WO2021072833A1 - 一种天线单元、天线模组及电子设备 - Google Patents

一种天线单元、天线模组及电子设备 Download PDF

Info

Publication number
WO2021072833A1
WO2021072833A1 PCT/CN2019/115575 CN2019115575W WO2021072833A1 WO 2021072833 A1 WO2021072833 A1 WO 2021072833A1 CN 2019115575 W CN2019115575 W CN 2019115575W WO 2021072833 A1 WO2021072833 A1 WO 2021072833A1
Authority
WO
WIPO (PCT)
Prior art keywords
antenna
ground
unit
radiating
ground layer
Prior art date
Application number
PCT/CN2019/115575
Other languages
English (en)
French (fr)
Inventor
陈友春
黄源烽
Original Assignee
瑞声声学科技(深圳)有限公司
瑞声科技(新加坡)有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 瑞声声学科技(深圳)有限公司, 瑞声科技(新加坡)有限公司 filed Critical 瑞声声学科技(深圳)有限公司
Publication of WO2021072833A1 publication Critical patent/WO2021072833A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/36Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • H01Q21/06Arrays of individually energised antenna units similarly polarised and spaced apart
    • H01Q21/061Two dimensional planar arrays
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • H01Q21/06Arrays of individually energised antenna units similarly polarised and spaced apart
    • H01Q21/061Two dimensional planar arrays
    • H01Q21/064Two dimensional planar arrays using horn or slot aerials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/12Supports; Mounting means
    • H01Q1/22Supports; Mounting means by structural association with other equipment or articles
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/48Earthing means; Earth screens; Counterpoises
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/50Structural association of antennas with earthing switches, lead-in devices or lightning protectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • H01Q21/0006Particular feeding systems
    • H01Q21/0075Stripline fed arrays
    • H01Q21/0081Stripline fed arrays using suspended striplines

Definitions

  • the present invention relates to the field of communication, in particular to an antenna unit, an antenna module and an electronic device.
  • the unique high carrier frequency and large bandwidth characteristics of millimeter wave are the main means to realize 5G ultra-high data transmission rate. Therefore, the rich bandwidth resources of millimeter wave frequency band provide guarantee for high-speed transmission rate.
  • the 26GHz (24.25-27.5GHz) and 28GHz (27.5-29.5GHz) in the 5G frequency band can meet the needs of high traffic and user density, especially the 26GHz frequency band, which has a continuous spectrum exceeding 3GHz.
  • the wireless communication antenna system using the millimeter wave frequency band needs to adopt a phased array architecture to improve the gain and bandwidth of the antenna module.
  • the communication link is easily interrupted. Therefore, the ability of the millimeter-wave antenna to control the radiation beam is very important for maintaining line-of-sight communication.
  • the purpose of the present invention is to provide an antenna unit, an antenna module and an electronic device to meet the requirements of gain and bandwidth.
  • An antenna unit includes a first circuit board, a first metal frame, and a first radiation unit; the first radiation unit and the first metal frame are both stacked on the first circuit board and the first A metal frame surrounds the outer periphery of the first radiating unit, and the first radiating unit includes two first radiating arms that are opposed and spaced apart, and the two first radiating arms are respectively attached to the first metal frame.
  • a system ground and a feeding structure are formed on the first circuit board, and the first radiating unit and the first metal frame are electrically connected to the system ground.
  • a horn-shaped opening is formed between the two opposite first radiating arms of the first radiating unit.
  • the first circuit board includes a first ground layer, a first ground interlayer, a second ground layer, a second ground interlayer, and a third ground layer stacked in sequence, and the first ground layer is provided with a first ground layer.
  • a gap, the first ground barrier layer, the second ground layer, the second ground barrier layer, and the third ground layer are all provided with a first clearance area directly opposite to the first gap, so The first ground interlayer, the second ground layer, and the second ground interlayer are all provided with a second clearance area that perpendicularly intersects and communicates with the respective first clearance area;
  • the first circuit board is also It includes a feeder line accommodated in the second clearance area of the second grounding layer and a feeder column penetrating through the first circuit board, the feeder column is connected to the feeder line and is connected to the The first ground layer, the second ground layer, and the third ground layer are electrically isolated.
  • the first metal frame and the first radiating unit are erected on the first ground layer.
  • One of the first radiating arms is symmetrically arranged on both sides of the width direction of the first slot, and one of the first radiating arms is covered on the feeding column and the first radiating arm faces the feeding
  • One end of the column is provided with a first avoiding groove for avoiding the feeding column.
  • the first circuit board further includes a third ground barrier layer stacked on a side of the third ground layer away from the second ground barrier layer, and a third ground barrier layer provided on the third ground barrier layer away from the second ground barrier layer.
  • the fourth grounding layer on one side of the three grounding layers, the third grounding spacer layer is provided with a third clearance area, and the orthographic projection of the first clearance area and the second clearance area on the third grounding spacer layer They are all located in the third clearance area, and the third ground layer, the third ground barrier layer, the third clearance area, and the fourth ground layer form the back cavity of the antenna unit.
  • the power feed pillar penetrates the third clearance area and is electrically isolated from the fourth ground layer.
  • the present invention also provides an antenna module including the above-mentioned antenna unit.
  • the antenna module includes a plurality of the antenna units distributed in an array, and the first circuit board of the antenna unit is integrally formed.
  • first radiating elements are arranged in an N*N plane array, and in any row and any column of the N*N plane array, any two adjacent first slits have unequal The two first slots adjacent to any one of the first radiating units have the same length.
  • the feeding pillars of the (N-2)*(N-2) first radiating units in the center of the N*N planar array are electrically connected to an external power source to form an active area, which is arranged around the center of the N*N planar array.
  • the feeding column of the first radiating unit around the (N-2)*(N-2) first radiating units in the center is electrically connected with a matching load to form a passive area.
  • the antenna module further includes a second circuit board arranged on a side of the first circuit board away from the first radiation unit, and a second circuit board arranged on the second circuit board away from the first circuit board.
  • Side radio frequency front end the radio frequency front end includes a phase shifting unit for phase shifting the antenna unit.
  • the phase shifting unit includes a plurality of phase shifting chips, each of the plurality of first radiation unit arrays is arranged as a radiation unit group, and each of the radiation unit groups is electrically connected to one of the phase shifting chips.
  • the present invention also provides an electronic device including the above-mentioned antenna module.
  • the beneficial effect of the present invention is to increase the gain of the antenna module and increase the bandwidth of the antenna module.
  • FIG. 1 is an exploded view of an antenna unit provided by an embodiment of the present invention
  • Figure 2 is a top view of an antenna unit provided by an embodiment of the present invention.
  • FIG. 3 is a schematic structural diagram of a first radiating unit and a first metal frame provided by an embodiment of the present invention
  • Figure 4 is an exploded view of a first circuit board provided by an embodiment of the present invention.
  • FIG. 5 is an exploded view of an antenna module with antenna elements arranged in a 10*10 array according to an embodiment of the present invention
  • FIG. 6 is a top view of a first circuit board of an antenna module with antenna elements arranged in a 10*10 array according to an embodiment of the present invention
  • FIG. 7 is a schematic structural diagram of a first circuit board, a second circuit board, and a phase shifting unit of an antenna module with antenna units arranged in a 10*10 array according to an embodiment of the present invention
  • FIG. 8 is a bottom view of the cooperation of the first circuit board, the second circuit board, and the phase shifting unit of the antenna module with the antenna units arranged in a 10*10 array according to an embodiment of the present invention
  • FIG. 9 is a top view of an antenna module with antenna elements arranged in a 10*10 array according to an embodiment of the present invention.
  • FIG. 10a is a graph of reflection coefficient of single antenna unit No. 25-28 of the antenna module with antenna units arranged in a 10*10 array according to an embodiment of the present invention
  • FIG. 10b is a graph of isolation between antenna modules No. 25-28 individual antenna elements provided by an embodiment of the present invention with antenna elements arranged in a 10*10 array;
  • Fig. 11a is a graph of reflection coefficients of single antenna elements No. 4, 12, 20, and 28 of antenna modules with antenna elements arranged in a 10*10 array according to an embodiment of the present invention
  • FIG. 11b is a graph of isolation between antenna modules No. 4, 12, 20, and 28 of antenna modules with antenna elements arranged in a 10*10 array according to an embodiment of the present invention
  • antenna unit; 100 antenna module; 1, first circuit board; 111, first slot; 112, feed column; 113, feed line; 114, perforation; 12, first ground layer; 13 14.
  • the first metal frame; 21 The first hollow groove; 3.
  • the first radiation unit; 30 The radiation unit group; 31.
  • the phase shift unit; 41 shift Phase chip; 5.
  • an embodiment of the present invention provides an antenna unit 10, including a first circuit board 1, a first metal frame 2, and a first radiating unit 3; the first radiating unit 3 and the first metal frame 2 are both It is stacked on the first circuit board 1 and the first metal frame 2 surrounds the outer periphery of the first radiating unit 3.
  • the first radiating unit 3 includes two opposite and spaced first radiating arms 31, two first radiating arms 31 They are respectively attached to two opposite inner surfaces of the first metal frame 2, a system ground and a feed structure are formed on the first circuit board 1, and the first radiating unit 3 and the first metal frame 2 are electrically connected to the system ground.
  • a horn-shaped opening is formed between two opposite first radiating arms 31 of the first radiating unit 3.
  • each first radiating arm 31 includes a first side wall 311 attached to the first circuit board 1, and is provided at an end of the first side wall 311 adjacent to the first metal frame 2 and connected to the first side wall 311.
  • a second side wall 312 perpendicular to the side wall 311, a third side wall 313 arranged at the other end of the first side wall 311 and perpendicular to the first side wall 311, parallel to the first side wall 311 and one end connected to the second side
  • the wall 312 is far away from the fourth side wall 314 at one end of the first side wall 311, and the fifth side wall 315 connecting the third side wall 313 and the fourth side wall 314.
  • the third side wall 313 extends along an edge perpendicular to the first side wall 311.
  • the length of the second side wall 312 in the direction perpendicular to the first side wall 311 is less than the length of the fourth side wall 314 in the direction perpendicular to the second side wall 312 is smaller than the length of the first side wall 311 in the direction perpendicular to the second side wall. Length in the 312 direction.
  • the third side walls 313 of the two first radiating arms 31 are arranged opposite to each other, so that the two first radiating arms 31 of each first radiating unit 3 have a constant width spacing at the end close to the third side wall 313, One end of the fifth side wall 315 gradually expands from the end of the fifth side wall 315 connected to the third side wall 313 to the end connected to the fourth side wall 314 to form a flared opening.
  • the present application does not limit the fifth side wall 315 to be a planar structure as shown in FIG. 1, and in other embodiments, it may be a curved structure.
  • the first radiating arm 31 may also have a planar structure.
  • the first radiation unit 3 is made of metal materials.
  • the first circuit board 1 includes a first ground layer 12, a first ground interlayer 13, a second ground layer 14, a second ground interlayer 15 and a third ground layer 16 stacked in sequence.
  • the layer 12 is provided with a first gap 111
  • the first ground interlayer 13, the second ground layer 14, the second ground interlayer 15 and the third ground layer 16 are all provided with a first clearance area 191 directly opposite to the first gap 111
  • the first ground interlayer 13, the second ground layer 14 and the second ground interlayer 15 are all provided with a second clearance area 192 that perpendicularly intersects and communicates with the respective first clearance area 191;
  • the first circuit board 1 also includes a container The feeder line 113 arranged in the second clearance area 192 of the second ground layer 14 and the feeder post 112 passing through the first circuit board 1.
  • the feeder post 112 is connected to one end of the feeder line 113 and is connected to the first grounding layer 12 ,
  • the second ground layer 14 and the third ground layer 16 are electrically isolated, the first metal frame 2 and the first radiating unit 3 are erected on the first ground layer 12, and the two first radiating arms 31 of the first radiating unit 3 Are symmetrically arranged on both sides of the width direction of the first gap 111, one of the first radiating arms 31 is arranged on the feeding column 112, and the end of the first radiating arm 31 facing the feeding column 112 is provided with a avoiding feeding column
  • the first circuit board 1 further includes a third ground barrier layer 17 laminated on the side of the third ground layer 16 away from the second ground barrier layer 15 and a second ground barrier layer 17 provided on the side of the third ground barrier layer 17 away from the third ground layer 16
  • the third grounding spacer layer 17 is provided with a third clearance area 193
  • the orthographic projections of the first clearance area 191 and the second clearance area 192 on the third grounding spacer layer 17 are both located in the third clearance area 193
  • the third ground layer 16, the third ground spacer layer 17 and the third clearance area 193 and the fourth ground layer 18 form the back cavity of the antenna unit 10.
  • the back cavity completely covers the first slot 111 to prevent leakage caused by the first slot 111 and reduce the back radiation of the first radiating unit 3, thereby reducing the backlobe level and increasing the gain of the antenna unit 10.
  • the power feeding pillar 112 penetrates the third clearance area 193 and is electrically isolated from the fourth ground layer 18.
  • the first ground interlayer 13, the second ground interlayer 15 and the third ground interlayer 17 may be implemented as a dielectric substrate, the first ground layer 12, the second ground layer 14, the third ground layer 16, and
  • the fourth ground layer 18 is a metal layer covering the surface of the dielectric substrate, and between the first ground layer 12, the second ground layer 14, the third ground layer 16, and the fourth ground layer 18 are provided on the dielectric substrate.
  • Metallized vias realize electrical connection.
  • the first gap 111, the first clearance area 191, and the second clearance area 192 located in each metal layer are formed by etching and other processes on each corresponding metal layer.
  • the feed line 113 is a pattern retained when the second clearance area 192 is etched on the second ground layer 14.
  • the third clearance area 193 is implemented as no metallized vias electrically connecting the third ground layer 16 and the fourth ground layer 18 are provided in the area.
  • the third clearance area 193 can also be realized by opening a through groove on the dielectric substrate, and the through groove is filled with a dielectric with a dielectric constant different from that of the third ground spacer 17.
  • the first gap 111, the first clearance area 191, the second clearance area 192, the feed line 113, and the feed post 112 form the feed structure of the first circuit board 1.
  • the conductive parts of the second ground layer 14, the second ground interlayer 15, the third ground layer 16, the third ground interlayer 17 and the fourth ground layer 18 form the system ground of the first circuit board 1.
  • the first circuit board 1 is provided with a perforation 114 penetrating through the barrier layer, and the feeding column 112 is inserted through the perforation 114 and is electrically connected to one end of the feeding line 113.
  • the feeding column 112 sequentially passes through the first The four ground layers 18, the third ground interlayer 17, the third ground layer 16, the second ground interlayer 15, the second ground layer 14, the first ground interlayer 13 and the first ground layer 12, and the first ground layer 12.
  • the second ground layer 14, the third ground layer 16, and the fourth ground layer 18 are electrically isolated.
  • the thickness of the first ground barrier layer 13 is the same as the thickness of the second ground barrier layer 15, and the thickness of the third ground barrier layer 17 is 2.5 times the thickness of the first ground barrier layer 13.
  • the first metal frame 2 is provided with a first hollow groove 21, and one end of the first radiating unit 3 provided with a first side wall 311 passes through the first hollow groove 21, and two of the first radiating unit 3
  • the second side walls 312 of the first radiating arms 31 are respectively attached to the two opposite side walls of the first hollow groove 21.
  • the first hollow groove 21 and the first slit 111 are both rectangular grooves, the length direction of the first hollow groove 21 and the length direction of the first slit 111 are in the same direction, and the first slit 111 is directly opposite to the first hollow groove 21.
  • the second side walls 312 of the two first radiating arms 31 of each first radiating unit 3 are respectively attached to the middle of the two long side walls opposite to the first hollow groove 21, and the two first radiating arms 31 The distance therebetween is equal to the width of the first slit 111.
  • the present invention also provides an antenna module 100 including the above-mentioned antenna unit 10.
  • the antenna module 100 includes a plurality of antenna units 10 distributed in an array, and the first circuit board 1 of the antenna unit 10 is integrally formed.
  • the first radiating elements 3 are arranged in an N*N plane array, and in any row and any column of the N*N plane array, any two adjacent first slits 111 have unequal lengths, and Two adjacent first slits 111 of any first radiating unit 3 have the same length.
  • the (N-2)*(N-2) feeding columns 112 of the first radiating unit 3 in the center of the N*N planar array are electrically connected to an external power source to form an active area 6, which is arranged in the center (N-2)*(N-2) of the first radiating unit 3 around the feeding column 112 of the first radiating unit 3 is electrically connected to the matching load to form the passive area 7.
  • the antenna module 100 is arranged in a 10*10 array
  • the active area 6 includes 64 first radiating elements 3 arranged in an 8*8 array
  • the passive area 7 includes 36 surrounding active areas 6
  • the first radiating unit 3 is arranged.
  • the two first radiating arms 31 of each first radiating unit 3 are perpendicular to the first circuit board 1, which is convenient for forming a phased array in combination with other first radiating units 3, increasing the gain of the antenna module 100 and increasing the antenna module 100 bandwidth.
  • the first slit 111 includes a plurality of first slits 111 having a length of L 1 and a length of L 2 , and L 1 and L 2 are not equal and both are smaller than the length of the first hollow groove 21 , Specifically, the ratio of L 1 to L 2 is 0.9.
  • the antenna module 100 further includes a second circuit board 5 disposed on a side of the first circuit board 1 away from the first radiating unit 3, and a second circuit board 5 disposed on the second circuit board 5 away from the first circuit board 1.
  • the radio frequency front end includes a phase shift unit 4 for phase shifting the antenna unit 10.
  • Each first radiating unit 3 is electrically connected to a phase shifting unit 4, and the phase shifting unit 4 is used to provide a phase difference for each first radiating unit 3 to guide the radiation pattern of the antenna module 100 within a required coverage angle to Keep the line-of-sight communication between the transmitter and receiver uninterrupted and increase the total gain.
  • the phase shifting unit 4 is used to distribute the phases of the first radiating units 3 according to a certain law, thereby forming a high-gain beam, and by changing the phase shift, the beam can be scanned in a certain spatial range to achieve a desired coverage angle.
  • the radiation pattern of the antenna module 100 is internally guided to maintain uninterrupted line-of-sight communication between the transmitter and the receiver using the antenna module 100, thereby improving its reliability.
  • the phase shifting unit 4 includes a plurality of phase shifting chips 41, each of the plurality of first radiation units 3 is arrayed as a radiation unit group 30, and each radiation unit group 30 is electrically connected to a phase shifting chip 41 correspondingly.
  • each radiating element group 30 includes four adjacent first radiating elements 3 arranged in a 2*2 array on the first ground layer 12.
  • FIG. 9 is a top view of an antenna module 100 with antenna units 10 arranged in a 10*10 array according to an embodiment of the present invention.
  • the antenna units 10 in the active area 6 are numbered, wherein the single antenna unit 10 No. 25-28 is represented by S25, S26, S27, and S28, and the single antenna unit 10 No. 4, 12, and 20 are represented by S4, S12 and S20 indicate.
  • FIG. 10a is a graph of the reflection coefficient of the antenna module 100 No. 25-28 single antenna unit 10 with the antenna unit 10 arranged in a 10*10 array according to an embodiment of the present invention. Among them, the antenna units No. 25 and No.
  • the length of the first slot 111 of 10 is L 2
  • the length of the first slot 111 of the antenna units 10 of Nos. 26 and 28 is L 1 .
  • the 25th and 27th antenna elements 10 have the same reflection coefficient
  • the 26th and 28th antenna elements 10 have the same reflection coefficient. Since the length L 1 is less than the length L 2 , the first antenna element 10 has the same reflection coefficient.
  • the reflection coefficient curves of the antenna elements Nos. 25 and 27 are slightly shifted to lower frequencies than the reflection coefficient curves of the antenna elements No. 26 and 28.
  • FIG. 10b is a graph of the isolation between the antenna modules 100 No. 25-28 individual antenna elements 10 with the antenna elements 10 arranged in a 10*10 array according to an embodiment of the present invention.
  • the isolation between two adjacent single antenna units 10 is the worst, that is, between the 25th and 26th antenna units 10, and between the 26th and 27th antenna units 10
  • the isolation between No. 27 and No. 28 antenna units 10 is the worst, with the worst value being -15.76 dB.
  • FIG. 11a is a graph showing the reflection coefficients of single antenna elements 10 of antenna module 100 No. 4, 12, 20, and 28 with antenna elements 10 arranged in a 10*10 array according to an embodiment of the present invention, wherein No. 4 and No. 20 are shown in FIG.
  • the length of the first slot 111 of the antenna unit 10 of No. 10 is L 2
  • the length of the first slot 111 of the antenna unit 10 of Nos. 12 and 28 is L 1 .
  • the 4th and 20th antenna elements 10 have the same reflection coefficient
  • the 12th and 28th antenna elements 10 have the same reflection coefficient. Since the length L 1 is less than the length L 2 , the first antenna element 10 has the same reflection coefficient.
  • FIG. 11b is a graph of the isolation between the antenna modules 100 No. 4, 12, 20, and 28 of the antenna unit 10 with the antenna unit 10 arranged in a 10*10 array according to an embodiment of the present invention. It can be seen from the figure that the isolation between two adjacent single antenna units 10 is the worst, that is, between the 4th and 12th antenna units 10, and between the 12th and 20th antenna units 10 And the isolation between No. 20 and No. 28 antenna units 10 is the worst, the worst value is -13.45dB, compared with the isolation between No. 25-28 single antenna units 10 shown in Figure 10b , The isolation between two adjacent antenna elements 10 in the single radiating element Nos. 4, 12, 20, and 28 is even worse.
  • Fig. 12b is the present invention
  • the 27th single antenna unit 10 has a half-power beam width (HPBW) with a width greater than 90° ( ⁇ : -45° ⁇ +45°) and 5.32
  • HPBW half-power beam width
  • Fig. 13b is an implementation of the present invention
  • the 27th single antenna unit 10 has a half-power beam width greater than 90° ( ⁇ : -45° ⁇ +45°) and a main beam gain value of 6.08dBi.
  • Fig. 14b is a gain pattern of the present invention
  • Fig. 15b is the present invention
  • the 28th single antenna unit 10 has a half-power beam width greater than 90° ( ⁇ : -45° ⁇ +45°) and a main beam gain value of 5.09dBi.
  • Fig. 16b is an implementation of the present invention
  • the antenna module 100 No. 28 of the antenna module 100 with antenna elements 10 arranged in an array of 10*10 is provided in the example.
  • Fig. 17b is the present invention
  • the phase differences between the antenna elements 10 corresponding to the antenna module 100 in Figure 18a and Figure 18b are 0°, +30°, +60°, +90°, +120° and +160°, respectively.
  • the phase differences between the antenna elements 10 corresponding to the antenna module 100 in Figure 19a and Figure 19b are 0°, +30°, +60°, +90°, +120° and +160°, respectively.
  • the phase differences between the corresponding antenna elements 10 of the antenna module 100 in Figure 20a and Figure 20b are 0°, +30°, +60°, +90°, +120° and +160°, respectively.
  • the present invention also provides an electronic device, including the above-mentioned antenna module 100 provided by the present invention.

Abstract

本发明提供一种天线单元、天线模组及电子设备,天线单元包括第一电路板、第一金属框以及第一辐射单元;所述第一辐射单元和所述第一金属框均叠设于所述第一电路板上且所述第一金属框围设于所述第一辐射单元外周,所述第一辐射单元包括两个相对且间隔的第一辐射臂,两个所述第一辐射臂分别贴设于所述第一金属框的两相对的内表面,所述第一电路板上形成有系统地及馈电结构,所述第一辐射单元和所述第一金属框均与所述系统地电连接。本发明的天线单元可以提高天线单元的增益,增大天线单元的带宽。

Description

一种天线单元、天线模组及电子设备 【技术领域】
本发明涉及通讯领域,尤其涉及一种天线单元、天线模组及电子设备。
【背景技术】
随着5G时代的到来,需要更高的数据传输速率。毫米波独有的高载频、大带宽特性是实现5G超高数据传输速率的主要手段,因此,毫米波频段丰富的带宽资源为高速传输速率提供了保障。5G频段中的26GHz(24.25-27.5GHz)和28GHz(27.5-29.5GHz)可以满足高流量和用户密度的需求,特别是26GHz频段,具有超过3GHz的连续频谱。
然而,由于毫米波频段电磁波剧烈的空间损耗,利用毫米波频段的无线通信天线系统需要采用相控阵的架构,以提高天线模组的增益和带宽。另外,在毫米波频段下,如果天线系统发射机和接收机之间不能保持视距通信,通信链路就容易中断,所以,毫米波天线能够控制辐射波束对保持视距通信很重要。
因此,有必要提供一种天线模组及电子设备,以实现较高的增益和较大的带宽。
【发明内容】
本发明的目的在于提供一种天线单元、天线模组及电子设备,以满足增益和带宽的需求。
本发明的技术方案如下:
一种天线单元,包括第一电路板、第一金属框以及第一辐射单元;所述第一辐射单元和所述第一金属框均叠设于所述第一电路板上且所述第一金属框围设于所述第一辐射单元外周,所述第一辐射单元包括两个相对且间隔的第一辐射臂,两个所述第一辐射臂分别贴设于所述第一金属框的两相对的内表面,所述第一电路板上形成有系统地及馈电结构,所述第一辐射单元和所述第一金属框均与所述系统地电连接。
进一步地,所述第一辐射单元的两个相对的所述第一辐射臂之间形成喇叭状张口。
进一步地,所述第一电路板包括依次层叠设置的第一接地层、第一接地隔层、第二接地层、第二接地隔层以及第三接地层,所述第一接地层设有第一缝隙,所述第一接地隔层、所述第二接地层、所述第二接地隔层以及所述第三接地层均设有与所述第一缝隙正对的第一净空区,所述第一接地隔层、所述第二接地层以及所述第二接地隔层均设有与各自的所述第一净空区垂直相交并连通的第二净空区;所述第一电路板还包括容设于所述第二接地层的所述第二净空区内的馈电线以及贯穿所述第一电路板的馈电柱,所述馈电柱与所述馈电线连接,且与所述第一接地层、第二接地层、第三接地层电隔离,所述第一金属框和所述第一辐射单元立设于所述第一接地层之上,所述第一辐射单元的两个所述第一辐射臂对称设置于所述第一缝隙宽度方向的两侧,其中一个所述第一辐射臂盖设于所述馈电柱之上且该第一辐射臂朝向所述馈电柱的一端设有用于避让所述馈电柱的第一避让槽。
进一步地,所述第一电路板还包括层叠设置于所述第三接地层远离所述第二接地隔层一侧的第三接地隔层以及设置于所述第三接地隔层远离所述第三接地层一侧的第四接地层,所述第三接地隔层设有第三净空区,所述第一净空区和所述第二净空区在所述第三接地隔层上的正投影均位于所述第三净空区内,所述第三接地层、所述第三接地隔层及其所述第三净空区、所述第四接地层形成所述天线单元的背腔。
进一步地,所述馈电柱穿设于所述第三净空区,且与所述第四接地层电隔离。
本发明还提供一种包含上述天线单元的天线模组,所述天线模组包括若干个呈阵列分布的所述天线单元,所述天线单元的所述第一电路板一体成型。
进一步地,所述第一辐射单元排布成N*N平面阵,且在所述N*N平面阵的任一行和任一列中,任意相邻的两个所述第一缝隙具有不相等的长度,且与任一所述第一辐射单元相邻的两个所述第一缝隙具有相等的长度。
进一步地,所述N*N平面阵正中心的(N-2)*(N-2)个第一辐射单元的所述馈电柱与外部电源电连接以形成有源区,环设于所述正中心的(N-2)*(N-2)个第一辐射单元周围的第一辐射单元的所述馈电柱与匹配负载电连接以形成无源区。
进一步地,所述天线模组还包括设于所述第一电路板远离所述第一辐射单元的一侧的第二电路板以及设于所述第二电路板远离所述第一电路板一侧的射频前端,所述射频前端包括用于对所述天线单元移相的移相单元。
进一步地,所述移相单元包括若干移相芯片,每若干个所述第一辐射单元阵列设置成一辐射单元组,每个所述辐射单元组与一个所述移相芯片对应电连接。
本发明还提供一种电子设备,包括上述的天线模组。
本发明的有益效果在于:提高天线模组的增益,增大天线模组的带宽。
【附图说明】
图1为本发明实施例提供的天线单元的爆炸图;
图2为本发明实施例提供的天线单元的俯视图;
图3为本发明实施例提供的第一辐射单元与第一金属框相互配合的结构示意图;
图4为本发明实施例提供的第一电路板的爆炸图;
图5为本发明实施例提供的10*10阵列排布天线单元的天线模组的爆炸图;
图6为本发明实施例提供的10*10阵列排布天线单元的天线模组的第一电路板的俯视图;
图7为本发明实施例提供的10*10阵列排布天线单元的天线模组的第一电路板、第二电路板和移相单元配合的一个角度结构示意图;
图8为本发明实施例提供的10*10阵列排布天线单元的天线模组的第一电路板、第二电路板和移相单元配合的仰视图;
图9为本发明实施例提供的10*10阵列排布天线单元的天线模组的俯视图;
图10a为本发明实施例提供的10*10阵列排布天线单元的天线模组第25-28号单个天线单元的反射系数曲线图;
图10b为本发明实施例提供的10*10阵列排布天线单元的天线模组第25-28号单个天线单元之间的隔离度的曲线图;
图11a为本发明实施例提供的10*10阵列排布天线单元的天线模组第4、12、20、28号单个天线单元的反射系数曲线图;
图11b为本发明实施例提供的10*10阵列排布天线单元的天线模组第4、12、20、28号单个天线单元之间的隔离度的曲线图;
图12a为本发明实施例提供的10*10阵列排布天线单元的天线模组第27号单个天线单元在Phi=0°平面内,24.25GHz的增益方向图;
图12b为本发明实施例提供的10*10阵列排布天线单元的天线模组第27号单个天线单元在Phi=90°平面内,24.25GHz的增益方向图;
图13a为本发明实施例提供的10*10阵列排布天线单元的天线模组第27号单个天线单元在Phi=0°平面内,26GHz的增益方向图;
图13b为本发明实施例提供的10*10阵列排布天线单元的天线模组第27号单个天线单元在Phi=90°平面内,26GHz的增益方向图;
图14a为本发明实施例提供的10*10阵列排布天线单元的天线模组第27号单个天线单元在Phi=0°平面内,27.5GHz的增益方向图;
图14b为本发明实施例提供的10*10阵列排布天线单元的天线模组第27号单个天线单元在Phi=90°平面内,27.5GHz的增益方向图;
图15a为本发明实施例提供的10*10阵列排布天线单元的天线模组第28号单个天线单元在Phi=0°平面内,24.25GHz的增益方向图;
图15b为本发明实施例提供的10*10阵列排布天线单元的天线模组第28号单个天线单元在Phi=90°平面内,24.25GHz的增益方向图;
图16a为本发明实施例提供的10*10阵列排布天线单元的天线模组第28号单个天线单元在Phi=0°平面内,26GHz的增益方向图;
图16b为本发明实施例提供的10*10阵列排布天线单元的天线模组第28号单个天线单元在Phi=90°平面内,26GHz的增益方向图;
图17a为本发明实施例提供的10*10阵列排布天线单元的天线模组第28号单个天线单元在Phi=0°平面内,27.5GHz的增益方向图;
图17b为本发明实施例提供的10*10阵列排布天线单元的天线模组第28号单个天线单元在Phi=90°平面内,27.5GHz的增益方向图;
图18a为本发明实施例提供的10*10阵列排布天线单元的天线模组在24.25GHz、各天线单元具有相差时,Phi=0°平面内的增益曲线图;
图18b为本发明实施例提供的10*10阵列排布天线单元的天线模组在24.25GHz、各天线单元具有相差时,Phi=90°平面内的增益曲线图;
图19a为本发明实施例提供的10*10阵列排布天线单元的天线模组在26GHz、各天线单元具有相差时,Phi=0°平面内的增益曲线图;
图19b为本发明实施例提供的10*10阵列排布天线单元的天线模组在26GHz、各天线单元具有相差时,Phi=90°平面内的增益曲线图;
图20a为本发明实施例提供的10*10阵列排布天线单元的天线模组在27.5GHz、各天线单元具有相差时,Phi=0°平面内的增益曲线图;
图20b为本发明实施例提供的10*10阵列排布天线单元的天线模组在27.5GHz、各天线单元具有相差时,Phi=90°平面内的增益曲线图。
图中:10、天线单元;100、天线模组;1、第一电路板;111、第一缝隙;112、馈电柱;113、馈电线;114、穿孔;12、第一接地层;13、第一接地隔层;14、第二接地层;15、第二接地隔层;16、第三接地层;17、第三接地隔层;18、第四接地层;191、第一净空区;192、第二净空区;193、第三净空区;2、第一金属框;21、第一镂空槽;3、第一辐射单元;30、辐射单元组;31、第一辐射臂;311、第一侧壁;312、第二侧壁;313、第三侧壁;314、第四侧壁;315、第五侧壁;316、第一避让槽;4、移相单元;41、移相芯片;5、第二电路板;6、有源区;7、无源区。
【具体实施方式】
下面结合图1至图20对本发明作详细描述。
请参阅图1至图9,本发明实施例提供一种天线单元10,包括第一电路板1、第一金属框2以及第一辐射单元3;第一辐射单元3和第一金属框2均叠设于第一电路板1上且第一金属框2围设于第一辐射单元3外周,第一辐射单元3包括两个相对且间隔的第一辐射臂31,两个第一辐射臂31分别贴设于第一金属框2的两相对的内表面,第一电路板1上形成有系统地及馈电结构,第一辐射单元3和第一金属框2均与系统地电连接。其中,第一辐射单元3的两个相对的第一辐射臂31之间形成喇叭状张口。
在本实施例中,每个第一辐射臂31包括贴合于第一电路板1的第一侧壁311、设于第一侧壁311与第一金属框2相邻的一端且与第一侧壁311垂直的第二侧壁312、设于第一侧壁311的另一端且与第一侧壁311垂直的第三侧壁313、与第一侧壁311平行且一端连接于第二侧壁312远离第一侧壁311一端的第四侧壁314、以及连接第三侧壁313和第四侧壁314的第五侧壁315,第三侧壁313沿垂直于第一侧壁311的方向的长度小于第二侧壁312沿垂直于第一侧壁311的方向的长度,第四侧壁314沿垂直于第二侧壁312的长度小于第一侧壁311沿垂直于第二侧壁312方向的长度。两个第一辐射臂31的第三侧壁313相对设置,以使每个第一辐射单元3的两个第一辐射臂31在靠近第三侧壁313的一端具有恒定宽度的间距,在靠近第五侧壁315的一端自第五侧壁315连接第三侧壁313的一端向连接第四侧壁314的一端间距逐渐张开以形成喇叭状张口。需要说明的是,本申请并不限定第五侧壁315为如图1所示的平面结构,在其他实施例中,其可以为曲面结构。另外,在其他实施方式中,第一辐射臂31也可以为平面结构。第一辐射单元3均采用金属材质制备。
请参阅图4,第一电路板1包括依次层叠设置的第一接地层12、第一接地隔层13、第二接地层14、第二接地隔层15以及第三接地层16,第一接地层12设有第一缝隙111,第一接地隔层13、第二接地层14、第二接地隔层15以及第三接地层16均设有与第一缝隙111正对的第一净空区191,第一接地隔层13、第二接地层14以及第二接地隔层15均设有与各自的第一净空区191垂直相交并连通的第二净空区192;第一电路板1还包括容设于第二接地层14的第二净空区192内的馈电线113以及贯穿第一电路板1的馈电柱112,馈电柱112与馈电线113的一端连接,且与第一接地层12、第二接地层14、第三接地层16电隔离,第一金属框2和第一辐射单元3立设于第一接地层12之上,第一辐射单元3的两个第一辐射臂31对称设置于第一缝隙111宽度方向的两侧,其中一个第一辐射臂31盖设于馈电柱112之上且该第一辐射臂31朝向馈电柱112的一端设有用于避让馈电柱112的第一避让槽316。通过设置第一避让槽316,防止馈电柱112与第一辐射臂31电连接,从而避免第一电路板 1与第一辐射单元3之间发生直接短路。
第一电路板1还包括层叠设置于第三接地层16远离第二接地隔层15一侧的第三接地隔层17以及设置于第三接地隔层17远离第三接地层16一侧的第四接地层18,第三接地隔层17设有第三净空区193,第一净空区191和第二净空区192在第三接地隔层17上的正投影均位于第三净空区193内,第三接地层16、第三接地隔层17及其第三净空区193、第四接地层18形成天线单元10的背腔。背腔完全覆盖于第一缝隙111上,防止第一缝隙111引起的漏电,减小第一辐射单元3的背向辐射,从而减小后瓣电平,增加天线单元10增益。
优选地,馈电柱112穿设于第三净空区193,且与第四接地层18电隔离。
在一个实施例中,第一接地隔层13、第二接地隔层15和第三接地隔层17可实现为电介质基板,第一接地层12、第二接地层14、第三接地层16以及第四接地层18为覆于电介质基板表面的金属层,且所述第一接地层12、第二接地层14、第三接地层16以及第四接地层18之间通过设于各电介质基板的金属化过孔实现电连接。位于各金属层的第一缝隙111、第一净空区191、第二净空区192实现为在各相应的金属层通过蚀刻等工艺形成。馈电线113为在第二接地层14上蚀刻第二净空区192时保留的图形。第三净空区193实现为在该区域范围内不设置电连接第三接地层16和第四接地层18的金属化过孔。在另一实施例中,第三净空区193还可以实现为在电介质基板上开设贯穿槽且该贯穿槽中填充有与第三接地隔层17介电常数不同的电介质。
上述第一缝隙111、第一净空区191、第二净空区192、馈电线113以及馈电柱112形成第一电路板1的馈电结构,第一接地层12、第一接地隔层13、第二接地层14、第二接地隔层15、第三接地层16、第三接地隔层17以及第四接地层18的导电部分形成第一电路板1的系统地。
在本实施例中,第一电路板1贯穿隔层开设有穿孔114,馈电柱112穿设于穿孔114中并与馈电线113的一端电连接,具体地,馈电柱112依次穿过第四接地层18、第三接地隔层17、第三接地层16、第二接地隔层15、第二接地层14、第一接地隔层13和第一接地层12,且与第一接地层12、第二接地层14、第三接地层16以及第四接地层18电隔离。其中,第一接地隔层13的厚度与第二接地隔层15的厚度相同,第三接地隔层17的厚度是第一接地隔层13厚度的2.5倍。
在本实施例中,第一金属框2设有第一镂空槽21,第一辐射单元3设有第一侧壁311的一端穿设于第一镂空槽21中,第一辐射单元3的两个第一辐射臂31的第二侧壁312分别贴合第一镂空槽21相对的两侧壁。具体地,第一镂空槽21和第一缝隙111均为矩形槽,第一镂空槽21的长度方向与第一缝隙111的长度方向为同一方向,第一缝隙111正对第一镂空槽21的中间位置设置,每个第一辐射单元3的两个第一辐射臂31的第二侧壁312分别贴合第一镂空槽21相对的两长侧壁的中部,并且两个第一辐射臂31之间的距离与第一缝隙111的宽度相等。通过设置设有第一镂空槽21的第一金属框2,可快速、准确地将第一辐射单元3设于第一电路板1的馈电结构处,提高天线单元10的排布速度和效率。
本发明还提供一种包含上述天线单元10的天线模组100,天线模组100包括若干个呈阵列分布的天线单元10,天线单元10的第一电路板1一体成型。
优选地,第一辐射单元3排布成N*N平面阵,且在N*N平面阵的任一行和任一列中,任意相邻的两个第一缝隙111具有不相等的长度,且与任一第一辐射单元3相邻的两个第一缝隙111具有相等的长度。
优选地,N*N平面阵正中心的(N-2)*(N-2)个第一辐射单元3的馈电柱112与外部电源电连接以形成有源区6,环设于正中心的(N-2)*(N-2)个第一辐射单元3周围的第一辐射单元3的馈电柱112与匹配负载电连接以形成无源区7。
请参阅图5,天线模组100以10*10的阵列排布,有源区6包括64个呈8*8阵列排布第一辐射单元3,无源区7包括36个环绕有源区6排布的第一辐射单元3。每个第一辐射单元3的两个第一辐射臂31垂直于第一电路板1,便于与其他第一辐射单元3联合形成相控阵列,提高天线模组100的增益,增大天线模组100的带宽。
请参阅图6,在本实施例中,第一缝隙111包括若干个长度为L 1和长度为L 2的第一缝隙111,L 1与L 2不相等且均小于第一镂空槽21的长度,具体地,L 1与L 2的比值为0.9。
请参阅图7和图8,天线模组100还包括设于第一电路板1远离第一辐射单元3的一侧的第二电路板5以及设于第二电路板5远离第一电路板1一侧的射频前端,射频前端包括用于对天线单元10移相的移相单元4。每个第一辐射单元3均与移相单元4电连接,移相单元4用于为各第一辐射单元 3提供相差,以在所需的覆盖角度内引导天线模组100的辐射模式,以保持发射机和接收机之间的视距通信不中断,增加总增益。具体的,移相单元4用于使各第一辐射单元3的相位按一定规律分布,从而形成高增益波束,并且通过相移的改变使得波束在一定空间范围内扫描,在所需的覆盖角度内引导天线模组100的辐射模式,以保持运用该天线模组100的发射机和接收机之间的视距通信不间断,从而提高其可靠性。
移相单元4包括若干移相芯片41,每若干个第一辐射单元3阵列设置成一辐射单元组30,每个辐射单元组30与一个移相芯片41对应电连接。在本实施例中,每个辐射单元组30包括在第一接地层12以2*2阵列排布的四个相邻的第一辐射单元3。
图9为本发明实施例提供的10*10阵列排布天线单元10的天线模组100的俯视图。对有源区6内的天线单元10进行编号,其中,第25-28号单个天线单元10分别用S25、S26、S27、S28表示,第4、12和20号单个天线单元10分别用S4、S12和S20表示。图10a为本发明实施例提供的10*10阵列排布天线单元10的天线模组100第25-28号单个天线单元10的反射系数曲线图,其中,第25号和第27号的天线单元10的第一缝隙111长度为L 2,第26号和第28号的天线单元10的第一缝隙111的长度为L 1。从图中可以看出,第25号和第27号天线单元10具有相同的反射系数,第26号和第28号天线单元10具有相同的反射系数,由于长度L 1小于长度L 2,所以第25号和第27号天线单元10的反射系数曲线相比第26号和第28号天线单元10的反射系数曲线稍稍偏向低频率。图10b为本发明实施例提供的10*10阵列排布天线单元10的天线模组100第25-28号单个天线单元10之间的隔离度的曲线图。从图中可以看出,相邻的两个单个天线单元10之间的隔离度最差,即第25号和第26号天线单元10之间、第26号和第27号天线单元10之间以及第27号和第28号天线单元10之间的隔离度最差,最差值达-15.76dB。
图11a为本发明实施例提供的10*10阵列排布天线单元10的天线模组100第4、12、20、28号单个天线单元10的反射系数曲线图,其中,第4号和第20号的天线单元10的第一缝隙111的长度为L 2,第12号和第28号的天线单元10的第一缝隙111的长度为L 1。从图中可以看出,第4号和第20号天线单元10具有相同的反射系数,第12号和第28号天线单元10具有相同的反射系数,由于长度L 1小于长度L 2,所以第4号和第20号天线单元10的反射系数曲线相比第12号和第28号天线单元10的反射系数曲线偏向低频率。图11b为本发明实施例提供的10*10阵列排布天线单元10的天线模组100第4、12、20、28号单个天线单元10之间的隔离度的曲线图。从图中可以看出,相邻的两个单个天线单元10之间的隔离度最差,即第4号和第12号天线单元10之间、第12号和第20号天线单元10之间以及第20号和第28号天线单元10之间的隔离度最差,最差值达-13.45dB,与图10b中示出的第25-28号单个天线单元10之间的隔离度相比,第4、12、20、28号单个辐射单元中相邻两个天线单元10之间的隔离度更差。
图12a为本发明实施例提供的10*10阵列排布天线单元10的天线模组100第27号单个天线单元10在Phi=0°平面内,24.25GHz的增益方向图;图12b为本发明实施例提供的10*10阵列排布天线单元10的天线模组100第27号单个天线单元10在Phi=90°平面内,24.25GHz的增益方向图。从图12a和图12b中可以看出,第27号单个天线单元10具有宽度大于90°(θ:-45°~+45°)的半功率波束宽度(Half-Power Beam Width,HPBW)和5.32dBi的主波束增益值。
图13a为本发明实施例提供的10*10阵列排布天线单元10的天线模组100第27号单个天线单元10在Phi=0°平面内,26GHz的增益方向图;图13b为本发明实施例提供的10*10阵列排布天线单元10的天线模组100第27号单个天线单元10在Phi=90°平面内,26GHz的增益方向图。从图13a和图13b中可以看出,第27号单个天线单元10具有宽度大于90°(θ:-45°~+45°)的半功率波束宽度和6.08dBi的主波束增益值。
图14a为本发明实施例提供的10*10阵列排布天线单元10的天线模组100第27号单个天线单元10在Phi=0°平面内,27.5GHz的增益方向图;图14b为本发明实施例提供的10*10阵列排布天线单元10的天线模组100第27号单个天线单元10在Phi=90°平面内,27.5GHz的增益方向图。从图14a和图14b中可以看出,第27号单个天线单元10具有宽度大于90°(θ:-45°~+45°)的半功率波束宽度和5.77dBi的主波束增益值。
图15a为本发明实施例提供的10*10阵列排布天线单元10的天线模组100第28号单个天线单元10在Phi=0°平面内,24.25GHz的增益方向图;图15b为本发明实施例提供的10*10阵列排布天线单元10的天线模组100第28号单个天线单元10在Phi=90°平面内,24.25GHz的增益方向图。从 图15a和图15b中可以看出,第28号单个天线单元10具有宽度大于90°(θ:-45°~+45°)的半功率波束宽度和5.09dBi的主波束增益值。
图16a为本发明实施例提供的10*10阵列排布天线单元10的天线模组100第28号单个天线单元10在Phi=0°平面内,26GHz的增益方向图;图16b为本发明实施例提供的10*10阵列排布天线单元10的天线模组100第28号单个天线单元10在Phi=90°平面内,26GHz的增益方向图。从图16a和图16b中可以看出,第28号单个天线单元10具有宽度大于90°(θ:-45°~+45°)的半功率波束宽度和6.47dBi的主波束增益值。
图17a为本发明实施例提供的10*10阵列排布天线单元10的天线模组100第28号单个天线单元10在Phi=0°平面内,27.5GHz的增益方向图;图17b为本发明实施例提供的10*10阵列排布天线单元10的天线模组100第28号单个天线单元10在Phi=90°平面内,27.5GHz的增益方向图。从图17a和图17b中可以看出,第28号单个天线单元10具有宽度大于90°(θ:-45°~+45°)的半功率波束宽度和6.18dBi的主波束增益值。
图18a为本发明实施例提供的10*10阵列排布的各天线单元10的天线模组100在24.25GHz、各天线单元10具有相差时,Phi=0°平面内的增益曲线图。图18b为本发明实施例提供的10*10阵列排布的各天线单元10的天线模组100在24.25GHz、各天线单元10具有相差时,Phi=90°平面内的增益曲线图。图18a和图18b中天线模组100相应的天线单元10间相差分别为0°,+30°,+60°,+90°,+120°和+160°,图18a和图18b只显示了θ角为正值的增益曲线,θ角为负值的增益曲线与θ角为正值的增益曲线相对于θ=0°对称显示。从图中可以看出,随着波束逐渐偏离0°时,增益的峰值会逐渐降低,这在相控阵天线中是常见的现象,例如,在Phi=0°平面内,波束从θ角为0°转向60°,天线增益从22.6dBi降至19.75dBi(增益损耗2.85dBi),在Phi=90°平面内,波束从θ角为0°转向60°,天线增益从22.6dBi降至19.72dBi(增益损耗2.88dBi)。
图19a为本发明实施例提供的10*10阵列排布的各天线单元10的天线模组100在26GHz、各天线单元10具有相差时,Phi=0°平面内的增益曲线图。图19b为本发明实施例提供的10*10阵列排布的各天线单元10的天线模组100在26GHz、各天线单元10具有相差时,Phi=90°平面内的增益曲线图。图19a和图19b中天线模组100相应的天线单元10间相差分别为0°,+30°,+60°,+90°,+120°和+160°,图19a和图19b只显示了θ角为正值的增益曲线,θ角为负值的增益曲线与θ角为正值的增益曲线相对于θ=0°对称显示。从图中可以看出,随着波束逐渐偏离0°时,增益的峰值会逐渐降低,这在相控阵天线中是常见的现象,例如,在Phi=0°平面内,波束从θ角为0°转向60°,天线增益从23.28dBi降至19.82dBi(增益损耗3.46dBi),在Phi=90°平面内,波束从θ角为0°转向60°,天线增益从23.28dBi降至19.73dBi(增益损耗3.55dBi)。
图20a为本发明实施例提供的10*10阵列排布的各天线单元10的天线模组100在27.5GHz、各天线单元10具有相差时,Phi=0°平面内的增益曲线图。图20b为本发明实施例提供的10*10阵列排布的各天线单元10的天线模组100在27.5GHz、各天线单元10具有相差时,Phi=90°平面内的增益曲线图。图20a和图20b中天线模组100相应的天线单元10间相差分别为0°,+30°,+60°,+90°,+120°和+160°,图20a和图20b只显示了θ角为正值的增益曲线,θ角为负值的增益曲线与θ角为正值的增益曲线相对于θ=0°对称显示。从图中可以看出,随着波束逐渐偏离0°时,增益的峰值会逐渐降低,这在相控阵天线中是常见的现象,例如,在Phi=0°平面内,波束从θ角为0°转向60°,天线增益从23.72dBi降至18.43dBi(增益损耗5.29dBi),在Phi=90°平面内,波束从θ角为0°转向60°,天线增益从23.72dBi降至18.2dBi(增益损耗5.52dBi)。
本发明还提供一种电子设备,包括本发明提供的上述的天线模组100。
以上的仅是本发明的实施方式,在此应当指出,对于本领域的普通技术人员来说,在不脱离本发明创造构思的前提下,还可以做出改进,但这些均属于本发明的保护范围。

Claims (11)

  1. 一种天线单元,其特征在于,包括第一电路板、第一金属框以及第一辐射单元;所述第一辐射单元和所述第一金属框均叠设于所述第一电路板上且所述第一金属框围设于所述第一辐射单元外周,所述第一辐射单元包括两个相对且间隔的第一辐射臂,两个所述第一辐射臂分别贴设于所述第一金属框的两相对的内表面,所述第一电路板上形成有系统地及馈电结构,所述第一辐射单元和所述第一金属框均与所述系统地电连接。
  2. 根据权利要求1所述的天线单元,其特征在于,所述第一辐射单元的两个相对的所述第一辐射臂之间形成喇叭状张口。
  3. 根据权利要求1所述的天线单元,其特征在于,所述第一电路板包括依次层叠设置的第一接地层、第一接地隔层、第二接地层、第二接地隔层以及第三接地层,所述第一接地层设有第一缝隙,所述第一接地隔层、所述第二接地层、所述第二接地隔层以及所述第三接地层均设有与所述第一缝隙正对的第一净空区,所述第一接地隔层、所述第二接地层以及所述第二接地隔层均设有与各自的所述第一净空区垂直相交并连通的第二净空区;所述第一电路板还包括容设于所述第二接地层的所述第二净空区内的馈电线以及贯穿所述第一电路板的馈电柱,所述馈电柱与所述馈电线连接,且与所述第一接地层、第二接地层、第三接地层电隔离,所述第一金属框和所述第一辐射单元立设于所述第一接地层之上,所述第一辐射单元的两个所述第一辐射臂对称设置于所述第一缝隙宽度方向的两侧,其中一个所述第一辐射臂盖设于所述馈电柱之上且该第一辐射臂朝向所述馈电柱的一端设有用于避让所述馈电柱的第一避让槽。
  4. 根据权利要求3所述的天线单元,其特征在于,所述第一电路板还包括层叠设置于所述第三接地层远离所述第二接地隔层一侧的第三接地隔层以及设置于所述第三接地隔层远离所述第三接地层一侧的第四接地层,所述第三接地隔层设有第三净空区,所述第一净空区和所述第二净空区在所述第三接地隔层上的正投影均位于所述第三净空区内,所述第三接地层、 所述第三接地隔层及其所述第三净空区、所述第四接地层形成所述天线单元的背腔。
  5. 根据权利要求4所述的天线单元,其特征在于,所述馈电柱穿设于所述第三净空区,且与所述第四接地层电隔离。
  6. 包含权利要求1-5任一项所述的天线单元的天线模组,其特征在于,所述天线模组包括若干个呈阵列分布的所述天线单元,所述天线单元的所述第一电路板一体成型。
  7. 根据权利要求6所述的天线模组,其特征在于,所述第一辐射单元排布成N*N平面阵,且在所述N*N平面阵的任一行和任一列中,任意相邻的两个所述第一缝隙具有不相等的长度,且与任一所述第一辐射单元相邻的两个所述第一缝隙具有相等的长度。
  8. 根据权利要求7所述的天线模组,其特征在于,所述N*N平面阵正中心的(N-2)*(N-2)个第一辐射单元的所述馈电柱与外部电源电连接以形成有源区,环设于所述正中心的(N-2)*(N-2)个第一辐射单元周围的第一辐射单元的所述馈电柱与匹配负载电连接以形成无源区。
  9. 根据权利要求8所述的天线模组,其特征在于,所述天线模组还包括设于所述第一电路板远离所述第一辐射单元的一侧的第二电路板以及设于所述第二电路板远离所述第一电路板一侧的射频前端,所述射频前端包括用于对所述天线单元移相的移相单元。
  10. 根据权利要求9所述的天线模组,其特征在于,所述移相单元包括若干移相芯片,每若干个所述第一辐射单元阵列设置成一辐射单元组,每个所述辐射单元组与一个所述移相芯片对应电连接。
  11. 一种电子设备,其特征在于,包括权利要求6所述的天线模组。
PCT/CN2019/115575 2019-10-18 2019-11-05 一种天线单元、天线模组及电子设备 WO2021072833A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910996154.3 2019-10-18
CN201910996154.3A CN110739531B (zh) 2019-10-18 2019-10-18 一种天线单元、天线模组及电子设备

Publications (1)

Publication Number Publication Date
WO2021072833A1 true WO2021072833A1 (zh) 2021-04-22

Family

ID=69270104

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/115575 WO2021072833A1 (zh) 2019-10-18 2019-11-05 一种天线单元、天线模组及电子设备

Country Status (3)

Country Link
US (1) US20210119345A1 (zh)
CN (1) CN110739531B (zh)
WO (1) WO2021072833A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11831078B1 (en) * 2022-05-12 2023-11-28 Wanshih Electronic Co., Ltd. Active array antenna module

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0920074A1 (en) * 1997-11-25 1999-06-02 Sony International (Europe) GmbH Circular polarized planar printed antenna concept with shaped radiation pattern
CN102255134A (zh) * 2011-04-21 2011-11-23 广东欧珀移动通信有限公司 一种多耦合式内置天线装置
CN108899642A (zh) * 2018-06-12 2018-11-27 瑞声科技(新加坡)有限公司 天线系统及应用该天线系统的移动终端
CN109742525A (zh) * 2018-12-31 2019-05-10 瑞声科技(南京)有限公司 一种滤波天线
CN110137672A (zh) * 2019-04-01 2019-08-16 华为技术有限公司 一种集边射和端射于一体的波束扫描天线阵列

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5334242B2 (ja) * 2008-09-05 2013-11-06 大学共同利用機関法人自然科学研究機構 受信イメージングアンテナアレイ
CN101707288B (zh) * 2009-11-13 2013-01-02 南京邮电大学 折叠式渐变槽线超宽带天线
US9912073B2 (en) * 2012-03-16 2018-03-06 Raytheon Company Ridged waveguide flared radiator antenna
CN106299636A (zh) * 2015-05-29 2017-01-04 联想(北京)有限公司 天线模组及包括该天线模组的电子设备
CN109638427B (zh) * 2018-12-26 2020-09-15 南通大学 宽带低轴比圆极化天线
CN109950695B (zh) * 2019-02-28 2024-03-22 禾邦电子(苏州)有限公司 一种通讯设备和实现5g移动通信的方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0920074A1 (en) * 1997-11-25 1999-06-02 Sony International (Europe) GmbH Circular polarized planar printed antenna concept with shaped radiation pattern
CN102255134A (zh) * 2011-04-21 2011-11-23 广东欧珀移动通信有限公司 一种多耦合式内置天线装置
CN108899642A (zh) * 2018-06-12 2018-11-27 瑞声科技(新加坡)有限公司 天线系统及应用该天线系统的移动终端
CN109742525A (zh) * 2018-12-31 2019-05-10 瑞声科技(南京)有限公司 一种滤波天线
CN110137672A (zh) * 2019-04-01 2019-08-16 华为技术有限公司 一种集边射和端射于一体的波束扫描天线阵列

Also Published As

Publication number Publication date
CN110739531B (zh) 2021-02-26
US20210119345A1 (en) 2021-04-22
CN110739531A (zh) 2020-01-31

Similar Documents

Publication Publication Date Title
US10431892B2 (en) Antenna-in-package structures with broadside and end-fire radiations
US11735807B2 (en) Antenna module and electronic device
US9698487B2 (en) Array antenna
US10044111B2 (en) Wideband dual-polarized patch antenna
US20150070228A1 (en) Antenna-in-package structures with broadside and end-fire radiations
US20200203851A1 (en) Multiaxial antenna, wireless communication module, and wireless communication device
US6285323B1 (en) Flat plate antenna arrays
EP0910134A2 (en) Flat plate antenna arrays
CN210805998U (zh) 封装天线、射频芯片封装模组及雷达封装芯片
WO2022042231A1 (zh) 天线单元、天线阵列及电子设备
US11322841B2 (en) Antenna module and communication device equipped with the same
WO2022242069A1 (zh) 双极化滤波天线单元和双极化滤波天线阵列
KR102203179B1 (ko) 높은 격리도를 갖는 이중 편파 안테나
WO2021072833A1 (zh) 一种天线单元、天线模组及电子设备
CN115207613B (zh) 一种宽带双极化天线单元及天线阵列
US10804609B1 (en) Circular polarization antenna array
TWI674704B (zh) 低旁波瓣陣列天線
JPH06125214A (ja) 平面アンテナ
KR100449836B1 (ko) 송/수신 겸용 광대역 마이크로스트립 패치 안테나 및 이를 배열한 배열 안테나
JP2591806B2 (ja) マイクロストリップアレーアンテナ
JP3004439B2 (ja) 平面アンテナ
WO2021098793A1 (zh) 天线装置、芯片和终端
WO2023145887A1 (ja) アンテナおよび通信モジュール
Wu et al. One-dimensional Steerable End-fire Orthogonal Beams for 5G Millimeter Wave Applications by L-shape Antenna Element Arrangement in Antenna-in-Packaging Design
CN117525830A (zh) 堆叠式天线模组

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19949427

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19949427

Country of ref document: EP

Kind code of ref document: A1