WO2023145887A1 - アンテナおよび通信モジュール - Google Patents

アンテナおよび通信モジュール Download PDF

Info

Publication number
WO2023145887A1
WO2023145887A1 PCT/JP2023/002677 JP2023002677W WO2023145887A1 WO 2023145887 A1 WO2023145887 A1 WO 2023145887A1 JP 2023002677 W JP2023002677 W JP 2023002677W WO 2023145887 A1 WO2023145887 A1 WO 2023145887A1
Authority
WO
WIPO (PCT)
Prior art keywords
elements
pitch
feed
power supply
parasitic
Prior art date
Application number
PCT/JP2023/002677
Other languages
English (en)
French (fr)
Inventor
達弥 守田
大輔 山本
毅樹 中島
Original Assignee
京セラ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京セラ株式会社 filed Critical 京セラ株式会社
Publication of WO2023145887A1 publication Critical patent/WO2023145887A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q13/00Waveguide horns or mouths; Slot antennas; Leaky-waveguide antennas; Equivalent structures causing radiation along the transmission path of a guided wave
    • H01Q13/08Radiating ends of two-conductor microwave transmission lines, e.g. of coaxial lines, of microstrip lines
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • H01Q21/06Arrays of individually energised antenna units similarly polarised and spaced apart
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q23/00Antennas with active circuits or circuit elements integrated within them or attached to them

Definitions

  • the disclosed embodiments relate to antennas and communication modules.
  • An antenna of the present disclosure includes a substrate, a plurality of feeding elements, and a plurality of parasitic elements.
  • the substrate is composed of a dielectric.
  • a plurality of feed elements are arranged in a matrix along the surface of the substrate.
  • a plurality of parasitic elements are arranged side by side so as to surround a feeder element group composed of the plurality of feeder elements. Also, the pitch in the steering direction between the parasitic elements adjacent in the steering direction is narrower than the pitch in the steering direction between the feed elements adjacent in the steering direction.
  • FIG. 1 is a front view showing an example of the configuration of an array antenna according to an embodiment
  • FIG. FIG. 2 is a cross-sectional view showing an example of the configuration of the feeding element according to the embodiment.
  • FIG. 3 is a front view showing an example of the configuration of the feeding element according to the embodiment;
  • FIG. 4 is a diagram showing beam steering characteristics in the E-plane of the array antennas of the embodiment and the reference example.
  • FIG. 5 is a diagram showing beam steering characteristics in the E-plane of the array antennas of the embodiment and the reference example.
  • FIG. 6 is a diagram showing beam steering characteristics in the E-plane of the array antennas of the embodiment and the reference example.
  • FIG. 7 is a diagram showing beam steering characteristics in the -60 (°) direction and +60 (°) direction of the array antennas of the embodiment and the reference example.
  • FIG. 8 is a diagram showing changes in gain in the E-plane direction when the pitch ratio of the array antenna is changed.
  • FIG. 9 is a diagram showing beam steering characteristics when the size of the parasitic element is changed.
  • 10 is a front view showing an example of the configuration of an array antenna according to another embodiment;
  • FIG. FIG. 11 is a diagram showing beam steering characteristics in the E-plane of array antennas of another embodiment and a reference example.
  • FIG. 12 is a diagram showing beam steering characteristics in the E-plane of array antennas of another embodiment and a reference example.
  • FIG. 13 is a diagram showing beam steering characteristics in the E-plane of array antennas of another embodiment and a reference example.
  • an array antenna in which a plurality of feed elements and a plurality of parasitic elements are arranged side by side on a substrate.
  • the radiation pattern collapses in directions greatly inclined from the front direction of the antenna (for example, ⁇ 60 (°) directions).
  • PAAM Physical Array Antenna Module
  • the antenna and control circuit are placed on the same substrate, if the size of the ground layer is larger than the size of the array antenna, the radiation pattern may be greatly disrupted. rice field.
  • FIG. 1 is a front view showing an example of the configuration of an array antenna 1 according to an embodiment.
  • Array antenna 1 is an example of an antenna.
  • an array antenna 1 includes a substrate 2, a plurality of feeding elements 3, and a plurality of parasitic elements 4.
  • the X-axis, the Y-axis and the Z-axis that are orthogonal to each other are defined, the Z-axis direction is the thickness direction of the substrate 2, and the X-axis direction is the array antenna 1 and the Y-axis direction of the array antenna 1 are defined as the H-plane direction.
  • the substrate 2 is made of dielectric material and has, for example, a flat plate shape.
  • the substrate 2 may be made of a ceramic material such as an aluminum oxide sintered body, a glass ceramic sintered body, a mullite sintered body or an aluminum nitride sintered body, or may be made of an organic material. .
  • a plurality of feeder elements 3 are arranged side by side along the surface 2a of the substrate 2, and the plurality of feeder elements 3 form one feeder element group 3A.
  • 8 ⁇ 8 feeding elements 3 are arranged in a matrix along the surface 2 a of the substrate 2 .
  • the number and arrangement of the feeding elements 3 provided in the array antenna 1 are not limited to the example in FIG. 1 .
  • FIG. 2 is a cross-sectional view showing an example of the configuration of the feeding element 3 according to the embodiment
  • FIG. 3 is a front view showing an example of the configuration of the feeding element 3 according to the embodiment.
  • the feeding element 3 according to the embodiment is a patch antenna (microstrip antenna) configured by arranging a plurality of metal layers on the surface 2a of the substrate 2 and inside.
  • the feeding element 3 includes a feeding layer 11, a ground layer 12, a feeding patch layer 13, and a parasitic patch layer 14 as metal layers arranged parallel to the surface 2a of the substrate 2. Further, the feeding element 3 includes feeding vias 21 and short-circuit vias 22 as via conductors arranged perpendicularly to the surface 2 a of the substrate 2 .
  • metal layers and via conductors are composed of metal materials such as copper, silver, palladium, gold, platinum-tungsten, molybdenum, or manganese, or alloy materials or mixed materials containing these metal materials as main components.
  • the power supply layer 11 is arranged farthest from the surface 2a of the substrate 2 among the metal layers described above.
  • the power feeding layer 11 is electrically connected to a control IC (not shown).
  • Such a control IC outputs, for example, a modulated electrical signal as an electrical signal corresponding to the radio waves to be transmitted to the power supply patch layer 13 via the power supply layer 11 and the power supply via 21 .
  • the control IC collects electrical signals corresponding to radio waves received by the power supply element 3 from the power supply patch layer 13 via the power supply via 21 and the power supply layer 11 and the like.
  • the ground layer 12 is arranged inside the substrate 2 closer to the surface 2 a than the power feeding layer 11 . Also, the ground layer 12 is connected to a ground potential (not shown).
  • the power supply patch layer 13 is arranged inside the substrate 2 closer to the surface 2a than the ground layer 12 is.
  • the power supply patch layer 13 is electrically connected to the power supply layer 11 through the power supply vias 21, and is supplied with electric signals from the control IC described above.
  • the power supply patch layer 13 has a square shape with side lengths corresponding to the frequency of radio waves to be transmitted and received.
  • the power supply patch layer 13 is not limited to a square shape, and may have various shapes.
  • the parasitic patch layer 14 is arranged on the surface 2 a of the substrate 2 .
  • the parasitic patch layer 14 has a square shape, for example, as shown in FIG.
  • the parasitic patch layer 14 is arranged so as to overlap the power supply patch layer 13 in plan view.
  • the power supply via 21 electrically connects the power supply layer 11 and the power supply patch layer 13 .
  • the dielectric constituting the substrate 2 is arranged between the feed via 21 and the ground layer 12, the feed via 21 and the ground layer 12 are electrically insulated from each other.
  • one feed patch layer 13 is connected to two feed vias 21 (hereinafter also referred to as feed vias 21A and 21B).
  • the feed via 21 is connected at a position distant from the center of the feed patch layer 13 due to the input impedance (reflection characteristic) requirement of the feed element 3, for example, and is 90 mm so as to correspond to the polarization characteristics in two orthogonal directions. (°) at different positions.
  • the feed via 21A is connected to a position away from the center of the feed patch layer 13 in the -Y direction
  • the feed via 21B is connected to a position away from the center of the feed patch layer 13 in the -X direction.
  • the short via 22 electrically connects the power supply patch layer 13 and the ground layer 12 .
  • two short vias 22 (hereinafter also referred to as short vias 22A and 22B) are connected to one feed patch layer 13 .
  • the short-circuit via 22 is connected at a position away from the center of the power supply patch layer 13 and closer to the center of the power supply patch layer 13 than the power supply via 21, for example.
  • the short via 22A is connected to a position away from the center of the power supply patch layer 13 in the +Y direction
  • the short via 22B is connected to a position away from the center of the power supply patch layer 13 in the +X direction.
  • a plurality of parasitic elements 4 are arranged side by side so as to surround a feed element group 3 ⁇ /b>A composed of a plurality of feed elements 3 .
  • the plurality of parasitic elements 4 may be arranged so as to doubly surround the periphery of the feed element group 3A.
  • parasitic elements 4 may be arranged in rows or columns with respect to the plurality of feed elements 3 arranged in a matrix. Further, parasitic elements 4 adjacent to each other may also be arranged in rows or columns.
  • the parasitic element 4 is an element to which power is not supplied from the power supply layer 11 .
  • the configuration of the parasitic element 4 is, for example, the configuration of the feeder element 3 shown in FIGS. Thereby, the parasitic element 4 functions as a parasitic element.
  • the pitch in the steering direction between the parasitic elements 4 adjacent along the steering direction is greater than the pitch in the steering direction between the feed elements 3 adjacent along the steering direction. is also narrow.
  • the pitch PE2 in the E-plane direction between the parasitic elements 4 adjacent along the E-plane direction (X-axis direction) is equal to the E It is narrower than the pitch PE1 in the surface direction.
  • the pitch PH2 in the H-plane direction between the parasitic elements 4 adjacent along the H-plane direction (Y-axis direction) is is narrower than the pitch PH1.
  • the radiation pattern in the direction greatly inclined from the front direction of the antenna is improved. Collapse can be reduced.
  • the array antenna 1 of the reference example means the pitches PE2 and PH2 between the adjacent parasitic elements 4 and the pitches PE2 and PH2 between the adjacent feed elements 3 in the array antenna 1 according to the embodiment shown in FIG. are array antennas having the same pitches PE1 and PH1.
  • the array antenna 1 of the embodiment and the reference example has the ground layer 12 having a larger area than the area where the multiple feeding elements 3 and the multiple parasitic elements 4 are arranged.
  • the length of one side of the ground layer 12 is approximately twice the length of one side of the feed element group 3A. It should be noted that the results shown in FIGS. 4 to 6 correspond to E-plane steering in the feed via 21A (see FIG. 3).
  • FIG. 4 shows beam steering characteristics at a frequency of 26.5 (GHz)
  • FIG. 5 shows beam steering characteristics at a frequency of 28 (GHz)
  • FIG. 6 shows beam steering characteristics at a frequency of 29.5 (GHz). characterize.
  • the array antenna 1 according to the embodiment radiates in directions greatly inclined from the front direction ( ⁇ 60 (°) direction and +60 (°) direction here) compared to the reference example. It can be seen that the pattern collapse is reduced and the gain in this direction is improved.
  • the collapse of the radiation pattern which is conspicuous when the area of the ground layer 12 is larger than that of the array antenna 1, can be reduced by narrowing the pitches PE2 and PH2. It is presumed that this is because the shielding effect for the ground layer 12 can be enhanced by narrowing the pitches PE2 and PH2.
  • the array antenna 1 enables wide-angle beam steering.
  • the areas where the plurality of feed elements 3 and the plurality of parasitic elements 4 are arranged and the area of the ground layer 12 may be substantially equal, or the plurality of feed elements 3 and the plurality of parasitic elements 4
  • the area of the ground layer 12 may be smaller than the area where the is arranged.
  • FIG. 7 is a diagram showing beam steering characteristics of the array antenna 1 of the embodiment and the reference example in the -60 (°) direction and +60 (°) direction. As shown in FIG. 7, the array antenna 1 according to the embodiment can reduce the second lobe in the direction greatly inclined from the front direction of the antenna, compared to the reference example.
  • noise due to interference can be reduced, so the communication quality of the array antenna 1 can be improved.
  • FIG. 8 is a diagram showing changes in gain in the E-plane direction when the pitch ratio of the array antenna 1 is changed.
  • the “pitch ratio” is the ratio of the pitch PE2 (or pitch PH2) between the parasitic elements 4 to the pitch PE1 (or pitch PH1) between the feed elements 3 .
  • the pitch in the steering direction between the parasitic elements 4 adjacent along the steering direction is 70% to 90% of the pitch in the steering direction between the feed elements 3 adjacent along the steering direction.
  • FIGS. 4 to 6 described above show the results when the pitch ratio is 80(%).
  • FIG. 9 is a diagram showing beam steering characteristics when the size of the parasitic element 4 is changed.
  • the size of the feeding element 3 is 2.57 (mm) square
  • the ⁇ 60 (°) direction, the front direction, and the +60 (°) H plane direction 26 of the array antenna 1 0.5 (GHz) beam steering characteristics.
  • FIG. 9 by making the parasitic element 4 larger than the feeding element 3, the gain in the -60 (°) direction and the +60 (°) direction can be improved. Therefore, according to the embodiment, wider-angle beam steering is possible in the array antenna 1 .
  • FIGS. 4 to 6 described above show the results when the feeding element 3 and the parasitic element 4 have the same size.
  • a plurality of parasitic elements 4 may doubly surround the feed element group 3A. Further, a plurality of parasitic elements 4 may be arranged to surround the feed element group 3A in three or more layers. In this case, from the viewpoint of the effect of shielding the ground layer 12 and of suppressing an increase in the area of the array antenna 1, it is preferable to form a double enclosure.
  • the steering direction pitch between the feeding element 3 and the parasitic element 4 adjacent along the steering direction is equal to the steering direction pitch between the feeding elements 3 adjacent along the steering direction. may be narrower than the pitch of
  • the pitch PE3 in the E-plane direction between the feeding element 3 and the parasitic element 4 adjacent along the E-plane direction is equal to the E-plane pitch PE3 between the feeding elements 3 adjacent along the E-plane direction. It may be narrower than the directional pitch PE1.
  • the pitch PH3 in the H-plane direction between the feeding element 3 and the parasitic element 4 adjacent along the H-plane direction is It may be narrower than the pitch PH1.
  • the shielding effect for the ground layer 12 can be further enhanced, so that the collapse of the radiation pattern in the direction greatly inclined from the front direction of the antenna can be further reduced. Therefore, according to the embodiment, wider-angle beam steering is possible in the array antenna 1 .
  • the pitch PE1 in the E-plane direction between the feeding elements 3 adjacent along the E-plane direction is equal to the pitch PH1 in the H-plane direction between the feeding elements 3 adjacent along the H-plane direction. may be different.
  • FIG. 10 is a front view showing an example configuration of an array antenna 1 according to another embodiment. As shown in FIG. 10, an array antenna 1 according to another embodiment differs from the above-described embodiment in the arrangement of parasitic elements 4 .
  • a plurality of parasitic elements 4 arranged to surround the feed element group 3A are arranged in a zigzag manner with respect to the plurality of feed elements 3 . That is, in another embodiment, parasitic elements 4 are arranged so as to shift rows or columns with respect to a plurality of feed elements 3 arranged in a matrix.
  • the pitch in the steering direction between the parasitic elements 4 adjacent in the steering direction is the same as the pitch in the steering direction between the feed elements 3 adjacent in the steering direction. narrower than the pitch.
  • the pitch PE2 in the E-plane direction between the parasitic elements 4 adjacent along the E-plane direction (X-axis direction) is is narrower than the pitch PE1 in the E-plane direction.
  • the pitch PH2 in the H-plane direction between the parasitic elements 4 adjacent along the H-plane direction is the same as the pitch PH2 between the feeding elements 3 adjacent along the H-plane direction. It is narrower than the pitch PH1 in the surface direction.
  • FIGS. 11 to 13 are diagrams showing beam steering characteristics in the E-plane of array antennas 1 of another embodiment and a reference example. Note that the results shown in FIGS. 11 to 13 correspond to E-plane steering in the feed via 21A (see FIG. 3).
  • FIG. 11 shows beam steering characteristics at a frequency of 26.5 (GHz)
  • FIG. 12 shows beam steering characteristics at a frequency of 28 (GHz)
  • FIG. 13 shows beam steering characteristics at a frequency of 29.5 (GHz). characterize.
  • the array antenna 1 according to another embodiment is tilted greatly from the front direction (here, -60 (°) direction and +60 (°) direction) compared to the reference example. It can be seen that the collapse of the radiation pattern in the direction is further reduced, and the gain in this direction is further improved.
  • the array antenna 1 allows wider angle beam steering.
  • the array antenna 1 described above becomes a communication module in combination with an RF element. Therefore, this communication module also enables wide-angle beam steering.
  • the array antenna 1 includes a substrate 2, a plurality of feeding elements 3, and a plurality of parasitic elements 4.
  • the substrate 2 is composed of a dielectric.
  • a plurality of feeding elements 3 are arranged in a matrix along the surface 2 a of the substrate 2 .
  • a plurality of parasitic elements 4 are arranged side by side so as to surround a feed element group 3 ⁇ /b>A composed of a plurality of feed elements 3 .
  • Pitches PE2 and PH2 in the steering direction between parasitic elements 4 adjacent in the steering direction are narrower than pitches PE1 and PH1 in the steering direction between feed elements 3 adjacent in the steering direction. This enables wide-angle beam steering in the array antenna 1 .
  • the pitches PE2 and PH2 in the steering direction between the parasitic elements 4 adjacent in the steering direction are equal to the pitches PE1 in the steering direction between the feed elements 3 adjacent in the steering direction. , 70(%) to 90(%) of PH1. Thereby, the beam steering characteristics of the array antenna 1 can be improved in a wide band.
  • the plurality of parasitic elements 4 doubly surround the feed element group 3A. As a result, it is possible to reduce the collapse of the radiation pattern in the direction greatly inclined from the front direction of the antenna, and to reduce the area of the array antenna 1 .
  • the plurality of parasitic elements 4 are arranged in a zigzag pattern with respect to the plurality of feeding elements 3 . This allows the array antenna 1 to perform wider-angle beam steering.
  • the parasitic element 4 is larger than the feeding element 3 . This allows the array antenna 1 to perform wider-angle beam steering.
  • the short-circuit via 22 that connects the ground layer 12 and the power supply patch layer 13 is provided in the power supply element 3
  • the present disclosure is not limited to such an example, and the short-circuit via 22 is not limited to such an example. It may not be provided in the feeding element 3 .
  • Array antenna (an example of an antenna) 2 substrate 2a surface 3 feeding element 3A feeding element group 4 parasitic elements PE1 to PE3, PH1 to PH3 pitch

Landscapes

  • Variable-Direction Aerials And Aerial Arrays (AREA)

Abstract

アンテナは、基板と、複数の給電素子と、複数の無給電素子と、を備える。基板は、誘電体で構成される。複数の給電素子は、基板の表面に沿って行列状に並んで配置される。複数の無給電素子は、複数の給電素子で構成される給電素子群の周囲を囲むように並んで配置される。また、ステアリング方向に沿って隣接する無給電素子同士のステアリング方向のピッチは、ステアリング方向に沿って隣接する給電素子同士のステアリング方向のピッチよりも狭い。通信モジュールは、上記構成のアンテナと、RF素子とを有する。

Description

アンテナおよび通信モジュール
 開示の実施形態は、アンテナおよび通信モジュールに関する。
 従来、基板上に複数の給電素子と複数の無給電素子とが並んで配置されるアレイアンテナが開示されている(例えば、特許文献1参照)。
特開2006-121406号公報
 本開示のアンテナは、基板と、複数の給電素子と、複数の無給電素子と、を備える。基板は、誘電体で構成される。複数の給電素子は、前記基板の表面に沿って行列状に並んで配置される。複数の無給電素子は、複数の前記給電素子で構成される給電素子群の周囲を囲むように並んで配置される。また、ステアリング方向に沿って隣接する前記無給電素子同士の前記ステアリング方向のピッチは、前記ステアリング方向に沿って隣接する前記給電素子同士の前記ステアリング方向のピッチよりも狭い。
図1は、実施形態に係るアレイアンテナの構成の一例を示す正面図である。 図2は、実施形態に係る給電素子の構成の一例を示す断面図である。 図3は、実施形態に係る給電素子の構成の一例を示す正面図である。 図4は、実施形態および参考例のアレイアンテナのE面におけるビームステアリング特性を示す図である。 図5は、実施形態および参考例のアレイアンテナのE面におけるビームステアリング特性を示す図である。 図6は、実施形態および参考例のアレイアンテナのE面におけるビームステアリング特性を示す図である。 図7は、実施形態および参考例のアレイアンテナの-60(°)方向および+60(°)方向のビームステアリング特性を示す図である。 図8は、アレイアンテナのピッチ比率を変更した場合のE面方向の利得の推移を示す図である。 図9は、無給電素子のサイズを変更した場合のビームステアリング特性を示す図である。 図10は、実施形態の別の実施形態に係るアレイアンテナの構成の一例を示す正面図である。 図11は、実施形態の別の実施形態および参考例のアレイアンテナのE面におけるビームステアリング特性を示す図である。 図12は、実施形態の別の実施形態および参考例のアレイアンテナのE面におけるビームステアリング特性を示す図である。 図13は、実施形態の別の実施形態および参考例のアレイアンテナのE面におけるビームステアリング特性を示す図である。
 以下、添付図面を参照して、本願の開示するアンテナおよび通信モジュールの実施形態について説明する。なお、以下に示す実施形態により本開示が限定されるものではない。
 また、以下に示す実施形態では、「一定」、「直交」、「垂直」あるいは「平行」といった表現が用いられる場合があるが、これらの表現は、厳密に「一定」、「直交」、「垂直」あるいは「平行」であることを要しない。すなわち、上記した各表現は、例えば製造精度、設置精度などのずれを許容するものとする。
 従来、基板上に複数の給電素子と複数の無給電素子とが並んで配置されるアレイアンテナが開示されている。しかしながら、上記の従来技術では、アンテナの正面方向から大きく傾いた方向(たとえば、±60(°)方向)において、放射パターンが崩れる場合があった。
 たとえば、PAAM(Phased Array Antenna Module)などにおいて、アンテナと制御回路などとが同じ基板に配置される場合に、アレイアンテナのサイズよりもグランド層のサイズが大きくなると、放射パターンが大きく崩れる場合があった。
 そこで、アレイアンテナにおいて広角なビームステアリングを可能とする技術の実現が期待されている。
<実施形態>
 まず、実施形態に係るアレイアンテナ1の構成および特性について、図1~図9を参照しながら説明する。図1は、実施形態に係るアレイアンテナ1の構成の一例を示す正面図である。アレイアンテナ1は、アンテナの一例である。
 図1に示すように、実施形態に係るアレイアンテナ1は、基板2と、複数の給電素子3と、複数の無給電素子4とを備える。
 なお、本開示の添付図面では、位置関係を明確にするために、互いに直交するX軸、Y軸およびZ軸を規定し、Z軸方向を基板2の厚み方向、X軸方向をアレイアンテナ1のE面方向、Y軸方向をアレイアンテナ1のH面方向とする。
 基板2は、誘電体で構成され、たとえば平板形状を有する。基板2は、たとえば、酸化アルミニウム質焼結体、ガラスセラミック焼結体、ムライト質焼結体または窒化アルミニウム質焼結体などのセラミック材料で構成されてもよく、有機材料で構成されてもよい。
 かかる基板2には、表面2aに沿って複数の給電素子3が並んで配置され、かかる複数の給電素子3によって1つの給電素子群3Aが構成される。たとえば、基板2の表面2aに沿って8個×8個の給電素子3が行列状に並んで配置される。なお、本開示において、アレイアンテナ1に設けられる給電素子3の数や配置は図1の例に限られない。
 図2は、実施形態に係る給電素子3の構成の一例を示す断面図であり、図3は、実施形態に係る給電素子3の構成の一例を示す正面図である。図2などに示すように、実施形態に係る給電素子3は、基板2の表面2aおよび内部に複数の金属層を配置して構成されるパッチアンテナ(マイクロストリップアンテナ)である。
 給電素子3は、基板2の表面2aと平行に配置される金属層として、給電層11と、グランド層12と、給電パッチ層13と、無給電パッチ層14とを備える。また、給電素子3は、基板2の表面2aに対して垂直に配置されるビア導体として、給電ビア21と、短絡ビア22とを備える。
 これらの金属層およびビア導体は、銅、銀、パラジウム、金、白金タングステン、モリブデンもしくはマンガンなどの金属材料、またはこれらの金属材料を主成分とする合金材料もしくは混合材料などによって構成される。
 給電層11は、上述の各金属層のうち、基板2の表面2aからもっとも離れて配置される。給電層11は、図示しない制御ICと電気的に接続される。
 かかる制御ICは、送信対象の電波に対応する電気信号として、たとえば、変調された電気信号を、給電層11および給電ビア21などを介して給電パッチ層13に出力する。また、制御ICは、給電素子3によって受信された電波に対応する電気信号を、給電パッチ層13から給電ビア21および給電層11などを介して収集する。
 グランド層12は、基板2の内部において、給電層11よりも表面2a側に配置される。また、グランド層12は、図示しない接地電位に接続される。
 給電パッチ層13は、基板2の内部において、グランド層12よりも表面2a側に配置される。給電パッチ層13は、給電ビア21を介して給電層11に電気的に接続され、上述の制御ICから電気信号が給電される。
 給電パッチ層13は、たとえば図3に示すように、送受信される電波の周波数などに応じた辺の長さを有する正方形状である。なお、本開示において、給電パッチ層13は、正方形状に限られず、さまざまな形状であってもよい。
 無給電パッチ層14は、基板2の表面2aに配置される。無給電パッチ層14は、たとえば図3に示すように、正方形状であり、給電パッチ層13と概ね同じ大きさおよび同じ形状である。また、無給電パッチ層14は、平面視で給電パッチ層13と重なるように配置される。
 給電ビア21は、給電層11と給電パッチ層13との間を電気的に接続する。なお、給電ビア21とグランド層12との間には基板2を構成する誘電体が配置されることから、給電ビア21とグランド層12とは互いに電気的に絶縁されている。
 また、実施形態に係る給電素子3では、図3に示すように、1つの給電パッチ層13に2つの給電ビア21(以下、給電ビア21A、21Bとも呼称する。)が接続される。
 また、給電ビア21は、たとえば給電素子3における入力インピーダンス(反射特性)の要求から、給電パッチ層13の中心から離れた位置に接続され、直交2方向の偏波特性に対応できるように90(°)異なる位置にある。たとえば、給電ビア21Aは、給電パッチ層13の中心から-Y方向に離れた位置に接続され、給電ビア21Bは、給電パッチ層13の中心から-X方向に離れた位置に接続される。
 短絡ビア22は、給電パッチ層13とグランド層12との間を電気的に接続する。また、実施形態に係る給電素子3では、図3に示すように、1つの給電パッチ層13に2つの短絡ビア22(以下、短絡ビア22A、22Bとも呼称する。)が接続される。
 また、短絡ビア22は、たとえば、給電パッチ層13の中心から離れ、かつ給電ビア21よりも給電パッチ層13の中心に近い位置に接続される。たとえば、短絡ビア22Aは、給電パッチ層13の中心から+Y方向に離れた位置に接続され、短絡ビア22Bは、給電パッチ層13の中心から+X方向に離れた位置に接続される。
 図1の説明に戻る。複数の無給電素子4は、複数の給電素子3で構成される給電素子群3Aの周囲を囲むように並んで配置される。たとえば、複数の無給電素子4は、給電素子群3Aの周囲を2重に囲む配置でもよい。
 また、無給電素子4は、行列状に並ぶ複数の給電素子3に対して行または列が揃う配置でもよい。さらに、互いに隣接する無給電素子4同士も、行または列が揃う配置でもよい。
 無給電素子4は、給電層11から給電されない素子である。かかる無給電素子4の構成は、たとえば、図2および図3に示した給電素子3の構成から、給電パッチ層13、給電ビア21および短絡ビア22が除かれた構成である。これにより、無給電素子4は無給電素子として機能する。
 ここで、実施形態では、図1に示すように、ステアリング方向に沿って隣接する無給電素子4同士のステアリング方向のピッチが、ステアリング方向に沿って隣接する給電素子3同士のステアリング方向のピッチよりも狭い。
 具体的には、実施形態では、E面方向(X軸方向)に沿って隣接する無給電素子4同士のE面方向のピッチPE2が、E面方向に沿って隣接する給電素子3同士のE面方向のピッチPE1よりも狭い。
 同様に、実施形態では、H面方向(Y軸方向)に沿って隣接する無給電素子4同士のH面方向のピッチPH2が、H面方向に沿って隣接する給電素子3同士のH面方向のピッチPH1よりも狭い。
 これにより、隣接する無給電素子4同士のピッチPE2、PH2と、隣接する給電素子3同士のピッチPE1、PH1とがそれぞれ等しい場合と比べて、アンテナの正面方向から大きく傾いた方向における放射パターンの崩れを低減することができる。
 図4~図6は、実施形態および参考例のアレイアンテナ1のE面におけるビームステアリング特性を示す図である。なお、本開示において、参考例のアレイアンテナ1とは、図1などに示した実施形態に係るアレイアンテナ1において、隣接する無給電素子4同士のピッチPE2、PH2と、隣接する給電素子3同士のピッチPE1、PH1とがそれぞれ等しいアレイアンテナである。
 また、本開示では、実施形態および参考例のアレイアンテナ1が、複数の給電素子3および複数の無給電素子4が配置される領域よりも面積の広いグランド層12を有する。具体的には、本開示では、グランド層12の1辺の長さが、給電素子群3Aの1辺の長さのおおよそ2倍である。なお、図4~図6に示す結果は、給電ビア21A(図3参照)におけるE面ステアリングに相当する。
 また、図4では周波数が26.5(GHz)のビームステアリング特性を示し、図5では周波数が28(GHz)のビームステアリング特性を示し、図6では周波数が29.5(GHz)のビームステアリング特性を示す。
 図4~図6に示すように、実施形態に係るアレイアンテナ1は、参考例と比べて、正面方向から大きく傾いた方向(ここでは-60(°)方向および+60(°)方向)における放射パターンの崩れが低減され、かかる方向における利得が向上していることが分かる。
 このように、実施形態では、グランド層12の面積がアレイアンテナ1よりも広い場合に顕著に発生する放射パターンの崩れを、ピッチPE2、PH2を狭くすることで低減することができる。これは、ピッチPE2、PH2を狭くすることで、グランド層12に対するシールド効果を高めることができるためと推測される。
 したがって、実施形態によれば、アレイアンテナ1において広角なビームステアリングが可能になる。
 なお、上記の実施形態では、複数の給電素子3および複数の無給電素子4が配置される領域よりもグランド層12の面積が広い場合について示したが、本開示はかかる例に限られない。
 たとえば、本開示では、複数の給電素子3および複数の無給電素子4が配置される領域とグランド層12との面積が略等しくてもよいし、複数の給電素子3および複数の無給電素子4が配置される領域よりもグランド層12の面積が狭くてもよい。
 図7は、実施形態および参考例のアレイアンテナ1の-60(°)方向および+60(°)方向のビームステアリング特性を示す図である。図7に示すように、実施形態に係るアレイアンテナ1は、参考例と比べて、アンテナの正面方向から大きく傾いた方向におけるセカンドローブを小さくすることができる。
 したがって、実施形態によれば、干渉によるノイズを低減できるため、アレイアンテナ1の通信品質を向上させることができる。
 図8は、アレイアンテナ1のピッチ比率を変更した場合のE面方向の利得の推移を示す図である。なお、本開示において、「ピッチ比率」とは、給電素子3同士のピッチPE1(またはピッチPH1)に対する無給電素子4同士のピッチPE2(またはピッチPH2)の比率のことである。
 図8に示すように、E面方向においては、ピッチ比率を100(%)以上とすることで、29.5(GHz)における-60(°)方向での利得が大きく低下する。
 また、図8に示すように、E面方向においては、ピッチ比率を60(%)以下とすることで、26.5(GHz)および28(GHz)における-60(°)方向での利得が大きく低下する。
 すなわち、実施形態では、ステアリング方向に沿って隣接する無給電素子4同士のステアリング方向のピッチが、ステアリング方向に沿って隣接する給電素子3同士のステアリング方向のピッチの70(%)~90(%)であってもよい。
 これにより、実施形態では、広帯域においてアレイアンテナ1のビームステアリング特性を向上させることができる。なお、上述した図4~図6の例は、ピッチ比率が80(%)である場合の結果について示している。
 図9は、無給電素子4のサイズを変更した場合のビームステアリング特性を示す図である。なお、図9の例では、給電素子3のサイズが2.57(mm)角である場合における、アレイアンテナ1の-60(°)方向、正面方向および+60(°)方向のH面方向26.5(GHz)のビームステアリング特性を示している。
 図9に示すように、無給電素子4を給電素子3よりも大きくすることで、-60(°)方向および+60(°)方向の利得を向上させることができる。したがって、実施形態によれば、アレイアンテナ1においてさらに広角なビームステアリングが可能になる。なお、上述した図4~図6の例は、給電素子3と無給電素子4とが同じ大きさである場合の結果について示している。
 また、実施形態では、図1に示すように、複数の無給電素子4が、給電素子群3Aの周囲を2重に囲んでもよい。また、複数の無給電素子4が給電素子群3Aの周囲を3重以上に囲んだ配置でもよい。この場合、グランド層12に対するシールド効果の点およびアレイアンテナ1の面積の増加を抑えるという点から、2重に囲んだ構成がよい。
 つまり、実施形態では、複数の無給電素子4によって給電素子群3Aの周囲を2重に囲むことで、アンテナの正面方向から大きく傾いた方向における放射パターンの崩れを低減することができるとともに、アレイアンテナ1の面積を小さくすることができる。
 また、実施形態では、図1に示すように、ステアリング方向に沿って隣接する給電素子3と無給電素子4とのステアリング方向のピッチが、ステアリング方向に沿って隣接する給電素子3同士のステアリング方向のピッチよりも狭くてもよい。
 具体的には、実施形態では、E面方向に沿って隣接する給電素子3と無給電素子4とのE面方向のピッチPE3が、E面方向に沿って隣接する給電素子3同士のE面方向のピッチPE1よりも狭くてもよい。
 同様に、実施形態では、H面方向に沿って隣接する給電素子3と無給電素子4とのH面方向のピッチPH3が、H面方向に沿って隣接する給電素子3同士のH面方向のピッチPH1よりも狭くてもよい。
 これにより、グランド層12に対するシールド効果をさらに高めることができるため、アンテナの正面方向から大きく傾いた方向における放射パターンの崩れをさらに低減することができる。したがって、実施形態によれば、アレイアンテナ1においてさらに広角なビームステアリングが可能になる。
 なお、本開示では、E面方向に沿って隣接する給電素子3同士のE面方向のピッチPE1と、H面方向に沿って隣接する給電素子3同士のH面方向のピッチPH1とが等しくてもよいし、異なっていてもよい。
<別の実施形態>
 つづいて、実施形態の別の実施形態に係るアレイアンテナ1について、図10~図13を参照しながら説明する。図10は、実施形態の別の実施形態に係るアレイアンテナ1の構成の一例を示す正面図である。図10に示すように、別の実施形態に係るアレイアンテナ1は、無給電素子4の配置が上述の実施形態と異なる。
 具体的には、別の実施形態では、給電素子群3Aの周囲を囲むように配置される複数の無給電素子4が、複数の給電素子3に対して千鳥状に配置される。すなわち、別の実施形態では、行列状に並ぶ複数の給電素子3に対して、行または列をずらすように無給電素子4が配置される。
 そして、別の実施形態では、上述の実施形態と同様に、ステアリング方向に沿って隣接する無給電素子4同士のステアリング方向のピッチが、ステアリング方向に沿って隣接する給電素子3同士のステアリング方向のピッチよりも狭い。
 具体的には、別の実施形態では、E面方向(X軸方向)に沿って隣接する無給電素子4同士のE面方向のピッチPE2が、E面方向に沿って隣接する給電素子3同士のE面方向のピッチPE1よりも狭い。
 同様に、別の実施形態では、H面方向(Y軸方向)に沿って隣接する無給電素子4同士のH面方向のピッチPH2が、H面方向に沿って隣接する給電素子3同士のH面方向のピッチPH1よりも狭い。
 これにより、別の実施形態では、上述の実施形態と同様に、アンテナの正面方向から大きく傾いた方向における放射パターンの崩れを低減することができる。以下にその結果の詳細について説明する。
 図11~図13は、実施形態の別の実施形態および参考例のアレイアンテナ1のE面におけるビームステアリング特性を示す図である。なお、図11~図13に示す結果は、給電ビア21A(図3参照)におけるE面ステアリングに相当する。
 また、図11では周波数が26.5(GHz)のビームステアリング特性を示し、図12では周波数が28(GHz)のビームステアリング特性を示し、図13では周波数が29.5(GHz)のビームステアリング特性を示す。
 図11~図13に示すように、別の実施形態に係るアレイアンテナ1は、参考例と比べて、正面方向から大きく傾いた方向(ここでは-60(°)方向および+60(°)方向)における放射パターンの崩れがさらに低減され、かかる方向における利得がさらに向上していることが分かる。
 このように、別の実施形態では、グランド層12の面積がアレイアンテナ1よりも広い場合に顕著に発生する放射パターンの崩れを、ピッチPE2、PH2を狭くすることで効果的に低減することができる。したがって、別の実施形態によれば、アレイアンテナ1においてさらに広角なビームステアリングが可能になる。
 上記したアレイアンテナ1は、たとえば、RF素子との組合せにより通信モジュールとなる。そのため、この通信モジュールについても、広角なビームステアリングが可能となる。
 実施形態に係るアレイアンテナ1は、基板2と、複数の給電素子3と、複数の無給電素子4と、を備える。基板2は、誘電体で構成される。複数の給電素子3は、基板2の表面2aに沿って行列状に並んで配置される。複数の無給電素子4は、複数の給電素子3で構成される給電素子群3Aの周囲を囲むように並んで配置される。また、ステアリング方向に沿って隣接する無給電素子4同士のステアリング方向のピッチPE2、PH2は、ステアリング方向に沿って隣接する給電素子3同士のステアリング方向のピッチPE1、PH1よりも狭い。これにより、アレイアンテナ1において広角なビームステアリングが可能になる。
 また、実施形態に係るアレイアンテナ1において、ステアリング方向に沿って隣接する無給電素子4同士のステアリング方向のピッチPE2、PH2は、ステアリング方向に沿って隣接する給電素子3同士のステアリング方向のピッチPE1、PH1の70(%)~90(%)である。これにより、広帯域においてアレイアンテナ1のビームステアリング特性を向上させることができる。
 また、実施形態に係るアレイアンテナ1において、複数の無給電素子4は、給電素子群3Aの周囲を2重に囲む。これにより、アンテナの正面方向から大きく傾いた方向における放射パターンの崩れを低減することができるとともに、アレイアンテナ1の面積を小さくすることができる。
 また、実施形態に係るアレイアンテナ1において、複数の無給電素子4は、複数の給電素子3に対して千鳥状に配置される。これにより、アレイアンテナ1においてさらに広角なビームステアリングが可能になる。
 また、実施形態に係るアレイアンテナ1において、無給電素子4は、給電素子3よりも大きい。これにより、アレイアンテナ1においてさらに広角なビームステアリングが可能になる。
 以上、本開示の実施形態について説明したが、本開示は上記実施形態に限定されるものではなく、その趣旨を逸脱しない限りにおいて種々の変更が可能である。たとえば、上記の実施形態では、給電パッチ層13と無給電パッチ層14とが積層して配置される給電素子3および無給電素子4が用いられる例について示したが、本開示はかかる例に限られず、さまざまな構成を有する給電素子3および無給電素子4が用いられてもよい。
 また、上記の実施形態では、給電素子3にグランド層12と給電パッチ層13とを接続する短絡ビア22が設けられる例について示したが、本開示はかかる例に限られず、かかる短絡ビア22が給電素子3に設けられなくてもよい。
 さらなる効果や他の態様は、当業者によって容易に導き出すことができる。このため、本開示のより広範な態様は、以上のように表しかつ記述した特定の詳細および代表的な実施形態に限定されるものではない。したがって、添付の請求の範囲およびその均等物によって定義される総括的な発明の概念の精神または範囲から逸脱することなく、様々な変更が可能である。
 1   アレイアンテナ(アンテナの一例)
 2   基板
 2a  表面
 3   給電素子
 3A  給電素子群
 4   無給電素子
 PE1~PE3、PH1~PH3 ピッチ

Claims (6)

  1.  誘電体で構成される基板と、
     前記基板の表面に沿って行列状に並んで配置される複数の給電素子と、
     複数の前記給電素子で構成される給電素子群の周囲を囲むように並んで配置される複数の無給電素子と、
     を備え、
     ステアリング方向に沿って隣接する前記無給電素子同士の前記ステアリング方向のピッチは、前記ステアリング方向に沿って隣接する前記給電素子同士の前記ステアリング方向のピッチよりも狭い
     アンテナ。
  2.  前記ステアリング方向に沿って隣接する前記無給電素子同士の前記ステアリング方向のピッチは、前記ステアリング方向に沿って隣接する前記給電素子同士の前記ステアリング方向のピッチの70(%)~90(%)である
     請求項1に記載のアンテナ。
  3.  複数の前記無給電素子は、前記給電素子群の周囲を2重に囲む
     請求項1または2に記載のアンテナ。
  4.  複数の前記無給電素子は、複数の前記給電素子に対して千鳥状に配置される
     請求項1~3のいずれか一つに記載のアンテナ。
  5.  前記無給電素子は、前記給電素子よりも大きい
     請求項1~4のいずれか一つに記載のアンテナ。
  6.  請求項1~5のいずれか一つに記載のアンテナと、
     RF素子と、
     を備える通信モジュール。
PCT/JP2023/002677 2022-01-27 2023-01-27 アンテナおよび通信モジュール WO2023145887A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-011232 2022-01-27
JP2022011232 2022-01-27

Publications (1)

Publication Number Publication Date
WO2023145887A1 true WO2023145887A1 (ja) 2023-08-03

Family

ID=87471675

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/002677 WO2023145887A1 (ja) 2022-01-27 2023-01-27 アンテナおよび通信モジュール

Country Status (1)

Country Link
WO (1) WO2023145887A1 (ja)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017188806A (ja) * 2016-04-06 2017-10-12 株式会社Soken アンテナ装置
JP2021022915A (ja) * 2019-07-24 2021-02-18 台達電子工業股▲ふん▼有限公司Delta Electronics,Inc. 通信装置

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017188806A (ja) * 2016-04-06 2017-10-12 株式会社Soken アンテナ装置
JP2021022915A (ja) * 2019-07-24 2021-02-18 台達電子工業股▲ふん▼有限公司Delta Electronics,Inc. 通信装置

Similar Documents

Publication Publication Date Title
JP6750738B2 (ja) アンテナモジュールおよび通信装置
US9698487B2 (en) Array antenna
TWI496346B (zh) 介質天線以及天線模組
US20230178892A1 (en) Dual band patch antenna
CN108701908B (zh) 阵列天线
US11171421B2 (en) Antenna module and communication device equipped with the same
WO2006030583A1 (ja) アンテナ装置及びマルチビームアンテナ装置
WO2019054094A1 (ja) アンテナモジュール
WO2019008913A1 (ja) アンテナモジュール
JPWO2021059661A1 (ja) アンテナモジュールおよびそれを搭載した通信装置、ならびに回路基板
US11355867B2 (en) Polarized wave shared array antenna and method for manufacturing the same
US10461417B2 (en) Power feed circuit and antenna device
WO2014122925A1 (ja) アンテナ装置
EP4207495A1 (en) Antenna array, apparatus, and wireless communication device
US11469524B2 (en) Polarized wave shared array antenna and method for manufacturing the same
JP6973663B2 (ja) アンテナモジュールおよび通信装置
WO2023145887A1 (ja) アンテナおよび通信モジュール
KR20050075966A (ko) 전방향 방사 안테나
WO2021072833A1 (zh) 一种天线单元、天线模组及电子设备
WO2023145937A1 (ja) アンテナおよび通信モジュール
US20240072439A1 (en) Antenna device
US20240113433A1 (en) Antenna module and communication device including the same
TWI846830B (zh) 天線模組及其設計方法
TWI847920B (zh) 天線模組
US20230299504A1 (en) Array antenna substrate and apparatus antenna apparatus

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23747097

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023577030

Country of ref document: JP