WO2021073897A1 - Procédé de production de revêtements quasi-cristallins à base d'oxydes de pérovskite - Google Patents

Procédé de production de revêtements quasi-cristallins à base d'oxydes de pérovskite Download PDF

Info

Publication number
WO2021073897A1
WO2021073897A1 PCT/EP2020/077663 EP2020077663W WO2021073897A1 WO 2021073897 A1 WO2021073897 A1 WO 2021073897A1 EP 2020077663 W EP2020077663 W EP 2020077663W WO 2021073897 A1 WO2021073897 A1 WO 2021073897A1
Authority
WO
WIPO (PCT)
Prior art keywords
noble metal
substrate
layer
metal layer
quasi
Prior art date
Application number
PCT/EP2020/077663
Other languages
German (de)
English (en)
Inventor
Stefan Förster
Thomas Greber
Klaus Meinel
Wolf Widdra
Original Assignee
Martin-Luther-Universität Halle-Wittenberg
Universität Zürich
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Martin-Luther-Universität Halle-Wittenberg, Universität Zürich filed Critical Martin-Luther-Universität Halle-Wittenberg
Publication of WO2021073897A1 publication Critical patent/WO2021073897A1/fr

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/10Inorganic compounds or compositions
    • C30B29/16Oxides
    • C30B29/22Complex oxides
    • C30B29/24Complex oxides with formula AMeO3, wherein A is a rare earth metal and Me is Fe, Ga, Sc, Cr, Co or Al, e.g. ortho ferrites
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B23/00Single-crystal growth by condensing evaporated or sublimed materials
    • C30B23/02Epitaxial-layer growth
    • C30B23/025Epitaxial-layer growth characterised by the substrate
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B33/00After-treatment of single crystals or homogeneous polycrystalline material with defined structure
    • C30B33/02Heat treatment

Definitions

  • the invention relates to a method for producing quasi-crystalline coatings based on perovskite oxides and substrates which have such a quasi-crystalline coating.
  • the invention is concerned with the production of novel quasi-crystalline (aperiodic) oxide surface coatings.
  • the crystal structure has a significant influence on the material properties.
  • quasi-crystalline coatings often have increased hardness and oxidation resistance and are of interest for applications in which, for example, particularly low abrasion and particularly low adhesion of a coating is desired.
  • the atoms are arranged in an ordered but aperiodic structure. Quasi-crystalline surface coatings made from intermetallic compounds or polymers are known.
  • the first quasicrystal made of a mixed oxide was discovered on the surface of a Pt (111) single crystal in 2013.
  • the mixed oxide of barium and titanium normally crystallizes in the perovskite structure with a highly ordered cubic structure. If, however, thin layers of barium titanate are applied to a Pt (111) single crystal and briefly heated to 950 K, a phase transition into a two-dimensional layer takes place, the atoms of which form an aperiodic arrangement with twelve-fold symmetry.
  • oxide quasicrystals can be explained by the meeting of the two different materials at the interface.
  • the platinum crystal has a characteristic three-dimensional structure, just like periodic barium titanate.
  • the ions of the vapor-deposited oxide prefer to change the aperiodic arrangement at the interface.
  • the formation of an oxide quasicrystal layer has so far been limited to Pt (111) single crystals. Due to the high material costs, Pt (111) single crystal substrates are unsuitable for economical use of oxidic quasicrystal coatings. Summary of the invention
  • a first aspect of the invention is the provision of a method for the production of quasi-crystalline coatings from perovskite AB0 3 on a refractory noble metal substrate, where A stands for a divalent or trivalent element of the rare earth or alkaline earth metals and B for a transition metal with a variable oxidation state.
  • the method according to claim 1 comprises the steps of: a) depositing a noble metal layer on the substrate; b) production of a comprehensive layer of 1 to 2 monolayer equivalents AB0 3 directly on the noble metal layer; and c) then heating the coated substrate in vacuo to a temperature in the range from 800 K to 1300 K.
  • a second aspect of the invention relates to a substrate which has a noble metal layer and a quasi-crystalline coating of perovskite oxide AB0 3 deposited directly on the noble metal layer, A being a divalent or trivalent element of the rare earth or alkaline earth metals and B being a transition metal with variable Oxidation state.
  • the invention relates to a method for producing quasi-crystalline coatings based on perovskite oxides, such as in particular titanates, as well as substrates which have such a quasi-crystalline coating.
  • perovskite oxides such as in particular titanates
  • substrates which have such a quasi-crystalline coating.
  • a first aspect of the invention is the provision of a process for the production of quasi-crystalline coatings from AB0 3 on a substrate, where A is a divalent or trivalent element of the rare earth or alkaline earth metals and B is a transition metal with a variable oxidation state.
  • the method according to claim 1 comprises the steps of: a) depositing a noble metal layer on the substrate; b) production of a comprehensive layer of 1 to 2 monolayer equivalents AB0 3 directly on the noble metal layer; and c) then heating the coated substrate in vacuo to a temperature in the range from 800 K to 1300 K.
  • a quasi-crystalline coating from a perovskite oxide can now be produced on any substrate that enables the application of a layer of the refractory noble metal and withstands the conditions of further process steps b) and c).
  • the only requirements for the base are therefore that a metallic film of a refractory noble metal can be deposited on it and a perovskite oxide deposited on it can be converted into the desired quasi-crystalline structure by heating.
  • the novel process thus enables the transfer of the oxide quasicrystal coating of Pt (111) single crystals to alternative surfaces.
  • a metallic thin layer of a high-melting noble metal is first produced, which acts as a carrier for the oxide quasicrystal coating to be produced.
  • Preferred refractory noble metals are platinum (Pt), palladium (Pd) and iridium (Ir).
  • the thickness of this metallic thin layer only needs to be a few nanometers, so that the material costs are negligible.
  • the noble metal layer preferably has an average layer thickness in the range from 50 nm to 200 nm.
  • any conventionally used method can be used for the deposition of the noble metal, for example wet-chemical deposition methods or deposition methods from the gas phase, such as CVD.
  • the noble metal layer is preferably deposited on the substrate by means of electron beam evaporation.
  • the method has also been optimized in such a way that only a defined amount of the perovskite oxide is applied to the noble metal layer in step b).
  • a comprehensive layer of 1 to 2 monolayer equivalents AB0 3 is generated or applied directly to the precious metal surface.
  • the area-covering layer has 1 to 1.5 monolayer equivalents, in particular 1 to 1.05 monolayer equivalents, of AB0 3 .
  • a monolayer equivalent corresponds to the amount of material that is required to form a monolayer (or monolayer) on the surface of the noble metal.
  • monolayer denotes a planar individual layer of ions of the perovskite oxide on this surface, ie the layer height is monoatomic.
  • a quasi-crystalline oxide layer could also be produced by depositing a larger amount of the perovskite oxide on the noble metal surface in step b) and then gradually removing this coating by, for example, Ar + ion bombardment.
  • Ar + ion bombardment a coating by, for example, Ar + ion bombardment.
  • a comprehensive layer of perovskite oxide on the noble metal surface can be made either by direct application of the material or by a chemical reaction on the surface of the noble metal.
  • all conventional methods in thin-film technology, with which a defined amount of material can be applied are suitable for direct application of the material.
  • the surface-covering layer of AB0 3 is produced by first depositing the two metallic cations of the mixed oxide on the noble metal surface and then oxidizing them by heating in an oxygen or oxygen-containing atmosphere. Instead of the oxide, only the metals involved are initially brought onto the noble metal surface and these are then oxidized on the surface. This improves the adhesion of the crystal layer.
  • the oxide or the metals can be applied by physical vapor deposition (PVD).
  • PVD physical vapor deposition
  • examples include sputter deposition or evaporation methods such as thermal evaporation, electron beam evaporation, and laser beam evaporation.
  • the metallic component A is preferably selected from the group of the alkaline earth metals: beryllium (Be), magnesium (Mg), calcium (Ca), strontium (Sr) and barium (Ba); the group of rare earth metals: scandium (Sc), yttrium (Y); and the lanthanoids (La, Ce, Pr, Nd, Pm, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu). It is particularly preferred Barium (Ba) and strontium (Sr).
  • the metallic component B must be a transition metal of the third period that can be changed in its oxidation state. Titanium (Ti), vanadium (V), chromium (Cr), manganese (Mn), iron (Fe), cobalt (Co), nickel (Ni) and copper (Cu) are preferred. Titanium (Ti) is particularly preferred.
  • step c) of the method the coated substrate is heated to a temperature in the range from 800 K to 1300 K in a vacuum.
  • the temperature in step c) is preferably in the range from 900 K to 1200 K, in particular in the range from 1000 K to 1100 K.
  • the periodic layer of the applied perovskite oxide tears open and the quasicrystal layer is formed at the interface with the precious metal.
  • Temperatures above 1300 K can have a negative influence on the stability of the quasicrystals that are formed.
  • a second aspect of the invention relates to a substrate which has a noble metal layer and a quasi-crystalline AB0 3 coating deposited directly on the noble metal layer, A being a divalent or trivalent element of the rare earth or alkaline earth metals and B being a transition metal with a variable oxidation state.
  • a substrate can be the process product of the process described above.
  • the A and B cations are in turn preferably selected from the group comprising beryllium (Be), magnesium (Mg), calcium (Ca), strontium (Sr), barium (Ba), scandium (Sc), yttrium (Y) ), the lanthanoids (La, Ce, Pr, Nd, Pm, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu), titanium (Ti), vanadium (V), chromium (Cr) , Manganese (Mn), iron (Fe), cobalt (Co), nickel (Ni), copper (Cu). It is also preferred if the noble metal layer has an average layer thickness in the range from 50 nm to 200 nm.
  • the substrate is usually part of a more complex functional part, such as a tool, the surface of which is to be protected against abrasion in certain areas.
  • Pt (111) layer An approx. 200 nm thick Pt (111) layer was grown epitaxially on a Si (111) wafer by means of electron beam evaporation.
  • a buffer layer of yttrium was previously stabilized zirconium dioxide applied to the silicon substrate.
  • the quasi-crystalline barium titanate layers on Pt (111) / Si (111) show a comparable structural perfection as on the known Pt (111) single crystals.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Physical Vapour Deposition (AREA)
  • Catalysts (AREA)

Abstract

L'invention concerne un procédé de production de revêtements quasi-cristallins à partir d'ABO3 sur un substrat, A représentant un élément divalent ou trivalent des métaux de terres rares ou alcalino-terreux et B représentant un métal de transition ayant un état d'oxydation variable. Le procédé comprend les étapes consistant à : a) déposer une couche de métal noble sur le substrat ; b) produire une couche à pleine surface de 1 à 2 équivalents mono-couche d'ABO3 directement sur la couche de métal noble ; et c) chauffer ensuite le substrat revêtu sous pression réduite jusqu'à une température se situant dans la plage de 800 K à 1 300 K. L'invention concerne également des substrats qui comprennent un tel revêtement quasi-cristallin.
PCT/EP2020/077663 2019-10-14 2020-10-02 Procédé de production de revêtements quasi-cristallins à base d'oxydes de pérovskite WO2021073897A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102019127600.4 2019-10-14
DE102019127600.4A DE102019127600A1 (de) 2019-10-14 2019-10-14 Verfahren zur Herstellung quasikristalliner Beschichtungen auf Basis von perowskitischen Oxiden

Publications (1)

Publication Number Publication Date
WO2021073897A1 true WO2021073897A1 (fr) 2021-04-22

Family

ID=72826853

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2020/077663 WO2021073897A1 (fr) 2019-10-14 2020-10-02 Procédé de production de revêtements quasi-cristallins à base d'oxydes de pérovskite

Country Status (2)

Country Link
DE (1) DE102019127600A1 (fr)
WO (1) WO2021073897A1 (fr)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101230450B (zh) * 2007-08-28 2010-10-06 北京有色金属研究总院 一种射频溅射制备(111)织构化钛酸锶钡介电陶瓷薄膜的方法
WO2019079062A1 (fr) * 2017-10-16 2019-04-25 Drexel University Couches de mxène en tant que substrats pour la croissance de films minces de pérovskite hautement orientée

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5140935B2 (ja) * 2006-03-28 2013-02-13 富士通セミコンダクター株式会社 マグネトロンスパッタ成膜装置、及び半導体装置の製造方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101230450B (zh) * 2007-08-28 2010-10-06 北京有色金属研究总院 一种射频溅射制备(111)织构化钛酸锶钡介电陶瓷薄膜的方法
WO2019079062A1 (fr) * 2017-10-16 2019-04-25 Drexel University Couches de mxène en tant que substrats pour la croissance de films minces de pérovskite hautement orientée

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
SEBASTIAN SCHENK ET AL: "Observation of a dodecagonal oxide quasicrystal and its complex approximant in the SrTiO-Pt(1 1 1) system", JOURNAL OF PHYSICS: CONDENSED MATTER, INSTITUTE OF PHYSICS PUBLISHING, BRISTOL, GB, vol. 29, no. 13, 23 February 2017 (2017-02-23), pages 134002, XP020315128, ISSN: 0953-8984, [retrieved on 20170223], DOI: 10.1088/1361-648X/AA5BDB *

Also Published As

Publication number Publication date
DE102019127600A1 (de) 2021-04-15

Similar Documents

Publication Publication Date Title
JP3694737B2 (ja) 酸化亜鉛基ホモロガス化合物薄膜の製造法
DE4408250C2 (de) Oberflächenschichtsystem für Substrate
DE112004003138B4 (de) Aluminiumoxidschutzschicht und Herstellungsverfahren dafür
DE69307811T2 (de) Hartschicht aus Ti-Si-N-Verbundwerkstoff und Verfahren zur Herstellung derselben
EP0337007B1 (fr) Couche de protection en matériau dur ayant une distribution homogène de particules
DE68915288T2 (de) Epitaktischer supraleitender ba-y-cu-o-film.
DE69220312T2 (de) Herstellungsverfahren für oxidischen supraleitenden film
DE4302407A1 (fr)
WO2021073897A1 (fr) Procédé de production de revêtements quasi-cristallins à base d'oxydes de pérovskite
DE2549509A1 (de) Verfahren zur herstellung eines ueberzuges aus einem magnetischen oxid
DE69406963T2 (de) Hochharte Dünnschicht, sowie Verfahren zu deren Herstellung
KR101913757B1 (ko) 산화 텅스텐의 제조 방법
EP2468915B1 (fr) Procédé de séparation de couches diélectriques sous vide et utilisation du procédé
JP3500787B2 (ja) ビスマス化合物の製造方法とビスマス化合物の誘電体物質
DE19844755A1 (de) Verfahren zum Herstellen dünner Schichten aus funktionalen Keramiken
DE19817482C2 (de) Verfahren zur Herstellung von Dickschichten aus ferroelektrischen Keramiken
DE10044226C2 (de) Magnetisches Bauelement und Verfahren zu seiner Herstellung
KR20140106813A (ko) 산화아연계 스퍼터링 타겟, 그 제조방법 및 이를 통해 증착된 차단막을 갖는 박막트랜지스터
EP2049703A1 (fr) Procédé à une étape pour l'application d'une couche métallique sur un substrat
EP2297168B1 (fr) Mélanges de précurseurs pour fabriquer des couches céramiques par mocvd
DE19635722B4 (de) Organisches Blei-, Magnesium- und Niobionen enthaltendes Sol (PMN-Sol) sowie Verfahren zur Herstellung dünner keramischer Schichten
Watts et al. A comparison of Ti/Pt and TiN/Pt electrodes used with ferroelectric SrBi2Ta2O9 films
Huang et al. Microstructures and dielectric properties of PZT thick films prepared by aerosol plasma deposition with microwave annealing
DE4100548A1 (de) Verfahren zur abscheidung von polykristallinen schichten mittels chemischer gasphasenabscheidung
Li et al. Characterization of lead zirconate titanate thin films deposited at low temperature by reactive facing target sputtering

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20789520

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 20789520

Country of ref document: EP

Kind code of ref document: A1