WO2021073992A1 - Elektrisch dimmbare verscheibung - Google Patents

Elektrisch dimmbare verscheibung Download PDF

Info

Publication number
WO2021073992A1
WO2021073992A1 PCT/EP2020/078210 EP2020078210W WO2021073992A1 WO 2021073992 A1 WO2021073992 A1 WO 2021073992A1 EP 2020078210 W EP2020078210 W EP 2020078210W WO 2021073992 A1 WO2021073992 A1 WO 2021073992A1
Authority
WO
WIPO (PCT)
Prior art keywords
layers
layer
composite
polycarbonate
conductive
Prior art date
Application number
PCT/EP2020/078210
Other languages
English (en)
French (fr)
Other versions
WO2021073992A8 (de
Inventor
Rainer Hagen
Andreas Klein
Original Assignee
Covestro Intellectual Property Gmbh & Co. Kg
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Covestro Intellectual Property Gmbh & Co. Kg filed Critical Covestro Intellectual Property Gmbh & Co. Kg
Priority to JP2022522800A priority Critical patent/JP2022552550A/ja
Priority to EP20807286.8A priority patent/EP4045313A1/de
Priority to CN202080072158.3A priority patent/CN114514116A/zh
Priority to US17/767,102 priority patent/US20220363045A1/en
Priority to KR1020227012066A priority patent/KR20220079856A/ko
Publication of WO2021073992A1 publication Critical patent/WO2021073992A1/de
Publication of WO2021073992A8 publication Critical patent/WO2021073992A8/de

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B17/00Layered products essentially comprising sheet glass, or glass, slag, or like fibres
    • B32B17/06Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material
    • B32B17/10Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin
    • B32B17/10005Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing
    • B32B17/10165Functional features of the laminated safety glass or glazing
    • B32B17/10174Coatings of a metallic or dielectric material on a constituent layer of glass or polymer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/02Physical, chemical or physicochemical properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B37/00Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding
    • B32B37/02Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding characterised by a sequence of laminating steps, e.g. by adding new layers at consecutive laminating stations
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29DPRODUCING PARTICULAR ARTICLES FROM PLASTICS OR FROM SUBSTANCES IN A PLASTIC STATE
    • B29D11/00Producing optical elements, e.g. lenses or prisms
    • B29D11/0073Optical laminates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29DPRODUCING PARTICULAR ARTICLES FROM PLASTICS OR FROM SUBSTANCES IN A PLASTIC STATE
    • B29D11/00Producing optical elements, e.g. lenses or prisms
    • B29D11/0074Production of other optical elements not provided for in B29D11/00009- B29D11/0073
    • B29D11/00788Producing optical films
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B17/00Layered products essentially comprising sheet glass, or glass, slag, or like fibres
    • B32B17/06Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material
    • B32B17/10Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin
    • B32B17/10005Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B17/00Layered products essentially comprising sheet glass, or glass, slag, or like fibres
    • B32B17/06Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material
    • B32B17/10Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin
    • B32B17/10005Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing
    • B32B17/10009Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing characterized by the number, the constitution or treatment of glass sheets
    • B32B17/10036Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing characterized by the number, the constitution or treatment of glass sheets comprising two outer glass sheets
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B17/00Layered products essentially comprising sheet glass, or glass, slag, or like fibres
    • B32B17/06Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material
    • B32B17/10Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin
    • B32B17/10005Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing
    • B32B17/10165Functional features of the laminated safety glass or glazing
    • B32B17/10431Specific parts for the modulation of light incorporated into the laminated safety glass or glazing
    • B32B17/10467Variable transmission
    • B32B17/10495Variable transmission optoelectronic, i.e. optical valve
    • B32B17/10504Liquid crystal layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/06Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B27/08Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/16Layered products comprising a layer of synthetic resin specially treated, e.g. irradiated
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/18Layered products comprising a layer of synthetic resin characterised by the use of special additives
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/30Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers
    • B32B27/308Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers comprising acrylic (co)polymers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/36Layered products comprising a layer of synthetic resin comprising polyesters
    • B32B27/365Layered products comprising a layer of synthetic resin comprising polyesters comprising polycarbonates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B33/00Layered products characterised by particular properties or particular surface features, e.g. particular surface coatings; Layered products designed for particular purposes not covered by another single class
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/02Physical, chemical or physicochemical properties
    • B32B7/023Optical properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/02Physical, chemical or physicochemical properties
    • B32B7/025Electric or magnetic properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/04Interconnection of layers
    • B32B7/08Interconnection of layers by mechanical means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/04Interconnection of layers
    • B32B7/12Interconnection of layers using interposed adhesives or interposed materials with bonding properties
    • EFIXED CONSTRUCTIONS
    • E06DOORS, WINDOWS, SHUTTERS, OR ROLLER BLINDS IN GENERAL; LADDERS
    • E06BFIXED OR MOVABLE CLOSURES FOR OPENINGS IN BUILDINGS, VEHICLES, FENCES OR LIKE ENCLOSURES IN GENERAL, e.g. DOORS, WINDOWS, BLINDS, GATES
    • E06B3/00Window sashes, door leaves, or like elements for closing wall or like openings; Layout of fixed or moving closures, e.g. windows in wall or like openings; Features of rigidly-mounted outer frames relating to the mounting of wing frames
    • E06B3/66Units comprising two or more parallel glass or like panes permanently secured together
    • E06B3/67Units comprising two or more parallel glass or like panes permanently secured together characterised by additional arrangements or devices for heat or sound insulation or for controlled passage of light
    • E06B3/6715Units comprising two or more parallel glass or like panes permanently secured together characterised by additional arrangements or devices for heat or sound insulation or for controlled passage of light specially adapted for increased thermal insulation or for controlled passage of light
    • E06B3/6722Units comprising two or more parallel glass or like panes permanently secured together characterised by additional arrangements or devices for heat or sound insulation or for controlled passage of light specially adapted for increased thermal insulation or for controlled passage of light with adjustable passage of light
    • EFIXED CONSTRUCTIONS
    • E06DOORS, WINDOWS, SHUTTERS, OR ROLLER BLINDS IN GENERAL; LADDERS
    • E06BFIXED OR MOVABLE CLOSURES FOR OPENINGS IN BUILDINGS, VEHICLES, FENCES OR LIKE ENCLOSURES IN GENERAL, e.g. DOORS, WINDOWS, BLINDS, GATES
    • E06B9/00Screening or protective devices for wall or similar openings, with or without operating or securing mechanisms; Closures of similar construction
    • E06B9/24Screens or other constructions affording protection against light, especially against sunshine; Similar screens for privacy or appearance; Slat blinds
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1334Constructional arrangements; Manufacturing methods based on polymer dispersed liquid crystals, e.g. microencapsulated liquid crystals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2250/00Layers arrangement
    • B32B2250/033 layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2250/00Layers arrangement
    • B32B2250/044 layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2250/00Layers arrangement
    • B32B2250/24All layers being polymeric
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2250/00Layers arrangement
    • B32B2250/40Symmetrical or sandwich layers, e.g. ABA, ABCBA, ABCCBA
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2255/00Coating on the layer surface
    • B32B2255/10Coating on the layer surface on synthetic resin layer or on natural or synthetic rubber layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2255/00Coating on the layer surface
    • B32B2255/20Inorganic coating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2255/00Coating on the layer surface
    • B32B2255/20Inorganic coating
    • B32B2255/205Metallic coating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2255/00Coating on the layer surface
    • B32B2255/26Polymeric coating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2305/00Condition, form or state of the layers or laminate
    • B32B2305/55Liquid crystals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/20Properties of the layers or laminate having particular electrical or magnetic properties, e.g. piezoelectric
    • B32B2307/202Conductive
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/30Properties of the layers or laminate having particular thermal properties
    • B32B2307/306Resistant to heat
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/40Properties of the layers or laminate having particular optical properties
    • B32B2307/412Transparent
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/40Properties of the layers or laminate having particular optical properties
    • B32B2307/42Polarizing, birefringent, filtering
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/50Properties of the layers or laminate having particular mechanical properties
    • B32B2307/538Roughness
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/50Properties of the layers or laminate having particular mechanical properties
    • B32B2307/584Scratch resistance
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/70Other properties
    • B32B2307/71Resistive to light or to UV
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/70Other properties
    • B32B2307/714Inert, i.e. inert to chemical degradation, corrosion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/70Other properties
    • B32B2307/732Dimensional properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2369/00Polycarbonates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2457/00Electrical equipment
    • B32B2457/20Displays, e.g. liquid crystal displays, plasma displays
    • B32B2457/202LCD, i.e. liquid crystal displays
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2605/00Vehicles
    • B32B2605/006Transparent parts other than made from inorganic glass, e.g. polycarbonate glazings
    • EFIXED CONSTRUCTIONS
    • E06DOORS, WINDOWS, SHUTTERS, OR ROLLER BLINDS IN GENERAL; LADDERS
    • E06BFIXED OR MOVABLE CLOSURES FOR OPENINGS IN BUILDINGS, VEHICLES, FENCES OR LIKE ENCLOSURES IN GENERAL, e.g. DOORS, WINDOWS, BLINDS, GATES
    • E06B9/00Screening or protective devices for wall or similar openings, with or without operating or securing mechanisms; Closures of similar construction
    • E06B9/24Screens or other constructions affording protection against light, especially against sunshine; Similar screens for privacy or appearance; Slat blinds
    • E06B2009/2464Screens or other constructions affording protection against light, especially against sunshine; Similar screens for privacy or appearance; Slat blinds featuring transparency control by applying voltage, e.g. LCD, electrochromic panels
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2202/00Materials and properties
    • G02F2202/28Adhesive materials or arrangements

Definitions

  • the present invention relates to a specific multilayer composite which is suitable as a component of liquid crystal devices and which contains, inter alia, two specific polycarbonate layers.
  • the present invention also relates to a method for producing the multilayer composite.
  • the present invention also relates to a liquid crystal device comprising a multilayer composite according to the present invention, a method for its production and its use as building glazing, in automobile glasses, as a headlight cover, in optical filters, in shutters, in flat screens, in glazed advertising devices , in partitions of trains and in point-of-interest devices.
  • Intelligent glazing (“Smart Glasses”), the light permeability of which changes when an electrical voltage is applied, is known. Depending on the design, these glasses can, for example, serve as sun protection (glass is colored and remains transparent) or act as a privacy screen (glass becomes translucent).
  • the areas of application range, for example, from building glazing for windows and doors, partition walls in trains, automobile glazing, headlight covers, optical filters and shutters, flat screens, to advertisements for advertising and points of interest.
  • WO 92/12219 A1 describes a technology based on polymer-dispersed liquid crystals (PDLC) which does not require a polarization filter.
  • PDLC polymer-dispersed liquid crystals
  • nematic liquid crystals are dispersed in a UV-curing polymer film, so that an emulsion with tiny liquid crystal droplets is created, which can be inserted between preferably transparent polymer films equipped with flat electrodes.
  • an electrical voltage is applied to the electrodes, the liquid crystal molecules orient themselves along the field lines, which leads to a transparent state, while the molecules orientate themselves to the droplet surfaces without a field, which leads to light scattering, ie a translucent state of the film composite.
  • the electrical switching voltage is included greater than or equal to 15 volts.
  • EP 0927753 A1 describes a backward switching PDLC technology, also referred to as liquid crystal dispersed polymer (LCDP), which has a polymer drop morphology instead of the liquid crystal drop morphology just described. It is characterized by a transparent “off” state (no electric field applied) and a translucent “on” state (electric field is applied).
  • PDLC technologies use conductive coated glasses or foils as substrates. Foils are easier to handle and are therefore preferred.
  • WO2019020298 A1 also describes a layer structure for use in a vehicle window, the transparency of which can be changed by applying an electrical voltage, in particular can be switched between a transparent state and a cloudy or opaque state by applying a voltage.
  • ITO layer This makes processing more difficult and carries the risk of thermal or mechanical fractures in the ITO layer.
  • interrupted ITO electrodes lead to inhomogeneous voltage distributions and field lines, which in turn lead to fluctuations in transmission, i.e. visible spots in the PDLC pane.
  • No. 4,963,206 describes a switchable element with an alternative conductive layer made of conjugated conductive polymer.
  • polymers are mechanically more robust and Less brittle than vapor-deposited metal oxide layers such as ITO.
  • conductive polymers tend to have higher surface resistances. Polymers also tend to build up space charges at elevated temperatures, which can reduce conductivity.
  • conductive polymers show a slight coloration in the visible spectral range. Because of these problems, they have so far not caught on in optical applications.
  • the object of the present invention was to provide a multilayer composite for a liquid crystal device or this itself, which is relatively easy to manufacture commercially, provides good quality, is suitable for optical applications and has a low sheet resistance.
  • the multilayer composite for a liquid crystal device or this itself should have a high degree of constancy in the specular transmission over the active surface in all switching states or voltage levels.
  • the conductive layers of the composite are ITO or IMITO (index-matched indium tin oxide) layers. These conductive layers are transparent and electrically conductive.
  • the invention relates to a multilayer composite with a sandwich structure, which is suitable as a component of liquid crystal devices, comprising or consisting of: a core layer that either consists of a polymer matrix in which nematic liquid crystals are dispersed, or a liquid crystal matrix in which Polymers are dispersed, consists; two conductive layers which are each arranged on a surface of the core layer and thus enclose it, the conductive layers being transparent and electrically conductive; two polycarbonate layers which are each arranged on that surface of the conductive layers which faces away from the core layer and which each have a clear hard coat coating (Engl clear hard coat) on the side facing the core layer and the polycarbonate layers are transparent.
  • a core layer that either consists of a polymer matrix in which nematic liquid crystals are dispersed, or a liquid crystal matrix in which Polymers are dispersed, consists
  • two conductive layers which are each arranged on a surface of the core layer and thus enclose it, the conductive layers being
  • the invention relates to a method for producing a multi-layer composite according to the present invention, comprising or consisting of the steps:
  • the present invention relates to a liquid crystal device comprising a multilayer composite according to the present invention, which is arranged between two panes, the conductive layers being connected to a voltage source.
  • the present invention relates to a method for producing a liquid crystal device according to the present invention, comprising or consisting of the steps:
  • the present invention relates to the use of the liquid crystal device according to the present invention as building glazing, in automobile glasses, as a headlight cover, in optical filters, in shutters, in flat screens, in glazed advertising devices, in partition walls of trains and in point of -Interest fixtures.
  • numeric ranges given in the format "in / from x to y" include the stated values. If several preferred numeric ranges are given in this format, it is understood that all ranges created by the combination of the various endpoints are also recorded.
  • an object for example a layer, a film, a composite or a device, is regarded as transparent if the transmission Ty is at least 75%, preferably at least 80%, more preferably at least 85%, particularly preferably at least 88 % and, in addition, the haze is less than 5% and preferably less than 3.5%.
  • the transmission Ty is determined according to ISO 13468-2: 2006-07 (D65, 10 °).
  • the haze is determined according to ASTM D1003: 2013. If the transmission is less than 75% or the haze is more than 5%, the object is regarded as not transparent.
  • the determination of the Transparency and transmission of course carried out in the state of the core layer in which it should have transparency. That is, in the case of a core layer of the PDLC type, with the voltage applied, and in the case of the LCDP type, in the absence of voltage.
  • a multilayer composite with a sandwich structure which is suitable as a component of liquid crystal devices, comprising or consisting of: a core layer which either consists of a polymer matrix in which nematic liquid crystals are dispersed, or a liquid crystal matrix in which polymers are dispersed, consists; two conductive layers which are each arranged on a surface of the core layer and thus enclose it, the conductive layers being transparent and electrically conductive; two polycarbonate layers, which are each arranged on that surface of the conductive layers which faces away from the core layer and which each have a clear hard coat on the side facing the core layer and wherein the polycarbonate layers are transparent; and optionally two antiblock hard layers, each of which is arranged on the surface of the polycarbonate layers which faces away from the core layer, the antiblock hard layers being transparent; and / or two adhesive layers, which are each arranged on that surface of the polycarbonate layers or, if present, of the antiblock hard layers which faces away from the core layer,
  • (ii) has a polymer matrix which is produced from UV-curable polymerizable monomers, preferably from urethane-acrylic or epoxy; and or (iii) has liquid crystals selected from one of the classes of nematic, smectic, ferroelectric or organometallic mesogens, including the class of polymerizable liquid crystals;
  • ITO indium tin oxide, In 2-x Sn x O 3
  • IMITO index-matched indium tin oxide
  • tin oxide or Gallium-doped tin oxide consist, preferably ITO or IMITO, more preferably IMITO;
  • (i) have a thickness of 90 to 1000 ⁇ m, preferably 125 to 375 ⁇ m; and or
  • a clear hard-layer coating which is a lacquer coating, preferably a scratch-resistant lacquer coating, more preferably consisting of a silicon-oxide layer, which optionally has an underlayer of organosiloxanes, acrylates or has polyolefins, which acts as an adhesive layer to the polycarbonate layer, and which preferably has a thickness of less than 10 ⁇ m, preferably from 3 to 5 ⁇ m; and or
  • (viii) have a Vicat softening temperature of 145 to 160 ° C, preferably 150 to 160 ° C, determined according to the test method ISO 306: 2014-03 and the method B50
  • (ix) have a melting range of 220 to 230 ° C;
  • (x) have a burning rate of ⁇ 100 mm / min, determined according to the test method US-FMVSS 302.
  • (i) have a thickness of 0.5 to 12 ⁇ m, preferably 2 to 8 ⁇ m; and or
  • (iii) consist of silicon oxide layers mixed with silica or wax additives such as paraffin waxes.
  • a method for producing a multilayer composite according to the present invention comprising or consisting of the steps:
  • step (iv) optionally applying two antiblock hard layers, if not already included in step (i), to the two surfaces of the third composite in order to obtain a fourth composite;
  • Polymer-dispersed liquid crystal device comprising a multilayer composite according to the present invention, which is arranged between two panes, the conductive layers being connected to a voltage source; the panes preferably consist of polycarbonate, polymethyl methacrylate or glass. 8.
  • the multilayer composite of the present invention is in a so-called sandwich structure. That is, a core layer, which can change its transparency by applying voltage, is symmetrically surrounded by at least two conductive layers and two polycarbonate layers.
  • the core layer is a layer known in the art and commercially available which either consists of a polymer matrix in which nematic liquid crystals are dispersed or which consists of a liquid crystal matrix in which polymers are dispersed and which is suitable for use in Liquid crystal devices described ben is suitable.
  • the core layer is therefore able to change its transparency when an electrical voltage is applied.
  • This layer also known as liquid crystal material, is described, for example, in H. Sun et. al. “Dye-Doped Electrically Smart Windows Based on Polymer-Stabilized Liquid Crystal”, Polymers 2019, 11, pages 694ff; EP 0927753 A1 and WO 92/11219 A1.
  • Polymerizable liquid crystals suitable for the present invention are also described in US 2019/071605 A1. Furthermore, mesogens suitable for the present invention are also described, for example, in WO 95/01410. They are also commercially available, for example, under the trade name Lixon® from JNC Corporation. Both PDLC (ie a polymer matrix with dispersed nematic liquid crystals) and LCDP (ie a liquid crystal matrix with dispersed polymers) liquid crystal materials are suitable in the present invention.
  • PDLC ie a polymer matrix with dispersed nematic liquid crystals
  • LCDP ie a liquid crystal matrix with dispersed polymers
  • the core layer preferably has a thickness of 100 to 200 ⁇ m. It is further preferred that for a PDLC core layer a transmission Ty of at least 86%, preferably at least 87%, when voltage is applied; and / or has a haze of less than 2%, preferably less than 1%, when voltage is applied. It is further preferred that for an LCDP core layer a transmission Ty of at least 86%, preferably at least 87%, in the absence of voltage; and / or has a haze of less than 2%, preferably less than 1%, in the absence of tension.
  • the conductive layer is a transparent and electrically conductive layer. This preferably has a specific sheet resistance less than 100 ohms, preferably less than 90 ohms, for example determined by the four-point measurement according to Van der Pauw or by optical transmission and / or reflection measurements in the visible and infra red labor length range based on a calibration curve that shows the relationship between the optical spectrum and the sheet resistance produced by a physical model.
  • the conductive layer preferably has a transmission Ty of at least 86%, preferably at least 87%; and / or a haze of less than 2%, preferably less than 1%.
  • Suitable materials for the conductive layer are in particular ITO (indium tin oxide, In 2-x Sn x O 3 ), preferably with a tin content of up to 25% by weight, more preferably 20% by weight, IMITO (index-matched indium tin oxide ), Tin oxide or gallium-doped tin oxide, particularly preferably ITO or IMITO, most preferably IMITO. These materials are also known to the person skilled in the art and are commercially available. If it's a IMITO layer acts so that the index-matched layer contained in the conductive layer in the composite is turned away from the core layer.
  • ITO indium tin oxide, In 2-x Sn x O 3
  • IMITO index-matched indium tin oxide
  • Tin oxide or gallium-doped tin oxide particularly preferably ITO or IMITO, most preferably IMITO.
  • the polycarbonate layer is a transparent layer and has a clear hard coat on one side.
  • This clear hard-layer coating is preferably a lacquer layer, in particular a scratch-resistant lacquer layer.
  • the lacquer layer is preferably based on silicone or acrylic, in particular silicone.
  • the clear hard-layer coating is applied, for example, in the flow coating process with thermal curing or UV curing.
  • the polycarbonate layer preferably has a thickness of 90 to 1000 ⁇ m and the clear hard layer coating contained therein has a thickness of less than 10 ⁇ m, particularly preferably from 3 to 5 ⁇ m.
  • the special polycarbonate layer acts as a planarizer for the conductive layer and thus the excellent transparency of the composite can be achieved. There is little or no distortion of an image when viewed with the eye or camera. Thicknesses of less than 10 ⁇ m have proven particularly suitable for the clear hard-layer coating.
  • the polycarbonate layers can preferably be extruded polycarbonate layers to which the clear hard-layer coating is subsequently applied.
  • amorphous polycarbonate is preferred.
  • the polycarbonate layer preferably has a softening temperature of 150 to 160.degree. C. and / or a melting range of 220 to 230.degree.
  • the polycarbonate layer preferably has a transmission Ty of at least 86%, preferably at least 87%; and / or a turbidity of less than 2%, preferably less than 1%.
  • a commercially available example is Makrofol® HS340 G-l 020010 from Covestro AG.
  • the commercially available polycarbonate layers also referred to as films
  • the polycarbonate layers described above can preferably withstand a brief thermal load, for example up to one minute, of 135 ° to 140 ° C. Due to the presence of the clear hard-layer coating, the coated side is scratch-resistant, chemical-resistant and protects against UV radiation. Furthermore, the polycarbonate layer has very good electrical insulation and very good dielectric properties. you are Generally good mechanical strength and can be printed on the unpainted side.
  • the multilayer composite can also optionally have two antiblock hard layers and / or two adhesive layers, which are also transparent.
  • the antiblock hard layer preferably has a low coefficient of friction and / or a fine particle distribution.
  • Antiblock hard layers are commercially available and consist of silicon oxide layers mixed with silica or wax additives such as paraffin waxes.
  • the antiblock hard layer preferably has a transmission Ty of at least 86%, preferably at least 87%; and / or a turbidity of less than 2%, preferably less than 1%.
  • the antiblock hard layer can already be present on the polycarbonate layer or can later be applied to a sandwich composite of core layer, conductive layers and polycarbonate layers on both polycarbonate layers, on the side facing away from the core layer.
  • Suitable polycarbonate layers which already have an antiblock hard layer are described, for example, in WO 2015/044275 A1.
  • Suitable optional adhesive layers are known to the person skilled in the art and are obtained, for example, from adhesive-producing solvents, adhesive varnishes or reactive adhesives.
  • the multilayer composite of the present invention is produced by applying a conductive layer to a polycarbonate layer, the conductive layer being applied to the side of the polycarbonate layer with a clear hard coat, preferably by means of cathode sputtering reactive thermal evaporation or sol-gel process to obtain a first composite.
  • the core layer is applied to the conductive layer of a first composite by means of a doctor blade, casting or printing in order to obtain a second composite.
  • a further first composite is applied to the second composite on this composite, the conductive layer of the first composite being applied to the second composite by means of lamination, pressing or lamination, in particular in conjunction with UV curing, in order to obtain a third composite.
  • two antiblock hard layers and / or two adhesive layers can be applied.
  • the composite can optionally be overmolded or backmolded using the injection molding process.
  • the present invention further comprises a liquid crystal device comprising a multilayer composite according to the present invention, which is arranged between two panes, the conductive layers being connected to a voltage source; the panes preferably consist of polycarbonate, polymethyl methacrylate or glass.
  • the liquid crystal device is produced by attaching two panes, one pane each to one side of the multilayer composite according to the present invention, the attachment preferably being gluing and / or the panes consisting of polycarbonate, polymethyl methacrylate or glass.
  • Suitable adhesives are adhesive solvents, adhesive varnishes or reactive adhesives.
  • heat and / or pressure can be used to enable bonding, in particular an ultrasound method.
  • the liquid crystal device can be used in particular as building glazing, in automobile glasses, in particular mirrors and panes, as headlight covers, in optical filters, in shutters, in flat screens, in glazed advertising devices and in point-of-interest devices.
  • LDCP liquid crystal devices are particularly preferred in automobile glasses, since these should mostly be transparent and the LDCP technology is therefore energy-saving.
  • Example 1 (according to the invention):
  • a polycarbonate film of the commercially available Makrofol® HS340 Gl 020010 type produced by Covestro GmbH AG was used, which is provided with a high-gloss hard layer of silicon oxide on one side (front side) and on the opposite side (Back) is shiny.
  • This 385 ⁇ m thick film (test method ISO 4593: 1993-11) was used as rolled goods and coated on the front with indium tin oxide (ITO) in a sputtering process.
  • the resistance of the ITO layer was (90 ⁇ 5) W / D.
  • the film produced in this way was cut into sheets, that is to say sheet goods, in a format of approx. 200 mm x 300 mm.
  • PC-ITO sheets for short - in the singular "PC ITO sheets”.
  • PC-ITO sheets Two such PC-ITO sheets according to this example 1 were used below as substrates for the test specimen according to the multilayer composite according to the invention.
  • PDLC paste polymer-dispersed liquid crystal paste
  • Process for the production of encapsulated liquid crystals and production of a closed PDLC layer on a carrier material have been described above and have been used here.
  • FIG. 1 shows the schematic structure of a multilayer structure according to the invention (not to scale). There are:
  • the total thickness of the multilayer composite according to the invention obtained in this way was 920 to 930 ⁇ m as measured with the micrometer screw.
  • wires were attached to an outer edge by means of metal spring clips, one per PC-ITO sheet.
  • the second PC-ITO sheet is lifted briefly with the scalpel, ie the composite on the PDLC layer 14 is separated, and approx. 1 cm 2 is cut away from the edge of this second PC-ITO sheet.
  • the ITO layer 13a of the first PC-ITO sheet could be contacted with the spring clip.
  • the electrical contact is better if the PDLC layer 14 is mechanically rubbed over the ITO.
  • the same procedure is followed for contacting the ITO layer 14a of the second PC-ITO sheet; part of the first PC-ITO sheet is cut away.
  • the second contact with the second electrode can thus be established.
  • the two contacts are, for example, a few centimeters apart, but on the same edge of the multilayer composite. In this way, it was possible to apply electrical fields to the PDLC via its two adjacent electrically conductive ITO layers according to the principle of a plate capacitor.
  • Another cutting of the multi-layer composite according to the invention thus obtained was necessary for the measurement in the probe chambers of the optical measuring devices and was achieved by cutting with scissors.
  • a test specimen in accordance with the multilayer composite according to the invention was obtained.
  • test specimen according to the multilayer composite according to the invention has a high turbidity in the normal state of 97.26% and a high transmission of 88.87% with at the same time low residual turbidity of 4.0% in the switched state.
  • Example 2 In comparison to the multilayer composite according to the invention from Example 1, a test specimen made from the commercially available PET-ITO layer composite TL42 from OPAK Smart Glas GmbH was used.
  • the PET-ITO layer composite TL42 has a
  • the two carrier films are 188 ⁇ m thick PET with an ITO layer.
  • the respective ITO layers of the two carrier films of the PET-ITO layer composite TL42 are arranged directly on the PDLC layer, so the ITO layers of the two carrier films of the PET-ITO layer composite TL42 were only separated from one another by the PDLC layer .
  • FIG. 2 shows the schematic structure of the PET-ITO layer composite TL42 (not true to scale). There are:
  • test body comparative sample
  • PET-ITO layer composite not according to the invention
  • the comparison sample has a high haze in the normal state of 97.26%. This is identical to the multilayer composite according to the invention.
  • the comparison sample In the switched state, the comparison sample has a comparatively low transmission of 81.89% and a high residual haze of 4.10% despite the high voltage applied.
  • Example 3 In comparison to the multilayer composite according to the invention from Example 1, a commercially available high-gloss polycarbonate film Makrofol® DE 1-1 from Covestro Deutschland AG was used in Example 3 for the rear side of the test specimen to be produced.
  • This film was cut into sheets - also called “PC-ITO sheets” or in the singular "PC-ITO sheets” - each with a format of approx. 150 mm x 150 mm and these PC-ITO sheets individually Coated on the front using a sputtering process with indium tin oxide (ITO).
  • ITO indium tin oxide
  • the resistance of the ITO layer was (90 ⁇ 5)
  • Such a PC-ITO sheet not according to the invention according to this example 3 and a PC-ITO sheet according to the invention from example 1 produced according to example 1 were now used for the Used on the back or front of the PDLC pattern to be built.
  • the method for producing the test specimen according to this example 3 corresponds to that from example 1.
  • FIG. 3 shows the schematic structure of a test body according to this example 3 (not to scale). There are: 31a polycarbonate layer of the first PC-ITO sheet
  • test specimen according to this example 3 has a lower turbidity in the opaque normal state compared to the test specimen according to the invention from example 1 (91.39% compared to 97.26%).
  • test specimen according to this example 3 has a lower transmission in the transparent switched state compared to the test specimen according to the invention from example 1 (84.83% compared to 88.87%) and at the same time a higher residual haze (3.99% compared to 3 , 74%). This proves that the pattern not according to the invention (with a PC film without a scratch-resistant finish) is optically worse in both switching states than the pattern according to the invention.
  • Table 3 :

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Structural Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Nonlinear Science (AREA)
  • Mechanical Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Ophthalmology & Optometry (AREA)
  • Civil Engineering (AREA)
  • Optics & Photonics (AREA)
  • General Physics & Mathematics (AREA)
  • Mathematical Physics (AREA)
  • Dispersion Chemistry (AREA)
  • Architecture (AREA)
  • Laminated Bodies (AREA)
  • Liquid Crystal (AREA)

Abstract

Die vorliegende Erfindung betrifft einen spezifischen Mehrschichtverbund, welcher als Bestandteil von Flüssigkristallvorrichtungen geeignet ist und welcher unter anderem zwei spezifische Polycarbonatschichten enthält. Ferner betrifft die vorliegende Erfindung ein Verfahren zur Herstellung des Mehrschichtverbunds. Des Weiteren betrifft die vorliegende Erfindung eine Flüssigkristallvorrichtung, umfassend einen Mehrschichtverbund gemäß der vorliegenden Erfindung, ein Verfahren zu deren Herstellung sowie deren Verwendung als Gebäudeverglasung, in Automobilgläsern, als Scheinwerferabdeckung, in optischen Filtern, in Shuttern, in Flachbildschirmen, in verglasten Werbegeräten, in Trennwänden von Zügen und in Point-of-Interest Vorrichtungen.

Description

Elektrisch dimmbare Verscheibung
Die vorliegende Erfindung betrifft einen spezifischen Mehrschichtverbund, welcher als Be standteil von Flüssigkristallvorrichtungen geeignet ist und welcher unter anderem zwei spe zifische Polycarbonatschichten enthält. Ferner betrifft die vorliegende Erfindung ein Verfah- ren zur Herstellung des Mehrschichtverbunds. Des Weiteren betrifft die vorliegende Erfin dung eine Flüssigkristallvorrichtung, umfassend einen Mehrschichtverbund gemäß der vor liegenden Erfindung, ein Verfahren zu deren Herstellung sowie deren Verwendung als Ge bäudeverglasung, in Automobilgläsern, als Scheinwerferabdeckung, in optischen Filtern, in Shuttern, in Flachbildschirmen, in verglasten Werbegeräten, in Trennwänden von Zügen und in Point-of-Interest Vorrichtungen.
Intelligente Verglasungen (englisch „Smart Glasses“), deren Lichtdurchlässigkeit sich durch das Anlegen einer elektrischen Spannung verändert, sind bekannt. Je nach Ausführung kön nen diese Gläser beispielsweise als Sonnenschutz dienen (Glas färbt sich ein und bleibt dabei transparent) oder die Funktion eines Blickschutzes übernehmen (Glas wird transluzent). Die Anwendungsbereiche reichen z.B. von Gebäudeverglasungen für Fenster und Türen, Trenn wänden in Zügen, Automobilverscheibungen, Scheinwerferabdeckungen, optischen Filtern und Shuttern, Flachbildschirmen, bis hin zu Anzeigen für Werbung und Points-of-Interest.
DE 3816069 Al beschreibt einen Einsatz oder Vorsatz für Fenster oder Türen, bei welchem durch die Verwendung von elektrisch orientierbaren Flüssigkristallelementen eine Ficht- durchlässigkeit oder Lichtundurchlässigkeit hergesteht werden kann. Für die Umschaltfunk tion werden u.a. Flüssigkristalldrehzellen zwischen zwei Polarisationsfiltern verwendet. Die se Anordnung wird lichtundurchlässig bei Anlegen einer elektrischen Spannung. Diese Technik ist heute hinreichend bekannt und vorbeschrieben und findet ihren Einsatz in Flüs- sigkristallanzeigeelementen. Die Polarisationsfilter machen das schaltbare Element teuer und komplex.
WO 92/12219 Al beschreibt eine Technologie auf Basis polymerdispergierter Flüssigkristal le (PDLC), die ohne Polarisationsfilter auskommt. Bei der PDLC-Technologie werden ne- matische Flüssigkristalle in einen UV-härtenden Polymerfilm eindispergiert, so dass eine Emulsion mit winzigen Flüssigkristalltropfen entsteht, die man zwischen bevorzugt transpa- renten, mit Flächenelektroden ausgerüsteten Polymerfolien einbringen kann. Bei Anlegen einer elektrischen Spannung an die Elektroden orientieren sich die Flüssigkristallmoleküle entlang der Feldlinien, was zu einem transparenten Zustand führt, während die Moleküle sich ohne Feld zu den Tropfenoberflächen ausrichten, was zur Lichtstreuung, d.h. einem transluzenten Zustand des Folienverbunds führt. Die elektrische Schaltspannung ist dabei größer oder gleich 15 Volt. Durch Anlegen unterschiedlicher Spannungen können sehr un terschiedliche spekulare Transmissionsgrade eingestellt werden. Man spricht von dimmbaren Elementen zur sprachlichen Abgrenzung von schaltbaren Elementen, die insbesondere für zwei Schaltzustände optimiert sind. EP 0927753 Al beschreibt eine rückwärts schaltende PDLC -Technologie, auch als Flüssig- kristall-dispergiertes Polymer (LCDP) bezeichnet, die eine Polymertropfen-Morphologie anstelle der eben beschriebenen Flüssigkristalltropfen-Morphologie aufweist. Sie ist gekenn zeichnet durch einen transparenten “Aus” Zustand (kein elektrisches Feld angelegt) und ei nen transluzenten „An“ Zustand (elektrisches Feld ist angelegt). PDLC -Technologien nutzen als Substrate leitfähig beschichtete Gläser oder Folien. Folien sind einfacher zu handhaben und daher bevorzugt.
Auch die WO2019020298 Al beschreibt einen Schichtaufbau zur Verwendung in einer Fahr zeugscheibe, deren Lichtdurchlässigkeit durch Anlegen einer elektrischen Spannung verän derbar ist, insbesondere sich durch Anlegen einer Spannung zwischen einem transparenten Zustand und einem trüben oder opaken Zustand umschalten lässt.
Die Herstellung von PDLC- und LCDP-Flüssigkristallvorrichtungen ist jedoch bisher oft aufwändig und mit Schwierigkeiten hinsichtlich der Qualität, insbesondere bei einer kom merziellen Herstellung, verbunden.
Eine Ursache von Qualitätsproblemen sind in der US 5,867,238 beschrieben: Beim Aushär- ten der Polymatrix, in die die Flüssigkristalle eingebettet sind, entstehen durch das aktinische UV-Licht hohe thermische Belastungen für die zu beschichtenden Substrate. Heutiger Stand der Technik sind PDLC-Folienverbünde bestehend aus zwei außenliegenden transparenten PET- (Polyethylenterephthalat-) Substraten. Diese betten die PDLC-Schicht ein. Die PET- Folien sind einseitig mit einer leitfähigen, ca. 100 bis 500 nm dünnen Metalloxidschicht, z.B. ITO- (Indium-Zinn-Oxid-) Schicht, ausgerüstet, über die ein elektrisches Feld an die PDLC- Schicht angelegt werden kann. PET -Folien verziehen sich aber unter Temperatureinwirkung und haben geringe Rückstellkräfte, d.h. zeigen geringe Tendenzen zur Ausheilung. Dies erschwert die Verarbeitung und birgt die Gefahr, dass es in der ITO-Schicht zu thermischen oder mechanischen Brüchen kommt. Unterbrochene ITO-Elektroden führen aber zu inhomo- genen Spannungsverteilungen und Feldlinien, das wiederum zu Transmissionsschwankun gen, d.h. sichtbaren Flecken in der PDLC-Scheibe.
US 4,963,206 beschreibt ein schaltbares Element mit alternativer leitfähiger Schicht aus konjugiertem leitfähigen Polymer. Polymere sind naturgemäß mechanisch robuster und we- niger spröde als aufgedampfte Metalloxidschichten wie z.B. ITO. Leitfähige Polymere haben aber im Vergleich zu ITO tendenziell höhere Flächen widerstände. Polymere tendieren auch dazu, bei erhöhter Temperatur Raumladungen aufzubauen, was die Leitfähigkeit verringern kann. Zudem zeigen leitfähige Polymere eine leichte Einfärbung im sichtbaren Spektralbe- reich. Aufgrund dieser Probleme haben sie sich in optischen Anwendungen bisher nicht durchgesetzt.
Folglich war die Aufgabe der vorliegenden Erfindung einen Mehrschichtverbund für eine Flüssigkristallvorrichtung oder diese selbst bereitzustellen, der relativ einfach kommerziell herzustellen ist, eine gute Qualität bereitstellt, für optische Anwendungen geeignet ist und einen niedrigen Flächenwiderstand aufweist. Insbesondere soll der Mehrschichtverbund für eine Flüssigkristallvorrichtung oder diese selbst bei allen Schaltzuständen bzw. Spannungs niveaus eine hohe Konstanz in der spekularen Transmission über die aktive Fläche hinweg aufweisen.
Diese Aufgabe wurde von den Erfindern gelöst durch die Verwendung der spezifischen Po- lycarbonatschichten mit einer klaren Hartschicht-Beschichtung an Stelle einer gewöhnlichen PET-Schicht. Insbesondere ist es vorteilhaft, wenn es sich bei den leitfähigen Schichten des Verbunds um ITO- oder IMITO- (index-matched-Indiumzinnoxid) Schichten handelt. Diese leitfähigen Schichten sind transparent und elektrisch leitfähig.
Dabei war überraschend, dass die im Markt bekannten und verfügbaren „einfachen“ Poly- carbonatschichten, im Fachgebiet auch als Folien bezeichnet, welche keine klare Hart- Schichtbeschichtung (Engl clear hard coat) aufweisen, sich nicht eignen. Denn obwohl die bessere Formbeständigkeit von Folien aus Polycarbonat (PC) gegenüber PET-Folien bei erhöhten Temperaturen bekannt ist, weisen diese keine durchgehend plane, defektfreie Ober fläche auf, mit der Folge, dass auch eine aufgebrachte leitfähige Schicht, insbesondere ITO- oder IMITO-Beschichtung, Inhomogenitäten, d.h. Defekte aufweist. Eine Optimierung des PC -Extrusionsprozesses zur Vermeidung der Inhomogenitäten ist aufwändig, denn selbst glatt polierte metallische Extrusionswalzen nehmen Schaden im Dauerbetrieb und müssten oft ersetzt werden. Zudem sind PC-Folien generell kratzempfindlich. ITO-Beschichtung auf extrudierten „einfachen“ Polycarbonatfolien ist folglich kein geeignetes Verfahren, mit dem sich die gestellte technische Aufgabe lösen ließe. Überraschenderweise wurde jedoch gefun den, dass sich Polycarbonatschichten mit einer Hartschicht-Beschichtung zum Lösen der Aufgabe eigenen. Deshalb betrifft die Erfindung in einem ersten Aspekt einen Mehrschichtverbund mit Sand wichstruktur, welcher als Bestandteil von Flüssigkristallvorrichtungen geeignet ist, umfas send oder bestehend aus: einer Kernschicht, die entweder aus einer Polymermatrix, in die nematische Flüssigkristalle dispergiert sind, oder einer Flüssigkristallmatrix, in die Polymere dispergiert sind, besteht; zwei leitfähige Schichten, die jeweils auf einer Oberfläche der Kernschicht angeordnet sind und diese somit einschließen, wobei die leitfähigen Schichten transparent und elektrisch leitfähig sind; zwei Polycarbonatschichten, die jeweils auf derjenigen Oberfläche der leitfähigen Schichten angeordnet sind, welche von der Kernschicht abgewandt ist und die jeweils auf der der Kern schicht zugewandten Seite eine klare Hartschicht-Beschichtung (Engl clear hard coat) auf weisen und wobei die Polycarbonatschichten transparent sind.
In einem zweiten Aspekt betrifft die Erfindung ein Verfahren zur Herstellung eines Mehr schichtverbunds gemäß der vorliegenden Erfindung, umfassend oder bestehend aus den Schritten:
(i) Bereitstellen von zwei leitfähigen Schichten und zwei Polycarbonatschichten, wobei die Polycarbonatschichten auf einer Seite eine klare Hartschicht-Beschichtung und auf der anderen Seite gegebenenfalls eine Antiblock-Hartschicht aufweisen, und jeweils Aufbringen jeweils einer leitfähigen Schicht auf eine Polycarbonatschicht, wobei die leitfähige Schicht auf der Seite der Polycarbonatschicht mit klarer Hartschicht- Beschichtung aufgebracht wird, um einen ersten Verbund zu erhalten;
(ii) Aufbringen der Kernschicht auf die leitfähige Schicht von einem ersten Verbund mit tels Rakeln, Gießen oder Drucken, um einen zweiten Verbund zu erhalten;
Aufbringen des weiteren ersten Verbunds auf die Kernschicht des zweiten Verbunds, wobei die leitfähige Schicht des ersten Verbunds auf den zweiten Verbund mittels Lamination, Verpressen oder Kaschieren insbesondere in Verbindung mit UV -Härten aufgebracht wird, um einen dritten Verbund zu erhalten.
In einem dritten Aspekt betrifft die vorliegende Erfindung eine Flüssigkristallvorrichtung, umfassend einen Mehrschichtverbund gemäß der vorliegenden Erfindung, welcher zwischen zwei Scheiben angeordnet ist, wobei die leitfähigen Schichten mit einer Spannungsquelle verbunden sind. In einem vierten Aspekt betrifft die vorliegende Erfindung ein Verfahren zur Herstellung einer Flüssigkristallvorrichtung gemäß der vorliegenden Erfindung, umfassend oder bestehen aus den Schritten:
Befestigen von zwei Scheiben, jeweils auf einer Seite des Mehrschichtverbunds gemäß der vorliegenden Erfindung.
In einem fünften Aspekt betrifft die vorliegende Erfindung die Verwendung der Flüssigkris tallvorrichtung gemäß der vorliegenden Erfindung als Gebäudeverglasung, in Automobilglä sern, als Scheinwerferabdeckung, in optischen Filtern, in Shuttern, in Flachbildschirmen, in verglasten Werbegeräten, in Trennwänden von Zügen und in Point-of-Interest Vorrichtun- gen.
Diese und weitere Ausführungsformen, Merkmale und Vorteile der Erfindung werden für den Fachmann aus dem Studium der folgenden detaillierten Beschreibung und Ansprüche ersichtlich. Dabei können die einzeln beschriebenen Merkmale oder Ausführungsformen der Erfindung mit allen anderen Merkmalen oder Ausführungsformen der Erfindung kombiniert werden ohne dass diese im Rahmen der Erfindung in Kombination explizit beschrieben wur den. Es ist selbstverständlich, dass die hierin enthaltenen Beispiele die Erfindung beschrei ben und veranschaulichen sollen, diese aber nicht einschränken und insbesondere die Erfin dung nicht auf die Beispiele beschränkt ist.
Zahlenwerte, die hierin ohne Dezimalstellen angegeben sind, beziehen sich jeweils auf den vollen angegebenen Wert mit einer Dezimalstelle. So steht beispielsweise „99 %“ für „99,0
%“.
Numerische Bereiche, die in dem Format „in/von x bis y" angegeben sind, schließen die genannten Werte ein. Wenn mehrere bevorzugte numerische Bereiche in diesem Format angegeben sind, ist es selbstverständlich, dass alle Bereiche, die durch die Kombination der verschiedenen Endpunkte entstehen, ebenfalls erfasst werden.
Im Sinne der vorliegenden Erfindung wird ein Gegenstand, beispielsweise eine Schicht, eine Folie, ein Verbund oder eine Vorrichtung, als transparent angesehen, wenn die Transmission Ty mindestens 75 %, bevorzugt mindestens 80 %, stärker bevorzugt mindestens 85 %, be sonders bevorzugt mindestens 88 % beträgt und zusätzlich die Trübung kleiner als 5 % und bevorzugt kleiner als 3,5 % ist. Die Transmission Ty wird bestimmt nach ISO 13468-2:2006- 07 (D65, 10°). Die Trübung wird bestimmt nach ASTM D1003:2013. Beträgt die Transmis sion weniger als 75 % oder die Trübung mehr als 5%, so wird der Gegenstand als nicht transparent angesehen. Bei dem Verbund und der Vorrichtung wird die Bestimmung der Transparenz und Transmission natürlich in dem Zustand der Kernschicht durchgeführt, in dem sie Transparenz aufweisen soll. Also im Falle von einer Kernschicht der PDLC-Art bei angelegter Spannung und im Falle der LCDP-Art in Abwesenheit von Spannung.
Die Erfindung betrifft insbesondere: 1. Einen Mehrschichtverbund mit Sandwichstruktur, welcher als Bestandteil von Flüs sigkristallvorrichtungen geeignet ist, umfassend oder bestehend aus: einer Kernschicht, die entweder aus einer Polymermatrix, in die nematische Flüssig kristalle dispergiert sind, oder einer Flüssigkristallmatrix, in die Polymere dispergiert sind, besteht; zwei leitfähige Schichten, die jeweils auf einer Oberfläche der Kernschicht angeordnet sind und diese somit einschließen, wobei die leitfähigen Schichten transparent und elektrisch leitfähig sind; zwei Polycarbonatschichten, die jeweils auf derjenigen Oberfläche der leitfähigen Schichten angeordnet sind, welche von der Kernschicht abgewandt ist und die jeweils auf der der Kernschicht zugewandten Seite eine klare Hartschicht-Beschichtung (Engl clear hard coat) aufweisen und wobei die Polycarbonatschichten transparent sind; und gegebenenfalls zwei Antiblock-Hartschichten, die jeweils auf derjenigen Oberfläche der Polycarbo natschichten angeordnet sind, welche von der Kernschicht abgewandt ist, wobei die Antiblock-Hartschichten transparent sind; und/oder zwei Klebeschichten, die jeweils auf derjenigen Oberfläche der Polycarbonatschichten oder, wenn vorhanden, der Antiblock-Hartschichten, angeordnet sind, welche von der Kernschicht abgewandt ist, wobei die Klebeschichten transparent sind.
2. Der Mehrschichtverbund gemäß Ausführungsform 1, dadurch gekennzeichnet, dass die Kernschicht
(i) eine Dicke von 100 bis 200 μm aufweist; und/oder
(ii) eine Polymermatrix aufweist, die aus UV -härtbaren polymerisierbaren Monomeren hergestellt ist, bevorzugt aus Urethan-Acryl oder Epoxid; und/oder (iii) Flüssigkristalle aufweist, die ausgewählt sind aus einer der Klassen nematischer, smektischer, ferroelektrischer oder organometallischer Mesogene, inklusive der Klas se polymerisierbarer Flüssigkristalle;
3. Der Mehrschichtverbund gemäß einem der voranstehenden Ausführungsformen, dadurch gekennzeichnet, dass die leitfähigen Schichten
(i) eine Dicke von 20 bis 50 nm aufweisen; und/oder
(ii) gleich oder verschieden voneinander sind; und/oder
(iii) aus ITO (Indiumzinnoxid, In2-xSnxO3), bevorzugt mit einem Zinnanteil von bis zu 25 Gew.-%, stärker bevorzugt 20 Gew.-%, IMITO (index-matched-Indiumzinnoxid), Zinnoxid oder Gallium dotierten Zinnoxid bestehen, bevorzugt ITO oder IMITO, stär ker bevorzugt IMITO; und/oder
(iv) eine maximale Rauigkeit ihrer Oberfläche von Ra < 0,1 μm aufweisen, bevorzugt < 0,05 μm, ganz besonders bevorzugt von weniger als 0,025 μm, bestimmt nach DIN EN ISO 1302:2002-06; und/oder (v) einen spezifischen Flächenwiderstand
Figure imgf000008_0001
kleiner als 100 Ohm, bevorzugt kleiner als
90 Ohm, aufweisen.
4. Der Mehrschichtverbund gemäß einem der voranstehenden Ausführungsformen, dadurch gekennzeichnet, dass die Polycarbonatschichten
(i) eine Dicke von 90 bis 1000 μm, bevorzugt 125 bis 375 μm, aufweisen; und/oder
(ii) gleich oder verschieden voneinander sind; und/oder
(iii) aus amorphen Polycarbonat bestehen; und/oder
(iv) eine Transmission Ty von mindestens 86%, bevorzugt mindestens 87 %, aufweisen; und/oder
(v) eine Trübung von weniger als 2%, bevorzugt weniger als 1 %, aufweisen; und/oder (vi) extrudierte Polycarbonatschichten sind; und/oder
(vii) eine klare Hartschicht-Beschichtung aufweisen, die eine Lackbeschichtung ist, bevor zugt eine kratzfeste Lackbeschichtung, stärker bevorzugt aus einer siliziumoxidischen Schicht besteht, die gegebenenfalls eine Unterschicht aus Organosiloxanen, Acrylaten oder Polyolefinen aufweist, welche als Haftschicht zur Polycarbonatschicht fungiert, und welche bevorzugt eine Dicke von weniger als 10 μm, bevorzugt von 3 bis 5 μm, aufweist; und/oder
(viii) eine Vicat-Erweichungstemperatur von 145 bis 160 °C, bevorzugt von 150 bis 160°C aufweisen, bestimmt nach der Prüfmethode ISO 306:2014-03 und dem Verfahren B50
(Prüflast 50 N; Heizrate 50 K/h; Pressplatte in Öl); und/oder
(ix) einen Schmelzbereich von 220 bis 230 °C aufweisen; und/oder
(x) eine Brenngeschwindigkeit von ≤ 100 mm/min, bestimmt nach der Prüfmethode US- FMVSS 302, aufweisen.
5. Der Mehrschichtverbund gemäß einem der voranstehenden Ausführungsformen, dadurch gekennzeichnet, dass die Antiblock-Hartschichten
(i) eine Dicke von 0,5 bis 12 μm aufweisen, bevorzugt von 2 bis 8 μm; und/oder
(ii) gleich oder verschieden voneinander sind; und/oder
(iii) aus siliziumoxidischen Schichten, versetzt mit Kielselsäuren, oder Wachsadditiven, wie Paraffinwachsen, bestehen.
6. Verfahren zur Herstellung eines Mehrschichtverbunds gemäß der vorliegenden Erfin dung, umfassend oder bestehend aus den Schritten:
(i) Bereitstellen von zwei leitfähigen Schichten und zwei Polycarbonatschichten, wobei die Polycarbonatschichten auf einer Seite eine klare Hartschicht-Beschichtung und auf der anderen Seite gegebenenfalls eine Antiblock-Hartschicht aufweisen, und jeweils Aufbringen jeweils einer leitfähigen Schicht auf eine Polycarbonatschicht, wobei die leitfähige Schicht auf der Seite der Polycarbonatschicht mit klarer Hartschicht- Beschichtung aufgebracht wird, bevorzugt mittels Kathodenzerstäubung (Sputtern), durch das reaktive thermische Verdampfen oder Sol-Gel-Verfahren, um einen ersten Verbund zu erhalten;
(ii) Aufbringen der Kernschicht auf die leitfähige Schicht von einem ersten Verbund mit tels Rakeln, Gießen oder Drucken, um einen zweiten Verbund zu erhalten;
(iii) Aufbringen des weiteren ersten Verbunds auf die Kernschicht des zweiten Verbunds, wobei die leitfähige Schicht des ersten Verbunds auf den zweiten Verbund mittels Eamination, Verpressen oder Kaschieren insbesondere in Verbindung mit UV -Härten aufgebracht wird, um einen dritten Verbund zu erhalten;
(iv) gegebenenfalls Aufbringen von zwei Antiblock-Hartschichten, falls nicht schon in Schritt (i) enthalten, auf die beiden Flächen des dritten Verbunds, um einen vierten Verbund zu erhalten; und/oder
(v) gegebenenfalls Aufbringen von zwei Klebeschichten auf die beiden Flächen des drit ten oder vierten Verbunds, um einen alternativen vierten oder einen fünften Verbund zu erhalten; und/oder
(vi) gegebenenfalls Überspritzen oder Hinterspritzen des dritten, vierten oder fünften Ver- bundes im Spritzgussverfahren.
7. Polymer-dispergierte Flüssigkristallvorrichtung, umfassend einen Mehrschichtverbund gemäß der vorliegenden Erfindung, welcher zwischen zwei Scheiben angeordnet ist, wobei die leitfähigen Schichten mit einer Spannungsquelle verbunden sind, bevorzugt bestehen die Scheiben aus Polycarbonat, Polymethylmethacrylat oder Glas. 8. Verfahren zur Herstellung einer Polymer-dispergierten Flüssigkristall Vorrichtung ge mäß Ausführungsform 7, umfassend oder bestehen aus den Schritten:
Befestigen von zwei Scheiben, jeweils auf einer Seite des Mehrschichtverbunds ge mäß der vorliegenden Erfindung, wobei bevorzugt das Befestigen Verkleben ist und/oder die Scheiben aus Polycarbonat, Polymethylmethacrylat oder Glas bestehen. 9. Verwendung der Polymer-dispergierten Flüssigkristallvorrichtung gemäß Ausfüh rungsform 7 als Gebäudeverglasung, in Automobilgläsern, insbesondere Spiegeln und Scheiben, als Scheinwerferabdeckung, in optischen Filtern, in Shuttern, in Flachbild schirmen, in verglasten Werbegeräten und in Point-of-Interest Vorrichtungen.
Der Mehrschichtverbund der vorliegenden Erfindung liegt in einer sogenannten Sandwich struktur vor. Das heißt eine Kernschicht, die ihre Transparenz durch Anlegen von Spannung verändern kann ist symmetrisch zumindest von jeweils zwei leitfähigen Schichten und zwei Polycarbonatschichten umgeben.
Als Kernschicht ist dabei eine im Stand der Technik bekannte und kommerziell erhältliche Schicht, welche entweder aus einer Polymermatrix besteht, in welche nematische Flüssig- kristalle dispergiert sind oder welche aus einer Flüssigkristallmatrix besteht, in welche Po lymere dispergiert sind, und die für die Anwendung in Flüssigkristallvorrichtungen beschrie- ben ist, geeignet. Die Kernschicht ist also in der Lage ihre Transparenz beim Anlegen einer elektrischen Spannung zu ändern. Dieses auch als Flüssigkristallmaterial bekannte Schicht ist beispielsweise in H. Sun et. al. „Dye-Doped Electrically Smart Windows Based on Poly- mer-Stabilized Liquid Chrystal”, Polymers 2019, 11, Seiten 694ff; der EP 0927753 Al und der WO 92/11219 Al beschrieben. Für die vorliegende Erfindung geeignete polymerisierba re Flüssigkristalle sind ebenfalls in US 2019/071605 Al beschrieben. Ferner sind für die vorliegende Erfindung ebenfalls geeignete Mesogene sind zum Beispiel in WO 95/01410 beschrieben. Auch sind sie beispielsweise kommerziell unter dem Handelsnamen Lixon® der Firma JNC Corporation erhältlich. Dabei sind in der vorliegenden Erfindungen sowohl PDLC (also eine Polymermatrix mit dispergierten nematischen Flüssigkristallen)- als auch LCDP (also eine Flüssigkristallmatrix mit dispergierten Polymeren)- Flüssigkristallmaterialien geeignet.
Die Kernschicht weist bevorzugt eine Dicke von 100 bis 200 μm auf. Ferner ist bevorzugt, dass für eine PDLC Kernschicht eine Transmission Ty von mindestens 86%, bevorzugt min destens 87 %, bei angelegter Spannung aufweist; und/oder eine Trübung von weniger als 2%, bevorzugt weniger als 1 %, bei angelegter Spannung aufweist. Ferner ist bevorzugt, dass für eine LCDP Kernschicht eine Transmission Ty von mindestens 86%, bevorzugt mindes tens 87 %, bei Abwesenheit von Spannung aufweist; und/oder eine Trübung von weniger als 2%, bevorzugt weniger als 1 %, bei Abwesenheit von Spannung aufweist.
Die leitfähige Schicht ist eine transparente und elektrisch leitfähige Schicht. Diese weist bevorzugt einen spezifischen Flächenwiderstand
Figure imgf000011_0001
kleiner als 100 Ohm, bevorzugt kleiner als 90 Ohm, auf, beispielsweise bestimmt durch die Vierpunktmessung nach Van der Pauw oder durch optische Transmissions- und/oder Reflexionsmessungen im sichtbaren und infra roten Wehenlängenbereich unter Zugrundelegung einer Eichkurve, die den Zusammenhang zwischen dem optischen Spektrum und dem Flächenwiderstand durch ein physikalisches Modell herstellt. Die leitfähige Schicht weist bevorzugt eine Transmission Ty von mindes tens 86%, bevorzugt mindestens 87 %, auf; und/oder eine Trübung von weniger als 2%, be vorzugt weniger als 1 %, auf.
Geeignete Materialien für die leitfähige Schicht sind insbesondere ITO (Indiumzinnoxid, In2-xSnxO3), bevorzugt mit einem Zinnanteil von bis zu 25 Gew.-%, stärker bevorzugt 20 Gew.-%, IMITO (index-matched-Indiumzinnoxid), Zinnoxid oder Gallium dotierten Zinno xid, besonders bevorzugt ITO oder IMITO, am stärksten bevorzugt IMITO. Auch diese Ma terialen sind dem Fachmann bekannt und kommerziell erhältlich. Falls es sich um eine IMITO Schicht handelt so ist die enthaltene index-matched-Schicht der leitfähigen Schicht im Verbund von der Kernschicht abgewandt.
Die Polycarbonatschicht ist eine transparente Schicht und weist auf einer Seite eine klare Hartschicht-Beschichtung auf (clear hard coat). Diese klare Hartschicht-Beschichtung ist bevorzugt eine Lackschicht, insbesondere eine kratzfeste Lackschicht. Die Lackschicht be steht dabei bevorzugt auf Basis von Silikon oder Acryl, insbesondere Silikon. Die klare Hartschicht-Beschichtung wird beispielsweise im Flutbeschichtungsverfahren unter thermi scher Härtung oder UV-Härtung aufgebracht.
Die Polycarbonatschicht weist bevorzugt eine Dicke von 90 bis 1000 μm auf und die enthal tene klare Hartschicht-Beschichtung eine Dicke von weniger als 10 μm, besonders bevorzugt von 3 bis 5 μm, auf. Ohne an eine Theorie gebunden zu sein, wird davon ausgegangen, dass die spezielle Polycarbonatschicht als Glattmacher (Engl. Planarizer) für die leitfähige Schicht wirkt und somit die exzellente Transparenz des Verbunds erreicht werden kann. Dabei tritt kaum oder keine Verzerrung eines Bildes in Durchsicht mit Auge oder Kamera auf. Als insbesondere geeignet haben sich Dicken von weniger als 10 μm für die klare Hart- schicht-Beschichtung herausgestellt. Die Polycarbonatschichten können bevorzugt extrudier te Polycarbonatschichten sein, auf die nachträglich die klare Hartschicht-Beschichtung auf gebracht wird.
Insbesondere ist amorphes Polycarbonat bevorzugt. Die Polycarbonatschicht weist bevorzugt eine Erweichungstemperatur von 150 bis 160 °C und/oder einen Schmelzbereich von 220 bis 230 °C auf. Ferner ist eine Brenngeschwindigkeit von < 100 mm/min, bestimmt nach der Prüfmethode US-FMVSS 302 vorteilhaft.
Die Polycarbonatschicht weist bevorzugt eine Transmission Ty von mindestens 86%, bevor zugt mindestens 87 %, auf; und/oder eine Trübung von weniger als 2%, bevorzugt weniger als 1 %, auf.
Ein kommerziell erhältliches Beispiel ist Makrofol® HS340 G-l 020010 der Firma Covestro AG. Die kommerziell erhältlichen Polycarbonatschichten (auch als Folien bezeich net) weisen oft entfernbare Polyethylen-Schutzfolien auf.
Die vorstehend beschriebenen Polycarbonatschichten können bevorzugt einer kurzzeitigen Wärmebelastung, beispielsweise bis zu einer Minute, von 135° bis 140°C standhalten. Durch die Anwesenheit der klaren Hartschicht-Beschichtung ist die beschichtete Seite kratzfest, chemikalienbeständig und schützt vor UV-Strahlung. Ferner weist die Polycarbonatschicht eine sehr gute elektrische isolations- und sehr gute dielektrische Eigenschaften auf. Sie sind im Allgemeinen gut mechanisch Belastbar und lässt sich auf der unlackierten Seite bedru cken.
Der Mehrschichtverbund kann ferner optional zwei Antiblock-Hartschichten und/oder zwei Klebeschichten aufweisen, welche ebenfalls transparent sind.
Die Antiblock-Hartschicht weist bevorzugt einen niedrigen Reibungskoeffizienten und/oder eine feine Partikelverteilung auf. Antiblock-Hartschichten sind kommerziell erhältlich und bestehen aus siliziumoxidischen Schichten, versetzt mit Kieselsäuren oder Wachsadditiven, wie Paraffinwachsen. Die Antiblock-Hartschicht weist bevorzugt eine Transmission Ty von mindestens 86%, bevorzugt mindestens 87 %, auf; und/oder eine Trübung von weniger als 2%, bevorzugt weniger als 1 %, auf.
Die Antiblock-Hartschicht kann dabei bereits auf der Polycarbonatschicht vorhanden sein oder später auf einen Sandwich verbünd aus Kernschicht, leitfähigen Schichten und Polycar bonatschichten auf beiden Polycarbonatschicht, auf jeweils der Seite, welche von der Kern schicht abgewandt ist, aufgebracht werden. Geeignete Polycarbonatschichten, welche bereits eine Antiblock-Hartschicht aufweisen sind beispielsweise in WO 2015/044275 Al beschrie ben.
Geeignete optionale Klebeschichten sind dem Fachmann bekannt und werden beispielsweise aus hafterzeugenden Lösemitteln, Kleblacken oder Reaktionsklebern erhalten.
Der Mehrschichtverbund der vorliegenden Erfindung wird hergestellt durch Aufbringen jeweils einer leitfähigen Schicht auf eine Polycarbonatschicht, wobei die leitfähige Schicht auf der Seite der Polycarbonatschicht mit klarer Hartschicht-Beschichtung (clear hard coat) aufgebracht wird, bevorzugt mittels Kathodenzerstäubung (Engl. Sputtern), durch das reakti ve thermische Verdampfen oder Sol-Gel-Verfahren um einen ersten Verbund zu erhalten. Dabei ist das reaktive thermische Verdampfen an Luft bei Temperaturen oberhalb von 300°C und das Sol-Gel-Verfahren für große Flächen, insbesondere größer als 500 x 500 mm, be vorzugt. Im nächsten Schritt wird die Kernschicht auf die leitfähige Schicht eines ersten Verbunds mittels Rakeln, Gießen oder Drucken aufgebracht, um einen zweiten Verbund zu erhalten. Auf diesen Verbund wird ein weiterer erster Verbund auf den zweiten Verbund aufgebracht, wobei die leitfähige Schicht des ersten Verbunds auf den zweiten Verbund mit tels Lamination, Verpressen oder Kaschieren insbesondere in Verbindung mit UV -Härten aufgebracht wird, um einen dritten Verbund zu erhalten. Im nächsten Schritt können zwei Antiblock-Hartschichten und/oder zwei Klebschichten aufgebracht werden. Der Verbund kann gegebenenfalls im Spritzgussverfahren über- oder hinterspritzt werden. Ferner umfasst die vorliegende Erfindung eine Flüssigkristallvorrichtung, umfassend einen Mehrschichtverbund gemäß der vorliegenden Erfindung, welcher zwischen zwei Scheiben angeordnet ist, wobei die leitfähigen Schichten mit einer Spannungsquelle verbunden sind, bevorzugt bestehen die Scheiben aus Polycarbonat, Polymethylmethacrylat oder Glas.
Die Herstellung der Flüssigkristallvorrichtung erfolgt dabei durch Befestigen von zwei Scheiben, jeweils einer Scheibe auf einer Seite des Mehrschichtverbunds gemäß der vorlie genden Erfindung, wobei bevorzugt das Befestigen Verkleben ist und/oder die Scheiben aus Polycarbonat, Polymethylmethacrylat oder Glas bestehen. Geeignete Klebemittel sind dabei haftende Lösungsmittel, Kleblacke oder Reaktionskleber. Ferner kann Wärme und/oder Druck verwendet werden um die Verklebung zu ermöglichen, insbesondere ein Ultraschall verfahren.
Die Flüssigkristallvorrichtung kann insbesondere als Gebäudeverglasung, in Automobilglä sern, insbesondere Spiegeln und Scheiben, als Scheinwerferabdeckung, in optischen Filtern, in Shuttern, in Flachbildschirmen, in verglasten Werbegeräten und in Point-of-Interest Vor richtungen verwendet werden. Besonders bevorzugt sind LDCP-Flüssigkristallvorrichtungen in Automobilgläsern, da diese meist transparent sein sollen und die LDCP Technologie somit energiesparend ist.
Die vorliegende Erfindung soll durch die nachfolgend dargestellten Beispiele und Figuren verdeutlicht werden, ohne dass die Erfindung auf diese Beispiele und Figuren eingeschränkt werden soll.
Beispiel 1 (erfindungsgemäß):
Messung von Lichttransmission und Haze an einem Prüfkörper aus einem erfindungsgemäßen Mehrschichtverbund
Zur Herstellung eines Prüfkörpers aus einem erfindungsgemäßen Mehrschichtverbund wurde ein bei der Covestro Deutschland AG hergestellter Polycarbonatfilm des kommerziell erhält lichen Typs Makrofol® HS340 G-l 020010 verwendet, der auf einer Seite (Vorderseite) mit einer Hochglanz-Hartschicht aus Siliziumoxid versehen ist und auf der gegenüberliegenden Seite (Rückseite) glänzend ist. Dieser 385 μm dicke Film (Prüfmethode ISO 4593:1993-11) wurde als Rollenware verwendet und in einem Sputtering-Verfahren mit Indium-Zinn-Oxid (ITO) vorderseitig beschichtet. Der Widerstand der ITO-Schicht betrug (90±5) W/D. Der so hergestellte Film wurde zu Blättern, also Blattware, im Format von ca. 200 mm x 300 mm zugeschnitten. Die so erhaltene Blattware wird kurz auch „PC-ITO-Blätter“ - in der Einzahl „PC-ITO-Blatt“ - genannt. Zwei solcher PC-ITO-Blätter gemäß diesem Beispiel 1 wurden im Folgenden als Substrate für den Prüfkörper gemäß dem erfindungsgemäßen Mehrschichtverbund verwendet. Es hat sich herausgestellt, dass das Aufbringen einer polymerdispergieren Flüssigkristallpaste (PDLC -Paste) zur Herstellung einer PDLC-Schicht mittels Rakeln auf der ITO-Schicht auf- grund der guten Oberflächenplanität des PC-ITO-Blatts mit hoher Dickenkonstanz mit Wer ten um 150 μm gelang. Verfahren zur Herstellung gekapselter Flüssigkristalle und Herstel lung einer geschlossenen PDLC-Schicht auf einem Trägermaterial sind vorbeschrieben und wurden hier angewandt. Sie basieren auf der photochemischen Polymerisation von UV- härtenden Mischungen bestehend aus Monomeren, Vernetzern, Photoinitiatoren und Flüs- sigkristallmischungen. Die Verfahren beispielsweise sind nachgelesen werden in der Patent schrift US 4,435,047 A von Fergason J. L., „Encapsulated liquid crystal and method” und in Kashima M, Cao H, Meng Q, Liu H, Wang D, Li F, et al., „The influence of crosslinking agents on the morphology and electro-optical performances of PDLC films”, J. Appl. Pol. Sei. 2010 (117), 3434-3440. Die PDLC-Schicht hat sich bis zum Rand des PC-ITO-Blatts verteilt. Die PDLC-Schicht wurde mittels eines zweiten PC-ITO-Blatts gemäß diesem Bei spiel 1 versiegelt. Dies geschah so, dass die jeweiligen ITO-Schichten der beiden PC-ITO- Blätter unmittelbar auf der PDLC-Schicht angeordnet waren, die ITO-Schichten der beiden PC-ITO-Blätter also nur durch die PDLC-Schicht voneinander getrennt waren.
Figur 1 zeigt den schematischen Aufbau eines erfindungsgemäßen Mehrschichtaufbaus (nicht maßstabsgerecht). Dabei sind:
11a Polycarbonatschicht des ersten PC-ITO-Blatts 12a Hartschicht des ersten PC-ITO-Blatts
13a ITO-Schicht des ersten PC-ITO-Blatts
14 PDLC-Schicht
13b ITO-Schicht des zweiten PC-ITO-Blatts
12b Hartschicht des zweiten PC-ITO-Blatts
11b Polycarbonatschicht des zweiten PC-ITO-Blatts
Die Gesamtdicke des so erhaltenen erfindungsgemäßen Mehrschichtenverbunds betrug 920 bis 930 μm gemäß Messung mit der Mikrometerschraube. Zur elektrischen Kontaktierung wurden an einer Außenkante Drähte mittels Metall-Federklemmen angebracht, je einer pro PC-ITO-Blatt. Für die Kontaktierung der ITO-Schicht 13a des ersten PC-ITO-Blatts wurde das zweite PC-ITO-Blatt mit dem Skalpell kurz angehoben, d.h. der Verbund an der PDLC- Schicht 14 getrennt, und vom Rand dieses zweiten PC-ITO-Blatts ca. 1 cm2 weggeschnitten. An dieser Stelle konnte die ITO-Schicht 13a des ersten PC-ITO-Blatts mit der Federklemme kontaktiert werden. Der elektrische Kontakt wird besser, wenn man die PDLC-Schicht 14 über dem ITO mechanisch abreibt. Ebenso verfährt man für die Kontaktierung der ITO- Schicht 14a des zweiten PC-ITO-Blatts; hierbei wird ein Teil des ersten PC-ITO-Blatts weg geschnitten. So kann der zweite Kontakt mit der zweiten Elektrode hergestellt werden. Die beiden Kontakte liegen z.B. einige Zentimeter auseinander, aber an derselben Kante des Mehrschichtenverbunds. So konnten an den PDLC über seine zwei angrenzenden elektrisch leitfähigen ITO-Schichten nach dem Prinzip eines Plattenkondensators elektrische Felder angelegt werden. Ein weiteres Zuschneiden des so erhaltenen erfindungsgemäßen Mehr schichtverbunds war für die Vermessung in den Prohenkammern der optischen Messgeräte notwendig und gelang durch Zuschneiden mit der Schere. Es wurde ein Prüfkörper gemäß dem erfindungsgemäßen Mehrschichtverbund erhalten.
Ein ca. 120 mm breites Muster wurde im Hazemeter NDH 2000 (Firma Nippon Denshoku Industries Co., Ltd.) bei Normlichtart D65 hinsichtlich der Trübung (Haze) und der Trans mission vermessen, jeweils einmal ohne angelegte Spannung (0 Volt) und einmal mit Span nung (36 Volt).
Die Messergebnisse finden sich in Tabelle 1.
Der Prüfkörper gemäß dem erfindungsgemäßen Mehrschichtverbund hat eine hohe Trübung im Normalzustand von 97,26 % und eine hohe Transmission von 88,87 % bei zugleich ge ringer Resttrübung von 4,0% im geschalteten Zustand.
Der Vergleich mit dem Trübungswert des Polycarbonatfilms Makrofol® HS340 G-l 020010 mit Hartschicht, der weder eine ITO-Schicht noch eine PDLC-Schicht aufweist und ansons ten dem Film entspricht, der zur Herstellung des erfindungsgemäßen Mehrschichtaufbaus verwendet wurde, von 0,98% zeigt, dass der Beitrag der PDLC-Schicht zur Gesamttrübung des Musters im geschalteten Zustand gering ist. Tabelle 1:
Optische Eigenschaften eines erfindungsgemäßen Mehrschichtverbunds im geschalteten (36 Volt Spannung) und ungeschalteten Ausgangszustand (0 Volt).
Figure imgf000017_0001
Beispiel 2 (Vergleich):
Messung von Lichttransmission und Haze an nicht erfindungsgemäßem Prüfkörper auf PET-Basis
Im Vergleich zu dem erfindungsgemäßen Mehrschichtenverbund aus Beispiel 1 wurde ein Prüfkörper aus dem kommerziell erhältlichen PET-ITO-Schichtenverbund TL42 der Firma OPAK Smart Glas GmbH herangezogen. Der PET-ITO-Schichtenverbund TL42 hat eine
PDLC-Kernschicht, deren chemische Einsatzstoffe und Formulierung identisch zu der Kern schicht aus Beispiel 1 ist. Die beiden Trägerfolien sind 188 μm dickes PET mit ITO-Schicht.
Dabei sind die jeweiligen ITO-Schichten der beiden Trägerfolien des PET-ITO- Schichten verbunds TL42 unmittelbar auf der PDLC-Schicht angeordnet, die ITO-Schichten der beiden Trägerfolien des PET-ITO- Schichtenverbunds TL42 waren also nur durch die PDLC- Schicht voneinander getrennt.
Figur 2 zeigt den schematischen Aufbau des PET-ITO- Schichtenverbunds TL42 (nicht maß stabsgerecht). Dabei sind:
21a PET-Schicht 23a ITO-Schicht
24 PDLC-Schicht
23b ITO-Schicht
21b PET-Schicht Die Messergebnisse für Trübung und Transmission finden sich in Tabelle 2.
Tabelle 2:
Optische Eigenschaften des nicht erfindungsgemäßen auf einem PET-ITO- Schichtenverbunds TL42-basierten -Prüfkörpers (Vergleichsmuster) im geschalteten (65 Volt Spannung) und ungeschalteten Ausgangszustand (0 Volt).
Figure imgf000018_0002
Das Vergleichsmuster hat eine hohe Trübung im Normalzustand von 97,26 % . Das ist iden tisch zu dem erfindungsgemäßen Mehrschichtverbund.
Das Vergleichsmuster hat im geschalteten Zustand trotz der hohen angelegten Spannung eine vergleichsweise geringe Transmission von 81,89 % und eine hohe Resttrübung von 4,10 %.
Ein Vergleich mit dem Trübungswert einer unbeschichteten PET -Folie von 0,8 % zeigt, dass der Beitrag der PDLC-Schicht zur Gesamttrübung des Vergleichsmusters im geschalteten Zustand hoch ist, insbesondere höher als im erfindungsgemäßen Mehrschichtverbund aus Beispiel 1. Beispiel 3 (Vergleich):
Messung von Lichttransmission und Haze an nicht erfindungsgemäßem Prüfkörper auf Basis von Polvcarbonat
Im Vergleich zu dem erfindungsgemäßen Mehr Schicht verbünd aus Beispiel 1 wurde in Bei spiel 3 für die Rückseite des herzustellenden Prüfkörpers eine kommerziell erhältliche Hochglanz-Polycarbonatfolie Makrofol® DE 1-1 der Covestro Deutschland AG verwendet. Diese Folie wurde in Blätter - auch hier „PC-ITO-Blätter“ bzw. in der Einzahl „PC-ITO- Blatt“ genannt - mit jeweils einem Format von ca. 150 mm x 150 mm zugeschnitten und diese PC-ITO-Blätter einzeln in einem Sputtering- Verfahren mit Indium-Zinn-Oxid (ITO) vorderseitig beschichtet. Der Widerstand der ITO-Schicht betrug (90±5)
Figure imgf000018_0001
Ein solches nicht erfindungsgemäßes PC-ITO- Blatt gemäß diesem Beispiel 3 und ein gemäß Beispiel 1 hergestelltes erfindungsgemäßes PC-ITO-Blatt aus Beispiel 1 wurden nun für die Rückseite bzw. Vorderseite des zu bauenden PDLC -Musters verwendet. Das Verfahren zur Herstellung des Prüfkörpers gemäß diesem Beispiel 3 entspricht dem aus Beispiel 1.
Figur 3 zeigt den schematischen Aufbau eines Prüfkörpers gemäß diesem Beispiel 3 (nicht maßstabsgerecht). Dabei sind: 31a Polycarbonatschicht des ersten PC-ITO-Blatts
33a ITO-Schicht des ersten PC-ITO-Blatts
34 PDLC-Schicht
33b ITO-Schicht des zweiten PC-ITO-Blatts 31b Polycarbonatschicht des zweiten PC-ITO-Blatts Die Folie Makrofol® DE 1-1 war 385 μm dick (Prüfmethode ISO 4593:1993-11).
Ein ca. 50 mm breites Muster wurde im Hazemeter NDH 2000 (Firma Nippon Denshoku Industries Co., Ltd.) bei Normlichtart D65 hinsichtlich der Trübung (Haze) und der Trans mission vermessen, jeweils einmal ohne angelegte Spannung (0 Volt) und einmal mit Span nung (36 Volt). Die Messergebnisse finden sich in Tabelle 3.
Der Prüfkörper gemäß diesem Beispiel 3 hat eine im opaken Normalzustand eine geringere Trübung im Vergleich zum erfindungsgemäßen Prüfkörper aus Beispiel 1 (91, 39 % im Ver gleich zu 97,26 %).
Der Prüfkörper gemäß diesem Beispiel 3 hat im transparenten geschalteten Zustand eine geringere Transmission im Vergleich zum erfindungsgemäßen Prüfkörper aus Beispiel 1 (84,83 % im Vergleich zu 88,87 %) und zugleich eine höhere Resttrübung (3,99 % im Ver gleich zu 3,74 %). Dies belegt, dass das nicht erfindungsgemäße Muster (mit einer PC-Folie ohne Kratzfestausrüstung) in beiden Schaltzuständen optisch schlechter ist als das erfin dungsgemäße Muster. Tabelle 3:
Optische Eigenschaften eines nicht erfindungsgemäßen PC-basierten PDLC- Prüfkörpers im geschalteten (36 Volt Spannung) und ungeschälte ten Ausgangszustand (0 Volt).
Figure imgf000020_0001

Claims

Patentansprüche :
1. Ein Mehrschichtverbund mit Sandwichstruktur, welcher als Bestandteil von Flüssig kristallvorrichtungen geeignet ist, umfassend oder bestehend aus: einer Kernschicht, die entweder aus einer Polymermatrix, in die nematische Flüssig kristalle dispergiert sind, oder einer Flüssigkristallmatrix, in die Polymere dispergiert sind, besteht; zwei leitfähige Schichten, die jeweils auf einer Oberfläche der Kernschicht angeordnet sind und diese somit einschließen, wobei die leitfähigen Schichten transparent und elektrisch leitfähig sind; zwei Polycarbonatschichten, die jeweils auf derjenigen Oberfläche der leitfähigen Schichten angeordnet sind, welche von der Kernschicht abgewandt ist und die jeweils auf der der Kernschicht zugewandten Seite eine klare Hartschicht-Beschichtung auf weisen und wobei die Polycarbonatschichten transparent sind; und gegebenenfalls zwei Antiblock-Hartschichten, die jeweils auf derjenigen Oberfläche der Polycarbo natschichten angeordnet sind, welche von der Kernschicht abgewandt ist, wobei die Antiblock-Hartschichten transparent sind; und/oder zwei Klebeschichten, die jeweils auf derjenigen Oberfläche der Polycarbonatschichten oder, wenn vorhanden, der Antiblock-Hartschichten, angeordnet sind, welche von der Kernschicht abgewandt ist, wobei die Klebeschichten transparent sind.
2. Der Mehrschichtverbund gemäß Anspruch 1, dadurch gekennzeichnet, dass die Kern schicht (i) eine Dicke von 100 bis 200 μm aufweist; und/oder
(ii) eine Polymermatrix aufweist, die aus UV -härtbaren polymerisierbaren Monomeren hergestellt ist; und/oder (iii) Flüssigkristalle aufweist, die ausgewählt sind aus einer der Klassen nematischer, smektischer, ferroelektrischer oder organometallischer Mesogene, inklusive der Klas se polymerisierbarer Flüssigkristalle.
3. Der Mehrschichtverbund gemäß einem der voranstehenden Ansprüchen, dadurch ge kennzeichnet, dass die leitfähigen Schichten
(i) eine Dicke von 20 bis 50 nm aufweisen; und/oder
(ii) gleich oder verschieden voneinander sind; und/oder
(iii) aus ITO, IMITO, Zinnoxid oder Gallium dotierten Zinnoxid bestehen; und/oder
(iv) eine maximale Rauigkeit ihrer Oberfläche von Ra < 0,1 μm aufweisen, bestimmt nach DIN EN ISO 1302:2002-06; und/oder
(v) einen spezifischen Flächenwiderstand
Figure imgf000022_0001
kleiner als 100 Ohm aufweisen.
4. Der Mehrschichtverbund gemäß einem der voranstehenden Ansprüchen, dadurch ge kennzeichnet, dass die Polycarbonatschichten
(i) eine Dicke von 90 bis 1000 μm aufweisen; und/oder
(ii) gleich oder verschieden voneinander sind; und/oder
(iii) aus amorphen Polycarbonat bestehen; und/oder
(iv) eine Transmission Ty von mindestens 86% aufweisen; und/oder
(v) eine Trübung von weniger als 2% aufweisen; und/oder
(vi) extrudierte Polycarbonatschichten sind; und/oder
(vii) eine klare Hartschicht-Beschichtung aufweisen, die eine Lackbeschichtung ist; und/oder
(viii) eine Vicat-Erweichungstemperatur von 145 bis 160 °C aufweisen, bestimmt nach der Prüfmethode ISO 306:2014-03 und dem Verfahren B50 (Prüflast 50 N; Heizrate 50 K/h; Pressplatte in Öl); und/oder (ix) einen Schmelzbereich von 220 bis 230 °C aufweisen; und/oder
(x) eine Brenngeschwindigkeit von ≤ 100 mm/min, bestimmt nach der Prüfmethode US- FMVSS 302, aufweisen. 5. Der Mehrschichtverbund gemäß einem der voranstehenden Ansprüchen, dadurch ge kennzeichnet, dass die Antiblock-Hartschichten
(i) eine Dicke von 0,
5 bis 12 μm aufweisen; und/oder
(ii) gleich oder verschieden voneinander sind; und/oder
(iii) aus siliziumoxidischen Schichten, versetzt mit Kielselsäuren, oder Wachsadditiven, wie Paraffinwachsen, bestehen.
6. Verfahren zur Herstellung eines Mehrschichtverbunds gemäß einem der Ansprüche 1 bis 5, umfassend oder bestehend aus den Schritten:
(i) Bereitstellen von zwei leitfähigen Schichten und zwei Polycarbonatschichten, wobei die Polycarbonatschichten auf einer Seite eine klare Hartschicht-Beschichtung und auf der anderen Seite gegebenenfalls eine Antiblock-Hartschicht aufweisen, und jeweils Aufbringen jeweils einer leitfähigen Schicht auf eine Polycarbonatschicht, wobei die leitfähige Schicht auf der Seite der Polycarbonatschicht mit klarer Hartschicht- Beschichtung aufgebracht wird, um einen ersten Verbund zu erhalten; (ii) Aufbringen der Kernschicht auf die leitfähige Schicht von einem ersten Verbund mit tels Rakeln, Gießen oder Drucken, um einen zweiten Verbund zu erhalten;
(iii) Aufbringen des weiteren ersten Verbunds auf die Kernschicht des zweiten Verbunds, wobei die leitfähige Schicht des ersten Verbunds auf den zweiten Verbund mittels Lamination, Verpressen oder Kaschieren insbesondere in Verbindung mit UV -Härten aufgebracht wird, um einen dritten Verbund zu erhalten;
(iv) gegebenenfalls Aufbringen von zwei Antiblock-Hartschichten, falls nicht schon in Schritt (i) enthalten, auf die beiden Flächen des dritten Verbunds, um einen vierten Verbund zu erhalten; und/oder (vii) gegebenenfalls Aufbringen von zwei Klebeschichten auf die beiden Flächen des dritten oder vierten Verbunds, um einen alternativen vierten oder einen fünften Verbund zu erhalten; und/oder
(viii) gegebenenfalls Überspritzen oder Hinterspritzen des dritten, vierten oder fünften Verbundes im Spritzgussverfahren.
7. Flüssigkristallvorrichtung, umfassend einen Mehrschichtverbund gemäß einem der Ansprüche 1 bis 5, welcher zwischen zwei Scheiben angeordnet ist, wobei die leitfähigen Schichten mit einer Spannungsquelle verbunden sind.
8. Verfahren zur Herstellung einer Flüssigkristallvorrichtung gemäß Anspruch 7, umfassend oder bestehen aus den Schritten:
Befestigen von zwei Scheiben, jeweils auf einer Seite des Mehrschichtverbunds gemäß einem der Ansprüche 1 bis 5.
9. Verwendung der Flüssigkristallvorrichtung gemäß Anspruch 7 als Gebäudeverglasung, in Automobilgläsern, insbesondere Spiegeln und Scheiben, als Scheinwerferabdeckung, in optischen Filtern, in Shuttern, in Flachbildschirmen, in verglasten Werbegeräten, in Trennwänden von Zügen und in Point-of-Interest Vorrichtungen.
PCT/EP2020/078210 2019-10-15 2020-10-08 Elektrisch dimmbare verscheibung WO2021073992A1 (de)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2022522800A JP2022552550A (ja) 2019-10-15 2020-10-08 電気的に調光可能なグレージング
EP20807286.8A EP4045313A1 (de) 2019-10-15 2020-10-08 Elektrisch dimmbare verscheibung
CN202080072158.3A CN114514116A (zh) 2019-10-15 2020-10-08 可电调光的装配玻璃
US17/767,102 US20220363045A1 (en) 2019-10-15 2020-10-08 Electrically dimmable glazing
KR1020227012066A KR20220079856A (ko) 2019-10-15 2020-10-08 전기적 조도조절성 글레이징

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
EP19203193.8 2019-10-15
EP19203193 2019-10-15

Publications (2)

Publication Number Publication Date
WO2021073992A1 true WO2021073992A1 (de) 2021-04-22
WO2021073992A8 WO2021073992A8 (de) 2021-06-10

Family

ID=68289882

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2020/078210 WO2021073992A1 (de) 2019-10-15 2020-10-08 Elektrisch dimmbare verscheibung

Country Status (6)

Country Link
US (1) US20220363045A1 (de)
EP (1) EP4045313A1 (de)
JP (1) JP2022552550A (de)
KR (1) KR20220079856A (de)
CN (1) CN114514116A (de)
WO (1) WO2021073992A1 (de)

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4435047A (en) 1981-09-16 1984-03-06 Manchester R & D Partnership Encapsulated liquid crystal and method
DE3816069A1 (de) 1988-05-11 1989-11-16 Klaus Uhl Einsatz fuer fenster oder tueren
US4963206A (en) 1989-05-04 1990-10-16 Allied-Signal Inc. Method of making a thermal window glazing with conductive polymer coating to block radiative heating
WO1992011219A1 (en) 1990-12-21 1992-07-09 The Dow Chemical Company Preparation and use of mullite whisker networks
WO1992012219A1 (en) 1991-01-11 1992-07-23 Minnesota Mining And Manufacturing Company Polymer-dispersed liquid crystal device having an ultraviolet-polymerizable matrix and a variable optical transmission and a method for preparing the same
WO1995001410A1 (en) 1993-06-30 1995-01-12 Sniaricerche S.C.P.A. Metallo organo liquid crystals in a polymer matrix
US5867238A (en) 1991-01-11 1999-02-02 Minnesota Mining And Manufacturing Company Polymer-dispersed liquid crystal device having an ultraviolet-polymerizable matrix and a variable optical transmission and a method for preparing same
EP0927753A1 (de) 1997-12-29 1999-07-07 Sniaricerche S.C.P.A. Elektrooptische Filme mit Flüssigkristalldispergiertem Polymer mit umgekehrter Morphologie
WO2015044275A1 (en) 2013-09-27 2015-04-02 Bayer Materialscience Ag Fabrication of igzo oxide tft on high cte, low retardation polymer films for lcd-tft applications
WO2019020298A1 (de) 2017-07-27 2019-01-31 Saint-Gobain Glass France Fahrzeugscheibe mit pdlc-film mit definierter tröpfchengrössenverteilung zur verringerung des coronaeffekts
US20190071605A1 (en) 2015-06-17 2019-03-07 Jnc Corporation Polymerizable liquid crystal composition and optical anisotropical body thereof

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4613207A (en) * 1984-05-08 1986-09-23 Manchester R & D Partnership Liquid crystal projector and method
US20140085548A1 (en) * 2011-04-06 2014-03-27 Teijin Limited Transparent conductive laminate and transparent touch panel
CN105324425B (zh) * 2013-06-21 2021-02-09 沙特基础全球技术有限公司 用于生产具有高质量和良好加工性的光学质量产品的聚碳酸酯组合物
JP5490955B1 (ja) * 2013-09-30 2014-05-14 帝人株式会社 導電性積層体およびそれを用いるタッチパネル
JP6560133B2 (ja) * 2015-05-29 2019-08-14 日東電工株式会社 積層体のロール、光学ユニット、有機el表示装置、透明導電性フィルム及び光学ユニットの製造方法
JP6897091B2 (ja) * 2016-12-22 2021-06-30 大日本印刷株式会社 調光フィルム
KR20200141434A (ko) * 2018-01-05 2020-12-18 한화 아즈델 인코포레이티드 난연성 및 소음 감소를 제공하는 복합 물품들

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4435047A (en) 1981-09-16 1984-03-06 Manchester R & D Partnership Encapsulated liquid crystal and method
DE3816069A1 (de) 1988-05-11 1989-11-16 Klaus Uhl Einsatz fuer fenster oder tueren
US4963206A (en) 1989-05-04 1990-10-16 Allied-Signal Inc. Method of making a thermal window glazing with conductive polymer coating to block radiative heating
WO1992011219A1 (en) 1990-12-21 1992-07-09 The Dow Chemical Company Preparation and use of mullite whisker networks
WO1992012219A1 (en) 1991-01-11 1992-07-23 Minnesota Mining And Manufacturing Company Polymer-dispersed liquid crystal device having an ultraviolet-polymerizable matrix and a variable optical transmission and a method for preparing the same
US5867238A (en) 1991-01-11 1999-02-02 Minnesota Mining And Manufacturing Company Polymer-dispersed liquid crystal device having an ultraviolet-polymerizable matrix and a variable optical transmission and a method for preparing same
WO1995001410A1 (en) 1993-06-30 1995-01-12 Sniaricerche S.C.P.A. Metallo organo liquid crystals in a polymer matrix
EP0927753A1 (de) 1997-12-29 1999-07-07 Sniaricerche S.C.P.A. Elektrooptische Filme mit Flüssigkristalldispergiertem Polymer mit umgekehrter Morphologie
WO2015044275A1 (en) 2013-09-27 2015-04-02 Bayer Materialscience Ag Fabrication of igzo oxide tft on high cte, low retardation polymer films for lcd-tft applications
US20190071605A1 (en) 2015-06-17 2019-03-07 Jnc Corporation Polymerizable liquid crystal composition and optical anisotropical body thereof
WO2019020298A1 (de) 2017-07-27 2019-01-31 Saint-Gobain Glass France Fahrzeugscheibe mit pdlc-film mit definierter tröpfchengrössenverteilung zur verringerung des coronaeffekts

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
FERGASON J. L., ENCAPSULATED LIQUID CRYSTAL AND METHOD
KASHIMA MCAO HMENG QLIU HWANG DLI F ET AL.: "The influence of crosslinking agents on the morphology and electro-optical performances of PDLC films", J. APPL. POL. SCI., vol. 117, 2010, pages 3434 - 3440

Also Published As

Publication number Publication date
JP2022552550A (ja) 2022-12-16
EP4045313A1 (de) 2022-08-24
KR20220079856A (ko) 2022-06-14
US20220363045A1 (en) 2022-11-17
CN114514116A (zh) 2022-05-17
WO2021073992A8 (de) 2021-06-10

Similar Documents

Publication Publication Date Title
EP3658980B1 (de) Fahrzeugscheibe mit pdlc-film mit definierter tröpfchengrössenverteilung zur verringerung des coronaeffekts
DE60225835T2 (de) Elektrode für elektrochemische und/oder elektrisch-steuerbare vorrichtungen
DE202013006516U1 (de) System mit variabler Lichtstreuung, das eine PDLC-Schicht enthält
DE60018382T2 (de) Transparentes Laminat, Verfahren zur Herstellung und Plasma-Anzeigetafel
DE69804494T2 (de) Selbstleuchtende retroreflektive folie und verfahren zu deren herstellung
DE60216924T2 (de) Elektrooptische anzeige und kleberzusammensetzung
DE69419045T2 (de) Elektrochrome Glasscheibe und seine Anwendung in Fahrzeugen und Bauwesen
EP3391135B1 (de) Elektrisch schaltbare verglasung umfassend flächenelektroden mit anisotroper leitfähigkeit
EP3839616B1 (de) Verbundscheibenelement, dieses umfassendes fenster sowie verfahren zu dessen herstellung
DE102014115156B4 (de) Transparenter Leiter und damit ausgestattetes optisches Display
DE69814508T2 (de) Antireflexionsschicht mit elektromagnetischem Abschirmeffekt und optisches Bauteil mit diesem Antireflexionsschicht
DE202018102520U1 (de) Verbundscheibe mit einem Funktionselement
DE69315331T2 (de) Elektroabscheidungsverfahren zum anbringen von mikroverkapseltem fluessigkristallmaterial auf elektroden
DE19948839A1 (de) Leitende transparente Schichten und Verfahren zu ihrer Herstellung
DE2347613C2 (de) Elektrooptisches Gerät
EP4164880A1 (de) Verfahren zum laminieren einer verbundscheibe umfassend ein funktionselement mit elektrisch schaltbaren optischen eigenschaften
DE3417363C2 (de)
DE69611483T2 (de) Optisches Flüssigkristallelement, Flüssigkristallanzeigeelement und Flüssigkristall-Projektionanzeigegerät, dass dieses Element verwendet
EP4045313A1 (de) Elektrisch dimmbare verscheibung
DE102016105039B4 (de) Touchfähiges Glas- oder Glaskeramikelement mit verminderter Lichtstreuung und/oder Lichtablenkung sowie Verfahren zu dessen Herstellung
DE102011015950A1 (de) Optisches Bauteil und Verfahren zu dessen Herstellung
WO2021023608A1 (de) Mehrschichtige, schaltbare verglasung
WO2020025304A1 (de) Pdlc-fahrzeugscheibe mit einer schicht hoher leitfähigkeit
DE112019000952B4 (de) Transparenter Halbleiter, Lichtlenkkörper und elektronische Vorrichtung
DE2449602A1 (de) Reflektor fuer fluessigkristallanzeigen und verfahren zu dessen herstellung

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20807286

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022522800

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2020807286

Country of ref document: EP

Effective date: 20220516