 50 ° C, preferably 20 to 30 ° C.
  • the reaction time varies depending on the type and amount of the hydride reducing agent, but is usually 10 minutes to 24 hours, preferably 1 hour to 3 hours.
  • the toluene solution of the target compound (12) of this reaction can be obtained, for example, by allowing the reaction solution to stand and then removing the aqueous layer to separate the organic layer containing the target compound and washing with water. It can be used as it is in the next process.
  • This step is a step of reacting a hydroxyl group protection reagent in a solvent in the presence of a base and a catalyst to protect the two hydroxyl groups of the compound (12) produced in the C-7 step to produce the compound (13). is there.
  • solvent used examples include halogenated hydrocarbons such as methylene chloride, chloroform and 1,2-dichloroethane, hydrocarbons such as benzene and toluene, and ethers such as tetrahydrofuran and dimethyl ether. However, it is preferably toluene.
  • hydroxyl group protection reagent examples include trityl chloride, t-butyldiphenylsilyl chloride, t-butyldimethylsilyl chloride, acetic anhydride, benzoyl chloride and the like, but benzyl chloride or benzyl is preferable. It is a bromide, more preferably a benzyl bromide.
  • Examples of the catalyst to be used include tetrabutylammonium iodide, potassium iodide, sodium iodide and the like, but tetrabutylammonium iodide is preferable.
  • Examples of the base used include inorganic bases such as sodium hydroxide, potassium hydroxide, sodium bicarbonate, sodium carbonate, triethylamine, pyridine, and 1,8-diazabicyclo [5.4.0] undec-7-ene.
  • Organic bases can be mentioned, but potassium hydroxide is preferred.
  • the reaction temperature varies depending on the hydroxyl group protection reagent used, but is usually 20 ° C to 100 ° C, preferably 60 to 80 ° C.
  • the reaction time varies depending on the type and amount of the hydroxyl group protective reagent used, but is usually 1 hour to 48 hours, preferably 10 hours to 24 hours.
  • the toluene solution of the target compound (13) of this reaction can be obtained, for example, by allowing the reaction solution to stand and then removing the aqueous layer to separate the organic layer containing the target compound and washing with water.
  • the obtained toluene layer can be crystallized by substituting 1-companol with a solvent.
  • the obtained compound can be further purified by a conventional method, for example, recrystallization, silica gel chromatography, etc., if necessary.
  • E represents ethylene, trimethylene or tetramethylene
  • Y, Z 1 and Z 2 have the same meanings as described above.
  • solvent used examples include amides such as dimethylacetamide and dimethylformamide, hydrocarbons such as benzene and toluene, halogenated hydrocarbons such as methylene chloride, chloroform, 1,2-dichloroethane, tetrahydrofuran, etc.
  • amides such as dimethylacetamide and dimethylformamide
  • hydrocarbons such as benzene and toluene
  • halogenated hydrocarbons such as methylene chloride, chloroform, 1,2-dichloroethane, tetrahydrofuran, etc.
  • ethers such as dimethyl ether and esters such as methyl acetate, ethyl acetate and propyl acetate, but toluene is preferred.
  • Examples of the base used include bases such as triethylamine, pyridine, dimethylaminopyridine 1-methylimidazole, and 4-methylmorpholine, but 4-methylmorpholine is preferable.
  • hydroxyl group protection reagent examples include trityl chloride, 4,4'-dimethoxytrityl chloride, and the like, and trityl chloride is preferable.
  • the reaction temperature varies depending on the protective reagent used, but is usually 0 ° C to 50 ° C, preferably 20 to 30 ° C.
  • the reaction time varies depending on the type and amount of the protective reagent used, but is usually 10 minutes to 24 hours, preferably 1 hour to 5 hours.
  • the target compound (13A') of this reaction can be obtained, for example, by adding water to the reaction solution, separating the organic layer containing the target compound, washing with water, and distilling off the solvent.
  • the obtained compound can be further purified by a conventional method, for example, recrystallization, silica gel chromatography, etc., if necessary.
  • the compound (5E) of the present invention can be produced by the method E described below. (E method)
  • R 1 , R 2 , X 1 , Z 1 , Z 2 and P 1 have the same meanings as described above.
  • This step is a step of producing compound (2E) by reacting compound (2A) with an activator in a solvent in the presence of a base.
  • solvent to be used examples include halogenated hydrocarbons such as methylene chloride, chloroform and 1,2-dichloroethane, hydrocarbons such as benzene and toluene, ethers such as tetrahydrofuran and dimethyl ether, and acetonitrile. It can, but is preferably toluene or acetonitrile.
  • Examples of the activator used include acetic anhydride, benzoic anhydride, trichloroacetonitrile, carbonyldiimidazole, and diphenyl chlorophosphate, but acetic anhydride or trichloroacetonitrile is preferable.
  • the base used depends on the activator and may include organic bases such as triethylamine, pyridine and 1,8-diazabicyclo [5.4.0] undec-7-ene, but pyridine is preferred. , 1,8-Diazabicyclo [5.4.0] Undec-7-ene.
  • the target compound (2E) of this reaction can be used, for example, directly for glycosylation, or can be obtained by neutralizing the reaction solution, concentrating the reaction mixture, and distilling off the solvent.
  • the reaction temperature varies depending on the activator used, but is usually 0 ° C to 50 ° C, preferably 0 ° C to 30 ° C.
  • the reaction time varies depending on the type and amount of the activator, but is usually 10 minutes to 24 hours, preferably 1 hour to 3 hours.
  • the obtained compound can be further purified by a conventional method, for example, recrystallization, silica gel chromatography and the like, if necessary.
  • E-2 process In this step, the compound (2E) obtained in the E-1 step is mixed with a pyrimidine base (such as cytosine protected by a thymine or an acyl group) silylated by a silylation reaction in a solvent in the presence of a halogenating agent. This is a step of producing compound (3E) by the glycosylation reaction of.
  • solvent used for the silylation reaction and the glycosylation reaction examples include halogenated hydrocarbons such as methylene chloride, chloroform and 1,2-dichloroethane, hydrocarbons such as benzene and toluene, and tetrahydrofuran and dimethyl ether. Although ethers and acetonitrile can be mentioned, acetonitrile is preferable.
  • silylating agent used examples include N, O-bistrimethylsilylacetamide and hexamethyldisilazane, but N, O-bistrimethylsilylacetamide is preferable.
  • the temperature of the pyrimidine base silylation reaction varies depending on the silylating agent, but is usually 0 ° C to 50 ° C, preferably 20 ° C to 40 ° C.
  • the reaction time of the silylation reaction varies depending on the type and amount of the silylating agent, but is usually 10 minutes to 24 hours, preferably 1 hour to 10 hours.
  • halogenating agent used in the glycosylation reaction examples include chlorotrimethylsilane (TMSCl), bromotrimethylsilane (TMSBr), and iodotrimethylsilane (TMSI), but TMSI is preferable.
  • the reaction temperature of the glycosylation reaction varies depending on the structure of compound (2E) and the halogenating agent used, but is usually 0 ° C to 50 ° C, preferably 20 ° C to 40 ° C.
  • the reaction time of the glycosylation reaction varies depending on the type and amount of the halogenating agent used, but is usually 10 minutes to 24 hours, preferably 10 hours to 20 hours.
  • the target compound (3E) of this reaction can be obtained, for example, by neutralizing the reaction solution, concentrating the reaction mixture, and distilling off the solvent.
  • the obtained compound can be further purified by a conventional method, for example, recrystallization, silica gel chromatography and the like, if necessary.
  • This step is a step of reacting the compound (3E) with a hydroxyl group deprotecting reagent in a solvent to produce the compound (4E) by the deprotecting reaction.
  • the deprotecting reagent is a metal catalyst and a reducing agent supported on carbon.
  • solvent to be used examples include hydrocarbons such as benzene and toluene, ethers such as tetrahydrofuran and dimethyl ether, and alcohols such as methanol, ethanol and propanol, but methanol is preferable.
  • metal catalyst used examples include palladium, palladium hydroxide, platinum and the like, but palladium is preferable.
  • Examples of the reducing agent used include hydrogen, formic acid, ammonium formate, etc., but hydrogen is preferable.
  • the reaction temperature varies depending on the metal catalyst, but is usually 0 ° C. to 70 ° C., preferably 40 ° C. to 60 ° C.
  • the reaction time varies depending on the type of metal catalyst and reducing agent and the amount used, but is usually 10 minutes to 24 hours, preferably 1 hour to 5 hours.
  • the target compound (4E) of this reaction can be obtained, for example, by removing the metal catalyst by filtering the reaction solution, concentrating the reaction mixture, and distilling off the solvent.
  • the obtained compound can be further purified by a conventional method, for example, recrystallization, silica gel chromatography and the like, if necessary.
  • a deprotection reaction is carried out using a deprotecting reagent.
  • solvent to be used examples include halogenated hydrocarbons such as methylene chloride, chloroform and 1,2-dichloroethane, and hydrocarbons such as benzene and toluene, and methylene chloride is preferable.
  • Examples of the deprotecting reagent used include iron (III) chloride and boron trichloride, and boron trichloride is preferable.
  • the reaction temperature varies depending on the deprotecting reagent, but is usually ⁇ 20 ° C. to 30 ° C., preferably ⁇ 20 ° C. to 20 ° C.
  • the reaction time varies depending on the deprotecting reagent, but is usually 10 minutes to 10 hours, preferably 1 hour to 5 hours.
  • the target compound (4E) of this reaction can be obtained, for example, by neutralizing the reaction solution, concentrating the reaction mixture, and distilling off the solvent.
  • This step is a step of producing the compound (5E) by reacting the compound (4E) with a protective reagent for a primary hydroxyl group in the presence of a base in a solvent.
  • solvent used examples include halogenated hydrocarbons such as methylene chloride, chloroform and 1,2-dichloroethane, hydrocarbons such as benzene and toluene, ethers such as tetrahydrofuran and dimethyl ether, ethyl acetate and propyl acetate.
  • halogenated hydrocarbons such as methylene chloride, chloroform and 1,2-dichloroethane
  • hydrocarbons such as benzene and toluene
  • ethers such as tetrahydrofuran and dimethyl ether
  • ethyl acetate and propyl acetate propyl acetate.
  • Esters such as, acetonitrile can be mentioned, but tetrahydrofuran or ethyl acetate is preferable.
  • Examples of the primary hydroxyl group protection reagent used include trityl chloride, 4-methoxytrityl chloride, 4,4'-dimethoxytrityl chloride, and the like, and 4,4'-dimethoxytrityl chloride is preferable. ..
  • Examples of the base used include aliphatic amines such as triethylamine and N-methylmorpholine, and aromatic amines such as imidazole and pyridine, and pyridine is preferable.
  • the reaction temperature varies depending on the protective reagent, but is usually 0 ° C to 50 ° C, preferably 0 ° C to 20 ° C.
  • the reaction time varies depending on the protective reagent, but is usually 10 minutes to 10 hours, preferably 1 hour to 5 hours.
  • the target compound (5E) of this reaction can be obtained, for example, by neutralizing the reaction solution, concentrating the reaction mixture, and distilling off the solvent.
  • the obtained compound can be further purified by a conventional method, for example, recrystallization, silica gel chromatography, etc., if necessary.
  • the compound (4F) of the present invention can be produced by the F method described below. (F method)
  • R 1 , R 6 , Z 3 and P 1 have the same meaning as described above.
  • This step is a step of producing the compound (1F) by reacting the compound (5E') with a hydroxyl group protection reagent in a solvent in the presence of a base and a catalyst.
  • solvent used examples include halogenated hydrocarbons such as methylene chloride, chloroform and 1,2-dichloroethane, hydrocarbons such as benzene and toluene, ethers such as tetrahydrofuran and dimethyl ether, and acetonitrile. It can, but preferred is acetonitrile.
  • hydroxyl group protection reagent examples include acetic anhydride, acetyl chloride, benzoic anhydride, benzoyl chloride and the like, but acetic anhydride is preferable.
  • the base used depends on the activator, but organic bases such as triethylamine and pyridine can be mentioned, but triethylamine is preferable.
  • the catalyst used examples include N, N-dimethylaminopyridine, 1,8-diazabicyclo [5.4.0] undec-7-ene, and the like, but N, N-dimethylaminopyridine is preferable.
  • the reaction temperature varies depending on the base used, but is usually 0 ° C to 50 ° C, preferably 0 ° C to 30 ° C.
  • the reaction time varies depending on the type and amount of the protective reagent used, but is usually 10 minutes to 24 hours, preferably 1 hour to 3 hours.
  • the target compound (1F) of this reaction can be obtained, for example, by neutralizing the reaction solution, concentrating the reaction mixture, and distilling off the solvent.
  • This step is a step of producing compound (2F) by activating a hydroxyl group using an activator in a solvent, in the presence of a base and a catalyst, and then reacting the compound (1F) with an amination agent. ..
  • solvent used examples include halogenated hydrocarbons such as methylene chloride, chloroform and 1,2-dichloroethane, hydrocarbons such as benzene and toluene, ethers such as tetrahydrofuran and dimethyl ether, and acetonitrile. It can, but preferred is acetonitrile.
  • the base used depends on the activator, and examples thereof include organic bases such as triethylamine and pyridine, but triethylamine is preferable.
  • Examples of the catalyst used include N, N-dimethylaminopyridine, 1,8-diazabicyclo [5.4.0] undec-7-ene, and the like, but N, N-dimethylaminopyridine is preferable. Is.
  • Examples of the activator used include p-toluenesulfonyl chloride, 2,4,6-triisopropylbenzenesulfonyl chloride and the like, and 2,4,6-triisopropylbenzenesulfonyl chloride is preferable.
  • the reaction temperature varies depending on the activator used, but is usually 0 ° C to 50 ° C, preferably 0 ° C to 30 ° C.
  • the reaction time varies depending on the type and amount of the activator, but is usually 10 minutes to 8 hours, preferably 1 hour to 3 hours.
  • aminating agent to be used examples include ammonia, an aqueous ammonia solution, or ammonia salts such as ammonium carbonate and ammonium acetate, and an aqueous ammonia solution is preferable.
  • the reaction temperature varies depending on the aminating agent used, but is usually 0 ° C. to 50 ° C., preferably 0 ° C. to 30 ° C.
  • the reaction time varies depending on the type and amount of the aminating agent, but is usually 10 minutes to 8 hours, preferably 1 hour to 3 hours.
  • the target compound (2F) of this reaction can be obtained, for example, by neutralizing the reaction solution, concentrating the reaction mixture, and distilling off the solvent.
  • This step is a step of producing the compound (3F) by acylating the amino group of the compound (2F) in a solvent in the presence of a base with an acylating agent.
  • solvent used examples include halogenated hydrocarbons such as methylene chloride, chloroform and 1,2-dichloroethane, hydrocarbons such as benzene and toluene, ethers such as tetrahydrofuran and dimethyl ether, and acetonitrile. It can, but preferred is acetonitrile.
  • Examples of the base used include inorganic bases such as sodium hydroxide, potassium hydroxide, sodium bicarbonate, sodium carbonate, triethylamine, pyridine, and 1,8-diazabicyclo [5.4.0] undec-7-ene.
  • Organic bases can be mentioned, but sodium hydroxide is preferred.
  • acylating agent used examples include benzoyl chloride, benzoic anhydride and the like, but benzoic anhydride is preferable.
  • the reaction temperature varies depending on the acylating agent used, but is usually 0 ° C to 50 ° C, preferably 10 ° C to 40 ° C.
  • the reaction time varies depending on the type and amount of the acylating agent used, but is usually 1 to 48 hours, preferably 2 hours to 20 hours.
  • the target compound (3F) of this reaction can be obtained, for example, by neutralizing the reaction solution, concentrating the reaction mixture, and distilling off the solvent.
  • This step is a step of producing the compound (4F) by selectively hydrolyzing the acyl group at the 3-position of the compound (3F) with a base in a solvent.
  • Examples of the solvent to be used include alcohols such as methanol, ethanol and propanol, water and acetonitrile, but water and acetonitrile are preferable.
  • Examples of the base used include inorganic bases such as sodium hydroxide, potassium hydroxide, baking soda, and sodium carbonate, but sodium hydroxide is preferable.
  • the reaction temperature varies depending on the base used, but is usually 0 ° C to 50 ° C, preferably 0 ° C to 30 ° C.
  • the reaction time varies depending on the base used, but is usually 10 minutes to 24 hours, preferably 1 hour to 3 hours.
  • the target compound (4F) of this reaction can be obtained, for example, by neutralizing the reaction solution, concentrating the reaction mixture, and distilling off the solvent.
  • the obtained compound can be further purified by a conventional method, for example, recrystallization, silica gel chromatography, etc., if necessary.
  • the compound (3G) of the present invention can be produced by the G method described below. (G method)
  • R 3 , X 2 , Z 1 , Z 2 and P 1 have the same meanings as described above.
  • This step is a step of producing compound (1G) by reacting compound (2A) with an activator in a solvent in the presence of a base.
  • solvent to be used examples include halogenated hydrocarbons such as methylene chloride, chloroform and 1,2-dichloroethane, hydrocarbons such as benzene and toluene, ethers such as tetrahydrofuran and dimethyl ether, and acetonitrile. Although it can be used, toluene and acetonitrile are preferable.
  • the reaction temperature varies depending on the activator used, but is usually 0 ° C to 50 ° C, preferably 0 ° C to 30 ° C.
  • Examples of the activator used include acetic anhydride, benzoic anhydride, trichloroacetonitrile, carbonyldiimidazole, and diphenyl chlorophosphate, but acetic anhydride and benzoic anhydride are preferred.
  • the bases used will vary depending on the activator, but may include organic bases such as triethylamine, pyridine, N, N-dimethylaminopyridine, 1,8-diazabicyclo [5.4.0] undec-7-ene. However, N, N-dimethylaminopyridine is preferable.
  • the reaction temperature varies depending on the activator used, but is usually 0 ° C to 50 ° C, preferably 0 ° C to 30 ° C.
  • the reaction time varies depending on the type and amount of the activator, but is usually 10 minutes to 8 hours, preferably 1 hour to 3 hours.
  • the target compound (1G) of this reaction can be used, for example, directly for glycosylation, or can be obtained by neutralizing the reaction solution, concentrating the reaction mixture, and distilling off the solvent.
  • the obtained compound can be further purified by a conventional method, for example, recrystallization, silica gel chromatography and the like, if necessary.
  • G-2 process In this step, compound (1G) undergoes a glycosylation reaction with a 6-aminopurine-9-yl group in which an amino group is protected in a solvent in the presence of an acid reagent, followed by isomerization of the compound (2G). ) Is the process of manufacturing.
  • solvent to be used examples include halogenated hydrocarbons such as methylene chloride, chloroform and 1,2-dichloroethane, hydrocarbons such as benzene and toluene, ethers such as tetrahydrofuran, and acetonitrile. , Preferred is acetonitrile.
  • Examples of the acid reagent used include dichlorodimethylsilane and trifluoromethanesulfonic acid, trimethylsilyl trifluoromethanesulfonate and trifluoromethanesulfonic acid, methanesulfonic acid, trifluoroacetic acid and the like, but trimethylsilyl trifluoromethanesulfonate is preferable. It is trifluoroacetic acid.
  • reaction temperature for glycosylation and isomerization varies depending on the structure of compound (1G) and the acid reagent used, but is usually 30 ° C to 70 ° C, preferably 40 ° C to 60 ° C.
  • reaction time varies depending on the type and amount of Lewis acid reagent used, but is usually 10 minutes to 24 hours, preferably 1 hour to 5 hours.
  • the target compound (2G) of this reaction can be obtained, for example, by neutralizing the reaction solution, concentrating the reaction mixture, and distilling off the solvent.
  • This step is a step of producing the compound (3G) by reacting the compound (2G) with a deprotecting reagent in a solvent to deprotect Z 1 and Z 2.
  • solvent to be used examples include halogenated hydrocarbons such as methylene chloride, chloroform and 1,2-dichloroethane, and hydrocarbons such as benzene and toluene, and methylene chloride is preferable.
  • Examples of the deprotecting reagent when Z 1 and Z 2 are benzyl groups include iron (III) chloride and boron trichloride, and boron trichloride is preferable.
  • the reaction temperature varies depending on the deprotecting reagent, but is usually ⁇ 20 ° C. to 30 ° C., preferably ⁇ 20 ° C. to 20 ° C.
  • the reaction time varies depending on the deprotecting reagent, but is usually 10 minutes to 10 hours, preferably 1 hour to 5 hours.
  • the target compound (3G) of this reaction can be obtained, for example, by neutralizing the reaction solution, concentrating the reaction mixture, and distilling off the solvent.
  • the obtained compound can be further purified by a conventional method, for example, recrystallization, silica gel chromatography and the like, if necessary.
  • G-4 process The target compound (4G) of this step can be produced by protecting the primary hydroxyl group of the compound (3G) according to the E method E-4 step.
  • the compound (5H) of the present invention can also be produced by the H method (glycosylation using dichloromethane) described below. (H method)
  • R 3 , Z 1 , Z 2 and P 1 have the same meaning as described above.
  • This step is a step of producing compound (1H) by subjecting compound (1G) to a glycosylation reaction with dichloropurine silylated by a silylation reaction in a solvent in the presence of a halogenating agent.
  • solvent used for the glycosylation reaction and the silylation reaction examples include halogenated hydrocarbons such as methylene chloride, chloroform and 1,2-dichloroethane, hydrocarbons such as benzene and toluene, and ethers such as tetrahydrofuran. , Acetonitrile can be mentioned, but acetonitrile is preferable.
  • silylating agent used in the silylation reaction examples include N, O-bistrimethylsilylacetamide and hexamethyldisilazane, but N, O-bistrimethylsilylacetamide is preferable.
  • the reaction temperature of the silylation reaction of dichloropurine varies depending on the silylating agent, but is usually 0 ° C. to 90 ° C., preferably 50 ° C. to 80 ° C.
  • the reaction time of the silylation reaction varies depending on the type and amount of the silylating agent, but is usually 10 minutes to 24 hours, preferably 1 hour to 10 hours.
  • halogenating agent used in the glycosylation reaction examples include chlorotrimethylsilane (TMSCl), bromotrimethylsilane (TMSBr), and iodotrimethylsilane (TMSI), but TMSI is preferable.
  • the reaction temperature of the glycosylation reaction varies depending on the structure of compound (2B) and the halogenating agent used, but is usually 0 ° C to 90 ° C, preferably 50 ° C to 80 ° C.
  • the reaction time of the glycosylation reaction varies depending on the type and amount of the halogenating agent used, but is usually 10 minutes to 24 hours, preferably 10 hours to 5 hours.
  • the target compound (1H) of this reaction can be obtained, for example, by neutralizing the reaction solution, concentrating the reaction mixture, and distilling off the solvent.
  • This step is a step of producing compound (2H) by reacting compound (1H) with an aminating agent in a solvent.
  • solvent to be used examples include halogenated hydrocarbons such as methylene chloride, chloroform and 1,2-dichloroethane, hydrocarbons such as benzene and toluene, ethers such as tetrahydrofuran and dimethyl ether, and acetonitrile. It can, but is preferably tetrahydrofuran.
  • aminating agent to be used examples include ammonia, an aqueous ammonia solution, or ammonia salts such as ammonium carbonate and ammonium acetate, and an aqueous ammonia solution is preferable.
  • the reaction temperature is usually 0 ° C. to 90 ° C., preferably 30 ° C. to 60 ° C.
  • the reaction time varies depending on the amount of the solvent and the aminating agent used, but is usually 10 minutes to 24 hours, preferably 1 hour to 10 hours.
  • the target compound (2H) of this reaction can be obtained, for example, by neutralizing the reaction solution, concentrating the reaction mixture, and distilling off the solvent.
  • This step is a step of producing compound (3H) by a deprotection reaction of Z 1 and Z 2 of compound (2H) and a hydrogenation reaction of a chlorine atom at the 2-position of the purine ring in a solvent.
  • solvent used examples include water, methanol, ethanol, alcohols such as 1-propanol and 2-propanol, hydrocarbons such as benzene and toluene, ethers such as tetrahydrofuran and diethyl ether, and acetonitrile. Yes, but ethanol is preferred.
  • the deprotection reaction of Z 1 and Z 2 and the hydrogenation reaction at the 2-position of the purine ring can be simultaneously carried out by using a reducing agent in the presence of a metal catalyst.
  • metal catalyst used examples include palladium, palladium hydroxide, and platinum (particularly, palladium supported on carbon, palladium hydroxide, or platinum), but palladium (particularly, supported on carbon) is preferable. Palladium).
  • Examples of the reducing agent used include hydrogen, formic acid, ammonium formate, etc., but hydrogen is preferable.
  • the reaction temperature varies depending on the metal catalyst, but is usually 0 ° C. to 70 ° C., preferably 40 ° C. to 60 ° C.
  • the reaction time varies depending on the type and amount of the metal catalyst and reducing agent, but is usually 10 minutes to 24 hours, preferably 1 hour to 10 hours.
  • the target compound (3H) of this reaction can be obtained, for example, by removing the metal catalyst by filtering the reaction solution, concentrating the reaction mixture, and distilling off the solvent.
  • the obtained compound can be further purified by a conventional method, for example, recrystallization, silica gel chromatography and the like, if necessary.
  • H-4 process In this step, the compound (3H) is protected with a hydroxyl group protecting reagent in a solvent, the amino group on the purine ring is acylated with an acylating agent, and then the protecting group on the hydroxyl group is eliminated with ammonia. This is a step of producing the compound (4H).
  • Examples of the solvent to be used include pyridine and acetonitrile, but pyridine is preferable.
  • hydroxyl group protection reagent examples include chlorotrimethylsilane and trifluoromethanesulfonyltrimethylsilane, but chlorotrimethylsilane is preferable.
  • the reaction temperature is usually 0 ° C. to 90 ° C., preferably 0 ° C. to 30 ° C.
  • the reaction time varies depending on the type and amount of the hydroxyl group protective reagent used, but is usually 10 minutes to 2 hours, preferably 30 minutes to 1 hour.
  • acylating agent used examples include acetic anhydride, acetyl chloride, benzoic anhydride, benzoyl chloride and the like, but benzoyl chloride is preferable.
  • the temperature of the acylation reaction is usually 0 ° C. to 90 ° C., preferably 0 ° C. to 30 ° C.
  • the reaction time varies depending on the type and amount of the hydroxyl group protective reagent used, but is usually 1 hour to 8 hours, preferably 1 hour to 3 hours.
  • the target compound (4H) of this reaction can be obtained, for example, by adding aqueous ammonia to the reaction solution, concentrating the reaction mixture, and distilling off the solvent.
  • the obtained compound can be further purified by a conventional method, for example, recrystallization, silica gel chromatography and the like, if necessary.
  • the target compound (5H) in this step can be produced by protecting the primary hydroxyl group of the compound (4H) according to the step E-4 of the E method.
  • the compound (4I) of the present invention can be produced by the method I described below. (I method)
  • Step I-1 This step is a step of producing compound (1I) by a substitution reaction of compound (1H) with benzyl alcohol which may have a substituent in a solvent in the presence of a base.
  • benzyl alcohol examples include benzyl alcohol, 4-methylbenzyl alcohol, 2,4,6-trimethylbenzyl alcohol, 3,4,5-trimethylbenzyl alcohol, and 4-methoxybenzyl alcohol. , 4-Chlorobenzyl alcohol, 4-bromobenzyl alcohol or 4-cyanobenzyl alcohol, preferably benzyl alcohol.
  • solvent to be used examples include halogenated hydrocarbons such as methylene chloride, chloroform and 1,2-dichloroethane, hydrocarbons such as benzene and toluene, ethers such as tetrahydrofuran and dimethyl ether, and acetonitrile. It can, but is preferably tetrahydrofuran.
  • Examples of the base used include inorganic bases such as sodium hydride and sodium carbonate, and organic bases such as triethylamine, pyridine and 1,8-diazabicyclo [5.4.0] undec-7-ene. It can, but is preferably sodium hydride.
  • the reaction temperature is usually 0 ° C. to 90 ° C., preferably 0 ° C. to 30 ° C.
  • the reaction time varies depending on the amount of the solvent and the base used, but is usually 10 minutes to 24 hours, preferably 1 hour to 10 hours.
  • the target compound (1I) of this reaction can be obtained, for example, by neutralizing the reaction solution, concentrating the reaction mixture, and distilling off the solvent.
  • Step I-2 This step is a step of producing compound (2I) by cross-coupling the compound (1I) with an amidating agent in a solvent in the presence of a base, a palladium catalyst, and a phosphine ligand.
  • the solvent to be used examples include halogenated hydrocarbons such as methylene chloride, chloroform and 1,2-dichloroethane, hydrocarbons such as benzene and toluene, ethers such as tetrahydrofuran and dimethyl ether, and acetonitrile. Although it can be, it is preferably toluene.
  • Examples of the base used include inorganic bases such as sodium hydroxide, sodium carbonate and cesium carbonate, and organic bases such as triethylamine, pyridine and 1,8-diazabicyclo [5.4.0] undec-7-ene. Although it can be, cesium carbonate is preferred.
  • Examples of the palladium catalyst used include tris (dibenzylideneacetone) (chloroform) dipalladium, palladium (II) acetate, tris (dibenzylideneacetone) dipalladium (0), and the like, and tris (dibenzylideneacetone) is preferable. ) (Chloroform) dipalladium.
  • the phosphine ligand used is 4,5'-bis (diphenylphosphino) -9,9'-dimethylxanthene, 1,1'-bis (diphenylphosphino) ferrocene, 1,2-bis (diphenylphos).
  • Phino) ethane, 2-dicyclohexylphosphino-2'-(N, N-dimethylamino) biphenyl and the like can be mentioned, but 4.5'-bis (diphenylphosphino) -9,9'-dimethylxanthene is preferable. Is.
  • amidating agent to be used examples include acetylamide, benzoylamide, isobutyramide and the like, but isobutyramide is preferable.
  • the reaction temperature is usually 20 ° C to 150 ° C, preferably 90 ° C to 110 ° C.
  • the reaction time varies depending on the amount of the solvent and the palladium catalyst used, but is usually 10 minutes to 24 hours, preferably 5 hours to 15 hours.
  • the target compound (2I) of this reaction can be obtained, for example, by neutralizing the reaction solution, concentrating the reaction mixture, and distilling off the solvent.
  • Step I-3 In this step, compound (2I), in a solvent, is reacted with a deprotecting reagent of a hydroxyl group, to produce compound (3I) Deprotection of Z 1, Z 2 and R 5.
  • the deprotecting reagents are carbon-supported metal catalysts and reducing agents.
  • metal catalyst used examples include palladium, palladium hydroxide, platinum and the like, but palladium hydroxide is preferable.
  • Examples of the reducing agent used include hydrogen, formic acid, ammonium formate, etc., but hydrogen is preferable.
  • the reaction temperature varies depending on the metal catalyst, but is usually 0 ° C. to 70 ° C., preferably 40 ° C. to 60 ° C.
  • the reaction time varies depending on the type and amount of the metal catalyst and reducing agent, but is usually 10 minutes to 24 hours, preferably 1 hour to 10 hours.
  • the target compound (3I) of this reaction can be obtained, for example, by removing the metal catalyst by filtering the reaction solution, concentrating the reaction mixture, and distilling off the solvent.
  • the obtained compound can be further purified by a conventional method, for example, recrystallization, silica gel chromatography and the like, if necessary.
  • Step I-4 The target compound (4I) of this step can be produced by protecting the primary hydroxyl group of the compound (3I) according to the step E-4 of the E method.
  • Compound (2J) can be produced by the J method described below. (J method)
  • J-1 process This step is a step of reacting the compound (1J) with an amidite-forming reagent in a solvent in the presence of a desiccant and an activator to produce the compound (2J) by the amidite-forming reaction.
  • Examples of the solvent used include halogenated hydrocarbons such as methylene chloride, chloroform and 1,2-dichloroethane, esters such as ethyl acetate, propyl acetate and butyl acetate, hydrocarbons such as benzene and toluene, and tetrahydrofuran.
  • halogenated hydrocarbons such as methylene chloride, chloroform and 1,2-dichloroethane
  • esters such as ethyl acetate, propyl acetate and butyl acetate
  • hydrocarbons such as benzene and toluene
  • tetrahydrofuran examples of ethers such as acetonitrile and acetonitrile can be mentioned, but methylene chloride is preferable.
  • Examples of the desiccant to be used include molecular sheave 3A, molecular sheave 4A, and molecular sheave 5A, preferably molecular sheave 4A.
  • Examples of the activator used include 5-benzylthiotetrazole, 5-phenyltetrazole, dibromoimidazole, dicyanoimidazole, N-alkylimidazole trifluoroacetate, and the like, preferably 4,5-dicyanoimidazole.
  • Examples of the amidite-forming reagent used include 2-cyanoethyl N, N, N', N'-tetraisopropylphosphorodiamidite and 2-cyanoethyldiisopropylchlorophosphoroamidite, and 2-cyanoethyl N, N, N are preferable. ', N'-Tetraisopropylphosphorodiamidite.
  • the reaction temperature varies depending on the amidite-forming reagent used, but is usually 0 ° C. to 50 ° C., preferably 0 ° C. to 30 ° C.
  • the reaction time varies depending on the amidite-forming reagent used, but is usually 10 minutes to 24 hours, preferably 1 hour to 16 hours.
  • the target compound (2J) of this reaction can be obtained, for example, by neutralizing the reaction solution, concentrating the reaction mixture, and distilling off the solvent.
  • the present invention comprises a phosphoramidite compound of a nucleoside corresponding to each ENA monomer produced by the above method and a commercially available nucleic acid or a modified nucleic acid, and a phosphoramidite compound of a ligand unit in a phosphoramidite bond or Provided is a method for producing an oligonucleotide having a desired sequence / structure by linking with a phosphorothioate bond and extending a unit chain.
  • the nucleosides of each ENA used at that time that is, 2'-O, 4'-C-ethylene bridge guanosine, 2'-O, 4'-C-ethylene bridge adenosine, 2'-O, 4'-C-
  • a compound produced by the above method can be used.
  • Phosphoramidite of natural nucleosides and 2'-O-methylnucleosides ie, 2'-O-methylguanosine, 2'-O-methyladenosine, 2'-O-methylcytidine, 2'-O-methyluridine
  • the amidite compound can be produced using a commercially available reagent.
  • the nucleobase sequences are adenine (A) or (a), guanine (G) or (g), cytosine (C) or (c), thymine (T) or (t), and , Uracil can be described as (U) or (u), respectively. 5-Methylcytosine can be used instead of cytosine.
  • uracil (U) or (u) and thymine (T) or (t) are compatible. Both uracil (U) or (u) and thymine (T) or (t) can be used for base pairing with the complementary strand adenine (A) or (a).
  • Oligonucleotides having a phosphorothioate bond by reacting a phosphoramidite compound with a reagent such as sulfur, tetraethylthiuram disulfide (TETD, Applied Biosystems), Beaucage reagent (Glen Research), or xanthan hydride.
  • a reagent such as sulfur, tetraethylthiuram disulfide (TETD, Applied Biosystems), Beaucage reagent (Glen Research), or xanthan hydride.
  • CPG controlled pore glass
  • a commercially available one with 2'-O-methylnucleoside bound can be used.
  • 2'-O, 4'-C-methyleneguanosine, adenosine, 5-methylcytidine and thymidine 2'-O, 4'-produced by the above method according to the method described in WO99 / 14226.
  • C-ethyleneguanosine, adenosine, 5-methylcytidine and thymidine can be bound to CPG according to the literature (Oligonucleotide Synthesis, Edited by MJGait, Oxford UniversityPress, 1984).
  • an oligonucleotide in which a 2-hydroxyethyl phosphate group is bonded to the 3'end can be synthesized.
  • 3'-amino-Modifier C3 CPG, 3'-amino-Modifier C7 CPG, Glyceryl CPG, (Glen Research), 3'-specer C3 SynBase CPG 1000, 3'-specer C9 SynBase CPG 1000 (linktechnologies) An oligonucleotide in which a hydroxyalkyl phosphate group or an aminoalkyl phosphate group is bonded to the 3'end can be synthesized.
  • Oligonucleotides produced according to the present invention may contain ligand units suitable for transporting nucleic acids into tissues.
  • the ligand unit can be attached to the 5'end of the oligonucleotide by a method similar to the extension of nucleotides by synthesizing an amidite compound in which the ligand portion contains a phosphoric acid portion via a linker.
  • An oligonucleotide in which GalNAc is bound to the phosphate moiety via a linker is used for transport to the liver, and a phosphoramidite compound corresponding to the following X 18 or X 20 is used for the production of the oligonucleotide.
  • the phosphoromidite compound corresponding to the GalNAc unit X 18 is compound 39D ([(2R, 3R, 4R, 5R, 6R) -5-acetamide-6- [3-[[] of Reference Example 39 of WO2019 / 172286.
  • the phosphoromidite compound corresponding to X 20 is compound 41D ([(2R, 3R, 4R, 5R, 6R) -5-acetamide-6- [3- [3- [[3-] of Reference Example 41 of WO2019 / 172286.
  • oligonucleotide produced by the method of the present invention an oligonucleotide having a sequence and structure represented by the following formula and useful for the treatment of Duchenne muscular dystrophy (see WO2004 / 048570) is exemplified. To.
  • Represents adenosine, guanosine, cytidine, uridine and thymidine that are phosphorothioate-linked to a structural unit. Attached to each nucleotide or nucleoside, e2s has D-ribofuranose 2'-O, 4'-C-ethylene crosslinked, and the 3'position is -OP ( S) (-OH) -O- on the right side. Represents binding to the 5'carbon atom of an adjacent nucleotide or nucleoside, where e2t is 2'-O, 4'-C-ethylene crosslinked with D-ribofuranose and -O- at the 3'position at the 3'end.
  • D-ribofuranose is 2'-O-methylated
  • m1t means that D-ribofuranose is 2'-O-methylated and the 3'position is -O- and binds to the hydrogen atom at the 3'end. ..
  • an oligonucleotide having a sequence and structure represented by the following formula and useful for the treatment of glycogen storage disease type 1a (see WO2019 / 172286). ) Is illustrated.
  • Represents adenosine, guanosine, cytidine, uridine and thymidine that are phosphorothioate-linked to a structural unit. Attached to each nucleotide or nucleoside, e2s has D-ribofuranose 2'-O, 4'-C-ethylene crosslinked, and the 3'position is -OP ( S) (-OH) -O- on the right side. Represents binding to the 5'carbon atom of an adjacent nucleotide or nucleoside, where e2t is 2'-O, 4'-C-ethylene crosslinked with D-ribofuranose and -O- at the 3'position at the 3'end.
  • D-ribofuranose is 2'-O-methylated
  • m1t means that D-ribofuranose is 2'-O-methylated and the 3'position is -O- and binds to the hydrogen atom at the 3'end.
  • X 18 and X 20 represent the GalNAc unit represented by the following equation.
  • the bond attached to the phosphate group represents that it binds to the carbon atom at the 5'end of the oligonucleotide to form a phosphate diester bond.
  • the structure was partially purified by silica gel column purification (hexane / ethyl acetate) and confirmed by NMR.
  • the reaction solution was raised to 40 to 50 ° C., stirred for 14 hours, and then separated at 40 to 50 ° C.
  • 20% saline solution (3.81 kg, 2.0 v / w) was added at 40 to 50 ° C., and a tetrahydrofuran layer was obtained by liquid separation.
  • toluene (7.20 kg, 5.0 v / w) was added to the obtained solution, and concentration was carried out under reduced pressure until the volume became 3.3 L.
  • Toluene (20.0 kg, 13.6 w / w) was added to the solution obtained by carrying out the same vacuum concentration operation three times to obtain a toluene solution of compound 7.
  • the structure was partially purified by silica gel column purification (hexane / ethyl acetate) and confirmed by NMR.
  • the structure was partially purified by silica gel column purification (hexane / ethyl acetate) and confirmed by NMR.
  • the structure was partially purified by silica gel column purification (hexane / ethyl acetate) and confirmed by NMR.
  • Example 1-5b 5-deoxy-1,2-O- (1-methylethylidene) -6-O- (triphenylmethyl) - ⁇ -D-erythro-hexoflano-3-thros
  • Compound 9 Production of Toluene Solution 8% aqueous sodium hydrogen carbonate solution (6.0 mL, 3.0 v / w) and potassium bromide (60.0 mg, 0.54 mmol) were added to the toluene solution (30 mL) of compound 8 obtained in Example 1-4.
  • the obtained toluene layer was washed with 20% brine (4.0 mL, 2.0 v / w) to obtain a toluene solution of compound 9.
  • the retention time of the obtained compound for HPLC analysis was consistent with the retention time of the HPLC analysis of the obtained compound in (Example 1-5a).
  • a 20% aqueous citric acid solution (3.59 kg, 2.0 v / w) was added to the obtained toluene layer and separated to obtain a toluene layer.
  • 8% aqueous sodium hydrogen carbonate (1.71 kg, 1.0 v / w) was added to the obtained toluene layer and separated to obtain a toluene solution of compounds 10 and 11.
  • the structure was partially purified by silica gel column purification (hexane / ethyl acetate) and confirmed by NMR.
  • Example 1-7 To the toluene solution obtained in Example 1-7, a 48% aqueous potassium hydroxide solution (7.27 kg, 3.0 v / w), tetrabutylammonium iodide (0.20 kg, 0.54 mol) and benzyl bromide (1). .53 kg, 8.96 mol) was added, and the mixture was stirred at 65 to 75 ° C. for 23 hours. After the reaction, water (6.64 kg, 4.0 v / w) and N-acetyl-L-cysteine (0.50 kg, 0.3 w / w) were added to the reaction solution at 45 to 55 ° C., and the mixture was stirred for 2 hours. did.
  • a 48% aqueous potassium hydroxide solution (7.27 kg, 3.0 v / w), tetrabutylammonium iodide (0.20 kg, 0.54 mol) and benzyl bromide (1). .53 kg, 8.
  • the obtained toluene layer was concentrated to 3.3 L, 1-propanol (5.34 kg, 4.0 v / w) was added, the insoluble material was filtered, and the mixture was further concentrated under reduced pressure to 3.0 L, and further 1 -After adding propanol (0.60 kg), the precipitation of crystals was confirmed by stirring at 45 to 55 ° C. for 0.5 hours. Subsequently, the mixture was stirred at 20 to 30 ° C. for 12.5 hours and 0 to 10 ° C. for 2 hours, and then the precipitated crystals were collected by filtration. The obtained crystals were washed with 1-propanol (4.00 kg, 3.0 v / w) previously cooled to 0 ° C. and dried under reduced pressure (40 ° C.) to obtain Compound 13 (1.25 kg, 1). .90 mol, yield 42.5%) was obtained.
  • n-heptane 500 mL was added to the lower layer (aqueous layer) to separate the solution.
  • the toluene layers were matched and concentrated under reduced pressure to give a toluene solution of compound 14 (625 mL).
  • the structure was partially purified by silica gel column purification (hexane / ethyl acetate) and confirmed by NMR.
  • Triphenylphosphine (89.85 g, 342.6 mmol) was added to the toluene solution of compound 14 obtained in Example 1-9, cooled to 0 to 5 ° C., and then diisopropyl azodicarboxylate (69.27 g, 342).
  • a solution of .6 mmol) of toluene (180.3 mL) was added dropwise over 20 minutes and the reaction was stirred at 20-30 ° C. for 3 hours.
  • Magnesium chloride (90.60 g, 951.6 mmol) was added to the reaction mixture, and the mixture was stirred for 6 hours.
  • the structure was partially purified by silica gel column purification (hexane / ethyl acetate) and confirmed by NMR.
  • a seed crystal (25 mg) of Compound 2 was added to this solution and stirred at 20 to 30 ° C. for 2 hours, n-heptane (1125 mL) was added, and the mixture was stirred at 0 to 5 ° C. for 19 hours.
  • the precipitated crystals were collected by filtration, washed with toluene / n-heptane (1/2, 750 mL), and then washed with n-heptane (750 mL).
  • the obtained crystals were dried under reduced pressure (40 ° C.) to obtain Compound 2 (76.84 g, 215.6 mmol, yield 56.6%).
  • the seed crystal of Compound 2 used in Example 1-11 was obtained by the following method.
  • Crude compound 2 was obtained as crystals by the same method as in the first half of Example 1-11. Using the obtained crude compound 2, compound 2 was obtained as crystals by the same method as in the latter half of Example 1-11. Here, as the seed crystal of compound 2, the previously obtained crystal of crude compound 2 was used. The crystal of compound 2 obtained by the above method was used as a seed crystal of compound 2 in Examples 1-11.
  • Example 1-12 Purification of compound 2
  • the crude compound 2 (50 g) obtained in Example 1-11 was dissolved in toluene (300 mL), n-heptane (300 mL) was added, and the temperature was 20 to 30 ° C. After stirring for 3 hours, n-heptane (300 mL) was further added and the mixture was stirred for 16 hours. The precipitated crystals were collected by filtration, washed with toluene / n-heptane (1/2, 250 mL), and then washed with n-heptane (250 mL). The obtained crystals were dried under reduced pressure (40 ° C.) to obtain Compound 2 (40.06 g, yield 80.1%).
  • Example 2 1- (2,6-Anhydro-4- ⁇ [bis (4-methoxyphenyl) (phenyl) methoxy] methyl ⁇ -3-O- ⁇ (2-cyanoethoxy) [di (propane-2) -Il) amino] phosphanyl ⁇ -5-deoxy- ⁇ -L-lyxo-hexoflanosyl) -5-methylpyrimidine-2,4 (1H, 3H) -dione (compound 1t) production (Example 2-1) 1 - ⁇ 2,6-Anhydro-3-O-benzyl-4-[(benzyloxy) methyl] -5-deoxy- ⁇ -L-lyxo-hexoflanosyl ⁇ -5-methylpyrimidine-2,4 (1H, 3H) -Preparation of a methanol solution of dione (compound 3t)
  • Thymine (8.85 g, 70.18 mmol) and N, O-bistrimethylsilylacetamide (28.6 g, 140.6 mmol) were added to acetonitrile (50 mL), and the mixture was stirred at 20 to 30 ° C. for 1 hour to prepare Solution A. ..
  • compound 2 (20.00 g, 56.12 mmol) and trichloroacetonitrile (15.20 g, 105.27 mmol) obtained in Example 1 to acetonitrile (100 mL) in another reaction vessel
  • 1,8- Diazabicyclo [5.4.0] undec-7-ene (1.07 g, 7.02 mmol) was added, and the mixture was stirred at 20 to 30 ° C.
  • Solution B After adding the solution A to the solution B, iodotrimethylsilane (17.55 g, 87.73 mmol) was added, and the mixture was stirred at 20 to 30 ° C. for 2 hours.
  • An aqueous solution prepared by dissolving sodium sulfite (17.68 g, 175.45 mmol) in a 5% aqueous sodium hydrogen carbonate solution (160 mL) is added dropwise to the reaction solution, then toluene (200 mL) and methanol (80 mL) are added, and the mixture is stirred at 35 to 45 ° C. After that, the solution was separated.
  • the obtained organic layer was washed twice with a 20% aqueous solution of citric acid (47.5 mL), further washed with a 15% aqueous solution of sodium carbonate (47.5 mL) and water (47.5 mL), and then up to 47.5 mL. Concentrated under reduced pressure. Ethyl acetate (100 mL) was added to the obtained concentrate, and the mixture was concentrated under reduced pressure to 100 mL. The obtained concentrate was stirred at 55 to 65 ° C. for 16 hours, further stirred at 20 to 30 ° C. for 5 hours, n-heptane (50 mL) was added, and after further stirring for 16 hours, the precipitated solid was obtained. I took it.
  • the obtained organic layer was concentrated under reduced pressure, dissolved in ethyl acetate (15 mL), ethyl acetate (25 mL) and basic alumina (10.00 g) were added to this solution, and the mixture was stirred at 20 to 30 ° C. for 2 hours. .. Alumina was removed by filtration from the reaction mixture, and the alumina was washed with ethyl acetate (25 mL), the obtained solution obtained by combining the filtrate and the washing solution was concentrated under reduced pressure, and the concentrate was dissolved in ethyl acetate (15 mL).
  • the obtained ethyl acetate solution was added dropwise to a mixed solution of n-heptane (45 mL) and diisopropyl ether (80 mL) at 20 to 30 ° C. over 35 minutes, and then n-heptane (90 mL) was added to the same temperature. Was stirred for 30 minutes.
  • the precipitated solid was collected by filtration, the obtained solid was washed with n-heptane (25 mL), and dried under reduced pressure (40 ° C., 12 hours, then 50 ° C., 8 hours) to obtain 1 t (5.) of the title compound. 18 g, 6.58 mmol, 80.6%) was obtained.
  • Dichloromethane (30 mL) was added to the hydrate (3.00 g, 4.24 mmol) of compound 19 obtained in Example 3-3, and the mixture was concentrated under reduced pressure to prepare a dichloromethane solution (9 mL).
  • the operation of adding dichloromethane (30 mL) to the obtained solution and concentrating under reduced pressure to make a dichloromethane solution (9 mL) was repeated twice.
  • toluene 100 mL
  • a 20% aqueous potassium hydrogen carbonate solution 70 mL
  • a 20% aqueous citric acid solution 50 mL was added to the obtained toluene layer and separated to obtain a toluene layer.
  • water (30 mL) and a 20% potassium hydrogen carbonate aqueous solution 25 mL were added to the obtained toluene layer, and the liquid was separated to obtain a toluene layer.
  • a 50% aqueous methanol solution (100 mL) was added to the obtained toluene layer, and the mixture was separated to obtain a toluene layer.
  • the obtained toluene layer was concentrated under reduced pressure to prepare a toluene solution (80 mL).
  • Isobutyl alcohol (100 mL) was added to the obtained solution and concentrated under reduced pressure to obtain a toluene-isobutyl alcohol solution (100 mL).
  • Isobutyl alcohol (50 mL) was added to the obtained solution and concentrated under reduced pressure to obtain a toluene-isobutyl alcohol solution (50 mL).
  • trifluoroacetic acid (2.43 g, 21.30 mmol) was added, and the mixture was stirred at 20 to 30 ° C for 1 hour, then heated to 45 to 55 ° C and stirred for 3 hours. After adjusting the temperature to 20-30 ° C, toluene (51 mL), 25% sodium hydroxide (10 mL), and 8% aqueous sodium hydrogen carbonate solution (10 mL) were added to the reaction solution, and the mixture was stirred at 20-30 ° C for 1 hour. .. Subsequently, a 10% aqueous trifluoroacetic acid solution (25 mL) was added, and the mixture was separated to obtain a toluene layer.
  • a 50% aqueous potassium hydroxide solution (6.0 mL) was added dropwise to the obtained solution, n-heptane (6 mL) was added, the mixture was stirred at 20 to 30 ° C. for 15 minutes, and the precipitated solid was filtered to obtain methylene chloride / methylene chloride. Washed with n-heptane (5/1, 4 mL). Acetonitrile (30 mL) and water (4 mL) were added to the obtained solid. After stirring for 0.5 hours, the solid was filtered and washed with acetonitrile (4 mL).
  • the obtained toluene layer was separated three times with a 20% aqueous citric acid solution (2.5 mL), and a 20% aqueous potassium carbonate solution (1.0 mL) was added to separate the layers to obtain a toluene layer.
  • Water (2.5 mL) was added to the obtained toluene layer, and the mixture was separated and washed, and then concentrated under reduced pressure to obtain a toluene solution (2.5 mL).
  • Toluene (5.0 mL) was added to the obtained solution and concentrated under reduced pressure to obtain a toluene solution (2.5 mL). The same operation was repeated twice to obtain a toluene solution (2.5 mL).
  • Dichloromethane (1.5 mL) was added to the hydrate (150 mg, 0.209 mmol) of compound 21 obtained in Example 4-3, concentrated under reduced pressure, and dried.
  • Dichloromethane (1.5 mL) was added to the obtained foam, concentrated under reduced pressure and dried to dryness, and then dichloromethane (1.2 mL), N, N, N', N'-tetraisopropylphosphologiamidite (77.9 mg). , 0.258 mmol), trifluoroacetic acid / pyridine salt (44.4 mg, 0.230 mmol) was added, and the mixture was stirred at 20 to 30 ° C. for 4 hours.
  • the obtained solution was washed twice with a 5% aqueous sodium hydrogen carbonate solution (0.525 mL), washed twice with a 5% brine (0.600 mL), concentrated under reduced pressure and dried.
  • Ethyl acetate (1.2 mL) and neutral silica gel (300 mg) were added to the obtained foam, and the mixture was stirred at 20 to 30 ° C. for 1 hour.
  • the silica gel was removed by filtration, washed with ethyl acetate (6 mL), and the obtained solution was concentrated under reduced pressure and dried.
  • the obtained foam solution of ethyl acetate (0.600 mL) was added dropwise to a mixed solution of n-heptane (1.35 mL) and diisopropyl ether (2.4 mL) at 20 to 30 ° C. over 20 minutes. After adding n-heptane (3.15 mL) and stirring at the same temperature for 1 hour, the precipitated solid was filtered and washed with n-heptane (6 mL). The obtained solid was dried under reduced pressure (40 ° C.) to obtain compound 1a (132.5 mg, 0.147 mmol, 70.4%).
  • Benzyl alcohol (4.63 ⁇ L, 66.84 ⁇ mol) and sodium hydride (2.5 mg, 57.93 ⁇ mol) were added to tetrahydrofuran (0.5 mL), and the mixture was stirred at 0 ° C. for 30 minutes, and then Compound 23 (compound 23) obtained in Example 5-2 was added. 23.5 mg, 44.56 ⁇ mol) was added, and the mixture was stirred for 3 hours. After confirming the completion of the reaction, acetic acid (3.6 ⁇ L, 62.38 ⁇ mol), 20% saline (0.5 mL) and ethyl acetate (2.0 mL) were added to separate the solutions.
  • reaction solution was heated to 110 ° C., stirred for 12 hours, and then tap water (1.0 mL) and ethyl acetate (4.0 mL) were added to separate the solutions.
  • Example 6-3 The tetrahydrofuran solution (5 v / w) of compound 28 obtained in Example 6-3 is reacted with dimethoxytriphenylmethyl chloride (1.5 equivalents).
  • Compound 29 is obtained by adding toluene (10 v / w) and water (5 v / w) to the reaction solution, separating the solution, concentrating the mixture, and purifying the reaction solution by silica gel column chromatography.
  • N, N-dimethylaminopyridine (0.05 g, 0.42 mmol), pyridine (1.02 mL, 12.63 mmol) and acetic acid anhydride (1.02 mL, 12.63 mmol) in a solution of compound 2 (3.00 g, 8.42 mmol) in toluene (30 mL). 1.20 mL, 12.63 mmol) was added, and the mixture was stirred at 20 to 30 ° C. for 1 hour, then water (15 mL) was added to separate the solutions, and the obtained organic layer was divided into 2 with a 20% aqueous citric acid solution (15 mL).
  • Thymine (1.33 g, 10.52 mmol) and N, O-bistrimethylsilylacetamide (5.15 mL, 21.04 mmol) were added to acetonitrile (7.5 mL), and the mixture was stirred at 20 to 30 ° C. for 1 hour.
  • Acetonitrile solution (6 mL), acetonitrile (9 mL) and iodotrimethylsilane (1.50 mL, 10.52 mmol) of the compound 22 obtained in Example 7-1 were added, and the mixture was stirred at 45 to 55 ° C. for 4 hours.
  • the obtained organic layer was separated and washed twice with a 20% aqueous citric acid solution (150 mL) and once with a 5% aqueous sodium hydrogen carbonate solution (150 mL) and water (150 mL). After concentrating the obtained organic layer under reduced pressure to 150 mL, solvent substitution was performed twice by concentration under reduced pressure with ethyl acetate (300 mL), ethyl acetate (90 mL) was added, and an ethyl acetate solution (240 mL) of compound 17 was added. Obtained.
  • a hydrate (45.00 g, 64.31 mmol) of the compound 21 obtained in Example 4-3 was added to dichloromethane (675 mL), and the mixture was concentrated under reduced pressure to obtain a dichloromethane solution (225 mL).
  • Dichloromethane (450 mL) was added to the obtained dichloromethane solution, and the mixture was concentrated under reduced pressure to obtain a dichloromethane solution (225 mL).
  • Example 8b Preparation of compound 1a
  • a dichloromethane solution (15 mL) was prepared by adding the hydrate (3.57 g) of compound 21 obtained in Example 4-3 to dichloromethane (45 mL) and concentrating under reduced pressure. Obtained.
  • Dichloromethane (15 mL), molecular sieve 4A (22.50 g), 2-cyanoethyl N, N, N', N'-tetraisopropylphosphologiamidite (1.42 g) and 4,5-dicyanoimidazole in the resulting dichloromethane solution. (100 mg) was added and the reaction mixture was stirred at 20-30 ° C for 24 hours.
  • ethyl acetate 60 mL was added to the reaction solution.
  • the resulting solution is cooled to -5 to 5 ° C, passed through a column packed with neutral silica gel (4.5 g), and washed with dichloromethane-ethyl acetate (1/2, 30 mL) to make dichloromethane-.
  • An ethyl acetate solution was obtained.
  • the obtained dichloromethane-ethyl acetate solution was concentrated under reduced pressure to make an ethyl acetate solution (15 mL), then toluene (60 mL) was added, and the mixture was concentrated again to obtain a toluene solution (15 mL).
  • Solution A (24 mL) was obtained by adding methyl tert-butyl ether (9 mL) to the obtained solution. Methyl tert-butyl ether (6 mL) and n-heptane (90 mL) were added to another reaction vessel, and solution A (24 mL) was added dropwise at -5 to 5 ° C to confirm the precipitation of the solid. The instrument used for dropping was washed with toluene (1.5 mL), stirred for 2 hours, the precipitated solid was filtered, and the solid was washed with n-heptane (24 mL). The obtained solid was dried under reduced pressure (40 ° C) to obtain compound 1a (3.97 g, 86.5%).
  • a seed crystal (2.5 mg) of compound 1t was added to the obtained methyl tert-butyl ether solution, and the mixture was stirred for 2 hours, n-heptane (100 mL) was added, the mixture was cooled to 0 to 5 ° C., and the mixture was further stirred for 2 hours.
  • the precipitated solid was filtered and washed with n-heptane (100 mL) pre-cooled to 0 ° C.
  • the obtained solid was dried under reduced pressure (40 ° C) to obtain 1 t (6.12 g, 91.3%) of the compound.
  • Example 10 As the seed crystal of compound 1t, a mixed solution of ethyl acetate, diisopropyl ether and n-heptane of compound 1t obtained in Example 2-4 was allowed to stand and precipitated.
  • Example 10 Preparation of compound 1c (Example 10-1) 1- (3-O-acetyl-2,6-anhydro-4- ⁇ [bis (4-methoxyphenyl) (phenyl) methoxy] methyl ⁇ - Production of 5-deoxy- ⁇ -L-lyxo-hexoflanosyl) -5-methylpyrimidine-2,4 (1H, 3H) -dione (Compound 30)
  • the obtained solution was concentrated under reduced pressure to about 320 mL, and then ethyl acetate (400 mL) and water (120 mL) were added to separate the solutions.
  • the obtained organic layer was washed twice with 10% saline (160 mL), acetonitrile (400 mL) was added, and the mixture was concentrated under reduced pressure to about 320 mL.
  • Acetonitrile (400 mL) was added to the obtained concentrate and concentrated under reduced pressure to obtain an acetonitrile solution (B) (240 mL) of compound 31.
  • THF (80 mL) and benzoic anhydride (67.87 g, 300.01 mmol) were added to the acetonitrile solution of compound 31 obtained in Example 10-2, and the mixture was stirred at 40 ° C for 5 hours and then cooled to 25 ° C. The mixture was further stirred for 15 hours.
  • the obtained slurry liquid was added dropwise to a mixed solution of water (80 mL), a 25% aqueous sodium hydroxide solution (176 kg) and THF (80 mL) at 5 to 15 ° C. over 1 hour or more.
  • THF (160 mL) was added to the obtained mixed solution, and the mixture was stirred at 20 ° C.
  • Example 10-3b Preparation of compound 19
  • THF (80 mL) and benzoic anhydride (23.14 g, 102.3 mmol) were added to the acetonitrile solution (90 mL) of compound 31 obtained in Example 10-2, and 40
  • THF (30 mL) and potassium acetate (23.09 g, 235.3 mmol) were added to the obtained slurry liquid, and the mixture was stirred for 1 hour, and then 8% saline solution (135 mL) was added to separate the liquids.
  • the amount of acetic acid used for pH adjustment at the time of crystallization can be controlled to a smaller amount than in the case of the procedure described in Example 10-3a, thereby reducing the time required for crystallization. I was able to make it shorter.
  • the obtained dichloromethane-ethyl acetate solution was concentrated under reduced pressure to prepare a dichloromethane-ethyl acetate solution (100 mL).
  • Ethyl acetate (100 mL) was added to the obtained dichloromethane-ethyl acetate solution, and the mixture was concentrated under reduced pressure to give an ethyl acetate solution (100 mL).
  • methyl tert-butyl ether (100 mL) was added to the obtained solution, and the mixture was concentrated under reduced pressure to obtain an ethyl acetate-methyl tert-butyl ether solution (100 mL).
  • Methyl tert-butyl ether (100 mL) was added to the obtained ethyl acetate-methyl tert-butyl ether solution, and the mixture was concentrated under reduced pressure to obtain a methyl tert-butyl ether solution (100 mL).
  • n-heptane 200 mL
  • n-heptane 100 mL
  • n-heptane 200 mL
  • 1,2-Dichloroethane (0.3 mL) was added to compound 22 (30 mg, 0.075 mmol) and bistrimethylsilylthymine (40.8 mg, 0.151 mmol) obtained in Example 5-1 and stirred at room temperature. Then, 2.0 equivalents (0.151 mmol) of chlorotrimethylsilane (TMSCl), bromotrimethylsilane (TMSBr), iodotrimethylsilane (TMSI), and trimethylsilyl trifluoromethanesulfonate (TMSOTf) were added to the raw materials as activators. The mixture was stirred at the temperature shown inside. The reaction solution was sampled, and the raw material, ⁇ -adduct, and ⁇ -adduct were analyzed by HPLC. The results are shown in Table 1.
  • the ⁇ -adduct was stereoselectively obtained under the condition using TMSOTf, but the ⁇ -adduct was stereoselectively obtained under the condition using TMSBr and TMSI. Above all, when TMSI was used, the reaction proceeded well even at room temperature.
  • Synthesis is performed using an automatic nucleic acid synthesizer (“ABI 394 DNA / RNA Synthesizer” manufactured by Applied Biosystems) and a phosphoramidite method (Nucleic Acids Research, 12, 4539 (1984)).
  • Reagents include Activator Solution-3 (0.25 mol / L 5-benzylthio-1H-tetrazole-acetonitrile solution, manufactured by Wako Pure Chemical Industries, Ltd., product No.013-20011), CAP A for AKTA (1-methylimidazole acetonitrile). Solution, Sigma-Aldrich, product No.
  • ANP-5753, uridine product No. ANP) -5754 is made by ChemGenes.
  • ENA monomer 9- (2,6-anhydro-4- ⁇ [bis (4-methoxyphenyl) (phenyl) methoxy] methyl ⁇ -3-O- ⁇ (2-cyanoethoxy) [di (propane-2-yl)) Amino] phosphanyl ⁇ -5-deoxy- ⁇ -L-lyxo-hexoflanosyl) -N-benzoyl-9H-purine-6-amine
  • Compound 1a 1- (2,6-anhydro-4- ⁇ [bis (4) -Methenylphenyl) (Phenyl) methoxy] Methyl ⁇ -3-O- ⁇ (2-Cyanoethoxy) [di (propan-2-yl) amino] phosphanyl ⁇ -5-deoxy- ⁇ -L-lyxo-hexoflanosyl)- 4-Benz
  • Oligonucleotides having a desired sequence can be synthesized using Glen Unysupport 0.1 ⁇ mol (manufactured by Glen Research) as a solid phase carrier.
  • the program used for the 0.2 ⁇ mol scale attached to the automatic nucleic acid synthesizer however, the time required for condensation of the amidite compound is 600 seconds, and the time required for thiolation is 150 seconds.
  • Oligonucleotides having a ligand unit at the 5'end can be synthesized by reacting the ligand unit phosphoramidite in the same manner following the synthesis of the nucleotide chain according to the method described in WO2019 / 172286.
  • the phosphoramidite compounds corresponding to the GalNAc units X 18 and X 20 use Compound 39D of Reference Example 39 of WO2019 / 172286 and Compound 41D of Reference Example 41, respectively.
  • the oligomer is excised from the support, and the protecting group cyanoethyl group on the phosphorus atom and the protecting group on the nucleobase are removed. Purify according to the attached protocol using Clarity QSP (manufactured by Phenomenex).

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Genetics & Genomics (AREA)
  • Molecular Biology (AREA)
  • Biochemistry (AREA)
  • Biotechnology (AREA)
  • General Health & Medical Sciences (AREA)
  • Biomedical Technology (AREA)
  • General Engineering & Computer Science (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • Physics & Mathematics (AREA)
  • Biophysics (AREA)
  • Plant Pathology (AREA)
  • Microbiology (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)
  • Compounds Of Unknown Constitution (AREA)

Abstract

本発明により、複数のENAモノマーを製造するために有用な、結晶性の2,4-架橋した共通中間体、当該中間体の立体選択的な製造方法、及び、当該中間体を用いた各ENAモノマーの効率的な製造方法が提供される。

Description

二環性ホスホロアミダイトの製造方法
 本発明は、2’-O,4’-C-エチレン架橋核酸(ENA)を含むオリゴヌクレオチドの原料となるA、G、T、Cなどピリミジン塩基あるいはプリン塩基を含む、複数のENAモノマーを製造するための新規な結晶性の共通中間体、当該中間体を用いたグリコシル化においてβ-付加体を立体選択的に合成する方法、当該製造中間体の製法、及び、当該製造中間体を用いたENAモノマーの製法に関する。
 ENAモノマーは、修飾核酸医薬・診断薬を製造する上で重要な化合物である。
 ENA製造における重要工程は、基本骨格を形成するための、2,4-架橋化反応とグリコシル化反応である。
 一般にグリコシル化反応において、2位にアシルオキシ基が存在する場合は、隣接基効果で立体を制御し、β体のヌクレオシドが得られるが(特許文献1参照)、2,4-架橋体や2-デオキシ体などの、2位にアシルオキシ基が存在しない場合は、α体のヌクレオシドが優先的に得られることが知られている(特許文献2参照)。
 そこで、β体のENAを製造する場合は、2,4-エチレンオキシ化する前に、2位にアシルオキシ基を持たせた状態で塩基を導入する方法が用いられている(特許文献3~4、非特許文献1~2参照)。
 しかし、従来法は、2,4-架橋前グリコシル化前の共通中間体(2位に水酸基又はアセチルオキシ基、5位に保護基-O-エチレン基を有する化合物)を含む多くの中間体が油状化合物でありカラム精製を要すること、共通中間体から各ENAモノマーまでの工程が長いことから、工業的に満足できる製造方法ではなかった(非特許文献2参照)。
WO98/39352 WO99/14226 WO00/47599 WO2013/191129
Bioorganic & Medicinal Chemistry Letters 12(2002) 73-76 Bioorganic & Medicinal Chemistry Letters 11(2003) 2211-2226
 本発明の目的は、各ENAモノマーを製造するために有用な、結晶性の2,4-架橋した共通中間体を提供すること、当該中間体の立体選択的な製造方法を提供すること、及び、当該中間体を用いた各ENAモノマーの効率的な製造方法を提供することにある。
 本発明者らは、ENAモノマーの効率的な製造方法について鋭意研究を重ねた結果、新規な結晶性の2,4-架橋した共通中間体、当該共通中間体の製造方法、当該共通中間体を用いたENAモノマーの製造方法を見出し、本発明を完成させた。当該共通中間体は結晶であり、晶析により精製可能であることから、工業的製造に適する。また、当該共通中間体の製造方法は、入手容易で安価な原料を利用し、複数工程を単離せずに実施するため、少ない工程かつ高収率で当該共通中間体を得ることができる。また、当該共通中間体を用いることにより、2,4-架橋した骨格をグリコシル化工程より前に構築できることから、塩基導入後の工程を短縮して収率を改善することができ、複数のENAモノマーを効率的に作り分けることが可能である。さらに、当該中間体を用いたグリコシル化では、1位の水酸基をヨウ素原子又は臭素原子で置換することにより、2位のアシル基の隣接基効果がなくとも立体を制御してβ体を選択的に製造することが可能となった。ENAモノマー製造における最終工程であるアミダイト化では、特定の活性化剤及び乾燥剤を用いることにより、アミダイト試薬の当量を削減することができ、効率的にENAモノマーを製造することが可能となった。
 すなわち、本発明は、以下の発明を包含する。
(1)一般式(I)
Figure JPOXMLDOC01-appb-C000049
[式中、Z及びZは、同一又は異なって、水酸基の保護基を示し、Rは、水素原子又は脂肪族アシル基を示し、nは、0乃至4の整数を示す。]で表される化合物;
(2)Rが、水素原子又はアセチル基である(1)に記載の化合物;
(3)Z及びZが、同一又は異なって、脂肪族アシル基、芳香族アシル基、1乃至3個のアリール基で置換されたメチル基、低級アルキル、低級アルコキシ、ハロゲン若しくはシアノ基でアリール基が置換された1乃至3個のアリール基で置換されたメチル基又はシリル基である(1)又は(2)に記載の化合物;
(4)Z及びZが、同一又は異なって、ベンジル基、p-メトキシベンジル基、t-ブチルジフェニルシリル基又はt-ブチルジメチルシリル基である(1)又は(2)に記載の化合物;
(5)Z及びZが、ベンジル基である(1)又は(2)に記載の化合物;
(6)nが、1である(1)乃至(5)のいずれか1項に記載の化合物;
(7)式(I’)で表される化合物;
Figure JPOXMLDOC01-appb-C000050
(8)式(I’’)で表される化合物;
Figure JPOXMLDOC01-appb-C000051
(9a)一般式(III)
Figure JPOXMLDOC01-appb-C000052
[式中、Z及びZは、同一又は異なって、水酸基の保護基を示し、Yは、1乃至3個のアリール基で置換されたメチル基、低級アルキル、低級アルコキシ、ハロゲン若しくはシアノ基でアリール環が置換された1乃至3個のアリール基で置換されたメチル基、低級アルコキシメチル基、テトラヒドロピラニル基又はシリル基を示し、nは、0乃至4の整数を示す。]で表される化合物を製造する方法であって、
(i)一般式(XXIX)
Figure JPOXMLDOC01-appb-C000053
[式中、nは、0乃至4の整数を示す。]で表される化合物の1級水酸基を保護する工程、
(ii)工程(i)で得られた一般式(XXX)
Figure JPOXMLDOC01-appb-C000054
[式中、Y及びnは、前記と同意義を示す。]で表される化合物の水酸基を酸化する工程、
(iii)工程(ii)で得られた一般式(XXXI)
Figure JPOXMLDOC01-appb-C000055
[式中、Y及びnは、前記と同意義を示す。]で表される化合物の4位への立体選択的なヒドロキシメチル化を行う工程、
(iv)工程(iii)で得られた一般式(XXXII)
Figure JPOXMLDOC01-appb-C000056
[式中、Y及びnは、前記と同意義を示す。]で表される化合物の3位のカルボニル基を還元する工程、
(v)工程(iv)で得られた一般式(XXXIII)
Figure JPOXMLDOC01-appb-C000057
[式中、Y及びnは、前記と同意義を示す。]で表される化合物の水酸基を保護する工程、を含むことを特徴とする、方法。
(10a)Z及びZが、同一又は異なって、脂肪族アシル基、芳香族アシル基、1乃至3個のアリール基で置換されたメチル基、低級アルキル、低級アルコキシ、ハロゲン若しくはシアノ基でアリール基が置換された1乃至3個のアリール基で置換されたメチル基又はシリル基である、(9a)に記載の方法。
(11a)Z及びZが、同一又は異なって、ベンジル基、p-メトキシベンジル基、t-ブチルジフェニルシリル基又はt-ブチルジメチルシリル基である(9a)に記載の方法。
(12a)Z及びZが、ベンジル基である(9a)に記載の方法。
(13a)Yが、t-ブチルジフェニルシリル基、t-ブチルジメチルシリル基、テトラヒドロピラン-2-イル基又はトリチル基である(9a)乃至(12a)のいずれか1項に記載の方法。
(14a)Yが、トリチル基である(9a)乃至(12a)のいずれか1項に記載の方法。
(15a)nが、1である(9a)乃至(14a)のいずれか1項に記載の方法。
(16a)工程(i)から(v)の各工程において反応後の目的化合物を含む溶液の有機層を水洗し、得られた有機層を各次工程にそのまま使用することを特徴とする、(9a)乃至(15a)のいずれか1項に記載の方法。
(9)一般式(II)
Figure JPOXMLDOC01-appb-C000058
[式中、Z及びZは、同一又は異なって、水酸基の保護基を示し、nは、0乃至4の整数を示す。]で表される化合物を製造する方法であって、
(i)一般式(III)
Figure JPOXMLDOC01-appb-C000059
[式中、Z、Z及びnは、前記と同意義を示し、Yは、1乃至3個のアリール基で置換されたメチル基、低級アルキル、低級アルコキシ、ハロゲン若しくはシアノ基でアリール環が置換された1乃至3個のアリール基で置換されたメチル基、低級アルコキシメチル基、テトラヒドロピラニル基又はシリル基を示す。]で表される化合物のアセタール部位を、酸触媒存在下、低級アルキルアルコール溶媒中、加溶媒分解し、Yを脱保護する工程、
(ii)工程(i)で得られた一般式(IV)
Figure JPOXMLDOC01-appb-C000060
[式中、Z、Z及びnは、前記と同意義を示し、Aは、低級アルキル基を示す。]で表される化合物のジオール部位を環化する工程、
(iii)工程(ii)で得られた一般式(V)
Figure JPOXMLDOC01-appb-C000061
[式中、Z、Z、A及びnは、前記と同意義を示す。]で表される化合物のアノマー位の加水分解を行う工程、
を含むことを特徴とする、方法;
(10)Z及びZが、同一又は異なって、脂肪族アシル基、芳香族アシル基、1乃至3個のアリール基で置換されたメチル基、低級アルキル、低級アルコキシ、ハロゲン若しくはシアノ基でアリール基が置換された1乃至3個のアリール基で置換されたメチル基又はシリル基である、(9)に記載の方法;
(11)Z及びZが、同一又は異なって、ベンジル基、p-メトキシベンジル基、t-ブチルジフェニルシリル基又はt-ブチルジメチルシリル基である(9)に記載の方法;
(12)Z及びZが、ベンジル基である(9)に記載の方法;
(13)Aが、メチル基、エチル基又はプロピル基である(9)乃至(12)のいずれか1項に記載の方法;
(14)Aが、メチル基である(9)乃至(12)のいずれか1項に記載の方法;
(15)Yが、t-ブチルジフェニルシリル基、t-ブチルジメチルシリル基、テトラヒドロピラン-2-イル基又はトリチル基である(9)乃至(14)のいずれか1項に記載の方法;
(16)Yが、トリチル基である(9)乃至(14)のいずれか1項に記載の方法;
(17)nが、1である(9)乃至(16)のいずれか1項に記載の方法;
(18)酸触媒が、硫酸、p-トルエンスルホン酸又はメタンスルホン酸である(9)乃至(17)のいずれか1項に記載の方法;
(19)工程(ii)が、3価リン試薬及びアゾジカルボン酸エステルを用いて行われる(9)乃至(18)のいずれか1項に記載の方法;
(20)3価リン試薬が、トリフェニルホスフィン又はトリ(n-ブチル)ホスフィンである(19)に記載の方法;
(21)アゾジカルボン酸エステルが、アゾジカルボン酸ジエチル、アゾジカルボン酸ジイソプロピル又はアゾジカルボン酸ジt-ブチルである(19)又は(20)に記載の方法;
(22)工程(iii)が、酸を用いて行われる(9)乃至(21)のいずれか1項に記載の方法;
(23)酸が、塩酸、硫酸、トリフルオロ酢酸、メタンスルホン酸又はp-トルエンスルホン酸である(22)に記載の方法;
(9b)Z及びZが、ベンジル基であり、
Aが、メチル基であり、
Yが、トリチル基であり、
nが、1である(9)に記載の方法;
(9c)酸触媒が、硫酸、p-トルエンスルホン酸又はメタンスルホン酸であり、
工程(ii)が、3価リン試薬及びアゾジカルボン酸エステルを用いて行われ、
工程(iii)が、酸を用いて行われる(9)に記載の方法;
(9d)酸触媒が、硫酸、p-トルエンスルホン酸又はメタンスルホン酸であり、
工程(ii)が、3価リン試薬及びアゾジカルボン酸エステルを用いて行われ、
工程(ii)に用いられる3価リン試薬が、トリフェニルホスフィン又はトリ(n-ブチル)ホスフィンであり、
工程(ii)に用いられるアゾジカルボン酸エステルが、アゾジカルボン酸ジエチル、アゾジカルボン酸ジイソプロピル又はアゾジカルボン酸ジt-ブチルであり、
工程(iii)が、酸を用いて行われ、
工程(iii)に用いられる酸が、塩酸、硫酸、トリフルオロ酢酸、メタンスルホン酸又はp-トルエンスルホン酸である(9)に記載の方法;
(9e)Z及びZが、ベンジル基であり、
Aが、メチル基であり、
Yが、トリチル基であり、
nが、1であり、
酸触媒が、硫酸、p-トルエンスルホン酸又はメタンスルホン酸であり、
工程(ii)が、3価リン試薬及びアゾジカルボン酸エステルを用いて行われ、
工程(ii)に用いられる3価リン試薬が、トリフェニルホスフィン又はトリ(n-ブチル)ホスフィンであり、
工程(ii)に用いられるアゾジカルボン酸エステルが、アゾジカルボン酸ジエチル、アゾジカルボン酸ジイソプロピル又はアゾジカルボン酸ジt-ブチルであり、
工程(iii)が、酸を用いて行われ、
工程(iii)に用いられる酸が、塩酸、硫酸、トリフルオロ酢酸、メタンスルホン酸又はp-トルエンスルホン酸である(9)に記載の方法;
(24)一般式(VI)
Figure JPOXMLDOC01-appb-C000062
[式中、Rは、低級アルキル基又は水素原子を示し、Rは、水酸基、アミノ基又は脂肪族アシル基若しくは芳香族アシル基で保護されたアミノ基を示し、Pは、1乃至3個の低級アルコキシ基で置換されていてもよいトリチル基を示し、nは、0乃至4の整数を示す。]で表される化合物又はその塩を製造する方法であって、
(i)一般式(II)
Figure JPOXMLDOC01-appb-C000063
[式中、Z及びZは、同一又は異なって、水酸基の保護基を示し、nは、0乃至4の整数を示す。]で表される化合物を、溶媒中、活性化剤と反応させ、1位の水酸基を脱離基を形成する基に変換する工程、及び
(ii)工程(i)で得られた一般式(VII)
Figure JPOXMLDOC01-appb-C000064
[式中、Z、Z及びnは、前記と同意義を示し、Xは、脱離基を形成する基を示す。]で表される化合物と、一般式(VIII)
Figure JPOXMLDOC01-appb-C000065
[式中、R及びRは、前記と同意義を示す。]で表される化合物又はその塩を、溶媒中、ハロゲン化剤存在下で反応させ、一般式(IX)
Figure JPOXMLDOC01-appb-C000066
[式中、Z、Z、R、R及びnは、前記と同意義を示す。]で表される化合物又はその塩を立体選択的に得る工程、
を含むことを特徴とする、方法;
(25)Z及びZが、同一又は異なって、脂肪族アシル基、芳香族アシル基、1乃至3個のアリール基で置換されたメチル基、低級アルキル、低級アルコキシ、ハロゲン若しくはシアノ基でアリール環が置換された1乃至3個のアリール基で置換されたメチル基又はシリル基である(24)に記載の方法;
(26)Z及びZが、同一又は異なって、ベンジル基、p-メトキシベンジル基、t-ブチルジフェニルシリル基又はt-ブチルジメチルシリル基である(24)に記載の方法;
(27)Z及びZが、ベンジル基である(24)に記載の方法;
(28)Pが、4,4’-ジメトキシトリチル基である(24)乃至(27)のいずれか1項に記載の方法;
(29)Xが、ハロゲン原子、脂肪族アシルオキシ基、ハロゲン置換低級アルキルイミドオキシ基又はハロゲン置換低級アルキルスルホニルオキシ基である(24)乃至(28)のいずれか1項に記載の方法;
(30)Xが、ヨウ素原子、アセトキシ基又はトリクロロアセトイミドオキシ基である(24)乃至(28)のいずれか1項に記載の方法;
(31)nが、1である(24)乃至(30)のいずれか1項に記載の方法;
(32)Rが、メチル基又は水素原子である(24)乃至(31)のいずれか1項に記載の方法;
(33)Rが、水酸基又はベンゾイルアミノ基である(24)乃至(32)のいずれか1項に記載の方法;
(34)Rが、メチル基であり、Rが、水酸基である(24)乃至(31)のいずれか1項に記載の方法;
(35)Rが、メチル基であり、Rが、ベンゾイルアミノ基である(24)乃至(31)のいずれか1項に記載の方法;
(36)(iii)工程(ii)で得られた一般式(IX)
Figure JPOXMLDOC01-appb-C000067
[式中、Z、Z、R、R及びnは前記と同意義を示す。]で表される化合物又はその塩を、溶媒中、水酸基の脱保護試薬と反応させ、Z及びZを脱保護する工程、及び
(iv)工程(iii)で得られたジオール化合物又はその塩と、1級水酸基の保護試薬を反応させ、一般式(VI)
Figure JPOXMLDOC01-appb-C000068
[式中、P、R、R及びnは、前記と同意義を示す。]で表される化合物又はその塩を得る工程、
を含む、(24)乃至(35)のいずれか1項に記載の方法;
(37)活性化剤が、無水酢酸、無水安息香酸、トリクロロアセトニトリル、カルボニルジイミダゾール又はクロロリン酸ジフェニルである(24)乃至(36)のいずれか1項に記載の方法;
(38)ハロゲン化剤が、クロロトリメチルシラン、ブロモトリメチルシラン又はヨードトリメチルシランである(24)乃至(37)のいずれか1項に記載の方法;
(24a)Z及びZが、ベンジル基であり、
が、4,4’-ジメトキシトリチル基であり、
nが、1であり、
が、メチル基であり、Rが、ベンゾイルアミノ基である、(24)に記載の方法;
(24b)Z及びZが、ベンジル基であり、
が、4,4’-ジメトキシトリチル基であり、
が、ヨウ素原子、アセトキシ基又はトリクロロアセトイミドオキシ基であり、
nが、1であり、
が、メチル基であり、Rが、ベンゾイルアミノ基である(24)に記載の方法;
(24c)活性化剤が、無水酢酸、無水安息香酸、トリクロロアセトニトリル、カルボニルジイミダゾール又はクロロリン酸ジフェニルであり、
ハロゲン化剤が、クロロトリメチルシラン、ブロモトリメチルシラン又はヨードトリメチルシランである、(24)に記載の方法;
(24d)Z及びZが、ベンジル基であり、
が、4,4’-ジメトキシトリチル基であり、
が、ヨウ素原子、アセトキシ基又はトリクロロアセトイミドオキシ基であり、
nが、1であり、
が、メチル基であり、Rが、ベンゾイルアミノ基であり、
活性化剤が、無水酢酸、無水安息香酸、トリクロロアセトニトリル、カルボニルジイミダゾール又はクロロリン酸ジフェニルであり、
ハロゲン化剤が、クロロトリメチルシラン、ブロモトリメチルシラン又はヨードトリメチルシランである、(24)に記載の方法;
(39)一般式(X)
Figure JPOXMLDOC01-appb-C000069
[式中、Rは脂肪族アシル基又は芳香族アシル基を示し、Pは、1乃至3個の低級アルコキシ基で置換されていてもよいトリチル基を示し、nは、0乃至4の整数を示す。]で表される化合物又はその塩を製造する方法であって、
(i)一般式(II)
Figure JPOXMLDOC01-appb-C000070
[式中、Z及びZは、同一又は異なって、水酸基の保護基を示し、nは、前記と同意義を示す。]で表される化合物を、溶媒中、活性化剤と反応させ、1位の水酸基を脱離基を形成する基に変換する工程、
(ii)工程(i)で得られた一般式(XI)
Figure JPOXMLDOC01-appb-C000071
[式中、Z、Z及びnは、前記と同意義を示し、Xは、脱離基を形成する基を示す。]で表される化合物と、一般式(XII)
Figure JPOXMLDOC01-appb-C000072
[式中、Rは、前記と同意義を示す。]で表される化合物又はその塩を、溶媒中、酸試薬存在下で反応させる工程、
(iii)次いで、異性化させ、一般式(XIII)
Figure JPOXMLDOC01-appb-C000073
[式中、Z、Z、R及びnは、前記と同意義を示す。]で表される化合物又はその塩を立体選択的に得る工程、
を含むことを特徴とする、方法;
(39a)工程(iii)において、加熱することにより異性化させる(39)に記載の方法;
(40)Z及びZが、同一又は異なって、脂肪族アシル基、芳香族アシル基、1乃至3個のアリール基で置換されたメチル基、低級アルキル、低級アルコキシ、ハロゲン若しくはシアノ基でアリール環が置換された1乃至3個のアリール基で置換されたメチル基又はシリル基である(39)に記載の方法;
(41)Z及びZが、同一又は異なって、ベンジル基、p-メトキシベンジル基、t-ブチルジフェニルシリル基又はt-ブチルジメチルシリル基である(39)に記載の方法;
(42)Z及びZが、ベンジル基である(39)に記載の方法;
(43)Pが、4,4’-ジメトキシトリチル基である(39)乃至(42)のいずれか1項に記載の方法;
(44)Xが、ハロゲン原子、脂肪族アシルオキシ基、ハロゲン置換低級アルキルイミドオキシ基又はハロゲン置換低級アルキルスルホニルオキシ基である(39)乃至(43)のいずれか1項に記載の方法;
(45)Xが、アセトキシ基である(39)乃至(43)のいずれか1項に記載の方法;
(46)nが、1である(39)乃至(45)のいずれか1項に記載の方法;
(47)Rが、アセチル基又はベンゾイル基である(39)乃至(46)のいずれか1項に記載の方法;
(48)Rが、ベンゾイル基である(39)乃至(46)のいずれか1項に記載の方法;
(49)(iv)工程(iii)で得られた一般式(XIII)
Figure JPOXMLDOC01-appb-C000074
[式中、Z、Z、R及びnは、前記と同意義を示す。]で表される化合物又はその塩を、溶媒中、水酸基の脱保護試薬と反応させ、Z及びZを脱保護する工程、及び
(v)工程(iv)で得られたジオール化合物又はその塩と、1級水酸基の保護試薬を反応させ、1級水酸基を選択的に保護することにより、一般式(X)
Figure JPOXMLDOC01-appb-C000075
[式中、R、n及びPは、前記と同意義を示す。]で表される化合物又はその塩を得る工程、
を含む、(39)乃至(48)のいずれか1項に記載の方法;
(50)活性化剤が、無水酢酸、無水安息香酸、トリクロロアセトニトリル、カルボニルジイミダゾール又はクロロリン酸ジフェニルである(39)乃至(49)のいずれか1項に記載の方法;
(51)酸試薬が、トリフルオロメタンスルホン酸トリメチルシリル及びトリフルオロ酢酸である、(39)乃至(50)のいずれか1項に記載の方法;
(39b)Z及びZが、ベンジル基であり、
が、4,4’-ジメトキシトリチル基であり、
nが、1であり、
が、ベンゾイル基である、(39)に記載の方法;
(39c)Z及びZが、ベンジル基であり、
が、4,4’-ジメトキシトリチル基であり、
が、アセトキシ基であり
nが、1であり、
が、ベンゾイル基である、(39)に記載の方法;
(39d)活性化剤が、無水酢酸、無水安息香酸、トリクロロアセトニトリル、カルボニルジイミダゾール又はクロロリン酸ジフェニルであり、
酸試薬が、トリフルオロメタンスルホン酸トリメチルシリル及びトリフルオロ酢酸である、(39)に記載の方法;
(39e)Z及びZが、ベンジル基であり、
が、4,4’-ジメトキシトリチル基であり、
が、アセトキシ基であり
nが、1であり、
が、ベンゾイル基であり、
活性化剤が、無水酢酸、無水安息香酸、トリクロロアセトニトリル、カルボニルジイミダゾール又はクロロリン酸ジフェニルであり、
酸試薬が、トリフルオロメタンスルホン酸トリメチルシリル及びトリフルオロ酢酸である、(39)に記載の方法;
(52)一般式(XIV)
Figure JPOXMLDOC01-appb-C000076
[式中、Z及びZは、同一又は異なって、水酸基の保護基を示し、nは、0乃至4の整数を示す。]で表される化合物又はその塩;
(53)Z及びZが、同一又は異なって、脂肪族アシル基、芳香族アシル基、1乃至3個のアリール基で置換されたメチル基、低級アルキル、低級アルコキシ、ハロゲン若しくはシアノ基でアリール環が置換された1乃至3個のアリール基で置換されたメチル基又はシリル基である(52)に記載の化合物又はその塩;
(54)Z及びZが、同一又は異なって、ベンジル基、p-メトキシベンジル基、t-ブチルジフェニルシリル基又はt-ブチルジメチルシリル基である(52)に記載の化合物又はその塩;
(55)Z及びZが、ベンジル基である(52)に記載の化合物又はその塩;
(56)nが、1である(52)乃至(55)のいずれか1項に記載の化合物又はその塩;
(57)一般式(XIV’)で表される化合物又はその塩;
Figure JPOXMLDOC01-appb-C000077
(58)一般式(X)
Figure JPOXMLDOC01-appb-C000078
[式中、Pは、1乃至3個の低級アルコキシ基で置換されていてもよいトリチル基を示し、Rは、脂肪族アシル基又は芳香族アシル基を示し、nは、1乃至4の整数を示す。]で表される化合物又はその塩を製造する方法であって、
(i)一般式(XIV)
Figure JPOXMLDOC01-appb-C000079
[式中、Z及びZは、同一又は異なって、水酸基の保護基を示し、nは、0乃至4の整数を示す。]で表される化合物又はその塩を、アミノ化剤と反応させ、プリン環の6位の塩素原子をアミノ基と置換する工程、
(ii)工程(i)で得られた一般式(XV)
Figure JPOXMLDOC01-appb-C000080
[式中、Z、Z及びnは、前記と同意義を示す。]で表される化合物又はその塩を、溶媒中、金属触媒存在下、還元剤と反応させ、プリン環の2位の塩素原子を水素原子と置換し、Z及びZを脱保護することにより、一般式(XVI)
Figure JPOXMLDOC01-appb-C000081
[式中、nは、前記と同意義を示す。]で表される化合物又はその塩を得る工程、
を含むことを特徴とする、方法;
(58b)金属触媒が炭素に担持させた金属触媒である、(58)に記載の方法;
(59)Z及びZが、同一又は異なって、脂肪族アシル基、芳香族アシル基、1乃至3個のアリール基で置換されたメチル基、低級アルキル、低級アルコキシ、ハロゲン若しくはシアノ基でアリール環が置換された1乃至3個のアリール基で置換されたメチル基又はシリル基である(58)に記載の化合物又はその塩;
(60)Z及びZが、同一又は異なって、ベンジル基、p-メトキシベンジル基、t-ブチルジフェニルシリル基又はt-ブチルジメチルシリル基である(58)に記載の方法;
(61)Z及びZが、ベンジル基である(58)に記載の方法;
(62)Pが、4,4’-ジメトキシトリチル基である(58)乃至(61)のいずれか1項に記載の方法;
(63)nが、1である(58)乃至(62)のいずれか1項に記載の方法;
(64)Rが、アセチル基又はベンゾイル基である(58)乃至(63)のいずれか1項に記載の方法;
(65)Rが、ベンゾイル基である(58)乃至(63)のいずれか1項に記載の方法;
(66)(iii)工程(ii)で得られた一般式(XVI)
Figure JPOXMLDOC01-appb-C000082
[式中、nは、前記と同意義を示す。]で表される化合物又はその塩を、1級水酸基の保護試薬と反応させ、1級水酸基を選択的に保護する工程、
(iv)工程(iii)で得られた一般式(XVII)
Figure JPOXMLDOC01-appb-C000083
[式中、P及びnは、前記と同意義を示す。]で表される化合物又はその塩を、アシル化剤と反応させることにより、一般式(X)
Figure JPOXMLDOC01-appb-C000084
[式中、P、R及びnは、前記と同意義を示す。]で表される化合物又はその塩を得る工程、
を含む、(58)乃至(65)のいずれか1項に記載の方法;
(67)アミノ化剤が、アンモニア、アンモニア水溶液、炭酸アンモニウム又は酢酸アンモニウムである(58)乃至(66)のいずれか1項に記載の方法。
(68)金属触媒が、パラジウム、水酸化パラジウム又は白金である(58)乃至(67)のいずれか1項に記載の方法;
(69)還元剤が、水素、ギ酸又はギ酸アンモニウムである(58)乃至(68)のいずれか1項に記載の方法;
(70)アシル化剤が、ベンゾイルクロリド又は無水安息香酸である(66)乃至(69)のいずれか1項に記載の方法;
(58a)(iii-a)(58)における工程(ii)で得られた一般式(XVI)
Figure JPOXMLDOC01-appb-C000085
[式中、nは、前記と同意義を示す。]で表される化合物又はその塩を、1級水酸基の保護試薬と反応させ、1級水酸基を選択的に保護する工程、
(iv-a)工程(iii-a)で得られた一般式(XVII)
Figure JPOXMLDOC01-appb-C000086
[式中、P及びnは、前記と同意義を示す。]で表される化合物又はその塩を、アシル化剤と反応させることにより、一般式(X)
Figure JPOXMLDOC01-appb-C000087
[式中、P、R及びnは、前記と同意義を示す。]で表される化合物又はその塩を得る工程、を含み
及びZが、ベンジル基であり、
が、4,4’-ジメトキシトリチル基であり、
nが、1であり、
が、ベンゾイル基であり、
アミノ化剤が、アンモニア、アンモニア水溶液、炭酸アンモニウム又は酢酸アンモニウムであり、
金属触媒が、パラジウム、水酸化パラジウム又は白金であり、
還元剤が、水素、ギ酸又はギ酸アンモニウムであり、
アシル化剤が、ベンゾイルクロリド又は無水安息香酸である、(58)に記載の方法;
(71)一般式(XVIII)
Figure JPOXMLDOC01-appb-C000088
[式中、Pは、1乃至3個の低級アルコキシ基で置換されていてもよいトリチル基を示し、Rは、脂肪族アシル基又は芳香族アシル基を示し、nは、1乃至4の整数を示す。]で表される化合物又はその塩を製造する方法であって、
(i)一般式(XIV)
Figure JPOXMLDOC01-appb-C000089
[式中、Z及びZは、同一又は異なって、水酸基の保護基を示し、nは、0乃至4の整数を示す。]で表される化合物又はその塩を、溶媒中、塩基存在下、低級アルキル、低級アルコキシ、ハロゲン若しくはシアノ基で置換されていてもよいベンジルアルコールと反応させ、プリン環の6位の塩素原子を、低級アルキル、低級アルコキシ、ハロゲン若しくはシアノ基で置換されていてもよいベンジルオキシ基に置換する工程、
(ii)工程(i)で得られた一般式(XIX)
Figure JPOXMLDOC01-appb-C000090
[式中、Z、Z及びnは、前記と同意義を示し、Rは、低級アルキル、低級アルコキシ、ハロゲン若しくはシアノ基で置換されていてもよいベンジル基を示す。]で表される化合物又はその塩を、溶媒中、パラジウム触媒、ホスフィン配位子存在下、アミド化剤とクロスカップリングさせ、一般式(XX)
Figure JPOXMLDOC01-appb-C000091
[式中、Z、Z、R、R及びnは、前記と同意義を示す。]で表される化合物又はその塩を得る工程、
を含むことを特徴とする、方法;
(72)Z及びZが、同一又は異なって、脂肪族アシル基、芳香族アシル基、1乃至3個のアリール基で置換されたメチル基、低級アルキル、低級アルコキシ、ハロゲン若しくはシアノ基でアリール環が置換された1乃至3個のアリール基で置換されたメチル基又はシリル基である(71)に記載の方法;
(73)Z及びZが、同一又は異なって、ベンジル基、p-メトキシベンジル基、t-ブチルジフェニルシリル基又はt-ブチルジメチルシリル基である(71)に記載の方法;
(74)Z及びZが、ベンジル基である(71)に記載の方法;
(75)Pが、4,4’-ジメトキシトリチル基である(71)乃至(74)のいずれか1項に記載の方法;
(76)nが、1である(71)乃至(75)のいずれか1項に記載の方法;
(77)Rが、イソブチリル基である(71)乃至(76)のいずれか1項に記載の方法;
(78)Rが、ベンジル基である(71)乃至(77)のいずれか1項に記載の方法;
(79)(iii)工程(ii)で得られた一般式(XX)
Figure JPOXMLDOC01-appb-C000092
[式中、Z、Z、R、R及びnは、前記と同意義を示す。]で表される化合物又はその塩を、溶媒中、水酸基の脱保護試薬と反応させ、Z、Z及びRを脱保護する工程、
(iv)工程(iii)で得られた一般式(XXI)
Figure JPOXMLDOC01-appb-C000093
[式中、R及びnは、前記と同意義を示す。]で表される化合物又はその塩を、1級水酸基の保護試薬と反応させ、1級水酸基を選択的に保護することにより、一般式(XVIII)
Figure JPOXMLDOC01-appb-C000094
[式中、P、R及びnは、前記と同意義を示す。]で表される化合物又はその塩を得る工程、
を含む、(71)乃至(78)のいずれか1項に記載の方法;
(80)塩基が、水酸化ナトリウム、炭酸ナトリウム、炭酸セシウム、トリエチルアミン、ピリジン又は1,8-ジアザビシクロ[5.4.0]ウンデカ-7-エンである、(71)乃至(79)のいずれか1項に記載の方法;
(81)パラジウム触媒が、トリス(ジベンジリデンアセトン)(クロロホルム)ジパラジウム、酢酸パラジウム(II)又はトリス(ジベンジリデンアセトン)ジパラジウム(0)である(71)乃至(80)のいずれか1項に記載の方法;
(82)ホスフィン配位子が、4,5’-ビス(ジフェニルホスフィノ)-9,9’ジメチルキサンテン、1,1’-ビス(ジフェニルホスフィノ)フェロセン、1,2-ビス(ジフェニルホスフィノ)エタン又は2-ジシクロヘキシルホスフィノ-2’-(N,N-ジメチルアミノ)ビフェニルである(71)乃至(81)のいずれか1項に記載の方法;
(83)アミド化剤が、アセチルアミド、ベンゾイルアミド又はイソブチルアミドである、(71)乃至(82)のいずれか1項に記載の方法;
(84)水酸基の脱保護試薬が、金属触媒及び還元剤である(79)乃至(83)のいずれか1項に記載の方法;
(84a)水酸基の脱保護試薬が、炭素に担持させた金属触媒及び水素である(79)乃至(83)のいずれか1項に記載の方法;
(85)金属触媒が、パラジウム、水酸化パラジウム又は白金である(84)に記載の方法;
(86)還元剤が、水素、ギ酸又はギ酸アンモニウムである(84)又は(85)に記載の方法。;
(71a)(iii-a)(71)における工程(ii)で得られた一般式(XX)
Figure JPOXMLDOC01-appb-C000095
[式中、Z、Z、R、R及びnは、前記と同意義を示す。]で表される化合物又はその塩を、溶媒中、水酸基の脱保護試薬と反応させ、Z、Z及びRを脱保護する工程、
(iv-a)工程(iii-a)で得られた一般式(XXI)
Figure JPOXMLDOC01-appb-C000096
[式中、R及びnは、前記と同意義を示す。]で表される化合物又はその塩を、1級水酸基の保護試薬と反応させ、1級水酸基を選択的に保護することにより、一般式(XVIII)
Figure JPOXMLDOC01-appb-C000097
[式中、P、R及びnは、前記と同意義を示す。]で表される化合物又はその塩を得る工程、を含み、
及びZが、ベンジル基であり、
が、4,4’-ジメトキシトリチル基であり、
nが、1であり、
が、イソブチリル基であり、
塩基が、水酸化ナトリウム、炭酸ナトリウム、炭酸セシウム、トリエチルアミン、ピリジン又は1,8-ジアザビシクロ[5.4.0]ウンデカ-7-エンであり、
パラジウム触媒が、トリス(ジベンジリデンアセトン)(クロロホルム)ジパラジウム、酢酸パラジウム(II)又はトリス(ジベンジリデンアセトン)ジパラジウム(0)であり、
ホスフィン配位子が、4,5’-ビス(ジフェニルホスフィノ)-9,9’ジメチルキサンテン、1,1’-ビス(ジフェニルホスフィノ)フェロセン、1,2-ビス(ジフェニルホスフィノ)エタン又は2-ジシクロヘキシルホスフィノ-2’-(N,N-ジメチルアミノ)ビフェニルであり、
アミド化剤が、アセチルアミド、ベンゾイルアミド又はイソブチルアミドであり、
水酸基の脱保護試薬が、炭素に担持させた金属触媒及び水素であり、
金属触媒が、パラジウム、水酸化パラジウム又は白金である、(71)に記載の方法;
(87)一般式(XXII)
Figure JPOXMLDOC01-appb-C000098
[式中、Rは、低級アルキル基又は水素原子を示し、Rは、脂肪族アシル基又は芳香族アシル基を示し、Pは、1乃至3個の低級アルコキシ基で置換されていてもよいトリチル基を示し、nは、0乃至4の整数を示す。]で表される化合物又はその塩を製造する方法であって、
(i)一般式(XXIII)
Figure JPOXMLDOC01-appb-C000099
[式中、P、R及びnは、前記と同意義を示す。]で表される化合物又はその塩を、溶媒中、水酸基の保護試薬と反応させ、3’位の水酸基を保護する工程、
(ii)工程(i)で得られた一般式(XXIV)
Figure JPOXMLDOC01-appb-C000100
[式中、P、R及びnは、前記と同意義を示し、Zは、脂肪族アシル基又は芳香族アシル基を示す。]で表される化合物又はその塩を、溶媒中、塩基及び触媒存在下、活性化剤と反応させる工程、
(iii)次いで、アミノ化剤と反応させることにより、一般式(XXV)
Figure JPOXMLDOC01-appb-C000101
[式中、P、R、Z及びnは、前記と同意義を示す。]で表される化合物又はその塩を得る工程、
を含むことを特徴とする、方法;
(88)Pが、トリチル基である(87)に記載の方法;
(89)Zが、アセチル基である(87)又は(88)に記載の方法;
(90)nが、1である(87)乃至(89)のいずれか1項に記載の方法;
(91)Rが、メチル基又は水素原子である(87)乃至(90)のいずれか1項に記載の方法;
(92)Rが、アセチル基又はベンゾイル基である(87)乃至(91)のいずれか1項に記載の方法;
(93)Rが、ベンゾイル基である(87)乃至(91)のいずれか1項に記載の方法;
(94)(iv)工程(iii)で得られた一般式(XXV)
Figure JPOXMLDOC01-appb-C000102
[式中、P、R、Z及びnは、前記と同意義を示す。]で表される化合物又はその塩を、溶媒中、アシル化剤と反応させる工程、
(v)工程(iv)で得られた一般式(XXVI)
Figure JPOXMLDOC01-appb-C000103
[式中、P、R、R、Z及びnは、前記と同意義を示す。]で表される化合物又はその塩を、水酸基の脱保護試薬と反応させ、Zのみを脱保護することにより、一般式(XXII)
Figure JPOXMLDOC01-appb-C000104
[式中、P、R、R及びnは、前記と同意義を示す。]で表される化合物又はその塩を得る工程、
を含む、(87)乃至(93)のいずれか1項に記載の方法;
(95)触媒が、N,N-ジメチルアミノピリジン又は1,8-ジアザビシクロ[5.4.0]ウンデカ-7-エンである(87)乃至(94)のいずれか1項に記載の方法;
(96)活性化剤が、p-トルエンスルホニルクロリド又は2,4,6-トリイソプロピルベンゼンスルホニルクロリドである(87)乃至(95)のいずれか1項に記載の方法;
(97)アミノ化剤が、アンモニア、アンモニア水溶液、炭酸アンモニウム又は酢酸アンモニウムである(87)乃至(96)のいずれか1項に記載の方法;
(98)アシル化剤が、ベンゾイルクロリド又は無水安息香酸である(94)乃至(97)のいずれか1項に記載の方法;
(87a)Pが、トリチル基であり、
が、アセチル基であり、
nが、1であり、
が、メチル基又は水素原子であり
が、ベンゾイル基である(87)に記載の方法;
(87b)(iv-b)(87)における工程(iii)で得られた一般式(XXV)
Figure JPOXMLDOC01-appb-C000105
[式中、P、R、Z及びnは、前記と同意義を示す。]で表される化合物又はその塩を、溶媒中、アシル化剤と反応させる工程、
(v-b)工程(iv-b)で得られた一般式(XXVI)
Figure JPOXMLDOC01-appb-C000106
[式中、P、R、R、Z及びnは、前記と同意義を示す。]で表される化合物又はその塩を、水酸基の脱保護試薬と反応させ、Zのみを脱保護することにより、一般式(XXII)
Figure JPOXMLDOC01-appb-C000107
[式中、P、R、R及びnは、前記と同意義を示す。]で表される化合物又はその塩を得る工程、を含み、
触媒が、N,N-ジメチルアミノピリジン又は1,8-ジアザビシクロ[5.4.0]ウンデカ-7-エンであり、
活性化剤が、p-トルエンスルホニルクロリド又は2,4,6-トリイソプロピルベンゼンスルホニルクロリドであり、
アミノ化剤が、アンモニア、アンモニア水溶液、炭酸アンモニウム又は酢酸アンモニウムであり、
アシル化剤が、ベンゾイルクロリド又は無水安息香酸である、(87)に記載の方法;
(87c)(iv-c)(87)における工程(iii)で得られた一般式(XXV)
Figure JPOXMLDOC01-appb-C000108
[式中、P、R、Z及びnは、前記と同意義を示す。]で表される化合物又はその塩を、溶媒中、アシル化剤と反応させる工程、
(v-c)工程(iv-c)で得られた一般式(XXVI)
Figure JPOXMLDOC01-appb-C000109
[式中、P、R、R、Z及びnは、前記と同意義を示す。]で表される化合物又はその塩を、水酸基の脱保護試薬と反応させ、Zのみを脱保護することにより、一般式(XXII)
Figure JPOXMLDOC01-appb-C000110
[式中、P、R、R及びnは、前記と同意義を示す。]で表される化合物又はその塩を得る工程、を含み、
が、トリチル基であり、
が、アセチル基であり、
nが、1であり、
が、メチル基又は水素原子であり
が、ベンゾイル基であり、
触媒が、N,N-ジメチルアミノピリジン又は1,8-ジアザビシクロ[5.4.0]ウンデカ-7-エンであり、
活性化剤が、p-トルエンスルホニルクロリド又は2,4,6-トリイソプロピルベンゼンスルホニルクロリドであり、
アミノ化剤が、アンモニア、アンモニア水溶液、炭酸アンモニウム又は酢酸アンモニウムであり、
アシル化剤が、ベンゾイルクロリド又は無水安息香酸である、(87)に記載の方法;
(99)一般式(XXVII)
Figure JPOXMLDOC01-appb-C000111
[式中、Pは、1乃至3個の低級アルコキシ基で置換されていてもよいトリチル基を示し、Bは、下記α群から選択される1又は2以上の置換基を有していてもよい2-オキソ-ピリミジン-1-イル基又はプリン-9-イル基を示し、nは、0乃至4の整数を示す。]で表される化合物又はその塩に、溶媒中、活性化剤及び乾燥剤の存在下、アミダイト化試薬を反応させ、
 一般式(XXVIII)
Figure JPOXMLDOC01-appb-C000112
[式中、P、B及びnは前記と同意義を示す。]で表される化合物又はその塩を製造する方法;
(α群)
  水酸基、
  保護された水酸基、
  低級アルコキシ基、
  メルカプト基、
  保護されたメルカプト基、
  低級アルキルチオ基、
  アミノ基、
  保護されたアミノ基、
  低級アルキルアミノ基、
  低級アルキル基、及び、
  ハロゲン原子;
(100)Pが、4,4’-ジメトキシトリチル基である(99)に記載の方法;
(101)Bが、2-オキソ-4-ヒドロキシ-5-メチルピリミジン-1-イル基、アミノ基が保護された2-オキソ-4-アミノ-ピリミジン-1-イル基、アミノ基が保護された4-アミノ-5-メチル-2-オキソ-ピリミジン-1-イル基、アミノ基が保護された6-アミノプリン-9-イル基又はアミノ基が保護された2-アミノ-6-ヒドロキシプリン-9-イル基である(99)又は(100)に記載の方法;
(102)Bが、2-オキソ-4-ヒドロキシ-5-メチルピリミジン-1-イル基、2-オキソ-4-ベンゾイルアミノ-ピリミジン-1-イル基、4-ベンゾイルアミノ-5-メチル-2-オキソ-ピリミジン-1-イル基、6-ベンゾイルアミノプリン-9-イル基、又は2-イソブチリルアミノ-6-ヒドロキシプリン-9-イル基である(99)又は(100)に記載の方法;
(103)nが、1である(99)乃至(102)のいずれか1項に記載の方法;
(104)活性化剤が、ピリジントリフルオロ酢酸塩、N-メチルイミダゾールトリフルオロ酢酸塩、N-イソプロピルイミダゾールトリフルオロ酢酸塩、5-ベンジルチオテトラゾール、5-フェニルテトラゾール、4,5-ジシアノイミダゾール又は2,4,5-テトラブロモイミダゾールである(99)乃至(103)のいずれか1項に記載の方法;
(105)活性化剤が、4,5-ジシアノイミダゾールである(99)乃至(103)のいずれか1項に記載の方法;
(106)アミダイト化試薬が、2-シアノエチルN,N,N’,N’-テトライソプロピルホスホロジアミダイト又は2-シアノエチルジイソプロピルクロロホスホロアミジトである(99)乃至(105)のいずれか1項に記載の方法;
(107)アミダイト化試薬が、2-シアノエチルN,N,N’,N’-テトライソプロピルホスホロジアミダイトである(99)乃至(105)のいずれか1項に記載の方法;
(108)乾燥剤が、モレキュラーシーブ3A、モレキュラーシーブ4A、又はモレキュラーシーブ5A、である(99)乃至(107)のいずれか1項に記載の方法;
(99a)Pが、4,4’-ジメトキシトリチル基であり、
Bが、2-オキソ-4-ヒドロキシ-5-メチルピリミジン-1-イル基、2-オキソ-4-ベンゾイルアミノ-ピリミジン-1-イル基、4-ベンゾイルアミノ-5-メチル-2-オキソ-ピリミジン-1-イル基、6-ベンゾイルアミノプリン-9-イル基、又は2-イソブチリルアミノ-6-ヒドロキシプリン-9-イル基であり、
nが、1である(99)に記載の方法;
(99b)活性化剤が、ピリジントリフルオロ酢酸塩、N-メチルイミダゾールトリフルオロ酢酸塩、N-イソプロピルイミダゾールトリフルオロ酢酸塩、5-ベンジルチオテトラゾール、5-フェニルテトラゾール、4,5-ジシアノイミダゾール又は2,4,5-テトラブロモイミダゾールであり、
アミダイト化試薬が、2-シアノエチルN,N,N’,N’-テトライソプロピルホスホロジアミダイト又は2-シアノエチルジイソプロピルクロロホスホロアミジトであり、
乾燥剤が、モレキュラーシーブ3A、モレキュラーシーブ4A、又はモレキュラーシーブ5A、である(99)に記載の方法;
(99c)Pが、4,4’-ジメトキシトリチル基であり、
Bが、2-オキソ-4-ヒドロキシ-5-メチルピリミジン-1-イル基、2-オキソ-4-ベンゾイルアミノ-ピリミジン-1-イル基、4-ベンゾイルアミノ-5-メチル-2-オキソ-ピリミジン-1-イル基、6-ベンゾイルアミノプリン-9-イル基、又は2-イソブチリルアミノ-6-ヒドロキシプリン-9-イル基であり、
nが、1であり、
活性化剤が、ピリジントリフルオロ酢酸塩、N-メチルイミダゾールトリフルオロ酢酸塩、N-イソプロピルイミダゾールトリフルオロ酢酸塩、5-ベンジルチオテトラゾール、5-フェニルテトラゾール、4,5-ジシアノイミダゾール又は2,4,5-テトラブロモイミダゾールであり、
アミダイト化試薬が、2-シアノエチルN,N,N’,N’-テトライソプロピルホスホロジアミダイト又は2-シアノエチルジイソプロピルクロロホスホロアミジトであり、
乾燥剤が、モレキュラーシーブ3A、モレキュラーシーブ4A、又はモレキュラーシーブ5A、である(99)に記載の方法;
(109) 以下の工程を含むオリゴヌクレオチドの製造方法、
(A)(99)から(108)のいずれか1項に記載の方法によりENAモノマーを合成する工程、及び
(B)工程(A)で得られたENAモノマー、他の核酸のホスホロアミダイト化合物及び/又は、リガンドのホスホロアミダイト化合物を用いて、所望の配列に応じてヌクレオチド鎖を伸長させる工程。
(110)オリゴヌクレオチドが、以下のDMD AO01~DMD AO15から選択されるいずれか一つの式で表される配列からなることを特徴とする、(109)に記載の方法、
(DMD AO01) HO-Ce2s-Am1s-Gm1s-Te2s-Te2s-Um1s-Gm1s-Ce2s-Ce2s-Gm1s-Ce2s-Te2s-Gm1s-Ce2s-Ce2s-Ce2s-Am1s-Am1s-CH2CH2OH(配列番号1)
(DMD AO02) HO-Te2s-Gm1s-Te2s-Te2s-Ce2s-Te2s-Gm1s-Am1s-Ce2s-Am1s-Am1s-Ce2s-Am1s-Gm1s-Te2s-Te2s-Te2s-Gm1s-CH2CH2OH(配列番号2)
(DMD AO03) HO-Ce2s-Gm1s-Ce2s-Te2s-Gm1s-Cm1s-Ce2s-Ce2s-Am1s-Am1s-Te2s-Gm1s-Ce2s-Ce2s-Am1s-Um1s-Ce2s-Ce2s-CH2CH2OH(配列番号3)
(DMD AO04) HO-Ce2s-Am1s-Te2s-Am1s-Am1s-Te2s-Gm1s-Am1s-Ae2s-Am1s-Am1s-Ce2s-Gm1s-Cm1s-Ce2s-Gm1s-Ce2s-Ce2s-CH2CH2OH(配列番号4)
(DMD AO05) HO-Te2s-Um1s-Ce2s-Cm1s-Ce2s-Am1s-Am1s-Te2s-Um1s-Cm1s-Te2s-Ce2s-Am1s-Gm1s-Gm1s-Ae2s-Am1s-Te2s-CH2CH2OH(配列番号5)
(DMD AO06) HO-Ce2s-Ce2s-Am1s-Um1s-Te2s-Um1s-Gm1s-Te2s-Am1s-Um1s-Te2s-Te2s-Am1s-Gm1s-Ce2s-Am1s-Te2s-Gm1s-CH2CH2OH(配列番号6)
(DMD AO07) HO-Gm1s-Gm1s-Ce2s-Te2s-Gm1s-Cm1s-Te2s-Te2s-Um1s-Gm1s-Ce2s-Cm1s-Cm1s-Te2s-Ce2s-Am1s-Gm1s-Ce2s-CH2CH2OH(配列番号7) 
(DMD AO08) HO-Gm1s-Ce2s-Te2s-Am1s-Gm1s-Gm1s-Te2s-Ce2s-Am1s-Gm1s-Gm1s-Te2s-Gm1s-Cm1s-Te2s-Te2s-Um1s-CH2CH2OH(配列番号8) 
(DMD AO09) HO-Am1s-Ce2s-Ce2s-Gm1s-Cm1s-Ce2s-Te2s-Um1s-Cm1s-Ce2s-Am1s-Cm1s-Te2s-Ce2s-Am1s-Gm1s-Ae2s-Gm1s-CH2CH2OH;(配列番号9)
(DMD AO10) HO-Ge2s-Ge2s-Ce2s-Ae2s-Te2s-Um1s-Um1s-Cm1s-Um1s-Am1s-Gm1s-Um1s-Um1s-Te2s-Ge2s-Ge2s-Ae2s-Ge2s-CH2CH2OH(配列番号10)
(DMD AO11) HO-Gm1s-Gm1s-Ce2s-Am1s-Te2s-Te2s-Um1s-Ce2s-Te2s-Am1s-Gm1s-Um1s-Te2s-Te2s-Gm1s-Gm1s-Ae2s-Gm1s-CH2CH2OH(配列番号11)
(DMD AO12) HO-Ae2s-Gm1s-Te2s-Um1s-Te2s-Gm1s-Gm1s-Ae2s-Gm1s-Am1s-Te2s-Gm1s-Gm1s-Ce2s-Ae2s-Gm1s-Te2s-Te2s-CH2CH2OH(配列番号12)
(DMD AO13) HO-Ce2s-Te2s-Cm1s-Ce2s-Te2s-Um1s-Ce2s-Ce2s-Am1s-Te2s-Gm1s-Am1s-Ce2s-Te2s-Ce2s-Am1s-Am1s
-Gm1s- CH2CH2OH(配列番号13)
(DMD AO14) HO-Ce2s-Te2s-Gm1s-Am1s-Am1s-Gm1s-Gm1s-Te2s-Gm1s-Te2s-Te2s-Ce2s-Te2s-Te2s-Gm1s-Te2s-Am1s-
Ce2s- CH2CH2OH(配列番号14)
(DMD AO15) HO-Te2s-Te2s-Cm1s-Ce2s-Am1s-Gm1s-Ce2s-Ce2s-Am1s-Te2s-Te2s-Gm1s-Te2s-Gm1s-Te2s-Te2s-Gm1s
-Am1s- CH2CH2OH(配列番号15)
[上記式において、左側が5'末端、右側が3’末端を表し、A、G、C、U及びTは、それぞれD-リボフラノースが修飾され、5'位の炭素原子が左側に表示された構造単位とホスホロチオエート結合したアデノシン、グアノシン、シチジン、ウリジン及びチミジンを表す。各ヌクレオチドまたはヌクレオシドに付された、e2sはD-リボフラノースが2'-O,4'-C-エチレン架橋され、3'位が-OP(=S)(-OH)-O-で右側に隣接したヌクレオチドまたはヌクレオシドの5’位炭素原子と結合することを表し、e2tはD-リボフラノースが2'-O,4'-C-エチレン架橋され、3'位が-O-で3’末端の水素原子と結合することを表し、m1sはD-リボフラノースが2'-O-メチル化され、3'位が-OP(=S)(-OH)-O-で右側に隣接したヌクレオチドまたはヌクレオシドの5’位炭素原子と結合することを表し、m1tはD-リボフラノースが2'-O-メチル化され、3'位が-O-で3’末端の水素原子と結合することを表す。]
(111)オリゴヌクレオチドが、以下のGSD AO01~GSD AO16から選択されるいずれか一つの式で表される配列からなり、リガンドが下記式のX18又はX20で表されることを特徴とする、(109)に記載の方法、
(GSD AO01) X18-Am1s-Ae2s-Um1s-Cm1s-Ce2s-Gm1s-Am1s-Te2s-Gm1s-Gm1s-Ce2s-Gm1s-Am1s-Ae2s-Gm1t-H(配列番号16)
(GSD AO02) X18-Ae2s-Um1s-Cm1s-Ce2s-Gm1s-Am1s-Te2s-Gm1s-Gm1s-Ce2s-Gm1s-Am1s-Ae2s-Gm1s-Ce2t-H(配列番号17)
(GSD AO03) X18-Um1s-Cm1s-Ce2s-Gm1s-Am1s-Te2s-Gm1s-Gm1s-Ce2s-Gm1s-Am1s-Ae2s-Gm1s-Ce2s-Um1t-H(配列番号18)
(GSD AO04) X18-Am1s-Am1s-Ae2s-Um1s-Cm1s-Ce2s-Gm1s-Am1s-Te2s-Gm1s-Gm1s-Ce2s-Gm1s-Am1s-Ae2s-Gm1t-H(配列番号19)
(GSD AO05) X18-Am1s-Ae2s-Um1s-Cm1s-Ce2s-Gm1s-Am1s-Te2s-Gm1s-Gm1s-Ce2s-Gm1s-Am1s-Ae2s-Gm1s-Ce2t-H(配列番号20)
(GSD AO06) X18-Ae2s-Um1s-Cm1s-Ce2s-Gm1s-Am1s-Te2s-Gm1s-Gm1s-Ce2s-Gm1s-Am1s-Ae2s-Gm1s-Ce2s-Um1t-H(配列番号21)
(GSD AO07) X18-Am1s-Ae2s-Um1s-Cm1s-Ce2s-Gm1s-Ae2s-Um1s-Gm1s-Gm1s-Ce2s-Gm1s-Am1s-Ae2s-Gm1t-H(配列番号22)
(GSD AO08) X18-Ae2s-Um1s-Cm1s-Ce2s-Gm1s-Ae2s-Um1s-Gm1s-Gm1s-Ce2s-Gm1s-Am1s-Ae2s-Gm1s-Ce2t-H(配列番号23)
(GSD AO09) X18-Um1s-Cm1s-Ce2s-Gm1s-Ae2s-Um1s-Gm1s-Gm1s-Ce2s-Gm1s-Am1s-Ae2s-Gm1s-Ce2s-Um1t-H(配列番号24)
(GSD AO10) X18-Am1s-Am1s-Ae2s-Um1s-Cm1s-Ce2s-Gm1s-Ae2s-Um1s-Gm1s-Gm1s-Ce2s-Gm1s-Am1s-Ae2s-Gm1t-H(配列番号25)
(GSD AO11) X18-Am1s-Ae2s-Um1s-Cm1s-Ce2s-Gm1s-Ae2s-Um1s-Gm1s-Gm1s-Ce2s-Gm1s-Am1s-Ae2s-Gm1s-Ce2t-H1(配列番号26)
(GSD AO12) X18-Ae2s-Um1s-Cm1s-Ce2s-Gm1s-Ae2s-Um1s-Gm1s-Gm1s-Ce2s-Gm1s-Am1s-Ae2s-Gm1s-Ce2s-Um1t-H(配列番号27)
(GSD AO13) X20-Am1s-Ae2s-Um1s-Cm1s-Ce2s-Gm1s-Ae2s-Um1s-Gm1s-Gm1s-Ce2s-Gm1s-Am1s-Ae2s-Gm1t-H(配列番号28)
(GSD AO14) X20-Ae2s-Um1s-Cm1s-Ce2s-Gm1s-Ae2s-Um1s-Gm1s-Gm1s-Ce2s-Gm1s-Am1s-Ae2s-Gm1s-Ce2t-H(配列番号29)
(GSD AO15) X20-Am1s-Am1s-Ae2s-Um1s-Cm1s-Ce2s-Gm1s-Ae2s-Um1s-Gm1s-Gm1s-Ce2s-Gm1s-Am1s-Ae2s-Gm1t-H(配列番号30)
(GSD AO16) X20-Am1s-Ae2s-Um1s-Cm1s-Ce2s-Gm1s-Ae2s-Um1s-Gm1s-Gm1s-Ce2s-Gm1s-Am1s-Ae2s-Gm1s-Ce2t-H(配列番号31)
[上記式において、左側が5'末端、右側が3’末端を表し、A、G、C、U及びTは、それぞれD-リボフラノースが修飾され、5'位の炭素原子が左側に表示された構造単位とホスホロチオエート結合したアデノシン、グアノシン、シチジン、ウリジン及びチミジンを表す。各ヌクレオチドまたはヌクレオシドに付された、e2sはD-リボフラノースが2'-O,4'-C-エチレン架橋され、3'位が-OP(=S)(-OH)-O-で右側に隣接したヌクレオチドまたはヌクレオシドの5’位炭素原子と結合することを表し、e2tはD-リボフラノースが2'-O,4'-C-エチレン架橋され、3'位が-O-で3’末端の水素原子と結合することを表し、m1sはD-リボフラノースが2'-O-メチル化され、3'位が-OP(=S)(-OH)-O-で右側に隣接したヌクレオチドまたはヌクレオシドの5’位炭素原子と結合することを表し、m1tはD-リボフラノースが2'-O-メチル化され、3'位が-O-で3’末端の水素原子と結合することを表す。
上記式において、X18およびX20は、下記の式で表されるGalNAcユニットを表す。下記の式において、リン酸基に結合した結合手はオリゴヌクレオチドの5'末端の炭素原子に結合して、リン酸ジエステル結合を形成することを表す。]
Figure JPOXMLDOC01-appb-C000113

  
Figure JPOXMLDOC01-appb-C000114

  
 本発明により、複数のENAモノマーを効率的に作り分けることが可能となった。
 本発明をさらに詳細に説明する。
 本発明において、Z及びZの「水酸基の保護基」、並びにα群の「保護された水酸基」の保護基とは、加水素分解、加水分解、電気分解及び光分解のような化学的方法又は人体内で加水分解等の生物学的方法により開裂し得る保護基のことをいう。そのような保護基としては、例えば、ホルミル、アセチル、プロピオニル、ブチリル、イソブチリル、ペンタノイル、ピバロイル、バレリル、イソバレリル、オクタノイル、ノナノイル、デカノイル、3-メチルノナノイル、8-メチルノナノイル、3-エチルオクタノイル、3,7-ジメチルオクタノイル、ウンデカノイル、ドデカノイル、トリデカノイル、テトラデカノイル、ペンタデカノイル、ヘキサデカノイル、1-メチルペンタデカノイル、14-メチルペンタデカノイル、13,13-ジメチルテトラデカノイル、ヘプタデカノイル、15-メチルヘキサデカノイル、オクタデカノイル、1-メチルヘプタデカノイル、ノナデカノイル、アイコサノイル及びヘナイコサノイルのようなアルキルカルボニル基、スクシノイル、グルタロイル、アジポイルのようなカルボキシ化アルキルカルボニル基、クロロアセチル、ジクロロアセチル、トリクロロアセチル、トリフルオロアセチルのようなハロゲノ低級アルキルカルボニル基、メトキシアセチルのような低級アルコキシ低級アルキルカルボニル基、(E)-2-メチル-2-ブテノイルのような不飽和アルキルカルボニル基のような「脂肪族アシル基」;
ベンゾイル、α-ナフトイル、β-ナフトイルのようなアリールカルボニル基、2-ブロモベンゾイル、4-クロロベンゾイルのようなハロゲノアリールカルボニル基、2,4,6-トリメチルベンゾイル、4-トルオイルのような低級アルキル化アリールカルボニル基、4-アニソイルのような低級アルコキシ化アリールカルボニル基、2-カルボキシベンゾイル、3-カルボキシベンゾイル、4-カルボキシベンゾイルのようなカルボキシ化アリールカルボニル基、4-ニトロベンゾイル、2-ニトロベンゾイルのようなニトロ化アリールカルボニル基;2-(メトキシカルボニル) ベンゾイルのような低級アルコキシカルボニル化アリールカルボニル基、4-フェニルベンゾイルのようなアリール化アリールカルボニル基のような「芳香族アシル基」;
テトラヒドロピラン-2-イル、3-ブロモテトラヒドロピラン-2-イル、4-メトキシテトラヒドロピラン-4-イル、テトラヒドロチオピラン-2-イル、4-メトキシテトラヒドロチオピラン-4-イルのような「テトラヒドロピラニル又はテトラヒドロチオピラニル基」;テトラヒドロフラン-2-イル、テトラヒドロチオフラン-2-イルのような「テトラヒドロフラニル又はテトラヒドロチオフラニル基」;
トリメチルシリル、トリエチルシリル、イソプロピルジメチルシリル、t-ブチルジメチルシリル、メチルジイソプロピルシリル、メチルジ-t-ブチルシリル、トリイソプロピルシリルのようなトリ低級アルキルシリル基、ジフェニルメチルシリル、ジフェニルブチルシリル、ジフェニルイソプロピルシリル、フェニルジイソプロピルシリルのような1乃至2個のアリール基で置換されたトリ低級アルキルシリル基のような「シリル基」;
メトキシメチル、1,1-ジメチル-1-メトキシメチル、エトキシメチル、プロポキシメチル、イソプロポキシメチル、ブトキシメチル、t-ブトキシメチルのような「低級アルコキシメチル基」;
2-メトキシエトキシメチルのような「低級アルコキシ化低級アルコキシメチル基」;
2,2,2-トリクロロエトキシメチル、ビス(2-クロロエトキシ)メチルのような「ハロゲノ低級アルコキシメチル」;
1-エトキシエチル、1-(イソプロポキシ)エチルのような「低級アルコキシエチル基」;
2,2,2-トリクロロエチルのような「ハロゲン化エチル基」;
ベンジル、α-ナフチルメチル、β-ナフチルメチル、ジフェニルメチル、トリフェニルメチル、α-ナフチルジフェニルメチル、9-アンスリルメチルのような「1乃至3個のアリール基で置換されたメチル基」;
4-メチルベンジル、2,4,6-トリメチルベンジル、3,4,5-トリメチルベンジル、4-メトキシベンジル、4-メトキシフェニルジフェニルメチル、4、4’-ジメトキシトリフェニルメチル、2-ニトロベンジル、4-ニトロベンジル、4-クロロベンジル、4-ブロモベンジル、4-シアノベンジルのような「低級アルキル、低級アルコキシ、ハロゲン、シアノ基でアリール環が置換された1乃至3個のアリール基で置換されたメチル基」;
メトキシカルボニル、エトキシカルボニル、t-ブトキシカルボニル、イソブトキシカルボニルのような「低級アルコキシカルボニル基」;
2,2,2-トリクロロエトキシカルボニル、2-トリメチルシリルエトキシカルボニルのような「ハロゲン又はトリ低級アルキルシリル基で置換された低級アルコキシカルボニル基」;
ビニルオキシカルボニル、アリールオキシカルボニルのような「アルケニルオキシカルボニル基」;
ベンジルオキシカルボニル、4-メトキシベンジルオキシカルボニル、3,4-ジメトキシベンジルオキシカルボニル、2-ニトロベンジルオキシカルボニル、4-ニトロベンジルオキシカルボニルのような1乃至2個の「低級アルコキシ又はニトロ基でアリール環が置換されていてもよいアラルキルオキシカルボニル基」を挙げることができる。
 Z、Zの「水酸基の保護基」においては、好適には、「脂肪族アシル基」、「芳香族アシル基」、「1乃至3個のアリール基で置換されたメチル基」、「低級アルキル、低級アルコキシ、ハロゲン、シアノ基でアリール環が置換された1乃至3個のアリール基で置換されたメチル基」又は「シリル基」であり、より好適には、アセチル基、ベンゾイル基、ベンジル基、p-メトキシベンゾイル基、ジメトキシトリチル基、モノメトキシトリチル基又はt-ブチルジフェニルシリル基であり、さらにより好適にはベンジル基である。
 α群の「保護された水酸基」においては、「脂肪族アシル基」又は「芳香族アシル基」であり、より好適には、ベンゾイル基である。
 本発明において、A、R及びα群の「低級アルキル基」とは、炭素数1~6の直鎖又は分岐鎖状のアルキル基を示し、例えば、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、イソブチル基、s-ブチル基、t-ブチル基、n-ペンチル基、イソペンチル基、2-メチルブチル基、ネオペンチル基、1-エチルプロピル基、n-ヘキシル基、イソヘキシル基、4-メチルペンチル基、3-メチルペンチル基、2-メチルペンチル基、1-メチルペンチル基、3,3-ジメチルブチル基、2,2-ジメチルブチル基、1,1-ジメチルブチル基、1,2-ジメチルブチル基、1,3-ジメチルブチル基、2,3-ジメチルブチル基、2-エチルブチル基を挙げることができる。
 Aの「低級アルキル基」としては、好適にはメチル基、エチル基又はプロピル基であり、より好適にはメチル基である。
 Rの「低級アルキル基」としては、好適には、メチル基である。
 本発明において、α群の「低級アルコキシ基」とは、上記「低級アルキル基」が酸素原子に結合した基を示し、例えば、メトキシ、エトキシ、n-プロポキシ、イソプロポキシ、n-ブトキシ、イソブトキシ、s-ブトキシ又はt-ブトキシを挙げることができ、好適には、メトキシ又はエトキシ基である。
 本発明において、α群の「保護されたメルカプト基」の保護基としては、例えば、上記水酸基の保護基としてあげたものの他、メチルチオ、エチルチオ、t-ブチルチオのようなアルキルチオ基、ベンジルチオのようなアリールチオ基等の「ジスルフィドを形成する基」を挙げることができ、好適には、「脂肪族アシル基」又は「芳香族アシル基」であり、より好適には、ベンゾイル基である。
 本発明において、α群の「低級アルキルチオ基」とは、とは、上記「低級アルキル基」が硫黄原子に結合した基を示し、例えば、メチルチオ、エチルチオ、プロピルチオ、イソプロピルチオ、ブチルチオ、イソブチルチオ、s-ブチルチオ、t-ブチルチオを挙げることができ、好適には、メチルチオ又はエチルチオ基である。
 本発明において、α群の「保護されたアミノ基」の保護基としては、例えば、ホルミル、アセチル、プロピオニル、ブチリル、イソブチリル、ペンタノイル、ピバロイル、バレリル、イソバレリル、オクタノイル、ノナノイル、デカノイル、3-メチルノナノイル、8-メチルノナノイル、3-エチルオクタノイル、3,7-ジメチルオクタノイル、ウンデカノイル、ドデカノイル、トリデカノイル、テトラデカノイル、ペンタデカノイル、ヘキサデカノイル、1-メチルペンタデカノイル、14-メチルペンタデカノイル、13,13-ジメチルテトラデカノイル、ヘプタデカノイル、15-メチルヘキサデカノイル、オクタデカノイル、1-メチルヘプタデカノイル、ノナデカノイル、アイコサノイル及びヘナイコサノイルのようなアルキルカルボニル基、スクシノイル、グルタロイル、アジポイルのようなカルボキシ化アルキルカルボニル基、クロロアセチル、ジクロロアセチル、トリクロロアセチル、トリフルオロアセチルのようなハロゲノ低級アルキルカルボニル基、メトキシアセチルのような低級アルコキシ低級アルキルカルボニル基、(E)-2-メチル-2-ブテノイルのような不飽和アルキルカルボニル基等の「脂肪族アシル基」;
ベンゾイル、α-ナフトイル、β-ナフトイルのようなアリールカルボニル基、2-ブロモベンゾイル、4-クロロベンゾイルのようなハロゲノアリールカルボニル基、2,4,6-トリメチルベンゾイル、4-トルオイルのような低級アルキル化アリールカルボニル基、4-アニソイルのような低級アルコキシ化アリールカルボニル基、2-カルボキシベンゾイル、3-カルボキシベンゾイル、4-カルボキシベンゾイルのようなカルボキシ化アリールカルボニル基、4-ニトロベンゾイル、2-ニトロベンゾイルのようなニトロ化アリールカルボニル基;2-(メトキシカルボニル) ベンゾイルのような低級アルコキシカルボニル化アリールカルボニル基、4-フェニルベンゾイルのようなアリール化アリールカルボニル基等の「芳香族アシル基」;
メトキシカルボニル、エトキシカルボニル、t-ブトキシカルボニル、イソブトキシカルボニルのような「低級アルコキシカルボニル基」;
2,2,2-トリクロロエトキシカルボニル、2-トリメチルシリルエトキシカルボニルのような「ハロゲン又はトリ低級アルキルシリル基で置換された低級アルコキシカルボニル基」;
ビニルオキシカルボニル、アリールオキシカルボニルのような「アルケニルオキシカルボニル基」;
ベンジルオキシカルボニル、4-メトキシベンジルオキシカルボニル、3,4-ジメトキシベンジルオキシカルボニル、2-ニトロベンジルオキシカルボニル、4-ニトロベンジルオキシカルボニルのような1乃至2個の「低級アルコキシ又はニトロ基でアリール環が置換されていてもよいアラルキルオキシカルボニル基」をあげることができ、好適には、「脂肪族アシル基」又は「芳香族アシル基」であり、より好適には、ベンゾイル基である。
 本発明において、α群の「低級アルキルアミノ基」は、アミノ基の1個又は2個の水素原子が上記「低級アルキル基」で置換された基を示し、例えば、メチルアミノ、エチルアミノ、プロピルアミノ、イソプロピルアミノ、ブチルアミノ、イソブチルアミノ、s-ブチルアミノ、t-ブチルアミノ、ジメチルアミノ、ジエチルアミノ、ジプロピルアミノ、ジイソプロピルアミノ、ジブチルアミノ、ジイソブチルアミノ、ジ(s-ブチル)アミノ、ジ(t-ブチル)アミノを挙げることができ、好適には、メチルアミノ、エチルアミノ、ジメチルアミノ、ジエチルアミノまたはジイソプロピルアミノ基である。
 本発明において、X、X及びα群の「ハロゲン原子」としては、例えば、フッ素原子、塩素原子、臭素原子又はヨウ素原子を挙げることができる。
 本発明において、X及びXの「脱離基を形成する基」としては、例えば、ハロゲン原子、脂肪族アシルオキシ基、ハロゲン置換低級アルキルイミドオキシ基又はハロゲン置換低級アルキルスルホニルオキシ基を挙げることができる。
 Xの「脱離基を形成する基」においては、好適には、ヨウ素原子、アセトキシ基又はトリクロロアセトイミドオキシ基である。
 Xの「脱離基を形成する基」においては、好適には、アセトキシ基である。
 本発明において、Yの「1乃至3個のアリール基で置換されたメチル基」としては、例えば、ベンジル、α-ナフチルメチル、β-ナフチルメチル、ジフェニルメチル、トリチル、α-ナフチルジフェニルメチル又は9-アンスリルメチル基を挙げることができ、好適にはトリチル基である。
 本発明において、Yの「低級アルキル、低級アルコキシ、ハロゲン若しくはシアノ基でアリール環が置換された1乃至3個のアリール基で置換されたメチル基」とは、例えば、4-メチルベンジル、2,4,6-トリメチルベンジル、3,4,5-トリメチルベンジル、4-メトキシベンジル、4-メトキシフェニルジフェニルメチル、4、4’-ジメトキシトリフェニルメチル(4、4’-ジメトキシトリチル)、2-ニトロベンジル、4-ニトロベンジル、4-クロロベンジル、4-ブロモベンジル又は4-シアノベンジル基を挙げることができる。
 本発明において、Yの「低級アルコキシメチル基」とは、上記「低級アルコキシ基」にメチル基が結合した基である。例えば、メトキシメチル、1,1-ジメチル-1-メトキシメチル、エトキシメチル、プロポキシメチル、イソプロポキシメチル、ブトキシメチル、t-ブトキシメチルを挙げることができ、好適にはメトキシメチル基である。
 本発明において、Yの「テトラヒドロピラニル基」としては、例えば、テトラヒドロピラン-2-イル、3-ブロモテトラヒドロピラン-2-イル又は4-メトキシテトラヒドロピラン-4-イル基を挙げることができ、好適には、テトラヒドロピラン-2-イル基である。
 本発明において、Yの「シリル基」としては、例えば、トリメチルシリル、トリエチルシリル、イソプロピルジメチルシリル、t-ブチルジメチルシリル、メチルジイソプロピルシリル、メチルジ-t-ブチルシリル、トリイソプロピルシリルのようなトリ低級アルキルシリル基、ジフェニルメチルシリル、ジフェニルブチルシリル、ジフェニルイソプロピルシリル、フェニルジイソプロピルシリルのような1乃至2個のアリール基で置換されたトリ低級アルキルシリル基を挙げることができ、好適にはt-ブチルジフェニルシリル基又はt-ブチルジメチルシリル基である。
 Pの「1乃至3個の低級アルコキシ基で置換されていてもよいトリチル基」とは、トリチル基におけるフェニル基の1乃至3個の水素原子が上記「低級アルコキシ基」で置換された基を示し、例えば、トリチル基、モノメトキシトリチル基又はジメトキシトリチル基を挙げることができ、好適には、4,4’-ジメトキシトリチル基である。
 本発明において、R、R、R、R及びZの「脂肪族アシル基」としては、例えば、ホルミル、アセチル、プロピオニル、ブチリル、イソブチリル、ペンタノイル、ピバロイル、バレリル、イソバレリル、オクタノイル、ノナノイル、デカノイル、3-メチルノナノイル、8-メチルノナノイル、3-エチルオクタノイル、3,7-ジメチルオクタノイル、ウンデカノイル、ドデカノイル、トリデカノイル、テトラデカノイル、ペンタデカノイル、ヘキサデカノイル、1-メチルペンタデカノイル、14-メチルペンタデカノイル、13,13-ジメチルテトラデカノイル、ヘプタデカノイル、15-メチルヘキサデカノイル、オクタデカノイル、1-メチルヘプタデカノイル、ノナデカノイル、アイコサノイル及びヘナイコサノイルのようなアルキルカルボニル基、スクシノイル、グルタロイル、アジポイルのようなカルボキシ化アルキルカルボニル基、クロロアセチル、ジクロロアセチル、トリクロロアセチル、トリフルオロアセチルのようなハロゲノ低級アルキルカルボニル基、メトキシアセチルのような低級アルコキシ低級アルキルカルボニル基、(E)-2-メチル-2-ブテノイルのような不飽和アルキルカルボニル基を挙げることができる。
 R、R、R及びZの「脂肪族アシル基」としては、好適には、アセチル基である。
 Rの「脂肪族アシル基」としては、好適には、イソブチリル基である。
 本発明において、R、R、R及びZの「芳香族アシル基」としては、例えば、ベンゾイル、α-ナフトイル、β-ナフトイルのようなアリールカルボニル基、2-ブロモベンゾイル、4-クロロベンゾイルのようなハロゲノアリールカルボニル基、2,4,6-トリメチルベンゾイル、4-トルオイルのような低級アルキル化アリールカルボニル基、4-アニソイルのような低級アルコキシ化アリールカルボニル基、2-カルボキシベンゾイル、3-カルボキシベンゾイル、4-カルボキシベンゾイルのようなカルボキシ化アリールカルボニル基、4-ニトロベンゾイル、2-ニトロベンゾイルのようなニトロ化アリールカルボニル基;2-(メトキシカルボニル) ベンゾイルのような低級アルコキシカルボニル化アリールカルボニル基、4-フェニルベンゾイルのようなアリール化アリールカルボニル基を挙げることができる。
 R、R、R及びZの「芳香族アシル基」としては、好適には、ベンゾイル基である。
 本発明において、Rの「脂肪族アシル基若しくは芳香族アシル基で保護されたアミノ基」とは、アミノ基が上記「脂肪族アシル基」又は「芳香族アシル基」で置換された基を示す。Rの「脂肪族アシル基で保護されたアミノ基」としては、例えば、ホルミルアミノ、アセチルアミノ、プロピオニルアミノ、ブチリルアミノ、イソブチリルアミノ、ペンタノイルアミノ、ピバロイルアミノ、バレリルアミノ、クロロアセチルアミノ、ジクロロアセチルアミノ、トリクロロアセチルアミノ、トリフルオロアセチルアミノ、メトキシアセチルアミノ又は(E)-2-メチル-2-ブテノイルアミノ基を挙げることができる。Rの「芳香族アシル基で保護されたアミノ基」としては、例えば、ベンゾイルアミノ、α-ナフトイルアミノ、β-ナフトイルアミノ、2-ブロモベンゾイルアミノ、4-クロロベンゾイルアミノ、2,4,6-トリメチルベンゾイルアミノ、4-トルオイルアミノ、4-アニソイルアミノ、2-カルボキシベンゾイルアミノ、3-カルボキシベンゾイルアミノ、4-カルボキシベンゾイルアミノ、4-ニトロベンゾイルアミノ、2-ニトロベンゾイルアミノ、2-(メトキシカルボニル)ベンゾイルアミノ又は4-フェニルベンゾイルアミノ基を挙げることができ、好適には、ベンゾイルアミノ基である。
 本発明において、Rの「低級アルキル、低級アルコキシ、ハロゲン若しくはシアノ基で置換されていてもよいベンジル基」としては、例えば、ベンジル、4-メチルベンジル、2,4,6-トリメチルベンジル、3,4,5-トリメチルベンジル、4-メトキシベンジル、4-クロロベンジル、4-ブロモベンジル又は4-シアノベンジルを挙げることができ、好適には、ベンジル基である。
 上記一般式(XXVII)及び(XXVIII)中、Bの「α群から選択される1又は2以上の置換基を有していてもよいプリン-9-イル基」は、好適には、6-アミノプリン-9-イル(すなわち、アデニニル)、アミノ基が保護された6-アミノプリン-9-イル、2,6-ジアミノプリン-9-イル、2-アミノ-6-クロロプリン-9-イル、アミノ基が保護された2-アミノ-6-クロロプリン-9-イル、2-アミノ-6-フルオロプリン-9-イル、アミノ基が保護された2-アミノ-6-フルオロプリン-9-イル、2-アミノ-6-ブロモプリン-9-イル、アミノ基が保護された2-アミノ-6-ブロモプリン-9-イル、2-アミノ-6-ヒドロキシプリン-9-イル(すなわち、グアニニル)、アミノ基が保護された2-アミノ-6-ヒドロキシプリン-9-イル、アミノ基及び水酸基が保護された2-アミノ-6-ヒドロキシプリン-9-イル、6-アミノ-2-メトキシプリン-9-イル、6-アミノ-2-クロロプリン-9-イル、6-アミノ-2-フルオロプリン-9-イル、2,6-ジメトキシプリン-9-イル、2,6-ジクロロプリン-9-イル又は6-メルカプトプリン-9-イル基であり、より好適には、アミノ基が保護された6-アミノプリン-9-イル基又はアミノ基が保護された2-アミノ-6-ヒドロキシプリン-9-イル基であり、さらにより好適には、6-ベンゾイルアミノプリン-9-イル又は2-イソブチリルアミノ-6-ヒドロキシプリン-9-イルである。
 上記一般式(XXVII)及び(XXVIII)中、Bの「α群から選択される1又は2以上の置換基を有していてもよい2-オキソ-ピリミジン-1-イル基」は、好適には、2-オキソ-4-アミノ-ピリミジン-1-イル(すなわち、シトシニル)、アミノ基が保護された2-オキソ-4-アミノ-ピリミジン-1-イル、2-オキソ-4-アミノ-5-フルオロ-ピリミジン-1-イル、アミノ基が保護された2-オキソ-4-アミノ-5-フルオロ-ピリミジン-1-イル、4-アミノ-2-オキソ-5-クロロ-ピリミジン-1-イル、2-オキソ-4-メトキシ-ピリミジン-1-イル、2-オキソ-4-メルカプト-ピリミジン-1-イル、2-オキソ-4-ヒドロキシ-ピリミジン-1-イル(すなわち、ウラシニル)、2-オキソ-4-ヒドロキシ-5-メチルピリミジン-1-イル(すなわち、チミニル)、4-アミノ-5-メチル-2-オキソ-ピリミジン-1-イル(すなわち、5-メチルシトシニル)、アミノ基が保護された4-アミノ-5-メチル-2-オキソ-ピリミジン-1-イル基であり、より好適には、2-オキソ-4-ヒドロキシ-5-メチルピリミジン-1-イル基、アミノ基が保護された2-オキソ-4-アミノ-ピリミジン-1-イル基又はアミノ基が保護された4-アミノ-5-メチル-2-オキソ-ピリミジン-1-イル基であり、さらにより好適には、2-オキソ-4-ヒドロキシ-5-メチルピリミジン-1-イル基、2-オキソ-4-ベンゾイルアミノ-ピリミジン-1-イル基又は4-ベンゾイルアミノ-5-メチル-2-オキソ-ピリミジン-1-イル基である。
 本発明において、nは、0乃至4の整数であり、好適には0又は1であり、より好適には1である。
 「その塩」とは、本発明の化合物は、塩にすることができるので、その塩をいい、そのような塩としては、好適にはナトリウム塩、カリウム塩、リチウム塩のようなアルカリ金属塩、カルシウム塩、マグネシウム塩のようなアルカリ土類金属塩、アルミニウム塩、鉄塩、亜鉛塩、銅塩、ニッケル塩、コバルト塩等の金属塩;アンモニウム塩のような無機塩、t-オクチルアミン塩、ジベンジルアミン塩、モルホリン塩、グルコサミン塩、フェニルグリシンアルキルエステル塩、エチレンジアミン塩、N-メチルグルカミン塩、グアニジン塩、ジエチルアミン塩、トリエチルアミン塩、ジシクロヘキシルアミン塩、N,N’-ジベンジルエチレンジアミン塩、クロロプロカイン塩、プロカイン塩、ジエタノールアミン塩、N-ベンジル-フェネチルアミン塩、ピペラジン塩、テトラメチルアンモニウム塩、トリス(ヒドロキシメチル)アミノメタン塩のような有機塩等のアミン塩;弗化水素酸塩、塩酸塩、臭化水素酸塩、沃化水素酸塩のようなハロゲン原子化水素酸塩、硝酸塩、過塩素酸塩、硫酸塩、燐酸塩等の無機酸塩;メタンスルホン酸塩、トリフルオロメタンスルホン酸塩、エタンスルホン酸塩のような低級アルカンスルホン酸塩、ベンゼンスルホン酸塩、p-トルエンスルホン酸塩のようなアリ-ルスルホン酸塩、酢酸塩、りんご酸塩、フマ-ル酸塩、コハク酸塩、クエン酸塩、酒石酸塩、蓚酸塩、マレイン酸塩等の有機酸塩;及び、グリシン塩、リジン塩、アルギニン塩、オルニチン塩、グルタミン酸塩、アスパラギン酸塩のようなアミノ酸塩を挙げることができる。
 本発明において、チミン誘導体、あるいはグアニン誘導体のカルボニル基は「互変異性体」を取りうる。互変異性体とは、平衡状態で存在する2つ以上の構造異性体の1つであり、ある異性体から別の異性体へと容易に転化され、溶液中の互変異性体組の混合物として存在する。互変異性化が可能である条件下で、互変異性体の化学平衡に到達するが、その正確な比率は、温度、溶媒およびpHを含むいくつかの要因に左右される。互変異性化によって相互に変換可能な互変異性体の概念は、互変異性と呼ばれる。
 チミン誘導体及びグアニン誘導体におけるアミド-イミド酸互変異性の例は、以下に示されるとおりである。
Figure JPOXMLDOC01-appb-C000115
 本発明において、「水酸基の保護試薬」とは、ヌクレオシド類縁体及びその製造中間体が有する水酸基に、前記「水酸基の保護基」を導入するために用いられる試薬をいう。例えば、「水酸基の保護基」が、
(1)ベンジル基の場合:ベンジルクロリド、ベンジルブロミド、ベンジルヨージド、ベンジルトリクロロアセトイミダート
(2)トリチル基の場合:トリチルクロリド、トリチルトリフルオロスルホナート、
(3)t-ブチルジメチルシリル基の場合:t-ブチルジメチルシリルクロリド、
(4)アセチル基の場合:無水酢酸、アセチルクロリド
である。
 本発明において、「1級水酸基の保護試薬」とは、ヌクレオシド類縁体の5位の糖水酸基に上記「1乃至3個の低級アルコキシ基で置換されていてもよいトリチル基」を導入するために用いられる試薬であり、例えば、トリチルクロリド、トリチルトリフルオロスルホナート、4-モノメトキシトリチルクロリド、4,4’-ジメトキシトリチルクロリド、4,4’-ジメトキシトリチルトリフルオロスルホナートを挙げることができ、好適には、4,4’-ジメトキシトリチルクロリドである。
 本発明において、「水酸基の脱保護試薬」とは、上記「水酸基の保護基」を脱離させるために加える反応助剤であり、例えば、「水酸基の保護基」が、
(1)ベンジル基の場合:パラジウム、水酸化パラジウム、白金等の金属触媒及び水素、ギ酸、ギ酸アンモニウム等の還元剤、塩化鉄(III)、三塩化ホウ素
(2)トリチル基の場合:硫酸、p-トルエンスルホン酸、メタンスルホン酸等の酸触媒
(3)アセチル基の場合:水酸化ナトリウム、水酸化カリウム、炭酸ナトリウム等の無機塩基、アンモニア、アルキルアミン等の有機塩基である。
本発明において金属触媒は、担体(好適には、炭素)に担持させた又は担体に担持させない金属触媒であり得、好適には、炭素に担持させた金属触媒(好適には、炭素に担持させたパラジウム、水酸化パラジウム、又は白金、より好適には、炭素に担持させたパラジウム)である。
 本発明において、「アシル化剤」とは、ヌクレオシド類縁体のアミノ基に上記「アミノ基の保護基」を導入するために用いられる試薬であり、例えば、
(1)アセチル基の場合:無水酢酸、アセチルクロリド
(2)ベンゾイル基の場合:ベンゾイルクロリド、安息香酸無水物、安息香酸
(3)イソブチリル基の場合:イソブチルクロリドイソ酪酸無水物
である。
 本発明において、「アミノ化剤」とは、プリン環の6位の塩素原子又はピリミジン環の4位のカルボニル基をアミノ基と置換するために用いられる試薬であり、例えば、アンモニア、アンモニア水溶液又は炭酸アンモニウム、酢酸アンモニウムのようなアンモニア塩類であり、好適にはアンモニア水溶液である。
 本発明において、「アミド化剤」とは、クロスカップリング反応においてプリン環の6位の塩素原子を脂肪族アミド又は芳香族アミドに変換するために用いられる試薬であり、例えば、アセチルアミド、ベンゾイルアミド、イソブチルアミドであり、好適には、イソブチルアミドである。
 本発明において、グリコシル化反応における「活性化剤」とは、糖の1位の水酸基を上記「脱離基を形成する基」に変換するために用いられる試薬であり、例えば、無水酢酸、無水安息香酸、トリクロロアセトニトリル、カルボニルジイミダゾール、クロロリン酸ジフェニルであり、好適には、無水酢酸又はトリクロロアセトニトリルである。
 本発明において、グリコシル化反応における「ハロゲン化剤」とは、立体選択的にグリコシル化反応を進行させるため、上記「脱離基を形成する基」をハロゲン化するために用いる試薬であり、例えばクロロトリメチルシラン(TMSCl)、ブロモトリメチルシラン(TMSBr)、ヨードトリメチルシラン(TMSI)を挙げることができ、好適にはTMSIである。
 本発明において、アミノ化反応における「活性化剤」とは、水酸基を脱離基に変換するために用いられる試薬であり、例えば、p-トルエンスルホニルクロリド、2,4,6-トリイソプロピルベンゼンスルホニルクロリドであり、好適には、2,4,6-トリイソプロピルベンゼンスルホニルクロリドである。
 本発明において、アミダイト化反応における「活性化剤」は、アミダイト試薬の活性中間体を形成するためにに用いられる試薬であり、例えば、5-ベンジルチオテトラゾール、5-フェニルテトラゾール、ジブロモイミダゾール、ジシアノイミダゾール、N-アルキルイミダゾールトリフルオロ酢酸塩などが挙げられ、好適には、4,5-ジシアノイミダゾールである。用いられる活性化剤の量は、一般式(XXVII)の化合物に対して0.01~1.0当量であり、好ましくは、0.1~0.5当量である。
 本発明において、アミダイト化反応における「アミダイト化試薬」とは、ヌクレオシド類縁体の3位の糖水酸基に、ヌクレオシド間結合を形成するために有用なリン原子を含有する基を導入するために用いられる試薬であり、例えば、2-シアノエチルN,N,N’,N’-テトライソプロピルホスホロジアミダイト、2-シアノエチルジイソプロピルクロロホスホロアミジトが挙げられ、好適には2-シアノエチルN,N,N’,N’-テトライソプロピルホスホロジアミダイトである。用いられるアミダイト化試薬の量は、一般式(XXVII)の化合物に対して1.0~1.5当量である、好ましくは、1.1~1.3当量である。
 本発明において、アミダイト化反応における「乾燥剤」は、反応溶液中の水分を吸収するために用いられる試薬であり、例えば、モレキュラーシーブ3A、モレキュラーシーブ4A、又はモレキュラーシーブ5Aであり、好適には、モレキュラーシーブ4Aである。
 本発明の化合物(2A)は、以下に述べるA法により製造することができる。
(A法)
Figure JPOXMLDOC01-appb-C000116
 A法中、A、Y、Z及びZは前記と同意義を示す。Z、ZはYの脱保護条件下で安定な水酸基の保護基を示す。
 以下、A法の各工程について詳しく説明する。
(A―1工程)
 本工程は、アルコール溶媒中、酸触媒存在下、後述するC法、D法により製造することができる化合物(13A)の1,2位水酸基の保護基及びYの脱保護を行い、化合物(14A)を製造する工程である。なお、n=0の場合は、本工程を省略し、後述するB法により製造される化合物(14A’)を用いてA-2工程を行えばよい。
 使用されるアルコール溶媒としては、例えば、メタノール、エタノール、プロパノールなどのアルコール類を挙げることができるが、好適にはメタノールである。
 使用する酸触媒としては、硫酸、p-トルエンスルホン酸、メタンスルホン酸などを挙げることができるが、好適には硫酸である。
 反応温度は、通常0℃乃至100℃であり、好適には40乃至60℃である。
 反応時間は酸触媒の種類および使用量によって異なるが、通常1時間乃至48時間であり、好適には10時間乃至24時間である。
 反応終了後、本反応の目的化合物(14A)のアルコール溶液は、例えば反応液をトリエチルアミンで中和し、水を添加することで共生成物であるメトキシトリフェニルメタンを結晶化させ、ろ去することで目的化合物を含む含水アルコール溶液を分離する。さらにn-ヘプタンにて分液洗浄することにより得られた含水アルコール溶液に水、トルエンを加えて分液し、得られた有機層を濃縮することにより得られたトルエン溶液を次工程にそのまま利用することができる。
 得られた化合物は、必要ならば、常法、例えば再結晶、シリカゲルクロマトグラフィー等によって更に精製できる。
(A―2工程)
 本工程は、溶媒中、3価リン試薬、アゾジカルボン酸エステルを用いてA―1工程で製造される化合物(14A)のジオール部位の環化反応を行い、化合物(15A)を製造する工程である。
 使用される溶媒としては、例えば、メチレンクロリド、クロロホルム、1,2-ジクロロエタンのようなハロゲン化炭化水素類、ベンゼン、トルエンなどの炭化水素類、テトラヒドロフラン、ジメチルエーテルのようなエーテル類を挙げることができるが、好適にはトルエンである。
 使用される3価リン試薬としては、トリフェニルホスフィン、トリ(n-ブチル)ホスフィンなどを挙げることができるが、好適にはトリフェニルホスフィンである。
 使用されるアゾジカルボン酸エステルとしては、アゾジカルボン酸ジエチル、アゾジカルボン酸ジイソプロピル、アゾジカルボン酸ジt-ブチルなどを挙げることができるが、好適にはアゾジカルボン酸ジイソプロピルである。
 反応温度は、通常0℃乃至50℃であり、好適には10乃至40℃である。
 反応時間は3価リン試薬の種類および使用量によって異なるが、通常1時間乃至24時間であり、好適には1時間乃至3時間である。
 反応終了後、本反応の目的化合物(15A)のトルエン溶液は、例えば反応液に塩化マグネシウムを添加し、攪拌することで難溶性のホスフィン錯体を形成させることで共生成物であるホスフィンオキシドをろ過により除去することができる。また、もう一つの共生成物であるヒドラジンジエステルに関しても、メタノール水を用いてトルエン層を洗浄することで、効果的に除去することができる。得られた有機層を濃縮することにより得られたトルエン溶液を次工程にそのまま利用することができる。
 得られた化合物は、必要ならば、常法、例えば再結晶、シリカゲルクロマトグラフィー等によって更に精製できる。
(A―3工程)
 本工程は、溶媒中、酸を作用させることにより、A―2工程で製造される化合物(15A)のアノマー位の加水分解反応を行い、化合物(2A)を製造する工程である。
 使用される溶媒としては、例えば、酢酸、水、アルコールなどの水溶性溶媒、メチレンクロリド、クロロホルム、1,2-ジクロロエタンのようなハロゲン化炭化水素類、ベンゼン、トルエンなどの炭化水素類、テトラヒドロフラン、ジメチルエーテルのようなエーテル類を挙げることができるが、好適には酢酸である。
 使用される酸としては、塩酸、硫酸、トリフルオロ酢酸、メタンスルホン酸、p-トルエンスルホン酸などを挙げることができるが、好適には塩酸である。
 反応温度は、通常0℃乃至50℃であり、好適には20乃至30℃である。
 反応時間は酸の種類および使用量によって異なるが、通常1時間乃至24時間であり、好適には1時間乃至3時間である。
 反応終了後、本反応の目的化合物(2A)は、例えば反応液に水を添加し、冷却後攪拌することで結晶化させることができる。
 得られた化合物は、必要ならば、常法、例えば再結晶、シリカゲルクロマトグラフィー等によって更に精製できる。
 前記の化合物(14A)(n=0の場合)は、以下に述べるB法により製造することができる。
(B法)
Figure JPOXMLDOC01-appb-C000117
 B法中、A、Z及びZは前記と同意義を示す。
 以下、B法の工程について詳しく説明する。
(B―1工程)
 本工程は、WO00/47599の化合物(7)の製造方法に準じて製造された化合物(1B)を用いて、化合物(14A’)を製造する工程である。化合物(14A’)は、A法A-1工程に準じて化合物(1B)の1,2位水酸基の保護基を脱保護することにより製造することができる。
 前記の化合物(13A)(n=1の場合)は、以下に述べるC法により製造することができる。
(C法)
Figure JPOXMLDOC01-appb-C000118
 C法中、Xは酸素原子と一緒になって脱離基を形成する基である。Y、Z及びZは前記と同意義を示す。
 Xとしては、例えば、メタンスルホニル、エタンスルホニルのような低級アルキルスルホニル基、トリフルオロメタンスルホニル基のようなハロゲン置換低級アルキルスルホニル基、p-トルエンスルホニルのようなアリールスルホニル基をあげることができ、好適にはメタンスルホニル基又はp-トルエンスルホニル基である。
 以下、C法の各工程について詳しく説明する。
(C―1工程)
 本工程は、化合物(4)に、アセトン溶媒中、酸触媒存在下で反応させることにより化合物(5)を製造する工程である。
 使用する酸触媒としては、硫酸、p-トルエンスルホン酸、メタンスルホン酸などを挙げることができるが、好適には硫酸である。
 反応温度は、使用される酸触媒により異なるが、通常0℃乃至50℃であり、好適には30乃至40℃である。
 反応時間は酸触媒の種類および使用量によって異なるが、通常10分乃至24時間であり、好適には10時間乃至20時間である。
 反応終了後、本反応の目的化合物(5)は、例えば反応液を中和し、反応混合物を濃縮し、溶媒を留去することで得られる。
 得られた化合物は、必要ならば、常法、例えば再結晶、シリカゲルクロマトグラフィー等によって更に精製できる。
(C―2工程)
 本工程は、溶媒中、塩基存在下、C―1工程で製造される化合物(5)に、脱離基導入試薬を反応させ、化合物(6)を製造する工程である。
 使用される溶媒としては、例えば、ジメチルアセトアミド、ジメチルホルムアミドのようなアミド類、メチレンクロリド、クロロホルム、1,2-ジクロロエタンのようなハロゲン化炭化水素類、ベンゼン、トルエンなどの炭化水素類、テトラヒドロフラン、ジメチルエーテルのようなエーテル類、酢酸メチル、酢酸エチル、酢酸プロピルのようなエステル類を挙げることができるが、好適にはジメチルアセトアミドである。
 使用される塩基としては、例えば、トリエチルアミン、ピリジン、ジメチルアミノピリジン1-メチルイミダゾールのような塩基を挙げることができるが、好適には1-メチルイミダゾールである。
 使用される脱離基導入試薬としては、例えば、p-トルエンスルホニルクロリド、メタンスルホニルクロリド、無水トリフルオロメタンスルホン酸等が挙げられるが、好適にはp-トルエンスルホニルクロリドである。
 反応温度は、使用される脱離基導入試薬により異なるが、通常0℃乃至50℃であり、好適には20乃至30℃である。
 反応時間は脱離基導入試薬の種類および使用量によって異なるが、通常10分乃至24時間であり、好適には1時間乃至5時間である。
 反応終了後、本反応の目的化合物(6)は、例えば反応液に水を添加し、結晶化させることにより得られる。
 得られた化合物は、必要ならば、常法、例えば再結晶、シリカゲルクロマトグラフィー等によって更に精製できる。
(C―3工程)
 本工程は、溶媒中、C―2工程で製造される化合物(6)に、ヒドリド還元剤を反応させ、化合物(7)を製造する工程である。
 使用される溶媒としては、例えば、メチレンクロリド、クロロホルム、1,2-ジクロロエタンのようなハロゲン化炭化水素類、ベンゼン、トルエンなどの炭化水素類、テトラヒドロフラン、ジメチルエーテルのようなエーテル類を挙げることができるが、好適にはテトラヒドロフランである。
 使用されるヒドリド還元剤としては、例えば、水素化ビス(2-メトキシエトキシ)アルミニウムナトリウム、水素化リチウムアルミニウム、ジイソブチルアルミニウムヒドリドを挙げることができるが、好適には水素化ビス(2-メトキシエトキシ)アルミニウムナトリウムである。
 反応時間はヒドリド還元剤の種類および使用量によって異なるが、通常10分乃至24時間であり、好適には1時間乃至3時間である。
 反応終了後、本反応の目的化合物(7)は、例えば反応液にアセトン、L-酒石酸ナトリウムカリウム水溶液を添加したあと、目的化合物を含む有機層を分離し、水洗後、溶剤を留去することにより得られる。
 得られた化合物は、必要ならば、常法、例えば再結晶、シリカゲルクロマトグラフィー等によって更に精製できる。
(C―4工程)
 本工程は、溶媒中、塩基存在下、C―3工程で製造される化合物(7)の1級水酸基選択的に、保護基を導入し、化合物(8)を製造する工程である。
 使用される溶媒としては、例えば、ジメチルアセトアミド、ジメチルホルムアミドのようなアミド類、ベンゼン、トルエンなどの炭化水素類、メチレンクロリド、クロロホルム、1,2-ジクロロエタンのようなハロゲン化炭化水素類、テトラヒドロフラン、ジメチルエーテルのようなエーテル類、酢酸メチル、酢酸エチル、酢酸プロピルのようなエステル類を挙げることができるが、好適にはトルエンである。
 使用される塩基としては、例えば、トリエチルアミン、ピリジン、ジメチルアミノピリジン1-メチルイミダゾール、4-メチルモルホリンのような塩基を挙げることができるが、好適には4-メチルモルホリンである。
 使用される1級水酸基の保護試薬としては、例えば、トリチルクロリド、4,4’-ジメトキシトリチルクロリド等が挙げられるが、好適にはトリチルクロリドである。
 反応温度は、使用される保護試薬により異なるが、通常0℃乃至50℃であり、好適には20乃至30℃である。
 反応時間は1級水酸基の保護試薬の種類および使用量によって異なるが、通常10分乃至24時間であり、好適には1時間乃至5時間である。
 反応終了後、本反応の目的化合物(8)は、例えば反応液に水を添加し、目的化合物を含む有機層を分離し、水洗後、溶剤を留去することにより得られる。
 得られた化合物は、必要ならば、常法、例えば再結晶、シリカゲルクロマトグラフィー等によって更に精製できる。
(C―5工程)
 本工程は、溶媒中、塩基、酸化剤、酸化触媒及び共触媒存在下、C―4工程で製造される化合物(8)の3位の2級水酸基を酸化し、化合物(9)を製造する工程である。
 使用される溶媒としては、例えば、ジメチルアセトアミド、ジメチルホルムアミドのようなアミド類、ベンゼン、トルエンなどの炭化水素類、メチレンクロリド、クロロホルム、1,2-ジクロロエタンのようなハロゲン化炭化水素類、テトラヒドロフラン、ジメチルエーテルのようなエーテル類、酢酸メチル、酢酸エチル、酢酸プロピルのようなエステル類を上げることができるが、好適にはトルエンである。
 使用される塩基としては、例えば、水酸化ナトリウム、水酸化カリウム、重曹、炭酸ナトリウム等の無機塩基、トリエチルアミン、ピリジン、ジメチルアミノピリジン1-メチルイミダゾール、4-メチルモルホリンのような有機塩基を挙げることができるが、好適には重曹である。
 使用される酸化触媒としては、例えば、2,2,6,6-テトラメチルピペリジン 1-オキシル、2-アザアダマンタン-N-オキシル、9-アザノルアダマンタン-N-オキシル等があげられるが、好適には9-アザノルアダマンタン-N-オキシルである。
 使用される共触媒としては、臭化カリウム、テトラブチルアンモニウムブロミド等が上げられるが、好適には臭化カリウムである。
 使用される酸化剤としては、次亜塩素酸ナトリウム、ヨードベンゼンジアセテート等が挙げられるが、好適には次亜塩素酸ナトリウムである。
 反応温度は、使用される酸化触媒及び共触媒により異なるが、通常0℃乃至50℃であり、好適には0乃至10℃である。
 反応時間は酸化触媒及び共触媒の種類及び使用量によって異なるが、通常10分乃至24時間であり、好適には1時間乃至3時間である。
 反応終了後、本反応の目的化合物(9)のトルエン溶液は、例えば反応液を静置後、水層を除去することで、目的化合物を含む有機層を分離し、水洗することにより得られ、次工程にそのまま利用することができる。
 得られた化合物は、必要ならば、常法、例えば再結晶、シリカゲルクロマトグラフィー等によって更に精製できる。
(C―6工程)
 本工程は、溶媒中、塩基およびアルキル化剤存在下、C―5工程で製造される化合物(9)の4位の炭素を、エピメリ化を伴いながら立体選択的にヒドロキシメチル化することで、化合物(10)を製造する工程である。
 使用される溶媒としては、例えば、ジメチルアセトアミド、ジメチルホルムアミドのようなアミド類、ベンゼン、トルエンなどの炭化水素類、メチレンクロリド、クロロホルム、1,2-ジクロロエタンのようなハロゲン化炭化水素類、テトラヒドロフラン、ジメチルエーテルのようなエーテル類、酢酸メチル、酢酸エチル、酢酸プロピルのようなエステル類を挙げることができるが、好適にはトルエンである。
 使用される塩基としては、例えば、水酸化ナトリウム、水酸化カリウム、重曹、炭酸ナトリウム等の無機塩基、トリエチルアミン、ピリジン、1,8-ジアザビシクロ[5.4.0]ウンデカ-7-エンのような有機塩基を挙げることができるが、好適には1,8-ジアザビシクロ[5.4.0]ウンデカ-7-エンである。
 使用されるアルキル化剤としては、例えば、パラホルムアルデヒド、ホルムアルデヒド水溶液等が挙げられるが、好適にはホルムアルデヒド水溶液である。
 反応温度は、使用される塩基により異なるが、通常0℃乃至50℃であり、好適には20乃至30℃である。
 反応時間は塩基の種類および使用量によって異なるが、通常10分乃至24時間であり、好適には1時間乃至3時間である。
 反応終了後、本反応の目的化合物(10)のトルエン溶液は、例えば反応液を静置後、水層を除去することで、目的化合物を含む有機層を分離し、水洗することにより得られ、次工程にそのまま利用することができる。また、この際一部生成する環化体(11)は、次工程において化合物(12)に変換される。
 得られた化合物は、必要ならば、常法、例えば再結晶、シリカゲルクロマトグラフィー等によって更に精製できる。
(C―7工程)
 本工程は、溶媒中、C―6工程で製造される化合物(10)に、ヒドリド還元剤を反応させ、3位の水酸基が立体的に制御された化合物(12)を製造する工程である。
 使用される溶媒としては、例えば、メチレンクロリド、クロロホルム、1,2-ジクロロエタンのようなハロゲン化炭化水素類、ベンゼン、トルエンなどの炭化水素類、テトラヒドロフラン、ジメチルエーテルのようなエーテル類を挙げることができるが、好適にはトルエンである。
 使用されるヒドリド還元剤としては、例えば、水素化ビス(2-メトキシエトキシ)アルミニウムナトリウム、水素化リチウムアルミニウム、ジイソブチルアルミニウムヒドリド、水素化ホウ素ナトリウムを挙げることができるが、好適には水素化ホウ素ナトリウムである。
 反応温度は、使用されるヒドリド還元剤により異なるが、通常0℃乃至50℃であり、好適には20乃至30℃である。
 反応時間はヒドリド還元剤の種類および使用量によって異なるが、通常10分乃至24時間であり、好適には1時間乃至3時間である。
 反応終了後、本反応の目的化合物(12)のトルエン溶液は、例えば反応液を静置後、水層を除去することで、目的化合物を含む有機層を分離し、水洗することにより得られ、次工程にそのまま利用することができる。
 得られた化合物は、必要ならば、常法、例えば再結晶、シリカゲルクロマトグラフィー等によって更に精製できる。
(C―8工程)
 本工程は、溶媒中、塩基及び触媒存在下、水酸基の保護試薬を反応させ、C―7工程で製造される化合物(12)の2つの水酸基を保護し、化合物(13)を製造する工程である。
 使用される溶媒としては、例えば、メチレンクロリド、クロロホルム、1,2-ジクロロエタンのようなハロゲン化炭化水素類、ベンゼン、トルエンなどの炭化水素類、テトラヒドロフラン、ジメチルエーテルのようなエーテル類を挙げることができるが、好適にはトルエンである。
 使用される水酸基の保護試薬としては、例えば、トリチルクロリド、t-ブチルジフェニルシリルクロリド、t-ブチルジメチルシリルクロリド、無水酢酸、ベンゾイルクロリドなどを挙げることができるが、好適には、ベンジルクロリド又はベンジルブロミドであり、より好適にはベンジルブロミドである。
 使用する触媒としては、例えばテトラブチルアンモニウムヨージド、ヨウ化カリウム、ヨウ化ナトリウム等が挙げられるが、好適にはテトラブチルアンモニウムヨージドである。
 使用される塩基としては、例えば、水酸化ナトリウム、水酸化カリウム、重曹、炭酸ナトリウム等の無機塩基、トリエチルアミン、ピリジン、1,8-ジアザビシクロ[5.4.0]ウンデカ-7-エンのような有機塩基を挙げることができるが、好適には水酸化カリウムである。
 反応温度は、使用される水酸基の保護試薬により異なるが、通常20℃乃至100℃であり、好適には60乃至80℃である。
 反応時間は水酸基の保護試薬の種類および使用量によって異なるが、通常1時間乃至48時間であり、好適には10時間乃至24時間である。
 反応終了後、本反応の目的化合物(13)のトルエン溶液は、例えば反応液を静置後、水層を除去することで、目的化合物を含む有機層を分離し、水洗することにより得られ、得られたトルエン層を1-プロパノールに溶媒置換することで結晶化させることができる。
 得られた化合物は、必要ならば、常法、例えば再結晶、シリカゲルクロマトグラフィー等によって更に精製できる。
 前記の化合物(13A)(n=2乃至4の場合)は、以下に述べるD法により製造することができる。
(D法)
Figure JPOXMLDOC01-appb-C000119
 D法中、Eはエチレン、トリメチレン又はテトラメチレンを示し、Y、Z及びZは前記と同意義を示す。
 以下、D法の各工程について詳しく説明する。
(D―1工程)
 本工程は、溶媒中、塩基存在下、WO00/47599の化合物(3b)の製造方法に準じて製造された化合物(1D)に、水酸基の保護試薬を反応させ、化合物(13A’)を製造する工程である。
 使用される溶媒としては、例えば、ジメチルアセトアミド、ジメチルホルムアミドのようなアミド類、ベンゼン、トルエンなどの炭化水素類、メチレンクロリド、クロロホルム、1,2-ジクロロエタンのようなハロゲン化炭化水素類、テトラヒドロフラン、ジメチルエーテルのようなエーテル類、酢酸メチル、酢酸エチル、酢酸プロピルのようなエステル類を挙げることができるが、好適にはトルエンである。
 使用される塩基としては、例えば、トリエチルアミン、ピリジン、ジメチルアミノピリジン1-メチルイミダゾール、4-メチルモルホリンのような塩基を挙げることができるが、好適には4-メチルモルホリンである。
 使用される水酸基の保護試薬としては、例えば、トリチルクロリド、4,4’-ジメトキシトリチルクロリド等が挙げられるが、好適にはトリチルクロリドである。
 反応温度は、使用される保護試薬により異なるが、通常0℃乃至50℃であり、好適には20乃至30℃である。
 反応時間は保護試薬の種類および使用量によって異なるが、通常10分乃至24時間であり、好適には1時間乃至5時間である。
 反応終了後、本反応の目的化合物(13A’)は、例えば反応液に水を添加し、目的化合物を含む有機層を分離し、水洗後、溶剤を留去することにより得られる。
 得られた化合物は、必要ならば、常法、例えば再結晶、シリカゲルクロマトグラフィー等によって更に精製できる。
 本発明の化合物(5E)は、以下に述べるE法により製造することができる。
(E法)
Figure JPOXMLDOC01-appb-C000120
 E法中、R、R、X、Z、Z及びPは前記と同意義を示す。
 以下、E法の工程について詳しく説明する。
(E―1工程)
 本工程は、化合物(2A)を用い、溶媒中、塩基存在下、活性化剤を反応させることにより、化合物(2E)を製造する工程である。
 使用する溶媒としては、例えば、メチレンクロリド、クロロホルム、1,2-ジクロロエタンのようなハロゲン化炭化水素類、ベンゼン、トルエンなどの炭化水素類、テトラヒドロフラン、ジメチルエーテルのようなエーテル類、アセトニトリルを挙げることができるが、好適にはトルエン又はアセトニトリルである。
 使用される活性化剤は、無水酢酸、無水安息香酸、トリクロロアセトニトリル、カルボニルジイミダゾール、クロロリン酸ジフェニルを挙げることができるが、好適には無水酢酸又はトリクロロアセトニトリルである。
 使用される塩基は、活性化剤によって異なるが、トリエチルアミン、ピリジン、1,8-ジアザビシクロ[5.4.0]ウンデカ-7-エンのような有機塩基を挙げることができるが、好適にはピリジン、1,8-ジアザビシクロ[5.4.0]ウンデカ-7-エンである。反応終了後、本反応の目的化合物(2E)は、例えば直接グリコシル化に用いることができるか、あるいは反応液を中和し、反応混合物を濃縮し、溶媒を留去することで得られる。
 反応温度は、使用される活性化剤により異なるが、通常0℃乃至50℃であり、好適には0℃乃至30℃である。
 反応時間は活性化剤の種類および使用量によって異なるが、通常10分乃至24時間であり、好適には1時間乃至3時間である。
 得られた化合物は、必要ならば、常法、例えば再結晶、シリカゲルクロマトグラフィー等によって更に精製できる。
(E―2工程)
 本工程は、E-1工程で得られた化合物(2E)を、溶媒中、ハロゲン化剤存在下、シリル化反応によってシリル化されたピリミジン塩基(チミンあるいはアシル基で保護されたシトシンなど)とのグリコシル化反応により化合物(3E)を製造する工程である。
 シリル化反応及びグリコシル化反応に使用する溶媒としては、例えば、メチレンクロリド、クロロホルム、1,2-ジクロロエタンのようなハロゲン化炭化水素類、ベンゼン、トルエンなどの炭化水素類、テトラヒドロフラン、ジメチルエーテルのようなエーテル類、アセトニトリルを挙げることができるが、好適にはアセトニトリルである。
 使用するシリル化剤は、N,O-ビストリメチルシリルアセトアミド、ヘキサメチルジシラザンなどを挙げることができるが、好適にはN,O-ビストリメチルシリルアセトアミドである。
 ピリミジン塩基のシリル化反応の温度は、シリル化剤により異なるが、通常0℃乃至50℃であり、好適には20℃乃至40℃である。
 シリル化反応の反応時間はシリル化剤の種類および使用量によって異なるが、通常10分乃至24時間であり、好適には1時間乃至10時間である。
 グリコシル化反応に使用するハロゲン化剤は、クロロトリメチルシラン(TMSCl)、ブロモトリメチルシラン(TMSBr)、ヨードトリメチルシラン(TMSI)を挙げることができるが、好適にはTMSIである。
 グリコシル化反応の反応温度は、化合物(2E)の構造や使用されるハロゲン化剤により異なるが、通常0℃乃至50℃であり、好適には20℃乃至40℃である。
 グリコシル化反応の反応時間はハロゲン化剤の種類および使用量によって異なるが、通常10分乃至24時間であり、好適には10時間乃至20時間である。
 反応終了後、本反応の目的化合物(3E)は、例えば反応液を中和し、反応混合物を濃縮し、溶媒を留去することで得られる。
 得られた化合物は、必要ならば、常法、例えば再結晶、シリカゲルクロマトグラフィー等によって更に精製できる。
(E―3工程)
 本工程は、化合物(3E)を、溶媒中、水酸基の脱保護試薬と反応させ、脱保護反応により化合物(4E)を製造する工程である。
(i)Rが水酸基、Z及びZがベンジル基の場合は、脱保護試薬は炭素に担持させた金属触媒及び還元剤である。
 使用する溶媒としては、例えば、ベンゼン、トルエンなどの炭化水素類、テトラヒドロフラン、ジメチルエーテルのようなエーテル類、メタノール、エタノール、プロパノールなどのアルコール類を挙げることができるが、好適にはメタノールである。
 使用する金属触媒は、パラジウム、水酸化パラジウム、白金などを挙げることができるが、好適にはパラジウムである。
 使用する還元剤は、水素、ギ酸、ギ酸アンモニウム等を挙げることが出来るが、好適には水素である。
 反応温度は、金属触媒により異なるが、通常0℃乃至70℃であり、好適には40℃乃至60℃である。
 反応時間は金属触媒、還元剤の種類および使用量によって異なるが、通常10分乃至24時間であり、好適には1時間乃至5時間である。
 反応終了後、本反応の目的化合物(4E)は、例えば反応液をろ過することで金属触媒を除去し、反応混合物を濃縮し、溶媒を留去することで得られる。
 得られた化合物は、必要ならば、常法、例えば再結晶、シリカゲルクロマトグラフィー等によって更に精製できる。
(ii)Rがアシル基で保護されたアミノ基、Z及びZがベンジル基の場合は、脱保護試薬を用いて脱保護反応を行う。
 使用する溶媒としては、例えば、メチレンクロリド、クロロホルム、1,2-ジクロロエタンのようなハロゲン化炭化水素類、ベンゼン、トルエンなどの炭化水素類を挙げることができるが、好適にはメチレンクロリドである。
 使用される脱保護試薬は、塩化鉄(III)、三塩化ホウ素などが挙げられ、好適には三塩化ホウ素である。
 反応温度は、脱保護試薬により異なるが、通常―20℃乃至30℃であり、好適には-20℃乃至20℃である。
 反応時間は脱保護試薬により異なるが、通常10分乃至10時間であり、好適には1時間乃至5時間である。
 反応終了後、本反応の目的化合物(4E)は、例えば反応液を中和し、反応混合物を濃縮し、溶媒を留去することで得られる。
 得られた化合物は、必要ならば、常法、例えば再結晶、シリカゲルクロマトグラフィー等によって更に精製できる。
(E―4工程)
 本工程は、化合物(4E)に溶媒中、塩基存在下、1級水酸基の保護試薬を反応させることにより化合物(5E)を製造する工程である。
 使用する溶媒としては、例えば、メチレンクロリド、クロロホルム、1,2-ジクロロエタンのようなハロゲン化炭化水素類、ベンゼン、トルエンなどの炭化水素類、テトラヒドロフラン、ジメチルエーテルのようなエーテル類、酢酸エチル、酢酸プロピルのようなエステル類、アセトニトリルを挙げることができるが、好適にはテトラヒドロフラン、又は酢酸エチルである。
 使用される1級水酸基の保護試薬としては、例えば、トリチルクロリド、4-メトキシトリチルクロリド、4,4’-ジメトキシトリチルクロリド等が挙げられるが、好適には4,4’-ジメトキシトリチルクロリドである。
 使用する塩基は、トリエチルアミン、N-メチルモルホリンなどの脂肪族アミン、イミダゾール、ピリジンなどの芳香族アミン類が挙げられ、好適にはピリジンである。
 反応の温度は、保護試薬により異なるが、通常0℃乃至50℃であり、好適には0℃乃至20℃である。
 反応時間は保護試薬により異なるが、通常10分乃至10時間であり、好適には1時間乃至5時間である。
 反応終了後、本反応の目的化合物(5E)は、例えば反応液を中和し、反応混合物を濃縮し、溶媒を留去することで得られる。
 得られた化合物は、必要ならば、常法、例えば再結晶、シリカゲルクロマトグラフィー等によって更に精製できる。
 本発明の化合物(4F)は、以下に述べるF法により製造することができる。
(F法)
Figure JPOXMLDOC01-appb-C000121
 F法中、R、R、Z及びPは前記と同意義を示す。
 以下、F法の各工程について詳しく説明する。
(F―1工程)
 本工程は、化合物(5E’)を、溶媒中、塩基、触媒存在下、水酸基の保護試薬と反応させることにより化合物(1F)を製造する工程である。
 使用する溶媒としては、例えば、メチレンクロリド、クロロホルム、1,2-ジクロロエタンのようなハロゲン化炭化水素類、ベンゼン、トルエンなどの炭化水素類、テトラヒドロフラン、ジメチルエーテルのようなエーテル類、アセトニトリルを挙げることができるが、好適にはアセトニトリルである。
 使用される水酸基の保護試薬としては、無水酢酸、アセチルクロリド、無水安息香酸、ベンゾイルクロリドなどが挙げられるが、好適には無水酢酸である。
 使用される塩基は、活性化剤によって異なるが、トリエチルアミン、ピリジンのような有機塩基をあげることができるが、好適にはトリエチルアミンである。
 使用される触媒としては、N,N-ジメチルアミノピリジン、1,8-ジアザビシクロ[5.4.0]ウンデカ-7-エンなどを挙げることができるが、好適にはN,N-ジメチルアミノピリジンである。 反応温度は、使用される塩基により異なるが、通常0℃乃至50℃であり、好適には0℃乃至30℃である。
 反応時間は保護試薬の種類および使用量によって異なるが、通常10分乃至24時間であり、好適には1時間乃至3時間である。
 反応終了後、本反応の目的化合物(1F)は、例えば反応液を中和し、反応混合物を濃縮し、溶媒を留去することで得られる。
 得られた化合物は、必要ならば、常法、例えば再結晶、シリカゲルクロマトグラフィー等によって更に精製できる。
(F―2工程)
 本工程は、化合物(1F)を、溶媒中、塩基、触媒存在下、活性化剤を用いて水酸基を活性化し、次いでアミノ化剤と反応させることにより、化合物(2F)を製造する工程である。
 使用する溶媒としては、例えば、メチレンクロリド、クロロホルム、1,2-ジクロロエタンのようなハロゲン化炭化水素類、ベンゼン、トルエンなどの炭化水素類、テトラヒドロフラン、ジメチルエーテルのようなエーテル類、アセトニトリルを挙げることができるが、好適にはアセトニトリルである。
 使用される塩基は、活性化剤によって異なるが、トリエチルアミン、ピリジンのような有機塩基を挙げることができるが、好適にはトリエチルアミンである。
 使用される触媒としては、N,N-ジメチルアミノピリジン、1,8-ジアザビシクロ[5.4.0]ウンデカ-7-エンなどを挙げることが出来るが、好適にはN,N-ジメチルアミノピリジンである。
 使用される活性化剤としては、p-トルエンスルホニルクロリド、2,4,6-トリイソプロピルベンゼンスルホニルクロリドなどが挙げられるが、好適には2,4,6-トリイソプロピルベンゼンスルホニルクロリドである。
 反応温度は、使用される活性化剤により異なるが、通常0℃乃至50℃であり、好適には0℃乃至30℃である。
 反応時間は活性化剤の種類および使用量によって異なるが、通常10分乃至8時間であり、好適には1時間乃至3時間である。
 使用するアミノ化剤としては、アンモニア、アンモニア水溶液又は炭酸アンモニウムや酢酸アンモニウムのようなアンモニア塩類を挙げることができ、好適にはアンモニア水溶液である。
 反応温度は、使用されるアミノ化剤により異なるが、通常0℃乃至50℃であり、好適には0℃乃至30℃である。
 反応時間はアミノ化剤の種類および使用量によって異なるが、通常10分乃至8時間であり、好適には1時間乃至3時間である。
 反応終了後、本反応の目的化合物(2F)は、例えば反応液を中和し、反応混合物を濃縮し、溶媒を留去することで得られる。
 得られた化合物は、必要ならば、常法、例えば再結晶、シリカゲルクロマトグラフィー等によって更に精製できる。
(F―3工程)
 本工程は、化合物(2F)を、溶媒中、塩基存在下、アシル化剤を用いてアミノ基をアシル化することにより、化合物(3F)を製造する工程である。
 使用する溶媒としては、例えば、メチレンクロリド、クロロホルム、1,2-ジクロロエタンのようなハロゲン化炭化水素類、ベンゼン、トルエンなどの炭化水素類、テトラヒドロフラン、ジメチルエーテルのようなエーテル類、アセトニトリルを挙げることができるが、好適にはアセトニトリルである。
 使用される塩基としては、例えば、水酸化ナトリウム、水酸化カリウム、重曹、炭酸ナトリウム等の無機塩基、トリエチルアミン、ピリジン、1,8-ジアザビシクロ[5.4.0]ウンデカ-7-エンのような有機塩基を挙げることができるが、好適には水酸化ナトリウムである。
 使用されるアシル化剤としては、ベンゾイルクロリド、無水安息香酸などが挙げられるが、好適には無水安息香酸である。
 反応温度は、使用されるアシル化剤により異なるが、通常0℃乃至50℃であり、好適には10℃乃至40℃である。
 反応時間はアシル化剤の種類および使用量によって異なるが、通常1乃至48時間であり、好適には2時間乃至20時間である。
 反応終了後、本反応の目的化合物(3F)は、例えば反応液を中和し、反応混合物を濃縮し、溶媒を留去することで得られる。
 得られた化合物は、必要ならば、常法、例えば再結晶、シリカゲルクロマトグラフィー等によって更に精製できる。
(F-4工程)
 本工程は、化合物(3F)を、溶媒中、塩基により3位のアシル基を選択的に加水分解することにより、化合物(4F)を製造する工程である。
 使用する溶媒としては、例えば、メタノール、エタノール、プロパノールなどのアルコール類、水、アセトニトリルを挙げることができるが、好適には水、アセトニトリルである。
 使用される塩基としては、例えば、水酸化ナトリウム、水酸化カリウム、重曹、炭酸ナトリウム等の無機塩基を挙げることができるが、好適には水酸化ナトリウムである。
 反応温度は、使用される塩基により異なるが、通常0℃乃至50℃であり、好適には0℃乃至30℃である。
 反応時間は、使用される塩基によって異なるが、通常10分乃至24時間であり、好適には1時間乃至3時間である。
 反応終了後、本反応の目的化合物(4F)は、例えば反応液を中和し、反応混合物を濃縮し、溶媒を留去することで得られる。
 得られた化合物は、必要ならば、常法、例えば再結晶、シリカゲルクロマトグラフィー等によって更に精製できる。
 本発明の化合物(3G)は、以下に述べるG法により製造することができる。
(G法)
Figure JPOXMLDOC01-appb-C000122
 G法中、R、X、Z、Z及びPは前記と同意義を示す。
 以下、G法の工程について詳しく説明する。
(G―1工程)
 本工程は、化合物(2A)を用い、溶媒中、塩基存在下、活性化剤を反応させることにより、化合物(1G)を製造する工程である。
 使用する溶媒としては、例えば、メチレンクロリド、クロロホルム、1,2-ジクロロエタンのようなハロゲン化炭化水素類、ベンゼン、トルエンなどの炭化水素類、テトラヒドロフラン、ジメチルエーテルのようなエーテル類、アセトニトリルを挙げることができるが、好適にはトルエン、アセトニトリルである。
 反応温度は、使用される活性化剤により異なるが、通常0℃乃至50℃であり、好適には0℃乃至30℃である。
 使用される活性化剤は、無水酢酸、無水安息香酸、トリクロロアセトニトリル、カルボニルジイミダゾール、クロロリン酸ジフェニルを挙げることができるが、好適には無水酢酸、無水安息香酸である。
 使用される塩基は、活性化剤によって異なるが、トリエチルアミン、ピリジン、N,N-ジメチルアミノピリジン、1,8-ジアザビシクロ[5.4.0]ウンデカ-7-エンのような有機塩基を挙げることができるが、好適にはN,N-ジメチルアミノピリジンである。
 反応温度は、使用される活性化剤により異なるが、通常0℃乃至50℃であり、好適には0℃乃至30℃である。
 反応時間は、活性化剤の種類および使用量によって異なるが、通常10分乃至8時間であり、好適には1時間乃至3時間である。
 反応終了後、本反応の目的化合物(1G)は、例えば直接グリコシル化に用いることができるか、あるいは反応液を中和し、反応混合物を濃縮し、溶媒を留去することで得られる。
 得られた化合物は、必要ならば、常法、例えば再結晶、シリカゲルクロマトグラフィー等によって更に精製できる。
(G―2工程)
 本工程は、化合物(1G)に対し、溶媒中、酸試薬存在下、アミノ基が保護された6-アミノプリン-9-イル基とのグリコシル化反応を行い、その後異性化を伴い化合物(2G)を製造する工程である。
 使用する溶媒としては、例えば、メチレンクロリド、クロロホルム、1,2-ジクロロエタンのようなハロゲン化炭化水素類、ベンゼン、トルエンなどの炭化水素類、テトラヒドロフランのようなエーテル類、アセトニトリルを挙げることができるが、好適にはアセトニトリルである。
 使用する酸試薬は、ジクロロジメチルシランとトリフルオロメタンスルホン酸、トリフルオロメタンスルホン酸トリメチルシリルとトリフルオロメタンスルホン酸、メタンスルホン酸、トリフルオロ酢酸などを挙げることができるが、好適にはトリフルオロメタンスルホン酸トリメチルシリルとトリフルオロ酢酸である。
 グリコシル化及び異性化の反応温度は、化合物(1G)の構造や使用される酸試薬により異なるが、通常30℃乃至70℃であり、好適には40℃乃至60℃である。
 反応時間はルイス酸試薬の種類および使用量によって異なるが、通常10分乃至24時間であり、好適には1時間乃至5時間である。
 反応終了後、本反応の目的化合物(2G)は、例えば反応液を中和し、反応混合物を濃縮し、溶媒を留去することで得られる。
 得られた化合物は、必要ならば、常法、例えば再結晶、シリカゲルクロマトグラフィー等によって更に精製できる。
(G―3工程)
 本工程は、化合物(2G)を、溶媒中、脱保護試薬と反応させ、Z及びZを脱保護することにより化合物(3G)を製造する工程である。
 使用する溶媒としては、例えば、メチレンクロリド、クロロホルム、1,2-ジクロロエタンのようなハロゲン化炭化水素類、ベンゼン、トルエンなどの炭化水素類を挙げることができるが、好適にはメチレンクロリドである。
 Z及びZがベンジル基の場合の脱保護試薬は、塩化鉄(III)、三塩化ホウ素などが挙げられ、好適には三塩化ホウ素である。
 反応温度は、脱保護試薬により異なるが、通常-20℃乃至30℃であり、好適には-20℃乃至20℃である。
 反応時間は脱保護試薬により異なるが、通常10分乃至10時間であり、好適には1時間乃至5時間である。
 反応終了後、本反応の目的化合物(3G)は、例えば反応液を中和し、反応混合物を濃縮し、溶媒を留去することで得られる。
 得られた化合物は、必要ならば、常法、例えば再結晶、シリカゲルクロマトグラフィー等によって更に精製できる。
(G-4工程)
 本工程の目的化合物(4G)は、E法E―4工程に準じて化合物(3G)の1級水酸基を保護することにより製造することができる。
 また、本発明の化合物(5H)は、以下に述べるH法(ジクロロプリンを用いたグリコシル化)により製造することもできる。
(H法)
Figure JPOXMLDOC01-appb-C000123
 H法中、R、Z、Z及びPは前記と同意義を示す。
 以下、H法の工程について詳しく説明する。
(H-1工程)
 本工程は、化合物(1G)を、溶媒中、ハロゲン化剤存在下、シリル化反応によってシリル化されたジクロロプリンとグリコシル化反応させることにより化合物(1H)を製造する工程である。
 グリコシル化反応及びシリル化反応に使用する溶媒としては、例えば、メチレンクロリド、クロロホルム、1,2-ジクロロエタンのようなハロゲン化炭化水素類、ベンゼン、トルエンなどの炭化水素類、テトラヒドロフランのようなエーテル類、アセトニトリルを挙げることができるが、好適にはアセトニトリルである。
 シリル化反応に使用するシリル化剤は、N,O-ビストリメチルシリルアセトアミド、ヘキサメチルジシラザンなどを挙げることができるが、好適にはN,O-ビストリメチルシリルアセトアミドである。
 ジクロロプリンのシリル化反応の反応温度は、シリル化剤により異なるが、通常0℃乃至90℃であり、好適には50℃乃至80℃である。
 シリル化反応の反応時間はシリル化剤の種類および使用量によって異なるが、通常10分乃至24時間であり、好適には1時間乃至10時間である。
 グリコシル化反応に使用するハロゲン化剤は、クロロトリメチルシラン(TMSCl)、ブロモトリメチルシラン(TMSBr)、ヨードトリメチルシラン(TMSI)を挙げることができるが、好適にはTMSIである。 グリコシル化反応の反応温度は、化合物(2B)の構造や使用されるハロゲン化剤により異なるが、通常0℃乃至90℃であり、好適には50℃乃至80℃である。
 グリコシル化反応の反応時間はハロゲン化剤の種類および使用量によって異なるが、通常10分乃至24時間であり、好適には10時間乃至5時間である。
 反応終了後、本反応の目的化合物(1H)は、例えば反応液を中和し、反応混合物を濃縮し、溶媒を留去することで得られる。
 得られた化合物は、必要ならば、常法、例えば再結晶、シリカゲルクロマトグラフィー等によって更に精製できる。
(H-2工程)
 本工程は、化合物(1H)を、溶媒中、アミノ化剤と反応させることにより化合物(2H)を製造する工程である。
 使用する溶媒としては、例えば、メチレンクロリド、クロロホルム、1,2-ジクロロエタンのようなハロゲン化炭化水素類、ベンゼン、トルエンなどの炭化水素類、テトラヒドロフラン、ジメチルエーテルのようなエーテル類、アセトニトリルを挙げることができるが、好適にはテトラヒドロフランである。
 使用するアミノ化剤としては、アンモニア、アンモニア水溶液又は炭酸アンモニウムや酢酸アンモニウムのようなアンモニア塩類を挙げることができ、好適にはアンモニア水溶液である。
 反応温度は、通常0℃乃至90℃であり、好適には30℃乃至60℃である。
 反応時間は、溶媒およびアミノ化剤の使用量によって異なるが、通常10分乃至24時間であり、好適には1時間乃至10時間である。
 反応終了後、本反応の目的化合物(2H)は、例えば反応液を中和し、反応混合物を濃縮し、溶媒を留去することで得られる。
 得られた化合物は、必要ならば、常法、例えば再結晶、シリカゲルクロマトグラフィー等によって更に精製できる。
(H-3工程)
 本工程は、溶媒中、化合物(2H)のZ及びZの脱保護反応及びプリン環の2位の塩素原子の水素化反応により化合物(3H)を製造する工程である。
 使用する溶媒としては、例えば、水、メタノール、エタノール、1-プロパノール、2-プロパノールなどのアルコール類、ベンゼン、トルエンなどの炭化水素類、テトラヒドロフラン、ジエチルエーテルのようなエーテル類、アセトニトリルを挙げることができるが、好適にはエタノールである。
 Z及びZがベンジル基の場合、金属触媒存在下、還元剤を用いて、Z及びZの脱保護反応とプリン環の2位の水素化反応をを同時に行うことができる。
 使用する金属触媒は、パラジウム、水酸化パラジウム、白金(特に、炭素に担持させたパラジウム、水酸化パラジウム、又は白金)などを挙げることができるが、好適にはパラジウム(特に、炭素に担持させたパラジウム)である。
 使用する還元剤は、水素、ギ酸、ギ酸アンモニウム等を挙げることができるが、好適には水素である。
 反応温度は、金属触媒により異なるが、通常0℃乃至70℃であり、好適には40℃乃至60℃である。
 反応時間は金属触媒、還元剤の種類および使用量によって異なるが、通常10分乃至24時間であり、好適には1時間乃至10時間である。
 反応終了後、本反応の目的化合物(3H)は、例えば反応液をろ過することで金属触媒を除去し、反応混合物を濃縮し、溶媒を留去することで得られる。
 得られた化合物は、必要ならば、常法、例えば再結晶、シリカゲルクロマトグラフィー等によって更に精製できる。
(H-4工程)
 本工程は、化合物(3H)を、溶媒中、水酸基を水酸基の保護試薬で保護した後、プリン環上のアミノ基をアシル化剤でアシル化し、次いでアンモニアで水酸基上の保護基を脱離させることにより、化合物(4H)を製造する工程である。
 使用する溶媒としては、例えば、ピリジン、アセトニトリルを挙げることが出来るが、好適にはピリジンである。
 使用する水酸基の保護試薬としては、クロロトリメチルシラン、トリフルオロメタンスルホニルトリメチルシランなどが挙げられるが、好適にはクロロトリメチルシランである。
 反応の温度は、通常0℃乃至90℃であり、好適には0℃乃至30℃である。
 反応時間は、水酸基の保護試薬の種類および使用量によって異なるが、通常10分乃至2時間であり、好適には30分乃至1時間である。
 使用されるアシル化剤としては、無水酢酸、アセチルクロリド、無水安息香酸、ベンゾイルクロリドなどが挙げられるが、好適にはベンゾイルクロリドである。
 アシル化反応の温度は、通常0℃乃至90℃であり、好適には0℃乃至30℃である。
 反応時間は、水酸基の保護試薬の種類および使用量によって異なるが、通常1時間乃至8時間であり、好適には1時間乃至3時間である。
 本反応の目的化合物(4H)は、例えば反応液にアンモニア水を加えた後、反応混合物を濃縮し、溶媒を留去することで得られる。
 得られた化合物は、必要ならば、常法、例えば再結晶、シリカゲルクロマトグラフィー等によって更に精製できる。
(H-5工程)
 本工程の目的化合物(5H)は、E法E-4工程に準じて化合物(4H)の1級水酸基を保護することにより製造することができる。
 本発明の化合物(4I)は、以下に述べるI法により製造することができる。
(I法)
Figure JPOXMLDOC01-appb-C000124
 I法中、R、R、Z、Z及びPは前記と同意義を示す。
 以下、I法の各工程について詳しく説明する。
(I-1工程)
 本工程は、化合物(1H)を、溶媒中、塩基存在下、置換基を有していてもよいベンジルアルコールとの置換反応により化合物(1I)を製造する工程である。
 置換基を有していてもよいベンジルアルコールとしては、例えば、ベンジルアルコール、4-メチルベンジルアルコール、2,4,6-トリメチルベンジルアルコール、3,4,5-トリメチルベンジルアルコール、4-メトキシベンジルアルコール、4-クロロベンジルアルコール、4-ブロモベンジルアルコール又は4-シアノベンジルアルコールを挙げることができ、好適には、ベンジルアルコールである。
 使用する溶媒としては、例えば、メチレンクロリド、クロロホルム、1,2-ジクロロエタンのようなハロゲン化炭化水素類、ベンゼン、トルエンなどの炭化水素類、テトラヒドロフラン、ジメチルエーテルのようなエーテル類、アセトニトリルを挙げることができるが、好適にはテトラヒドロフランである。
 使用される塩基としては、例えば、水素化ナトリウム、炭酸ナトリウム等の無機塩基、トリエチルアミン、ピリジン、1,8-ジアザビシクロ[5.4.0]ウンデカ-7-エンのような有機塩基を挙げることができるが、好適には水素化ナトリウムである。
 反応温度は、通常0℃乃至90℃であり、好適には0℃乃至30℃である。
 反応時間は溶媒および塩基の使用量によって異なるが、通常10分乃至24時間であり、好適には1時間乃至10時間である。
 反応終了後、本反応の目的化合物(1I)は、例えば反応液を中和し、反応混合物を濃縮し、溶媒を留去することで得られる。
 得られた化合物は、必要ならば、常法、例えば再結晶、シリカゲルクロマトグラフィー等によって更に精製できる。
(I-2工程)
 本工程は、化合物(1I)を、溶媒中、塩基、パラジウム触媒、ホスフィン配位子存在下、アミド化剤とのクロスカップリング反応により、化合物(2I)を製造する工程である。
 使用する溶媒としては、例えば、メチレンクロリド、クロロホルム、1,2-ジクロロエタンのようなハロゲン化炭化水素類、ベンゼン、トルエンなどの炭化水素類、テトラヒドロフラン、ジメチルエーテルのようなエーテル類、アセトニトリルを挙げることができるが、好適にはトルエンである。
 使用する塩基としては、例えば、水酸化ナトリウム、炭酸ナトリウム、炭酸セシウム等の無機塩基、トリエチルアミン、ピリジン、1,8-ジアザビシクロ[5.4.0]ウンデカ-7-エンのような有機塩基を挙げることができるが、好適には炭酸セシウムである。
 使用するパラジウム触媒としては、トリス(ジベンジリデンアセトン)(クロロホルム)ジパラジウム、酢酸パラジウム(II)、トリス(ジベンジリデンアセトン)ジパラジウム(0)などが挙げられるが、好適にはトリス(ジベンジリデンアセトン)(クロロホルム)ジパラジウムである。
 使用するホスフィン配位子としては、4,5’-ビス(ジフェニルホスフィノ)-9,9’-ジメチルキサンテン、1,1’-ビス(ジフェニルホスフィノ)フェロセン、1,2-ビス(ジフェニルホスフィノ)エタン、2-ジシクロヘキシルホスフィノ-2’-(N,N-ジメチルアミノ)ビフェニルなどが挙げられるが、好適には4,5’-ビス(ジフェニルホスフィノ)-9,9’-ジメチルキサンテンである。
 使用するアミド化剤としては、アセチルアミド、ベンゾイルアミド、イソブチルアミドなどが挙げられるが、好適にはイソブチルアミドである。
 反応温度は、通常20℃乃至150℃であり、好適には90℃乃至110℃である。
 反応時間は溶媒およびパラジウム触媒の使用量によって異なるが、通常10分乃至24時間であり、好適には5時間乃至15時間である。
 反応終了後、本反応の目的化合物(2I)は、例えば反応液を中和し、反応混合物を濃縮し、溶媒を留去することで得られる。
 得られた化合物は、必要ならば、常法、例えば再結晶、シリカゲルクロマトグラフィー等によって更に精製できる。
(I-3工程)
 本工程は、化合物(2I)を、溶媒中、水酸基の脱保護試薬と反応させ、Z、Z及びRの脱保護により化合物(3I)を製造する工程である。
 Z及びZがベンジル基の場合、脱保護試薬は炭素に担持させた金属触媒及び還元剤である。
 使用する金属触媒は、パラジウム、水酸化パラジウム、白金などを挙げることができるが、好適には水酸化パラジウムである。
 使用する還元剤は、水素、ギ酸、ギ酸アンモニウム等を挙げることが出来るが、好適には水素である。
 反応温度は、金属触媒により異なるが、通常0℃乃至70℃であり、好適には40℃乃至60℃である。
 反応時間は金属触媒、還元剤の種類および使用量によって異なるが、通常10分乃至24時間であり、好適には1時間乃至10時間である。
 反応終了後、本反応の目的化合物(3I)は、例えば反応液をろ過することで金属触媒を除去し、反応混合物を濃縮し、溶媒を留去することで得られる。
 得られた化合物は、必要ならば、常法、例えば再結晶、シリカゲルクロマトグラフィー等によって更に精製できる。
(I-4工程)
 本工程の目的化合物(4I)は、E法E-4工程に準じて化合物(3I)の1級水酸基を保護することにより製造することができる。
 化合物(2J)は、以下に述べるJ法により製造することができる。
(J法)
Figure JPOXMLDOC01-appb-C000125
 J法中、P及びBは前記と同意義を示す。
 以下、J法の工程について詳しく説明する。
(J-1工程)
 本工程は、化合物(1J)を、溶媒中、乾燥剤、活性化剤存在下、アミダイト化試薬と反応させ、アミダイト化反応により化合物(2J)を製造する工程である。
 使用する溶媒としては、例えば、メチレンクロリド、クロロホルム、1,2-ジクロロエタンのようなハロゲン化炭化水素類、酢酸エチル、酢酸プロピル、酢酸ブチルなどのエステル類、ベンゼン、トルエンなどの炭化水素類、テトラヒドロフランのようなエーテル類、アセトニトリルを挙げることができるが、好適にはメチレンクロリドである。
 使用する乾燥剤は、モレキュラーシーブ3A、モレキュラーシーブ4A、又はモレキュラーシーブ5Aが挙げられ、好適にはモレキュラーシーブ4Aである。
 使用する活性化剤は、5-ベンジルチオテトラゾール、5-フェニルテトラゾール、ジブロモイミダゾール、ジシアノイミダゾール、N-アルキルイミダゾールトリフルオロ酢酸塩などが挙げられ、好適には4,5-ジシアノイミダゾールである。
 使用するアミダイト化試薬は、2-シアノエチルN,N,N’,N’-テトライソプロピルホスホロジアミダイト、2-シアノエチルジイソプロピルクロロホスホロアミジトが挙げられ、好適には2-シアノエチルN,N,N’,N’-テトライソプロピルホスホロジアミダイトである。
 反応温度は、使用されるアミダイト化試薬により異なるが、通常0℃乃至50℃であり、好適には0℃乃至30℃である。
 反応時間は使用されるアミダイト化試薬により異なるが、通常10分乃至24時間であり、好適には1時間乃至16時間である。
 反応終了後、本反応の目的化合物(2J)は、例えば反応液を中和し、反応混合物を濃縮し、溶媒を留去することで得られる。
 得られた化合物は、必要ならば、常法、例えば再結晶、シリカゲルクロマトグラフィー等によって更に精製できる。
本発明は、一つの態様として、上記の方法で製造された各ENAモノマー及び市販の核酸又は修飾核酸に対応するヌクレオシドのホスホロアミダイト化合物、及びリガンドユニットのホスホロアミダイト化合物をリン酸ジエステル結合又はホスホロチオエート結合により連結させ、ユニット鎖を伸長させることにより所望の配列・構造を有するオリゴヌクレオチドを製造する方法を提供する。このようなオリゴヌクレオチドの製造は、市販の合成機(例えば、パーキンエルマー社のホスホロアミダイド法によるモデル392)などを用いて、文献(Nucleic Acids Research, 12, 4539 (1984))に記載の方法に準じて合成することで行うことができる。その際に用いられる各ENAのヌクレオシド(すなわち、2’-O,4’-C-エチレン架橋グアノシン、2’-O,4’-C-エチレン架橋アデノシン、2’-O,4’-C-エチレン架橋シチジン、2’-O,4’-C-エチレン架橋チミジン)のホスホロアミダイト化合物は上記の方法により製造された化合物を用いることができる。天然型のヌクレオシド及び2'-O-メチルヌクレオシド(すなわち、2'-O-メチルグアノシン、2'-O-メチルアデノシン、2'-O-メチルシチジン、2'-O-メチルウリジン)のホスホロアミダイト化合物については、市販の試薬を用いて製造することができる。
 本発明において、核酸塩基配列は、アデニンを(A)又は(a)、グアニンを(G)又は(g)、シトシンを(C)又は(c)、チミンを(T)又は(t)、及び、ウラシルを(U)又は(u)とそれぞれ記載することができる。シトシンの代わりに、5-メチルシトシンを使うことができる。核酸塩基のうち、ウラシル(U)又は(u)とチミン(T)又は(t)は、互換性がある。ウラシル(U)又は(u)とチミン(T)又は(t)のどちらも、相補鎖のアデニン(A)又は(a)との塩基対形成に使うことができる。
 ホスホロアミダイト化合物をカップリング後、硫黄、テトラエチルチウラムジスルフィド(TETD、アプライドバイオシステム社)、Beaucage試薬(Glen Research社)、または、キサンタンヒドリドなどの試薬を反応させることにより、ホスホロチオエート結合を有するオリゴヌクレオチドを合成することができる(Tetrahedron Letters, 32, 3005 (1991), J. Am. Chem. Soc. 112, 1253(1990), PCT/WO98/54198)。
 合成機で用いるコントロールド ポア グラス(CPG)としては、2'-O-メチルヌクレオシドの結合したものは、市販のものを利用することができる。また、2'-O,4'-C-メチレングアノシン、アデノシン、5-メチルシチジンおよびチミジンについては、WO99/14226に記載の方法に従って、上記の方法で製造された2'-O, 4'-C-エチレングアノシン、アデノシン、5-メチルシチジンおよびチミジンについては、文献(Oligonucleotide Synthesis, Edited by M.J.Gait, Oxford UniversityPress, 1984)に従って、CPGに結合することができる。修飾されたCPG(特開平7-87982の実施例12bに記載)を用いることにより、3'末端に2-ヒドロキシエチルリン酸基が結合したオリゴヌクレオチドを合成できる。また、3'-amino-ModifierC3 CPG, 3'-amino-Modifier C7 CPG, Glyceryl CPG, (Glen Research), 3'-specer C3SynBase CPG 1000, 3'-specer C9 SynBase CPG 1000(linktechnologies)を使えば、3'末端にヒドロキシアルキルリン酸基、または、アミノアルキルリン酸基が結合したオリゴヌクレオチドを合成できる。
 本発明により製造されるオリゴヌクレオチドは、核酸の組織への輸送に適したリガンドユニットを含んでいてもよい。リガンドユニットは、リガンド部がリンカーを介してリン酸部を含むアミダイト化合物を合成することで、ヌクレオチドの伸長と同様の方法によって、オリゴヌクレオチドの5’末端に結合させることができる。肝臓への輸送にはGalNAcがリンカーを介してリン酸部に結合したオリゴヌクレオチドが使用され、そのオリゴヌクレオチドの製造には以下のX18又はX20などに対応するホスホロアミダイト化合物が用いられる。GalNAcユニットであるX18に対応するホスホロアミダイト化合物は、WO2019/172286の参考例39の化合物39D([(2R,3R,4R,5R,6R)-5-アセトアミド-6-[3-[[2-[[3-[[2-[3-[(2R,3R,4R,5R,6R)-3-アセトアミド-4,5-ジアセトキシ-6-[[ビス(4-メトキシフェニル)-フェニル-メトキシ]メチル]テトラヒドロピラン-2-イル]オキシプロピルアミノ]-2-オキソ-エチル]カルバモイルオキシ]-2-[2-シアノエトキシ-(ジイソプロピルアミノ)ホスファニル]オキシ-プロポキシ]カルボニルアミノ]アセチル]アミノ]プロポキシ]-4-アセトキシ-2-[[ビス(4-メトキシフェニル)-フェニル-メトキシ]メチル]テトラヒドロピラン-3-イル] アセテート )、
Figure JPOXMLDOC01-appb-C000126
X20に対応するホスホロアミダイト化合物はWO2019/172286の参考例41の化合物41D([(2R,3R,4R,5R,6R)-5-アセトアミド-6-[3-[3-[[3-[[3-[3-[(2R,3R,4R,5R,6R)-3-アセトアミド-4,5-ジアセトキシ-6-[[ビス(4-メトキシフェニル)-フェニル-メトキシ]メチル]テトラヒドロピラン-2-イル]オキシプロピルアミノ]-3-オキソ-プロピル]カルバモイルオキシ]-2-[2-シアノエトキシ-(ジイソプロピルアミノ) ホスファニルl]オキシ-プロポキシ]カルボニルアミノ]プロパノイルアミノ]プロポキシ]-4-アセトキシ-2-[[ビス(4-メトキシフェニル)-フェニル-メトキシ]メチル]テトラヒドロピラン-3-イル] アセテート)、
Figure JPOXMLDOC01-appb-C000127

  
をそれぞれ用いることができる。
本発明の方法で製造されるオリゴヌクレオチドの一つの態様としては、以下の式で表される配列及び構造を有し、デュシェンヌ型筋ジストロフィーの治療に有用なオリゴヌクレオチド(WO2004/048570参照)が例示される。
(DMD AO01) HO-Ce2s-Am1s-Gm1s-Te2s-Te2s-Um1s-Gm1s-Ce2s-Ce2s-Gm1s-Ce2s-Te2s-Gm1s-Ce2s-Ce2s-Ce2s-Am1s-Am1s-CH2CH2OH(配列番号1)
(DMD AO02) HO-Te2s-Gm1s-Te2s-Te2s-Ce2s-Te2s-Gm1s-Am1s-Ce2s-Am1s-Am1s-Ce2s-Am1s-Gm1s-Te2s-Te2s-Te2s-Gm1s-CH2CH2OH(配列番号2)
(DMD AO03) HO-Ce2s-Gm1s-Ce2s-Te2s-Gm1s-Cm1s-Ce2s-Ce2s-Am1s-Am1s-Te2s-Gm1s-Ce2s-Ce2s-Am1s-Um1s-Ce2s-Ce2s-CH2CH2OH(配列番号3)
(DMD AO04) HO-Ce2s-Am1s-Te2s-Am1s-Am1s-Te2s-Gm1s-Am1s-Ae2s-Am1s-Am1s-Ce2s-Gm1s-Cm1s-Ce2s-Gm1s-Ce2s-Ce2s-CH2CH2OH(配列番号4)
(DMD AO05) HO-Te2s-Um1s-Ce2s-Cm1s-Ce2s-Am1s-Am1s-Te2s-Um1s-Cm1s-Te2s-Ce2s-Am1s-Gm1s-Gm1s-Ae2s-Am1s-Te2s-CH2CH2OH(配列番号5)
(DMD AO06) HO-Ce2s-Ce2s-Am1s-Um1s-Te2s-Um1s-Gm1s-Te2s-Am1s-Um1s-Te2s-Te2s-Am1s-Gm1s-Ce2s-Am1s-Te2s-Gm1s-CH2CH2OH(配列番号6)
(DMD AO07) HO-Gm1s-Gm1s-Ce2s-Te2s-Gm1s-Cm1s-Te2s-Te2s-Um1s-Gm1s-Ce2s-Cm1s-Cm1s-Te2s-Ce2s-Am1s-Gm1s-Ce2s-CH2CH2OH(配列番号7) 
(DMD AO08) HO-Gm1s-Ce2s-Te2s-Am1s-Gm1s-Gm1s-Te2s-Ce2s-Am1s-Gm1s-Gm1s-Te2s-Gm1s-Cm1s-Te2s-Te2s-Um1s-CH2CH2OH(配列番号8) 
(DMD AO09) HO-Am1s-Ce2s-Ce2s-Gm1s-Cm1s-Ce2s-Te2s-Um1s-Cm1s-Ce2s-Am1s-Cm1s-Te2s-Ce2s-Am1s-Gm1s-Ae2s-Gm1s-CH2CH2OH;(配列番号9)
(DMD AO10) HO-Ge2s-Ge2s-Ce2s-Ae2s-Te2s-Um1s-Um1s-Cm1s-Um1s-Am1s-Gm1s-Um1s-Um1s-Te2s-Ge2s-Ge2s-Ae2s-Ge2s-CH2CH2OH(配列番号10)
(DMD AO11) HO-Gm1s-Gm1s-Ce2s-Am1s-Te2s-Te2s-Um1s-Ce2s-Te2s-Am1s-Gm1s-Um1s-Te2s-Te2s-Gm1s-Gm1s-Ae2s-Gm1s-CH2CH2OH(配列番号11)
(DMD AO12) HO-Ae2s-Gm1s-Te2s-Um1s-Te2s-Gm1s-Gm1s-Ae2s-Gm1s-Am1s-Te2s-Gm1s-Gm1s-Ce2s-Ae2s-Gm1s-Te2s-Te2s-CH2CH2OH(配列番号12)
(DMD AO13) HO-Ce2s-Te2s-Cm1s-Ce2s-Te2s-Um1s-Ce2s-Ce2s-Am1s-Te2s-Gm1s-Am1s-Ce2s-Te2s-Ce2s-Am1s-Am1s
-Gm1s- CH2CH2OH(配列番号13)
(DMD AO14) HO-Ce2s-Te2s-Gm1s-Am1s-Am1s-Gm1s-Gm1s-Te2s-Gm1s-Te2s-Te2s-Ce2s-Te2s-Te2s-Gm1s-Te2s-Am1s-
Ce2s- CH2CH2OH(配列番号14)
(DMD AO15) HO-Te2s-Te2s-Cm1s-Ce2s-Am1s-Gm1s-Ce2s-Ce2s-Am1s-Te2s-Te2s-Gm1s-Te2s-Gm1s-Te2s-Te2s-Gm1s
-Am1s- CH2CH2OH(配列番号15)
[上記式において、左側が5'末端、右側が3’末端を表し、A、G、C、U及びTは、それぞれD-リボフラノースが修飾され、5'位の炭素原子が左側に表示された構造単位とホスホロチオエート結合したアデノシン、グアノシン、シチジン、ウリジン及びチミジンを表す。各ヌクレオチドまたはヌクレオシドに付された、e2sはD-リボフラノースが2'-O,4'-C-エチレン架橋され、3'位が-OP(=S)(-OH)-O-で右側に隣接したヌクレオチドまたはヌクレオシドの5’位炭素原子と結合することを表し、e2tはD-リボフラノースが2'-O,4'-C-エチレン架橋され、3'位が-O-で3’末端の水素原子と結合することを表し、m1sはD-リボフラノースが2'-O-メチル化され、3'位が-OP(=S)(-OH)-O-で右側に隣接したヌクレオチドまたはヌクレオシドの5’位炭素原子と結合することを表し、m1tはD-リボフラノースが2'-O-メチル化され、3'位が-O-で3’末端の水素原子と結合することを表す。]
また、本発明の方法で製造されるオリゴヌクレオチドの一つの態様としては、以下の式で表される配列及び構造を有し、糖原病1a型の治療に有用なオリゴヌクレオチド(WO2019/172286参照)が例示される。
(GSD AO01) X18-Am1s-Ae2s-Um1s-Cm1s-Ce2s-Gm1s-Am1s-Te2s-Gm1s-Gm1s-Ce2s-Gm1s-Am1s-Ae2s-Gm1t-H(配列番号16)
GSD AO02) X18-Ae2s-Um1s-Cm1s-Ce2s-Gm1s-Am1s-Te2s-Gm1s-Gm1s-Ce2s-Gm1s-Am1s-Ae2s-Gm1s-Ce2t-H(配列番号17)
(GSD AO03) X18-Um1s-Cm1s-Ce2s-Gm1s-Am1s-Te2s-Gm1s-Gm1s-Ce2s-Gm1s-Am1s-Ae2s-Gm1s-Ce2s-Um1t-H(配列番号18)
(GSD AO04) X18-Am1s-Am1s-Ae2s-Um1s-Cm1s-Ce2s-Gm1s-Am1s-Te2s-Gm1s-Gm1s-Ce2s-Gm1s-Am1s-Ae2s-Gm1t-H(配列番号19)
(GSD AO05) X18-Am1s-Ae2s-Um1s-Cm1s-Ce2s-Gm1s-Am1s-Te2s-Gm1s-Gm1s-Ce2s-Gm1s-Am1s-Ae2s-Gm1s-Ce2t-H(配列番号20)
(GSD AO06) X18-Ae2s-Um1s-Cm1s-Ce2s-Gm1s-Am1s-Te2s-Gm1s-Gm1s-Ce2s-Gm1s-Am1s-Ae2s-Gm1s-Ce2s-Um1t-H(配列番号21)
(GSD AO07) X18-Am1s-Ae2s-Um1s-Cm1s-Ce2s-Gm1s-Ae2s-Um1s-Gm1s-Gm1s-Ce2s-Gm1s-Am1s-Ae2s-Gm1t-H(配列番号22)
(GSD AO08) X18-Ae2s-Um1s-Cm1s-Ce2s-Gm1s-Ae2s-Um1s-Gm1s-Gm1s-Ce2s-Gm1s-Am1s-Ae2s-Gm1s-Ce2t-H(配列番号23)
(GSD AO09) X18-Um1s-Cm1s-Ce2s-Gm1s-Ae2s-Um1s-Gm1s-Gm1s-Ce2s-Gm1s-Am1s-Ae2s-Gm1s-Ce2s-Um1t-H(配列番号24)
(GSD AO10) X18-Am1s-Am1s-Ae2s-Um1s-Cm1s-Ce2s-Gm1s-Ae2s-Um1s-Gm1s-Gm1s-Ce2s-Gm1s-Am1s-Ae2s-Gm1t-H(配列番号25)
(GSD AO11) X18-Am1s-Ae2s-Um1s-Cm1s-Ce2s-Gm1s-Ae2s-Um1s-Gm1s-Gm1s-Ce2s-Gm1s-Am1s-Ae2s-Gm1s-Ce2t-H1(配列番号26)
(GSD AO12) X18-Ae2s-Um1s-Cm1s-Ce2s-Gm1s-Ae2s-Um1s-Gm1s-Gm1s-Ce2s-Gm1s-Am1s-Ae2s-Gm1s-Ce2s-Um1t-H(配列番号27)
(GSD AO13) X20-Am1s-Ae2s-Um1s-Cm1s-Ce2s-Gm1s-Ae2s-Um1s-Gm1s-Gm1s-Ce2s-Gm1s-Am1s-Ae2s-Gm1t-H(配列番号28)
(GSD AO14) X20-Ae2s-Um1s-Cm1s-Ce2s-Gm1s-Ae2s-Um1s-Gm1s-Gm1s-Ce2s-Gm1s-Am1s-Ae2s-Gm1s-Ce2t-H(配列番号29)
(GSD AO15) X20-Am1s-Am1s-Ae2s-Um1s-Cm1s-Ce2s-Gm1s-Ae2s-Um1s-Gm1s-Gm1s-Ce2s-Gm1s-Am1s-Ae2s-Gm1t-H(配列番号30)
(GSD AO16) X20-Am1s-Ae2s-Um1s-Cm1s-Ce2s-Gm1s-Ae2s-Um1s-Gm1s-Gm1s-Ce2s-Gm1s-Am1s-Ae2s-Gm1s-Ce2t-H(配列番号31)
[上記式において、左側が5'末端、右側が3’末端を表し、A、G、C、U及びTは、それぞれD-リボフラノースが修飾され、5'位の炭素原子が左側に表示された構造単位とホスホロチオエート結合したアデノシン、グアノシン、シチジン、ウリジン及びチミジンを表す。各ヌクレオチドまたはヌクレオシドに付された、e2sはD-リボフラノースが2'-O,4'-C-エチレン架橋され、3'位が-OP(=S)(-OH)-O-で右側に隣接したヌクレオチドまたはヌクレオシドの5’位炭素原子と結合することを表し、e2tはD-リボフラノースが2'-O,4'-C-エチレン架橋され、3'位が-O-で3’末端の水素原子と結合することを表し、m1sはD-リボフラノースが2'-O-メチル化され、3'位が-OP(=S)(-OH)-O-で右側に隣接したヌクレオチドまたはヌクレオシドの5’位炭素原子と結合することを表し、m1tはD-リボフラノースが2'-O-メチル化され、3'位が-O-で3’末端の水素原子と結合することを表す。
上記式において、X18およびX20は、下記の式で表されるGalNAcユニットを表す。下記の式において、リン酸基に結合した結合手はオリゴヌクレオチドの5'末端の炭素原子に結合して、リン酸ジエステル結合を形成することを表す。]
Figure JPOXMLDOC01-appb-C000128

  
Figure JPOXMLDOC01-appb-C000129

  
 以下に実施例を参照しながら、本発明をさらに具体的に説明するが、本発明の範囲は、それらの実施例によって制限されないものとする。
(実施例1)2,6-アンヒドロ-3-O-ベンジル-4-[(ベンジルオキシ)メチル]-5-デオキシ-α-L-lyxo-ヘキソフラノース 化合物2の製造
(実施例1-1)(3aR,3bR,6S,6aS,7aR)-6-ヒドロキシ-2,2-ジメチルテトラヒドロ-2H-フロ[2',3':4,5]フロ[2,3-d][1,3]ジオキソール-5(3bH)-オン(化合物5)のジメチルアセトアミド溶液の製造
Figure JPOXMLDOC01-appb-C000130
 アセトン(11.9kg)に、市販の(2R)-2-[(2S,3R,4S)-3,4-ジヒドロキシ-5-オキソ-テトラヒドロフラン-2-イル]-2-ヒドロキシ-アセトアルデヒド(化合物4)(1.00kg、5.678mol)及び濃硫酸(114g、1.162mol)をこの順に添加し、40~50℃にて17時間撹拌した。反応液を20~30℃に冷却し、炭酸水素ナトリウム(0.19kg、2.271mol)を添加して2時間撹拌した後、生じた白色固体をろ去し、当該白色固体をアセトン(2.37kg)にて洗浄し、洗浄液をろ液に加えた。こうして得られた溶液にジメチルアセトアミド(7.50kg)及びトルエン(4.34kg)を加えて減圧濃縮し、さらにトルエン(4.34kg)を加えて減圧濃縮する操作を2回繰り返し、化合物5のジメチルアセトアミド溶液を得た。
 構造の確認は一部シリカゲルカラム精製(ヘキサン/酢酸エチル)を実施し、NMRにて確認した。
 1H NMR (CDCl3): δ = 1.36 (3H, s), 1.53 (3H, s), 2.72 (1H, d, J = 9.5 Hz), 4.50 (1H, dd, J =4.5, 9.5 Hz),4.84 (2H, d, J = 2.5 Hz), 4.95 (1H, dd, J = 2.5,4.5 Hz), 5.99 (1H, d, J = 3.5 Hz).
      
(実施例1-2)(3aR,3bR,6S,6aR,7aR)-2,2-ジメチル-5-オキソヘキサヒドロ-2H-フロ[2',3':4,5]フロ[2,3-d][1,3]ジオキソール-6-イル=4-メチルベンゼン-1-スルホナート(化合物6)の製造
Figure JPOXMLDOC01-appb-C000131
  実施例1-1で得られた化合物5のジメチルアセトアミド溶液に、1-メチルイミダゾール(0.56kg、6.814mol)及びp-トルエンスルホニルクロリド(1.24kg、6.530mol)をこの順に添加し、20~30℃にて3時間撹拌した。反応溶液に水(5kg)を添加して3時間撹拌した後、0~5℃に冷却して更に2時間撹拌した。反応溶液中に生じた白色固体をろ取し、水/ジメチルアセトアミド(1/1、4kg)及び水(8kg)にてこの順で洗浄した。得られた固体を減圧乾燥(40℃)して、化合物6(1.66kg、収率79.4%)を得た。
 1H NMR (CDCl3): δ = 1.33 (3H, s), 1.49 (3H, s), 2.45 (3H, s), 4.78 (1H, d, J = 3.5 Hz), 4.83(1H, d, J = 3.0 Hz), 4.97 (1H, dd, J = 3.0, 4.5 Hz), 5.22 (1H, d, J = 4.5 Hz),5.97 (1H, d, J = 3.5 Hz), 7.37 (2H, d, J = 8.0 Hz), 7.89 (2H, m).

(実施例1-3)5-デオキシ-1,2-O-(1-メチルエチリデン)-α-D-xylo-ヘキソフラノース(化合物7)のトルエン溶液の製造
Figure JPOXMLDOC01-appb-C000132
  0~10℃に調節したテトラヒドロフラン(22.1kg、15.0v/w)に、水素化ビス(2-メトキシエトキシ)アルミニウムナトリウム(4.53kg、15.69mol)及び実施例1-2で得られた化合物6(1.66kg、4.48mol)をこの順に添加し、30分間攪拌した後、更に20~30℃で1.5時間攪拌した。反応後、反応液を0~10℃に冷却し、アセトン(1.05kg、0.8v/w)及び50%L-酒石酸ナトリウムカリウム水溶液(17.0kg、8.0v/w)を滴下し、反応液を40~50℃に上げ、14時間攪拌した後、40~50℃にて分液を行った。得られた有機層に、40~50℃で、20%食塩水(3.81kg、2.0v/w)を加えて、分液によりテトラヒドロフラン層を得た。同様の分液操作を2回繰り返すことで、得られた溶液にトルエン(7.20kg、5.0v/w)を加え、容積が3.3Lになるまで減圧濃縮を行った。同様の減圧濃縮操作を3回行うことで得られた溶液にトルエン(20.0kg、13.6w/w)を加えて化合物7のトルエン溶液を得た。
 構造の確認は一部シリカゲルカラム精製(ヘキサン/酢酸エチル)を実施し、NMRにて確認した。
 1H NMR (CDCl3): δ = 1.32 (3H, s), 1.51 (3H, s), 1.94-2.06 (2H, m), 2.46 (1H, br), 3.26 (1H,br), 3.75 (1H, td, J = 3.5, 9.5 Hz), 3.87-3.91 (1H, m), 4.11 (1H, d, J = 7.5Hz), 4.26 (1H, td, J = 3.0, 6.0 Hz), 4.55 (1H, d, J = 4.0 Hz), 5.91 (1H, d, J =4.0 Hz).
(実施例1-4)5-デオキシ-1,2-O-(1-メチルエチリデン)-6-O-(トリフェニルメチル)-α-D-xylo-ヘキソフラノース(化合物8)のトルエン溶液の製造
Figure JPOXMLDOC01-appb-C000133
 実施例1-3で得られた化合物7のトルエン溶液に、トリチルクロライド(0.87kg、3.14 mol)及び4-メチルモルホリン(0.54kg、5.38mol)をこの順に添加し、50~60℃にて3.5時間攪拌した。反応後、反応液を20~30℃に冷却し、8%重曹水(3.42kg、2.0v/w)を加えて分液し、トルエン層を得た。得られたトルエン層に5%食塩水(10.26kg、6.0v/w)を添加し、分液した。得られたトルエン層に対して、同様の分液操作を3回行うことで、化合物8のトルエン溶液を得た。
 構造の確認は一部シリカゲルカラム精製(ヘキサン/酢酸エチル)を実施し、NMRにて確認した。
 1H NMR (CDCl3): δ = 1.31 (3H, s), 1.48 (3H, s), 1.99-2.02 (2H, m), 2.77 (1H, d, J = 4.0 Hz),3.15-3.19 (1H, m), 3.40 (1H, ddd, J = 4.5, 5.0, 10.0 Hz), 4.08 (1H, t, J = 2.5Hz), 4.25 (1H, ddd, J = 2.5, 7.0, 7.5 Hz), 4.53 (1H, d, J = 3.5 Hz), 5.88 (1H,d, J = 3.5 Hz), 7.23-7.26 (3H, m), 7.29-7.32 (6H, m), 7.39-7.41 (6H, m).
(実施例1-5a)5-デオキシ-1,2-O-(1-メチルエチリデン)-6-O-(トリフェニルメチル)-α-D-erythro-ヘキソフラノ-3-スロース(化合物9)のトルエン溶液の製造
Figure JPOXMLDOC01-appb-C000134
  実施例1-4で得られた化合物8のトルエン溶液に、8%重曹水(5.13kg、3.0v/w)、臭化カリウム(53.0g、0.45mol)及び9-アザノルアダマンタン-N-オキシル(6.2g、44.82mmol)を室温で添加し、この液を0~10℃に温度調節した後、次亜塩素酸ナトリウム・5水和物(2.21kg、13.45mol)を添加し、1.5時間攪拌を行った。反応後、反応液を分液しトルエン層を得た。得られたトルエン層を、5%亜硫酸ナトリウム水溶液(5.22kg、3.0v/w)及び20%食塩水(3.80kg、2.0v/w)によりこの順で洗浄する操作を2回繰り返すことにより、化合物9のトルエン溶液を得た。
 構造の確認は一部シリカゲルカラム精製(ヘキサン/酢酸エチル)を実施し、NMRにて確認した。
 1H NMR (CDCl3): δ = 1.36 (3H, s), 1.44 (3H, s), 1.96-2.01 (1H, m), 2.21-2.28 (1H, m), 3.06(1H, ddd, J = 3.0, 4.5, 10.0 Hz), 3.30 (1H, ddd, J = 4.0, 4.5, 9.0 Hz), 4.33(1H, dd, J = 1.0, 4.5 Hz), 4.49 (1H, dd, J = 3.5, 5.5 Hz), 5.60 (1H, d, J =4.5), 7.21-7.25 (3H, m), 7.29-7.32 (6H, m), 7.35-7.37 (6H, m).
高速液体クロマトグラフィー(HPLC)分析条件
カラム:Xbridge C18 3.5 μm, 4.6x150 mm、カラム温度:40℃
移動相A:10 mM 酢酸アンモニウム水溶液、移動相B:アセトニトリル
グラジエント条件:B(%) 30% (0-3 min), 30→95% (3-20 min), 95%(20-23 min)
流速:1.0 mL/min、検出波長:210 nm
化合物9の保持時間:13.9 minおよび17.5 min
(実施例1-5b)5-デオキシ-1,2-O-(1-メチルエチリデン)-6-O-(トリフェニルメチル)-α-D-erythro-ヘキソフラノ-3-スロース(化合物9)のトルエン溶液の製造
実施例1-4で得られた化合物8のトルエン溶液(30mL)に、8%重曹水(6.0mL、3.0v/w)、臭化カリウム(60.0mg、0.54mmol)及び9-アザノルアダマンタン-N-オキシル(3.7mg、0.03mmol)を室温で添加し、この液を0~10℃に温度調節した後、次亜塩素酸ナトリウム水溶液(6.48g、10.80mmol)を10℃以下で添加し、0℃で2時間攪拌を行った。反応終了後、15%亜硫酸ナトリウム水溶液(12.0mL、6.0v/w)を添加し、室温で1時間撹拌した。反応液を分液しトルエン層を得た。得られたトルエン層を、20%食塩水(4.0mL、2.0v/w)で洗浄し、化合物9のトルエン溶液を得た。
得られた化合物のHPLC分析の保持時間は(実施例1-5a)で得られた化合物のHPLC分析の保持時間と一致した。
(実施例1-6)5-デオキシ-4-(ヒドロキシメチル)-1,2-O-(1-メチルエチリデン)-6-O-(トリフェニルメチル)-β-L-threo-ヘキソフラノ-3-スロース(化合物10)及び(3aS,3bR,7aR,8aR)-2,2-ジメチル-7a-[2-(トリフェニルメトキシ)エチル]テトラヒドロ-2H,3bH,5H-[1,3]ジオキソロ[4,5]フロ[3,2-d][1,3]ジオキシン-3b-オール(化合物11)の混合トルエン溶液の製造
Figure JPOXMLDOC01-appb-C000135
 実施例1-5で得られた化合物9のトルエン溶液に、37%ホルムアルデヒド水溶液(1.81kg、1.0v/w)及び1,8-ジアザビシクロ[5.4.0]ウンデカ-7-エン(2.05kg、13.45mol)を添加し、20~30℃にて1.5時間攪拌を行った。反応後、反応液を分液しトルエン層を得た。得られたトルエン層に、20%クエン酸水溶液(3.59kg、2.0v/w)を加え分液し、トルエン層を得た。得られたトルエン層に8%重曹水(1.71kg, 1.0v/w)を加えて分液し、化合物10及び11のトルエン溶液を得た。
(実施例1-7)5-デオキシ-4-(ヒドロキシメチル)-1,2-O-(1-メチルエチリデン)-6-O-(トリフェニルメチル)-β-L-lyxo-ヘキソフラノース(化合物12)のトルエン溶液の製造
Figure JPOXMLDOC01-appb-C000136
 実施例1-6で得られた化合物10及び11のトルエン溶液に、20~30℃にて、水(4.98kg、3.0v/w)及び水素化ホウ素ナトリウム(0.34kg、8.96mol)を添加し、2時間攪拌を行った。反応後、反応液を0~10℃に冷却し、同温度で20%クエン酸水溶液(5.37kg、3.0v/w)を加え分液しトルエン層を得た。得られたトルエン層に8%重曹水(3.42kg、2.0v/w)を加えて分液し、化合物12のトルエン溶液を得た。
 構造の確認は一部シリカゲルカラム精製(ヘキサン/酢酸エチル)を実施し、NMRにて確認した。
 1H NMR (CDCl3): δ = 1.33 (3H, s), 1.55 (3H, s), 1.99 (1H, ddd, J = 6.5, 8.0, 14.0 Hz), 2.20(1H, dt, J = 6.0, 14.5 Hz), 2.85 (1H, br), 3.20-3.25 (1H, m), 3.35-3.42 (2H,m), 3.51 (1H, d, J = 12.0 Hz), 4.21 (1H, d, J = 6.0 Hz), 4.63 (1H, dd, J = 4.0,6.0 Hz), 5.73 (1H, d, J = 4.0), 7.21-7.25 (3H, m), 7.27-7.30 (6H, m), 7.41-7.44(6H, m).
(実施例1-8)3-O-ベンジル-4-[(ベンジルオキシ)メチル]-5-デオキシ-1,2-O-(1-メチルエチリデン)-6-O-(トリフェニルメチル)-β-L-lyxo-ヘキソフラノース(化合物13)の製造
Figure JPOXMLDOC01-appb-C000137
 実施例1-7で得られたトルエン溶液に、48%水酸化カリウム水溶液(7.27kg、3.0v/w)、テトラブチルアンモニウムヨージド(0.20kg、0.54mol)及びベンジルブロミド(1.53kg、8.96mol)を添加し、65~75℃で23時間攪拌を行った。反応後、45~55℃にて、反応液に、水(6.64kg、4.0v/w)及びN-アセチル-L-システイン(0.50kg、0.3w/w)を加え2時間攪拌した。反応液を20~30℃に冷却した後、水(4.98kg、3.0v/w)を加え分液しトルエン層を得た。得られたトルエン層に8%重曹水(3.42kg、2.0v/w)を加えて分液し、トルエン層を得た。得られたトルエン溶液に10%食塩水(3.55kg、2.0v/w)を加え分液し、トルエン層を得た。得られたトルエン層を3.3Lになるまで濃縮し、1-プロパノール(5.34kg、4.0v/w)を加え不溶物をろ過し、さらに3.0Lになるまで減圧濃縮し、更に1-プロパノール(0.60kg)を加えた後、45~55℃で0.5時間攪拌することで、結晶の析出を確認した。引き続き20~30℃で12.5時間及び0~10℃で2時間攪拌した後、析出した結晶をろ取した。得られた結晶は、あらかじめ0℃に冷却した1-プロパノール(4.00kg、3.0v/w)を用いて洗浄し、減圧乾燥(40℃)することにより、化合物13(1.25kg、1.90mol、収率42.5%)を得た。
 1H NMR (CDCl3): δ = 1.29 (3H, s), 1.51 (3H, s), 1.90-1.96 (1H, m), 2.43-2.49 (1H, m),3.21-3.32 (3H, m), 3.47 (1H, d, J = 10.5 Hz), 4.10 (1H, d, J = 5.5 Hz), 4.30(1H, d, J = 12.0 Hz), 4.42 (1H, d, J = 11.5 Hz), 4.47 (1H, d, J = 12.0 Hz),4.57 (1H, dd, J = 5.5, 4.0 Hz), 4.69 (1H, d, J = 12.0 Hz), 5.69 (1H, d, J = 4.0Hz), 7.15-7.34 (19H, m), 7.39-7.41 (6H, m).
(実施例1-9)メチル=3-O-ベンシル-4-[(ベンジルオキシ)メチル]-5-デオキシ-α-L-lyxo-ヘキソフラノシド(化合物14)のトルエン溶液の製造
Figure JPOXMLDOC01-appb-C000138
 実施例1-8で得られた化合物13(250.0g、380.6mmol)のメタノール(1250mL)溶液に濃硫酸(3.73g、0.0380mmol)を添加し、反応液を40~50℃にて20時間撹拌した。反応液を20~30℃に冷却し、メトキシトリフェニルメタン(25mg)及びトリエチルアミン(13.56g、134.0mmol)を添加して2時間撹拌した後、水(250mL)を1.5時間かけて滴下した。反応液を50分間撹拌した後、生じた白色固体をろ去し、メタノール/水(5/1、500mL)にて洗浄した。得られた溶液にn-ヘプタン(1250mL)を加えて分液後、下層(水層)にn-ヘプタン(500mL)を加えて分液した。下層に対して20%食塩水(1250mL)及びトルエン(1250mL)を加えて分液し、トルエン層と水層を得た後、水層にトルエン(1250mL)を加えて分液し、得られたトルエン層を合致し、減圧濃縮して化合物14のトルエン溶液(625mL)を得た。
 構造の確認は一部シリカゲルカラム精製(ヘキサン/酢酸エチル)を実施し、NMRにて確認した。
 1H NMR (β-form,CDCl3) : δ = 2.00-2.05 (1H, m), 2.10-2.16 (1H, m), 3.29 (3H, s),3.35 (1H, d, J = 9.0 Hz), 3.55 (1H, d, J = 9.0 Hz), 3.76-381 (1H, m), 3.85-3.90(1H, m), 4.08 (2H, dd, J = 5.0, 15.0 Hz), 4.54 (2H, s), 4.63 (2H, s), 4.87 (1H,s), 7.26-7.36 (10H, m).
(実施例1-10)メチル=2,6-アンヒドロ-3-O-ベンジル-4-[(ベンジルオキシ)メチル]-5-デオキシ-α-L-lyxo-ヘキソフラノシド(化合物15)のトルエン溶液の製造
Figure JPOXMLDOC01-appb-C000139
 実施例1-9で得られた化合物14のトルエン溶液にトリフェニルホスフィン(89.85g、342.6mmol)を添加し、0~5℃に冷却した後、アゾジカルボン酸ジイソプロピル(69.27g、342.6mmol)のトルエン(180.3mL)溶液を20分間かけて滴下し、反応液を20~30℃にて3時間撹拌した。反応液に、塩化マグネシウム(90.60g、951.6mmol)を添加して6時間撹拌した後、n-ヘプタン(1500mL)を添加して23時間撹拌し、0~5℃に冷却して2時間撹拌した。生じた白色固体をろ去し、トルエン/n-ヘプタン(1/2、750 mL)にて洗浄後、得られた溶液にメタノール/水(3/2、750mL)を添加して分液した。得られた有機層にメタノール/水(3/2、750mL)を添加して分液した後、有機層を減圧濃縮して化合物15のトルエン溶液(625mL)を調製した。
 構造の確認は一部シリカゲルカラム精製(ヘキサン/酢酸エチル)を実施し、NMRにて確認した。
 1H NMR (β-form,CDCl3) : δ = 1.51 (1H, dd, J = 3.5, 13.0 Hz), 2.19 (1H, ddd, J =7.5, 11.0, 13.5 Hz), 3.41 (3H, s), 3.53 (2H, dd, J = 10.5, 30.5 Hz), 3.86-3.95(3H, m), 4.08 (1H, d, J = 3.0 Hz), 4.53 (1H, d, J = 11.5 Hz), 4.61 (2H, dd, J =12.0, 27.5 Hz), 4.71 (1H, d, J = 6.5 Hz), 5.10 (1H, s), 7.26-7.35 (10H, m).
(実施例1-11)化合物2の製造
Figure JPOXMLDOC01-appb-C000140
 実施例1-10で得られた化合物15のトルエン溶液(625mL)に水(625 mL)を添加した後、減圧濃縮して化合物15の水混合物(625mL)を得た。この混合物に酢酸(750mL)及び濃塩酸(125mL)をこの順に添加し、20~30℃にて3時間撹拌した後、化合物2(25mg)を添加し、0~5℃に冷却して17時間撹拌した。この混合物に水(750mL)を添加し、0~5℃にて17時間撹拌後、析出した結晶をろ取し、あらかじめ0~5℃に冷却した酢酸/水(1/2、500mL)及び水(500mL)で順次洗浄して、粗化合物2の湿品を得た。得られた粗化合物2を35~45℃にてトルエン(1250mL)に溶解させ、生じた水層を分液にて除去した。得られた有機層を減圧濃縮して化合物2のトルエン溶液(750mL)とした後、n-ヘプタン(375mL)を添加して20~30℃に冷却した。この溶液に、化合物2の種晶(25mg)を添加して20~30℃にて2時間撹拌した後、n-ヘプタン(1125mL)を添加し、0~5℃にて19時間撹拌した。析出した結晶をろ取し、トルエン/n-ヘプタン(1/2、750mL)で洗浄後、n-ヘプタン(750mL)で洗浄した。得られた結晶を減圧乾燥(40℃)して化合物2(76.84g、215.6mmol、収率56.6%)を得た。
実施例1-11で使用される化合物2の種晶は以下の方法により得た。実施例1-11の前半の工程と同様の方法により粗化合物2を結晶として得た。得られた粗化合物2を用いて実施例1-11の後半の工程と同様の方法により化合物2を結晶として得た。ここで化合物2の種晶としては先に得られた粗化合物2の結晶を使用した。上記の方法で得られた化合物2の結晶を実施例1-11における化合物2の種晶として使用した。
 1H NMR (CDCl3): δ = 1.30 (0.39H, d, J = 10.8 Hz), 1.45 (0.59H, dd, J = 10.6, 3.2 Hz),1.97-2.07 (0.39H, m), 2.13-2.22 (0.64H, m), 2.60 (0.34H, d, J = 1.2 Hz), 2.80(0.49H, brs), 3.22 (0.36H, d, J = 7.2 Hz), 3.45-3.59 (1.41H, m), 3.71 (0.37H,d, J = 7.2 Hz), 3.78 (0.37H, brs), 3.82 (0.37H, ddd, J = 9.2, 4.0, 1.6 Hz),3.85-3.95 (1.23H, m), 4.01-4.13 (1.30H, m), 4.16-4.27 (0.83H, m), 4.44-4.75(4.24H, m), 5.36 (0.07H, dd, J = 7.0, 1.6 Hz), 5.57 (0.57H, s), 7.24-7.39 (10H,m), 9.89 (0.36H, s).
 (実施例1-12)化合物2の精製
 実施例1-11で得られた粗化合物2(50g)をトルエン(300mL)で溶解させ、n-ヘプタン(300mL)を加えて20~30℃にて3時間撹拌した後、さらにn-ヘプタン(300mL)を加えて16時間撹拌した。析出した結晶をろ取し、トルエン/n-ヘプタン(1/2、250mL)で洗浄後、n-ヘプタン(250mL)で洗浄した。得られた結晶を減圧乾燥(40℃)して化合物2(40.06g、収率80.1%)を得た。
(実施例2)1-(2,6-アンヒドロ-4-{[ビス(4-メトキシフェニル)(フェニル)メトキシ]メチル}-3-O-{(2-シアノエトキシ)[ジ(プロパン-2-イル)アミノ]フォスファニル}-5-デオキシ-α-L-lyxo-ヘキソフラノシル)-5-メチルピリミジン-2,4(1H,3H)-ジオン(化合物1t)の製造
(実施例2-1)1-{2,6-アンヒドロ-3-O-ベンジル-4-[(ベンジルオキシ)メチル]-5-デオキシ-α-L-lyxo-ヘキソフラノシル}-5-メチルピリミジン-2,4(1H,3H)-ジオン(化合物3t)のメタノール溶液の製造
Figure JPOXMLDOC01-appb-C000141
 アセトニトリル(50mL)にチミン(8.85g、70.18mmol)及びN,O-ビストリメチルシリルアセトアミド(28.6g、140.6mmol)を添加し、20~30℃で1時間撹拌し、溶液Aとした。別の反応容器にてアセトニトリル(100mL)に実施例1で得られた化合物2(20.00g、56.12mmol)及びトリクロロアセトニトリル(15.20g、105.27mmol)、を添加後、1,8-ジアザビシクロ[5.4.0]ウンデカ-7-エン(1.07g、7.02mmol)を添加し、20~30℃で1時間撹拌し、溶液Bとした。溶液Bに溶液Aを添加後、ヨードトリメチルシラン(17.55g、87.73mmol)を添加して20~30℃で2時間撹拌した。反応液に5%炭酸水素ナトリウム水溶液(160mL)に亜硫酸ナトリウム(17.68g、175.45mmol)を溶解した水溶液を滴下後、トルエン(200mL)及びメタノール(80mL)を加え、35~45℃で攪拌した後、分液した。得られた有機層に40%メタノール水(200mL)を加え、35~45℃で攪拌した後、分液した。さらに再度40%メタノール水(200mL)での分液操作の後、得られた有機層を減圧濃縮してメタノール溶液(50mL)とした後、メタノール(200mL)を添加し、再度減圧濃縮して化合物3tのメタノール溶液(50mL)とした。
 得られた化合物のNMRスペクトルは、WO00/47599の実施例6に記載の化合物のNMRスペクトルと一致した。
(実施例2-2)1-[2,6-アンヒドロ-5-デオキシ-4-(ヒドロキシメチル)-α-L-lyxo-ヘキソフラノシル]-5-メチルピリミジン-2,4(1H,3H)-ジオン(化合物16)の製造
Figure JPOXMLDOC01-appb-C000142
 実施例2-1で得られた化合物3tのメタノール溶液(50mL)に、更にメタノール(50mL)及び水酸化パラジウム(1.0g)を加え、水素雰囲気下55~65℃で2時間撹拌後、同温度で触媒をろ過し、得られたろ液を減圧濃縮してメタノール溶液(50mL)とした後、アセトン(200mL)を加えて50mLに減圧濃縮した。さらにアセトン(100mL)を加え、0~5℃に冷却して2時間撹拌した。生じた結晶をろ取し、得られた結晶をアセトン(50mL)にて洗浄した。得られた結晶を減圧乾燥(40 °C)して化合物16(9.95 g、収率62.4%(化合物2から))を得た。
 得られた化合物のNMRスペクトルは、WO00/47599の実施例7に記載の化合物のNMRスペクトルと一致した。
(実施例2-3)1-(2,6-アンヒドロ-4-{[ビス(4-メトキシフェニル)(フェニル)メトキシ]メチル}-5-デオキシ-α-L-lyxo-ヘキソフラノシル)-5-メチルピリミジン-2,4(1H,3H)-ジオン(化合物17)の製造
Figure JPOXMLDOC01-appb-C000143
 テトラヒドロフラン(47.5mL)に、実施例2-2で得られた化合物16(9.50g、33.42mmol)及びピリジン(10.57g、133.68mmol)を添加し、続いて4,4’-ジメトキシトリチルクロリド(13.59g、40.10mmol)を添加し、反応液を20~30℃で2時間撹拌した。反応液にメタノール(1.62mL、40.10mmol)を加え、15%炭酸ナトリウム水溶液(28.5mL)、酢酸エチル(133mL)及び水(67mL)をこの順で加えて、分液洗浄した後、得られた有機層を20%クエン酸水溶液(47.5mL)で二度洗浄し、更に15%炭酸ナトリウム水溶液(47.5mL)及び水(47.5mL)で順次洗浄した後に、47.5mLまで減圧濃縮した。得られた濃縮物に酢酸エチル(100mL)を添加し、100 mLまで減圧濃縮した。得られた濃縮物を、55~65℃で16時間撹拌し、さらに20~30℃で5時間攪拌し、n-ヘプタン(50 mL)を添加して、さらに16時間攪拌後、析出した固体をろ取した。得られた固体を、酢酸エチル/n-ヘプタン(2/1、47.5mL)で洗浄した後、減圧乾燥(40℃)することにより、化合物17(17.35g、88.5%)を得た。
 得られた化合物のNMRスペクトルは、WO00/47599の実施例8に記載の化合物のNMRスペクトルと一致した。
(実施例2-4)化合物1tの製造
Figure JPOXMLDOC01-appb-C000144
 実施例2-3で得られた化合物17(5.00g、8.17mmol)の酢酸エチル(40mL)溶液に、2-シアノエチル N,N,N’,N’-テトライソプロピルホスホロジアミダイト(2.96g、9.82mmol)及びトリフルオロ酢酸・ピリジン塩(1.74g、9.01mmol)を添加し、20~30℃で24時間撹拌した。得られた溶液に、20%食塩水(17.5mL)を添加して分液した後、得られた有機層に5%炭酸水素ナトリウム水溶液(12.5mL)及び20%食塩水(10mL)を添加して分液した。得られた有機層を0~5℃に冷却し、10%リン酸二水素カリウム水溶液(20mL)を添加して分液した。得られた有機層に5%炭酸水素ナトリウム水溶液(12.5mL)及び20%食塩水(10mL)を添加して分液し、得られた有機層に20%食塩水(17.5mL)を添加して分液した。得られた有機層を減圧濃縮し、酢酸エチル(15mL)に溶解し、この溶液に、酢酸エチル(25mL)及び塩基性アルミナ(10.00g)を添加し、20~30℃で2時間撹拌した。反応混合物からアルミナをろ去し、アルミナは酢酸エチル(25 mL)で洗浄した後、ろ液と洗浄液とを合わせて得られた溶液を減圧濃縮し、濃縮物を酢酸エチルに溶解し(15mL)、得られた酢酸エチル溶液を20~30℃にてn-ヘプタン(45mL)及びジイソプロピルエーテル(80mL)の混合溶液に35分間かけて滴下した後、n-ヘプタン(90mL)を添加し、同温度で30分間撹拌した。析出した固体をろ取し、得られた固体をn-ヘプタン(25mL)で洗浄し、減圧乾燥(40℃、12時間の後、50℃、8時間)することにより、標記化合物1t(5.18g、6.58mmol、80.6%)を得た。
 得られた化合物のNMRスペクトルは、WO00/47599の実施例9に記載の化合物のNMRスペクトルと一致した。
(実施例3)1-(2,6-アンヒドロ-4-{[ビス(4-メトキシフェニル)(フェニル)メトキシ]メチル}-3-O-{(2-シアノエトキシ)[ジ(プロパン-2-イル)アミノ]ホスファニル}-5-デオキシ-α-L-lyxo-ヘキソフラノシル)-4-ベンズアミド-5-メチルピリミジン-2(1H)-オン(化合物1c)の製造
(実施例3-1)1-{2,6-アンヒドロ-3-O-ベンジル-4-[(ベンジルオキシ)メチル]-5-デオキシ-α-L-lyxo-ヘキソフラノシル}-4-ベンズアミド-5-メチルピリミジン-2(1H)-オン(化合物3c)の製造
Figure JPOXMLDOC01-appb-C000145
 アセトニトリル(25mL)にN-ベンゾイル-5-メチルシトシン (8.04g、35.08mmol)、N,O-ビストリメチルシリルアセトアミド(14.27g、70.16mmol)を添加し、20~30℃で1時間撹拌し、溶液Aとした。別の反応容器にてアセトニトリル(50mL)に実施例1で得られた化合物2(10.00g、28.06mmol)、トリクロロアセトニトリル(6.08g、42.09mmol)、を添加後、1,8-ジアザビシクロ[5.4.0]ウンデカ-7-エン(0.41g、2.81mmol)を添加し、20~30℃で1時間撹拌し、溶液Bとした。溶液Bに溶液Aを添加後、ヨードトリメチルシラン(7.02g、35.08mmol)を添加して5~15℃で16時間撹拌した。反応液に5%炭酸水素ナトリウム水溶液(80mL)に亜硫酸ナトリウム(8.84g、87.73mmol)を溶解した水溶液を滴下後、トルエン(100mL)を加え、分液後、少量の固体をろ去した。得られた有機層に50%メタノール水(50mL)で二度洗浄した。得られた有機層を減圧濃縮してメタノール溶液(50mL)とした後、20~30℃で16時間攪拌後、析出した固体をろ過し、メタノール(50mL)で洗浄した。得られた固体を減圧乾燥(40℃)して化合物3c(9.35 g、58.7%)を得た。
 得られた化合物のNMRスペクトルは、WO00/47599の実施例19に記載の化合物のNMRスペクトルと一致した。
(実施例3-2)1-[2,6-アンヒドロ-5-デオキシ-4-(ヒドロキシメチル)-α-L-lyxo-ヘキソフラノシル]-4-ベンズアミド-5-メチルピリミジン-2(1H)-オン(化合物18)の製造
Figure JPOXMLDOC01-appb-C000146
 塩化メチレン(20mL)に実施例3-1で得られた化合物3c(5.00g、8.81mmol)を添加し、-20~-10℃で1M-三塩化ホウ素/塩化メチレン溶液(40.0mL、39.65mmol)を滴下し、16時間攪拌した。反応液に50%ロッシェル塩水溶液(20.0mL)を滴下し、酢酸エチル(20mL)、水(20mL)を添加し、20~30℃で16時間攪拌後、析出した固体をろ過し、水(20mL)、酢酸エチル(20mL)で洗浄した。得られた固体を減圧乾燥(40℃)して化合物18(1.59g、46.6%)を得た。
 得られた化合物のNMRスペクトルは、WO00/47599の実施例11に記載の化合物のNMRスペクトルと一致した。
(実施例3-3)1-(2,6-アンヒドロ-4-{[ビス(4-メトキシフェニル)(フェニル)メトキシ]メチル}-5-デオキシ-α-L-lyxo-ヘキソフラノシル)-4-ベンズアミド-5-メチルピリミジン-2(1H)-オン(化合物19)の製造
Figure JPOXMLDOC01-appb-C000147
 酢酸エチル(40mL)に実施例3-2で得られた化合物18(1.00g、2.581mmol)を添加し、10mLまで減圧濃縮した後、ピリジン(0.815g、10.324mmol)を添加し、4,4’-ジメトキシトリチルクロリド(1.05g、3.098mmol)を添加し、20~30℃で16時間撹拌した。反応液にメタノール(1.0mL)を加えた後、水(10mL)、メタノール(10mL)を加え、20~30℃で16時間攪拌後、析出した固体をろ過し、水(5mL)、酢酸エチル(5mL)で洗浄した。得られた固体を減圧乾燥(40℃)して化合物19の水和物結晶(1.53g、86.0%)を得た。
 得られた化合物のNMRスペクトルは、WO00/47599の実施例21に記載の化合物のNMRスペクトルと一致した。
(実施例3-4)化合物1cの製造
Figure JPOXMLDOC01-appb-C000148
 実施例3-3で得られた化合物19の水和物(3.00g、4.24mmol)にジクロロメタン(30mL)を添加し、減圧濃縮してジクロロメタン溶液(9mL)とした。得られた溶液にジクロロメタン(30mL)を添加し、減圧濃縮してジクロロメタン溶液(9mL)とする操作を二度繰り返した。得られた溶液にジクロロメタン(15mL)、N,N,N’,N’-テトライソプロピルホスホロジアミダイト(1.54g、5.11mmol)、トリフルオロ酢酸・ピリジン塩(0.902g、4.67mmol)を添加し、20~30℃で7時間撹拌した。得られた溶液を5%炭酸水素ナトリウム水溶液(10.5mL)で二度洗浄した後、5%食塩水(12mL)で二度洗浄し、減圧濃縮してジクロロメタン溶液(9mL)を得た。得られた溶液にジクロロメタン(15mL)、塩基性アルミナ(6.00g)を添加し、20~30℃で30分撹拌した。アルミナをろ去し、ジクロロメタン(15mL)で洗浄した後、得られた溶液を減圧濃縮して化合物1cのジクロロメタン溶液(9mL)を得た。得られた溶液を20~30℃にてn-ヘプタン(66mL)とジイソプロピルエーテル(15.6mL)の混合溶液に35分かけて滴下した。そのままの温度で2時間撹拌した後、析出した固体をろ過し、n-ヘプタン(15mL)で洗浄した。得られた固体を減圧乾燥(40℃)して化合物1c(3.33g、3.74mmol、88.3%)を得た。
 得られた化合物のNMRスペクトルは、WO00/47599の実施例6に記載の化合物のNMRスペクトルと一致した。
(実施例4)9-(2,6-アンヒドロ-4-{[ビス(4-メトキシフェニル)(フェニル)メトキシ]メチル}-3-O-{(2-シアノエトキシ)[ジ(プロパン-2-イル)アミノ]ホスファニル}-5-デオキシ-α-L-lyxo-ヘキソフラノシル)-N-ベンゾイル-9H-プリン-6-アミン(化合物1a)の製造
(実施例4-1-1)9-{2,6-アンヒドロ-3-O-ベンジル-4-[(ベンジルオキシ)メチル]-5-デオキシ-α-L-lyxo-ヘキソフラノシル}-N-ベンゾイル-9H-プリン-6-アミン(化合物3a)の製造
Figure JPOXMLDOC01-appb-C000149
 トリフルオロメタンスルホン酸(7.44mL、84.18mmol)にジクロロジメチルシラン(5.44g、42.09mmol)を添加し、20~30℃で0.5時間撹拌した後、アセトニトリル(80mL)、N-ベンゾイルアデニン(10.06g、42.09mmol)を添加し、20~30℃で3時間撹拌し、溶液Aとした。別の反応容器にてアセトニトリル(40mL)に実施例1で得られた化合物2(10.00g、28.06mmol)、トリクロロアセトニトリル(4.2mL、42.09mmol)を添加後、1,8-ジアザビシクロ[5.4.0]ウンデカ-7-エン(0.22g、1.40mmol)を添加し、20~30℃で1時間撹拌し、溶液Bとした。溶液Aに溶液Bを添加後、45~55℃で2時間撹拌した。0-10℃に温調後、反応液にトルエン(100mL)、20%炭酸水素カリウム水溶液(70mL)を加え、分液しトルエン層を得た。得られたトルエン層に20%クエン酸水溶液(50mL)を加え分液しトルエン層を得た。同様の分液操作を2回繰り返すことで、得られたトルエン層に水(30mL)、20%炭酸水素カリウム水溶液(25mL)を加え、分液しトルエン層を得た。得られたトルエン層に50%メタノール水溶液(100mL)を加え、分液しトルエン層を得た。得られたトルエン層を減圧濃縮し、トルエン溶液(80mL)とした。得られた溶液にイソブチルアルコール(100mL)を加え、減圧濃縮することで、トルエン-イソブチルアルコール溶液(100mL)を得た。得られた溶液にイソブチルアルコール(50mL)を加え、減圧濃縮することで、トルエン-イソブチルアルコール溶液(50mL)を得た。得られた溶液に、イソブチルアルコール(50mL)を加えた後、20~30℃で2時間攪拌することで、結晶の析出を確認した。0.5時間かけて0-10℃に温調した後、1時間攪拌し、析出した結晶をろ過し、0℃にあらかじめ冷却したイソブチルアルコール(50mL)を用いて洗浄し、減圧乾燥(40℃)することで化合物3a(7.82g、13.54 mmol、収率48.3%)を得た。
 得られた化合物のNMRスペクトルは、WO00/47599の実施例6に記載の化合物のNMRスペクトルと一致した。
(実施例4-1-2)1-O-アセチル-2,6-アンヒドロ-3-O-ベンジル-4-[(ベンジルオキシ)メチル]-5-デオキシ-α-L-glycero-ヘキソフラノース(化合物22)の製造
Figure JPOXMLDOC01-appb-C000150
  トルエン(1497 mL)、実施例1で得られた化合物2(149.73g、375.78 mmol)、無水酢酸(64.33 g、563.67 mmol)、ピリジン(49.85 g、563.67 mmol)、4-ジメチルアミノピリジン (2.57 g、18.79 mmol)を添加し、20~30 °Cで2時間撹拌後、反応液に水(749 mL)を加え、分液しトルエン層を得た。得られたトルエン層に20%クエン酸水溶液(749 mL)を加え分液しトルエン層を得た。同様の分液操作を再度繰り返すことで、得られたトルエン層に8%炭酸水素カリウム水溶液(449 mL)を加え、分液しトルエン層を得た。得られたトルエン層に5% 食塩水(449 mL)を加え、分液しトルエン層を得た。得られたトルエン層を減圧濃縮し、トルエン溶液(449 mL)とした。得られた溶液にアセトニトリル(1497 mL)を加え、減圧濃縮することで、トルエン-アセトニトリル溶液(449 mL)を得た。得られた溶液にアセトニトリル(1497 mL)を加え、減圧濃縮することで、化合物22のトルエン-アセトニトリル溶液(449 mL)を得た。
(実施例4-1-3a)9-{2,6-アンヒドロ-3-O-ベンジル-4-[(ベンジルオキシ)メチル]-5-デオキシ-α-L-lyxo-ヘキソフラノシル}-N-ベンゾイル-9H-プリン-6-アミン(化合物3a)の製造
Figure JPOXMLDOC01-appb-C000151
アセトニトリル(51 mL)、N-ベンゾイルアデニン(5.09 g、21.30 mmol)、トリフルオロメタンスルホン酸トリメチルシリル(9.78 g、44.01 mmol)を添加し、20~30 °Cで40分間撹拌した。実施例4-1-2で得られた化合物22を含むトルエン-アセトニトリル溶液(11.65 g、14.20mmol)を添加後、20~30 °Cで16時間撹拌した。続いて、トリフルオロ酢酸(2.43 g、21.30 mmol)を添加し、20~30 °Cで1時間撹拌後、45~55°Cに昇温させ3時間撹拌した。20-30℃に温調後、反応液にトルエン(51 mL)、25%水酸化ナトリウム(10mL)、8%炭酸水素ナトリウム水溶液(10 mL)を加え、20~30 °Cで1時間撹拌した。続いて、10%トリフルオロ酢酸水溶液(25 mL)を加えて、分液しトルエン層を得た。同様の分液操作を3回繰り返すことで得られたトルエン層に8%炭酸水素ナトリウム水溶液(51 mL)を加え、分液しトルエン層を得た。得られたトルエン層に50%メタノール水溶液(20 mL)、20%食塩水(5 mL)を加え、分液しトルエン層を得た。同様の分液操作を1回繰り返すことで得られたトルエン層を減圧濃縮し、トルエン溶液(15 mL)とした。得られた溶液にイソブチルアルコール(40 mL)を加え、減圧濃縮することで、トルエン-イソブチルアルコール溶液(40 mL)を得た。得られた溶液にイソブチルアルコール(15 mL)を加え、化合物3aの結晶(0.1 wt%)を接種し、35~45℃で30分間攪拌することで、結晶の析出を確認した。続いて、減圧濃縮しトルエン-イソブチルアルコール溶液(40 mL)とした後に、イソブチルアルコール(5 mL)を加え、2時間かけて0-10℃に温調し、17.5時間攪拌した。析出した結晶をろ過し、0℃にあらかじめ冷却したイソブチルアルコール(25 mL)を用いて洗浄し、減圧乾燥(40 °C)することで化合物3a(6.37 g、11.03 mmol、収率77.7%)を得た。
(実施例4-1-3b)9-{2,6-アンヒドロ-3-O-ベンジル-4-[(ベンジルオキシ)メチル]-5-デオキシ-α-L-lyxo-ヘキソフラノシル}-N-ベンゾイル-9H-プリン-6-アミン(化合物3a)の製造
アセトニトリル(30 mL)に、N-ベンゾイルアデニン(3.02 g、12.63 mmol)、トリフルオロメタンスルホン酸トリメチルシリル(5.61 g、25.25 mmol)を添加し、反応混合物を20~30 °Cで30分間撹拌した。得られた反応混合物に、実施例4-1-2で得られた化合物22を含むアセトニトリル溶液(6 mL)および、アセトニトリル(3 mL)を添加し、反応混合物を20~30 °Cで2時間撹拌した。続いて、トリフルオロ酢酸(1.44 g、12.63 mmol)を添加し、35~45 °Cで反応混合物を6時間撹拌した。得られた反応混合物を0℃に冷却後、反応液を25%水酸化ナトリウム(3 mL)を用いてpH6.5~7.5に調整した。その後、反応混合物に20~30 °Cで、水(9 mL)を加え、化合物3aの結晶(0.1 wt%)を接種し、20~30 °Cで反応混合物を19時間攪拌した後、さらに水(27 mL)を加え、20~30 °Cで4時間攪拌した。析出した結晶をろ過し、50%アセトニトリル水(15 mL)を用いて洗浄し、減圧乾燥(40 °C)することで化合物3a(3.59 g、6.21 mmol、収率73.8 %)を得た。
 得られた化合物のNMRスペクトルは、WO00/47599の実施例6に記載の化合物のNMRスペクトルと一致した。
(実施例4-2)9-[2,6-アンヒドロ-5-デオキシ-4-(ヒドロキシメチル)-α-L-lyxo-ヘキソフラノシル]-N-ベンゾイル-9H-プリン-6-アミン(化合物20)の製造
Figure JPOXMLDOC01-appb-C000152
 -20~-10℃で1M-三塩化ホウ素/塩化メチレン溶液(50.0mL、51.94mmol)に実施例4-1-3で得られた化合物3a(2.00g、3.46mmol)を添加し、0.5時間攪拌した。反応終了を確認した後、減圧濃縮することで、塩化メチレン溶液(20mL)を得た。
 得られた溶液に50%水酸化カリウム水溶液(6.0mL)を滴下し、n-ヘプタン(6mL)を添加し、20~30℃で15分攪拌後、析出した固体をろ過し、塩化メチレン/n-ヘプタン(5/1、4mL)で洗浄した。得られた固体にアセトニトリル(30mL)、水(4mL)を添加した。0.5時間攪拌後、固体をろ過し、アセトニトリル(4mL)で洗浄した。得られた固体にメタノール(30mL)を加えた後、固体をろ去し、メタノール(10mL)を用いて洗浄し、メタノール溶液を得た。得られた溶液を減圧濃縮し、メタノール溶液(10mL)へ調整した。得られた溶液に対して、アセトニトリル(20mL)を加え、減圧濃縮を行うことで、アセトニトリル-メタノール混合溶液(10mL)を得た。同様の減圧濃縮操作を2回行い、得られたアセトニトリル-メタノール混合溶液(10mL)に対して、アセトニトリル(10mL)を加え、16時間攪拌後、固体をろ過し、アセトニトリル(6mL)で洗浄した。得られた固体を減圧乾燥(40℃)して化合物20(0.61g、44.3%)を得た。
 得られた化合物のNMRスペクトルは、WO00/47599の実施例11に記載の化合物のNMRスペクトルと一致した。
(実施例4-3)9-(2,6-アンヒドロ-4-{[ビス(4-メトキシフェニル)(フェニル)メトキシ]メチル}-5-デオキシ-α-L-lyxo-ヘキソフラノシル)-N-ベンゾイル-9H-プリン-6-アミン(化合物21)の製造
Figure JPOXMLDOC01-appb-C000153
 テトラヒドロフラン(7.5mL)に実施例4-2で得られた化合物20(0.50g、1.26mmol)、4,4’-ジメトキシトリチルクロリド(0.64g、1.89mmol)を添加し、ピリジン(0.60g、7.55mmol)を添加し、50℃で2時間撹拌した。反応液にトルエン(5.0mL)、水(2.5mL)を加え、分液しトルエン層を得た。得られたトルエン層を20%クエン酸水溶液(2.5mL)で三度分液し、20%炭酸カリウム水溶液(1.0mL)を加えて分液しトルエン層を得た。得られたトルエン層に、水(2.5mL)を加えて分液洗浄した後に、減圧濃縮することでトルエン溶液(2.5mL)を得た。得られた溶液にトルエン(5.0mL)を添加し、減圧濃縮することでトルエン溶液(2.5mL)を得た。同様の操作を二度繰り返すことで、トルエン溶液(2.5mL)を得た。得られた溶液にトルエン(2.5mL)、水(50μL)を加え、20~30℃で3時間撹拌後、析出した固体をろ過し、トルエン(2.5mL)で洗浄した。得られた固体を減圧乾燥(40℃)して粗化合物21(0.51g、58.0%)を得た。
 2-プロパノール(1.8mL)に粗化合物21(0.36g、0.51mmol)、水(1.8mL)を加え20~30℃で0.5時間撹拌した。さらに水(1.8mL)を加えて、15分間攪拌した後、固体をろ過し、2-プロパノール-水(1/3、1.8mL)で洗浄した。得られた固体を減圧乾燥(40℃)して化合物21の水和物(0.31g、86.1%)を得た。
 得られた化合物のNMRスペクトルは、WO00/47599の実施例13に記載の化合物のNMRスペクトルと一致した。
(実施例4-4)化合物1aの製造
Figure JPOXMLDOC01-appb-C000154
 実施例4-3で得られた化合物21の水和物(150mg、0.209mmol)にジクロロメタン(1.5mL)を添加し、減圧濃縮して乾固した。得られた泡沫にジクロロメタン(1.5mL)を添加し、減圧濃縮して乾固した後、ジクロロメタン(1.2mL)、N,N,N’,N’-テトライソプロピルホスホロジアミダイト(77.9mg、0.258mmol)、トリフルオロ酢酸・ピリジン塩(44.4mg、0.230mmol)を添加し、20~30℃で4時間撹拌した。得られた溶液を5%炭酸水素ナトリウム水溶液(0.525mL)で二度洗浄した後、5%食塩水(0.600mL)で二度洗浄し、減圧濃縮して乾固した。得られた泡沫に酢酸エチル(1.2mL)、中性シリカゲル(300mg)を添加し、20~30℃で1時間撹拌した。シリカゲルをろ去し、酢酸エチル(6mL)で洗浄した後、得られた溶液を減圧濃縮して乾固した。得られた泡沫の酢酸エチル(0.600mL)溶液を20~30℃にてn-ヘプタン(1.35mL)とジイソプロピルエーテル(2.4mL)の混合溶液に20分かけて滴下した。n-ヘプタン(3.15mL)を添加してそのままの温度で1時間撹拌した後、析出した固体をろ過し、n-ヘプタン(6mL)で洗浄した。得られた固体を減圧乾燥(40℃)して化合物1a(132.5mg、0.147mmol、70.4%)を得た。
 得られた化合物のNMRスペクトルは、WO00/47599の実施例14に記載の化合物のNMRスペクトルと一致した。
(実施例5)化合物20の製造
(実施例5-1)化合物22の精製
 実施例4-1-2で得られた溶液を濃縮乾固して得られた化合物22の粗体混合物(6.57g)をシリカゲルカラムクロマトグラフィーにて精製(ヘキサン:酢酸エチル=94:6~50:50)し、化合物22のβ体(4.68g)を得た。
1H NMR (β-form, CDCl3) : δ = 1.43 (1H, dd, J = 3.5, 13.5Hz), 2.01 (3H, s), 2.17-2.24 (1H, m), 3.57 (2H, dd, J = 11.5, 22.0 Hz),3.94-3.97 (2H, m), 4.07 (1H, d, J = 3.0 Hz), 4.14 (1H, d, J = 3.0 Hz), 4.54(1H, d, J = 12.5 Hz), 4.61 (2H, dd, J = 12.5, 18.0 Hz), 4.74 (1H, d, J = 11.5Hz), 6.33 (1H, s), 7.26-7.37 (10H, m).
(実施例5-2)9-{2,6-アンヒドロ-3-O-ベンジル-4-[(ベンジルオキシ)メチル]-5-デオキシ-α-L-lyxo-ヘキソフラノシル}-2,6-ジクロロ-9H-プリン(化合物23)の製造
Figure JPOXMLDOC01-appb-C000155
 実施例5-1-2で得られた化合物22(60.0 mg, 150.58 μmol)のトルエン溶液(0.6 mL)にN,O-ビストリメチルシリルアセトアミド(40.5 μL, 165.64 μmol)、2,6-ジクロロプリン(31.3 mg, 165.64 μmol)を加え、75℃で1時間攪拌した後、ヨードトリメチルシラン(22.5 μL, 165.64 μmol)を加え3時間攪拌した。反応完結を確認後、室温に冷却し、酢酸エチル(18.0 mL)5%炭酸水素ナトリウム水(3.0 mL)を加え分液した。得られた有機層を濃縮乾固した後、残渣をシリカゲルクロマトグラフィー(ヘキサン: 酢酸エチル= 2 : 1)で精製し、減圧濃縮することで化合物23を無色油状化合物として取得した(52.0 mg, 65.4%)。
1H-NMR (CDCl3) : δ = 8.79 (1H, s), 7.23-7.39 (10H, m),6.43 (1H, s), 4.57-4.65 (2H, m), 4.42-4.45 (1H, m), 4.15 (1H, d, J = 3.0 Hz),4.06-4.09 (2H, m), 3.71 (1H, d, J = 10.5 Hz), 3.56 (1H, d, J = 10.5 Hz),2.27-2.36 (2H, m), 1.41-1.44 (2H, m)
(実施例5-3)9-{2,6-アンヒドロ-3-O-ベンジル-4-[(ベンジルオキシ)メチル]-5-デオキシ-α-L-lyxo-ヘキソフラノシル}-2-クロロ-9H-プリン-6-アミン(化合物24)の製造
Figure JPOXMLDOC01-appb-C000156
 実施例5-2で得られた化合物23(52.0 mg, 98.60 μmol)のテトラヒドロフラン溶液(0.75 mL)に28%アンモニア水溶液(0.5 mL)を加え、50℃で7時間攪拌した。反応完結を確認後、室温に冷却し、酢酸エチル(2.0 mL)を加え分液した。得られた有機層を20%食塩水(1.0 mL)で洗浄した後、濃縮乾固した。残渣をシリカゲルクロマトグラフィー(ヘキサン:酢酸エチル= 4 : 6)で精製し、減圧濃縮することで化合物24を白色の結晶として取得した(44.7 mg, 89.2%)。
1H-NMR (CDCl3) : δ = 8.36 (1H, s), 7.27-7.38 (10H, m),6.39 (1H, s), 5.69 (2H, brs), 4.56-4.68 (2H, m), 4.44-4.48 (1H, m), 4.20 (1H,d, J = 2.5 Hz), 4.05-4.14 (2H, m), 3.70 (1H, d, J = 10.8 Hz), 3.57 (1H, d, J =10.8 Hz), 2.28-2.36 (1H, m), 1.53 (1H, m), 1.42-1.44 (1H, m), 1.25-1.27 (1H, m)
(実施例5-4)9-{2,6-アンヒドロ-3-O-ベンジル-4-[(ベンジルオキシ)メチル]-5-デオキシ-α-L-lyxo-ヘキソフラノシル}-9H-プリン-6-アミン(化合物25)の製造
Figure JPOXMLDOC01-appb-C000157
 実施例5-3で得られた化合物24(26.2 mg, 51.58 μmol)のエタノール溶液(2.0 mL)に20%水酸化パラジウム炭素(20.0 mg)、1N水酸化ナトリウム水溶液(103.2 μL, 103.16 μmol)を加え、3.5 barの水素圧下、50℃で5時間攪拌した。反応後、室温に冷却し、1N塩酸水溶液(51.6 μL, 51.58 μmol)を加えろ過した。ろ液にエタノール(10 mL)を加え、濃縮乾固することで化合物25を白色の結晶として取得した(9.7mg, 64.1%)。
1H-NMR (CD3OD) : δ = 8.72 (1H, s), 8.35 (1H, s), 6.48(1H, s), 4.37 (1H, d, J = 3.5 Hz), 4.32 (1H, d, J = 3.0 Hz), 4.01-4.13 (2H, m),3.78 (1H, d, J = 12.5 Hz), 3.72 (1H, d, J = 12.0 Hz), 2.17-2.24 (1H, m), 1.44(1H, dd, J = 13.0 Hz, 4.0 Hz)
(実施例5-5)化合物20の製造
Figure JPOXMLDOC01-appb-C000158
 実施例5-4で得られた化合物25のピリジン溶液(30v/w)にクロロトリメチルシラン(5当量)加え、30分攪拌し、塩化ベンゾイル(5当量)を加え、室温で2時間反応させる。反応後、0℃に冷却し、2M-アンモニア溶液となるようにアンモニア水を加える。30分後、減圧濃縮し、アセトニトリル(30v/w)を加え(3v/w)まで濃縮し、析出した結晶をろ取することで化合物20を得る。
(実施例6)9-(2,6-アンヒドロ-4-{[ビス(4-メトキシフェニル)(フェニル)メトキシ]メチル}-3-O-{(2-シアノエトキシ)[ジ(プロパン-2-イル)アミノ]ホスファニル}-5-デオキシ-α-L-lyxo-ヘキソフラノシル)-2-(2-メチルプロパンアミド)-1,9-ジヒドロ-6H-プリン-6-オン(化合物1g)の製造
(実施例6-1)9-{2,6-アンヒドロ-3-O-ベンジル-4-[(ベンジルオキシ)メチル]-5-デオキシ-α-L-lyxo-ヘキソフラノシル}-6-(ベンジルオキシ)-2-クロロ-9H-プリン(化合物26)の製造
Figure JPOXMLDOC01-appb-C000159
 テトラヒドロフラン(0.5 mL)にベンジルアルコール(4.63μL, 66.84 μmol)、水素化ナトリウム(2.5 mg, 57.93 μmol)を加え、0℃で30分攪拌した後、実施例5-2で得られた化合物23(23.5 mg, 44.56 μmol)を加え3時間攪拌した。反応完結を確認後、酢酸(3.6 μL, 62.38 μmol)、20%食塩水(0.5 mL)、酢酸エチル(2.0 mL)を加え分液した。得られた有機層を濃縮乾固した後、残渣をシリカゲルクロマトグラフィー(ヘキサン: 酢酸エチル= 2 : 1)で精製し、減圧濃縮することで化合物26を無色の油状化合物として取得した(20.9 mg, 78.3%)。
1H-NMR (CD3Cl) : δ = 8.50 (1H, s), 7.55-7.60 (2H, m),7.24-7.40 (13H, m), 6.42 (1H, s), 5.68 (1H, d, J = 12.0 Hz), 5.63 (1H, d, J =11.5 Hz), 4.55-4.64 (3H, m), 4.43-4.44 (2H, m), 4.17 (1H, d, J = 2.5 Hz),4.06-4.08 (2H, m), 3.69 (1H, d, J = 10.0 Hz), 3.55 (1H, d, J = 10.5 Hz),2.26-2.32 (1H, m), 1.41-1.44 (1H, m)
(実施例6-2)9-{2,6-アンヒドロ-3-O-ベンジル-4-[(ベンジルオキシ)メチル]-5-デオキシ-α-L-lyxo-ヘキソフラノシル}-6-(ベンジルオキシ)-N-(2-メチルプロパノイル)-9H-プリン-2-アミン(化合物27)の製造
Figure JPOXMLDOC01-appb-C000160
 実施例6-1で得られた化合物26(34.9 mg, 58.26 μmol)、イソブチルアミド(7.6 mg, 87.39 μmol)、トリス(ジベンジリデンアセトン)(クロロホルム)ジパラジウム(3.0mg, 2.91 μmol)、4,5'-ビス(ジフェニルホスフィノ)-9,9'-ジメチルキサンテン(3.4 mg, 5.83 μmol)、炭酸セシウム(36.1 mg, 110.69 μmol)を反応容器に加えた後、窒素雰囲気下で脱気したトルエン(0.7 mL)を加えた。反応溶液を110℃に昇温し、12時間攪拌した後、水道水(1.0 mL)、酢酸エチル(4.0 mL)を加え分液した。得られた有機層を濃縮乾固した後、残渣をシリカゲルクロマトグラフィー(ヘキサン: 酢酸エチル= 1 : 1)で精製し、減圧濃縮することで化合物27を無色の油状化合物として取得した(18.1 mg, 47.8%)。
1H-NMR (CD3Cl) : δ = 8.37 (1H, s), 7.83 (1H, brs),7.53-7.55 (2H, m), 7.24-7.39 (13H, m), 6.35 (1H, s), 5.67 (1H, d, J = 12.0 Hz),5.62 (1H, d, J = 12.0 Hz), 4.56-4.64 (3H, m), 4.43-4.45 (2H, m), 4.18 (1H, d, J= 2.5 Hz), 4.07-4.12 (2H, m), 3.70 (1H, d, J = 11.0 Hz), 3.56 (1H, d, J = 10.5Hz), 3.22 (1H, brs), 2.27-2.23 (1H, m), 1.43-1.46 (1H, m), 1.28 (6H, dd, J =6.8 Hz, 2.3 Hz)
(実施例6-3)9-[2,6-アンヒドロ-5-デオキシ-4-(ヒドロキシメチル)-α-L-lyxo-ヘキソフラノシル]-2-(2-メチルプロパンアミド)-1,9-ジヒドロ-6H-プリン-6-オン(化合物28)の製造
Figure JPOXMLDOC01-appb-C000161
 実施例6-2で得られた化合物27(17.7 mg, 27.24 μmol)のエタノール溶液(2.0 mL)に20%水酸化パラジウム炭素(18.0 mg)を加え、3.5 barの水素圧下、45℃で3時間攪拌した。反応完結を確認後、室温に冷却し、ろ過した。ろ液を濃縮乾固することで化合物28を白色の結晶として取得した(11.7 mg, 101.0%)。
1H-NMR (DMSO-d6) : δ = 12.10 (1H, s), 11.79 (1H, s), 8.31 (1H, s),6.21 (1H, s), 5.39 (1H, brs), 5.25 (1H, brs), 4.14 (1H, d, J = 3.5 Hz), 4.10(1H, d, J = 3.0 Hz), 3.88-3.90 (2H, m), 3.61 (1H, d, J = 12.5 Hz), 2.75-2.81(1H, m), 2.00-2.07 (1H, m), 1.12 (6H, d, J = 6.5 Hz)
(実施例6-4)9-(2,6-アンヒドロ-4-{[ビス(4-メトキシフェニル)(フェニル)メトキシ]メチル}-5-デオキシ-α-L-lyxo-ヘキソフラノシル)-2-(2-メチルプロパンアミド)-1,9-ジヒドロ-6H-プリン-6-オン(化合物29)の製造
Figure JPOXMLDOC01-appb-C000162
 実施例6-3で得られた化合物28のテトラヒドロフラン溶液(5v/w)にジメトキシトリフェニルメチルクロリド(1.5当量)と反応させる。反応液にトルエン(10v/w)、水(5v/w)を加え、分液後濃縮し、シリカゲルカラムクロマトグラフィーにて精製することで、化合物29を得る。
(実施例6-5)化合物1gの製造
Figure JPOXMLDOC01-appb-C000163
 実施例6-4で得られた化合物29にジクロロメタン(10v/w)、モレキュラーシーブ4A(0.5w/w)、2-シアノエチルN, N, N’, N’-テトライソプロピルホスホロジアミダイト(1.5当量)、4, 5-ジシアノイミダゾール(0.5当量)を添加し、室温で24時間撹拌する。反応液に酢酸エチル(900 mL)水(5v/w)を加え、分液後濃縮し、シリカゲルカラムクロマトグラフィーで精製することにより化合物1gを得る。
(実施例7)化合物17の製造(化合物22を経由するグリコシル化)
(実施例7-1)化合物22のアセトニトリル溶液の製造
Figure JPOXMLDOC01-appb-C000164
 化合物2(3.00g、8.42mmol)のトルエン(30mL)溶液に、N,N-ジメチルアミノピリジン(0.05g、0.42mmol)、ピリジン(1.02mL、12.63mmol)および無水酢酸(1.20mL、12.63mmol)を添加し、20~30℃にて1時間攪拌した後、水(15mL)を加え分液し、得られた有機層を20%クエン酸水溶液(15mL)で2回、8%炭酸水素ナトリウム水溶液(9mL)および水(9mL)にて1回ずつ分液洗浄した。得られた有機層を6mLになるまで減圧濃縮した後、アセトニトリル(30mL)にて減圧濃縮による溶媒置換を2回行い、化合物22のアセトニトリル溶液(6mL)を得た。
(化合物7-2)化合物3tの1-プロパノール溶液の製造
Figure JPOXMLDOC01-appb-C000165
 アセトニトリル(7.5mL)にチミン(1.33g、10.52mmol)およびN,O-ビストリメチルシリルアセトアミド(5.15mL、21.04mmol)を添加し、20~30℃で1時間撹拌した溶液に、実施例7-1で得られた化合物22のアセトニトリル溶液(6mL)、アセトニトリル(9mL)及びヨードトリメチルシラン(1.50mL、10.52mmol)を添加して45~55℃で4時間撹拌した。反応液に8%炭酸水素ナトリウム水溶液(24mL)及び亜硫酸ナトリウム(1.20g)を添加後、トルエン(30mL)を加え、20~30℃で30分間攪拌した後、分液した。得られた有機層を20%メタノール水(18mL)で3回分液洗浄した後、得られた有機層を9mLになるまで減圧濃縮した。得られた濃縮液に1-プロパノール(30mL)を加え、再度減圧濃縮して化合物3tの1-プロパノール溶液(9mL)を得た。
 得られた化合物のNMRスペクトルは、WO00/47599の実施例6に記載の化合物のNMRスペクトルと一致した。
(実施例7-3)化合物16の製造
Figure JPOXMLDOC01-appb-C000166
 化合物3tの1-プロパノール溶液(9mL)に、更に1-プロパノール(15mL)、水(6mL)及び5%パラジウム炭素(0.67g)を加え、水素雰囲気下55~65℃で2時間撹拌後、同温度で触媒をろ過し、80%1-プロパノール水(6mL)で触媒を洗浄した。得られたろ液を減圧濃縮して1-プロパノール溶液(9mL)とした後、アセトニトリル(30mL)を加えて9mLのアセトニトリル溶液(A)に減圧濃縮した。さらにアセトニトリル(6mL)を加え、20~30℃で2時間撹拌した。生じた結晶をろ取し、得られた結晶をアセトニトリル(9mL)にて洗浄した。得られた固体を減圧乾燥(40 °C)して化合物16(1.57g、収率65.6%(化合物2から))を得た。上記手順において、アセトニトリル溶液(A)中の水分含量が4%を越える場合には、アセトニトリルを追加して9mLまで濃縮する操作を繰り返し、水分含量を4%以下に制御することにより晶析による回収の再現性を維持することができた。なお、水分含量はカールフィッシャー法により確認した。
 得られた化合物のNMRスペクトルは、WO00/47599の実施例7に記載の化合物のNMRスペクトルと一致した。
(実施例7-4a)化合物17の製造
Figure JPOXMLDOC01-appb-C000167
 化合物16(30g)のテトラヒドロフラン溶液(150mL)に、ピリジン(33.39g)及び4,4’-ジメトキシトリチルクロリド(42.91g)を加え、20~30℃で3時間撹拌後、メタノール(6mL)を加え、さらに20~30℃で30分間撹拌した。得られた溶液に15%炭酸ナトリウム水溶液(150mL)、酢酸エチル(300mL)及び水(210mL)を加え、分液した。得られた有機層を20%クエン酸水溶液(150mL)で2回、5%炭酸水素ナトリウム水溶液(150mL)および水(150mL)にて1回ずつ分液洗浄した。得られた有機層を150 mLになるまで減圧濃縮した後、酢酸エチル(300mL)にて減圧濃縮による溶媒置換を2回行い、酢酸エチル(90mL)を加え化合物17の酢酸エチル溶液(240mL)を得た。得られた溶液にn-ヘプタン(90mL)を加え50℃に加温した後、種晶(30mg)を添加し、同温度にて2時間攪拌した。得られたスラリー液を20~30℃に冷却した後、同温度にて15時間攪拌した。得られたスラリー液にn-ヘプタン(120mL)を加え、同温度にてさらに1時間攪拌した。析出した結晶をろ取し、得られた結晶を酢酸エチルとn-ヘプタンの1:1混合液(100mL)にて洗浄した。得られた結晶を減圧乾燥(50℃)して化合物17(60.7g、収率98%)を得た。
 得られた化合物のNMRスペクトルは、WO00/47599の実施例8に記載の化合物のNMRスペクトルと一致した。
 なお、化合物17の種晶は、実施例2-3で得られた化合物17の酢酸エチル溶液を静置して析出したものを使用した。
(実施例8a)化合物1aの製造
Figure JPOXMLDOC01-appb-C000168
 ジクロロメタン(675 mL)に実施例4-3で得られた化合物21の水和物(45.00 g、64.31 mmol)を添加し、減圧濃縮することでジクロロメタン溶液(225 mL)を得た。得られたジクロロメタン溶液にジクロロメタン(450 mL)を添加し、減圧濃縮することでジクロロメタン溶液(225 mL)を得た。同様の操作を再度行い、得られたジクロロメタン溶液(225 mL)にジクロロメタン(225 mL)、モレキュラーシーブ4A(22.50g)、ジブチルヒドロキシトルエン(1.42 g、 6.44mmol)、2-シアノエチルN, N, N’, N’-テトライソプロピルホスホロジアミダイト(21.32 g、 70.73 mmol)、4, 5-ジシアノイミダゾール(0.91 g、7.71 mmol)を添加し、20~30 °Cで16.5時間撹拌した。反応の完結を確認した後、反応液に酢酸エチル(900 mL)を加え、-5~5 °Cにて中性シリカゲル(67.50 g)を添加し、15分間撹拌後、中性シリカゲルのろ去を行い、ジクロロメタン-酢酸エチル(1/2, 225 mL)で洗浄することでジクロロメタン-酢酸エチル溶液を得た。得られたジクロロメタン-酢酸エチル溶液を減圧濃縮し、酢酸エチル溶液(225 mL)とした。得られた溶液にメチルtert-ブチルエーテル(135 mL)を加えることで、溶液A(360 mL)を得た。別の反応容器にメチルtert-ブチルエーテル(315 mL)、n-ヘプタン(1350 mL)を加え、-5~5°Cにて溶液A(360 mL)を添加することで、固体の析出を確認した。酢酸エチル(23 mL)で洗浄を行い、0.5時間攪拌した後、析出した固体をろ過し、0℃にあらかじめ冷却したメチルtert-ブチルエーテル- n-ヘプタン(1/3, 225 mL)、n-ヘプタン(225 mL)で固体を洗浄した。得られた固体を減圧乾燥(40 °C)することで化合物1a(48.69 g、84.1%)を得た。
 得られた化合物のNMRスペクトルは、WO00/47599の実施例14に記載の化合物のNMRスペクトルと一致した。
(実施例8b)化合物1aの製造
 ジクロロメタン(45 mL)に実施例4-3で得られた化合物21の水和物(3.57 g)を添加し、減圧濃縮することでジクロロメタン溶液(15 mL)を得た。得られたジクロロメタン溶液にジクロロメタン(15 mL)、モレキュラーシーブ4A(22.50g)、2-シアノエチルN, N, N’, N’-テトライソプロピルホスホロジアミダイト(1.42 g)及び、4, 5-ジシアノイミダゾール(100 mg)を添加し、反応混合物を20~30 °Cで24時間撹拌した。反応の完結を確認した後、反応液に酢酸エチル(60 mL)を加えた。得られた溶液を-5~5 °C冷却した後、中性シリカゲル(4.5 g)を充填したカラム内を通過させ、ジクロロメタン-酢酸エチル(1/2, 30 mL)で洗い込むことでジクロロメタン-酢酸エチル溶液を得た。得られたジクロロメタン-酢酸エチル溶液を減圧濃縮し、酢酸エチル溶液(15 mL)とした後、トルエン(60 mL)を加え、再度濃縮してトルエン溶液(15 mL)を得た。得られた溶液にメチルtert-ブチルエーテル(9 mL)を加えることで、溶液A(24mL)を得た。別の反応容器にメチルtert-ブチルエーテル(6mL)、n-ヘプタン(90 mL)を加え、-5~5 °Cにて溶液A(24 mL)を滴下することで、固体の析出を確認した。滴下に使用した器具をトルエン(1.5 mL)で洗い込み、2時間攪拌した後、析出した固体をろ過し、n-ヘプタン(24 mL)で固体を洗浄した。得られた固体を減圧乾燥(40 °C)することで化合物1a(3.97 g、86.5%)を得た。
 得られた化合物のNMRスペクトルは、WO00/47599の実施例14に記載の化合物のNMRスペクトルと一致した。
(実施例9)化合物1tの製造
Figure JPOXMLDOC01-appb-C000169
 酢酸エチル(40 mL)に実施例2-3で得られた化合物17(5.00g、8.52 mmol)を添加し、モレキュラーシーブ4A(2.5 g)、2-シアノエチルN, N,N’, N’-テトライソプロピルホスホロジアミダイト(2.83 g、 9.38 mmol)、4, 5-ジシアノイミダゾール(0.20 g、1.70 mmol)を添加し、20~30 °Cで24時間撹拌した。反応の完結を確認した後、反応液に中性シリカゲル(10.00 g)を添加し、30分間撹拌後、中性シリカゲルのろ去を行い、酢酸エチル(100 mL)で洗浄することで酢酸エチル溶液を得た。得られた酢酸エチル溶液を減圧濃縮し、酢酸エチル溶液(35 mL)とした。得られた酢酸エチル溶液にtert-ブチルエーテル(100 mL)を添加し、減圧濃縮することでメチルtert-ブチルエーテル溶液(35 mL)を得た。得られたメチルtert-ブチルエーテル溶液に化合物1tの種晶(2.5 mg)を加え、2時間攪拌後、n-ヘプタン(100 mL)を加え0~5℃に冷却してさらに2時間攪拌した。析出した固体をろ過し、0℃にあらかじめ冷却したn-ヘプタン(100 mL)で固体を洗浄した。得られた固体を減圧乾燥(40 °C)することで化合物1t(6.12 g、91.3%)を得た。
 得られた化合物のNMRスペクトルは、WO00/47599の実施例9に記載の化合物のNMRスペクトルと一致した。
 なお、化合物1tの種晶は、実施例2-4で得た化合物1tの酢酸エチル、ジイソプロピルエーテル及び、n-ヘプタンの混合溶液を静置して析出したものを使用した。
(実施例10)化合物1cの製造
(実施例10-1)1-(3-O-アセチル-2,6-アンヒドロ-4-{[ビス(4-メトキシフェニル)(フェニル)メトキシ]メチル}-5-デオキシ-α-L-lyxo-ヘキソフラノシル)-5-メチルピリミジン-2,4(1H,3H)-ジオン(化合物30)の製造
Figure JPOXMLDOC01-appb-C000170
 酢酸エチル(320 mL)に実施例2-3で得られた化合物17(80.00 g、136.37 mmol)、N,N-ジメチルアミノピリジン(1.67 g、13.64 mmol)及びトリエチルアミン(27.60 g、272.74 mmol)を添加し、0~5°Cに冷却後、同温度にて無水酢酸(16.71 g、163.64 mmol)を添加した。0~5°Cで1時間攪拌した後、水(160mL)を加え分液し、得られた有機層を10%クエン酸水溶液(160mL)、5%炭酸水素ナトリウム水溶液(160 mL)及び10%食塩水(160 mL)にて分液洗浄した。得られた有機層を240 mLになるまで減圧濃縮した後、アセトニトリル(400 mL)にて減圧濃縮による溶媒置換を2回行い、化合物30のアセトニトリル溶液(240 mL)を得た。
(実施例10-2)1-(3-O-アセチル-2,6-アンヒドロ-4-{[ビス(4-メトキシフェニル)(フェニル)メトキシ]メチル}-5-デオキシ-α-L-lyxo-ヘキソフラノシル)-4-アミノ-5-メチルピリミジン-2(1H)-オン(化合物31)の製造
Figure JPOXMLDOC01-appb-C000171
 実施例10-1で得られた化合物30の溶液にアセトニトリル(160 mL)、N,N-ジメチルアミノピリジン(3.33 g、27.27 mmol)及びトリエチルアミン(55.20 g、545.51 mmol)を添加し、5~15°Cに冷却後、同温度にて2,4,6-トリイソプロピルベンゼンスルホニルクロリド(47.50 g、156.83 mmol)を添加した。10°Cで2時間攪拌した後、25%アンモニア水(100kg、156.83 mmol)を加え、20°Cで2時間攪拌した。得られた溶液を約320 mLになるまで減圧濃縮した後、酢酸エチル(400 mL)及び水(120 mL)を加え分液した。得られた有機層を10%食塩水(160 mL)にて2回分液洗浄した後、アセトニトリル(400 mL)を加え、約320 mLになるまで減圧濃縮した。得られた濃縮液にアセトニトリル(400 mL)を加え減圧濃縮し、化合物31のアセトニトリル溶液(B)(240 mL)を得た。なお、上記手順において、アセトニトリル溶液(B)中の水分含量が0.4%を超える場合には、アセトニトリル溶液(B)にアセトニトリルを加えて濃縮脱水する手順をアセトニトリル溶液(B)中の水分含量が0.4%以下となるまで繰り返し実施することにより、次反応を速やかに進行させることができた。
なお、水分含量はカールフィッシャー法により確認した。
(実施例10-3a)化合物19の製造
Figure JPOXMLDOC01-appb-C000172
 実施例10-2で得られた化合物31のアセトニトリル溶液にTHF(80 mL)及び無水安息香酸(67.87 g、300.01 mmol)を加え、40°Cで5時間攪拌した後、25°C に冷却しさらに15時間攪拌した。得られたスラリー液を、水(80 mL)、25%水酸化ナトリウム水溶液(176 kg)及びTHF(80 mL)の混合液に、5~15°Cにて1時間以上かけて滴下した。得られた混合液にTHF(160 mL)を加え、20°Cで2時間攪拌した後、酢酸を用いて溶液のpHを6.8に調整した。得られた溶液に実施例3-3で得られた化合物19の水和物結晶(80mg)を種晶として加え、10時間攪拌した後、水(400 mL)を15~25°Cにて2時間以上かけて滴下した。得られたスラリー液を20°Cにて1時間攪拌した後、析出した結晶をろ過し、40%THF水(400 mL)にて結晶を洗浄した。得られた結晶を50°Cにて減圧乾燥し、化合物19(78.35 g、83.3%G/G(化合物17から))を得た。
 得られた化合物のNMRスペクトルは、WO00/47599の実施例21に記載の化合物のNMRスペクトルと一致した。
(実施例10-3b)化合物19の製造
 実施例10-2で得られた化合物31のアセトニトリル溶液(90 mL)にTHF(80 mL)及び無水安息香酸(23.14g、102.3 mmol)を加え、40°Cで5時間攪拌した後、25°Cに冷却しさらに20時間攪拌した。得られたスラリー液に、THF(30 mL)および酢酸カリウム(23.09g、235.3 mmol)を添加し、1時間攪拌した後、8%食塩水(135 mL)を加え分液した。得られた有機層にTHF(15 mL)、水(15 mL)および25%水酸化ナトリウム水溶液(33 g)を加え、0~10°Cに冷却後、さらに25%水酸化ナトリウム水溶液(15 g)および水(6 mL)を加え、0~10°Cで4時間攪拌した。反応終了確認後、得られた溶液を酢酸を用いて溶液のpHを6.5に調整した。得られた溶液に食塩(6.0 g)およびTHF(60 mL)を加え分液し、得られた有機層にTHF(30 mL)、水(45 mL)および実施例3-3で得られた化合物19の水和物結晶(30mg)を種晶として加え、16時間攪拌した後、水(180 mL)を20~30°Cにて2時間以上かけて滴下した。得られたスラリー液を20~30°Cにて3時間攪拌した後、析出した結晶をろ過し、40%THF水(150 mL)を用いて結晶を洗浄した。得られた結晶を50°Cにて減圧乾燥し、化合物19(28.48 g、80.7%G/G(化合物17から))を得た。
上記手順においては、酢酸カリウムを使用することで、晶析時にpH調整に用いる酢酸の量を、実施例10-3aに記載の手順の場合より少量に制御でき、それにより晶析に要する時間をより短くすることができた。
 得られた化合物のNMRスペクトルは、WO00/47599の実施例21に記載の化合物のNMRスペクトルと一致した。
(実施例11)化合物1cの製造
Figure JPOXMLDOC01-appb-C000173
 ジクロロメタン(400 mL)に実施例10-3で得られた化合物19(20.00 g、29.00 mmol)を添加し、減圧濃縮することでジクロロメタン溶液(200 mL)を得た。得られたジクロロメタン溶液にジクロロメタン(200 mL)を添加し、減圧濃縮することでジクロロメタン溶液(200 mL)を得た。同様の操作を再度行い、得られたジクロロメタン溶液(200 mL)にモレキュラーシーブ4A(10.00 g)、ジブチルヒドロキシトルエン(0.64 g、 2.90 mmol)、2-シアノエチルN, N, N’, N’-テトライソプロピルホスホロジアミダイト(9.61 g、 31.89 mmol)、4, 5-ジシアノイミダゾール(1.03 g、8.70 mmol)を添加し、20~30 °Cで4時間撹拌した。反応の完結を確認した後、反応液に酢酸エチル(100 mL)を加え、-5~5 °Cにて中性シリカゲル(40.00 g)を添加し、30分間撹拌後、中性シリカゲルのろ去を行い、ジクロロメタン-酢酸エチル(2/1, 100 mL)で洗浄することでジクロロメタン-酢酸エチル溶液を得た。得られたジクロロメタン-酢酸エチル溶液を減圧濃縮し、ジクロロメタン-酢酸エチル溶液(100 mL)とした。得られたジクロロメタン-酢酸エチル溶液に酢酸エチル(100 mL)を添加し、減圧濃縮することで酢酸エチル溶液(100 mL)を得た。同様の操作を再度行い、得られた溶液にメチルtert-ブチルエーテル(100 mL)を加え、減圧濃縮することで酢酸エチル-メチルtert-ブチルエーテル溶液(100 mL)とした。得られた酢酸エチル-メチルtert-ブチルエーテル溶液にメチルtert-ブチルエーテル(100 mL)を添加し、減圧濃縮することでメチルtert-ブチルエーテル溶液(100 mL)を得た。同様の操作を再度行い、得られた溶液にn-ヘプタン(200 mL)を加え1.5時間撹拌後、さらにn-ヘプタン(100 mL)を加え1時間撹拌後、再度n-ヘプタン(200 mL)を添加し1.5時間撹拌し固体の析出を確認した。析出した固体をろ過し、0℃にあらかじめ冷却したn-ヘプタン(200mL)で固体を洗浄した。得られた固体を減圧乾燥(40 °C)することで化合物1c(22.40 g、86.8%)を得た。
 得られた化合物のNMRスペクトルは、WO00/47599の実施例6に記載の化合物のNMRスペクトルと一致した。
(実施例12)化合物22の立体選択的グリコシル化
Figure JPOXMLDOC01-appb-C000174
 実施例5-1で得られた化合物22(30mg、0.075mmol)、ビストリメチルシリルチミン(40.8mg、0.151mmol)に1,2-ジクロロエタン(0.3mL)を添加し、室温で撹拌した。その後、活性化剤としてクロロトリメチルシラン(TMSCl)、ブロモトリメチルシラン(TMSBr)、ヨードトリメチルシラン(TMSI)、トリフルオロメタンスルホン酸トリメチルシリル(TMSOTf)をそれぞれ原料に対し2.0当量(0.151mmol)添加し、表中に示す温度にて撹拌した。反応液をサンプリングし、HPLCにて原料、α-付加体、β-付加体の分析を実施した。結果を表1に示す。
Figure JPOXMLDOC01-appb-T000175
 検討の結果、TMSOTfを使用した条件ではα-付加体が立体選択的に得られるが、TMSBr及びTMSIを使用した条件ではβ-付加体が立体選択的に得られた。中でもTMSIを用いた際には室温でも反応が良好に進行した。
(実施例13)アミダイト化工程活性化剤スクリーニング
Figure JPOXMLDOC01-appb-C000176
 ジクロロメタン(1 mL)に実施例4-3で得られた化合物21水和物(100 mg、0.14 mmol)、2-シアノエチルN, N, N’, N’-テトライソプロピルホスホロジアミダイト(51.7 mg、 0.17 mmol)、活性化剤として、5-ベンジルチオテトラゾール、5-フェニルテトラゾール、4,5-ジシアノイミダゾール、2,4,5-テトラブロモイミダゾールを、それぞれ原料に対し1.15当量(0.16 mmol)を添加し、20~30 °Cで撹拌した。反応の完結をHPLCにて確認した結果を表2に示す。
Figure JPOXMLDOC01-appb-T000177
 検討の結果、4,5-ジシアノイミダゾール、2,4,5-トリブロモイミダゾールを使用した条件にて良好な結果を得た。
(実施例14)モレキュラーシーブ効果の検証
Figure JPOXMLDOC01-appb-C000178
 ジクロロメタン(10 v/w)に実施例2-3で得られた化合物17、ジブチルヒドロキシトルエン(0.10当量)、2-シアノエチルN, N, N’, N’-テトライソプロピルホスホロジアミダイト(1.10当量)、4,5-ジシアノイミダゾール(1.0当量)を添加し、モレキュラーシーブ4A(0.5 wt %)存在下、あるいは非存在下、20~30 °Cで撹拌した。HPLCにて反応の進行を確認した結果を表3に示す。
Figure JPOXMLDOC01-appb-T000179
 モレキュラーシーブを使用することで、化合物17が残存することなく化合物1tへと変換した。
(実施例15)オリゴヌクレオチドの合成
 所望の配列・構造からなるオリゴヌクレオチドは、以下の方法により合成することができる。
 核酸自動合成機(「ABI 394 DNA/RNA Synthesizer」Applied Biosystems製)を用い、ホスホロアミダイト法(NucleicAcids Research, 12, 4539 (1984))を用いて合成を行う。試薬としては、アクチベーター溶液-3(0.25 mol/L 5-ベンジルチオ-1H-テトラゾール・アセトニトリル溶液、和光純薬工業製、product No.013-20011)、CAP A for AKTA(1-メチルイミダゾール・アセトニトリル溶液、Sigma-Aldrich製、product No. L040050)、Cap B1 for AKTA(無水酢酸・アセトニトリル溶液、Sigma-Aldrich製、product No. L050050)、Cap B2 for AKTA(ピリジン・アセトニトリル溶液、Sigma-Aldrich製、product No. L050150)、又はDCA Deblock(ジクロロ酢酸・トルエン溶液、Sigma-Aldrich製、product No. L023050)を用いる。ホスホロチオエート結合を形成するためのチオ化試薬として、0.2Mになるようにフェニルアセチルジスルフィド(CARBOSYNTH製、product No. FP07495)を、アセトニトリル(脱水、関東化学製、productNo. 01837-05)、及びピリジン(脱水、関東化学製、product No. 11339-05)1:1(v/v)溶液を用いて溶解して用いる。アミダイト試薬としては、2'-O-Meヌクレオシドのホスホロアミダイト(アデノシン体product No. ANP-5751, シチジン体product No.ANP-5752,グアノシン体product No. ANP-5753, ウリジン体product No. ANP-5754)はChemGenes製のものを用いる。ENAモノマー 9-(2,6-アンヒドロ-4-{[ビス(4-メトキシフェニル)(フェニル)メトキシ]メチル}-3-O-{(2-シアノエトキシ)[ジ(プロパン-2-イル)アミノ]ホスファニル}-5-デオキシ-α-L-lyxo-ヘキソフラノシル)-N-ベンゾイル-9H-プリン-6-アミン(化合物1a)、1-(2,6-アンヒドロ-4-{[ビス(4-メトキシフェニル)(フェニル)メトキシ]メチル}-3-O-{(2-シアノエトキシ)[ジ(プロパン-2-イル)アミノ]ホスファニル}-5-デオキシ-α-L-lyxo-ヘキソフラノシル)-4-ベンズアミド-5-メチルピリミジン-2(1H)-オン(化合物1c)、及び1-(2,6-アンヒドロ-4-{[ビス(4-メトキシフェニル)(フェニル)メトキシ]メチル}-3-O-{(2-シアノエトキシ)[ジ(プロパン-2-イル)アミノ]フォスファニル}-5-デオキシ-α-L-lyxo-ヘキソフラノシル)-5-メチルピリミジン-2,4(1H,3H)-ジオン(化合物1t)は、上記の実施例で合成された化合物を用いる。固相担体としてGlen Unysupport 0.1μmol(GlenResearch製)を用い、所望の配列を有するオリゴヌクレオチドを合成することができる。プログラムは、核酸自動合成機に付属している0.2μmolスケール用を用い、但し、アミダイト体の縮合に要する時間は、600秒とし、チオ化に要する時間は、150秒とする。
5’末端にリガンドユニットを有するオリゴヌクレオチドは、WO2019/172286に記載された方法に従い、ヌクレオチド鎖の合成に続いて、リガンドユニットのホスホロアミダイトを、同様に反応させることで合成することができる。GalNAcユニットであるX18及びX20に対応するホスホロアミダイト化合物は、WO2019/172286の参考例39の化合物39D、及び参考例41の化合物41Dを、それぞれ使用する。
 目的配列を有する保護されたオリゴヌクレオチド類縁体を300μLの濃アンモニア水で処理することによってオリゴマーを支持体から切り出すとともに、リン原子上の保護基シアノエチル基と核酸塩基上の保護基をはずす。Clarity QSP(Phenomenex製)を用いて、添付されているプロトコールに従って精製する。
 本発明により、各種ENAモノマーを製造するために有用な結晶性の2,4-架橋した共通中間体及び当該中間体の立体選択的な製造方法により、各種ENAモノマーを効率的に製造できるようになった。

Claims (111)

  1.  一般式(I)
    Figure JPOXMLDOC01-appb-C000001


    [式中、Z及びZは、同一又は異なって、水酸基の保護基を示し、Rは、水素原子又は脂肪族アシル基を示し、nは、0乃至4の整数を示す。]で表される化合物。
  2.  Rが、水素原子又はアセチル基である請求項1に記載の化合物。
  3.  Z及びZが、同一又は異なって、脂肪族アシル基、芳香族アシル基、1乃至3個のアリール基で置換されたメチル基、低級アルキル、低級アルコキシ、ハロゲン若しくはシアノ基でアリール基が置換された1乃至3個のアリール基で置換されたメチル基又はシリル基である請求項1又は2に記載の化合物。
  4.  Z及びZが、同一又は異なって、ベンジル基、p-メトキシベンジル基、t-ブチルジフェニルシリル基又はt-ブチルジメチルシリル基である請求項1又は2に記載の化合物。
  5.  Z及びZが、ベンジル基である請求項1又は2に記載の化合物。
  6.  nが、1である請求項1乃至5のいずれか1項に記載の化合物。
  7.  式(I’)で表される化合物。
    Figure JPOXMLDOC01-appb-C000002

  8.  式(I’’)で表される化合物。
    Figure JPOXMLDOC01-appb-C000003
  9.  一般式(II)
    Figure JPOXMLDOC01-appb-C000004

    [式中、Z及びZは、同一又は異なって、水酸基の保護基を示し、nは、0乃至4の整数を示す。]で表される化合物を製造する方法であって、
    (i)一般式(III)
    Figure JPOXMLDOC01-appb-C000005

    [式中、Z、Z及びnは、前記と同意義を示し、Yは、1乃至3個のアリール基で置換されたメチル基、低級アルキル、低級アルコキシ、ハロゲン若しくはシアノ基でアリール環が置換された1乃至3個のアリール基で置換されたメチル基、低級アルコキシメチル基、テトラヒドロピラニル基又はシリル基を示す。]で表される化合物のアセタール部位を、酸触媒存在下、低級アルキルアルコール溶媒中、加溶媒分解し、Yを脱保護する工程、
    (ii)工程(i)で得られた一般式(IV)
    Figure JPOXMLDOC01-appb-C000006

    [式中、Z、Z及びnは、前記と同意義を示し、Aは、低級アルキル基を示す。]で表される化合物のジオール部位を環化する工程、
    (iii)工程(ii)で得られた一般式(V)
    Figure JPOXMLDOC01-appb-C000007

    [式中、Z、Z、A及びnは、前記と同意義を示す。]で表される化合物のアノマー位の加水分解を行う工程、
    を含むことを特徴とする、方法。
  10.  Z及びZが、同一又は異なって、脂肪族アシル基、芳香族アシル基、1乃至3個のアリール基で置換されたメチル基、低級アルキル、低級アルコキシ、ハロゲン若しくはシアノ基でアリール基が置換された1乃至3個のアリール基で置換されたメチル基又はシリル基である、請求項9に記載の方法。
  11.  Z及びZが、同一又は異なって、ベンジル基、p-メトキシベンジル基、t-ブチルジフェニルシリル基又はt-ブチルジメチルシリル基である請求項9に記載の方法。
  12.  Z及びZが、ベンジル基である請求項9に記載の方法。
  13.  Aが、メチル基、エチル基又はプロピル基である請求項9乃至12のいずれか1項に記載の方法。
  14.  Aが、メチル基である請求項9乃至12のいずれか1項に記載の方法。
  15.  Yが、t-ブチルジフェニルシリル基、t-ブチルジメチルシリル基、テトラヒドロピラン-2-イル基又はトリチル基である請求項9乃至14のいずれか1項に記載の方法。
  16.  Yが、トリチル基である請求項9乃至14のいずれか1項に記載の方法。
  17.  nが、1である請求項9乃至16のいずれか1項に記載の方法。
  18.  酸触媒が、硫酸、p-トルエンスルホン酸又はメタンスルホン酸である請求項9乃至17のいずれか1項に記載の方法。
  19.  工程(ii)が、3価リン試薬及びアゾジカルボン酸エステルを用いて行われる請求項9乃至18のいずれか1項に記載の方法。
  20.  3価リン試薬が、トリフェニルホスフィン又はトリ(n-ブチル)ホスフィンである請求項19に記載の方法。
  21.  アゾジカルボン酸エステルが、アゾジカルボン酸ジエチル、アゾジカルボン酸ジイソプロピル又はアゾジカルボン酸ジt-ブチルである請求項19又は20に記載の方法。
  22.  工程(iii)が、酸を用いて行われる請求項9乃至21のいずれか1項に記載の方法。
  23.  酸が、塩酸、硫酸、トリフルオロ酢酸、メタンスルホン酸又はp-トルエンスルホン酸である請求項22に記載の方法。
  24.  一般式(VI)
    Figure JPOXMLDOC01-appb-C000008

    [式中、Rは、低級アルキル基又は水素原子を示し、Rは、水酸基、アミノ基又は脂肪族アシル基若しくは芳香族アシル基で保護されたアミノ基を示し、Pは、1乃至3個の低級アルコキシ基で置換されていてもよいトリチル基を示し、nは、0乃至4の整数を示す。]で表される化合物又はその塩を製造する方法であって、
    (i)一般式(II)
    Figure JPOXMLDOC01-appb-C000009

    [式中、Z及びZは、同一又は異なって、水酸基の保護基を示し、nは、0乃至4の整数を示す。]で表される化合物を、溶媒中、活性化剤と反応させ、1位の水酸基を脱離基を形成する基に変換する工程、及び
    (ii)工程(i)で得られた一般式(VII)
    Figure JPOXMLDOC01-appb-C000010

    [式中、Z、Z及びnは、前記と同意義を示し、Xは、脱離基を形成する基を示す。]で表される化合物と、一般式(VIII)
    Figure JPOXMLDOC01-appb-C000011

    [式中、R及びRは、前記と同意義を示す。]で表される化合物又はその塩を、溶媒中、ハロゲン化剤存在下で反応させ、一般式(IX)
    Figure JPOXMLDOC01-appb-C000012

    [式中、Z、Z、R、R及びnは、前記と同意義を示す。]で表される化合物又はその塩を立体選択的に得る工程、
    を含むことを特徴とする、方法。
  25.  Z及びZが、同一又は異なって、脂肪族アシル基、芳香族アシル基、1乃至3個のアリール基で置換されたメチル基、低級アルキル、低級アルコキシ、ハロゲン若しくはシアノ基でアリール環が置換された1乃至3個のアリール基で置換されたメチル基又はシリル基である請求項24に記載の方法。
  26.  Z及びZが、同一又は異なって、ベンジル基、p-メトキシベンジル基、t-ブチルジフェニルシリル基又はt-ブチルジメチルシリル基である請求項24に記載の方法。
  27.  Z及びZが、ベンジル基である請求項24に記載の方法。
  28.  Pが、4,4’-ジメトキシトリチル基である請求項24乃至27のいずれか1項に記載の方法。
  29.  Xが、ハロゲン原子、脂肪族アシルオキシ基、ハロゲン置換低級アルキルイミドオキシ基又はハロゲン置換低級アルキルスルホニルオキシ基である請求項24乃至28のいずれか1項に記載の方法。
  30.  Xが、ヨウ素原子、アセトキシ基又はトリクロロアセトイミドオキシ基である請求項24乃至28のいずれか1項に記載の方法。
  31.  nが、1である請求項24乃至30のいずれか1項に記載の方法。
  32.  Rが、メチル基又は水素原子である請求項24乃至31のいずれか1項に記載の方法。
  33.  Rが、水酸基又はベンゾイルアミノ基である請求項24乃至32のいずれか1項に記載の方法。
  34.  Rが、メチル基であり、Rが、水酸基である請求項24乃至31のいずれか1項に記載の方法。
  35.  Rが、メチル基であり、Rが、ベンゾイルアミノ基である請求項24乃至31のいずれか1項に記載の方法。
  36.  (iii)工程(ii)で得られた一般式(IX)
    Figure JPOXMLDOC01-appb-C000013

    [式中、Z、Z、R、R及びnは前記と同意義を示す。]で表される化合物又はその塩を、溶媒中、水酸基の脱保護試薬と反応させ、Z及びZを脱保護する工程、及び
    (iv)工程(iii)で得られたジオール化合物又はその塩と、1級水酸基の保護試薬を反応させ、一般式(VI)
    Figure JPOXMLDOC01-appb-C000014

    [式中、P、R、R及びnは、前記と同意義を示す。]で表される化合物又はその塩を得る工程、
    を含む、請求項24乃至35のいずれか1項に記載の方法。
  37.  活性化剤が、無水酢酸、無水安息香酸、トリクロロアセトニトリル、カルボニルジイミダゾール又はクロロリン酸ジフェニルである請求項24乃至36のいずれか1項に記載の方法。
  38.  ハロゲン化剤が、クロロトリメチルシラン、ブロモトリメチルシラン又はヨードトリメチルシランである請求項24乃至37のいずれか1項に記載の方法。
  39.  一般式(X)
    Figure JPOXMLDOC01-appb-C000015

    [式中、Rは脂肪族アシル基又は芳香族アシル基を示し、Pは、1乃至3個の低級アルコキシ基で置換されていてもよいトリチル基を示し、nは、0乃至4の整数を示す。]で表される化合物又はその塩を製造する方法であって、
    (i)一般式(II)
    Figure JPOXMLDOC01-appb-C000016

    [式中、Z及びZは、同一又は異なって、水酸基の保護基を示し、nは、前記と同意義を示す。]で表される化合物を、溶媒中、活性化剤と反応させ、1位の水酸基を脱離基を形成する基に変換する工程、
    (ii)工程(i)で得られた一般式(XI)
    Figure JPOXMLDOC01-appb-C000017

    [式中、Z、Z及びnは、前記と同意義を示し、Xは、脱離基を形成する基を示す。]で表される化合物と、一般式(XII)
    Figure JPOXMLDOC01-appb-C000018

    [式中、Rは、前記と同意義を示す。]で表される化合物又はその塩を、溶媒中、酸試薬存在下で反応させる工程、
    (iii)次いで、異性化させ、一般式(XIII)
    Figure JPOXMLDOC01-appb-C000019

    [式中、Z、Z、R及びnは、前記と同意義を示す。]で表される化合物又はその塩を立体選択的に得る工程、
    を含むことを特徴とする、方法。
  40.  Z及びZが、同一又は異なって、脂肪族アシル基、芳香族アシル基、1乃至3個のアリール基で置換されたメチル基、低級アルキル、低級アルコキシ、ハロゲン若しくはシアノ基でアリール環が置換された1乃至3個のアリール基で置換されたメチル基又はシリル基である請求項39に記載の方法。
  41.  Z及びZが、同一又は異なって、ベンジル基、p-メトキシベンジル基、t-ブチルジフェニルシリル基又はt-ブチルジメチルシリル基である請求項39に記載の方法。
  42.  Z及びZが、ベンジル基である請求項39に記載の方法。
  43.  Pが、4,4’-ジメトキシトリチル基である請求項39乃至42のいずれか1項に記載の方法。
  44.  Xが、ハロゲン原子、脂肪族アシルオキシ基、ハロゲン置換低級アルキルイミドオキシ基又はハロゲン置換低級アルキルスルホニルオキシ基である請求項39乃至43のいずれか1項に記載の方法。
  45.  Xが、アセトキシ基である請求項39乃至43のいずれか1項に記載の方法。
  46.  nが、1である請求項39乃至45のいずれか1項に記載の方法。
  47.  Rが、アセチル基又はベンゾイル基である請求項39乃至46のいずれか1項に記載の方法。
  48.  Rが、ベンゾイル基である請求項39乃至46のいずれか1項に記載の方法。
  49.  (iv)工程(iii)で得られた一般式(XIII)
    Figure JPOXMLDOC01-appb-C000020

    [式中、Z、Z、R及びnは、前記と同意義を示す。]で表される化合物又はその塩を、溶媒中、水酸基の脱保護試薬と反応させ、Z及びZを脱保護する工程、及び
    (v)工程(iv)で得られたジオール化合物又はその塩と、1級水酸基の保護試薬を反応させ、1級水酸基を選択的に保護することにより、一般式(X)
    Figure JPOXMLDOC01-appb-C000021

    [式中、R、n及びPは、前記と同意義を示す。]で表される化合物又はその塩を得る工程、
    を含む、請求項39乃至48のいずれか1項に記載の方法。
  50.  活性化剤が、無水酢酸、無水安息香酸、トリクロロアセトニトリル、カルボニルジイミダゾール又はクロロリン酸ジフェニルである請求項39乃至49のいずれか1項に記載の方法。
  51.  酸試薬が、トリフルオロメタンスルホン酸トリメチルシリル及びトリフルオロ酢酸である、請求項39乃至50のいずれか1項に記載の方法。
  52.  一般式(XIV)
    Figure JPOXMLDOC01-appb-C000022

    [式中、Z及びZは、同一又は異なって、水酸基の保護基を示し、nは、0乃至4の整数を示す。]で表される化合物又はその塩。
  53.  Z及びZが、同一又は異なって、脂肪族アシル基、芳香族アシル基、1乃至3個のアリール基で置換されたメチル基、低級アルキル、低級アルコキシ、ハロゲン若しくはシアノ基でアリール環が置換された1乃至3個のアリール基で置換されたメチル基又はシリル基である請求項52に記載の化合物又はその塩。
  54.  Z及びZが、同一又は異なって、ベンジル基、p-メトキシベンジル基、t-ブチルジフェニルシリル基又はt-ブチルジメチルシリル基である請求項52に記載の化合物又はその塩。
  55.  Z及びZが、ベンジル基である請求項52に記載の化合物又はその塩。
  56.  nが、1である請求項52乃至55のいずれか1項に記載の化合物又はその塩。
  57.  式(XIV’)で表される化合物又はその塩。
    Figure JPOXMLDOC01-appb-C000023
  58.  一般式(X)
    Figure JPOXMLDOC01-appb-C000024

    [式中、Pは、1乃至3個の低級アルコキシ基で置換されていてもよいトリチル基を示し、Rは、脂肪族アシル基又は芳香族アシル基を示し、nは、1乃至4の整数を示す。]で表される化合物又はその塩を製造する方法であって、
    (i)一般式(XIV)
    Figure JPOXMLDOC01-appb-C000025

    [式中、Z及びZは、同一又は異なって、水酸基の保護基を示し、nは、0乃至4の整数を示す。]で表される化合物又はその塩を、アミノ化剤と反応させ、プリン環の6位の塩素原子をアミノ基と置換する工程、
    (ii)工程(i)で得られた一般式(XV)
    Figure JPOXMLDOC01-appb-C000026

    [式中、Z、Z及びnは、前記と同意義を示す。]で表される化合物又はその塩を、溶媒中、金属触媒存在下、還元剤と反応させ、プリン環の2位の塩素原子を水素原子と置換し、Z及びZを脱保護することにより、一般式(XVI)
    Figure JPOXMLDOC01-appb-C000027

    [式中、nは、前記と同意義を示す。]で表される化合物又はその塩を得る工程、
    を含むことを特徴とする、方法。
  59.  Z及びZが、同一又は異なって、脂肪族アシル基、芳香族アシル基、1乃至3個のアリール基で置換されたメチル基、低級アルキル、低級アルコキシ、ハロゲン若しくはシアノ基でアリール環が置換された1乃至3個のアリール基で置換されたメチル基又はシリル基である請求項58に記載の方法。
  60.  Z及びZが、同一又は異なって、ベンジル基、p-メトキシベンジル基、t-ブチルジフェニルシリル基又はt-ブチルジメチルシリル基である請求項58に記載の方法。
  61.  Z及びZが、ベンジル基である請求項58に記載の方法。
  62.  Pが、4,4’-ジメトキシトリチル基である請求項58乃至61のいずれか1項に記載の方法。
  63.  nが、1である請求項58乃至62のいずれか1項に記載の方法。
  64.  Rが、アセチル基又はベンゾイル基である請求項58乃至63のいずれか1項に記載の方法。
  65.  Rが、ベンゾイル基である請求項58乃至63のいずれか1項に記載の方法。
  66.  (iii)工程(ii)で得られた一般式(XVI)
    Figure JPOXMLDOC01-appb-C000028

    [式中、nは、前記と同意義を示す。]で表される化合物又はその塩を、1級水酸基の保護試薬と反応させ、1級水酸基を選択的に保護する工程、
    (iv)工程(iii)で得られた一般式(XVII)
    Figure JPOXMLDOC01-appb-C000029

    [式中、P及びnは、前記と同意義を示す。]で表される化合物又はその塩を、アシル化剤と反応させることにより、一般式(X)
    Figure JPOXMLDOC01-appb-C000030

    [式中、P、R及びnは、前記と同意義を示す。]で表される化合物又はその塩を得る工程、
    を含む、請求項58乃至65のいずれか1項に記載の方法。
  67.  アミノ化剤が、アンモニア、アンモニア水溶液、炭酸アンモニウム又は酢酸アンモニウムである請求項58乃至66のいずれか1項に記載の方法。
  68.  金属触媒が、パラジウム、水酸化パラジウム又は白金である請求項58乃至67のいずれか1項に記載の方法。
  69.  還元剤が、水素、ギ酸又はギ酸アンモニウムである請求項58乃至68のいずれか1項に記載の方法。
  70.  アシル化剤が、ベンゾイルクロリド又は無水安息香酸である請求項66乃至69のいずれか1項に記載の方法。
  71.  一般式(XVIII)
    Figure JPOXMLDOC01-appb-C000031

    [式中、Pは、1乃至3個の低級アルコキシ基で置換されていてもよいトリチル基を示し、Rは、脂肪族アシル基又は芳香族アシル基を示し、nは、1乃至4の整数を示す。]で表される化合物又はその塩を製造する方法であって、
    (i)一般式(XIV)
    Figure JPOXMLDOC01-appb-C000032

    [式中、Z及びZは、同一又は異なって、水酸基の保護基を示し、nは、0乃至4の整数を示す。]で表される化合物又はその塩を、溶媒中、塩基存在下、低級アルキル、低級アルコキシ、ハロゲン若しくはシアノ基で置換されていてもよいベンジルアルコールと反応させ、プリン環の6位の塩素原子を、低級アルキル、低級アルコキシ、ハロゲン若しくはシアノ基で置換されていてもよいベンジルオキシ基に置換する工程、
    (ii)工程(i)で得られた一般式(XIX)
    Figure JPOXMLDOC01-appb-C000033

    [式中、Z、Z及びnは、前記と同意義を示し、Rは、低級アルキル、低級アルコキシ、ハロゲン若しくはシアノ基で置換されていてもよいベンジル基を示す。]で表される化合物又はその塩を、溶媒中、パラジウム触媒、ホスフィン配位子存在下、アミド化剤とクロスカップリングさせ、一般式(XX)
    Figure JPOXMLDOC01-appb-C000034

    [式中、Z、Z、R、R及びnは、前記と同意義を示す。]で表される化合物又はその塩を得る工程、
    を含むことを特徴とする、方法。
  72.  Z及びZが、同一又は異なって、脂肪族アシル基、芳香族アシル基、1乃至3個のアリール基で置換されたメチル基、低級アルキル、低級アルコキシ、ハロゲン若しくはシアノ基でアリール環が置換された1乃至3個のアリール基で置換されたメチル基又はシリル基である請求項71に記載の化合物又はその塩。
  73.  Z及びZが、同一又は異なって、ベンジル基、p-メトキシベンジル基、t-ブチルジフェニルシリル基又はt-ブチルジメチルシリル基である請求項71に記載の方法。
  74.  Z及びZが、ベンジル基である請求項71に記載の方法。
  75.  Pが、4,4’-ジメトキシトリチル基である請求項71乃至74のいずれか1項に記載の方法。
  76.  nが、1である請求項71乃至75のいずれか1項に記載の方法。
  77.  Rが、イソブチリル基である請求項71乃至76のいずれか1項に記載の方法。
  78.  Rが、ベンジル基である請求項71乃至77のいずれか1項に記載の方法。
  79.  (iii)工程(ii)で得られた一般式(XX)
    Figure JPOXMLDOC01-appb-C000035

    [式中、Z、Z、R、R及びnは、前記と同意義を示す。]で表される化合物又はその塩を、溶媒中、水酸基の脱保護試薬と反応させ、Z、Z及びRを脱保護する工程、
    (iv)工程(iii)で得られた一般式(XXI)
    Figure JPOXMLDOC01-appb-C000036

    [式中、R及びnは、前記と同意義を示す。]で表される化合物又はその塩を、1級水酸基の保護試薬と反応させ、1級水酸基を選択的に保護することにより、一般式(XVIII)
    Figure JPOXMLDOC01-appb-C000037

    [式中、P、R及びnは、前記と同意義を示す。]で表される化合物又はその塩を得る工程、
    を含む、請求項71乃至78のいずれか1項に記載の方法。
  80.  塩基が、水酸化ナトリウム、炭酸ナトリウム、炭酸セシウム、トリエチルアミン、ピリジン又は1,8-ジアザビシクロ[5.4.0]ウンデカ-7-エンである、請求項71乃至79のいずれか1項に記載の方法。
  81.  パラジウム触媒が、トリス(ジベンジリデンアセトン)(クロロホルム)ジパラジウム、酢酸パラジウム(II)又はトリス(ジベンジリデンアセトン)ジパラジウム(0)である請求項71乃至80のいずれか1項に記載の方法。
  82.  ホスフィン配位子が、4,5’-ビス(ジフェニルホスフィノ)-9,9’ジメチルキサンテン、1,1’-ビス(ジフェニルホスフィノ)フェロセン、1,2-ビス(ジフェニルホスフィノ)エタン又は2-ジシクロヘキシルホスフィノ-2’-(N,N-ジメチルアミノ)ビフェニルである請求項71乃至81のいずれか1項に記載の方法。
  83.  アミド化剤が、アセチルアミド、ベンゾイルアミド又はイソブチルアミドである、請求項71乃至82のいずれか1項に記載の方法。
  84.  水酸基の脱保護試薬が、金属触媒及び還元剤である請求項79乃至83のいずれか1項に記載の方法。
  85.  金属触媒が、パラジウム、水酸化パラジウム又は白金である請求項84に記載の方法。
  86.  還元剤が、水素、ギ酸又はギ酸アンモニウムである請求項84又は85に記載の方法。
  87.  一般式(XXII)
    Figure JPOXMLDOC01-appb-C000038

    [式中、Rは、低級アルキル基又は水素原子を示し、Rは、脂肪族アシル基又は芳香族アシル基を示し、Pは、1乃至3個の低級アルコキシ基で置換されていてもよいトリチル基を示し、nは、0乃至4の整数を示す。]で表される化合物又はその塩を製造する方法であって、
    (i)一般式(XXIII)
    Figure JPOXMLDOC01-appb-C000039

    [式中、P、R及びnは、前記と同意義を示す。]で表される化合物又はその塩を、溶媒中、水酸基の保護試薬と反応させ、3’位の水酸基を保護する工程、
    (ii)工程(i)で得られた一般式(XXIV)
    Figure JPOXMLDOC01-appb-C000040

    [式中、P、R及びnは、前記と同意義を示し、Zは、脂肪族アシル基又は芳香族アシル基を示す。]で表される化合物又はその塩を、溶媒中、塩基及び触媒存在下、活性化剤と反応させる工程、
    (iii)次いで、アミノ化剤と反応させることにより、一般式(XXV)
    Figure JPOXMLDOC01-appb-C000041

    [式中、P、R、Z及びnは、前記と同意義を示す。]で表される化合物又はその塩を得る工程、
    を含むことを特徴とする、方法。
  88.  Pが、トリチル基である請求項87に記載の方法。
  89.  Zが、アセチル基である請求項87又は88に記載の方法。
  90.  nが、1である請求項87乃至89のいずれか1項に記載の方法。
  91.  Rが、メチル基又は水素原子である請求項87乃至90のいずれか1項に記載の方法。
  92.  Rが、アセチル基又はベンゾイル基である請求項87乃至91のいずれか1項に記載の方法。
  93.  Rが、ベンゾイル基である請求項87乃至91のいずれか1項に記載の方法。
  94.  (iv)工程(iii)で得られた一般式(XXV)
    Figure JPOXMLDOC01-appb-C000042

    [式中、P、R、Z及びnは、前記と同意義を示す。]で表される化合物又はその塩を、溶媒中、アシル化剤と反応させる工程、
    (v)工程(iv)で得られた一般式(XXVI)
    Figure JPOXMLDOC01-appb-C000043

    [式中、P、R、R、Z及びnは、前記と同意義を示す。]で表される化合物又はその塩を、水酸基の脱保護試薬と反応させ、Zのみを脱保護することにより、一般式(XXII)
    Figure JPOXMLDOC01-appb-C000044

    [式中、P、R、R及びnは、前記と同意義を示す。]で表される化合物又はその塩を得る工程、
    を含む、請求項87乃至93のいずれか1項に記載の方法。
  95.  触媒が、N,N-ジメチルアミノピリジン又は1,8-ジアザビシクロ[5.4.0]ウンデカ-7-エンである請求項87乃至94のいずれか1項に記載の方法。
  96.  活性化剤が、p-トルエンスルホニルクロリド又は2,4,6-トリイソプロピルベンゼンスルホニルクロリドである請求項87乃至95のいずれか1項に記載の方法。
  97.  アミノ化剤が、アンモニア、アンモニア水溶液、炭酸アンモニウム又は酢酸アンモニウムである請求項87乃至96のいずれか1項に記載の方法。
  98.  アシル化剤が、ベンゾイルクロリド又は無水安息香酸である請求項94乃至97のいずれか1項に記載の方法。
  99.  一般式(XXVII)
    Figure JPOXMLDOC01-appb-C000045

    [式中、Pは、1乃至3個の低級アルコキシ基で置換されていてもよいトリチル基を示し、Bは、下記α群から選択される1又は2以上の置換基を有していてもよい2-オキソ-ピリミジン-1-イル基又はプリン-9-イル基を示し、nは、0乃至4の整数を示す。]で表される化合物又はその塩に、溶媒中、活性化剤及び乾燥剤の存在下、アミダイト化試薬を反応させ、
     一般式(XXVIII)
    Figure JPOXMLDOC01-appb-C000046

    [式中、P、B及びnは前記と同意義を示す。]で表される化合物又はその塩を製造する方法。
    (α群)
      水酸基、
      保護された水酸基、
      低級アルコキシ基、
      メルカプト基、
      保護されたメルカプト基、
      低級アルキルチオ基、
      アミノ基、
      保護されたアミノ基、
      低級アルキルアミノ基、
      低級アルキル基、及び、
      ハロゲン原子。
  100.  Pが、4,4’-ジメトキシトリチル基である請求項99に記載の方法。
  101.  Bが、2-オキソ-4-ヒドロキシ-5-メチルピリミジン-1-イル基、アミノ基が保護された2-オキソ-4-アミノ-ピリミジン-1-イル基、アミノ基が保護された4-アミノ-5-メチル-2-オキソ-ピリミジン-1-イル基、アミノ基が保護された6-アミノプリン-9-イル基又はアミノ基が保護された2-アミノ-6-ヒドロキシプリン-9-イル基である請求項99又は100に記載の方法。
  102.  Bが、2-オキソ-4-ヒドロキシ-5-メチルピリミジン-1-イル基、2-オキソ-4-ベンゾイルアミノ-ピリミジン-1-イル基、4-ベンゾイルアミノ-5-メチル-2-オキソ-ピリミジン-1-イル基、6-ベンゾイルアミノプリン-9-イル、2-イソブチリルアミノ-6-ヒドロキシプリン-9-イルである請求項99又は100に記載の方法。
  103.  nが、1である請求項99乃至102のいずれか1項に記載の方法。
  104.  活性化剤が、ピリジントリフルオロ酢酸塩、N-メチルイミダゾールトリフルオロ酢酸塩、N-イソプロピルイミダゾールトリフルオロ酢酸塩、5-ベンジルチオテトラゾール、5-フェニルテトラゾール、4,5-ジシアノイミダゾール又は2,4,5-テトラブロモイミダゾールである請求項99乃至103のいずれか1項に記載の方法。
  105.  活性化剤が、4,5-ジシアノイミダゾールである請求項99乃至103のいずれか1項に記載の方法。
  106.  アミダイト化試薬が、2-シアノエチルN,N,N’,N’-テトライソプロピルホスホロジアミダイト又は2-シアノエチルジイソプロピルクロロホスホロアミジトである請求項99乃至105のいずれか1項に記載の方法。
  107.  アミダイト化試薬が、2-シアノエチルN,N,N’,N’-テトライソプロピルホスホロジアミダイトである請求項99乃至105のいずれか1項に記載の方法。
  108.  乾燥剤が、モレキュラーシーブ3A、モレキュラーシーブ4A、又はモレキュラーシーブ5A、である請求項99乃至107のいずれか1項に記載の方法。
  109.  以下の工程を含むオリゴヌクレオチドの製造方法、
    (A)請求項99から108のいずれか1項に記載の方法によりENAモノマーを合成する工程、及び
    (B)工程(A)で得られたENAモノマー、他の核酸のホスホロアミダイト化合物及び/又は、リガンドのホスホロアミダイト化合物を用いて、所望の配列に応じてヌクレオチド鎖を伸長させる工程。
  110.  オリゴヌクレオチドが、以下のDMD AO01~DMD AO15から選択されるいずれか一つの式で表される配列からなることを特徴とする、請求項109に記載の方法、
    (DMD AO01) HO-Ce2s-Am1s-Gm1s-Te2s-Te2s-Um1s-Gm1s-Ce2s-Ce2s-Gm1s-Ce2s-Te2s-Gm1s-Ce2s-Ce2s-Ce2s-Am1s-Am1s-CH2CH2OH(配列番号1)
    (DMD AO02) HO-Te2s-Gm1s-Te2s-Te2s-Ce2s-Te2s-Gm1s-Am1s-Ce2s-Am1s-Am1s-Ce2s-Am1s-Gm1s-Te2s-Te2s-Te2s-Gm1s-CH2CH2OH(配列番号2)
    (DMD AO03) HO-Ce2s-Gm1s-Ce2s-Te2s-Gm1s-Cm1s-Ce2s-Ce2s-Am1s-Am1s-Te2s-Gm1s-Ce2s-Ce2s-Am1s-Um1s-Ce2s-Ce2s-CH2CH2OH(配列番号3)
    (DMD AO04) HO-Ce2s-Am1s-Te2s-Am1s-Am1s-Te2s-Gm1s-Am1s-Ae2s-Am1s-Am1s-Ce2s-Gm1s-Cm1s-Ce2s-Gm1s-Ce2s-Ce2s-CH2CH2OH(配列番号4)
    (DMD AO05) HO-Te2s-Um1s-Ce2s-Cm1s-Ce2s-Am1s-Am1s-Te2s-Um1s-Cm1s-Te2s-Ce2s-Am1s-Gm1s-Gm1s-Ae2s-Am1s-Te2s-CH2CH2OH(配列番号5)
    (DMD AO06) HO-Ce2s-Ce2s-Am1s-Um1s-Te2s-Um1s-Gm1s-Te2s-Am1s-Um1s-Te2s-Te2s-Am1s-Gm1s-Ce2s-Am1s-Te2s-Gm1s-CH2CH2OH(配列番号6)
    (DMD AO07) HO-Gm1s-Gm1s-Ce2s-Te2s-Gm1s-Cm1s-Te2s-Te2s-Um1s-Gm1s-Ce2s-Cm1s-Cm1s-Te2s-Ce2s-Am1s-Gm1s-Ce2s-CH2CH2OH(配列番号7) 
    (DMD AO08) HO-Gm1s-Ce2s-Te2s-Am1s-Gm1s-Gm1s-Te2s-Ce2s-Am1s-Gm1s-Gm1s-Te2s-Gm1s-Cm1s-Te2s-Te2s-Um1s-CH2CH2OH(配列番号8) 
    (DMD AO09) HO-Am1s-Ce2s-Ce2s-Gm1s-Cm1s-Ce2s-Te2s-Um1s-Cm1s-Ce2s-Am1s-Cm1s-Te2s-Ce2s-Am1s-Gm1s-Ae2s-Gm1s-CH2CH2OH;(配列番号9)
    (DMD AO10) HO-Ge2s-Ge2s-Ce2s-Ae2s-Te2s-Um1s-Um1s-Cm1s-Um1s-Am1s-Gm1s-Um1s-Um1s-Te2s-Ge2s-Ge2s-Ae2s-Ge2s-CH2CH2OH(配列番号10)
    (DMD AO11) HO-Gm1s-Gm1s-Ce2s-Am1s-Te2s-Te2s-Um1s-Ce2s-Te2s-Am1s-Gm1s-Um1s-Te2s-Te2s-Gm1s-Gm1s-Ae2s-Gm1s-CH2CH2OH(配列番号11)
    (DMD AO12) HO-Ae2s-Gm1s-Te2s-Um1s-Te2s-Gm1s-Gm1s-Ae2s-Gm1s-Am1s-Te2s-Gm1s-Gm1s-Ce2s-Ae2s-Gm1s-Te2s-Te2s-CH2CH2OH(配列番号12)
    (DMD AO13) HO-Ce2s-Te2s-Cm1s-Ce2s-Te2s-Um1s-Ce2s-Ce2s-Am1s-Te2s-Gm1s-Am1s-Ce2s-Te2s-Ce2s-Am1s-Am1s
    -Gm1s- CH2CH2OH(配列番号13)
    (DMD AO14) HO-Ce2s-Te2s-Gm1s-Am1s-Am1s-Gm1s-Gm1s-Te2s-Gm1s-Te2s-Te2s-Ce2s-Te2s-Te2s-Gm1s-Te2s-Am1s-
    Ce2s- CH2CH2OH(配列番号14)
    (DMD AO15) HO-Te2s-Te2s-Cm1s-Ce2s-Am1s-Gm1s-Ce2s-Ce2s-Am1s-Te2s-Te2s-Gm1s-Te2s-Gm1s-Te2s-Te2s-Gm1s
    -Am1s- CH2CH2OH(配列番号15)
    [上記式において、左側が5'末端、右側が3’末端を表し、A、G、C、U及びTは、それぞれD-リボフラノースが修飾され、5'位の炭素原子が左側に表示された構造単位とホスホロチオエート結合したアデノシン、グアノシン、シチジン、ウリジン及びチミジンを表す。各ヌクレオチドまたはヌクレオシドに付された、e2sはD-リボフラノースが2'-O,4'-C-エチレン架橋され、3'位が-OP(=S)(-OH)-O-で右側に隣接したヌクレオチドまたはヌクレオシドの5’位炭素原子と結合することを表し、e2tはD-リボフラノースが2'-O,4'-C-エチレン架橋され、3'位が-O-で3’末端の水素原子と結合することを表し、m1sはD-リボフラノースが2'-O-メチル化され、3'位が-OP(=S)(-OH)-O-で右側に隣接したヌクレオチドまたはヌクレオシドの5’位炭素原子と結合することを表し、m1tはD-リボフラノースが2'-O-メチル化され、3'位が-O-で3’末端の水素原子と結合することを表す。]
  111.  オリゴヌクレオチドが、以下のGSD AO01~GSD AO16から選択されるいずれか一つの式で表される配列からなり、リガンドが下記式のX18又はX20で表されることを特徴とする、請求項109に記載の方法、
    (GSD AO01) X18-Am1s-Ae2s-Um1s-Cm1s-Ce2s-Gm1s-Am1s-Te2s-Gm1s-Gm1s-Ce2s-Gm1s-Am1s-Ae2s-Gm1t-H(配列番号16)
    (GSD AO02) X18-Ae2s-Um1s-Cm1s-Ce2s-Gm1s-Am1s-Te2s-Gm1s-Gm1s-Ce2s-Gm1s-Am1s-Ae2s-Gm1s-Ce2t-H(配列番号17)
    (GSD AO03) X18-Um1s-Cm1s-Ce2s-Gm1s-Am1s-Te2s-Gm1s-Gm1s-Ce2s-Gm1s-Am1s-Ae2s-Gm1s-Ce2s-Um1t-H(配列番号18)
    (GSD AO04) X18-Am1s-Am1s-Ae2s-Um1s-Cm1s-Ce2s-Gm1s-Am1s-Te2s-Gm1s-Gm1s-Ce2s-Gm1s-Am1s-Ae2s-Gm1t-H(配列番号19)
    (GSD AO05) X18-Am1s-Ae2s-Um1s-Cm1s-Ce2s-Gm1s-Am1s-Te2s-Gm1s-Gm1s-Ce2s-Gm1s-Am1s-Ae2s-Gm1s-Ce2t-H(配列番号20)
    (GSD AO06) X18-Ae2s-Um1s-Cm1s-Ce2s-Gm1s-Am1s-Te2s-Gm1s-Gm1s-Ce2s-Gm1s-Am1s-Ae2s-Gm1s-Ce2s-Um1t-H(配列番号21)
    (GSD AO07) X18-Am1s-Ae2s-Um1s-Cm1s-Ce2s-Gm1s-Ae2s-Um1s-Gm1s-Gm1s-Ce2s-Gm1s-Am1s-Ae2s-Gm1t-H(配列番号22)
    (GSD AO08) X18-Ae2s-Um1s-Cm1s-Ce2s-Gm1s-Ae2s-Um1s-Gm1s-Gm1s-Ce2s-Gm1s-Am1s-Ae2s-Gm1s-Ce2t-H(配列番号23)
    (GSD AO09) X18-Um1s-Cm1s-Ce2s-Gm1s-Ae2s-Um1s-Gm1s-Gm1s-Ce2s-Gm1s-Am1s-Ae2s-Gm1s-Ce2s-Um1t-H(配列番号24)
    (GSD AO10) X18-Am1s-Am1s-Ae2s-Um1s-Cm1s-Ce2s-Gm1s-Ae2s-Um1s-Gm1s-Gm1s-Ce2s-Gm1s-Am1s-Ae2s-Gm1t-H(配列番号25)
    (GSD AO11) X18-Am1s-Ae2s-Um1s-Cm1s-Ce2s-Gm1s-Ae2s-Um1s-Gm1s-Gm1s-Ce2s-Gm1s-Am1s-Ae2s-Gm1s-Ce2t-H1(配列番号26)
    (GSD AO12) X18-Ae2s-Um1s-Cm1s-Ce2s-Gm1s-Ae2s-Um1s-Gm1s-Gm1s-Ce2s-Gm1s-Am1s-Ae2s-Gm1s-Ce2s-Um1t-H(配列番号27)
    (GSD AO13) X20-Am1s-Ae2s-Um1s-Cm1s-Ce2s-Gm1s-Ae2s-Um1s-Gm1s-Gm1s-Ce2s-Gm1s-Am1s-Ae2s-Gm1t-H(配列番号28)
    (GSD AO14) X20-Ae2s-Um1s-Cm1s-Ce2s-Gm1s-Ae2s-Um1s-Gm1s-Gm1s-Ce2s-Gm1s-Am1s-Ae2s-Gm1s-Ce2t-H(配列番号29)
    (GSD AO15) X20-Am1s-Am1s-Ae2s-Um1s-Cm1s-Ce2s-Gm1s-Ae2s-Um1s-Gm1s-Gm1s-Ce2s-Gm1s-Am1s-Ae2s-Gm1t-H(配列番号30)
    (GSD AO16) X20-Am1s-Ae2s-Um1s-Cm1s-Ce2s-Gm1s-Ae2s-Um1s-Gm1s-Gm1s-Ce2s-Gm1s-Am1s-Ae2s-Gm1s-Ce2t-H(配列番号31)
    [上記式において、左側が5'末端、右側が3’末端を表し、A、G、C、U及びTは、それぞれD-リボフラノースが修飾され、5'位の炭素原子が左側に表示された構造単位とホスホロチオエート結合したアデノシン、グアノシン、シチジン、ウリジン及びチミジンを表す。各ヌクレオチドまたはヌクレオシドに付された、e2sはD-リボフラノースが2'-O,4'-C-エチレン架橋され、3'位が-OP(=S)(-OH)-O-で右側に隣接したヌクレオチドまたはヌクレオシドの5’位炭素原子と結合することを表し、e2tはD-リボフラノースが2'-O,4'-C-エチレン架橋され、3'位が-O-で3’末端の水素原子と結合することを表し、m1sはD-リボフラノースが2'-O-メチル化され、3'位が-OP(=S)(-OH)-O-で右側に隣接したヌクレオチドまたはヌクレオシドの5’位炭素原子と結合することを表し、m1tはD-リボフラノースが2'-O-メチル化され、3'位が-O-で3’末端の水素原子と結合することを表す。
    上記式において、X18およびX20は、下記の式で表されるGalNAcユニットを表す。下記の式において、リン酸基に結合した結合手はオリゴヌクレオチドの5'末端の炭素原子に結合して、リン酸ジエステル結合を形成することを表す。]

    Figure JPOXMLDOC01-appb-C000047

      
    Figure JPOXMLDOC01-appb-C000048

      
PCT/JP2020/039050 2019-10-18 2020-10-16 二環性ホスホロアミダイトの製造方法 WO2021075538A1 (ja)

Priority Applications (8)

Application Number Priority Date Filing Date Title
CA3155028A CA3155028A1 (en) 2019-10-18 2020-10-16 Method for producing bicyclic phosphoramidite
KR1020227012762A KR20220083707A (ko) 2019-10-18 2020-10-16 2 고리성 포스포르아미다이트의 제조 방법
JP2021552461A JPWO2021075538A1 (ja) 2019-10-18 2020-10-16
BR112022007437A BR112022007437A2 (pt) 2019-10-18 2020-10-16 Método para a produção de fosforamidita bicíclica
IL292286A IL292286A (en) 2019-10-18 2020-10-16 Production method for bicyclic phosphoramidite
CN202080072429.5A CN114502565A (zh) 2019-10-18 2020-10-16 制造二环亚磷酰胺的方法
EP20877640.1A EP4047005A4 (en) 2019-10-18 2020-10-16 PROCESS FOR MANUFACTURING BICYCLIC PHOSPHORAMIDITE
US17/769,483 US20230348522A1 (en) 2019-10-18 2020-10-16 Method for producing bicyclic phosphoramidite

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019-191053 2019-10-18
JP2019191053 2019-10-18

Publications (1)

Publication Number Publication Date
WO2021075538A1 true WO2021075538A1 (ja) 2021-04-22

Family

ID=75538087

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/039050 WO2021075538A1 (ja) 2019-10-18 2020-10-16 二環性ホスホロアミダイトの製造方法

Country Status (10)

Country Link
US (1) US20230348522A1 (ja)
EP (1) EP4047005A4 (ja)
JP (1) JPWO2021075538A1 (ja)
KR (1) KR20220083707A (ja)
CN (1) CN114502565A (ja)
BR (1) BR112022007437A2 (ja)
CA (1) CA3155028A1 (ja)
IL (1) IL292286A (ja)
TW (1) TW202128704A (ja)
WO (1) WO2021075538A1 (ja)

Citations (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0787982A (ja) 1993-01-29 1995-04-04 Sankyo Co Ltd 修飾オリゴデオキシリボヌクレオチド
WO1998039352A1 (fr) 1997-03-07 1998-09-11 Takeshi Imanishi Nouveaux analogues de bicyclonucleoside et d'oligonucleotide
WO1998054198A1 (en) 1997-05-30 1998-12-03 Hybridon, Inc. Novel sulfur transfer reagents for oligonucleotide synthesis
WO1999014226A2 (en) 1997-09-12 1999-03-25 Exiqon A/S Bi- and tri-cyclic nucleoside, nucleotide and oligonucleotide analogues
WO2000047599A1 (fr) 1999-02-12 2000-08-17 Sankyo Company, Limited Nouveaux analogues de nucleosides et d'oligonucleotides
JP2001247596A (ja) * 2000-03-07 2001-09-11 Univ Nagoya オリゴヌクレオチド糖コンジュゲート、オリゴヌクレオチド糖コンジュゲートの製造方法
JP2002322192A (ja) * 2000-08-10 2002-11-08 Sankyo Co Ltd 2’−o,4’−c−架橋ヌクレオシドトリリン酸体
WO2003006475A2 (en) * 2001-07-12 2003-01-23 Santaris Pharma A/S Method for preparation of lna phosphoramidites
US6525191B1 (en) * 1999-05-11 2003-02-25 Kanda S. Ramasamy Conformationally constrained L-nucleosides
WO2004048570A1 (ja) 2002-11-25 2004-06-10 Nonprofit Organization Translational Research Organization Of Duchenne Muscular Dystrophy mRNA前駆体のスプライシングを修飾するENA核酸医薬
JP2010241836A (ja) * 2003-09-02 2010-10-28 Chiralgen Ltd ホスホネートヌクレオシド誘導体
WO2013052523A1 (en) * 2011-10-03 2013-04-11 modeRNA Therapeutics Modified nucleosides, nucleotides, and nucleic acids, and uses thereof
WO2013191129A1 (ja) 2012-06-18 2013-12-27 第一三共株式会社 ヌクレオシド類縁体の製造中間体及びその製造方法
WO2018049534A1 (en) * 2016-09-16 2018-03-22 Lcb Pharma Inc. Nucleoside and nucleotide analogues bearing a quaternary all-carbon stereogenic center at the 2' position and methods of use as a cardioprotective agent
WO2019172286A1 (ja) 2018-03-09 2019-09-12 第一三共株式会社 糖原病Ia型治療薬
WO2019224172A1 (en) * 2018-05-25 2019-11-28 Roche Innovation Center Copenhagen A/S Novel process for making allofuranose from glucofuranose

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DK2354148T3 (da) * 2002-02-13 2013-10-14 Takeshi Imanishi Nukleosidanaloger og oligonukleotiderivate omfattende nukleotidanalog deraf

Patent Citations (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0787982A (ja) 1993-01-29 1995-04-04 Sankyo Co Ltd 修飾オリゴデオキシリボヌクレオチド
WO1998039352A1 (fr) 1997-03-07 1998-09-11 Takeshi Imanishi Nouveaux analogues de bicyclonucleoside et d'oligonucleotide
WO1998054198A1 (en) 1997-05-30 1998-12-03 Hybridon, Inc. Novel sulfur transfer reagents for oligonucleotide synthesis
WO1999014226A2 (en) 1997-09-12 1999-03-25 Exiqon A/S Bi- and tri-cyclic nucleoside, nucleotide and oligonucleotide analogues
WO2000047599A1 (fr) 1999-02-12 2000-08-17 Sankyo Company, Limited Nouveaux analogues de nucleosides et d'oligonucleotides
US6525191B1 (en) * 1999-05-11 2003-02-25 Kanda S. Ramasamy Conformationally constrained L-nucleosides
JP2001247596A (ja) * 2000-03-07 2001-09-11 Univ Nagoya オリゴヌクレオチド糖コンジュゲート、オリゴヌクレオチド糖コンジュゲートの製造方法
JP2002322192A (ja) * 2000-08-10 2002-11-08 Sankyo Co Ltd 2’−o,4’−c−架橋ヌクレオシドトリリン酸体
WO2003006475A2 (en) * 2001-07-12 2003-01-23 Santaris Pharma A/S Method for preparation of lna phosphoramidites
WO2004048570A1 (ja) 2002-11-25 2004-06-10 Nonprofit Organization Translational Research Organization Of Duchenne Muscular Dystrophy mRNA前駆体のスプライシングを修飾するENA核酸医薬
JP2010241836A (ja) * 2003-09-02 2010-10-28 Chiralgen Ltd ホスホネートヌクレオシド誘導体
WO2013052523A1 (en) * 2011-10-03 2013-04-11 modeRNA Therapeutics Modified nucleosides, nucleotides, and nucleic acids, and uses thereof
WO2013191129A1 (ja) 2012-06-18 2013-12-27 第一三共株式会社 ヌクレオシド類縁体の製造中間体及びその製造方法
WO2018049534A1 (en) * 2016-09-16 2018-03-22 Lcb Pharma Inc. Nucleoside and nucleotide analogues bearing a quaternary all-carbon stereogenic center at the 2' position and methods of use as a cardioprotective agent
WO2019172286A1 (ja) 2018-03-09 2019-09-12 第一三共株式会社 糖原病Ia型治療薬
WO2019224172A1 (en) * 2018-05-25 2019-11-28 Roche Innovation Center Copenhagen A/S Novel process for making allofuranose from glucofuranose

Non-Patent Citations (12)

* Cited by examiner, † Cited by third party
Title
"Oligonucleotide Synthesis", 1984, OXFORD UNIVERSITYPRESS
BIOORGANIC MEDICINAL CHEMISTRY LETTERS, vol. 11, 2003, pages 2211 - 2226
BIOORGANIC MEDICINAL CHEMISTRY LETTERS, vol. 12, 2002, pages 73 - 76
BODEPUDI,V. ET AL.: "Synthesis of 2'-deoxy-7,8-dihydro-8-oxoguanosine and 2'- deoxy-7,8-dihydro-8-oxoadenosine and their incorporation into oligomeric DNA", CHEMICAL RESEARCH IN TOXICOLOGY, vol. 5, no. 5, 1992, pages 608 - 617, XP000923130, DOI: 10.1021/tx00029a004 *
CANER JOAQUIM, VILARRASA JAUME: "15N Double-Labeled Guanosine from Inosine through Ring- Opening-Ring-Closing and One-Pot Pd-Catalyzed C-0 and C-N Cross-Coupling Reactions", JOURNAL OF ORGANIC CHEMISTRY, vol. 75, no. 14, 16 July 2010 (2010-07-16), pages 4880 - 4883, XP055819067 *
J. AM. CHEM. SOC., vol. 112, 1990, pages 1253
KOIZUMI,M. ET AL.: "Improvement of single nucleotide polymorphism genotyping by allele-specific PCR using primers modified with an ENA residue", ANALYTICAL BIOCHEMISTRY, vol. 340, no. 2, 2005, pages 287 - 294, XP004853400, DOI: 10.1016/j.ab.2005.02.029 *
MITSUOKA,Y. ET AL.: "Triazole- and Tetrazole-Bridged Nucleic Acids: Synthesis, Duplex Stability, Nuclease Resistance, and in Vitro and in Vivo Antisense Potency", JOURNAL OF ORGANIC CHEMISTRY, vol. 82, no. 1, 2017, pages 12 - 24, XP055746327, DOI: 10.1021/acs.joc.6b02417 *
NUCLEIC ACIDS RESEARCH, vol. 12, 1984, pages 4539
See also references of EP4047005A4
TETRAHEDRON LETTERS, vol. 32, 1991, pages 3005
THEODORA W GREENE; PETER G M WUTS: "Protective Groups in Organic Synthesis 3rd Ed", PROTECTING GROUPS IN ORGANIC SYNTHESIS, 1999, pages 1 - 779, XP055487773 *

Also Published As

Publication number Publication date
IL292286A (en) 2022-06-01
EP4047005A4 (en) 2024-03-06
TW202128704A (zh) 2021-08-01
KR20220083707A (ko) 2022-06-20
EP4047005A1 (en) 2022-08-24
CA3155028A1 (en) 2021-04-22
JPWO2021075538A1 (ja) 2021-04-22
US20230348522A1 (en) 2023-11-02
BR112022007437A2 (pt) 2022-10-11
CN114502565A (zh) 2022-05-13

Similar Documents

Publication Publication Date Title
JP4151751B2 (ja) 新規ビシクロヌクレオシド類縁体
Mansuri et al. Preparation of 1-(2, 3-dideoxy-. beta.-D-glycero-pent-2-enofuranosyl) thymine (d4T) and 2', 3'-dideoxyadenosine (ddA): general methods for the synthesis of 2', 3'-olefinic and 2', 3'-dideoxy nucleoside analogs active against HIV
EP0646125B1 (en) 1,5-anhydrohexitol nucleoside analogues and pharmaceutical use thereof
JP5030998B2 (ja) ヌクレオシド類縁体およびそのヌクレオチド類縁体を含むオリゴヌクレオチド誘導体
US8859755B2 (en) Method for preparing ribonucleoside phosphorothioate
CN108137638B (zh) 桥连型核酸GuNA、其制造方法及中间体化合物
US7582748B2 (en) Methods of manufacture of 2′-deoxy-β-L-nucleosides
JP5685526B2 (ja) ヌクレオシドの製造方法
WO2009115893A2 (en) Novel nucleoside derivatives
WO2000056746A2 (en) Improved synthesis of [2.2.1]bicyclo nucleosides
CN101541818A (zh) 4’-叠氮基胞苷衍生物的制备方法
EP0342203A1 (en) 2 ', 3' DIDESOXYRIBOFURANNE OXIDE DERIVATIVES.
CA2610484A1 (en) Methods for the preparation of 9-deazapurine derivatives
MXPA05006865A (es) Proceso para la produccion de profarmacos 3'-nucleosidos.
CN116003496A (zh) 经修饰的mRNA5`-帽类似物
WO2009061894A1 (en) Novel synthesis of beta-nucleosides
EP0362967B1 (en) Nucleoside derivatives
WO2021075538A1 (ja) 二環性ホスホロアミダイトの製造方法
KR20180134374A (ko) 2'-플루오로-6'-메틸렌-탄소환식 아데노신(fmca) 및 2'-플루오로-6'-메틸렌-탄소환식 구아노신(fmcg)의 합성
CN115151555A (zh) 桥连型核苷和使用了该桥连型核苷的核苷酸
CN115135663A (zh) 固相支持物上的寡核苷酸合成
JPWO2003068794A1 (ja) 核酸糖部をs型に束縛したヌクレオシド類縁体およびそのヌクレオチド類縁体を含むオリゴヌクレオチド誘導体

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20877640

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021552461

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 3155028

Country of ref document: CA

NENP Non-entry into the national phase

Ref country code: DE

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112022007437

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 2020877640

Country of ref document: EP

Effective date: 20220518

REG Reference to national code

Ref country code: BR

Ref legal event code: B01E

Ref document number: 112022007437

Country of ref document: BR

Free format text: APRESENTAR, EM ATE 60 (SESSENTA) DIAS, TRADUCAO COMPLETA DO PEDIDO, ADAPTADA A NORMA VIGENTE, CONFORME CONSTA NO DEPOSITO INTERNACIONAL INICIAL PCT/JP2020/039050 DE 16/10/2020, POIS A MESMA NAO FOI APRESENTADA ATE O MOMENTO.

ENP Entry into the national phase

Ref document number: 112022007437

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20220418