WO2021073393A1 - 一种磷光主体材料及其应用 - Google Patents

一种磷光主体材料及其应用 Download PDF

Info

Publication number
WO2021073393A1
WO2021073393A1 PCT/CN2020/117525 CN2020117525W WO2021073393A1 WO 2021073393 A1 WO2021073393 A1 WO 2021073393A1 CN 2020117525 W CN2020117525 W CN 2020117525W WO 2021073393 A1 WO2021073393 A1 WO 2021073393A1
Authority
WO
WIPO (PCT)
Prior art keywords
atoms
compound
host material
group
groups
Prior art date
Application number
PCT/CN2020/117525
Other languages
English (en)
French (fr)
Inventor
何锐锋
吴灿洁
杨曦
宋晶尧
Original Assignee
广州华睿光电材料有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 广州华睿光电材料有限公司 filed Critical 广州华睿光电材料有限公司
Priority to CN202080061317.XA priority Critical patent/CN114391034B/zh
Publication of WO2021073393A1 publication Critical patent/WO2021073393A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/06Luminescent, e.g. electroluminescent, chemiluminescent materials containing organic luminescent materials

Definitions

  • the invention relates to a functional material for an organic electronic device, in particular to a phosphorescent host material and its application in an organic electronic device, especially a phosphorescent organic electroluminescent device.
  • OLEDs Organic light-emitting diodes
  • OLEDs have excellent properties such as light weight, active light emission, wide viewing angles, high contrast, high luminous efficiency, low energy consumption, easy preparation of flexible and large-sized panels, and are regarded by the industry as the most promising next-generation display technology .
  • Organic light-emitting diodes using fluorescent materials have the characteristics of high reliability, but their internal electroluminescence quantum The efficiency is limited to 25% because the ratio of the singlet excited state to the triplet excited state of the excitons generated by the current is 1:3.
  • organic light-emitting diodes using phosphorescent materials have achieved almost 100% internal electroluminescence quantum efficiency, and therefore, the development of phosphorescent light-emitting materials has been extensively studied.
  • the luminescent material can be used as the luminescent material together with the host material (host) to improve color purity, luminous efficiency and stability.
  • the host material/guest system is used as the light emitting layer of the light emitting device, the host material has a great influence on the efficiency and characteristics of the electroluminescent device, so the choice of the host material is very important.
  • the host material mainly plays the role of energy transmission in the light-emitting layer.
  • the host material needs to have suitable HOMO and LUMO energy levels, which can reduce the barriers for electron and hole injection; the triplet energy level of the host material is higher than the triplet energy level of the light-emitting guest material, which can prevent energy rotation; host material It is necessary to have a certain charge transfer balance ability, so that the exciton recombination area is concentrated in the center of the light-emitting layer to achieve high energy utilization efficiency and device stability.
  • CBP 4,4'-dicarbazole-biphenyl
  • BAlq bis(2-methyl)-8-quinolinol-4-phenyl aluminum (III)
  • BCP phenanthroline
  • bipolarly transmitted molecules as the main body can obtain good device performance.
  • the performance and lifetime of the obtained device still need to be improved.
  • the purpose of the present invention is to provide a dual-host type phosphorescent host material and its application in organic electronic devices, aiming to solve the problems of low performance and device life of the existing organic electronic devices.
  • the present invention relates to a phosphorescent host material, comprising at least one electron transport type (N-type) host material H1 and a hole transport type (P-type) host material H2.
  • the H1 is an N-type host material, and the H1 Selected from the structure shown in general formula (1):
  • Ar 1 is selected from substituted or unsubstituted aromatic groups or heteroaromatic groups with 6-60 ring atoms, and Ar 1 contains at least one electron-deficient group;
  • Ar 2 , Ar 3 , and Ar 4 each independently represent a substituted or unsubstituted aromatic group or heteroaromatic group with 6-30 ring atoms, and the connecting position of N and Ar 3 can be any carbon atom on Ar 3 on;
  • the H2 is a P-type host material, and the H2 is selected from the structure represented by the general formula (2):
  • n is selected from 1, 2, 3 or 4;
  • X is independently selected from CR 3 or N;
  • L 1 represents a single bond, an aromatic group or heteroaromatic group with 5-30 ring atoms, and the linking position of L 1 can be on any carbon atom in the ring;
  • R 1 -R 5 are the same or different each time, and R 1 -R 5 are each independently selected from H, D, linear alkyl groups having 1 to 20 C atoms, and alkoxy groups having 1 to 20 C atoms , Thioalkoxy with 1 to 20 C atoms, branched alkyl with 3 to 20 C atoms, cyclic alkyl with 3 to 20 C atoms, and alkane with 3 to 20 C atoms An oxy group, a thioalkoxy group having 3 to 20 C atoms, a silyl group, a keto group having 1 to 20 C atoms, an alkoxycarbonyl group having 2 to 20 C atoms, having 7 to 20 C atoms C-atom aryloxycarbonyl, cyano, carbamoyl, haloformyl, formyl, isocyano, isocyanate, thiocyanate, isothiocyanate, hydroxyl, nitro, CF 3 , Cl, Br
  • a composition comprising at least one phosphorescent host material as described above and at least one organic solvent.
  • An organic electronic device includes a light-emitting layer, and the host material of the light-emitting layer includes the phosphorescent host material as described above.
  • the phosphorescent host material according to the present invention is used in OLEDs, and can provide higher light-emitting stability and device lifetime.
  • the possible reasons are as follows, but not limited to this.
  • the N-type compound H1 of the present invention has electron transport properties; the P-type compound has hole transport properties, and the PN-type phosphorescent host material has a function of balancing charge transport.
  • both H1 and H2 have suitable LUMO and HOMO energy levels.
  • H1 and H2 molecules can form an exciplex energy intermediate with a smaller ⁇ E ST , which has a higher energy utilization rate, thereby improving the performance of related devices. Luminous efficiency and lifetime.
  • the present invention provides a type of phosphorescent host material and its application in organic electroluminescent devices.
  • the present invention will be described in further detail below. It should be understood that the specific embodiments described here are only used to explain the present invention, but not to limit the present invention.
  • the host material In the embodiments of the present invention, the host material, the host material, the Host material and the Matrix material have the same meaning and can be interchanged.
  • the singlet state and the singlet state have the same meaning and can be interchanged.
  • the triplet state and the triplet state have the same meaning and can be interchanged.
  • P-type and N-type refer to the conductivity characteristics of the material
  • P-type host material functions as an electron donor (hole transport)
  • N-type host material functions as an electron acceptor (electron transport).
  • the P-type host and the hole-transporting host material have the same meaning
  • the N-type host and the electron-transporting host material have the same meaning.
  • substituted means that the hydrogen atom in the substituted group is replaced by the substituent.
  • substituted or unsubstituted means that the defined group may be substituted or unsubstituted.
  • the defined group when the defined group is substituted, it should be understood to be optionally substituted by a group acceptable in the art, including but not limited to: straight chain alkyl containing 1 to 20 C atoms, containing 3 to 20 C atoms
  • the branched chain alkyl group, the cycloalkyl group containing 3-20 ring atoms, the heterocyclic group containing 3-20 ring atoms, the aryl group containing 5-20 ring atoms, the heterocyclic group containing 5-20 ring atoms Aryl, silyl, carbonyl, alkoxycarbonyl, aryloxycarbonyl, carbamoyl, haloformyl, formyl, -NRR', cyano, isocyano, isocyanate, thiocyanate, isocyanate A thiocyanate group, a hydroxyl group, a
  • the number of ring atoms means the number of structural compounds (for example, monocyclic compounds, condensed ring compounds, cross-linked compounds, carbocyclic compounds, heterocyclic compounds) obtained by synthesizing a cyclic atom bond to form the ring itself The number of atoms among atoms.
  • the ring is substituted by a substituent, the atoms contained in the substituent are not included in the ring-forming atoms.
  • the number of ring atoms of the benzene ring is 6
  • the number of ring atoms of the naphthalene ring is 10
  • the number of ring atoms of the thienyl group is 5.
  • the aromatic group refers to a hydrocarbon group containing at least one aromatic ring.
  • a heteroaromatic group refers to an aromatic hydrocarbon group containing at least one heteroatom.
  • the heteroatoms are preferably selected from Si, N, P, O, S and/or Ge, particularly preferably selected from Si, N, P, O and/or S.
  • a fused-ring aromatic group means that the ring of an aromatic group can have two or more rings, in which two carbon atoms are shared by two adjacent rings, that is, a fused ring.
  • the fused heterocyclic aromatic group refers to a fused ring aromatic hydrocarbon group containing at least one heteroatom.
  • aromatic groups or heteroaromatic groups include not only aromatic ring systems but also non-aromatic ring systems.
  • systems such as pyridine, thiophene, pyrrole, pyrazole, triazole, imidazole, oxazole, oxadiazole, thiazole, tetrazole, pyrazine, pyridazine, pyrimidine, triazine, carbene, etc., are also considered for the purpose of this invention Is an aromatic group or a heterocyclic aromatic group.
  • the fused-ring aromatic or fused heterocyclic aromatic ring system not only includes the system of aromatic groups or heteroaromatic groups, but also multiple aromatic groups or heterocyclic aromatic groups can be shortened
  • Non-aromatic units are discontinuous ( ⁇ 10% of non-H atoms, preferably less than 5% of non-H atoms, such as C, N or O atoms). Therefore, systems such as 9,9'-spirobifluorene, 9,9-diaryl fluorene, triarylamine, diaryl ether, etc., are also considered to be fused-ring aromatic ring systems for the purpose of this invention.
  • connection site when the connection site is not specified, it means that the optional connectable site is used as the connection site;
  • an optional number of hydrogens can be replaced by D;
  • the energy level structure of the organic material the triplet energy levels E T , HOMO and LUMO play a key role.
  • the following is an introduction to these energy levels.
  • HOMO and LUMO energy levels can be measured by photoelectric effects, such as XPS (X-ray Photoelectron Spectroscopy) and UPS (Ultraviolet Photoelectron Spectroscopy) or by cyclic voltammetry (hereinafter referred to as CV).
  • photoelectric effects such as XPS (X-ray Photoelectron Spectroscopy) and UPS (Ultraviolet Photoelectron Spectroscopy) or by cyclic voltammetry (hereinafter referred to as CV).
  • CV cyclic voltammetry
  • DFT density functional theory
  • the triplet energy level E T1 of organic materials can be measured by low-temperature time-resolved luminescence spectroscopy, or obtained by quantum simulation calculations (such as by Time-dependent DFT), such as by commercial software Gaussian 03W (Gaussian Inc.), specific simulation methods See WO2011141110 or as described in the examples below.
  • the absolute value of HOMO, LUMO, E T1 depends on the measurement method or calculation method used, even for the same method, different evaluation methods, for example, the starting point and peak point on the CV curve can give different HOMO/ LUMO value. Therefore, reasonable and meaningful comparisons should be made with the same measurement method and the same evaluation method.
  • the values of HOMO, LUMO, and E T1 are simulations based on Time-dependent DFT, but do not affect the application of other measurement or calculation methods.
  • (HOMO-1) is defined as the second highest occupied orbital energy level
  • (HOMO-2) is defined as the third highest occupied orbital energy level
  • (LUMO+1) is defined as the second lowest unoccupied orbital energy level
  • (LUMO+2) is the third lowest occupied orbital energy level, and so on.
  • the present invention relates to a phosphorescent host material, comprising at least one electron-transporting (N-type) host material H1 and a hole-transporting (P-type) host material H2.
  • the N-type host material H1 is selected from the group consisting of: 1) The structure shown:
  • Ar 1 is selected from substituted or unsubstituted aromatic groups or heteroaromatic groups with 6-60 ring atoms, and Ar 1 contains at least one electron-deficient group;
  • Ar 2 , Ar 3 , and Ar 4 each independently represent a substituted or unsubstituted aromatic group or heteroaromatic group with 6-30 ring atoms, and the connecting position of N and Ar 3 can be any carbon atom on Ar 3 on;
  • the P-type host material H2 is selected from the structure shown in the general formula (2):
  • n is selected from 1, 2, 3 or 4; preferably, n is selected from 2 or 3 or 4; more preferably, n is selected from 3 or 4;
  • X is independently selected from CR 3 or N;
  • L 1 represents a single bond, an aromatic group or heteroaromatic group with 5-30 ring atoms, and the linking position of L 1 can be on any carbon atom in the ring;
  • R 1 -R 5 is independently selected from H, D, or linear alkyl, alkoxy or thioalkoxy having 1 to 20 C atoms, or those having 3 to 20 C atoms A branched or cyclic alkyl, alkoxy or thioalkoxy group, or silyl group, or a keto group having 1 to 20 C atoms, or an alkoxycarbonyl group having 2 to 20 C atoms, Or aryloxycarbonyl, cyano, carbamoyl, haloformyl, formyl, isocyano, isocyanate, thiocyanate or isothiocyanate, hydroxyl, nitro with 7 to 20 C atoms, CF 3 , Cl, Br, F, I, crosslinkable groups, or substituted or unsubstituted aromatic groups or heteroaromatic groups with 5 to 60 ring atoms, or 5 to 60 ring atoms
  • aryloxy or heteroaryloxy groups or a combination of
  • two adjacent groups can be connected to each other and form a cyclic structure with the atoms connected to the two groups.
  • the cyclic structure can be a spiro ring or a parallel ring, and the ring can be a saturated ring or a ring.
  • R 1 and R 2 can be connected to each other to form a spiro ring together with the carbon atom connected to R 1 and R 2; for example Among them, two adjacent R 3 can be connected to each other to form a fused ring with the benzene ring connected to R 3, for example
  • adjacent linking groups form a ring, which may be a ring containing an unsaturated bond, for example Where R 4 and R 5 form a ring, which can form
  • the weight percentage of the N-type host material H1 and the P-type host material H2 is 3:7-7:3; preferably, the N-type host material H1 and the P-type host The weight percentage of material H2 is 5:5.
  • an excimer complex can be formed between H1 and H2.
  • H1 and H2 When used as a phosphorescent host material, it is more convenient for effective charge transfer in the device.
  • the above-mentioned phosphorescent host material has a min((LUMO(H1)-HOMO(H2), LUMO(H2)-HOMO(H1)) in the range of 1.9-3.1 eV.
  • the above-mentioned phosphorescent host material has min(LUMO(H1)-HOMO(H2), LUMO(H2)-HOMO(H1)) in the range of 1.9-2.4 eV.
  • Such phosphorescent host materials can be preferentially used as red phosphorescent host materials.
  • its min (LUMO(H1)-HOMO(H2), LUMO(H2)-HOMO(H1)) is in the range of 2.4-2.7 eV.
  • Such phosphorescent host materials can be preferentially used as green phosphorescent host materials.
  • its min (LUMO(H1)-HOMO(H2), LUMO(H2)-HOMO(H1)) is in the range of 2.7-3.1 eV.
  • Such phosphorescent host materials can be preferentially used as blue phosphorescent host materials.
  • H1 and H2 form a type II semiconductor heterojunction structure.
  • H1 has a smaller singlet-triplet energy level difference ⁇ E ST , better, ⁇ E ST (H1) ⁇ 0.3eV; better, ⁇ E ST (H1) ⁇ 0.2eV; Better ⁇ E ST (H1) ⁇ 0.15eV.
  • At least one of the H1 and H2 (HOMO-(HOMO-1)) ⁇ 0.2 eV, preferably ⁇ 0.25 eV, more preferably ⁇ 0.3eV, more preferably ⁇ 0.35eV, very preferably ⁇ 0.4eV, most preferably ⁇ 0.45eV.
  • the phosphorescent host material according to the present invention is characterized in that (HOMO-(HOMO-1)) ⁇ 0.2 eV of each of said H1 and H2, preferably one of them
  • the (HOMO-(HOMO-1)) ⁇ 0.25 eV, more preferably ⁇ 0.3 eV, more preferably ⁇ 0.35 eV, very preferably ⁇ 0.4 eV, most preferably ⁇ 0.45 eV.
  • the phosphorescent host material according to the present invention is characterized in that at least one of H1 and H2 has ((LUMO+1)-LUMO) ⁇ 0.15eV, preferably ⁇ 0.20eV , More preferably ⁇ 0.25eV, more preferably ⁇ 0.30eV, very preferably ⁇ 0.35eV, most preferably ⁇ 0.40eV.
  • the phosphorescent host material according to the present invention is characterized in that each of the H1 and H2 has ((LUMO+1)-LUMO) ⁇ 0.15 eV, preferably One of ((LUMO+1)-LUMO) is ⁇ 0.20 eV, more preferably ⁇ 0.25 eV, more preferably ⁇ 0.30 eV, very preferably ⁇ 0.35 eV, and most preferably ⁇ 0.40 eV.
  • Ar 1 in the general formula (1) contains at least one electron-deficient group, and the electron-deficient group is selected from one of F, cyano or the following groups or Variety:
  • n 1 means 1, 2 or 3;
  • W is selected from CR 6 or N, and at least one of them is N;
  • R 6 -R 8 is independently selected from H, D, or linear alkyl, alkoxy or thioalkoxy having 1 to 20 C atoms, or those having 3 to 20 C atoms A branched or cyclic alkyl, alkoxy or thioalkoxy group, or silyl group, or a keto group having 1 to 20 C atoms, or an alkoxycarbonyl group having 2 to 20 C atoms, Or aryloxycarbonyl, cyano, carbamoyl, haloformyl, formyl, isocyano, isocyanate, thiocyanate or isothiocyanate, hydroxyl, nitro with 7 to 20 C atoms, CF 3 , Cl, Br, F, I, crosslinkable groups, or substituted or unsubstituted aromatic groups or heteroaromatic groups with 5 to 60 ring atoms, or 5 to 60 ring atoms Aryloxy or heteroaryloxy groups, or a combination of these systems
  • the electron-deficient group is selected from one or more of F, cyano or the following groups:
  • Ar 1 in the general formula (1) is selected from the following groups:
  • Ar 1 in the general formula (1) is selected from the following groups:
  • each occurrence of R 6 is independently selected from: substituted or unsubstituted aromatic groups having 5 to 20 ring atoms or substituted or unsubstituted heteroaromatic groups having 5 to 20 ring atoms ; Further, when the above-mentioned groups are further substituted, they are selected from the following groups: D, straight-chain alkyl having 1 to 20 C atoms, branched alkyl having 3 to 20 C atoms, having 3 Cyclic alkyl groups with to 20 C atoms, halogens, cyano groups, aromatic groups with 5 to 10 ring atoms or heteroaromatic groups with 5 to 10 ring atoms;
  • each occurrence of R 6 is independently selected from: phenyl, naphthyl, biphenyl, terphenyl, deuterated phenyl, or deuterated biphenyl.
  • Ar 1 is selected from substituted or unsubstituted aromatic groups or heteroaromatic groups with 6-30 ring atoms;
  • Ar 1 is selected from the following groups:
  • Ar 2 , Ar 3 , and Ar 4 each independently represent a substituted or unsubstituted aromatic group or heteroaromatic group with 6-30 ring atoms; in a certain embodiment, Ar 2 , Ar 3 , and Ar 4 in the general formula (1) each independently represent a substituted or unsubstituted phenyl group; in an embodiment, Ar 2 , Ar 3 , and Ar 4 in the general formula (1) are at least There is one fused ring aromatic group or fused ring heteroaromatic group selected from substituted or unsubstituted 10-30; in an embodiment, at least one of Ar 2 , Ar 3 , and Ar 4 in the general formula (1) 10-15 fused ring aromatic groups selected from substituted or unsubstituted; in an embodiment, in the general formula (1), at least two of Ar 2 , Ar 3 , and Ar 4 are selected from substituted or unsubstituted 10 ⁇ 30 fused ring aromatic groups or fused ring heteroaromatic groups; in
  • substitution refers to further substitution by R', and R'has the same meaning as R 1 .
  • Ar 2 , Ar 3 , and Ar 4 in the general formula (1) are each independently selected from the following groups:
  • X 1 is selected from CR 9 or N;
  • Each occurrence of R 9 -R 10 is independently selected from H, D, or linear alkyl, alkoxy or thioalkoxy having 1 to 20 C atoms, or those having 3 to 20 C atoms A branched or cyclic alkyl, alkoxy or thioalkoxy group, or silyl group, or a keto group having 1 to 20 C atoms, or an alkoxycarbonyl group having 2 to 20 C atoms, Or aryloxycarbonyl, cyano, carbamoyl, haloformyl, formyl, isocyano, isocyanate, thiocyanate or isothiocyanate, hydroxyl, nitro with 7 to 20 C atoms, CF 3 , Cl, Br, F, I, crosslinkable groups, or substituted or unsubstituted aromatic groups or heteroaromatic groups with 5 to 60 ring atoms, or 5 to 60 ring atoms Aryloxy or heteroaryloxy groups, or a combination of these
  • R 9 and R 10 may be connected to each other to form a ring structure together with the carbon atom connected to R 9 and R 10.
  • Ar 2 , Ar 3 , and Ar 4 are each independently selected from the following groups:
  • Ar 2 is benzene.
  • at least one of Ar 3 and Ar 4 is a phenyl group.
  • both Ar 3 and Ar 4 are phenyl groups, or one of Ar 3 and Ar 4 is phenyl and one is naphthyl.
  • Ar 2 , Ar 3 , and Ar 4 are all selected from benzene, and the general formula (1) is selected from the following general formulas:
  • At least one of Ar 2 , Ar 3 , and Ar 4 is selected from the following groups:
  • At least one of Ar 2 , Ar 3 , and Ar 4 is selected from the following groups:
  • the general formula (1) is selected from any structure in the following general formulas:
  • Z 2 in the general formula (2) is selected from a single bond, NR 4 , C(R 4 R 5 ), O, S, or SO 2 ; more preferably, Z 2 is selected from a single bond.
  • X in the general formula (2) is selected from CR 3 ; in a preferred embodiment, at least two adjacent R 3 are bonded to each other to form a ring; in a preferred embodiment In, two adjacent R 3 are bonded to each other to form structure;
  • Z 2 , Z 3 , and Z 4 are each independently selected from: NR 4 , C(R 4 R 5 ), O, S or SO 2 ;
  • n 1 is selected from 0, 1, 2, 3, or 4; n 2 is selected from 0, 1, 2, or 3.
  • At least two adjacent R 3 are bonded to each other to form a ring.
  • the general formula (2) is selected from the following general formulas:
  • X is selected from CR 3 .
  • the general formula (2) is selected from the following general formulas:
  • n is selected from 1; in another embodiment, n is selected from 3.
  • n1 when n1 appears multiple times, all are selected from 0;
  • n1 when n1 occurs multiple times, at least one is selected from 1.
  • Each occurrence of R 3 -R 5 is preferably from: H, D, or a linear alkyl group having 1 to 10 C atoms, or a branched or cyclic alkyl group having 3 to 10 C atoms, or A substituted or unsubstituted aromatic group or heteroaromatic group having 5 to 30 ring atoms, or a combination of these systems.
  • R 3 is selected from: H or phenyl or carbazolyl; and when there are multiple R 3 , the multiple R 3 are the same or different from each other.
  • L 1 is selected from: a single bond or the following groups:
  • X 2 is selected from CR 11 or N;
  • R 11 -R 12 is independently selected from H, D, or linear alkyl, alkoxy or thioalkoxy having 1 to 20 C atoms, or those having 3 to 20 C atoms A branched or cyclic alkyl, alkoxy or thioalkoxy group, or silyl group, or a keto group having 1 to 20 C atoms, or an alkoxycarbonyl group having 2 to 20 C atoms, Or aryloxycarbonyl, cyano, carbamoyl, haloformyl, formyl, isocyano, isocyanate, thiocyanate or isothiocyanate, hydroxyl, nitro with 7 to 20 C atoms, CF 3 , Cl, Br, F, I, crosslinkable groups, or substituted or unsubstituted aromatic groups or heteroaromatic groups with 5 to 60 ring atoms, or 5 to 60 ring atoms Aryloxy or heteroaryloxy groups, or a combination of these systems
  • R 11 is selected from H, D, or linear alkyl having 1 to 10 C atoms, or branched or cyclic alkyl having 3 to 10 C atoms, or having 5 to A substituted or unsubstituted aromatic group or heteroaromatic group of 30 ring atoms, or a combination of these systems.
  • L 1 is a single bond or the following group:
  • n 1, 2 or 3.
  • the phosphorescent host material according to the present invention can be used for H1 examples as follows, and is not limited to:
  • the phosphorescent host material according to the present invention can be used for H2 examples as follows, and is not limited to:
  • the difference between the molecular weights of H1 and H2 is not more than 100 Dalton, preferably not more than 80 Dalton, more preferably not more than 70 Dalton, more preferably not more than 60 Dalton, very It is better not to exceed 40 Dalton, preferably not more than 30 Dalton.
  • the phosphorescent host material wherein the difference between the sublimation temperature of H1 and H2 is not more than 50K; the more preferred sublimation temperature difference is not more than 30K; the more preferred sublimation temperature difference is not more than 20K ; The most preferred sublimation temperature difference does not exceed 10K.
  • At least one of H1 and H2 in the phosphorescent host material according to the present invention has a glass transition temperature T g ⁇ 100°C, and in a preferred embodiment, at least one of which has a T g ⁇ 120 °C, in a more preferred embodiment, at least one has a T g ⁇ 140°C, in a more preferred embodiment, at least one has a T g ⁇ 160°C, in a most preferred embodiment, At least one has a T g ⁇ 180°C.
  • the phosphorescent host material according to the present invention is used in vapor deposition OLED devices.
  • the H1 and H2 according to the present invention have a molecular weight ⁇ 1000 mol/kg, preferably ⁇ 900 mol/kg, very preferably ⁇ 850 mol/kg, more preferably ⁇ 800 mol/kg, and most preferably ⁇ 700 mol/kg.
  • the phosphorescent host material according to the present invention may further include an organic functional material, and the organic functional material includes hole (also called hole) injection or transport material (HIM/HTM), hole blocking material ( HBM), electron injection or transport materials (EIM/ETM), electron blocking materials (EBM), organic host materials (Host), singlet emitters (fluorescent emitters), organic thermally excited delayed fluorescent materials (TADF materials), Triplet emitters (phosphorescent emitters) are especially light-emitting organometallic complexes, and organic dyes.
  • hole also called hole injection or transport material
  • HBM hole blocking material
  • EIM/ETM electron injection or transport materials
  • EBM electron blocking materials
  • organic host materials Host
  • singlet emitters fluorescent emitters
  • TADF materials organic thermally excited delayed fluorescent materials
  • Triplet emitters phosphorescent emitters
  • organic functional materials are described in detail in WO2010135519A1, US20090134784A1 and WO2011110277A1, and the entire contents of these 3 patent documents are
  • the present invention further relates to a composition
  • a composition comprising at least one phosphorescent host material as described above and at least one organic solvent.
  • the at least one organic solvent is selected from aromatic or heteroaromatic, ester, aromatic ketone or aromatic ether, aliphatic ketone or aliphatic ether, alicyclic or olefin compound, or borate or phosphoric acid Ester compounds, or a mixture of two or more solvents.
  • the at least one organic solvent is selected from aromatic or heteroaromatic-based solvents.
  • aromatic or heteroaromatic solvents suitable for the present invention include, but are not limited to: p-diisopropylbenzene, pentylbenzene, tetralin, cyclohexylbenzene, chloronaphthalene, 1,4-dimethylnaphthalene , 3-isopropylbiphenyl, p-cymene, dipentylbenzene, tripentylbenzene, pentyltoluene, o-diethylbenzene, m-diethylbenzene, p-diethylbenzene, 1,2,3,4 -Tetramethylbenzene, 1,2,3,5-tetramethylbenzene, 1,2,4,5-tetramethylbenzene, butylbenzene, dodecylbenzene, dihexylbenzene, dibutylbenzene, p-diisopropylbenzene , Cyclohexylbenzen
  • aromatic ketone-based solvents suitable for the present invention include, but are not limited to: 1-tetralone, 2-tetralone, 2-(phenylepoxy)tetralone, 6-(methoxy) Base) tetralone, acetophenone, phenylacetone, benzophenone, and their derivatives, such as 4-methylacetophenone, 3-methylacetophenone, 2-methylacetophenone, 4-methylpropiophenone, 3-methylpropiophenone, 2-methylpropiophenone, etc.;
  • aromatic ether-based solvents suitable for the present invention include, but are not limited to: 3-phenoxytoluene, butoxybenzene, p-anisaldehyde dimethyl acetal, tetrahydro-2-phenoxy-2H -Pyran, 1,2-dimethoxy-4-(1-propenyl)benzene, 1,4-benzodioxane, 1,3-dipropylbenzene, 2,5-dimethoxy Toluene, 4-ethyl ethyl ether, 1,3-dipropoxybenzene, 1,2,4-trimethoxybenzene, 4-(1-propenyl)-1,2-dimethoxybenzene, 1, 3-Dimethoxybenzene, glycidyl phenyl ether, dibenzyl ether, 4-tert-butyl anisole, trans-p-propenyl anisole, 1,2-dimethoxybenzene, 1-methyl Oxynaphthalene,
  • the at least one solvent may be selected from: aliphatic ketones, for example, 2-nonanone, 3-nonanone, 5-nonanone, 2 -Decanone, 2,5-hexanedione, 2,6,8-trimethyl-4-nonanone, fenchone, phorone, isophorone, di-n-amyl ketone, etc.; or aliphatic ether , For example, amyl ether, hexyl ether, dioctyl ether, ethylene glycol dibutyl ether, diethylene glycol diethyl ether, diethylene glycol butyl methyl ether, diethylene glycol dibutyl ether, triethylene glycol dimethyl ether, Triethylene glycol ethyl methyl ether, triethylene glycol butyl methyl ether, tripropylene glycol dimethyl ether, tetraethylene glycol dimethyl ether, etc.
  • aliphatic ketones for example, 2-nonanone
  • the at least one solvent may be selected from ester-based solvents: alkyl octanoate, alkyl sebacate, alkyl stearate, benzene Alkyl formate, alkyl phenylacetate, alkyl cinnamate, alkyl oxalate, alkyl maleate, alkyl lactone, alkyl oleate, etc.
  • ester-based solvents alkyl octanoate, alkyl sebacate, alkyl stearate, benzene Alkyl formate, alkyl phenylacetate, alkyl cinnamate, alkyl oxalate, alkyl maleate, alkyl lactone, alkyl oleate, etc.
  • Particularly preferred are octyl octanoate, diethyl sebacate, diallyl phthalate, and isononyl isononanoate.
  • the solvent can be used alone or as a mixture of two or more organic solvents.
  • a composition according to the present invention is characterized in that it contains at least one organic compound or polymer or mixture as described above and at least one organic solvent, and may further contain another An organic solvent.
  • another organic solvent include (but are not limited to): methanol, ethanol, 2-methoxyethanol, dichloromethane, chloroform, chlorobenzene, o-dichlorobenzene, tetrahydrofuran, anisole, morpholine, Toluene, o-xylene, m-xylene, p-xylene, 1,4 dioxane, acetone, methyl ethyl ketone, 1,2 dichloroethane, 3-phenoxy toluene, 1,1 ,1-Trichloroethane, 1,1,2,2-tetrachloroethane, ethyl acetate, butyl acetate, dimethylformamide, dimethylacetamide, dimethylsulfoxide, tetral
  • the solvent that is particularly suitable for the present invention is a solvent whose Hansen solubility parameter is within the following range:
  • ⁇ d (dispersion force) is in the range of 17.0-23.2MPa 1/2 , especially in the range of 18.5-21.0MPa 1/2;
  • ⁇ p polar forces in the range of 0.2 ⁇ 12.5MPa 1/2, especially in the 2.0 ⁇ 6.0MPa 1/2;
  • the organic solvent needs to consider its boiling point parameter when selecting it.
  • the boiling point of the organic solvent is ⁇ 150°C; preferably ⁇ 180°C; more preferably ⁇ 200°C; more preferably ⁇ 250°C; most preferably ⁇ 275°C or ⁇ 300°C. Boiling points in these ranges are beneficial to prevent nozzle clogging of inkjet print heads.
  • the organic solvent can be evaporated from the solvent system to form a film containing functional materials.
  • the composition according to the invention is a solution.
  • composition according to the invention is a suspension.
  • the present invention also relates to the use of the composition as a coating or printing ink in the preparation of organic electronic devices, and the preparation method by printing or coating is particularly preferred.
  • suitable printing or coating technologies include (but are not limited to) inkjet printing, nozzle printing, letterpress printing, screen printing, dip coating, spin coating, doctor blade coating, roller printing, and twisting roller Printing, offset printing, flexographic printing, rotary printing, spraying, brushing or pad printing, slit-type extrusion coating, etc.
  • the first choice is gravure printing, jet printing and inkjet printing.
  • the solution or suspension may additionally include one or more components such as surface active compounds, lubricants, wetting agents, dispersants, hydrophobic agents, adhesives, etc., for adjusting viscosity, film-forming properties, and improving adhesion.
  • Related printing technology, and related requirements for related solutions such as solvent and concentration, viscosity, etc.
  • the present invention also provides an application of the phosphorescent host material or composition described above in an organic electronic device.
  • the organic electronic device can be selected from, but not limited to, organic light-emitting diodes (OLED), organic photovoltaic cells (OPV ), Organic Light Emitting Battery (OLEEC), Organic Field Effect Tube (OFET), Organic Light Emitting Field Effect Tube, Organic Laser, Organic Spintronic Device, Organic Sensor and Organic Plasmon Emitting Diode (Organic Plasmon Emitting Diode), etc., Particularly preferred is OLED.
  • the phosphorescent host material is preferably used in the light-emitting layer of the OLED device.
  • the present invention further relates to an organic electronic device comprising at least one phosphorescent host material or composition as described above.
  • the organic electronic device includes at least one functional layer, and the functional layer includes a phosphorescent host material as described above.
  • the functional layer is selected from the group consisting of hole injection layer (HIL), hole transport layer (HTL), light emitting layer (EML), electron blocking layer (EBL), electron injection layer (EIL), electron transport layer (ETL), air Hole Blocking Layer (HBL); preferably, an organic electronic device comprising a light-emitting layer, and the host material of the light-emitting layer is selected from the phosphorescent host materials described above.
  • the organic electronic device according to the present invention at least includes a cathode, an anode, and a light-emitting layer located between the cathode and the anode, and the material of the light-emitting layer includes a host material and a light-emitting material.
  • the organic electronic device according to the present invention is a phosphorescent light-emitting device.
  • the phosphorescent light-emitting device described above especially the phosphorescent OLED, includes a substrate, an anode, and at least one light-emitting layer.
  • the light-emitting layer material includes a host material and a phosphorescent light-emitting material, and the host material is selected from the group of the present invention.
  • the phosphorescent host material a cathode.
  • the substrate can be opaque or transparent.
  • a transparent substrate can be used to make a transparent light-emitting component.
  • the substrate can be rigid or elastic.
  • the substrate can be plastic, metal, semiconductor wafer or glass.
  • the substrate has a smooth surface.
  • a substrate without surface defects is a particularly ideal choice.
  • the substrate is flexible and can be selected from polymer films or plastics. Its glass transition temperature Tg is above 150°C, preferably more than 200°C, more preferably more than 250°C, and most preferably Over 300°C. Examples of suitable flexible substrates are poly(ethylene terephthalate) (PET) and polyethylene glycol (2,6-naphthalene) (PEN).
  • the anode may include a conductive metal or metal oxide, or a conductive polymer.
  • the anode can easily inject holes into the hole injection layer (HIL) or the hole transport layer (HTL) or the light emitting layer.
  • the absolute value of the difference between the work function of the anode and the luminous body in the light-emitting layer or the HOMO energy level or the valence band energy level of the p-type semiconductor material as HIL or HTL or electron blocking layer (EBL) is less than 0.5 eV, preferably less than 0.3 eV, most preferably less than 0.2 eV.
  • anode materials include but are not limited to: Al, Cu, Au, Ag, Mg, Fe, Co, Ni, Mn, Pd, Pt, ITO, aluminum doped zinc oxide (AZO), and the like.
  • suitable anode materials are known, and those of ordinary skill in the art can easily select and use them.
  • the anode material can be deposited using any suitable technique, such as a suitable physical vapor deposition method, including radio frequency magnetron sputtering, vacuum thermal evaporation, electron beam (e-beam), and the like.
  • the anode is patterned and structured. Patterned ITO conductive substrates are commercially available and can be used to prepare devices according to the present invention.
  • the cathode may include a conductive metal or metal oxide.
  • the cathode can easily inject electrons into the EIL or ETL or directly into the light-emitting layer.
  • the work function of the cathode and the LUMO energy level of the luminous body in the light-emitting layer or the n-type semiconductor material as the electron injection layer (EIL) or the electron transport layer (ETL) or the hole blocking layer (HBL) or
  • the absolute value of the difference in conduction band energy level is less than 0.5 eV, preferably less than 0.3 eV, and most preferably less than 0.2 eV.
  • all materials that can be used as the cathode of an OLED can be used as the cathode material of the device of the invention.
  • cathode materials include, but are not limited to: Al, Au, Ag, Ca , Ba, Mg, LiF / Al, MgAg alloy, BaF 2 / Al, Cu, Fe, Co, Ni, Mn, Pd, Pt, ITO and the like.
  • the cathode material can be deposited using any suitable technique, such as a suitable physical vapor deposition method, including radio frequency magnetron sputtering, vacuum thermal evaporation, electron beam (e-beam), and the like.
  • Phosphorescent emitter materials are also called triplet emitter materials.
  • the phosphorescent emitter material is a metal complex with the general formula M(L')q, where M is a metal atom, and L'can be the same or different each time it appears. It is an organic ligand, which is One or more positions are bonded or coordinated to the metal atom M, and q is an integer between 1 and 6.
  • the triplet luminophore contains a chelating ligand, that is, a ligand, which is coordinated to the metal through at least two binding points. It is particularly preferred that the triplet luminophore contains two or three identical or different doubles. Tooth or multidentate ligands. Chelating ligands help to improve the stability of metal complexes.
  • the metal complexes that can be used as triplet emitters have the following forms:
  • the metal atom M is selected from transition metal elements or lanthanides or actinides, preferably Ir, Pt, Pd, Au, Rh, Ru, Os, Re, Cu, Ag, Ni, Co, W or Eu, especially preferred Ir, Au, Pt, W or Os.
  • Ar 1 and Ar 2 can be the same or different each time they appear, and they are a cyclic group.
  • Ar 1 and Ar 2 each independently represent a substituted or unsubstituted aromatic group or heteroaromatic group with 6-30 ring atoms Group; where Ar 1 contains at least one donor atom, that is, an atom with a lone pair of electrons, such as nitrogen, through its cyclic group and the metal coordination connection; where Ar 2 contains at least one carbon atom, through its cyclic group The group is connected to the metal; Ar 1 and Ar 2 are linked together by a covalent bond, and can each carry one or more substituent groups, and they can also be linked together through a substituent group; L'can be the same each time it appears Or different, it is a bidentate chelating auxiliary ligand, preferably a monoanionic bidentate chelating ligand; q1 can be 0,1,2 or 3, preferably 2 or 3; q2 can be 0,1 , 2 or 3, preferably 1 or 0.
  • organic ligands may be selected from phenylpyridine derivatives or 7,8-benzoquinoline derivatives. All these organic ligands may be substituted, for example by alkyl chains or fluorine or silicon.
  • the auxiliary ligand may preferably be selected from acetone acetate or picric acid.
  • triplet emitters Some examples of materials and applications of triplet emitters can be found in the following patent documents and documents: WO0070655 (A2), WO0141512 (A1), WO0202714A2, WO0215645 (A1), WO2005033244, WO2005019373, US20050258742, US20070087219, US20070252517, US2008027220, WO2009146770, US20090061681, WO2009118087, WO2010015307, WO2010054731, WO2011157339, WO2012007087, WO2013107487, WO2013094620, WO2013174471, WO2014031977, WO2014112450, WO2014007565, WO2014024131, Baldo et al.
  • OLED can also contain other functional layers, such as hole injection layer (HIL), hole transport layer (HTL), electron blocking layer (EBL), electron injection layer (EIL), electron transport layer (ETL), hole blocking layer (HBL).
  • HIL hole injection layer
  • HTL hole transport layer
  • EBL electron blocking layer
  • EIL electron injection layer
  • ETL electron transport layer
  • HBL hole blocking layer
  • the light-emitting device has a light-emitting wavelength between 300 and 1000 nm, preferably between 350 and 900 nm, and more preferably between 400 and 800 nm.
  • the present invention also relates to the application of the electroluminescent device according to the present invention in various electronic equipment, including, but not limited to, display equipment, lighting equipment, light sources, sensors and the like.
  • H1 is selected from the following structures:
  • H2 is selected from the following structures:
  • the energy levels of organic compound materials can be obtained through quantum calculations, such as Gaussian09W (Gaussian Inc.) using TD-DFT (Time-dependent Density Functional Theory), and the specific simulation method can be found in WO2011141110.
  • the semi-empirical method “Ground State/Semi-empirical/Default Spin/AM1" (Charge 0/Spin Single) is used to optimize the molecular geometry, and then the energy structure of organic molecules is determined by the TD-DFT (time-dependent density functional theory) method Calculate "TD-SCF/DFT/Default Spin/B3PW91" and base set “6-31G(d)” (Charge 0/Spin Single).
  • HOMO and LUMO energy levels are calculated according to the following calibration formula, S1, T1 and resonance factor f(S1) are used directly.
  • HOMO(eV) ((HOMO(G) ⁇ 27.212)-0.9899)/1.1206
  • HOMO(G) and LUMO(G) are the direct calculation results of Gaussian 09W, and the unit is Hartree.
  • the results are shown in Table 1:
  • the host materials shown in Table 2 are used as the common host material, the Emitter-G shown in the figure below is used as the luminescent material, HATCN is used as the hole injection material, and HTL is used as the hole transport material. ETM is used as an electron transport material, and Liq is used as an electron injection material.
  • the device structure is ITO/HATCN/HTL/host material: Emitter-G (10%)/ETM: Liq/Liq/Al.
  • compounds (1-49): (2-11), (1-60): (2-9), (1-72): (2-9) and (1-100) are used respectively : (2-9)
  • Emitter-R is used as a luminescent material
  • HATCN is used as a hole injection material
  • HTL is used as a hole transport material
  • ETM is used as an electron transport material
  • Liq is used as an electron injection material to construct a device
  • ITO/HATCN/HTL/host material Emitter-R (3%)/ETM: Liq/Liq/Al electroluminescent device.
  • the preparation process of the above-mentioned OLED device is described in detail below through specific examples.
  • the structure of the OLED device is: ITO/HATCN/HTL/host material: Emitter/ETM:Liq/Liq/Al, and the preparation steps are as follows:
  • ITO Indium Tin Oxide
  • conductive glass substrate Use various solvents (such as one or more of chloroform, acetone or isopropanol) to clean, and then perform UV ozone treatment;
  • HATCN (30nm), HTL (50nm), host material: Emitter (40nm), ETM: Liq (30nm), Liq (1nm), Al (100nm) heat in high vacuum (1 ⁇ 10 -6 mbar) Vapor-deposited
  • Encapsulation The device is encapsulated with UV-curing resin in a nitrogen glove box.
  • Characterization equipment was used to test the current-voltage (J-V) characteristics of the organic light-emitting diodes of Examples 1-8 and Comparative Examples 1-2 of the green light device, while recording important parameters such as efficiency, lifetime (see Table 2) and external quantum efficiency.
  • J-V current-voltage
  • Table 2 all external quantum efficiencies and lifetimes are relative values to the organic light emitting diode of Example 1. It can be seen that the external quantum efficiency and lifetime of the device are improved to a certain extent in the embodiment based on the present invention compared to the comparative example, and the luminous efficiency and lifetime of the device based on embodiment 1 are the highest among devices of the same type. It can be seen that the green light devices prepared based on the compounds and mixtures of the present invention have been greatly improved in terms of efficiency and lifetime.
  • Example 7 (1-72): (2-9) 5:5 (mass ratio) 1.52 2.9
  • Characterization equipment was used to test the current-voltage (J-V) characteristics of the organic light-emitting diodes of Examples 10-13 and Comparative Examples 3-4 of the red light device, while recording important parameters such as efficiency, lifetime (see Table 3) and external quantum efficiency.
  • J-V current-voltage
  • Table 3 all external quantum efficiencies and lifetimes are relative values with respect to the organic light emitting diode of Example 3. It can be seen that the external quantum efficiency and lifetime of the device are improved to a certain extent in the embodiment based on the present invention compared to the comparative example, and the luminous efficiency and lifetime of the device based on embodiment 13 are the highest among devices of the same type. It can be seen that the red light devices prepared based on the compounds and mixtures of the present invention are greatly improved in terms of efficiency and lifetime.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

本发明公开了一种磷光主体材料,所述的磷光主体材料至少包含一种电子传输型(N型)主体材料H1及一种空穴传输型(P型)-主体材料H2,其中H1和H2分别选自通式(1)和通式(2)所述的结构,按照本发明所述的磷光主体材料,运用于有机电子器件中时,能够形成单线态和三线态能级差(ΔE ST)较小激基复合物能量中间体,提高能量的利用率,进而有利于提高器件的效率和稳定性,为提高有机电子器件的效率和寿命提供一种行之有效的方案。

Description

一种磷光主体材料及其应用
本申请要求于2020年10月18日提交中国专利局、申请号为201910997801.2发明名称为“一种磷光主体材料及其应用”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本发明涉及有机电子器件功能材料,尤其涉及一种磷光主体材料及其在有机电子器件中的应用,特别是磷光有机电致发光器件中。
背景技术
有机发光二极管(OLED)具有质轻、主动发光、视角广、对比度高、发光效率高、能耗低、易制备柔性和大尺寸面板等优异性能,被业界视为最有希望的下一代显示技术。
为了提高有机发光二极管的发光效率,各种基于荧光和磷光的发光材料体系已被开发出来,使用荧光材料的有机发光二极管具有可靠性高的特点,但其在电气激发下其内部电致发光量子效率被限制为25%,这是因为电流产生的激子的单重激发态和三重激发态的比例为1:3。与此相反,使用磷光材料的有机发光二极管已经取得了几乎100%的内部电致发光量子效率,因此磷光发光材料的开发已被广泛研究。
发光材料(客体)可与基质材料(主体)一起用作发光材料以改善颜色纯度、发光效率和稳定性。由于当使用主体材料/客体体系作为发光器件的发光层时,主体材料对电致发光器件的效率和特性影响很大,因此主体材料的选择很重要。
就主体材料而言,主体材料在发光层中主要发挥着能量传输的作用。主体材料需要有合适的HOMO和LUMO能级,能够降低电子和空穴注入的势垒;主体材料的三线态能级要高于发光客体材料的三线态能级,可防止能量的回转;主体材料需要有一定的电荷传输平衡能力,让激子复合区域集中在发光层中心,实现高的能量利用效率和器件稳定性。
目前,4,4’-二咔唑-联苯(CBP)是已知的最广泛用做磷光物质的主体材料。近年来,日本先锋公司(Pioneer)等开发了一种高性能有机电致发光器件,其使用BAlq(二(2-甲基)-8-羟基喹啉合-4-苯基苯酚铝(III))、菲罗啉(BCP)等化合物作为基质。
在现有材料设计中,人们倾向于双主体材料设计成双极性传输的主体,有益于电荷传输的平衡。利用双极性传输的分子做主体,能够获得不错的器件性能。但所获得的器件性能和寿命仍有待提高。
因此,现有技术,主体材料,特别是磷光主体材料解决方案还有待于改进和发展。
发明内容
鉴于上述现有技术的不足,本发明的目的在于提供双主体类型的磷光主体材料及其在有机电子器件中的应用,旨在解决现有的有机电子器件性能及器件寿命偏低的问题。
本发明涉及一种磷光主体材料,至少包含一种电子传输型(N型)主体材料H1及一种空穴传输型(P型)主体材料H2,所述H1为N型主体材料,所述H1选自如通式(1)所示的结构:
Figure PCTCN2020117525-appb-000001
其中:
Ar 1选自取代或未取代的环原子数为6-60的芳香基团或杂芳香基团,且Ar 1至少包含一个缺电子基团;
Ar 2、Ar 3、Ar 4分别独立表示取代或未取代的环原子数为6~30的芳香基团或杂芳香基团,N和Ar 3的连接位置可以是Ar 3上的任意一碳原子上;
Z 1选自C(R 1R 2)、Si(R 1R 2)、O、C=NR 1、C=C(R 1R 2)、PR 1、P(=O)R 1、S、S=O或SO 2
所述H2为P型主体材料,所述H2选自如通式(2)所示的结构:
Figure PCTCN2020117525-appb-000002
其中:
n选自1、2、3或4;
X每次出现时,独立选自CR 3或N;
Z 2、Z 3、Z 4独立选自无、单键、NR 4、C(R 4R 5)、Si(R 4R 5)、、O、C=O、C=NR 4、C=C(R 4R 5)、PR 4、P(=O)R 4、S、S=O或SO 2,其中Z 3、Z 4至少一个不为无;
L 1表示单键、环原子数为5~30的芳香基团或芳杂基团,L 1的连接位置可以是环上任意一碳原子上;
R 1-R 5每次出现时相同或不同,R 1-R 5各自独立选自H、D、具有1至20个C原子的直链烷基、具有1至20个C原子的烷氧基、具有1至20个C原子的硫代烷氧基、具有3至20个C原子的支链烷基、具有3至20个C原子的环状烷基、具有3至20个C原子的烷氧基、具有3至20个C原子的硫代烷氧基、甲硅烷基、具有1至20个C原子的酮基、具有2至20个C原子的烷氧基羰基、具有7至20个C原子的芳氧基羰基、氰基、氨基甲酰基、卤甲酰基、甲酰基、异氰基、异氰酸酯、硫氰酸酯、异硫氰酸酯、羟基、硝基、CF 3、Cl、Br、F、I、可交联的基团、具有5至60个环原子的取代或未取代的芳香基团、具有5至60个环原子的取代或未取代的杂芳香基团、具有5至60个环原子的芳氧基或具有5至60个环原子的杂芳氧基基团,或这些体系的组合。
一种组合物,至少包含一种如上所述的磷光主体材料及至少一种有机溶剂。
一种有机电子器件,包含一发光层,所述发光层主体材料包含有如上所述的磷光主体材料。
有益效果:
按照本发明的所述的磷光主体材料用于OLED中,能提供较高的发光稳定性和器件寿命。其可能的原因如下,但不限于此,本发明的N型化合物H1具备电子传输性能;P型化合物具备空穴传输性能,P-N型磷光主体材料具有平衡电荷传输的作用。此外,H1和H2均具有合适的LUMO和HOMO能级,同时H1和H2分子之间能形成ΔE ST较小的激基复合物能量中间体,具有较高的能量利用率,从而提高相关器件的发光效率和寿命。
具体实施方式
本发明提供一类磷光主体材料及其在有机电致发光器件中的应用,为使本发明的目的、技术方案及效果更加清楚、明确,以下对本发明进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本发明,并不用于限定本发明。
在本发明实施例中,主体材料、基质材料、Host材料和Matrix材料具有相同的含义,可以互换。
在本发明实施例中,单线态,单重态具有相同的含义,可以互换。
在本发明实施例中,三线态,三重态具有相同的含义,可以互换。
在本发明中,复合受激态,激基络合物,Exciplex具有相同的含义,可以互换。
本发明中,P型和N型是指材料的导电性特性,P型主体材料是起到电子供体作用(空穴传输),N型主体材料是起到电子受体作用(电子传输),在本申请中P型主体、空穴传输型主体材料具有相同的含义;N型主体、电子传输型主体材料具有相同的含义。
在本发明中,“取代”表示被取代基中的氢原子被取代基所取代。
本发明中,“取代或未取代”表示所定义的基团可以被取代,也可以不被取代。当所定义的基团被取代时,应理解为任选被本领域可接受的基团所取代,包括但不限于:含有1至20个C原子的直链烷基、含有3至20个C原子的支链烷基、含有3-20个环原子的环烷基、含有3-20个环原子的杂环基、含有5-20个环原子的芳基、含有5-20个环原子的杂芳基、硅烷基、羰基、烷氧基羰基、芳氧基羰基、氨基甲酰基、卤甲酰基、甲酰基、-NRR′、氰基、异氰基、异氰酸酯基、硫氰酸酯基、异硫氰酸酯基、羟基、三氟甲基、硝基或卤素,且上述基团也可以进一步被本领域可接受取代基取代;可理解的,-NRR′中的R和R′各自独立地为本领域可接受的基团所取代,包括但不限于H、具有1至6个C原子的直链烷基、具有3至8个C原子的支链烷基、含有3-8个环原子的环烷基、含有3-8个环原子的杂环基、含有5-20个环原子的芳基或含有5-10个环原子的杂芳基;所述C 1-6烷基、含有3-8个环原子的环烷基、含有3-8个环原子的杂环基、含有5-20个环原子的芳基或含有5-10个环原子的杂芳基任选进一步被一 个或多个以下基团取代:C 1-6烷基、含有3-8个环原子的环烷基、含有3-8个环原子的杂环基、卤素、羟基、硝基或氨基。
在本发明中,“环原子数”表示原子键合成环状而得到的结构化合物(例如,单环化合物、稠环化合物、交联化合物、碳环化合物、杂环化合物)的构成该环自身的原子之中的原子数。该环被取代基所取代时,取代基所包含的原子不包括在成环原子内。关于以下所述的“环原子数”,在没有特别说明的条件下也是同样的。例如,苯环的环原子数为6,萘环的环原子数为10,噻吩基的环原子数为5。
芳香基团指至少包含一个芳环的烃基。杂芳香基团指包含至少一个杂原子的芳香烃基。杂原子优选选自Si、N、P、O、S和/或Ge,特别优选选自Si、N、P、O和/或S。稠环芳香基团指芳香基团的环可以具有两个或多个环,其中两个碳原子被两个相邻的环共用,即稠环。稠杂环芳香基团指包含至少一个杂原子的稠环芳香烃基。对于本发明的目的,芳香基团或杂芳香基团不仅包括芳香环的体系,而且包含非芳香族的环系。因此,比如吡啶、噻吩、吡咯、吡唑、三唑、咪唑、噁唑、噁二唑、噻唑、四唑、吡嗪、哒嗪、嘧啶、三嗪、卡宾等体系,对于该发明目的同样认为是芳香基团或杂环芳香基团。对于本发明的目的,稠环芳香族或稠杂环芳香族环系不仅包括芳香基团或杂芳香基团的体系,而且,其中多个芳香基团或杂环芳香基团也可以被短的非芳族单元间断(<10%的非H原子,优选小于5%的非H原子,比如C、N或O原子)。因此,比如9,9'-螺二芴,9,9-二芳基芴,三芳胺,二芳基醚等体系,对于该发明目的同样认为是稠环芳香族环系。
本发明中,未指明连接位点时表示任选可连接位点作为连接位点;
本发明中,C=C(R 4R 5)可以为
Figure PCTCN2020117525-appb-000003
本发明的化合物,任选数目的氢可被D取代;
在本发明实施例中,有机材料的能级结构,三线态能级E T、HOMO、LUMO起着关键的作用。下面对这些能级的做介绍。
HOMO和LUMO能级可以通过光电效应进行测量,例如XPS(X射线光电子光谱法)和UPS(紫外光电子能谱)或通过循环伏安法(以下简称CV)。最近,量子化学方法,例如密度泛函理论(以下简称DFT),也成为行之有效的计算分子轨道能级的方法。
有机材料的三线态能级E T1可通过低温时间分辨发光光谱来测量,或通过量子模拟计算(如通过Time-dependent DFT)得到,如通过商业软件Gaussian 03W(Gaussian Inc.),具体的模拟方法可参见WO2011141110或如下在实施例中所述。
应该注意,HOMO、LUMO、E T1的绝对值取决于所用的测量方法或计算方法,甚至对于相同的方法,不同评价的方法,例如在CV曲线上起始点和峰点可给出不同的HOMO/LUMO值。因此,合理有意义的比较应该用相同的测量方法和相同的评价方法进行。本发明实施例的描述中,HOMO、LUMO、E T1的值是基于Time-dependent DFT的模拟,但不影响其他测量或计算方法的应用。
在发明中,(HOMO-1)定义为第二高的占有轨道能级,(HOMO-2)为第三高的占有轨道能级,以此类推。(LUMO+1)定义为第二低的未占有轨道能级,(LUMO+2)为第三低的占有轨道能级,以此类推。
本发明涉及一种磷光主体材料,至少包含一种电子传输型(N型)主体材料H1及一种空穴传输型(P型)主体材料H2,所述N型主体材料H1选自如通式(1)所示的结构:
Figure PCTCN2020117525-appb-000004
其中:
Ar 1选自取代或未取代的环原子数为6-60的芳香基团或杂芳香基团,且Ar 1至少包含一个缺电子基团;
Ar 2、Ar 3、Ar 4分别独立表示取代或未取代的环原子数为6~30的芳香基团或杂芳香基团,N和Ar 3的连接位置可以是Ar 3上的任意一碳原子上;
Z 1选自C(R 1R 2)、Si(R 1R 2)、O、C=NR 1、C=C(R 1R 2)、PR 1、P(=O)R 1、S、S=O或SO 2
所述P型主体材料H2选自如通式(2)所示的结构:
Figure PCTCN2020117525-appb-000005
其中:
n选自1,2,3或4;优选地,n选自2或3或4;更优选地,n选自3或4;
X每次出现时,独立选自CR 3或N;
Z 2、Z 3、Z 4独立选自无、单键、NR 4、C(R 4R 5)、Si(R 4R 5)、O、C=O、C=NR 4、C=C(R 4R 5)、PR 4、P(=O)R 4、S、S=O或SO 2,其中Z 3、Z 4至少一个不为无;
L 1表示单键、环原子数为5~30的芳香基团或芳杂基团,L 1的连接位置可以是环上任意一碳原子上;
R 1-R 5每次出现时,独立选自H、D,或具有1至20个C原子的直链烷基、烷氧基或硫代烷氧基,或具有3至20个C原子的支链或环状的烷基、烷氧基或硫代烷氧基,或甲硅烷基,或具有1至20个C原子的酮基,或具有2至20个C原子的烷氧基羰基,或具有7至20个C原子的芳氧基羰基,氰基,氨基甲酰基,卤甲酰基,甲酰基,异氰基,异氰酸酯,硫氰酸酯或异硫氰酸酯,羟基,硝基,CF 3,Cl,Br,F,I,可交联的基团,或者具有5至60个环原子的取代或未取代的芳香基团或杂芳香基团,或具有5至60个环原子的芳氧基或杂芳氧基基团,或这些体系的组合,相邻的R 1-R 5可互相连接成环。
可理解的,相邻两个基团可以相互相连,并同与该两个基团相连的原子形成环状结构,该环状结构可以为螺环或并环,且环可以饱和环也可以为不饱和环;例如:C(R 1R 2)中,R 1和R 2可相互连接,与同R 1和R 2相连的碳原子一起形成螺环;例如
Figure PCTCN2020117525-appb-000006
中,相邻的两个R 3可相互连接,与同R 3相连的苯环一起形成并环,例如
Figure PCTCN2020117525-appb-000007
本发明中,相邻连接基团成环,可以为含有不饱和键的环,例如
Figure PCTCN2020117525-appb-000008
中R 4和R 5成环,可以形成
Figure PCTCN2020117525-appb-000009
在一实施例中,按照本发明所述的磷光主体材料,N型主体材料H1与P型主体材料H2重量百分比为3:7-7:3;优选地,N型主体材料H1与P型主体材料H2重量百分比为5:5。
在一实施例中,min(LUMO(H1)-HOMO(H2),LUMO(H2)-HOMO(H1))≤min(E T(H1),E T(H2))+0.1eV;其中:LUMO(H1)表示H1的最低未占有轨道能级,HOMO(H1)表示H1的最高占有轨道能级,E T(H1)表示H1的三重态能级;LUMO(H2)表示H2的最低未占有轨道能级,HOMO(H2)表示H2的最高占有轨道能级,E T(H2)表示H2的三重态能级。
更优选地,min(LUMO(H1)-HOMO(H2),LUMO(H2)-HOMO(H1))≤min(E T(H1),E T(H2));
进一步地,min(LUMO(H1)-HOMO(H2),LUMO(H2)-HOMO(H1))≤min(E T(H1),E T(H2))-0.1eV;
进一步地,min(LUMO(H1)-HOMO(H2),LUMO(H2)-HOMO(H1))≤min(E T(H1),E T(H2))-0.2eV;
此时,H1与H2之间可形成激基络合物,用于磷光主体材料时,更便于电荷在器件中的有效传输。
在一实施例中,上述的磷光主体材料,其min((LUMO(H1)-HOMO(H2),LUMO(H2)-HOMO(H1))在1.9–3.1eV的范围。
在一实施例中,上述的磷光主体材料,其min(LUMO(H1)-HOMO(H2),LUMO(H2)-HOMO(H1))在1.9-2.4eV的范围。这类磷光主体材料可优先作为红光磷光主体材料。
在另一实施方案中,其min(LUMO(H1)-HOMO(H2),LUMO(H2)-HOMO(H1))在2.4-2.7eV的范围。这类磷光主体材料可优先作为绿光磷光主体材料。
在另一实施方案中,其min(LUMO(H1)-HOMO(H2),LUMO(H2)-HOMO(H1))在2.7-3.1eV的范围。这类磷光主体材料可优先作为蓝光磷光主体材料。
在某一实施例中,H1和H2形成II型的半导体异质结结构。
在某一实施例中,LUMO(H2)≥LUMO(H1)且HOMO(H2)≥HOMO(H1);
在某一实施例中,LUMO(H2)-LUMO(H1)≥0.3eV;优选地,LUMO(H2)-LUMO(H1)≥0.5eV;更优选地,LUMO(H2)-LUMO(H1)≥0.7eV.
在某一实施例中,HOMO(H2)-HOMO(H1)≥0.1eV;进一步,HOMO(H2)-HOMO(H1)≥0.2eV;进一步,HOMO(H2)-HOMO(H1)≥0.3eV;进一步,HOMO(H2)-HOMO(H1)≥0.5eV。
在某一实施例中,H1具有较小的单线态-三线态能级差△E ST,较好的,△E ST(H1)≤0.3eV;更好的△E ST(H1)≤0.2eV;更好的△E ST(H1)≤0.15eV。
在一个优选的实施例中,按照本发明的磷光主体材料,所述的H1和H2中至少有一个其(HOMO-(HOMO-1))≥0.2eV,较好是≥0.25eV,更好是≥0.3eV,更更好是≥0.35eV,非常好是≥0.4eV,最好是≥0.45eV。
在一个特别优选的实施例中,按照本发明的磷光主体材料,其特征在于所述的H1和H2中其每一个的(HOMO-(HOMO-1))≥0.2eV,较好是其中有一个的(HOMO-(HOMO-1))≥0.25eV,更好是≥0.3eV,更更好是≥0.35eV,非常好是≥0.4eV,最好是≥0.45eV。
在另一个优选的实施例中,按照本发明的磷光主体材料,其特征在于所述的H1和H2中至少有一个其((LUMO+1)-LUMO)≥0.15eV,较好是≥0.20eV,更好是≥0.25eV,更更好是≥0.30eV,非常好是≥0.35eV,最好是≥0.40eV。
在另一个特别优选的实施例中,按照本发明的磷光主体材料,其特征在于所述的H1和H2中其每一个的((LUMO+1)-LUMO)≥0.15eV,较好是其中有一个的((LUMO+1)-LUMO)≥0.20eV,更好是≥0.25eV,更更好是≥0.30eV,非常好是≥0.35eV,最好是≥0.40eV。
在某个优选地实施例中,通式(1)中Ar 1至少包含一个缺电子基团,所述的缺电子基团选自可选自F、氰基或如下基团中的一种或多种:
Figure PCTCN2020117525-appb-000010
其中:
n 1表示1、2或3;
W选自CR 6或N,并且至少有一个是N;
Y选自NR 7、C(R 7R 8)、Si(R 7R 8)、O、S、S=O、S(=O) 2
M 1、M 2、M 3分别独立表示NR 7、C(R 7R 8)、Si(R 7R 8)、O、C=C(R 7R 8)、PR 7、P(=O)R 7、S、S=O、S(=O) 2或无;
R 6-R 8每次出现时,独立选自H、D,或具有1至20个C原子的直链烷基、烷氧基或硫代烷氧基,或具有3至20个C原子的支链或环状的烷基、烷氧基或硫代烷氧基,或甲硅烷基,或具有1至20个C原子的酮基,或具有2至20个C原子的烷氧基羰基,或具有7至20个C原子的芳氧基羰基,氰基,氨基甲酰基,卤甲酰基,甲酰基,异氰基,异氰酸酯,硫氰酸酯或异硫氰酸酯,羟基,硝基,CF 3,Cl,Br,F,I,可交联的基团,或者具有5至60个环原子的取代或未取代的芳香基团或杂芳香基团,或具有5至60个环原子的芳氧基或杂芳氧基基团,或这些体系的组合。
更进一步地,所述的缺电子基团选自可选自F、氰基或如下基团中的一种或多种:
Figure PCTCN2020117525-appb-000011
在某个优选地实施例中,通式(1)中Ar 1选自如下基团:
Figure PCTCN2020117525-appb-000012
在某个优选地实施例中,通式(1)中Ar 1选自如下基团:
Figure PCTCN2020117525-appb-000013
在一实施例中,R 6每次出现,独立选自:具有5至20个环原子的取代或未取代的芳香基团或有5至20个环原子的取代或未取代的杂芳香基团;更进一步地,当上述基团被进一步取代时,选自以下基团:D、具有1至20个C原子的直链烷基、具有3至20个C原子的支链烷基、具有3至20个C原子的环状的烷基、卤素、氰基、具有5至10个环原子的芳香基团或有5至10个环原子的杂芳香基团;
在一实施例中,R 6每次出现,独立选自:苯基、萘基、联苯基、三联苯基、氘代苯基、或氘代联苯基。
在一实施例中,Ar 1选自取代或未取代的环原子数为6-30的芳香基团或杂芳香基团;
在一实施例中,Ar 1选自如下基团:
Figure PCTCN2020117525-appb-000014
在某一实施例中,通式(1)中Ar 2、Ar 3、Ar 4分别独立表示取代或未取代的环原子数为6~30的芳香基团或杂芳香基团;在某一实施例中,通式(1)中Ar 2、Ar 3、Ar 4分别独立表示取代或未取代的苯基;在某一实施例中,通式(1)中Ar 2、Ar 3、Ar 4至少有一个选自取代或未取代的10~30的稠环芳香基团或稠环杂芳香基团;在某一实施例中,通式(1)中Ar 2、Ar 3、Ar 4至少有一个选自取代或未取代的10~15的稠环芳香基团;在某一实施例中,通式(1)中Ar 2、Ar 3、Ar 4至少有两个选自取代或未取代的10~30的稠环芳香基团或稠环杂芳香基团;在某一实施例中,通式(1)中Ar 2、Ar 3、Ar 4至少有两个选自取代或未取代的10~15的稠环芳香基团。
在本发明中,所述的取代是指进一步被R’取代,R’含义同R 1
在某个优选地实施例中,通式(1)中Ar 2、Ar 3、Ar 4分别独立选自如下基团:
Figure PCTCN2020117525-appb-000015
其中:
X 1选自CR 9或N;
Y 1选自NR 9、C(R 9R 10)、Si(R 9R 10)、O、S、S=O、S(=O) 2
R 9-R 10每次出现时,独立选自H、D,或具有1至20个C原子的直链烷基、烷氧基或硫代烷氧基,或具有3至20个C原子的支链或环状的烷基、烷氧基或硫代烷氧基,或甲硅烷基,或具有1至20个C原子的酮基,或具有2至20个C原子的烷氧基羰基,或具有7至20个C原子的芳氧基羰基,氰基,氨基甲酰基,卤甲酰基,甲酰基,异氰基,异氰酸酯,硫氰酸酯或异硫氰酸酯,羟基,硝基,CF 3,Cl,Br,F,I,可交联的基团,或者具有5至60个环原子的取代或未取代的芳香基团或杂芳香基团,或具有5至60个环原子的芳氧基或杂芳氧基基团,或这些体系的组合。
可理解的,R 9和R 10可相互连接,与同R 9和R 10相连的碳原子一起形成环状结构。
进一度地,通式(1)中Ar 2、Ar 3、Ar 4分别独立选自如下基团:
Figure PCTCN2020117525-appb-000016
在一实施例中,Ar 2为苯。在一实施例中,Ar 3、Ar 4中至少有一个为苯基。在某一实施例中,Ar 3、Ar 4均为苯基,或Ar 3、Ar 4中有一个为苯基,一个为萘基。
在某一实施例中,Ar 2、Ar 3、Ar 4均选自苯,通式(1)选自如下通式:
Figure PCTCN2020117525-appb-000017
进一步,通式(1)选自如下通式中任一结构:
Figure PCTCN2020117525-appb-000018
在某一实施例中,Ar 2、Ar 3、Ar 4至少有一个选自如下基团:
Figure PCTCN2020117525-appb-000019
在某一实施例中,Ar 2、Ar 3、Ar 4至少有一个选自如下基团:
Figure PCTCN2020117525-appb-000020
在某一实施例中,通式(1)选自如下通式中的任一结构:
Figure PCTCN2020117525-appb-000021
在某一实施例中,通式(2)中Z 2选自单键、NR 4、C(R 4R 5)、O、S或SO 2;更优选地,Z 2选自单键。
进一步地,通式(2)选自如下通式:
Figure PCTCN2020117525-appb-000022
在某个优选地实施例中,通式(2)中X均选自CR 3;在某个优选地实施例中,至少有两个相邻的R 3互相键合成环;在某优选实施例中,相邻两R 3互相键合形成
Figure PCTCN2020117525-appb-000023
结构;
进一步地,通式(2)选自如下通式中任一结构:
Figure PCTCN2020117525-appb-000024
Figure PCTCN2020117525-appb-000025
其中:Z 2、Z 3、Z 4各自独立地选自:NR 4、C(R 4R 5)、O、S或SO 2
n 1选自0、1、2、3或4;n 2选自0、1、2或3。
在某一实施例中,至少有两个相邻的R 3互相键合成环。
进一步地,通式(2)选自如下通式:
Figure PCTCN2020117525-appb-000026
更优选地,通式(2)选自如下通式:
Figure PCTCN2020117525-appb-000027
以上通式中X均选自CR 3
进一步地,通式(2)选自如下通式:
Figure PCTCN2020117525-appb-000028
更优选地,通式(2)选自如下通式:
Figure PCTCN2020117525-appb-000029
在一实施例中,n选自1;在另一个实施例中,n选自3。
进一步,进一步地,通式(2)选自如下通式:
Figure PCTCN2020117525-appb-000030
在一实施例中,n1多次出现时,均选自0;
在另一实施例中,n1多次出现时,至少有一个选自1。
R 3-R 5每次出现时,优选自:H、D,或具有1至10个C原子的直链烷基、或具有3至10个C原子的支链或环状的烷基、或者具有5至30个环原子的取代或未取代的芳香基团或杂芳香基团,或这些体系的组合。
在一个优选的实施例中,R 3选自:H或苯基或咔唑基;且当存在多个R 3,多个R 3彼此相同或不同。
在某个优选地实施例中,L 1选自:单键或以下基团:
Figure PCTCN2020117525-appb-000031
其中:
X 2选自CR 11或N;
Y 2选自NR 11、C(R 11R 12)、Si(R 11R 12)、O、S、S=O、S(=O) 2
R 11-R 12每次出现时,独立选自H、D,或具有1至20个C原子的直链烷基、烷氧基或硫代烷氧基,或具有3至20个C原子的支链或环状的烷基、烷氧基或硫代烷氧基,或甲硅烷基,或具有1至20个C原子的酮基,或具有2至20个C原子的烷氧基羰基,或具有7至20个C原子的芳氧基羰基,氰基,氨基甲酰基,卤甲酰基,甲酰基,异氰基,异氰酸酯,硫氰酸酯或异硫氰酸酯,羟基,硝基,CF 3,Cl,Br,F,I,可交联的基团,或者具有5至60个环原子的取代或未取代的芳香基团或杂芳香基团,或具有5至60个环原子的芳氧基或杂芳氧基基团,或这些体系的组合。
在一实施例中,R 11选自H、D,或具有1至10个C原子的直链烷基、或具有3至10个C原子的支链或环状的烷基、或者具有5至30个环原子的取代或未取代的芳香基团或杂芳香基团,或这些体系的组合。
在一个优选的实施例中,L 1为单键或以下基团:
Figure PCTCN2020117525-appb-000032
m为1、2或3。
在一个优选的实施例中,按照本发明所述的磷光主体材料,可用于H1的例子如下,且不限于:
Figure PCTCN2020117525-appb-000033
Figure PCTCN2020117525-appb-000034
Figure PCTCN2020117525-appb-000035
Figure PCTCN2020117525-appb-000036
在一个优选的实施例中,按照本发明所述的磷光主体材料,可用于H2的例子如下,且不限于:
Figure PCTCN2020117525-appb-000037
Figure PCTCN2020117525-appb-000038
Figure PCTCN2020117525-appb-000039
在一个优选的实施例中,所述的磷光主体材料,其中H1和H2的分子量的差不超过100Dalton,较好是不超过80Dalton,更好是不超过70Dalton,更更好是不超过60Dalton,非常好是不超过40Dalton,最好是不超过30Dalton。
在另一个优选的实施例中,所述的磷光主体材料,其中H1和H2的升华温度的差不超过50K;较优选的升华温度的差不超过30K;更加优选的升华温度的差不超过20K;最优选的升华温度的差不超过10K。
在一个优选的实施例中,按照本发明的磷光主体材料中的H1和H2,至少有一个其玻璃化温度T g≥100℃,在一个优选的实施例中,至少有一个其T g≥120℃,在一个较为优选的实施例中,至少有一个其T g≥140℃,在一个更为优选的实施例中,至少有一个其T g≥160℃,在一个最为优选的实施例中,至少有一个其T g≥180℃。
在一个优选的实施方案中,按照本发明的磷光主体材料用于蒸镀性OLED器件。用于这个目的,按照本发明的H1和H2,其分子量≤1000mol/kg,优选≤900mol/kg,很优选≤850mol/kg,更优选≤800mol/kg,最优选≤700mol/kg。
按照本发明所述的磷光主体材料,还可以进一步包含一种有机功能材料,所述的有机功能材料包括空穴(也称电洞)注入或传输材料(HIM/HTM)、空穴阻挡材料(HBM)、电子注入或传输材料(EIM/ETM)、电子阻挡材料(EBM)、有机主体材料(Host)、单重态发光体(荧光发光体)、有机热激发延迟荧光材料(TADF材料)、三重态发光体(磷光发光体)特别是发光有机金属络合物,和有机染料。例如在WO2010135519A1、US20090134784A1和WO 2011110277A1中对各种有机功能材料有详细的描述,特此将此3专利文件中的全部内容并入本文作为参考。有机功能材料可以是小分子和高聚物材料。
本发明进一步涉及一种组合物,所述组合物至少包含一种如上所述的磷光主体材料及至少一种有机溶剂。所述的至少一种的有机溶剂选自芳族或杂芳族、酯、芳族酮或芳族醚、脂肪族酮或脂肪族醚、脂环族或烯烃类化合物,或硼酸酯或磷酸酯类化合物,或两种及两种以上溶剂的混合物。
在一个优选的实施例中,按照本发明的一种组合物,其中所述的至少的一种有机溶剂选自基于芳族或杂芳族的溶剂。
适合本发明的基于芳族或杂芳族溶剂的例子有,但不限制于:对二异丙基苯、戊苯、四氢萘、环己基苯、氯萘、1,4-二甲基萘、3-异丙基联苯、对甲基异丙苯、二戊苯、三戊苯、戊基甲苯、邻二乙苯、 间二乙苯、对二乙苯、1,2,3,4-四甲苯、1,2,3,5-四甲苯、1,2,4,5-四甲苯、丁苯、十二烷基苯、二己基苯、二丁基苯、对二异丙基苯、环己基苯、苄基丁基苯、二甲基萘、3-异丙基联苯、对甲基异丙苯、1-甲基萘、1,2,4-三氯苯、4,4-二氟二苯甲烷、1,2-二甲氧基-4-(1-丙烯基)苯、二苯甲烷、2-苯基吡啶、3-苯基吡啶、N-甲基二苯胺、4-异丙基联苯、α,α-二氯二苯甲烷、4-(3-苯基丙基)吡啶、苯甲酸苄酯、1,1-双(3,4-二甲基苯基)乙烷、2-异丙基萘、喹啉、异喹啉、2-呋喃甲酸甲酯、2-呋喃甲酸乙酯等;
适合本发明的基于芳族酮溶剂的例子有,但不限制于:1-四氢萘酮,2-四氢萘酮,2-(苯基环氧)四氢萘酮,6-(甲氧基)四氢萘酮,苯乙酮、苯丙酮、二苯甲酮、及它们的衍生物,如4-甲基苯乙酮、3-甲基苯乙酮、2-甲基苯乙酮、4-甲基苯丙酮、3-甲基苯丙酮、2-甲基苯丙酮等;
适合本发明的基于芳族醚溶剂的例子有,但不限制于:3-苯氧基甲苯、丁氧基苯、对茴香醛二甲基乙缩醛、四氢-2-苯氧基-2H-吡喃、1,2-二甲氧基-4-(1-丙烯基)苯、1,4-苯并二噁烷、1,3-二丙基苯、2,5-二甲氧基甲苯、4-乙基本乙醚、1,3-二丙氧基苯、1,2,4-三甲氧基苯、4-(1-丙烯基)-1,2-二甲氧基苯、1,3-二甲氧基苯、缩水甘油基苯基醚、二苄基醚、4-叔丁基茴香醚、反式-对丙烯基茴香醚、1,2-二甲氧基苯、1-甲氧基萘、二苯醚、2-苯氧基甲醚、2-苯氧基四氢呋喃、乙基-2-萘基醚;
在一些优选的实施例中,按照本发明的组合物,所述的至少一种的有溶剂可选自:脂肪族酮,例如,2-壬酮、3-壬酮、5-壬酮、2-癸酮、2,5-己二酮、2,6,8-三甲基-4-壬酮、葑酮、佛尔酮、异佛尔酮、二正戊基酮等;或脂肪族醚,例如,戊醚、己醚、二辛醚、乙二醇二丁醚、二乙二醇二乙醚、二乙二醇丁基甲醚、二乙二醇二丁醚、三乙二醇二甲醚、三乙二醇乙基甲醚、三乙二醇丁基甲醚、三丙二醇二甲醚、四乙二醇二甲醚等。
在另一些优选的实施例中,按照本发明的组合物,所述的至少一种的有溶剂可选自基于酯的溶剂:辛酸烷酯、癸二酸烷酯、硬脂酸烷酯、苯甲酸烷酯、苯乙酸烷酯、肉桂酸烷酯、草酸烷酯、马来酸烷酯、烷内酯、油酸烷酯等。特别优选辛酸辛酯、癸二酸二乙酯、邻苯二甲酸二烯丙酯、异壬酸异壬酯。
所述的溶剂可以是单独使用,也可以是作为两种或多种有机溶剂的混合物使用。
在某些优选的实施例中,按照本发明的一种组合物,其特征在于,包含至少一种如上所述的有机化合物或高聚物或混合物及至少一种有机溶剂,还可进一步包含另一种有机溶剂。另一种有机溶剂的例子包括(但不限于):甲醇、乙醇、2-甲氧基乙醇、二氯甲烷、三氯甲烷、氯苯、邻二氯苯、四氢呋喃、苯甲醚、吗啉、甲苯、邻二甲苯、间二甲苯、对二甲苯、1,4二氧杂环己烷、丙酮、甲基乙基酮、1,2二氯乙烷、3-苯氧基甲苯、1,1,1-三氯乙烷、1,1,2,2-四氯乙烷、醋酸乙酯、醋酸丁酯、二甲基甲酰胺、二甲基乙酰胺、二甲基亚砜、四氢萘、萘烷、茚和/或它们的混合物。
一些优选的实施例中,特别适合本发明的溶剂是汉森(Hansen)溶解度参数在以下范围内的溶剂:
δ d(色散力)在17.0~23.2MPa 1/2的范围,尤其是在18.5~21.0MPa 1/2的范围;
δ p(极性力)在0.2~12.5MPa 1/2的范围,尤其是在2.0~6.0MPa 1/2的范围;
δ h(氢键力)在0.9~14.2MPa 1/2的范围,尤其是在2.0~6.0MPa 1/2的范围。
按照本发明的组合物,其中有机溶剂在选取时需考虑其沸点参数。本发明中,所述的有机溶剂的沸点≥150℃;优选为≥180℃;较优选为≥200℃;更优为≥250℃;最优为≥275℃或≥300℃。这些范围内的沸点对防止喷墨印刷头的喷嘴堵塞是有益的。所述的有机溶剂可从溶剂体系中蒸发,以形成包含功能材料薄膜。
在一个优选的实施方案中,按照本发明的组合物是一溶液。
在另一个优选的实施方案中,按照本发明的组合物是一悬浮液。
本发明还涉及所述组合物作为涂料或印刷油墨在制备有机电子器件时的用途,特别优选的是通过打印或涂布的制备方法。
其中,适合的打印或涂布技术包括(但不限于)喷墨打印,喷印(Nozzle Printing),活版印刷,丝网印刷,浸涂,旋转涂布,刮刀涂布,辊筒印花,扭转辊印刷,平版印刷,柔版印刷,轮转印刷,喷涂,刷涂或移印,狭缝型挤压式涂布等。首选的是凹版印刷,喷印及喷墨印刷。溶液或悬浮液可以另外包括一个或多个组份例如表面活性化合物,润滑剂,润湿剂,分散剂,疏水剂,粘接剂等,用于调节粘度,成膜性能,提高附着性等。有关打印技术,及其对有关溶液的相关要求,如溶剂及浓度,粘度等。
本发明还提供一种如上所述的磷光主体材料或组合物在有机电子器件中的应用,所述的有机电子器件可选于,但不限于,有机发光二极管(OLED),有机光伏电池(OPV),有机发光电池(OLEEC),有机场效应管(OFET),有机发光场效应管,有机激光器,有机自旋电子器件,有机传感器及有机等离激元发射二极管(Organic Plasmon Emitting Diode)等,特别优选为OLED。本发明实施例中,优选将所述磷光主体材料用于OLED器件的发光层。
本发明进一步涉及一种有机电子器件,至少包含一种如上所述的磷光主体材料或组合物。更进一步地,所述有机电子器件至少包含一功能层,所述功能层包含一种如上所述的磷光主体材料。所述功 能层选自空穴注入层(HIL)、空穴传输层(HTL)、发光层(EML)、电子阻挡层(EBL)、电子注入层(EIL)、电子传输层(ETL)、空穴阻挡层(HBL);优选地,一种有机电子器件,包含一发光层,所述发光层主体材料选自如上所述的磷光主体材料。
在某个优选地实施例中,按照本发明所述的有机电子器件,至少包含一个阴极、一个阳极及位于阴极和阳极之间的一个发光层,所述发光层材料包含主体材料和发光材料。在某个优选地实施例中,按照本发明所述的有机电子器件为磷光发光器件。
在以上所述的磷光发光器件,特别是磷光OLED中,包括一基片,一阳极,至少一发光层,所述发光层材料包含主体材料和磷光发光材料,所述主体材料选自本发明涉及的磷光主体材料,一阴极。
基片可以是不透明或透明。一个透明的基板可以用来制造一个透明的发光元器件。例如可参见,Bulovic等Nature 1996,380,p29,和Gu等,Appl.Phys.Lett.1996,68,p2606。基片可以是刚性的或弹性的。基片可以是塑料,金属,半导体晶片或玻璃。最好是基片有一个平滑的表面。无表面缺陷的基板是特别理想的选择。在一个优选的实施例中,基片是柔性的,可选于聚合物薄膜或塑料,其玻璃化温度Tg为150℃以上,较好是超过200℃,更好是超过250℃,最好是超过300℃。合适的柔性基板的例子有聚(对苯二甲酸乙二醇酯)(PET)和聚乙二醇(2,6-萘)(PEN)。
阳极可包括一导电金属或金属氧化物,或导电聚合物。阳极可以容易地注入空穴到空穴注入层(HIL)或空穴传输层(HTL)或发光层中。在一个的实施例中,阳极的功函数和发光层中的发光体或作为HIL或HTL或电子阻挡层(EBL)的p型半导体材料的HOMO能级或价带能级的差的绝对值小于0.5eV,较好是小于0.3eV,最好是小于0.2eV。阳极材料的例子包括但不限于:Al、Cu、Au、Ag、Mg、Fe、Co、Ni、Mn、Pd、Pt、ITO、铝掺杂氧化锌(AZO)等。其他合适的阳极材料是已知的,本领域普通技术人员可容易地选择使用。阳极材料可以使用任何合适的技术沉积,如一合适的物理气相沉积法,包括射频磁控溅射,真空热蒸发,电子束(e-beam)等。在某些实施例中,阳极是图案结构化的。图案化的ITO导电基板可在市场上买到,并且可以用来制备根据本发明的器件。
阴极可包括一导电金属或金属氧化物。阴极可以容易地注入电子到EIL或ETL或直接到发光层中。在一个的实施例中,阴极的功函数和发光层中发光体或作为电子注入层(EIL)或电子传输层(ETL)或空穴阻挡层(HBL)的n型半导体材料的LUMO能级或导带能级的差的绝对值小于0.5eV,较好是小于0.3eV,最好是小于0.2eV。原则上,所有可用作OLED的阴极的材料都可能作为本发明器件的阴极材料。阴极材料的例子包括但不限于:Al、Au、Ag、Ca、Ba、Mg、LiF/Al、MgAg合金、BaF 2/Al、Cu、Fe、Co、Ni、Mn、Pd、Pt、ITO等。阴极材料可以使用任何合适的技术沉积,如一合适的物理气相沉积法,包括射频磁控溅射,真空热蒸发,电子束(e-beam)等。
磷光发光体材料也称三重态发光体材料。优选地,磷光发光体材料是具有通式M(L’)q的金属络合物,其中M是一金属原子,L’每次出现时可以是相同或不同,是一有机配体,它通过一个或多个位置键接或配位连接到金属原子M上,q是1至6之间的整数。优先地,三重态发光体包含有螯合配体,即配体,通过至少两个结合点与金属配位,特别优先考虑的是三重态发光体包含有两个或三个相同或不同的双齿或多齿配体。螯合配体有利于提高金属络合物的稳定性。在一个优先的实施方案中,可用作三重态发光体的金属络合物有如下形式:
Figure PCTCN2020117525-appb-000040
金属原子M选于过渡金属元素或镧系元素或锕系元素,优先选择Ir,Pt,Pd,Au,Rh,Ru,Os,Re,Cu,Ag,Ni,Co,W或Eu,特别优先选择Ir,Au,Pt,W或Os。
Ar 1,Ar 2每次出现时可以是相同或不同,是一个环状基团,Ar 1,Ar 2分别独立表示取代或未取代的环原子数为6~30的芳香基团或杂芳香基团;其中Ar 1至少包含有一个施主原子,即有一孤对电子的原子,如氮,通过它环状基团与金属配位连接;其中Ar 2至少包含有一个碳原子,通过它环状基团与金属连接;Ar 1和Ar 2由共价键联接在一起,可各自携带一个或多个取代基团,它们也可再通过取代基团联接在一起;L’每次出现时可以是相同或不同,是一个双齿螯合的辅助配体,最好是单阴离子双齿螯合配体;q1可以是0,1,2或3,优先地是2或3;q2可以是0,1,2或3,优先地是1或0。有机配体的例子可选自苯基吡啶衍生物或7,8-苯并喹啉衍生物。所有这些有机配体都可能被取代,例如被烷基鏈或含氟或硅取代。辅助配体可优先选自乙酸丙酮或苦味酸。
一些三重态发光体的材料极其应用的例子可在下述专利文件和文献中找到:WO0070655(A2), WO0141512(A1),WO0202714A2,WO0215645(A1),WO2005033244,WO2005019373,US20050258742,US20070087219,US20070252517,US2008027220,WO2009146770,US20090061681,WO2009118087,WO2010015307,WO2010054731,WO2011157339,WO2012007087,WO2013107487,WO2013094620,WO2013174471,WO 2014031977,WO 2014112450,WO2014007565,WO 2014024131,Baldo et al.Nature(2000),750,,Kido et al.Appl.Phys.Lett.(1994),2124,Wrighton et al.J.Am.Chem.Soc.(1974),998,。特此将上述列出的专利文件和文献中的全部内容并入本文作为参考。在下面的表中列出一些合适的三重态发光体的例子:
Figure PCTCN2020117525-appb-000041
OLED还可以包含其他功能层,如空穴注入层(HIL)、空穴传输层(HTL)、电子阻挡层(EBL)、电子注入层(EIL)、电子传输层(ETL)、空穴阻挡层(HBL)。适合用于这些功能层中的材料在上面及在WO2010135519A1、US20090134784A1和WO2011110277A1中有详细的描述,特此将此3篇专利文件中的全部内容并入本文作为参考。
按照本发明的发光器件,其发光波长在300到1000nm之间,较好的是在350到900nm之间,更好的是在400到800nm之间。
本发明还涉及按照本发明的电致发光器件在各种电子设备中的应用,包含,但不限于,显示设备,照明设备,光源,传感器等等。
下面将结合优选实施例对本发明进行了说明,但本发明并不局限于下述实施例,应当理解,所附权利要求概括了本发明的范围在本发明构思的引导下本领域的技术人员应意识到,对本发明的各实施例所进行的一定的改变,都将被本发明的权利要求书的精神和范围所覆盖。
具体实施例
1、有机功能材料选择
H1选自如下结构:
(1)化合物(1-3)的合成:
合成路线:
Figure PCTCN2020117525-appb-000042
1)中间体1-3-2的合成:氮气环境下,将(24.5g,100mmol)化合物1-3-1,(25.4g,100mmol)联硼酸频那醇酯,(9.8g,100mmol)醋酸钾,(4.4g,6mmol)Pd(ppf)Cl 2和150mL的1,4-二氧六环作溶剂加入到250mL的三口瓶中,加热110℃反应12小时,待反应完毕,将反应液降到室温,将滤液进行抽滤,旋转蒸发掉大部分溶剂,用二氯甲烷溶解水洗3遍,收集有机液拌硅胶过柱进行纯化,产率80%。
2)中间体1-3-5的合成:氮气环境下,将(19.8g,100mmol)的化合物1-3-3和(22.5g,100mmol)的化合物1-3-4,(6.9g,6mmol)四(三苯基磷)钯,(5.2g,16mmol)四丁基溴化铵,(4g,100mmol)氢氧化钠,(40mL)水和(300mL)甲苯加入500mL的三口瓶中,加热80℃搅拌反应12小时,结束反应,将反应液旋转蒸发掉大部分溶剂,用二氯甲烷溶解水洗3遍,收集有机液拌硅胶过柱进行纯化,产率85%。
3)中间体1-3-6的合成:依照中间体1-3-5的合成方法,将化合物1-3-2和化合物1-3-5替代化合物1-3-3和化合物1-3-4,产率80%。
4)化合物1-3的合成:氮气环境下,将(14.2g,30mmol)化合物1-3-6、(7.4g,30mmol)化合物1-3-7、(1.91g,10mmol)碘化亚铜、(2.28g,20mmol)反式环己二胺、(12.72g,40mmol)磷酸钾和100mL甲苯加入到300mL三口瓶中,加热搅拌至110℃反应12小时,结束反应,冷却到室温,将滤液进行抽滤,旋转蒸发掉大部分溶剂,用二氯甲烷溶解水洗3遍,收集有机液拌硅胶过柱进行纯化,产率75%。
(2)化合物(1-30)的合成:
合成路线:
Figure PCTCN2020117525-appb-000043
1)中间体1-30-2的合成:依照中间体1-3-5的合成方法,将化合物1-30-1替代化合物1-3-4,产率80%。
2)中间体1-30-3的合成:依照中间体1-3-5的合成方法,将化合物1-3-2和化合物1-30-2替代化合物 1-3-3和化合物1-3-4,产率75%。
3)化合物1-30的合成:依照化合物1-3的合成方法,将化合物1-30-3和化合物1-30-4替代化合物1-3-6和化合物1-3-7,产率75%。
(3)化合物(1-40)的合成:
合成路线:
Figure PCTCN2020117525-appb-000044
1)中间体1-40-2的合成:依照中间体1-3-5的合成方法,将化合物1-40-1替代化合物1-3-4,产率80%。
2)化合物1-40的合成:依照化合物1-3的合成方法,将化合物1-40-2和化合物1-40-3替代化合物1-3-6和化合物1-3-7,产率80%。
(4)化合物(1-49)的合成:
合成路线:
Figure PCTCN2020117525-appb-000045
1)中间体1-49-2的合成:依照中间体1-3-5的合成方法,将化合物1-3-2和化合物1-49-1替代化合物1-3-3和化合物1-3-4,产率75%。
2)中间体1-49-4的合成:依照中间体1-3-5的合成方法,将化合物1-49-3和化合物1-49-2替代化合物1-3-3和化合物1-3-4,产率70%。
3)化合物1-49的合成:依照化合物1-3的合成方法,将化合物1-49-4和化合物1-49-5替代化合物1-3-6和化合物1-3-7,产率75%。
(5)化合物(1-50)的合成:
Figure PCTCN2020117525-appb-000046
1)中间体1-50-2的合成:依照中间体1-3-5的合成方法,将化合物1-3-2和化合物1-50-1替代化合物1-3-3和化合物1-3-4,产率75%。
2)化合物1-50的合成:依照化合物1-3的合成方法,将化合物1-50-2和化合物1-50-3替代化合物1-3-6和化合物1-3-7,产率80%。
(6)化合物(1-60)的合成:
合成路线:
Figure PCTCN2020117525-appb-000047
1)中间体1-60-2的合成:依照中间体1-3-5的合成方法,将化合物1-3-2和化合物1-60-1替代化合物1-3-3和化合物1-3-4,产率70%。
2)化合物1-60的合成:依照化合物1-3的合成方法,将化合物1-60-2和化合物1-60-3替代化合物1-3-6和化合物1-3-7,产率75%。
(7)化合物(1-72)的合成:
合成路线:
Figure PCTCN2020117525-appb-000048
1)中间体1-72-2的合成:依照中间体1-3-5的合成方法,将化合物1-3-2和化合物1-72-1替代化合物1-3-3和化合物1-3-4,产率75%。
2)化合物1-72的合成:依照化合物1-3的合成方法,将化合物1-72-2和化合物1-72-3替代化合物1-3-6和化合物1-3-7,产率80%。
(8)化合物(1-89)的合成:
合成路线:
Figure PCTCN2020117525-appb-000049
1)中间体1-89-2的合成:依照中间体1-3-5的合成方法,将化合物1-3-2和化合物1-89-1替代化合物1-3-3和化合物1-3-4,产率70%。
2)化合物1-89的合成:依照化合物1-3的合成方法,将化合物1-89-2和化合物1-89-3替代化合物1-3-6和化合物1-3-7,产率80%。
(9)化合物(1-97)的合成:
合成路线:
Figure PCTCN2020117525-appb-000050
1)中间体1-97-3的合成:依照中间体1-3-5的合成方法,将两倍量的化合物1-97-1和一倍量的化合物1-97-2替代化合物1-3-3和化合物1-3-4,产率75%。
2)中间体1-97-4的合成:依照中间体1-3-5的合成方法,将化合物1-3-2和化合物1-97-3替代化合物1-3-3和化合物1-3-4,产率80%。
3)化合物1-97的合成:依照化合物1-3的合成方法,将化合物1-97-4和化合物1-97-5替代化合物1-3-6和化合物1-3-7,产率75%。
(10)化合物(1-100)的合成:
合成路线:
Figure PCTCN2020117525-appb-000051
1)中间体1-100-3的合成:依照中间体1-3-5的合成方法,将化合物1-100-1和化合物1-100-2替代化合物1-3-3和化合物1-3-4,产率80%。
3)化合物1-100的合成:依照化合物1-3的合成方法,将化合物1-100-3和化合物1-100-4替代化合物1-3-6和化合物1-3-7,产率75%。
H2选自如下结构:
(11)化合物(2-2)的合成:
合成路线:
Figure PCTCN2020117525-appb-000052
1)中间体2-2-3的合成:依照中间体1-3-5的合成方法,将化合物2-2-1和化合物2-2-2替代化合物1-3-3和化合物1-3-4,产率75%。
2)化合物2-2的合成:依照化合物1-3的合成方法,将两倍的化合物2-2-4和化合物2-2-3替代化合物1-3-6和化合物1-3-7,产率70%。
(12)化合物(2-9)的合成:
合成路线:
Figure PCTCN2020117525-appb-000053
1)中间体2-9-3的合成:依照中间体1-3-5的合成方法,将化合物2-9-1和化合物2-9-2替代化合物1-3-3和化合物1-3-4,产率75%。
2)化合物2-9的合成:依照中间体1-3-5的合成方法,将两倍的化合物1-49-3和化合物2-9-3替代化合物1-3-3和化合物1-3-4,产率80%。
(13)化合物(2-11)的合成:
合成路线:
Figure PCTCN2020117525-appb-000054
1)化合物2-11的合成:依照化合物1-3的合成方法,将化合物2-11-2和化合物2-11-1替代化合物1-3-6和化合物1-3-7,产率85%。
(14)化合物(2-14)的合成:
合成路线:
Figure PCTCN2020117525-appb-000055
1)中间体2-14-3的合成:依照中间体1-3-5的合成方法,将化合物2-14-1和化合物2-14-2替代化合物1-3-3和化合物1-3-4,产率75%。
2)化合物2-14-4的合成:依照中间体1-3-2的合成方法,将两倍的化合物2-14-3替代化合物1-3-1,产率85%。
3)中间体2-14-5的合成:依照中间体1-3-5的合成方法,将化合物2-14-4和化合物2-14-2替代化合物1-3-3和化合物1-3-4,产率75%。
4)化合物2-14的合成:依照化合物1-3的合成方法,将化合物2-2-4和化合物2-14-5替代化合物1-3-6和化合物1-3-7,产率80%。
(15)化合物(2-21)的合成:
合成路线:
Figure PCTCN2020117525-appb-000056
1)中间体2-21-3的合成:依照化合物1-3的合成方法,将化合物2-21-2和化合物2-21-1替代化合物1-3-6和化合物1-3-7,产率80%。
2)中间体2-21-4的合成:氮气环境下,将60mmol化合物2-21-3、150mL四氢呋喃、50mL甲醇和30mL氢氧化钠水溶液(20%含量)加入到500mL三口瓶中,加热回流搅拌12小时,结束反应,冷却到室温,旋转蒸发掉大部分溶剂,用二氯甲烷溶解水洗3遍,收集有机液,旋干后,用乙酸乙酯和石油醚混合物溶液重结晶,产率85%。
3)化合物2-21的合成:依照化合物1-3的合成方法,将化合物2-21-4和化合物2-21-5替代化合物1-3-6和化合物1-3-7,产率80%。
(16)化合物(2-27)的合成:
合成路线:
Figure PCTCN2020117525-appb-000057
1)中间体2-27-2的合成:依照化合物1-3的合成方法,将化合物2-2-4和化合物2-27-1替代化合物1-3-6和化合物1-3-7,产率80%。
2)中间体2-27-3的合成:依照化合物2-21-4的合成方法,将化合物2-27-2替代化合物2-21-3,产率85%。
3)化合物2-27的合成:依照化合物1-3的合成方法,将化合物2-27-3和化合物2-27-4替代化合物1-3-6和化合物1-3-7,产率80%。
(17)化合物(2-33)的合成:
合成路线:
Figure PCTCN2020117525-appb-000058
1)化合物2-33的合成:依照化合物1-3的合成方法,将两倍量的化合物2-2-4和一倍量的化合物2-33-1替代化合物1-3-6和化合物1-3-7,产率85%。
(18)化合物(2-36)的合成:
合成路线:
Figure PCTCN2020117525-appb-000059
1)化合物2-36的合成:依照化合物1-3的合成方法,将两倍量的化合物2-36-1和一倍量的化合物2-36-1替代化合物1-3-6和化合物1-3-7,产率75%。
(19)化合物(2-42)的合成:
合成路线:
Figure PCTCN2020117525-appb-000060
1)化合物2-42的合成:依照化合物1-3的合成方法,将化合物2-42-1和化合物2-42-2替代化合物1-3-6和化合物1-3-7,产率80%。
(20)化合物(2-45)的合成:
合成路线:
Figure PCTCN2020117525-appb-000061
1)中间体2-45-3的合成:依照中间体1-3-5的合成方法,将化合物2-45-1和化合物2-45-2替代化合物1-3-3和化合物1-3-4,产率80%。
2)化合物2-45的合成:氮气环境下,将(42.7g,50mmol)的化合物2-45-3、(12.1g,50mmol)的化合物2-45-4、(32.6g,100mmol)的碳酸铯和150mL N,N-二甲基甲酰胺加入到300mL的三口瓶中,加热到150℃反应12小时,待反应完毕,将反应液冷却到室温,旋走大部分溶剂后,将反应液倒置400mL的纯净水中,将析出固体进行抽滤,收集滤渣进行重结晶提纯,产率85%。
(21)化合物(2-53)的合成:
合成路线:
Figure PCTCN2020117525-appb-000062
1)化合物2-53的合成:依照中间体2-45的合成方法,将化合物2-53-1替代化合物2-45-4,产率80%。
(22)化合物(2-57)的合成:
合成路线:
Figure PCTCN2020117525-appb-000063
1)中间体2-57-3的合成:依照中间体1-3-5的合成方法,将化合物2-57-1和化合物2-57-2替代化合物1-3-3和化合物1-3-4,产率75%。
2)化合物2-57的合成:依照化合物1-3的合成方法,将化合物2-57-4和化合物2-57-3替代化合物1-3-6和化合物1-3-7,产率80%。
(23)化合物(2-67)的合成:
合成路线:
Figure PCTCN2020117525-appb-000064
1)中间体2-67-1的合成:依照化合物1-3的合成方法,将化合物2-2-4和化合物2-21-1替代化合物1-3-6和化合物1-3-7,产率80%。
2)中间体2-67-2的合成:依照化合物2-21-4的合成方法,将化合物2-67-1替代化合物2-21-3,产率85%。
3)化合物2-67的合成:依照化合物1-3的合成方法,将化合物2-67-2和化合物2-67-3替代化合物1-3-6和化合物1-3-7,产率80%。
(24)化合物(2-76)的合成:
合成路线:
Figure PCTCN2020117525-appb-000065
1)化合物2-76的合成:依照化合物1-3的合成方法,将四倍量的化合物2-2-4和一倍量的化合物2-67-1替代化合物1-3-6和化合物1-3-7,产率65%。
(25)化合物(2-77)的合成:
合成路线:
Figure PCTCN2020117525-appb-000066
1)中间体2-77-2的合成:依照化合物1-3的合成方法,将两倍量的化合物2-2-4和一倍量的化合物2-77-1替代化合物1-3-6和化合物1-3-7,产率70%。
2)中间体2-67-2的合成:依照化合物2-21-4的合成方法,将化合物2-77-2替代化合物2-21-3,产率85%。
3)中间体2-77-5的合成:依照化合物1-3的合成方法,将两倍量的化合物2-2-4和一倍量的化合物2-77-4替代化合物1-3-6和化合物1-3-7,产率75%。
4)化合物2-77的合成:依照化合物1-3的合成方法,将化合物2-77-3和化合物2-77-5替代化合物1-3-6和化合物1-3-7,产率80%。
2、能级结构计算
有机化合物材料的能级可通过量子计算得到,比如利用TD-DFT(含时密度泛函理论)通过Gaussian09W(Gaussian Inc.),具体的模拟方法可参见WO2011141110。首先用半经验方法“Ground State/Semi-empirical/Default Spin/AM1”(Charge 0/Spin Singlet)来优化分子几何结构,然后有机分子的能量结构由TD-DFT(含时密度泛函理论)方法算得“TD-SCF/DFT/Default Spin/B3PW91”与基组“6-31G(d)”(Charge 0/Spin Singlet)。HOMO和LUMO能级按照下面的校准公式计算,S1,T1和谐振因子f(S1)直接使用。
HOMO(eV)=((HOMO(G)×27.212)-0.9899)/1.1206
LUMO(eV)=((LUMO(G)×27.212)-2.0041)/1.385
其中HOMO(G)和LUMO(G)是Gaussian 09W的直接计算结果,单位为Hartree。结果如表一所示:
表1
Figure PCTCN2020117525-appb-000067
Figure PCTCN2020117525-appb-000068
OLED器件的制备及表征
在本实施例中,在绿光器件中,分别用表2所示的主体材料作为共主体材料,如下图的Emitter-G作为发光材料,HATCN作为空穴注入材料,HTL作为空穴传输材料,ETM作为电子传输材料,Liq作为电子注入材料,构造成器件结构为ITO/HATCN/HTL/主体材料:Emitter-G(10%)/ETM:Liq/Liq/Al的电致发光器件。
在红光器件中,分别用化合物(1-49):(2-11)、(1-60):(2-9)、(1-72):(2-9)和(1-100):(2-9)作为共主体材料,如下图的Emitter-R作为发光材料,HATCN作为空穴注入材料,HTL作为空穴传输材料,ETM作为电子传输材料,Liq作为电子注入材料,构造成器件结构为ITO/HATCN/HTL/主体材料:Emitter-R(3%)/ETM:Liq/Liq/Al的电致发光器件。
Figure PCTCN2020117525-appb-000069
上述材料HATCN、HTL、Emitter、ETM、Liq均是可商业购得,或其合成方法均为现有技术,详见现有技术中的参考文献,在此不再赘述。
下面通过具体实施例来详细说明采用上述的OLED器件的制备过程,OLED器件的结构为:ITO/HATCN/HTL/主体材料:Emitter/ETM:Liq/Liq/Al,制备步骤如下:
a、ITO(铟锡氧化物)导电玻璃基片的清洗:使用各种溶剂(例如氯仿、丙酮或异丙醇中的一种或几种)清洗,然后进行紫外臭氧处理;
b、HATCN(30nm),HTL(50nm),主体材料:Emitter(40nm),ETM:Liq(30nm),Liq(1nm),Al(100nm)在高真空(1×10 -6毫巴)中热蒸镀而成;
c、封装:器件在氮气手套箱中用紫外线硬化树脂封装。
采用表征设备测试绿光器件实施例1~8和对比例1~2的有机发光二极管的电流电压(J-V)特性,同时记录重要的参数如效率,寿命(见表2)及外部量子效率。表2中,所有外量子效率和寿命都是相对实施例1的有机发光二极管的相对值。可见,基于本发明的实施例相对于对比例在器件的外量子效率和寿命均有一定程度的提升,基于实施例1的器件的发光效率和寿命在同类型器件中是最高的。可见,基于本发明的化合物和混合物制备所得的绿光器件在效率和寿命方面均得到了大大提高。
表2
OLED器件 主体材料 EQE T90@1000nits
实施例1 (1-3):(2-27)=5:5(质量比) 1.66 4.5
实施例2 (1-30):(2-67)=5:5(质量比) 1.56 3.3
实施例3 (1-50):(2-36)=5:5(质量比) 1.63 4.0
实施例4 (1-89):(2-36)=5:5(质量比) 1.41 2.2
实施例5 (1-97):(2-21)=5:5(质量比) 1.48 2.7
实施例6 (1-60):(2-27)=5:5(质量比) 1.53 3.0
实施例7 (1-72):(2-9)=5:5(质量比) 1.52 2.9
实施例8 (1-100):(2-36)=5:5(质量比) 1.60 3.8
对比例1 (1-30) 1 1
对比例2 Ref-1 1.2 1.6
其中,
Figure PCTCN2020117525-appb-000070
=5:5(质量比)   (Ref-1)
Ref-1参见专利US2016072078A1。
采用表征设备测试红光器件实施例10~13和对比例3~4的有机发光二极管的电流电压(J-V)特性,同时记录重要的参数如效率,寿命(见表3)及外部量子效率。表3中,所有外量子效率和寿命都是相对实施例3的有机发光二极管的相对值。可见,基于本发明的实施例相对于对比例在器件的外量子效率和寿命均有一定程度的提升,基于实施例13的器件的发光效率和寿命在同类型器件中是最高的。可见,基于本发明的化合物和混合物制备所得的红光器件在效率和寿命方面均得到了大大提高。
表3
OLED器件 主体材料 EQE T90@1000nits
实施例10 (1-49):(2-11)=5:5(质量比) 1.51 2.8
实施例11 (1-72):(2-9)=5:5(质量比) 1.59 3.6
实施例12 (1-60):(2-9)=5:5(质量比) 1.65 4.2
实施例13 (1-100):(2-9)=5:5(质量比) 1.70 4.7
对比例3 (1-49) 1 1
对比例4 Ref-2 1.23 1.7
其中,
Figure PCTCN2020117525-appb-000071
=5:5(质量比)   (Ref-2)
Ref-2参见专利US2016072078A1。
以上所述实施例的各技术特征可以进行任意的组合,为使描述简洁,未对上述实施例中的各个技术特征所有可能的组合都进行描述,然而,只要这些技术特征的组合不存在矛盾,都应当认为是本说明书记载的范围。
以上所述实施例仅表达了本发明的几种实施方式,其描述较为具体和详细,但并不能因此而理解为对发明专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干变形和改进,这些都属于本发明的保护范围。因此,本发明专利的保护范围应以所附权利要求为准。

Claims (18)

  1. 一种磷光主体材料,至少包含一种N型主体材料H1及一种P型主体材料H2,其特征在于,所述N型主体材料H1选自如通式(1)所示的结构:
    Figure PCTCN2020117525-appb-100001
    其中:
    Ar 1选自取代或未取代的环原子数为6-60的芳香基团或杂芳香基团,且Ar 1至少包含一个缺电子基团;
    Ar 2、Ar 3、Ar 4分别独立表示取代或未取代的环原子数为6~30的芳香基团或杂芳香基团,N和Ar 3的连接位置可以是Ar 3上的任意一碳原子上;
    Z 1选自C(R 1R 2)、Si(R 1R 2)、O、C=NR 1、C=C(R 1R 2)、PR 1、P(=O)R 1、S、S=O或SO 2
    所述P型主体材料H2选自如通式(2)所示的结构:
    Figure PCTCN2020117525-appb-100002
    其中:
    n选自1、2、3或4;
    X每次出现时,独立选自CR 3或N;
    Z 2、Z 3、Z 4各自独立选自:无、单键、NR 4、C(R 4R 5)、Si(R 4R 5)、O、C=O、C=NR 4、C=C(R 4R 5)、PR 4、P(=O)R 4、S、S=O或SO 2,其中Z 3、Z 4不同时为无;
    L 1选自:单键、环原子数为5~30的芳香基团或环原子数为5~30的芳杂基团,L 1的连接位置可以是环上任意一碳原子上;
    R 1-R 5每次出现时相同或不同,R 1-R 5各自独立选自H、D、具有1至20个C原子的直链烷基、具有1至20个C原子的烷氧基、具有1至20个C原子的硫代烷氧基、具有3至20个C原子的支链烷基、具有3至20个C原子的环状烷基、具有3至20个C原子的烷氧基、具有3至20个C原子的硫代烷氧基、甲硅烷基、具有1至20个C原子的酮基、具有2至20个C原子的烷氧基羰基、具有7至20个C原子的芳氧基羰基、氰基、氨基甲酰基、卤甲酰基、甲酰基、异氰基、异氰酸酯、硫氰酸酯、异硫氰酸酯、羟基、硝基、CF 3、Cl、Br、F、I、可交联的基团、具有5至60个环原子的取代或未取代的芳香基团、具有5至60个环原子的取代或未取代的杂芳香基团、具有5至60个环原子的芳氧基或具有5至60个环原子的杂芳氧基基团,或这些体系的组合。
  2. 根据权利要求1所示的磷光主体材料,其特征在于:min(LUMO(H1)-HOMO(H2),LUMO(H2)-HOMO(H1))≤min(E T(H1),E T(H2))+0.1eV;其中:LUMO(H1)表示H1的最低未占有轨道能级,HOMO(H1)表示H1的最高占有轨道能级,E T(H1)表示H1的三重态能级;LUMO(H2)表示H2的最低未占有轨道能级,HOMO(H2)表示H2的最高占有轨道能级,E T(H2)表示H2的三重态能级。
  3. 根据权利要求2所述的磷光主体材料,其特征在于:min(LUMO(H1)-HOMO(H2),LUMO(H2)-HOMO(H1))在1.9eV-3.1eV范围内。
  4. 根据权利要求2所述的磷光主体材料,其特征在于:min(LUMO(H1)-HOMO(H2),LUMO(H2)-HOMO(H1))在2.4eV-2.7eV范围内。
  5. 根据权利要求1所示的磷光主体材料,其特征在于:Ar 1至少包含一个缺电子基团,所述缺电子基团选自:F、氰基或如下基团中的一种或多种:
    Figure PCTCN2020117525-appb-100003
    其中:
    n1表示1、2或3;
    W选自CR 6或N,并且至少有一个是N;
    Y选自NR 7、C(R 7R 8)、Si(R 7R 8)、O、S、S=O、S(=O) 2
    M 1、M 2、M 3分别独立表示NR 7、C(R 7R 8)、Si(R 7R 8)、O、C=C(R 7R 8)、PR 7、P(=O)R 7、S、S=O、S(=O) 2或无;
    R 6-R 8每次出现时相同或不同,R 6-R 8各自独立地选自:H、D、具有1至20个C原子的直链烷基、具有1至20个C原子的烷氧基或具有1至20个C原子的硫代烷氧基、具有3至20个C原子的支链烷基、具有3至20个C原子的环状烷基、具有3至20个C原子的烷氧基、具有3至20个C原子的硫代烷氧基、甲硅烷基、具有1至20个C原子的酮基、具有2至20个C原子的烷氧基羰基、具有7至20个C原子的芳氧基羰基、氰基、氨基甲酰基、卤甲酰基、甲酰基、异氰基、异氰酸酯、硫氰酸酯或异硫氰酸酯、羟基、硝基、CF 3、Cl、Br、F、I、可交联的基团、具有5至60个环原子的取代或未取代的芳香基团、具有5至60个环原子的取代或未取代的杂芳香基团、具有5至60个环原子的芳氧基或具有5至60个环原子的杂芳氧基基团,或这些体系的组合;
    *表示连接位点。
  6. 根据权利要求4所述的磷光主体材料,其特征在于:Ar 1选自如下基团:
    Figure PCTCN2020117525-appb-100004
  7. 根据权利要求1所述的磷光主体材料,其特征在于:Ar 2、Ar 3、Ar 4选自如下基团:
    Figure PCTCN2020117525-appb-100005
    其中:
    X 1选自CR 9或N;
    Y 1选自NR 9、C(R 9R 10)、Si(R 9R 10)、O、S、S=O、S(=O) 2
    R 9-R 10每次出现时相同或不同,R 9-R 10各自独立选自:H、D、具有1至20个C原子的直链烷基、具有1至20个C原子的烷氧基或具有1至20个C原子的硫代烷氧基、具有3至20个C原子的支链烷基、具有3至20个C原子的环状烷基、具有3至20个C原子的烷氧基、具有3至20个C原子的硫代烷氧基、甲硅烷基、具有1至20个C原子的酮基、具有2至20个C原子的烷氧基羰基、具有7至20个C原子的芳氧基羰基、氰基、氨基甲酰基、卤甲酰基、甲酰基、异氰基、异氰酸酯、硫氰酸酯或异硫氰酸酯、羟基、硝基、CF 3、Cl、Br、F、I、可交联的基团、具有5至60个环原子的取代或未取代的芳香基团、具有5至60个环原子的取代或未取代的杂芳香基团、具有5至60个环原子的芳氧基或具有5至60个环原子的杂芳氧基基团,或这些体系的组合。
  8. 根据权利要求6所述的磷光主体材料,Ar 2、Ar 3、Ar 4选自如下基团:
    Figure PCTCN2020117525-appb-100006
  9. 根据权利要求6所述的磷光主体材料,其特征在于:通式(1)中选自如下结构:
    Figure PCTCN2020117525-appb-100007
  10. 根据权利要求1所述的磷光主体材料,其特征在于:通式(2)选自如下通式:
    Figure PCTCN2020117525-appb-100008
  11. 根据权利要求1所述的磷光主体材料,其特征在于:通式(2)选自如下通式中的一种:
    Figure PCTCN2020117525-appb-100009
    其中:
    Z 2、Z 3、Z 4各自独立地选自NR 4、C(R 4R 5)、O、S或SO 2
    n 1选自0、1、2、3或4;n 2选自0、1、2或3。
  12. 根据权利要求1所述的磷光主体材料,其特征在于:通式(2)选自如下通式中的一种:
    Figure PCTCN2020117525-appb-100010
  13. 根据权利要求11所述的磷光主体材料,其特征在于,L 1为单键或以下基团:
    Figure PCTCN2020117525-appb-100011
    m为1、2或3,*表示连接位点。
  14. 根据权利要求11所述的磷光主体材料,其特征在于:至少有两个相邻的R 3互相键合成环。
  15. 根据权利要求11所述的磷光主体材料,其特征在于:R 4和R 5互相键合成环。
  16. 根据权利要求11所述的磷光主体材料,其特征在于:通式(1)选自:
    Figure PCTCN2020117525-appb-100012
    通式(2)选自:
    Figure PCTCN2020117525-appb-100013
  17. 一种组合物,其特征在于:至少包含一种如权利要求1-15任一项所述的磷光主体材料及至少一种有机溶剂。
  18. 一种有机电子器件,其特征在于:包含一发光层,所述发光层主体材料包含有权利要求1-15任一项所述的磷光主体材料。
PCT/CN2020/117525 2019-10-18 2020-09-24 一种磷光主体材料及其应用 WO2021073393A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202080061317.XA CN114391034B (zh) 2019-10-18 2020-09-24 一种磷光主体材料及其应用

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910997801.2 2019-10-18
CN201910997801 2019-10-18

Publications (1)

Publication Number Publication Date
WO2021073393A1 true WO2021073393A1 (zh) 2021-04-22

Family

ID=75538316

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/117525 WO2021073393A1 (zh) 2019-10-18 2020-09-24 一种磷光主体材料及其应用

Country Status (2)

Country Link
CN (1) CN114391034B (zh)
WO (1) WO2021073393A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114621196A (zh) * 2022-03-21 2022-06-14 吉林奥来德光电材料股份有限公司 一种有机发光材料及其制备方法和有机电致发光器件

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106232772A (zh) * 2014-05-14 2016-12-14 罗门哈斯电子材料韩国有限公司 多组分主体材料以及包含其的有机电致发光装置
CN106414662A (zh) * 2014-05-23 2017-02-15 罗门哈斯电子材料韩国有限公司 多组分主体材料和包含其的有机电致发光器件
CN109659448A (zh) * 2017-12-27 2019-04-19 广州华睿光电材料有限公司 有机混合物、组合物及有机电子器件
WO2019146946A1 (ko) * 2018-01-29 2019-08-01 주식회사 엘지화학 유기발광소자

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10686143B2 (en) * 2015-03-05 2020-06-16 Universal Display Corporation Organic electroluminescent materials and devices

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106232772A (zh) * 2014-05-14 2016-12-14 罗门哈斯电子材料韩国有限公司 多组分主体材料以及包含其的有机电致发光装置
CN106414662A (zh) * 2014-05-23 2017-02-15 罗门哈斯电子材料韩国有限公司 多组分主体材料和包含其的有机电致发光器件
CN109659448A (zh) * 2017-12-27 2019-04-19 广州华睿光电材料有限公司 有机混合物、组合物及有机电子器件
WO2019146946A1 (ko) * 2018-01-29 2019-08-01 주식회사 엘지화학 유기발광소자

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114621196A (zh) * 2022-03-21 2022-06-14 吉林奥来德光电材料股份有限公司 一种有机发光材料及其制备方法和有机电致发光器件

Also Published As

Publication number Publication date
CN114391034A (zh) 2022-04-22
CN114391034B (zh) 2024-02-02

Similar Documents

Publication Publication Date Title
CN110746429B (zh) 含金刚烷的化合物、高聚物、混合物、组合物及电子器件
WO2017092508A1 (zh) D-a型化合物及其应用
WO2018095394A1 (zh) 有机混合物、组合物及有机电子器件和应用
CN112430239B (zh) 基于七元环结构的化合物、高聚物、混合物、组合物及有机电子器件
WO2017092545A1 (zh) 一种金属有机配合物及其在电子器件中的应用
CN110759925A (zh) 含氮稠环有机化合物及其应用
WO2018095392A1 (zh) 有机混合物、组合物以及有机电子器件
CN111848590B (zh) 化合物、高聚物、混合物、组合物及有机电子器件
WO2019120263A1 (zh) 有机混合物及其在有机电子器件中的应用
WO2018095389A1 (zh) 含氮稠杂环的化合物及其应用
CN110845499B (zh) 含氮多环化合物、高聚物、混合物、组合物及有机电子器件
WO2017118252A1 (zh) 含砜基稠杂环化合物及其应用
WO2018095393A1 (zh) 有机化合物、有机混合物、有机电子器件
WO2017118174A1 (zh) 用于制备有机电子器件的有机功能化合物及其应用
WO2019128599A1 (zh) 含氮杂环化合物、高聚物、混合物、组合物及其用途
CN111279508B (zh) 组合物及其应用、有机电子器件
CN114391034B (zh) 一种磷光主体材料及其应用
CN110669048A (zh) 基于含氮稠环的有机化合物及其应用
CN112979678B (zh) 一种有机化合物、高聚物、混合物、组合物及有机电子器件
CN110734396B (zh) 有机化合物、高聚物、混合物、组合物及有机电子器件
WO2021129337A1 (zh) 一种有机化合物及有机电子器件
WO2021135841A1 (zh) 有机电致发光器件和含稠环的芳香族化合物
WO2018103746A1 (zh) 咔唑苯类稠环衍生物、聚合物、混合物、组合物、有机电子器件及其制备方法
WO2022121224A1 (zh) 有机硼氮化合物、混合物、组合物及有机电子器件
CN114230508A (zh) 芳胺化合物及其在有机电子器件中的应用

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20877498

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20877498

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205N DATED 10.06.2022)

122 Ep: pct application non-entry in european phase

Ref document number: 20877498

Country of ref document: EP

Kind code of ref document: A1