WO2021073025A1 - 空调控制方法、装置及计算机可读存储介质 - Google Patents

空调控制方法、装置及计算机可读存储介质 Download PDF

Info

Publication number
WO2021073025A1
WO2021073025A1 PCT/CN2020/077167 CN2020077167W WO2021073025A1 WO 2021073025 A1 WO2021073025 A1 WO 2021073025A1 CN 2020077167 W CN2020077167 W CN 2020077167W WO 2021073025 A1 WO2021073025 A1 WO 2021073025A1
Authority
WO
WIPO (PCT)
Prior art keywords
load
air conditioner
central air
time
started
Prior art date
Application number
PCT/CN2020/077167
Other languages
English (en)
French (fr)
Inventor
李元阳
Original Assignee
上海美控智慧建筑有限公司
广东美的暖通设备有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 上海美控智慧建筑有限公司, 广东美的暖通设备有限公司 filed Critical 上海美控智慧建筑有限公司
Priority to EP20876505.7A priority Critical patent/EP3992538A4/en
Publication of WO2021073025A1 publication Critical patent/WO2021073025A1/zh
Priority to US17/579,507 priority patent/US20220136725A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/50Control or safety arrangements characterised by user interfaces or communication
    • F24F11/61Control or safety arrangements characterised by user interfaces or communication using timers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/30Control or safety arrangements for purposes related to the operation of the system, e.g. for safety or monitoring
    • F24F11/46Improving electric energy efficiency or saving
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/30Control or safety arrangements for purposes related to the operation of the system, e.g. for safety or monitoring
    • F24F11/48Control or safety arrangements for purposes related to the operation of the system, e.g. for safety or monitoring prior to normal operation, e.g. pre-heating or pre-cooling
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/62Control or safety arrangements characterised by the type of control or by internal processing, e.g. using fuzzy logic, adaptive control or estimation of values
    • F24F11/63Electronic processing
    • F24F11/64Electronic processing using pre-stored data
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2110/00Control inputs relating to air properties
    • F24F2110/10Temperature
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2110/00Control inputs relating to air properties
    • F24F2110/10Temperature
    • F24F2110/12Temperature of the outside air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2140/00Control inputs relating to system states
    • F24F2140/20Heat-exchange fluid temperature
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2140/00Control inputs relating to system states
    • F24F2140/50Load

Definitions

  • This application relates to the field of air conditioning technology, and in particular to an air conditioning control method, device, and computer-readable storage medium.
  • the pre-cooling or pre-heating period refers to the time from which the central air conditioner is turned on in advance to satisfy that the system can enter the normal operating state and provide a comfortable indoor environment when it arrives at work.
  • the engineering experience value of the preparation time of the air-conditioning system is half an hour or one hour, but for the actual air-conditioning system, this time is not fixed. It depends on the cold conditions of the previous day, the outdoor weather and indoor heat sources of yesterday and today. Change and change, and sometimes it does not take such a long time to reach the set temperature, but there is still a long time before the actual shift time. Therefore, the central air conditioner needs to continue to operate in order to maintain the indoor temperature, which wastes energy, and even causes the indoor temperature to exceed the comfort level required by the set temperature. Conversely, if the central air-conditioning preparation time is too late, although the energy consumption is reduced, the indoor temperature and humidity do not meet the design requirements, which will lead to complaints about property management after work due to unsatisfactory comfort.
  • the main purpose of this application is to provide an air-conditioning control method, device, and computer-readable storage medium, aiming to solve the technical problem of inaccurate pre-cooling or pre-heating of existing central air conditioners.
  • the present application provides an air conditioning control method, which is applied to a central air conditioner, and the air conditioning control method includes the following steps:
  • time interval is less than or equal to the maximum early start-up time, obtaining the preliminary demand load corresponding to the central air conditioner, and obtaining the combined start-up load corresponding to the central air conditioner;
  • the start time of the host to be started is determined.
  • the step of obtaining the preliminary demand load corresponding to the central air conditioner includes:
  • the preliminary demand load is determined based on the indoor set temperature, the outdoor wet bulb temperature, the indoor temperature, and the return water temperature corresponding to the central air conditioner.
  • the step of obtaining the combined start-up load corresponding to the central air conditioner includes:
  • the step of determining a combined power-on load based on the host to be started includes:
  • a combined start-up load is determined.
  • the step of determining the start time of the host to be started based on the combined start-up load and the preliminary demand load includes:
  • the startup time of the host to be started is determined based on the startup running time.
  • the air conditioning control method further includes:
  • the operating state of the outdoor unit of the central air conditioner is adjusted based on the predicted load.
  • the step of obtaining the current predicted load of the central air conditioner includes:
  • the predicted load is determined based on the terminal start-up ratio and the preset total load corresponding to the central air conditioner.
  • the air conditioning control method further includes:
  • the present application also provides an air conditioning control device applied to a central air conditioner.
  • the air conditioning control device includes: a memory, a processor, and a memory that is stored in the memory and can run on the processor.
  • An air-conditioning control program which implements the steps of the aforementioned air-conditioning control method when the air-conditioning control program is executed by the processor.
  • the present application also provides a computer-readable storage medium with an air-conditioning control program stored on the computer-readable storage medium, and when the air-conditioning control program is executed by a processor, the aforementioned air-conditioning control method is implemented. step.
  • This application determines whether the time interval between the current time and the preset work time is less than or equal to the maximum early start time; then if the time interval is less than or equal to the maximum early start time, obtain the corresponding pre-demand load of the central air conditioner, and Acquire the start-up combined load corresponding to the central air conditioner; and then determine the start-up time of the host to be started based on the start-up combined load and the preliminary demand load.
  • the start time of the host in the central air-conditioning system can be determined according to the preliminary demand load, which is convenient Subsequently, the central air conditioner is started in advance according to the starting time, thereby reducing energy consumption while ensuring the comfort of the corresponding room at the time of work, and improving the accuracy of the central air conditioner's pre-cooling or pre-heating.
  • FIG. 1 is a schematic structural diagram of an air conditioning control device in a hardware operating environment involved in a solution of an embodiment of the present application
  • Fig. 2 is a schematic flowchart of a first embodiment of an air conditioning control method according to this application.
  • Fig. 1 is a schematic structural diagram of an air conditioning control device for a hardware operating environment involved in a solution of an embodiment of the present application.
  • the air conditioning control device may include: a processor 1001, such as a CPU, a network interface 1004, a user interface 1003, a memory 1005, and a communication bus 1002.
  • the communication bus 1002 is used to implement connection and communication between these components.
  • the user interface 1003 may include a display screen (Display) and an input unit such as a keyboard (Keyboard), and the optional user interface 1003 may also include a standard wired interface and a wireless interface.
  • the network interface 1004 may include a standard wired interface and a wireless interface (such as a WI-FI interface).
  • the memory 1005 may be a high-speed RAM memory, or a non-volatile memory (non-volatile memory), such as a magnetic disk memory.
  • the memory 1005 may also be a storage device independent of the aforementioned processor 1001.
  • the air conditioning control device may further include a camera, an RF (Radio Frequency) circuit, a sensor, an audio circuit, a WiFi module, and so on.
  • RF Radio Frequency
  • FIG. 1 does not constitute a limitation on the air-conditioning control device, and may include more or fewer components than those shown in the figure, or a combination of certain components, or different components Layout.
  • the memory 1005 which is a computer storage medium, may include an operating system, a network communication module, a user interface module, and an air conditioning control program.
  • the network interface 1004 is mainly used to connect to a back-end server and communicate with the back-end server;
  • the user interface 1003 is mainly used to connect to a client (user side) and communicate with the client;
  • the processor 1001 may be used to call the air conditioning control program stored in the memory 1005.
  • the air-conditioning control device includes: a memory 1005, a processor 1001, and an air-conditioning control program stored on the memory 1005 and running on the processor 1001, wherein the processor 1001 calls the memory 1005 to store Of the air-conditioning control program, and perform the following operations:
  • time interval is less than or equal to the maximum early start-up time, obtaining the preliminary demand load corresponding to the central air conditioner, and obtaining the combined start-up load corresponding to the central air conditioner;
  • the start time of the host to be started is determined.
  • the processor 1001 may call the air conditioning control program stored in the memory 1005, and also perform the following operations:
  • the preliminary demand load is determined based on the indoor set temperature, the outdoor wet bulb temperature, the indoor temperature, and the return water temperature corresponding to the central air conditioner.
  • the processor 1001 may call the air conditioning control program stored in the memory 1005, and also perform the following operations:
  • the processor 1001 may call the air conditioning control program stored in the memory 1005, and also perform the following operations:
  • a combined start-up load is determined.
  • the processor 1001 may call the air conditioning control program stored in the memory 1005, and also perform the following operations:
  • the startup time of the host to be started is determined based on the startup running time.
  • the processor 1001 may call the air conditioning control program stored in the memory 1005, and also perform the following operations:
  • the operating state of the outdoor unit of the central air conditioner is adjusted based on the predicted load.
  • the processor 1001 may call the air conditioning control program stored in the memory 1005, and also perform the following operations:
  • the predicted load is determined based on the terminal start-up ratio and the preset total load corresponding to the central air conditioner.
  • the processor 1001 may call the air conditioning control program stored in the memory 1005, and also perform the following operations:
  • the present application also provides an air-conditioning control method.
  • FIG. 2 is a schematic flowchart of a first embodiment of the air-conditioning control method in this application.
  • the central air conditioner may be in office buildings, office buildings, commercial complexes and other scenarios.
  • the central air conditioner is equipped with multiple hosts (outside machines).
  • the air-conditioning control method is applied to central air-conditioning, and the air-conditioning control method includes the following steps:
  • step S100 it is determined whether the time interval between the current time and the preset work time is less than or equal to the maximum early start time
  • the time interval between the current time and the preset working time is calculated in real time, and it is determined whether the time interval is less than or equal to the maximum early start time.
  • the maximum early start time can be set reasonably.
  • Step S200 if the time interval is less than or equal to the maximum early start-up time, obtain the preliminary demand load corresponding to the central air conditioner, and obtain the combined start-up load corresponding to the central air conditioner;
  • the time interval is less than or equal to the maximum early start-up time period, the preliminary demand load corresponding to the central air conditioner is obtained, and the combined start-up load corresponding to the central air conditioner is obtained.
  • the preparatory demand load is determined according to the internal machine of the office scene corresponding to the working hour, that is, the demand load corresponding to the internal machine that needs to be started at the working time, and the startup combined load is determined according to the preparatory demand load.
  • Step S300 Determine the start time of the host to be started based on the combined start-up load and the preliminary demand load.
  • the host to be started is determined according to the combined start-up load and the preliminary demand load, and the start time of the host to be started is determined according to the combined start-up load.
  • the air conditioning control method further includes: when the current time reaches the start time, starting the host to be started and the indoor unit corresponding to the preset work time.
  • the to-be-started host of the central air conditioner and the indoor unit corresponding to the preset working time are activated in advance according to the starting time, so as to realize the pre-cooling or pre-heating of the room corresponding to the preset working time, thereby reducing energy consumption while reducing energy consumption. , To ensure the comfort of the corresponding room at work, and improve the accuracy of the central air-conditioning pre-cooling or pre-heating.
  • the air conditioning control method proposed in this embodiment determines whether the time interval between the current time and the preset work time is less than or equal to the maximum early start time; then if the time interval is less than or equal to the maximum early start time, the central air conditioner is acquired The corresponding preliminary demand load, and the start-up combined load corresponding to the central air conditioner is obtained; then based on the start-up combined load and the preliminary demand load, the startup time of the host to be started is determined, and the central air-conditioning can be determined according to the preliminary demand load
  • the start time of the middle main engine facilitates the subsequent start of the central air conditioner in advance according to the start time, thereby reducing energy consumption while ensuring the comfort of the corresponding room at the time of work, and improving the accuracy of the central air conditioner's pre-cooling or pre-heating.
  • step S200 includes:
  • Step S210 acquiring outdoor wet bulb temperature, indoor temperature, and return water temperature corresponding to the central air conditioner
  • Step S220 Determine the preliminary demand load based on the indoor set temperature, the outdoor wet bulb temperature, the indoor temperature, and the return water temperature corresponding to the central air conditioner.
  • the outdoor wet bulb temperature, indoor temperature, and return water temperature corresponding to the central air conditioner are acquired, where the outdoor wet bulb temperature corresponds to the current central air conditioner
  • the indoor temperature can be the indoor temperature of the environment where the central air conditioner is located.
  • the indoor temperature is the average value of the temperature in the room corresponding to the preset working time.
  • the preliminary demand load is determined.
  • the central air conditioner stores outdoor wet bulb temperature, indoor temperature, and return water temperature.
  • the mapping relationship between the water temperature and the demand load, and the preliminary demand load is determined according to the mapping relationship.
  • the central air conditioner can record its historical operating data in the historical big data.
  • the historical operating data includes the corresponding indoor set temperature, the outdoor wet bulb temperature, the indoor temperature and the return water temperature corresponding to the historical requirements of the central air conditioner
  • For load for example, current operating load
  • the mapping relationship between outdoor wet bulb temperature, indoor temperature, return water temperature, and demand load is determined based on the historical big data.
  • the indoor set temperature includes multiple set temperature values
  • the outdoor wet bulb temperature includes multiple wet bulb temperature values
  • the indoor temperature includes multiple indoor temperature values
  • the return water temperature includes multiple return water temperature values.
  • the same set temperature value, the same wet bulb temperature value, the same indoor temperature value, and the same return water temperature value corresponding to the average demand load of the historical demand load in the big data are regarded as the same set temperature value, the same The demand load corresponding to the wet bulb temperature value, the same indoor temperature value and the same return water temperature value is obtained, and then the mapping relationship between the outdoor wet bulb temperature, the indoor temperature, the return water temperature and the demand load is obtained.
  • the number of indoor units in operation corresponding to the load is not exactly the same, then the same number of indoor units, the same set temperature value, the same wet bulb temperature value, the same indoor temperature value and the same return water temperature in the big data
  • the average demand load of the historical demand load corresponding to the value as the demand load corresponding to the same number of indoor units, the same set temperature value, the same wet bulb temperature value, the same indoor temperature value, and the same return water temperature value, And then get the mapping relationship of the number of indoor units, outdoor wet bulb temperature, indoor temperature, return water temperature and demand load.
  • the air conditioning control method proposed in this embodiment obtains the outdoor wet bulb temperature, indoor temperature, and return water temperature corresponding to the central air conditioner; and then based on the indoor set temperature corresponding to the central air conditioner, the outdoor wet bulb temperature, and the indoor temperature.
  • the temperature and the return water temperature are used to determine the preliminary demand load, and the preliminary demand load can be accurately obtained according to the outdoor wet bulb temperature, indoor temperature and return water temperature, which improves the accuracy of the preliminary demand load, and further improves the determination of the starting time according to the preliminary demand load. accuracy.
  • step S200 includes:
  • Step S230 Determine the host to be started corresponding to the central air conditioner based on the preliminary demand load
  • Step S240 Determine a combined start-up load based on the host to be started.
  • the host to be started corresponding to the central air conditioner is determined according to the preliminary demand load, where the host to be started is a host combination with suitable cooling capacity and the highest energy efficiency that meets the starting demand on that day. Then determine the combined start-up load according to the host to be started.
  • step S240 includes:
  • Step a Obtain the outlet water temperature corresponding to the host to be started
  • Step b Determine a combined start-up load based on the operating parameters of the host to be started, the outlet water temperature, and the outdoor wet bulb temperature.
  • the central air conditioner stores the operating parameters of the host to be started, the outlet water temperature, the outdoor wet bulb temperature, and the mapping relationship of the combined start-up load, and the combined start-up load is determined according to the mapping relationship.
  • the central air conditioner can record its historical operating data in the historical big data.
  • the historical operating data includes the operating parameters of the host to be started, the outlet water temperature, the outdoor wet bulb temperature, and the mapping relationship of the combined load at startup.
  • the operating parameters of the host include the total power of the host to be started when it is started.
  • the operating parameters include multiple parameter ranges
  • the outdoor wet bulb temperature includes multiple wet bulb temperature values
  • the outlet water temperature includes multiple outlet water temperature values.
  • the same parameter range and the same wet bulb temperature value in the big data are combined.
  • the average combined load of the historical combined load corresponding to the same outlet water temperature value is used as the combined load corresponding to the same parameter range, the same wet bulb temperature value, and the same outlet water temperature value to obtain the operating parameters and outlet water temperature of the host to be started ,
  • the big data there are multiple historical combined loads corresponding to the same parameter range, the same wet bulb temperature value, and the same water outlet temperature value, and the indoor unit in the operating state corresponding to the multiple historical combined loads
  • the number is not exactly the same, the same number of indoor units, the same parameter range, the same wet bulb temperature value, and the same water outlet temperature value in the big data are regarded as the same parameter range and the same wet bulb temperature.
  • the combined load corresponding to the historical combined load corresponding to the same outlet temperature value and then obtain the mapping relationship between the number of indoor units, the same parameter range, the same wet bulb temperature value, the same outlet temperature value, and the demand load.
  • the air conditioning control method proposed in this embodiment determines the host to be started corresponding to the central air conditioner based on the preliminary demand load; then determines the combined start-up load based on the host to be started, so that the combined start-up load can be accurately obtained according to the preliminary demand load. Improve the accuracy of the combined load at start-up, thereby improving the accuracy of the start-up time.
  • step S300 includes:
  • Step S310 Calculate the start-up running time based on the combined start-up load and the preliminary demand load
  • Step S320 Determine the startup time of the host to be started based on the startup running time.
  • the air-conditioning control method proposed in this embodiment calculates the startup operating time based on the combined start-up load and the preliminary demand load; and then determines the startup time of the host to be started based on the startup operating time, and can accurately obtain the time to be started.
  • the start time of the main engine facilitates the subsequent start of the central air conditioner according to the start time, thereby reducing energy consumption while ensuring the comfort of the room corresponding to the time of work, and improving the accuracy of the central air conditioner's pre-cooling or pre-heating.
  • the air conditioning control method further includes:
  • Step S400 when a startup instruction or shutdown instruction corresponding to the internal unit in the central air conditioner is detected, obtain the current predicted load of the central air conditioner;
  • the central air conditioner it is monitored in real time whether there is an internal machine with a change in operating state, that is, an internal machine that receives a start-up instruction to start operation or an internal machine that receives a shutdown instruction to shut down. If it exists, it is determined that the central air conditioner is detected. The power-on instruction or the power-off instruction corresponding to the internal machine in the internal unit, at this time, obtain the current predicted load of the central air conditioner.
  • the predicted load is predicted based on the parameters of the internal machine currently powered on.
  • Step S500 determining whether the predicted load satisfies an outdoor machine change condition
  • Step S600 If the predicted load satisfies the outdoor unit change condition, adjust the operating state of the outdoor unit of the central air conditioner based on the predicted load.
  • the predicted load when the predicted load is obtained, it is determined whether the predicted load meets the outdoor machine change condition. Specifically, it can be determined whether the predicted load meets the outdoor machine change condition according to the load of the currently operating outdoor machine, or according to the current predicted load Determine whether the predicted load satisfies the external machine change condition and the current predicted load of the central air-conditioning prior to the detection of the startup command or the shutdown command.
  • the operating state of the central air-conditioning unit is adjusted based on the predicted load, and the outdoor unit is adjusted specifically according to the predicted load, so that the rated load of the outdoor unit matches the predicted load, thereby satisfying comfort Under the premise of high degree of energy saving, the control is more stable and the speed is faster, so as to provide the most efficient cooling under different load requirements.
  • step S400 includes:
  • Step S410 Obtain an operating parameter corresponding to an internal unit in the central air conditioner that is currently turned on, where the operating parameter includes the rated cooling capacity of the internal unit;
  • Step S420 based on the operating parameters, determine the first total cooling capacity corresponding to the internal machine that is currently turned on;
  • Step S440 Obtain the second total cooling capacity of all internal units in the central air conditioner
  • Step S440 based on the first total cooling capacity and the second total cooling capacity, determine a terminal start-up ratio
  • Step S450 Determine the predicted load based on the terminal power-on ratio and the preset total load corresponding to the central air conditioner.
  • an internal machine whose operating state changes that is, an internal machine that receives a start-up instruction to start operation or an internal machine that receives a shutdown instruction to shut down. If it exists, first make sure that the central air conditioner is currently turned on. The internal machine in the state, wherein the internal machine in the power-on state does not include the internal machine that receives the shutdown instruction, and the operating parameter corresponding to the internal machine in the power-on state is acquired.
  • the first total refrigeration capacity corresponding to the internal machine currently in the on state is determined, and the first total refrigeration capacity is each internal machine in the on state.
  • the sum of the rated cooling capacity of the central air conditioner is then obtained, and the second total cooling capacity of all the internal units in the central air conditioner is obtained.
  • the second total cooling capacity is the sum of the rated cooling capacity of all the internal units in the central air conditioner.
  • the terminal power-on ratio is the first total cooling capacity/the second total cooling capacity.
  • the end-on ratio is the number of internal units in the on state/the number of all internal units in the central air conditioner.
  • the predicted load is determined based on the terminal start-up ratio and the preset total load corresponding to the central air conditioner, where the preset total load is the load obtained through historical big data when the central air conditioner is basically fully turned on at the end of normal working hours.
  • the load is the proportion of the end start-up * the preset total load.
  • step S400 includes:
  • Step S460 obtaining the total load corresponding to the outdoor units in the on-state of the central air conditioner, and the preset total loads corresponding to all the outdoor units in the central air conditioner;
  • Step S470 Calculate the load difference between the predicted load and the total load, and calculate the ratio between the load difference and the preset total load;
  • step S480 it is determined whether the ratio is greater than a preset value, wherein when the ratio is greater than the preset value, it is determined that the predicted load satisfies an external machine change condition.
  • the total load corresponding to the outdoor units in the on-state of the central air conditioner is obtained, and the preset total load corresponding to all the outdoor units in the central air conditioner is obtained, and the total load is the total load of the outdoor units in the on-state.
  • the preset total load is the load when the central air conditioner is basically fully opened at the end of normal working hours obtained through historical big data.
  • the load difference between the predicted load and the total load is calculated, and the ratio between the load difference and the preset total load is calculated, and it is determined whether the ratio is greater than the preset value.
  • the ratio is greater than the preset value, it is determined The predicted load satisfies the changing conditions of the external machine, and the preset value can be set reasonably.
  • step S600 includes:
  • Step S610 Determine a high-efficiency outdoor machine combination based on the predicted load
  • Step S620 Adjust the operating state of the central air-conditioning unit and outdoor unit based on the high-efficiency outdoor unit combination.
  • the high-efficiency outdoor machine combination is determined based on the predicted load, where the total load of all outdoor machines in the high-efficiency outdoor machine combination is greater than the predicted load.
  • the range of the total load of all the outdoor machines in the high-efficiency outdoor machine combination is set from predicted load*1.2 to predicted load*1.5. Then, the operating state of the outdoor unit of the central air conditioner is adjusted based on the high-efficiency outdoor unit combination to accurately adjust the operating state of the outdoor unit.
  • step S620 includes:
  • Step 621 If there is a first outdoor unit in a closed state in the high-efficiency outdoor unit combination, start the first outdoor unit;
  • Step 622 If there is a second outdoor unit other than the high-efficiency outdoor unit combination among the outdoor units in the on-state of the central air conditioner, turn off the second outdoor unit.
  • the first outdoor unit that is in the off state in the high-efficiency outdoor unit combination is increased, and the second outdoor unit that is not in the high-efficiency outdoor unit combination is present in the outdoor unit that is turned on in the central air conditioner, so that the outdoor unit can run Accurate adjustment of status.
  • step S620 it further includes: controlling the valve body and the water pump in the central air conditioner based on the high-efficiency outdoor unit combination, determining the high-efficiency cooling tower combination based on the predicted load, and adjusting the central cooling tower based on the cooling tower combination The operating status of the cooling tower in the air conditioner.
  • the accurate adjustment of the refrigerant system corresponding to the outdoor unit is realized, and the accuracy of the central air conditioner control is improved.
  • Determine the high-efficiency cooling tower combination based on the refrigerant flow range corresponding to the predicted load and then adjust the operating status of the cooling tower in the central air conditioner based on the cooling tower combination, so that the refrigerant flow that the high-efficiency cooling tower combination can cool matches the predicted load , Thereby improving the accuracy of central air conditioning control.
  • the air conditioner control method proposed in this embodiment obtains the current predicted load of the central air conditioner when the corresponding start instruction or shutdown instruction of the internal unit in the central air conditioner is detected; then it is determined whether the predicted load satisfies the outdoor unit Change conditions; and then if the predicted load meets the outdoor unit change conditions, the operating state of the central air-conditioning unit is adjusted based on the predicted load, and the central air-conditioning host can be adjusted in time according to the predicted load, under the premise of satisfying comfort Maximize energy saving, reduce the power consumption of central air conditioning, improve the stability and speed of central air conditioning control, and provide the most efficient cooling through timely adjustment of external units under different load requirements.
  • the embodiment of the present application also proposes a computer-readable storage medium, which stores an air-conditioning control program, and when the air-conditioning control program is executed by a processor, the following operations are implemented:
  • time interval is less than or equal to the maximum early start-up time, obtaining the preliminary demand load corresponding to the central air conditioner, and obtaining the combined start-up load corresponding to the central air conditioner;
  • the start time of the host to be started is determined.
  • the following operations are also implemented when the air conditioning control program is executed by the processor:
  • the preliminary demand load is determined based on the indoor set temperature, the outdoor wet bulb temperature, the indoor temperature, and the return water temperature corresponding to the central air conditioner.
  • the following operations are also implemented when the air conditioning control program is executed by the processor:
  • the following operations are also implemented when the air conditioning control program is executed by the processor:
  • a combined start-up load is determined.
  • the following operations are also implemented when the air conditioning control program is executed by the processor:
  • the startup time of the host to be started is determined based on the startup running time.
  • the following operations are also implemented when the air conditioning control program is executed by the processor:
  • the operating state of the outdoor unit of the central air conditioner is adjusted based on the predicted load.
  • the following operations are also implemented when the air conditioning control program is executed by the processor:
  • the predicted load is determined based on the terminal start-up ratio and the preset total load corresponding to the central air conditioner.
  • the following operations are also implemented when the air conditioning control program is executed by the processor:

Abstract

一种空调控制方法、装置及计算机可读存储介质,空调控制方法包括以下步骤:确定当前时刻与预设上班时刻之间的时间间隔是否小于或等于最大提前启动时长;若时间间隔小于或等于最大提前启动时长,则获取中央空调对应的预备需求负荷,以及获取中央空调对应的开机组合负荷;基于开机组合负荷以及预备需求负荷,确定待启动主机的启动时刻。

Description

空调控制方法、装置及计算机可读存储介质
相关申请的交叉引用
本申请要求广东美的暖通设备有限公司和美的集团股份有限公司于2019年10月16日提交的、中国专利申请号为“201910986944.3”的优先权。
技术领域
本申请涉及空调技术领域,尤其涉及一种空调控制方法、装置及计算机可读存储介质。
背景技术
目前,大多数公共建筑的中央空调在上班前都需要进行预冷或预热,尤其是办公、酒店、商场、体育场馆等大型建筑,以使室内空气在上班时刻达到设定的温湿度要求。预冷或预热期,是指从中央空调为满足到达上班时刻时系统可以进入正常运行状态提供满足舒适度的室内环境而提前开机的时间。
空调系统的预备时间工程经验值为半小时或一小时,但对于实际的空调系统而言这个时间并不是固定的而是随着前一天的用冷情况,昨日和今日的室外天气和室内热源的变化而变化的,并且有时并不需如此长的时间就已达到了设定温度,而距离实际上班时间却还有很长一段时间。因而中央空调为维持室内温度需继续运行而白白浪费了能源,甚至导致室内温度超过设定温度需求的舒适度。反之,中央空调预备时间过晚,虽然降低了能源的消耗,但室内的温湿度却达不到设计要求,会导致人员上班后因舒适度不满足要求而投诉物业管理。
上述内容仅用于辅助理解本申请的技术方案,并不代表承认上述内容是现有技术。
发明内容
本申请的主要目的在于提供一种空调控制方法、装置及计算机可读存储介质,旨在解决现有中央空调预冷或预热不准确的技术问题。
为实现上述目的,本申请提供一种空调控制方法,应用于中央空调,所述空调控制方法包括以下步骤:
确定当前时刻与预设上班时刻之间的时间间隔是否小于或等于最大提前启动时长;
若所述时间间隔小于或等于最大提前启动时长,则获取中央空调对应的预备需求负荷,以及获取所述中央空调对应的开机组合负荷;
基于所述开机组合负荷以及所述预备需求负荷,确定所述待启动主机的启动时刻。
在一实施例中,所述获取中央空调对应的预备需求负荷的步骤包括:
获取所述中央空调对应的室外湿球温度、室内温度以及回水温度;
基于所述中央空调对应的室内设定温度、所述室外湿球温度、室内温度以及回水温度,确定所述预备需求负荷。
在一实施例中,所述获取所述中央空调对应的开机组合负荷的步骤包括:
基于所述预备需求负荷确定所述中央空调对应的待启动主机;
基于所述待启动主机确定开机组合负荷。
在一实施例中,所述基于所述待启动主机确定开机组合负荷的步骤包括:
获取所述待启动主机对应的出水温度;
基于所述待启动主机的运行参数、所述出水温度以及所述室外湿球温度,确定开机组合负荷。
在一实施例中,所述基于所述开机组合负荷以及所述预备需求负荷,确定所述待启动主机的启动时刻的步骤包括:
基于所述开机组合负荷以及所述预备需求负荷,计算启动运行时长;
基于所述启动运行时长确定所述待启动主机的启动时刻。
在一实施例中,所述空调控制方法还包括:
在检测到所述中央空调中的内机对应的开机指令或者关机指令时,获取所述中央空调当前的预测负荷;
确定所述预测负荷是否满足外机变化条件;
若所述预测负荷满足外机变化条件,则基于所述预测负荷调整所述中央空调中外机的运行状态。
在一实施例中,所述获取所述中央空调当前的预测负荷的步骤包括:
获取所述中央空调中当前处于开机状态的内机对应的运行参数,所述运行参数包括内机的额定制冷量;
基于所述运行参数,确定当前处于开机状态的内机对应的第一总制冷量;
获取所述中央空调中所有内机的第二总制冷量;
基于所述第一总制冷量以及所述第二总制冷量,确定末端开机比例;
基于所述末端开机比例以及所述中央空调对应的预设总负荷,确定所述预测负荷。
在一实施例中,所述基于所述开机组合负荷以及所述预备需求负荷,确定所述待启动主机的启动时刻的步骤之后,所述空调控制方法还包括:
在当前时刻达到所述启动时刻时,启动所述待启动主机,以及所述预设上班时刻对应的室内机。
此外,为实现上述目的,本申请还提供一种空调控制装置,应用于中央空调,所述空调 控制装置包括:存储器、处理器及存储在所述存储器上并可在所述处理器上运行的空调控制程序,所述空调控制程序被所述处理器执行时实现前述的空调控制方法的步骤。
此外,为实现上述目的,本申请还提供一种计算机可读存储介质,所述计算机可读存储介质上存储有空调控制程序,所述空调控制程序被处理器执行时实现前述的空调控制方法的步骤。
本申请通过确定当前时刻与预设上班时刻之间的时间间隔是否小于或等于最大提前启动时长;接着若所述时间间隔小于或等于最大提前启动时长,则获取中央空调对应的预备需求负荷,以及获取所述中央空调对应的开机组合负荷;而后基于所述开机组合负荷以及所述预备需求负荷,确定所述待启动主机的启动时刻,能够根据预备需求负荷确定中央空调中主机的启动时刻,便于后续根据该启动时刻提前启动中央空调,进而在降低能源消耗的同时,保证上班时刻对应的房间的舒适度,提高中央空调预冷或预热的准确性。
附图说明
图1是本申请实施例方案涉及的硬件运行环境的空调控制装置的结构示意图;
图2为本申请空调控制方法第一实施例的流程示意图。
本申请目的的实现、功能特点及优点将结合实施例,参照附图做进一步说明。
具体实施方式
应当理解,此处所描述的具体实施例仅仅用以解释本申请,并不用于限定本申请。
如图1所示,图1是本申请实施例方案涉及的硬件运行环境的空调控制装置的结构示意图。
如图1所示,该空调控制装置可以包括:处理器1001,例如CPU,网络接口1004,用户接口1003,存储器1005,通信总线1002。其中,通信总线1002用于实现这些组件之间的连接通信。用户接口1003可以包括显示屏(Display)、输入单元比如键盘(Keyboard),可选用户接口1003还可以包括标准的有线接口、无线接口。网络接口1004可以包括标准的有线接口、无线接口(如WI-FI接口)。存储器1005可以是高速RAM存储器,也可以是稳定的存储器(non-volatile memory),例如磁盘存储器。存储器1005还可以是独立于前述处理器1001的存储装置。
在一些实施例中,空调控制装置还可以包括摄像头、RF(Radio Frequency,射频)电路,传感器、音频电路、WiFi模块等等。
本领域技术人员可以理解,图1中示出的空调控制装置结构并不构成对空调控制装置的限定,可以包括比图示更多或更少的部件,或者组合某些部件,或者不同的部件布置。
如图1所示,作为一种计算机存储介质的存储器1005中可以包括操作系统、网络通信模块、用户接口模块以及空调控制程序。
在图1所示的空调控制装置中,网络接口1004主要用于连接后台服务器,与后台服务器进行数据通信;用户接口1003主要用于连接客户端(用户端),与客户端进行数据通信;而处理器1001可以用于调用存储器1005中存储的空调控制程序。
在本实施例中,空调控制装置包括:存储器1005、处理器1001及存储在所述存储器1005上并可在所述处理器1001上运行的空调控制程序,其中,处理器1001调用存储器1005中存储的空调控制程序时,并执行以下操作:
确定当前时刻与预设上班时刻之间的时间间隔是否小于或等于最大提前启动时长;
若所述时间间隔小于或等于最大提前启动时长,则获取中央空调对应的预备需求负荷,以及获取所述中央空调对应的开机组合负荷;
基于所述开机组合负荷以及所述预备需求负荷,确定所述待启动主机的启动时刻。
在一些示例中,处理器1001可以调用存储器1005中存储的空调控制程序,还执行以下操作:
获取所述中央空调对应的室外湿球温度、室内温度以及回水温度;
基于所述中央空调对应的室内设定温度、所述室外湿球温度、室内温度以及回水温度,确定所述预备需求负荷。
在一些示例中,处理器1001可以调用存储器1005中存储的空调控制程序,还执行以下操作:
基于所述预备需求负荷确定所述中央空调对应的待启动主机;
基于所述待启动主机确定开机组合负荷。
在一些示例中,处理器1001可以调用存储器1005中存储的空调控制程序,还执行以下操作:
获取所述待启动主机对应的出水温度;
基于所述待启动主机的运行参数、所述出水温度以及所述室外湿球温度,确定开机组合负荷。
在一些示例中,处理器1001可以调用存储器1005中存储的空调控制程序,还执行以下操作:
基于所述开机组合负荷以及所述预备需求负荷,计算启动运行时长;
基于所述启动运行时长确定所述待启动主机的启动时刻。
在一些示例中,处理器1001可以调用存储器1005中存储的空调控制程序,还执行以下操作:
在检测到所述中央空调中的内机对应的开机指令或者关机指令时,获取所述中央空调当前的预测负荷;
确定所述预测负荷是否满足外机变化条件;
若所述预测负荷满足外机变化条件,则基于所述预测负荷调整所述中央空调中外机的运行状态。
在一些示例中,处理器1001可以调用存储器1005中存储的空调控制程序,还执行以下操作:
获取所述中央空调中当前处于开机状态的内机对应的运行参数,所述运行参数包括内机的额定制冷量;
基于所述运行参数,确定当前处于开机状态的内机对应的第一总制冷量;
获取所述中央空调中所有内机的第二总制冷量;
基于所述第一总制冷量以及所述第二总制冷量,确定末端开机比例;
基于所述末端开机比例以及所述中央空调对应的预设总负荷,确定所述预测负荷。
在一些示例中,处理器1001可以调用存储器1005中存储的空调控制程序,还执行以下操作:
在当前时刻达到所述启动时刻时,启动所述待启动主机,以及所述预设上班时刻对应的室内机。
本申请还提供一种空调控制方法,参照图2,图2为本申请空调控制方法第一实施例的流程示意图。
本实施例中,中央空调可以为写字楼、办公楼、商业综合体等场景。该中央空调设有多个主机(外机)。
本实施例中,该空调控制方法应用于中央空调,空调控制方法包括以下步骤:
步骤S100,确定当前时刻与预设上班时刻之间的时间间隔是否小于或等于最大提前启动时长;
本实施例中,在中央空调处于关闭状态时,实时计算当前时刻与预设上班时刻之间的时间间隔,并确定该时间间隔否小于或等于最大提前启动时长。
其中,最大提前启动时长可进行合理设置。
步骤S200,若所述时间间隔小于或等于最大提前启动时长,则获取中央空调对应的预备需求负荷,以及获取所述中央空调对应的开机组合负荷;
若该时间间隔小于或等于该最大提前启动时长,则获取中央空调对应的预备需求负荷,以及获取所述中央空调对应的开机组合负荷。
可以理解的是,预备需求负荷根据上班时刻所对应的办公场景的内机进行确定,即该上班时刻所需要启动的内机所对应的需求负荷,开机组合负荷根据预备需求负荷进行确定。
步骤S300,基于所述开机组合负荷以及所述预备需求负荷,确定所述待启动主机的启动时刻。
本实施例中,在获取到开机组合负荷以及所述预备需求负荷时,根据开机组合负荷以及所述预备需求负荷确定待启动主机,并根据开机组合负荷确定待启动主机的启动时刻。
在一些示例中,在步骤S300之后,该空调控制方法还包括:在当前时刻达到所述启动时刻时,启动所述待启动主机,以及所述预设上班时刻对应的室内机。
本实施例中,根据该启动时刻提前启动中央空调的待启动主机以及预设上班时刻对应的室内机,以实现预设上班时刻对应的房间的预冷或预热,进而在降低能源消耗的同时,保证上班时刻对应的房间的舒适度,提高中央空调预冷或预热的准确性。
本实施例提出的空调控制方法,通过确定当前时刻与预设上班时刻之间的时间间隔是否小于或等于最大提前启动时长;接着若所述时间间隔小于或等于最大提前启动时长,则获取中央空调对应的预备需求负荷,以及获取所述中央空调对应的开机组合负荷;而后基于所述开机组合负荷以及所述预备需求负荷,确定所述待启动主机的启动时刻,能够根据预备需求负荷确定中央空调中主机的启动时刻,便于后续根据该启动时刻提前启动中央空调,进而在降低能源消耗的同时,保证上班时刻对应的房间的舒适度,提高中央空调预冷或预热的准确性。
基于第一实施例,提出本申请空调控制方法的第二实施例,在本实施例中,步骤S200包括:
步骤S210,获取所述中央空调对应的室外湿球温度、室内温度以及回水温度;
步骤S220,基于所述中央空调对应的室内设定温度、所述室外湿球温度、室内温度以及回水温度,确定所述预备需求负荷。
本实施例中,若所述时间间隔小于或等于最大提前启动时长,则获取所述中央空调对应 的室外湿球温度、室内温度以及回水温度,其中,室外湿球温度为当前中央空调所对应的冷却塔的湿球温度,室内温度可以为中央空调所处环境的室内温度,例如,室内温度为预设上班时刻所对应的房间内的温度的均值。
而后,基于所述中央空调对应的室内设定温度、所述室外湿球温度、室内温度以及回水温度,确定所述预备需求负荷,其中,中央空调存储有室外湿球温度、室内温度、回水温度以及需求负荷的映射关系,根据该映射关系确定该预备需求负荷。
可以理解的是,中央空调可在历史大数据中记录其历史运行数据,该历史运行数据包括相应的室内设定温度、所述室外湿球温度、室内温度以及回水温度对应中央空调的历史需求负荷(例如当前运行负荷),根据该历史大数据确定室外湿球温度、室内温度、回水温度以及需求负荷的映射关系。
在一些实施例中,室内设定温度包括多个设定温度值、室外湿球温度包括多个湿球温度值、室内温度包括多个室内温度值、回水温度包括多个回水温度值,将大数据中相同的设定温度值、相同的湿球温度值、相同的室内温度值以及相同的回水温度值对应的历史需求负荷的平均需求负荷,作为该相同的设定温度值、相同的湿球温度值、相同的室内温度值以及相同的回水温度值对应的需求负荷,进而得到室外湿球温度、室内温度、回水温度以及需求负荷的映射关系。
在一些实施例中,在大数据中相同的设定温度值、相同的湿球温度值、相同的室内温度值以及相同的回水温度值对应的历史需求负荷包括多个,且多个历史需求负荷所对应的处于运行状态的室内机数量不完全相同,则大数据中相同的室内机数量、相同的设定温度值、相同的湿球温度值、相同的室内温度值以及相同的回水温度值对应的历史需求负荷的平均需求负荷,作为该相同的室内机数量、相同的设定温度值、相同的湿球温度值、相同的室内温度值以及相同的回水温度值对应的需求负荷,进而得到室内机数量、室外湿球温度、室内温度、回水温度以及需求负荷的映射关系。在确定预备需求负荷时,确定预设上班时刻所对应的待启动室内机数量,根据获取到的待启动室内机数量、室内设定温度、所述室外湿球温度、室内温度以及回水温度,通过上述映射关系查找对应的预备需求负荷。
本实施例提出的空调控制方法,通过获取所述中央空调对应的室外湿球温度、室内温度以及回水温度;接着基于所述中央空调对应的室内设定温度、所述室外湿球温度、室内温度以及回水温度,确定所述预备需求负荷,能够根据室外湿球温度、室内温度以及回水温度准确得到预备需求负荷,提高预备需求负荷的准确性,进而提高据预备需求负荷确定启动时刻的准确性。
基于第二实施例,提出本申请空调控制方法的第三实施例,在本实施例中,步骤S200 包括:
步骤S230,基于所述预备需求负荷确定所述中央空调对应的待启动主机;
步骤S240,基于所述待启动主机确定开机组合负荷。
本实施例中,根据预备需求负荷确定所述中央空调对应的待启动主机,其中,待启动主机为在该日开机需求下,所满足的制冷量适合且能效最高的主机组合。而后根据待启动主机确定开机组合负荷。
在一实施例中,步骤S240包括:
步骤a,获取所述待启动主机对应的出水温度;
步骤b,基于所述待启动主机的运行参数、所述出水温度以及所述室外湿球温度,确定开机组合负荷。
本实施例中,中央空调存储有待启动主机的运行参数、出水温度、室外湿球温度以及开机组合负荷的映射关系,根据该映射关系确定该开机组合负荷。
可以理解的是,中央空调可在历史大数据中记录其历史运行数据,该历史运行数据包括待启动主机的运行参数、出水温度、室外湿球温度以及开机组合负荷的映射关系,其中,待启动主机的运行参数包括待启动主机启动时的总功率。
在一些实施例中,运行参数包括多个参数范围、室外湿球温度包括多个湿球温度值、出水温度包括多个出水温度值,将大数据中相同的参数范围、相同的湿球温度值、相同的出水温度值对应的历史组合负荷的平均组合负荷,作为相同的参数范围、相同的湿球温度值、相同的出水温度值对应的组合负荷,进而得到待启动主机的运行参数、出水温度、室外湿球温度以及开机组合负荷的映射关系。
在一些实施例中,在大数据中相同的参数范围、相同的湿球温度值、相同出水温度值对应的历史组合负荷包括多个,且多个历史组合负荷所对应的处于运行状态的室内机数量不完全相同,则将大数据中相同的室内机数量、相同的参数范围、相同的湿球温度值、相同出水温度值对应的历史组合负荷,作为该相同的参数范围、相同的湿球温度值、相同出水温度值对应的历史组合负荷对应的组合负荷,进而得到室内机数量、相同的参数范围、相同的湿球温度值、相同出水温度值以及需求负荷的映射关系。在确定开机组合负荷时,根据待启动主机的数量、待启动主机的运行参数、出水温度、室外湿球温度,通过上述映射关系查找对应的开机组合负荷。
本实施例提出的空调控制方法,通过基于所述预备需求负荷确定所述中央空调对应的待启动主机;接着基于所述待启动主机确定开机组合负荷,能够根据预备需求负荷准确得到开机组合负荷,提高开机组合负荷的准确性,进而提高启动时刻的准确性。
基于第一实施例,提出本申请空调控制方法的第四实施例,在本实施例中,步骤S300包括:
步骤S310,基于所述开机组合负荷以及所述预备需求负荷,计算启动运行时长;
步骤S320,基于所述启动运行时长确定所述待启动主机的启动时刻。
本实施例中,在获取到开机组合负荷以及所述预备需求负荷时,先基于开机组合负荷以及所述预备需求负荷计算启动运行时长,其中,启动运行时长=预备需求负荷/开机组合负荷。而后基于所述启动运行时长确定所述待启动主机的启动时刻,即启动时刻为预设上班时刻减去启动运行时长。
本实施例提出的空调控制方法,通过基于所述开机组合负荷以及所述预备需求负荷,计算启动运行时长;接着基于所述启动运行时长确定所述待启动主机的启动时刻,能够准确得到待启动主机的启动时刻,便于后续根据该启动时刻提前启动中央空调,进而在降低能源消耗的同时,保证上班时刻对应的房间的舒适度,提高中央空调预冷或预热的准确性。
基于第一实施例,提出本申请空调控制方法的第五实施例,在本实施例中,空调控制方法还包括:
步骤S400,在检测到所述中央空调中的内机对应的开机指令或者关机指令时,获取所述中央空调当前的预测负荷;
本实施例中,实时监测当前是否存在运行状态变化的内机,即接收到开机指令进行开机运行的内机或者接收到关机指令进行关闭的内机,若存在,则确定检测到所述中央空调中的内机对应的开机指令或者关机指令,此时,获取所述中央空调当前的预测负荷。
需要说明的是,预测负荷根据当前开机运行的内机的参数进行预测。
步骤S500,确定所述预测负荷是否满足外机变化条件;
步骤S600,若所述预测负荷满足外机变化条件,则基于所述预测负荷调整所述中央空调中外机的运行状态。
本实施例中,在获取到预测负荷时,确定所述预测负荷是否满足外机变化条件,具体可根据当前运行的外机的负荷确定预测负荷是否满足外机变化条件,或者,根据当前预测负荷与检测到开机指令或者关机指令之前中央空调当前的预测负荷,确定预测负荷是否满足外机变化条件。
而后,如果预测负荷满足外机变化条件,则基于预测负荷调整所述中央空调中外机的运行状态,具体按照预测负荷调整外机,以使外机的额定负荷与预测负荷匹配,进而在满足舒适度的前提下最大化节能,控制更稳定,速度更快,以在不同的负荷需求下提供最高效的供冷。
在一些示例中,在一实施例中,步骤S400包括:
步骤S410,获取所述中央空调中当前处于开机状态的内机对应的运行参数,所述运行参数包括内机的额定制冷量;
步骤S420,基于所述运行参数,确定当前处于开机状态的内机对应的第一总制冷量;
步骤S440,获取所述中央空调中所有内机的第二总制冷量;
步骤S440,基于所述第一总制冷量以及所述第二总制冷量,确定末端开机比例;
步骤S450,基于所述末端开机比例以及所述中央空调对应的预设总负荷,确定所述预测负荷。
本实施例中,实时监测当前是否存在运行状态变化的内机,即接收到开机指令进行开机运行的内机或者接收到关机指令进行关闭的内机,若存在,先确定该中央空调当前处于开机状态的内机,其中,该开机状态的内机不包括接收到关机指令的内机,并获取该处于开机状态的内机所对应的运行参数。
在获取到处于开机状态的内机所对应的运行参数时,基于该运行参数,确定当前处于开机状态的内机对应的第一总制冷量,该第一总制冷量为各个处于开机状态的内机的额定制冷量之和,而后获取中央空调中所有内机的第二总制冷量,该第二总制冷量为中央空调中所有内机的额定制冷量之和。
接着,基于第一总制冷量以及第二总制冷量,确定末端开机比例,该末端开机比例为第一总制冷量/第二总制冷量,在其他实施例中,若所有末端(中央空调中所有内机)的额定制冷量大小基本相同的时候,则末端开机比例为处于开机状态的内机的数量/中央空调中所有内机的数量。
而后,基于末端开机比例以及中央空调对应的预设总负荷,确定所述预测负荷,其中,预设总负荷为通过历史大数据获得的中央空调在正常工作时间末端基本全开时的负荷,预测负荷为末端开机比例*预设总负荷。
在一些示例中,又一实施例中,步骤S400包括:
步骤S460,获取所述中央空调中处于开机状态的外机对应的总负荷,以及所述中央空调中的所有外机对应的预设总负荷;
步骤S470,计算所述预测负荷与所述总负荷之间的负荷差,并计算所述负荷差与所述预设总负荷之间的比值;
步骤S480,确定所述比值是否大于预设值,其中,在所述比值大于预设值时,确定所述预测负荷满足外机变化条件。
本实施例中,获取所述中央空调中处于开机状态的外机对应的总负荷,以及所述中央空调中的所有外机对应的预设总负荷,总负荷为处于开机状态的外机负荷之和,预设总负荷为 通过历史大数据获得的中央空调在正常工作时间末端基本全开时的负荷。
而后,计算预测负荷与所述总负荷之间的负荷差,并计算负荷差与所述预设总负荷之间的比值,判断该比值是否大于预设值,在比值大于预设值时,确定预测负荷满足外机变化条件,其中,预设值可进行合理设置。
在一些示例中,另一实施例中,步骤S600包括:
步骤S610,基于所述预测负荷确定高效外机组合;
步骤S620,基于所述高效外机组合调整所述中央空调中外机的运行状态。
本实施例中,预测负荷满足外机变化条件时,基于所述预测负荷确定高效外机组合,其中,该高效外机组合中所有外机的总负荷大于预测负荷,在一些示例中,可将高效外机组合中所有外机的总负荷的范围设置为预测负荷*1.2~预测负荷*1.5。而后基于所述高效外机组合调整所述中央空调中外机的运行状态,以准确调整外机的运行状态。
在一实施例中,步骤S620包括:
步骤621,若所述高效外机组合存在处于关闭状态的第一外机,则启动所述第一外机;
步骤622,若所述中央空调中处于开机状态的外机中存在高效外机组合之外的第二外机,则关闭所述第二外机。
本实施例中,提高启动高效外机组合中处于关闭状态的第一外机,以及关闭中央空调中处于开机状态的外机中存在高效外机组合之外的第二外机,实现外机运行状态的准确调整。
其中,步骤S620之后,还包括:基于所述高效外机组合控制所述中央空调中的阀体以及水泵,基于所述预测负荷确定高效冷却塔组合,并基于所述冷却塔组合调整所述中央空调中冷却塔的运行状态。
本实施例中,通过调整中央空调中的阀体以及水泵,实现外机所对应的冷媒系统的准确调节,提高中央空调控制的准确性。基于预测负荷所对应的冷媒流量范围确定高效冷却塔组合,而后基于所述冷却塔组合调整所述中央空调中冷却塔的运行状态,以使高效冷却塔组合所能够冷却的冷媒流量与预测负荷匹配,进而提高中央空调控制的准确性。
本实施例提出的空调控制方法,通过在检测到所述中央空调中的内机对应的开机指令或者关机指令时,获取所述中央空调当前的预测负荷;接着确定所述预测负荷是否满足外机变化条件;而后若所述预测负荷满足外机变化条件,则基于所述预测负荷调整所述中央空调中外机的运行状态,能够及时根据预测负荷调整中央空调的主机,在满足舒适度的前提下最大化节能,降低中央空调的耗电量,提高中央空调控制的稳定性以及速度,并能够在不同的负荷需求下通过外机的及时调整提供最高效的供冷。
此外,本申请实施例还提出一种计算机可读存储介质,所述计算机可读存储介质上存储 有空调控制程序,所述空调控制程序被处理器执行时实现如下操作:
确定当前时刻与预设上班时刻之间的时间间隔是否小于或等于最大提前启动时长;
若所述时间间隔小于或等于最大提前启动时长,则获取中央空调对应的预备需求负荷,以及获取所述中央空调对应的开机组合负荷;
基于所述开机组合负荷以及所述预备需求负荷,确定所述待启动主机的启动时刻。
在一些示例中,所述空调控制程序被处理器执行时还实现如下操作:
获取所述中央空调对应的室外湿球温度、室内温度以及回水温度;
基于所述中央空调对应的室内设定温度、所述室外湿球温度、室内温度以及回水温度,确定所述预备需求负荷。
在一些示例中,所述空调控制程序被处理器执行时还实现如下操作:
基于所述预备需求负荷确定所述中央空调对应的待启动主机;
基于所述待启动主机确定开机组合负荷。
在一些示例中,所述空调控制程序被处理器执行时还实现如下操作:
获取所述待启动主机对应的出水温度;
基于所述待启动主机的运行参数、所述出水温度以及所述室外湿球温度,确定开机组合负荷。
在一些示例中,所述空调控制程序被处理器执行时还实现如下操作:
基于所述开机组合负荷以及所述预备需求负荷,计算启动运行时长;
基于所述启动运行时长确定所述待启动主机的启动时刻。
在一些示例中,所述空调控制程序被处理器执行时还实现如下操作:
在检测到所述中央空调中的内机对应的开机指令或者关机指令时,获取所述中央空调当前的预测负荷;
确定所述预测负荷是否满足外机变化条件;
若所述预测负荷满足外机变化条件,则基于所述预测负荷调整所述中央空调中外机的运行状态。
在一些示例中,所述空调控制程序被处理器执行时还实现如下操作:
获取所述中央空调中当前处于开机状态的内机对应的运行参数,所述运行参数包括内机的额定制冷量;
基于所述运行参数,确定当前处于开机状态的内机对应的第一总制冷量;
获取所述中央空调中所有内机的第二总制冷量;
基于所述第一总制冷量以及所述第二总制冷量,确定末端开机比例;
基于所述末端开机比例以及所述中央空调对应的预设总负荷,确定所述预测负荷。
在一些示例中,所述空调控制程序被处理器执行时还实现如下操作:
在当前时刻达到所述启动时刻时,启动所述待启动主机,以及所述预设上班时刻对应的室内机。
需要说明的是,在本文中,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者系统不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者系统所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括该要素的过程、方法、物品或者系统中还存在另外的相同要素。
上述本申请实施例序号仅仅为了描述,不代表实施例的优劣。
通过以上的实施方式的描述,本领域的技术人员可以清楚地了解到上述实施例方法可借助软件加必需的通用硬件平台的方式来实现,当然也可以通过硬件,但很多情况下前者是更佳的实施方式。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分可以以软件产品的形式体现出来,该计算机软件产品存储在如上所述的一个存储介质(如ROM/RAM、磁碟、光盘)中,包括若干指令用以使得一台终端设备(可以是手机,计算机,服务器,空调器,或者网络设备等)执行本申请各个实施例所述的方法。
以上仅为本申请的优选实施例,并非因此限制本申请的专利范围,凡是利用本申请说明书及附图内容所作的等效结构或等效流程变换,或直接或间接运用在其他相关的技术领域,均同理包括在本申请的专利保护范围内。

Claims (10)

  1. 一种空调控制方法,其特征在于,应用于中央空调,所述空调控制方法包括以下步骤:
    确定当前时刻与预设上班时刻之间的时间间隔是否小于或等于最大提前启动时长;
    若所述时间间隔小于或等于最大提前启动时长,则获取中央空调对应的预备需求负荷,以及获取所述中央空调对应的开机组合负荷;
    基于所述开机组合负荷以及所述预备需求负荷,确定所述待启动主机的启动时刻。
  2. 如权利要求1所述的空调控制方法,其特征在于,所述获取中央空调对应的预备需求负荷的步骤包括:
    获取所述中央空调对应的室外湿球温度、室内温度以及回水温度;
    基于所述中央空调对应的室内设定温度、所述室外湿球温度、室内温度以及回水温度,确定所述预备需求负荷。
  3. 如权利要求2所述的空调控制方法,其特征在于,所述获取所述中央空调对应的开机组合负荷的步骤包括:
    基于所述预备需求负荷确定所述中央空调对应的待启动主机;
    基于所述待启动主机确定开机组合负荷。
  4. 如权利要求3所述的空调控制方法,其特征在于,所述基于所述待启动主机确定开机组合负荷的步骤包括:
    获取所述待启动主机对应的出水温度;
    基于所述待启动主机的运行参数、所述出水温度以及所述室外湿球温度,确定开机组合负荷。
  5. 如权利要求1至4任一项所述的空调控制方法,其特征在于,所述基于所述开机组合负荷以及所述预备需求负荷,确定所述待启动主机的启动时刻的步骤包括:
    基于所述开机组合负荷以及所述预备需求负荷,计算启动运行时长;
    基于所述启动运行时长确定所述待启动主机的启动时刻。
  6. 如权利要求1至5任一项所述的空调控制方法,其特征在于,所述空调控制方法还包括:
    在检测到所述中央空调中的内机对应的开机指令或者关机指令时,获取所述中央空调当前的预测负荷;
    确定所述预测负荷是否满足外机变化条件;
    若所述预测负荷满足外机变化条件,则基于所述预测负荷调整所述中央空调中外机的运行状态。
  7. 如权利要求6所述的空调控制方法,其特征在于,所述获取所述中央空调当前的预测负荷的步骤包括:
    获取所述中央空调中当前处于开机状态的内机对应的运行参数,所述运行参数包括内机的额定制冷量;
    基于所述运行参数,确定当前处于开机状态的内机对应的第一总制冷量;
    获取所述中央空调中所有内机的第二总制冷量;
    基于所述第一总制冷量以及所述第二总制冷量,确定末端开机比例;
    基于所述末端开机比例以及所述中央空调对应的预设总负荷,确定所述预测负荷。
  8. 如权利要求1至7任一项所述的空调控制方法,其特征在于,所述基于所述开机组合负荷以及所述预备需求负荷,确定所述待启动主机的启动时刻的步骤之后,所述空调控制方法还包括:
    在当前时刻达到所述启动时刻时,启动所述待启动主机,以及所述预设上班时刻对应的室内机。
  9. 一种空调控制装置,其特征在于,应用于中央空调,所述空调控制装置包括:存储器、处理器及存储在所述存储器上并可在所述处理器上运行的空调控制程序,所述空调控制程序被所述处理器执行时实现如权利要求1至8中任一项所述的空调控制方法的步骤。
  10. 一种计算机可读存储介质,其特征在于,所述计算机可读存储介质上存储有空调控制程序,所述空调控制程序被处理器执行时实现如权利要求1至8中任一项所述的空调控制方法的步骤。
PCT/CN2020/077167 2019-10-16 2020-02-28 空调控制方法、装置及计算机可读存储介质 WO2021073025A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP20876505.7A EP3992538A4 (en) 2019-10-16 2020-02-28 AIR CONDITIONER CONTROL METHOD AND APPARATUS, AND COMPUTER READABLE INFORMATION MEDIA
US17/579,507 US20220136725A1 (en) 2019-10-16 2022-01-19 Air Conditioner Control Method and Apparatus, and Computer-Readable Storage Medium

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910986944.3 2019-10-16
CN201910986944.3A CN110686382B (zh) 2019-10-16 2019-10-16 空调控制方法、装置及计算机可读存储介质

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/579,507 Continuation US20220136725A1 (en) 2019-10-16 2022-01-19 Air Conditioner Control Method and Apparatus, and Computer-Readable Storage Medium

Publications (1)

Publication Number Publication Date
WO2021073025A1 true WO2021073025A1 (zh) 2021-04-22

Family

ID=69113352

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/077167 WO2021073025A1 (zh) 2019-10-16 2020-02-28 空调控制方法、装置及计算机可读存储介质

Country Status (4)

Country Link
US (1) US20220136725A1 (zh)
EP (1) EP3992538A4 (zh)
CN (1) CN110686382B (zh)
WO (1) WO2021073025A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114440419A (zh) * 2021-12-31 2022-05-06 博锐尚格科技股份有限公司 一种冷站二次泵系统的控制方法、装置、设备和存储介质

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110686382B (zh) * 2019-10-16 2021-02-09 广东美的暖通设备有限公司 空调控制方法、装置及计算机可读存储介质
CN112283889A (zh) * 2020-10-10 2021-01-29 广东美的暖通设备有限公司 空调的预启动时间控制方法、装置、设备及存储介质
CN112366822A (zh) * 2020-11-02 2021-02-12 珠海格力电器股份有限公司 一种光伏设备的控制方法、装置、系统及光伏空调
CN113237375B (zh) * 2021-05-18 2022-08-26 贵州汇通华城股份有限公司 一种冷却塔开关机控制方法及系统
CN113739390B (zh) * 2021-09-30 2023-01-24 上海美控智慧建筑有限公司 空调器控制方法、装置和电子设备
CN114811715A (zh) * 2022-04-27 2022-07-29 浙江中广电器集团股份有限公司 一种热泵evi无水地暖多联机的节能控制方法
CN115289602B (zh) * 2022-10-09 2022-12-16 蘑菇物联技术(深圳)有限公司 确定中央空调系统目标操作时刻的方法、计算设备和介质
CN116993232B (zh) * 2023-09-27 2023-12-19 青岛艾德森物联科技有限公司 一种综合能源站的能耗管理优化方法及系统

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5835347A (ja) * 1981-08-28 1983-03-02 Hitachi Ltd 空調機の最適起動制御方法
JPH05233012A (ja) * 1992-02-18 1993-09-10 Toshiba Corp 冷暖房設備の運転管理装置
CN101650552A (zh) * 2008-08-14 2010-02-17 海尔集团公司 多联式变频空调能力预测控制系统和方法
CN103335377A (zh) * 2013-07-01 2013-10-02 青岛海信日立空调系统有限公司 空调控制装置及其定时开机的控制方法
CN106091247A (zh) * 2016-06-14 2016-11-09 顺德职业技术学院 远程控制单冷空调器智能控制运行方法
CN106225172A (zh) * 2016-08-17 2016-12-14 珠海格力电器股份有限公司 空调控制装置、方法及系统
CN108917103A (zh) * 2018-05-03 2018-11-30 广东美的暖通设备有限公司 中央空调系统的冷水主机控制方法、装置及系统
CN109855244A (zh) * 2019-02-18 2019-06-07 珠海格力电器股份有限公司 一种节约能源的定时控制方法及系统
CN110686382A (zh) * 2019-10-16 2020-01-14 广东美的暖通设备有限公司 空调控制方法、装置及计算机可读存储介质

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005241033A (ja) * 2004-02-24 2005-09-08 Matsushita Electric Ind Co Ltd 空気調和機
KR100784994B1 (ko) * 2006-09-20 2007-12-11 주식회사 엔휀스타 냉각 휀이 구비된 에어컨 실외기의 루버 제어장치 및 방법
CN101424436B (zh) * 2008-11-29 2011-08-31 深圳市奥宇控制系统有限公司 一种中央空调智能优化控制系统及方法
US8880226B2 (en) * 2011-05-17 2014-11-04 Honeywell International Inc. System and method to predict optimized energy consumption
WO2014203311A1 (ja) * 2013-06-17 2014-12-24 三菱電機株式会社 空調システム制御装置及び空調システム制御方法
JP6067602B2 (ja) * 2014-02-14 2017-01-25 三菱電機ビルテクノサービス株式会社 デマンド制御装置及びプログラム
CN103940058B (zh) * 2014-03-31 2017-02-08 广东美的制冷设备有限公司 空调器的控制方法、空调器的控制装置和空调器
CN205980188U (zh) * 2016-08-05 2017-02-22 上海冰核时代科技中心(有限合伙) 基于负荷预测的冰蓄冷优化控制系统
CN108270649A (zh) * 2016-12-30 2018-07-10 中移物联网有限公司 一种控制家电设备的方法及装置
CN108168052B (zh) * 2017-12-27 2020-01-31 江苏联宏智慧能源股份有限公司 一种中央空调制冷系统最优启停控制方法
CN109357368B (zh) * 2017-12-29 2021-01-12 深圳Tcl新技术有限公司 一种智能空调预约制热的控制方法、智能空调及存储介质
CN108954713A (zh) * 2018-07-24 2018-12-07 广东美的暖通设备有限公司 空调器的控制方法、空调器的控制系统与空调器
CN109373539B (zh) * 2018-11-07 2020-01-31 珠海格力电器股份有限公司 空调及其控制方法和装置
CN109708258B (zh) * 2018-12-20 2021-01-12 南京达实能源技术有限公司 一种基于负荷动态变化的冷库温度前馈-模糊控制系统及控制方法
CN110232503B (zh) * 2019-05-16 2021-08-27 浙江中烟工业有限责任公司 一种基于生产驱动一体化空调节能智控的调度方法
CN110319540A (zh) * 2019-06-28 2019-10-11 广东志高暖通设备股份有限公司 一种动态调整的模块式多联机控制方法

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5835347A (ja) * 1981-08-28 1983-03-02 Hitachi Ltd 空調機の最適起動制御方法
JPH05233012A (ja) * 1992-02-18 1993-09-10 Toshiba Corp 冷暖房設備の運転管理装置
CN101650552A (zh) * 2008-08-14 2010-02-17 海尔集团公司 多联式变频空调能力预测控制系统和方法
CN103335377A (zh) * 2013-07-01 2013-10-02 青岛海信日立空调系统有限公司 空调控制装置及其定时开机的控制方法
CN106091247A (zh) * 2016-06-14 2016-11-09 顺德职业技术学院 远程控制单冷空调器智能控制运行方法
CN106225172A (zh) * 2016-08-17 2016-12-14 珠海格力电器股份有限公司 空调控制装置、方法及系统
CN108917103A (zh) * 2018-05-03 2018-11-30 广东美的暖通设备有限公司 中央空调系统的冷水主机控制方法、装置及系统
CN109855244A (zh) * 2019-02-18 2019-06-07 珠海格力电器股份有限公司 一种节约能源的定时控制方法及系统
CN110686382A (zh) * 2019-10-16 2020-01-14 广东美的暖通设备有限公司 空调控制方法、装置及计算机可读存储介质

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3992538A4 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114440419A (zh) * 2021-12-31 2022-05-06 博锐尚格科技股份有限公司 一种冷站二次泵系统的控制方法、装置、设备和存储介质
CN114440419B (zh) * 2021-12-31 2023-10-27 博锐尚格科技股份有限公司 一种冷站二次泵系统的控制方法、装置、设备和存储介质

Also Published As

Publication number Publication date
EP3992538A1 (en) 2022-05-04
CN110686382B (zh) 2021-02-09
CN110686382A (zh) 2020-01-14
US20220136725A1 (en) 2022-05-05
EP3992538A4 (en) 2022-08-24

Similar Documents

Publication Publication Date Title
WO2021073025A1 (zh) 空调控制方法、装置及计算机可读存储介质
CN107084491B (zh) 空调室外机电加热器的控制方法及装置
WO2020199664A1 (zh) 空调器、空调器运行策略的调整方法及装置
CN111536661B (zh) 多联机空调系统控制方法、终端设备及可读存储介质
WO2023065755A1 (zh) 空气源热泵机组的控制方法、装置和电子设备
WO2021120497A1 (zh) 空调器、空调器的制冷控制方法和存储介质
CN114440414B (zh) 多联机及其控制方法、计算机存储介质
US20220214067A1 (en) Method and Device for Controlling Air Conditioning and Computer Readable Storage Medium
WO2023000700A1 (zh) 多联机空调的控制方法、多联机空调及存储介质
WO2023103411A1 (zh) 用于空调控制的方法、装置、空调及存储介质
CN113587384B (zh) 空调器的控制方法、装置、空调器和存储介质
CN111023523A (zh) 空调器控制方法、装置、空调器和存储介质
WO2023159977A1 (zh) 空调节能的控制方法、控制系统、电子设备和存储介质
WO2024001534A1 (zh) 空调系统的室外机控制方法、装置、室外机和空调系统
CN112710065B (zh) 一拖多空调器的控制方法、一拖多空调器及存储介质
WO2023236550A1 (zh) 空调器的控制方法、装置及空调器
WO2023231303A1 (zh) 供暖系统及其控制方法
WO2023159942A1 (zh) 空调节能的控制方法、控制系统、电子设备和存储介质
WO2023273685A1 (zh) 空调制冷控制方法、空调器及计算机可读存储介质
JP4950725B2 (ja) 空調制御システム
CN109827303A (zh) 一种温度调节方法、装置及服务器
CN115978668A (zh) 双系统空调控制方法、装置、电子设备及可读存储介质
WO2020199667A1 (zh) 空调器、控制空调器的方法与装置、存储介质及处理器
CN115628523A (zh) 空调控制方法、装置、设备及存储介质
CN113531766B (zh) 一种空调节能控制方法、控制装置以及空调器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20876505

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020876505

Country of ref document: EP

Effective date: 20220125

NENP Non-entry into the national phase

Ref country code: DE