WO2021073369A1 - 一种用于改变变桨轴承的受力部件的负载的方法 - Google Patents

一种用于改变变桨轴承的受力部件的负载的方法 Download PDF

Info

Publication number
WO2021073369A1
WO2021073369A1 PCT/CN2020/116666 CN2020116666W WO2021073369A1 WO 2021073369 A1 WO2021073369 A1 WO 2021073369A1 CN 2020116666 W CN2020116666 W CN 2020116666W WO 2021073369 A1 WO2021073369 A1 WO 2021073369A1
Authority
WO
WIPO (PCT)
Prior art keywords
inner ring
pitch bearing
force
component
stressed
Prior art date
Application number
PCT/CN2020/116666
Other languages
English (en)
French (fr)
Inventor
梁保柱
陈林
高学海
蔡征宇
Original Assignee
射阳远景能源科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 射阳远景能源科技有限公司 filed Critical 射阳远景能源科技有限公司
Priority to DE112020005029.7T priority Critical patent/DE112020005029T5/de
Publication of WO2021073369A1 publication Critical patent/WO2021073369A1/zh
Priority to DKPA202170400A priority patent/DK202170400A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D80/00Details, components or accessories not provided for in groups F03D1/00 - F03D17/00
    • F03D80/70Bearing or lubricating arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D1/00Wind motors with rotation axis substantially parallel to the air flow entering the rotor 
    • F03D1/06Rotors
    • F03D1/065Rotors characterised by their construction elements
    • F03D1/0658Arrangements for fixing wind-engaging parts to a hub
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D7/00Controlling wind motors 
    • F03D7/02Controlling wind motors  the wind motors having rotation axis substantially parallel to the air flow entering the rotor
    • F03D7/022Adjusting aerodynamic properties of the blades
    • F03D7/0224Adjusting blade pitch
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2240/00Components
    • F05B2240/50Bearings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2270/00Control
    • F05B2270/30Control parameters, e.g. input parameters
    • F05B2270/328Blade pitch angle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C19/00Bearings with rolling contact, for exclusively rotary movement
    • F16C19/02Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows
    • F16C19/14Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for both radial and axial load
    • F16C19/18Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for both radial and axial load with two or more rows of balls
    • F16C19/181Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for both radial and axial load with two or more rows of balls with angular contact
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2360/00Engines or pumps
    • F16C2360/31Wind motors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/72Wind turbines with rotation axis in wind direction

Definitions

  • the present invention generally relates to the field of wind power generation, and in particular, to a method for changing the load of a stressed component of a pitch bearing.
  • the present invention also relates to a system for changing the load of the stressed component of the pitch bearing.
  • pitch bearing An important component of a wind turbine (or wind turbine for short) is the pitch bearing, which is used to adjust the angle between the blades of the wind turbine and the blade rotation plane, so as to adjust the windward angle of the blades, thereby increasing the power of the wind turbine.
  • the replacement of the pitch bearing requires disassembling the blades and hoisting the blades after the replacement is completed.
  • the wind turbine blades can move up to tens of meters, such as 30 meters, and weigh hundreds of kilograms. Therefore, the cost of replacing the pitch bearing is It is relatively high and there is a certain degree of danger. Therefore, how to improve the life of the pitch bearing is a concern in the industry.
  • the task of the present invention is to provide a method for changing the load of the stressed component of the pitch bearing and a corresponding system, through which the method and/or the system can greatly reduce the same force on the pitch bearing The probability that the component is always in the heavy-duty area, thereby greatly improving the life of the pitch bearing.
  • this task is solved by a method for changing the load of the stressed component of the pitch bearing, the method including the following steps:
  • the inner ring and the stressed component are relatively rotated at a certain angle, so that the load of the stressed component changes.
  • the expression "the difference in rotational speed between the inner ring of the pitch bearing and the force-bearing component” refers to the rotation speed of the inner ring of the pitch bearing around the rotating shaft of the pitch bearing and the force-bearing part around the pitch bearing.
  • the rotation speed may include linear velocity and angular velocity, for example.
  • the speed difference between the force-bearing parts such as balls and cages and the inner ring is related to the rotation speed of the inner ring. Therefore, the force can be realized after the inner ring is rotated by a certain angle. The desired relative rotation angle between the part and the inner ring.
  • the terms “inner ring” and “outer ring” in the present invention are only used to distinguish and do not limit the inner and outer arrangement relationship of the two ring bodies; on the contrary, the inner ring refers to the rotatable connection with the blade The ring body, while the outer ring is a non-rotatable ring body fixed to the hub. Therefore, in some embodiments, the inner ring may be arranged outside the outer ring or inside the outer ring, but these scenarios fall into the scope of the present invention. range.
  • the force-receiving component includes at least one of the following items: the ball of the pitch bearing, and the cage of the pitch bearing.
  • Balls and cages are parts of the pitch bearing that are subject to greater force and are easily damaged. Therefore, if these parts are not always in the heavy load area, the life of the pitch bearing can be greatly improved.
  • the stressed components of the present invention are not limited to balls and cages, but can also cover other components between the inner ring and the outer ring of the pitch bearing in the case of other pitch bearing structures, and may also include The stressed sections of the outer ring.
  • determining the speed difference between the inner ring of the pitch bearing and the stressed component includes:
  • the relative rotation of the inner ring and the stressed component by a certain angle so that the load of the stressed component can be changed includes the following steps:
  • the inner ring and the force-receiving component with the greatest force are relatively rotated at a certain angle, so that the force-receiving component with the greatest force is no longer the force-receiving component with the greatest force.
  • the angle is 120° to 140°.
  • the inner ring and the force-receiving part are relatively rotated to a certain angle so that the load of the force-receiving part changes include:
  • the inner ring and the force-receiving component are relatively rotated at a certain angle, so that the force-receiving component is no longer in the heavy-duty area, wherein the heavy-duty area is the area subject to the maximum gravity of the blade.
  • the method is executed periodically.
  • the aforementioned task is solved by a system for changing the load of the stressed component of the pitch bearing, the system including:
  • the controller which is configured to perform the following actions:
  • the actuator is configured to relatively rotate the inner ring and the force-receiving component to a certain angle according to the control signal, so that the load of the force-receiving component changes.
  • the controller may be implemented by software, hardware, firmware or a combination thereof, for example, and the actuator may be implemented by a motor for rotating blades in the hub, that is, the inner ring can be rotated by rotating the blades.
  • the force-receiving component includes at least one of the following items: the ball of the pitch bearing, and the cage of the pitch bearing.
  • the present invention also relates to a wind power generator, which includes the system according to the present invention.
  • the present invention has at least the following beneficial effects: the inventors obtained the following unique insights through research: the life of the pitch bearing is mainly determined by its stressed components such as balls and cages, while the pitch range of the wind turbine blade is always 0° Up to 90°, this causes the pitch bearing to swing, so some balls and cages are always working in the heavy-duty area, which will reduce the life of the pitch bearing; the inventors also found that, such as balls and cages, etc.
  • the speed difference between the stressed part and the inner ring is related to the rotational speed of the inner ring. Therefore, after the inner ring is rotated to a certain angle, the desired relative rotation angle between the stressed part and the inner ring can be achieved.
  • the present invention utilizes the difference in rotational speed between the pitch bearing ball, cage assembly and the inner ring. After rotating the inner ring (blades) a certain angle, the ball and cage assembly can rotate at a certain angle relative to the inner ring (blades). For example, Implementing this scheme at regular intervals can realize that the stressed components such as balls and cages are evenly loaded during service, thereby effectively extending the service life of the pitch bearing.
  • Figure 1 shows a top view of the pitch bearing of a wind turbine
  • FIGS 2A to 2B show the principle of the solution according to the invention.
  • the quantifiers "one” and “one” do not exclude the scenario of multiple elements.
  • the number of the steps of each method of the present invention does not limit the execution order of the method steps. Unless otherwise specified, the method steps can be performed in a different order.
  • the controller can be implemented by software, hardware or firmware or a combination thereof.
  • the controller can exist alone or part of a component.
  • Fig. 1 shows a top view of a pitch bearing 100 of a wind generator.
  • the pitch bearing 100 includes an inner ring 101 and an outer ring 102.
  • the blades (not shown) are connected to the inner ring 101 of the pitch bearing by bolts, and the inner ring 101 and the outer ring 102 of the pitch bearing are connected by the four-point contact of the balls 103 and transfer the load.
  • the terms “inner ring” and “outer ring” are only used to distinguish and do not limit the inner and outer arrangements of the two rings; on the contrary, the inner ring refers to the rotatable ring connected to the blade, while the outer ring The ring is a non-rotatable ring body fixed to the hub.
  • the inner ring may be arranged outside the outer ring or inside the outer ring, but these scenarios fall within the scope of the present invention.
  • the inner ring 101 since the inner ring 101 is connected to the blades, it can be rotated to adjust the pitch of the blades, that is, the angle between the fan blades and the blade rotation plane.
  • the pitch bearing due to the large gravity of the blade and the pitch bearing is not in the horizontal direction (generally in a different plane with the rotation of the hub), some parts of the pitch bearing (such as the ball and the ball used to hold the ball)
  • the cage may be in an area with a higher load, while another component is in an area with a lower load.
  • FIGS 2A to 2B show the principle of the solution according to the invention.
  • the inventors obtained the following unique insights through research: the life of the pitch bearing is mainly determined by its stressed components such as the ball 103 and the cage 104, and the pitch range of the wind turbine blade is always 0° At 90°, this causes the pitch bearing to swing, so some of the balls 103 and the cage always work in the heavy-duty area, which will reduce the life of the pitch bearing; the inventors also found that, such as the ball 103 and The speed difference between the force-receiving component such as the cage 104 and the inner ring 101 is related to the rotation speed of the inner ring 101 (see the description below for details). Therefore, after the inner ring 101 is rotated to a certain angle, the speed difference can be realized.
  • the desired relative rotation angle between the force member ball 103 and the cage 104 and the inner ring 101 uses the difference in the rotational speed between the ball 103 of the pitch bearing, the cage 104 and the inner ring 101 to rotate the inner ring
  • the combination of the ball 103 and the cage 104 can be rotated at a certain angle relative to the inner ring (blade), thereby changing the force distribution of each force-bearing component.
  • this solution by implementing this solution at regular intervals, it is possible to realize that the stressed components such as the balls 103 and the cage 104 are evenly loaded during service, thereby effectively extending the service life of the pitch bearing.
  • the speed difference between the balls 103 and the cage 104 and the inner ring 101 has the following relationship with the rotation speed of the inner ring 101:
  • n m is the rotation speed of the combination of the cage 104 and the ball 104
  • n ii is the rotation speed of the inner ring 101 or the blade
  • D is the diameter of the ball 103
  • is the contact angle
  • d m is the diameter of the rolling element distribution circle.
  • the inner ring (blade) of the pitch bearing rotates 9 full revolutions, the ball and cage combination turns to 4.43 revolutions, and the ball and cage rotate 154° relative to the inner ring (blade).
  • the time of the ball and the cage in the heavy load area is shortened by 9 times, which can greatly extend the service life of the pitch bearing.

Abstract

一种用于改变变桨轴承的受力部件的负载的方法,包括下列步骤:确定变桨轴承的内圈(101)与受力部件(103、104)之间的转速差,其中内圈(101)用于与叶片连接;以及使内圈(101)与受力部件(103、104)相对转动一定角度,使得受力部件(103、104)的负载改变,降低变桨轴承的同一受力部件(103、104)始终处于重载区域的概率,提高变桨轴承的寿命。还涉及一种用于改变变桨轴承的受力部件的负载的系统。

Description

一种用于改变变桨轴承的受力部件的负载的方法 技术领域
本发明总得来说涉及风力发电领域,具体而言,涉及一种用于改变变桨轴承的受力部件的负载的方法。此外,本发明还涉及一种用于改变变桨轴承的受力部件的负载的系统。
背景技术
近年来,随着各国对环境的重视度提高,清洁能源领域呈现出快速发展的趋势。清洁能源作为一种新型能源,与传统化石燃料相比具有分布广泛、可再生、环境污染小等优点。作为清洁能源的代表,风力发电机的应用日益增长。
风力发电机(或简称风机)的一种重要部件是变桨轴承,其作用是调节风机叶片与叶片旋转平面之间的夹角,以便由此调整叶片迎风角度,进而提高风机功率。一般而言,变桨轴承的更换需要拆卸叶片并且更换完成后再吊装叶片,而风机叶片动辄长达几十米、如30米、重达几百千克,因此如果要更换变桨轴承,其成本是较高的且存在一定危险性。因此,如何提高变桨轴承的寿命是业内关注的一个问题。
发明内容
本发明的任务是,提供一种用于改变变桨轴承的受力部件的负载的方法以及一种相应的系统,通过该方法和/或该系统,可以极大地降低变桨轴承的同一受力部件始终处于重载区域的概率,由此极大地提高变桨轴承的寿命。
在本发明的第一方面,该任务通过一种用于改变变桨轴承的受力部件的负载的方法来解决,该方法包括下列步骤:
确定变桨轴承的内圈与受力部件之间的转速差,其中内圈用于与叶片连接;以及
使内圈与受力部件相对转动一定角度,使得受力部件的负载改变。
在此应当指出,措辞“变桨轴承的内圈与受力部件之间的转速差”是指,变桨轴承的内圈绕变桨轴承的旋转轴的转速与受力部件绕变桨轴 承的旋转轴的转速之差。所述转速例如可以包括线速度和角速度。另外,本发明人发现,诸如滚珠和保持架之类的受力部件与内圈之间的速度差与内圈的转速是相关的,因此在使内圈转动一定角度以后,即可实现受力部件与内圈之间的所期望的相对转动角度。另外,应当指出,本发明中的术语“内圈”和“外圈”仅仅是用于区分而未限定两个圈体的内外布置关系;相反,其中内圈是指与叶片连接的可转动的圈体,而外圈则是固定到轮毂的不可转动的圈体,因此在一些实施例中,内圈可能布置在外圈之外也可能布置在外圈之内,但是这些场景都落入本发明的范围。
在本发明的一个优选方案中规定,所述受力部件包括下列各项至少之一:变桨轴承的滚珠、以及变桨轴承的保持架。滚珠和保持架是变桨轴承的受力较大且容易损坏的部件,因此如果使这些部件不始终处于重载区域,则可以极大地提高变桨轴承的寿命。应当指出,本发明的受力部件并不局限于滚珠和保持架,而是在其它变桨轴承结构的情况下还可以涵盖变桨轴承的内圈与外圈之间的其它部件以及也可以包括外圈的各受力区段。
在本发明的一个扩展方案中规定,确定变桨轴承的内圈与受力部件之间的转速差包括:
根据变桨轴承的规格参数计算滚珠和/或保持架与内圈的叶片之间的转速差。通过该扩展方案可以简单地确定转速差。其它的转速差确定方式也是可设想的,例如:通过速度传感器进行转速测量;通过压力传感器进行压力测量,由此确定受力部件的角位置;通过接近传感器确定受力部件的位置,由此确定转速差,等等。
在本发明的另一扩展方案中规定,使内圈与受力部件相对转动一定角度,使得受力部件的负载改变包括下列步骤:
确定当前受力最大的受力部件;以及
使内圈与所述受力最大的受力部件相对转动一定角度,使得所述受力最大的受力部件不再为受力最大的受力部件。
在本发明的一个优选方案中规定,所述角度为120°至140°。通过该优选方案,可以以较小的转动角度,将受力部件有效地移出重载区域。
在本发明的一个扩展方案中规定,使内圈与受力部件相对转动一定角度,使得受力部件的负载改变包括:
使内圈与受力部件相对转动一定角度,使得该受力部件不再处于重载区域,其中所述重载区域是受到叶片的最大重力的区域。
在本发明的另一扩展方案中规定,所述方法定期执行。
在本发明的第二方面,前述任务通过一种用于改变变桨轴承的受力部件的负载的系统来解决,该系统包括:
控制器,其被配置为执行下列动作:
确定变桨轴承的内圈与受力部件之间的转速差,其中内圈用于与叶片连接;以及
根据所述转速差生成控制信号;
执行器,其被配置为根据所述控制信号使内圈与受力部件相对转动一定角度,使得受力部件的负载改变。
控制器例如可以用软件、硬件、固件或其组合来实现,而执行器例如可以利用轮毂中的用于转动叶片的马达来实现,也就是说,可以通过转动叶片来转动内圈。
在本发明的一个优选方案中规定,所述受力部件包括下列各项至少之一:变桨轴承的滚珠、以及变桨轴承的保持架。
此外,本发明还还涉及一种风力发电机,其包括根据本发明的系统。
本发明至少具有如下有益效果:本发明人通过研究获得如下独特洞察:变桨轴承的寿命主要由其诸如滚珠和保持架之类的受力部件决定,而风机叶片的变桨范围始终是0°到90°,这导致变桨轴承工作方式为摆动,因此有部分滚珠、保持架始终处于重载区域工作,这会降低变桨轴承的寿命;本发明人同时发现,诸如滚珠和保持架之类的受力部件与内圈之间的速度差与内圈的转速是相关的,因此在使内圈转动一定角度以后,即可实现受力部件与内圈之间的所期望的相对转动角度,由此本发明利用变桨轴承滚珠、保持架组合与内圈的转速差,在转动内圈(叶片)若干角度后,可实现滚珠、保持架组合相对内圈(叶片)转动一定角度,通过例如每隔一段时间实施该方案,可实现了诸如滚珠、保持架之类的受力部件在服役期间均匀受载,由此有效延长变桨轴承的使用寿命。
附图说明
下面结合具体实施方式参考附图进一步阐述本发明。
图1示出了风力发电机的变桨轴承的俯视图;以及
图2A至2B示出了根据本发明的方案的原理。
具体实施方式
应当指出,各附图中的各组件可能为了图解说明而被夸大地示出,而不一定是比例正确的。在各附图中,给相同或功能相同的组件配备了相同的附图标记。
在本发明中,除非特别指出,“布置在…上”、“布置在…上方”以及“布置在…之上”并未排除二者之间存在中间物的情况。此外,“布置在…上或上方”仅仅表示两个部件之间的相对位置关系,而在一定情况下、如在颠倒产品方向后,也可以转换为“布置在…下或下方”,反之亦然。
在本发明中,各实施例仅仅旨在说明本发明的方案,而不应被理解为限制性的。
在本发明中,除非特别指出,量词“一个”、“一”并未排除多个元素的场景。
在此还应当指出,在本发明的实施例中,为清楚、简单起见,可能示出了仅仅一部分部件或组件,但是本领域的普通技术人员能够理解,在本发明的教导下,可根据具体场景需要添加所需的部件或组件。
在此还应当指出,在本发明的范围内,“相同”、“相等”、“等于”等措辞并不意味着二者数值绝对相等,而是允许一定的合理误差,也就是说,所述措辞也涵盖了“基本上相同”、“基本上相等”、“基本上等于”。以此类推,在本发明中,表方向的术语“垂直于”、“平行于”等等同样涵盖了“基本上垂直于”、“基本上平行于”的含义。
另外,本发明的各方法的步骤的编号并未限定所述方法步骤的执行顺序。除非特别指出,各方法步骤可以以不同顺序执行。
在本发明中,控制器可以用软件、硬件或固件或其组合来实现。控制器既可以单独存在,也可以是某个部件的一部分。
下面结合具体实施方式参考附图进一步阐述本发明。
图1示出了风力发电机的变桨轴承100的俯视图。
如图1所示,变桨轴承100包括内圈101和外圈102。叶片(未示出)通过螺栓与变桨轴承的内圈101连接,变桨轴承的内圈101与外圈 102通过滚珠103的四点接触连接并传递载荷。在此应当指出,术语“内圈”和“外圈”仅仅是用于区分而未限定两个圈体的内外布置关系;相反,内圈是指与叶片连接的可转动的圈体,而外圈则是固定到轮毂的不可转动的圈体,因此在一些实施例中,内圈可能布置在外圈之外也可能布置在外圈之内,但是这些场景都落入本发明的范围。在此,内圈101由于与叶片连接,因此可以转动以用于调节叶片的桨角、即风机叶片与叶片旋转平面之间的夹角。从图1可以看出,由于叶片存在较大重力且变桨轴承未处于水平方向(一般随着轮毂的转动而处于不同平面),因此变桨轴承的一些部件(如滚珠和用于保持滚珠的保持架)可能处于载荷较大的区域,而另一部件则处于载荷较小的区域。
图2A至2B示出了根据本发明的方案的原理。
如图2A所示,本发明人通过研究获得如下独特洞察:变桨轴承的寿命主要由其诸如滚珠103和保持架104之类的受力部件决定,而风机叶片的变桨范围始终是0°到90°,这导致变桨轴承工作方式为摆动,因此有部分滚珠103、保持架始104终处于重载区域工作,这会降低变桨轴承的寿命;本发明人同时发现,诸如滚珠103和保持架104之类的受力部件与内圈101之间的速度差与内圈101的转速是相关的(具体见下面的描述),因此在使内圈101转动一定角度以后,即可实现受力部件滚珠103和保持架104与内圈101之间的所期望的相对转动角度,由此本发明利用变桨轴承的滚珠103、保持架104组合与内圈101的转速差,在转动内圈101(或叶片)若干角度后,可实现滚珠103、保持架104组合相对内圈(叶片)转动一定角度,由此改变各受力部件的受力分布。通过例如每隔一段时间实施该方案,可实现了诸如滚珠103、保持架104之类的受力部件在服役期间均匀受载,由此有效延长变桨轴承的使用寿命。
参见图2B,滚珠103和保持架104与内圈101之间的速度差与内圈101的转速具有如下关系:
Figure PCTCN2020116666-appb-000001
Figure PCTCN2020116666-appb-000002
其中n m为保持架104与滚珠104的组合的转速,n ii为内圈101或叶片转速,D为滚珠103的直径,α为接触角,d m为滚动体分布圆直径。
经研究发现,每隔一段时间,将保持架104、滚珠103的组合相对内圈101或叶片每次转动140-160度,可以有效地避免相同几个滚珠始终处于重载区域。
以变桨轴承55.2430为例,滚珠直径为55mm,滚道分布圆直径为2430,γ=0.016,n m与n i速比为0.4920。当变桨轴承的内圈(叶片)转动9整圈时,滚珠与保持架组合转到4.43圈,滚珠与保持架相对内圈(叶片)转动154°。以每两年实施一次为例,在20年运行中。滚珠与保持架同一部位在重载区域的时间缩短了9倍,能极大延长变桨轴承的使用寿命。
虽然本发明的一些实施方式已经在本申请文件中予以了描述,但是本领域技术人员能够理解,这些实施方式仅仅是作为示例示出的。本领域技术人员在本发明的教导下可以想到众多的变型方案、替代方案和改进方案而不超出本发明的范围。所附权利要求书旨在限定本发明的范围,并藉此涵盖这些权利要求本身及其等同变换的范围内的方法和结构。

Claims (10)

  1. 一种用于改变变桨轴承的受力部件的负载的方法,包括下列步骤:
    确定变桨轴承的内圈与受力部件之间的转速差,其中内圈用于与叶片连接;以及
    使内圈与受力部件相对转动一定角度,使得受力部件的负载改变。
  2. 根据权利要求1所述的方法,其中所述受力部件包括下列各项至少之一:变桨轴承的滚珠、以及变桨轴承的保持架。
  3. 根据权利要求2所述的方法,其中确定变桨轴承的内圈与受力部件之间的转速差包括:
    根据变桨轴承的规格参数计算滚珠和/或保持架与内圈的叶片之间的转速差。
  4. 根据权利要求2所述的方法,其中使内圈与受力部件相对转动一定角度,使得受力部件的负载改变包括下列步骤:
    确定当前受力最大的受力部件;以及
    使内圈与所述受力最大的受力部件相对转动一定角度,使得所述受力最大的受力部件不再为受力最大的受力部件。
  5. 根据权利要求4所述的方法,其中所述角度为120°至140°。
  6. 根据权利要求1所述的方法,其中使内圈与受力部件相对转动一定角度,使得受力部件的负载改变包括:
    使内圈与受力部件相对转动一定角度,使得该受力部件不再处于重载区域,其中所述重载区域是受到叶片的最大重力的区域。
  7. 根据权利要求1所述的方法,其中所述方法定期执行。
  8. 一种用于改变变桨轴承的受力部件的负载的系统,包括:
    控制器,其被配置为执行下列动作:
    确定变桨轴承的内圈与受力部件之间的转速差,其中内圈用于与叶片连接;以及
    根据所述转速差生成控制信号;
    执行器,其被配置为根据所述控制信号使内圈与受力部件相对转动一定角度,使得受力部件的负载改变。
  9. 根据权利要求8所述的系统,其中所述受力部件包括下列各项至少之一:变桨轴承的滚珠、以及变桨轴承的保持架。
  10. 一种风力发电机,包括根据权利要求8至9之一所述的系统。
PCT/CN2020/116666 2019-10-17 2020-09-22 一种用于改变变桨轴承的受力部件的负载的方法 WO2021073369A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
DE112020005029.7T DE112020005029T5 (de) 2019-10-17 2020-09-22 Verfahren zum Ändern von einer Last einer belasteten Komponente eines Pitchlagers
DKPA202170400A DK202170400A1 (en) 2019-10-17 2021-08-09 A method for changing load of force-receiving component of pitch bearing

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910988172.7A CN110821751B (zh) 2019-10-17 2019-10-17 一种用于改变变桨轴承的受力部件的负载的方法
CN201910988172.7 2019-10-17

Publications (1)

Publication Number Publication Date
WO2021073369A1 true WO2021073369A1 (zh) 2021-04-22

Family

ID=69549599

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/116666 WO2021073369A1 (zh) 2019-10-17 2020-09-22 一种用于改变变桨轴承的受力部件的负载的方法

Country Status (4)

Country Link
CN (2) CN110821751B (zh)
DE (1) DE112020005029T5 (zh)
DK (1) DK202170400A1 (zh)
WO (1) WO2021073369A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110821751B (zh) * 2019-10-17 2021-03-26 射阳远景能源科技有限公司 一种用于改变变桨轴承的受力部件的负载的方法

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102132055A (zh) * 2008-08-20 2011-07-20 Imo控股有限责任公司 滚动轴承装置和以此装备的风力发电设备
CN204099407U (zh) * 2014-08-06 2015-01-14 中国航空动力机械研究所 滚动轴承及具有该滚动轴承的测量装置
CN204175798U (zh) * 2014-10-21 2015-02-25 温州人本汽车轴承股份有限公司 重载半回转场合用轴承的保持架及应用该保持架的轴承
WO2015110138A1 (en) * 2014-01-21 2015-07-30 Aktiebolaget Skf Pitch bearing construction comprising spherical plain bearings
CN108603491A (zh) * 2016-02-12 2018-09-28 维斯塔斯风力系统集团公司 涉及控制轴承磨损的改进
CN109281930A (zh) * 2018-11-12 2019-01-29 安徽华旦机械制造有限公司 一种可承受非均衡载荷的双列圆锥滚子轴承
CN109469593A (zh) * 2017-09-07 2019-03-15 西门子歌美飒可再生能源公司 风力涡轮机
CN109753723A (zh) * 2019-01-02 2019-05-14 太原理工大学 一种向心滚动轴承疲劳寿命计算方法
CN209212779U (zh) * 2018-11-09 2019-08-06 瓦房店鑫阳光轴承制造有限公司 一种超重负荷圆锥轴承
CN110821751A (zh) * 2019-10-17 2020-02-21 射阳远景能源科技有限公司 一种用于改变变桨轴承的受力部件的负载的方法

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0276928A (ja) * 1988-09-09 1990-03-16 Shoji Nakagawa 浮動ブツシを挿入した転がり軸受
CN2886183Y (zh) * 2006-02-13 2007-04-04 襄阳汽车轴承股份有限公司 一种汽车车桥主动锥齿轮支承轴承
JP5320547B2 (ja) * 2007-05-15 2013-10-23 株式会社 空スペース 転がり装置
CN101696673A (zh) * 2009-10-26 2010-04-21 胡国贤 同轴向双风叶风能发电机
EP2511521B2 (en) * 2011-04-14 2021-06-16 Siemens Gamesa Renewable Energy A/S Pitch bearing
CN102767565B (zh) * 2012-07-24 2015-01-14 清华大学 一种滚动滑动一体式辅助轴承
CN102900608A (zh) * 2012-10-25 2013-01-30 国电联合动力技术有限公司 多点啮合式变桨驱动装置以及应用该装置的风力发电机组
JP6136390B2 (ja) * 2013-03-12 2017-05-31 株式会社ジェイテクト 風力発電装置用の一方向クラッチ及び一方向クラッチユニット
DE102016208051A1 (de) * 2016-05-10 2017-11-16 Wobben Properties Gmbh Windenergieanlagen-Rotorblatt, und Windenergieanlage mit selbigem
CN107843426B (zh) * 2016-09-19 2021-08-06 舍弗勒技术股份两合公司 轴承剩余寿命的监测方法及监测装置
CN107313897A (zh) * 2017-05-31 2017-11-03 何宗源 一种风力发电用变桨机构
CN107784174A (zh) * 2017-10-26 2018-03-09 河南科技大学 一种丝杠支承轴承磨损寿命计算方法
CN108266459B (zh) * 2017-12-08 2019-06-18 西安电子科技大学 基于轴承磨配间隙的机床主轴径向跳动计算方法
CN207740341U (zh) * 2018-01-24 2018-08-17 株洲欧格瑞传动股份有限公司 一种适用于高速旋转的密封连接轴
CN108801638B (zh) * 2018-06-19 2020-01-31 武汉理工大学 一种滚动轴承剥落尺寸的估计方法
CN109323862A (zh) * 2018-11-12 2019-02-12 上海轻良实业有限公司 造纸机轴承状态监测机构及其状态监测方法

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102132055A (zh) * 2008-08-20 2011-07-20 Imo控股有限责任公司 滚动轴承装置和以此装备的风力发电设备
WO2015110138A1 (en) * 2014-01-21 2015-07-30 Aktiebolaget Skf Pitch bearing construction comprising spherical plain bearings
CN204099407U (zh) * 2014-08-06 2015-01-14 中国航空动力机械研究所 滚动轴承及具有该滚动轴承的测量装置
CN204175798U (zh) * 2014-10-21 2015-02-25 温州人本汽车轴承股份有限公司 重载半回转场合用轴承的保持架及应用该保持架的轴承
CN108603491A (zh) * 2016-02-12 2018-09-28 维斯塔斯风力系统集团公司 涉及控制轴承磨损的改进
CN109469593A (zh) * 2017-09-07 2019-03-15 西门子歌美飒可再生能源公司 风力涡轮机
CN209212779U (zh) * 2018-11-09 2019-08-06 瓦房店鑫阳光轴承制造有限公司 一种超重负荷圆锥轴承
CN109281930A (zh) * 2018-11-12 2019-01-29 安徽华旦机械制造有限公司 一种可承受非均衡载荷的双列圆锥滚子轴承
CN109753723A (zh) * 2019-01-02 2019-05-14 太原理工大学 一种向心滚动轴承疲劳寿命计算方法
CN110821751A (zh) * 2019-10-17 2020-02-21 射阳远景能源科技有限公司 一种用于改变变桨轴承的受力部件的负载的方法

Also Published As

Publication number Publication date
CN110821751B (zh) 2021-03-26
DK202170400A1 (en) 2021-09-09
DE112020005029T5 (de) 2022-09-15
CN112780489A (zh) 2021-05-11
CN112780489B (zh) 2021-11-23
CN110821751A (zh) 2020-02-21

Similar Documents

Publication Publication Date Title
US8021101B2 (en) Wind turbine and method of assembling the same
US7939961B1 (en) Wind turbine with integrated design and controlling method
JP5412516B2 (ja) 風力発電装置
CN102562454B (zh) 变桨齿轮
US8696315B2 (en) Hub for a wind turbine and method of mounting a wind turbine
US20110020136A1 (en) Blade pitch-angle control apparatus and wind turbine generator
TWI525250B (zh) 垂直軸型風車用軸承及垂直軸型風力發電裝置
WO2021073369A1 (zh) 一种用于改变变桨轴承的受力部件的负载的方法
JP5620941B2 (ja) 垂直軸型流体発電装置の回転軸装置及び垂直軸型流体発電装置
US20190257294A1 (en) Replacement Methods for Radial Seals of Wind Turbine Main Bearings
Chen et al. Contact stress and deformation of blade bearing in wind turbine
CA2892050C (en) Wind turbine rotor and methods of assembling the same
US11725633B2 (en) Pitch bearing for a wind turbine
US10781792B2 (en) System and method for controlling a pitch angle of a wind turbine rotor blade
US10677290B2 (en) Wind turbine pitch bearing with line contact rolling elements
US20130300124A1 (en) Profiled Air Cap on Direct Drive Wind Turbine Generator
CN201302171Y (zh) 一种可防止卡塞的高温高压锅炉引风机风门
US20150308501A1 (en) Spacer assembly for a bearing
CN201187527Y (zh) 高可靠性的兆瓦级风力发电用交叉滚柱转盘轴承
WO2022051878A1 (zh) 一种非对称结构的调心滚子轴承
EP2679815A1 (en) Rotating assembly for a wind turbine and wind turbine having such rotating assembly
CN113468691A (zh) 风力发电机组的传动轴系的设计方法
TWI527962B (zh) Wind power plant
CN210484409U (zh) 一种风电增速箱圆柱滚子轴承
JP2018179291A (ja) 旋回軸受およびその加工方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20876030

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 20876030

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 20876030

Country of ref document: EP

Kind code of ref document: A1