WO2023145937A1 - アンテナおよび通信モジュール - Google Patents

アンテナおよび通信モジュール Download PDF

Info

Publication number
WO2023145937A1
WO2023145937A1 PCT/JP2023/002881 JP2023002881W WO2023145937A1 WO 2023145937 A1 WO2023145937 A1 WO 2023145937A1 JP 2023002881 W JP2023002881 W JP 2023002881W WO 2023145937 A1 WO2023145937 A1 WO 2023145937A1
Authority
WO
WIPO (PCT)
Prior art keywords
patch layer
layer
antenna
parasitic
parasitic patch
Prior art date
Application number
PCT/JP2023/002881
Other languages
English (en)
French (fr)
Inventor
大輔 山本
彩夏 西
Original Assignee
京セラ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京セラ株式会社 filed Critical 京セラ株式会社
Publication of WO2023145937A1 publication Critical patent/WO2023145937A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q13/00Waveguide horns or mouths; Slot antennas; Leaky-waveguide antennas; Equivalent structures causing radiation along the transmission path of a guided wave
    • H01Q13/08Radiating ends of two-conductor microwave transmission lines, e.g. of coaxial lines, of microstrip lines

Definitions

  • the disclosed embodiments relate to antennas and communication modules.
  • Patent Document 1 a patch antenna having a ground layer and a feeding patch layer on a dielectric substrate has been disclosed.
  • the antenna of the present disclosure includes a substrate, a ground layer, a feeding patch layer, a first parasitic patch layer, and a second parasitic patch layer.
  • the substrate is composed of a dielectric.
  • the ground layer is connected to ground potential.
  • the power supply patch layer is located inside the substrate closer to the surface of the substrate than the ground layer.
  • the first parasitic patch layer is located closer to the surface of the substrate than the power patch layer.
  • a second parasitic patch layer is located inside the substrate between the powered patch layer and the first parasitic patch layer. Also, the second parasitic patch layer is smaller than the powered patch layer and the first parasitic patch layer.
  • FIG. 1 is a front view showing an example of the configuration of an array antenna according to an embodiment
  • FIG. FIG. 2 is a cross-sectional view showing an example of the configuration of the antenna according to the embodiment.
  • FIG. 3 is a front view showing an example of the configuration of the antenna according to the embodiment;
  • FIG. 4 is a diagram showing gain characteristics of the antennas of the embodiment and Reference Example 1.
  • FIG. 5 is a diagram showing the reflection characteristics of the antennas of the embodiment and Reference Example 1.
  • FIG. FIG. 6 is a diagram showing gain characteristics when power is fed from one feed via in the array antennas of the embodiment and Reference Example 1.
  • FIG. FIG. 7 is a diagram showing gain characteristics when power is fed from the other feed via in the array antennas of the embodiment and Reference Example 1.
  • FIG. 8 is a diagram showing beam steering characteristics of the array antennas of the embodiment and Reference Example 1.
  • FIG. 9 is a diagram showing beam steering characteristics of the array antennas of the embodiment and Reference Example 1.
  • FIG. 10 is a diagram showing beam steering characteristics of the array antennas of the embodiment and Reference Example 1.
  • FIG. 11 is a diagram showing beam steering characteristics of the array antennas of the embodiment and Reference Example 1.
  • FIG. 12 is a diagram showing beam steering characteristics of the array antennas of the embodiment and Reference Example 1.
  • FIG. 13 is a diagram showing beam steering characteristics of the array antennas of the embodiment and Reference Example 1.
  • FIG. 14 is a diagram showing gain characteristics when the size of the second parasitic patch layer is changed when power is fed from one feed via in the array antenna according to the embodiment.
  • FIG. 15 is a diagram showing gain characteristics when the size of the second parasitic patch layer is changed when power is fed from the other feed via in the array antenna according to the embodiment.
  • FIG. 16 shows the case where the spacing between the feeding patch layer and the second parasitic patch layer and the spacing between the first parasitic patch layer and the second parasitic patch layer are changed in the antennas of the embodiment and Reference Example 1.
  • is a diagram showing the gain characteristics of FIG. 17 is a diagram showing changes in gain characteristics when the size of the second parasitic patch layer is changed in the embodiment.
  • 18 is a cross-sectional view showing an example of the configuration of an antenna according to another embodiment;
  • FIG. 19 is a front view showing an example of the configuration of an antenna according to another embodiment;
  • FIG. 20 is a diagram showing gain characteristics of antennas of another embodiment and Reference Example 2.
  • FIG. 21 is a diagram showing reflection characteristics of antennas of another embodiment and Reference Example 2.
  • FIG. 22 is a diagram showing gain characteristics when power is fed from one feed via in array antennas of another embodiment and Reference Example 2.
  • FIG. 23 is a diagram showing gain characteristics when power is fed from the other feed via in the array antennas of another embodiment and Reference Example 2.
  • patch antennas having a ground layer and a feeding patch layer on a dielectric substrate have been disclosed. It is hoped that patch antennas will be able to achieve a wideband gain characteristic.
  • FIG. 1 is a front view showing an example of the configuration of an array antenna 1 according to an embodiment.
  • an array antenna 1 according to the embodiment includes a substrate 2 and multiple antennas 3 .
  • the X-axis, the Y-axis and the Z-axis that are orthogonal to each other are defined, the Z-axis direction is the thickness direction of the substrate 2, and the X-axis direction is the direction of the antenna 3.
  • the E-plane direction and the Y-axis direction are defined as the H-plane direction of the antenna 3 .
  • the substrate 2 is made of dielectric material and has, for example, a flat plate shape.
  • the substrate 2 may be made of a ceramic material such as an aluminum oxide sintered body, a glass ceramic sintered body, a mullite sintered body or an aluminum nitride sintered body, or may be made of an organic material. .
  • a plurality of antennas 3 are arranged side by side on the substrate 2 along the surface 2a.
  • 8 ⁇ 8 antennas 3 are arranged in a matrix along the surface 2 a of the substrate 2 .
  • the number and arrangement of the antennas 3 provided in the array antenna 1 are not limited to the example in FIG.
  • FIG. 2 is a cross-sectional view showing an example of the configuration of the antenna 3 according to the embodiment
  • FIG. 3 is a front view showing an example of the configuration of the antenna 3 according to the embodiment.
  • the antenna 3 is a patch antenna (microstrip antenna) configured by arranging a plurality of metal layers on the surface 2a of the substrate 2 and inside.
  • the antenna 3 includes a feeding layer 11, a ground layer 12, a feeding patch layer 13, a first parasitic patch layer 14, and a second parasitic patch layer 14 as metal layers arranged parallel to the surface 2a of the substrate 2. and a patch layer 15 .
  • the antenna 3 also includes a feed via 21 , an inter-patch via 22 , and a short-circuit via 23 as via conductors arranged perpendicular to the surface 2 a of the substrate 2 .
  • the inter-patch via 22 is an example of a first via conductor
  • the short-circuit via 23 is an example of a second via conductor.
  • metal layers and via conductors are composed of metal materials such as copper, silver, palladium, gold, platinum-tungsten, molybdenum, or manganese, or alloy materials or mixed materials containing these metal materials as main components.
  • the power supply layer 11 is arranged farthest from the surface 2a of the substrate 2 among the metal layers described above.
  • the power feeding layer 11 is electrically connected to a control IC (not shown).
  • Such a control IC outputs, for example, a modulated electrical signal as an electrical signal corresponding to the radio waves to be transmitted to the power supply patch layer 13 via the power supply layer 11 and the power supply via 21 .
  • the control IC also collects electrical signals corresponding to radio waves received by the antenna 3 from the power supply patch layer 13 via the power supply via 21 and the power supply layer 11 .
  • the ground layer 12 is arranged inside the substrate 2 closer to the surface 2 a than the power feeding layer 11 . Also, the ground layer 12 is connected to a ground potential (not shown).
  • the power supply patch layer 13 is arranged inside the substrate 2 closer to the surface 2a than the ground layer 12 is.
  • the power supply patch layer 13 is electrically connected to the power supply layer 11 through the power supply vias 21, and is supplied with electric signals from the control IC described above.
  • the power supply patch layer 13 has a square shape with side lengths corresponding to the frequency of radio waves to be transmitted and received.
  • the power supply patch layer 13 is not limited to a square shape, and may have various shapes.
  • the first parasitic patch layer 14 is arranged on the surface 2 a of the substrate 2 .
  • the first parasitic patch layer 14 has, for example, a square shape as shown in FIG.
  • the size of the first parasitic patch layer 14 and the power patch layer 13 referred to here can be the area of each layer in a plan view.
  • the first parasitic patch layer 14 is arranged so as to overlap the power supply patch layer 13 in plan view.
  • the second parasitic patch layer 15 is arranged inside the substrate 2 between the powered patch layer 13 and the first parasitic patch layer 14 . More specifically, the second parasitic patch layer 15 is arranged between the power patch layer 13 and the first parasitic patch layer 14 in the thickness direction (Z direction) of the substrate 2 .
  • the second parasitic patch layer 15 has a square shape, for example, as shown in FIG. 3, and has a smaller area in plan view than the power feeding patch layer 13 and the first parasitic patch layer 14 . Also, the second parasitic patch layer 15 is arranged inside the power-supply patch layer 13 in plan view.
  • the power supply via 21 electrically connects the power supply layer 11 and the power supply patch layer 13 .
  • the dielectric constituting the substrate 2 is arranged between the feed via 21 and the ground layer 12, the feed via 21 and the ground layer 12 are electrically insulated from each other.
  • one power supply patch layer 13 is connected to two power supply vias 21 (hereinafter also referred to as power supply vias 21A and 21B).
  • the feed via 21 is connected at a position away from the center of the feed patch layer 13, for example, due to the input impedance (reflection characteristic) requirement of the antenna 3, and is 90 ( °) in different positions.
  • the feed via 21A is connected to a position away from the center of the feed patch layer 13 in the -Y direction
  • the feed via 21B is connected to a position away from the center of the feed patch layer 13 in the -X direction.
  • the inter-patch vias 22 electrically connect the power supply patch layer 13 , the second parasitic patch layer 15 and the first parasitic patch layer 14 .
  • inter-patch vias 22 are connected to one power supply patch layer 13 .
  • the inter-patch via 22 is connected, for example, at a position away from the center of the power supply patch layer 13 and closer to the center of the power supply patch layer 13 than the power supply via 21 is.
  • the inter-patch via 22A is connected to a position away from the center of the power supply patch layer 13 in the -Y direction
  • the inter-patch via 22B is connected to a position away from the center of the power supply patch layer 13 in the -X direction. .
  • the short-circuit via 23 electrically connects the power supply patch layer 13 and the ground layer 12 .
  • two short-circuit vias 23 (hereinafter also referred to as short-circuit vias 23A and 23B) are connected to one power supply patch layer 13 .
  • the short-circuit via 23 is connected at a position away from the center of the power supply patch layer 13 and closer to the center of the power supply patch layer 13 than the power supply via 21, for example.
  • the short via 23A is connected to a position away from the center of the power supply patch layer 13 in the +Y direction
  • the short via 23B is connected to a position away from the center of the power supply patch layer 13 in the +X direction.
  • the second parasitic patch layer 15 is provided between the parasitic patch layer 13 and the first parasitic patch layer 14 . Also, the second parasitic patch layer 15 is smaller than the powered patch layer 13 and the first parasitic patch layer 14 . That is, the area of the second parasitic patch layer 15 in plan view is smaller than the areas of the power supply patch layer 13 and the first parasitic patch layer 14 in plan view.
  • FIG. 4 is a diagram showing gain characteristics of the antennas 3 of the embodiment and Reference Example 1.
  • the antenna 3 of Reference Example 1 is an antenna having a configuration in which the second parasitic patch layer 15 is removed from the antenna 3 according to the embodiment shown in FIGS. 2 and 3 .
  • the antenna 3 according to the embodiment can expand the high gain range to a wider band (for example, around 31 (GHz)) compared to the first reference example.
  • a wider band for example, around 31 (GHz)
  • the gain of the antenna 3 and the array antenna 1 is characteristics can be improved.
  • FIG. 5 is a diagram showing reflection characteristics of the antennas 3 of the embodiment and Reference Example 1.
  • FIG. The antenna 3 according to the embodiment can expand the resonance frequency to a wider band (for example, near 31.5 (GHz)) than the first reference example.
  • a wider band for example, near 31.5 (GHz)
  • FIG. 6 is a diagram showing gain characteristics when power is fed from one feed via 21A in the array antennas 1 of the embodiment and Reference Example 1.
  • the array antenna 1 of Reference Example 1 is an array antenna having a configuration in which the second parasitic patch layer 15 is removed from all the antennas 3 in the array antenna 1 shown in FIG. 1 and the like. .
  • the array antenna 1 obtains high gain in all bands and a high gain range up to a wider band (for example, around 31 (GHz)) than the reference example 1. can be expanded.
  • a wider band for example, around 31 (GHz)
  • FIG. 7 is a diagram showing gain characteristics when power is fed from the other feed via 21B in the array antennas 1 of the embodiment and reference example 1.
  • FIG. 7 is a diagram showing gain characteristics when power is fed from the other feed via 21B in the array antennas 1 of the embodiment and reference example 1.
  • the array antenna 1 has a high gain in all bands and a high gain range up to a wider band (for example, around 31 (GHz)) than the reference example 1. can be expanded.
  • a wider band for example, around 31 (GHz)
  • the second parasitic patch layer 15 having an area smaller than that of the power feeding patch layer 13 and the first parasitic patch layer 14, even when power is supplied from a different feeding point, a desired Variations in gain characteristics within the band can be reduced.
  • FIGS. 8 to 13 are diagrams showing beam steering characteristics of the array antennas 1 of the embodiment and Reference Example 1.
  • FIG. 8 to 10 show the beam steering characteristics of the array antenna 1 in the E plane
  • FIGS. 11 to 13 show the beam steering characteristics of the array antenna 1 in the H plane.
  • the results shown in FIGS. 8 to 13 correspond to E-plane steering and H-plane steering in feed via 21A (see FIG. 3).
  • FIGS. 8 and 11 show beam steering characteristics at a frequency of 26.5 (GHz)
  • FIGS. 9 and 12 show beam steering characteristics at a frequency of 28 (GHz)
  • FIGS. Beam steering characteristics at 29.5 (GHz) are shown.
  • the array antenna 1 As shown in FIGS. 8 to 10, the array antenna 1 according to the embodiment has a wider band (here, 26.5 (GHz) to 29.5 (GHz)) than the reference example 1.
  • a gain in a direction (for example, within ⁇ 30 (°)) can be improved.
  • the array antenna 1 according to the embodiment has an H-plane can improve the gain in the front direction (for example, within ⁇ 30 (°)).
  • FIG. 14 is a diagram showing gain characteristics when the size (size) of the second parasitic patch layer 15 is changed when power is fed from one feed via 21A in the array antenna 1 according to the embodiment.
  • FIG. 15 is a diagram showing gain characteristics when the size of the second parasitic patch layer 15 is changed when power is fed from the other feed via 21B in the array antenna 1 according to the embodiment.
  • the size of the second parasitic patch layer 15 here can also be said to be the area of the second parasitic patch layer 15 in plan view.
  • the length of one side of the second parasitic patch layer 15 is The results when the thickness is changed from 1.5 (mm) to 1.8 (mm) are shown.
  • the second parasitic patch layer 15 is 1.7 (mm) square (that is, the length of one side is is about 64 (%)), the gain characteristic is the best.
  • the length of one side of the second parasitic patch layer 15 is set to 50(%) to 70(%) of the length of one side of the power supply patch layer 13. gain characteristics can be obtained.
  • FIG. 16 shows the distance d2 between the feeding patch layer 13 and the second parasitic patch layer 15 and the distance between the first parasitic patch layer 14 and the second parasitic patch layer 15 in the antenna 3 of the embodiment and reference example 1.
  • the distance d2 between the feeding patch layer 13 and the second parasitic patch layer 15 and the distance d2 between the first parasitic patch layer 14 and the second parasitic patch layer 15 By setting the distance d3 to 120 ( ⁇ m) or less, the high gain range can be expanded to a wider band (for example, around 31 (GHz)).
  • the distance d2 between the power supply patch layer 13 and the second parasitic patch layer 15 and the distance d3 between the first parasitic patch layer 14 and the second parasitic patch layer 15 are By setting the distance d1 between the patch layer 13 and the ground layer 12 to 10(%) to 20(%), the range of high gain can be expanded to a wider band.
  • the distance d2 between the power supply patch layer 13 and the second parasitic patch layer 15 and the distance d3 between the first parasitic patch layer 14 and the second parasitic patch layer 15 are set to It is preferable to set the distance d1 between 13 and the ground layer 12 to 15(%) to 20(%). As a result, the range of high gain can be expanded to a wider band, and the decrease in gain in the desired band can be suppressed.
  • the distance d2 between the power supply patch layer 13 and the second parasitic patch layer 15 and the distance d3 between the first parasitic patch layer 14 and the second parasitic patch layer 15 are It may be 0.8(%) to 3(%) of the wavelength of the radio waves emitted from 13 .
  • the wavelength of the radio waves radiated from the feeding patch layer 13 is 5.92 (mm).
  • FIG. 17 is a diagram showing changes in gain characteristics when changing the size of the second parasitic patch layer 15 in the embodiment. Note that the example of FIG. 17 shows changes in gain characteristics when the size of the feeding patch layer 13 and the first parasitic patch layer 14 is 2.67 (mm) square.
  • the power supply patch layer 13 and the first parasitic patch layer 14 may have the same size. Thereby, the gain characteristic of the antenna 3 can be further improved.
  • the power supply patch layer 13 and the first parasitic patch layer 14 are not limited to having the same size, and the power supply patch layer 13 and the first parasitic patch layer 14 have different sizes. There may be.
  • the antenna 3 may be provided with an inter-patch via 22 connecting between the feeding patch layer 13 , the second parasitic patch layer 15 and the first parasitic patch layer 14 .
  • the gain characteristic of the antenna 3 can be further improved.
  • the antenna 3 may be provided with a short-circuit via 23 that connects between the power supply patch layer 13 and the ground layer 12 . Thereby, the gain characteristic of the antenna 3 can be further improved.
  • FIG. 18 is a cross-sectional view showing an example of the configuration of an antenna 3 according to another embodiment of the embodiment
  • FIG. 19 is a front view showing an example of the configuration of the antenna 3 according to another embodiment of the embodiment. be.
  • an antenna 3 according to another embodiment differs from the above embodiment in that inter-patch vias 22 are not provided.
  • a second parasitic patch smaller than the power feeding patch layer 13 and the first parasitic patch layer 14 is provided between the power feeding patch layer 13 and the first parasitic patch layer 14 .
  • the gain characteristics of the antenna 3 and the array antenna 1 can be improved. The details of the results are described below.
  • FIG. 20 is a diagram showing gain characteristics of antennas 3 of another embodiment and reference example 2.
  • the antenna 3 of Reference Example 2 is an antenna having a configuration in which the second parasitic patch layer 15 is removed from the antenna 3 according to another embodiment shown in FIGS. 18 and 19. .
  • the antenna 3 can expand the high-gain range to a wider band (for example, around 30 (GHz)) than the reference example 2.
  • a wider band for example, around 30 (GHz)
  • the antenna 3 and the array antenna 1 can be gain characteristics can be improved.
  • FIG. 21 is a diagram showing reflection characteristics of antennas 3 of another embodiment and reference example 2.
  • FIG. An antenna 3 according to another embodiment can extend the resonance frequency to a wider band (for example, around 30 (GHz)) than the second reference example.
  • a wider band for example, around 30 (GHz)
  • FIG. 22 is a diagram showing gain characteristics when power is fed from one feed via 21A in the array antennas 1 of another embodiment and the second reference example.
  • the array antenna 1 of Reference Example 2 refers to the configuration of the array antenna 1 shown in FIG. array antenna.
  • the array antenna 1 can obtain a higher gain in the desired band of 26.5 (GHz) to 29.5 (GHz) than the reference example 2. .
  • FIG. 23 is a diagram showing gain characteristics when power is fed from the other feed via 21B in the array antennas 1 of another embodiment and the second reference example.
  • the array antenna 1 can obtain a higher gain in the desired band of 26.5 (GHz) to 29.5 (GHz) than the reference example 2. .
  • the antenna 3 described above becomes a communication module in combination with an RF element. Therefore, this communication module can also achieve wideband gain characteristics and improved gain characteristics.
  • the antenna 3 includes a substrate 2, a ground layer 12, a feeding patch layer 13, a first parasitic patch layer 14, and a second parasitic patch layer 15.
  • the substrate 2 is composed of a dielectric.
  • the ground layer 12 is connected to ground potential.
  • the power supply patch layer 13 is located inside the substrate 2 closer to the surface 2a of the substrate 2 than the ground layer 12 is.
  • the first parasitic patch layer 14 is located closer to the surface 2 a of the substrate 2 than the power patch layer 13 is.
  • a second parasitic patch layer 15 is located inside the substrate 2 between the powered patch layer 13 and the first parasitic patch layer 14 .
  • the second parasitic patch layer 15 is smaller than the powered patch layer 13 and the first parasitic patch layer 14 .
  • the first parasitic patch layer 14 has the same size as the feeding patch layer 13 . Therefore, the gain characteristic of the antenna 3 can be further improved.
  • the antenna 3 according to the embodiment includes first via conductors (inter-patch vias 22 ). Thereby, the gain characteristic of the antenna 3 can be further improved. In this case, it is possible to increase the gain and widen the bandwidth.
  • the antenna 3 according to the embodiment further includes a second via conductor (short-circuit via 23 ) connecting between the power supply patch layer 13 and the ground layer 12 .
  • a second via conductor short-circuit via 23
  • the feeding patch layer 13 and the second parasitic patch layer 15 have a square shape in plan view, and the length of one side of the second parasitic patch layer 15 is It is 50(%) to 70(%) of the length of one side of the power supply patch layer 13 . Thereby, good gain characteristics can be obtained.
  • the distance d2 between the feeding patch layer 13 and the second parasitic patch layer 15 is 10% to 20% of the distance d1 between the feeding patch layer 13 and the ground layer 12. ).
  • the range of high gain can be expanded to a wider band.
  • the distance d2 between the feeding patch layer 13 and the second parasitic patch layer 15 is 0.8% to 3 (%) of the wavelength of the radio wave radiated from the feeding patch layer 13. %).
  • the range of high gain can be expanded to a wider band.
  • the present disclosure is not limited to the above embodiments, and various modifications are possible without departing from the gist thereof.
  • the example in which the first parasitic patch layer 14 is arranged on the surface 2a of the substrate 2 has been described, but the present disclosure is not limited to such an example, and the first parasitic patch layer 14 is It may be arranged inside the substrate 2 .
  • the antenna 3 is provided with the short-circuit via 23 that connects the ground layer 12 and the power supply patch layer 13 is shown, but the present disclosure is not limited to such an example, and the short-circuit via 23 is not limited to the antenna. 3 may not be provided.

Landscapes

  • Waveguide Aerials (AREA)

Abstract

アンテナは、基板と、グランド層と、給電パッチ層と、第1の無給電パッチ層と、第2の無給電パッチ層とを備える。基板は、誘電体で構成される。グランド層は、接地電位に接続される。給電パッチ層は、基板の内部でグランド層よりも基板の表面側に位置する。第1の無給電パッチ層は、給電パッチ層よりも基板の表面側に位置する。第2の無給電パッチ層は、基板の内部で給電パッチ層と第1の無給電パッチ層との間に位置する。また、第2の無給電パッチ層は、給電パッチ層および第1の無給電パッチ層よりも小さい。通信モジュールは、上記構成のアンテナと、RF素子とを有する。

Description

アンテナおよび通信モジュール
 開示の実施形態は、アンテナおよび通信モジュールに関する。
 従来、誘電体基板にグランド層と給電パッチ層とを有するパッチアンテナが開示されている(例えば、特許文献1参照)。
特開2001-267833号公報
 本開示のアンテナは、基板と、グランド層と、給電パッチ層と、第1の無給電パッチ層と、第2の無給電パッチ層とを備える。基板は、誘電体で構成される。グランド層は、接地電位に接続される。給電パッチ層は、前記基板の内部で前記グランド層よりも前記基板の表面側に位置する。第1の無給電パッチ層は、前記給電パッチ層よりも前記基板の表面側に位置する。第2の無給電パッチ層は、前記基板の内部で前記給電パッチ層と前記第1の無給電パッチ層との間に位置する。また、前記第2の無給電パッチ層は、前記給電パッチ層および前記第1の無給電パッチ層よりも小さい。
図1は、実施形態に係るアレイアンテナの構成の一例を示す正面図である。 図2は、実施形態に係るアンテナの構成の一例を示す断面図である。 図3は、実施形態に係るアンテナの構成の一例を示す正面図である。 図4は、実施形態および参考例1のアンテナの利得特性を示す図である。 図5は、実施形態および参考例1のアンテナの反射特性を示す図である。 図6は、実施形態および参考例1のアレイアンテナにおいて一方の給電ビアから給電した際の利得特性を示す図である。 図7は、実施形態および参考例1のアレイアンテナにおいて他方の給電ビアから給電した際の利得特性を示す図である。 図8は、実施形態および参考例1のアレイアンテナのビームステアリング特性を示す図である。 図9は、実施形態および参考例1のアレイアンテナのビームステアリング特性を示す図である。 図10は、実施形態および参考例1のアレイアンテナのビームステアリング特性を示す図である。 図11は、実施形態および参考例1のアレイアンテナのビームステアリング特性を示す図である。 図12は、実施形態および参考例1のアレイアンテナのビームステアリング特性を示す図である。 図13は、実施形態および参考例1のアレイアンテナのビームステアリング特性を示す図である。 図14は、実施形態に係るアレイアンテナにおいて一方の給電ビアから給電した際に、第2の無給電パッチ層のサイズを変更した場合の利得特性を示す図である。 図15は、実施形態に係るアレイアンテナにおいて他方の給電ビアから給電した際に、第2の無給電パッチ層のサイズを変更した場合の利得特性を示す図である。 図16は、実施形態および参考例1のアンテナにおいて給電パッチ層と第2の無給電パッチ層との間隔および第1の無給電パッチ層と第2の無給電パッチ層との間隔を変更した場合の利得特性を示す図である。 図17は、実施形態において第2の無給電パッチ層のサイズを変化させたときの利得特性の変化を示す図である。 図18は、実施形態の別の実施形態に係るアンテナの構成の一例を示す断面図である。 図19は、実施形態の別の実施形態に係るアンテナの構成の一例を示す正面図である。 図20は、実施形態の別の実施形態および参考例2のアンテナの利得特性を示す図である。 図21は、実施形態の別の実施形態および参考例2のアンテナの反射特性を示す図である。 図22は、実施形態の別の実施形態および参考例2のアレイアンテナにおいて一方の給電ビアから給電した際の利得特性を示す図である。 図23は、実施形態の別の実施形態および参考例2のアレイアンテナにおいて他方の給電ビアから給電した際の利得特性を示す図である。
 以下、添付図面を参照して、本願の開示するアンテナおよび通信モジュールの実施形態について説明する。なお、以下に示す実施形態により本開示が限定されるものではない。
 また、以下に示す実施形態では、「一定」、「直交」、「垂直」、「平行」あるいは「同じ」といった表現が用いられる場合があるが、これらの表現は、厳密に「一定」、「直交」、「垂直」あるいは「平行」であることを要しない。すなわち、上記した各表現は、例えば製造精度、設置精度などのずれを許容するものとする。
 従来、誘電体基板にグランド層と給電パッチ層とを有するパッチアンテナが開示されている。パッチアンテナにおいて利得特性の広帯域化を可能とする技術の実現が期待されている。
<アレイアンテナ>
 まず、実施形態に係るアレイアンテナ1の構成について、図1を参照しながら説明する。図1は、実施形態に係るアレイアンテナ1の構成の一例を示す正面図である。図1に示すように、実施形態に係るアレイアンテナ1は、基板2と、複数のアンテナ3とを備える。
 なお、本開示の添付図面では、位置関係を明確にするために、互いに直交するX軸、Y軸およびZ軸を規定し、Z軸方向を基板2の厚み方向、X軸方向をアンテナ3のE面方向、Y軸方向をアンテナ3のH面方向とする。
 基板2は、誘電体で構成され、たとえば平板形状を有する。基板2は、たとえば、酸化アルミニウム質焼結体、ガラスセラミック焼結体、ムライト質焼結体または窒化アルミニウム質焼結体などのセラミック材料で構成されてもよく、有機材料で構成されてもよい。
 かかる基板2には、表面2aに沿って複数のアンテナ3が並んで配置される。たとえば、基板2の表面2aに沿って8個×8個のアンテナ3がマトリックス状に並んで配置される。なお、本開示において、アレイアンテナ1に設けられるアンテナ3の数や配置は図1の例に限られない。
<アンテナの詳細>
 つづいて、実施形態に係るアンテナ3の詳細について、図2~図17を参照しながら説明する。図2は、実施形態に係るアンテナ3の構成の一例を示す断面図であり、図3は、実施形態に係るアンテナ3の構成の一例を示す正面図である。
 図2などに示すように、実施形態に係るアンテナ3は、基板2の表面2aおよび内部に複数の金属層を配置して構成されるパッチアンテナ(マイクロストリップアンテナ)である。
 アンテナ3は、基板2の表面2aと平行に配置される金属層として、給電層11と、グランド層12と、給電パッチ層13と、第1の無給電パッチ層14と、第2の無給電パッチ層15とを備える。
 また、アンテナ3は、基板2の表面2aに対して垂直に配置されるビア導体として、給電ビア21と、パッチ間ビア22と、短絡ビア23とを備える。パッチ間ビア22は第1のビア導体の一例であり、短絡ビア23は第2のビア導体の一例である。
 これらの金属層およびビア導体は、銅、銀、パラジウム、金、白金タングステン、モリブデンもしくはマンガンなどの金属材料、またはこれらの金属材料を主成分とする合金材料もしくは混合材料などによって構成される。
 給電層11は、上述の各金属層のうち、基板2の表面2aからもっとも離れて配置される。給電層11は、図示しない制御ICと電気的に接続される。
 かかる制御ICは、送信対象の電波に対応する電気信号として、たとえば、変調された電気信号を、給電層11および給電ビア21などを介して給電パッチ層13に出力する。また、制御ICは、アンテナ3によって受信された電波に対応する電気信号を、給電パッチ層13から給電ビア21および給電層11などを介して収集する。
 グランド層12は、基板2の内部において、給電層11よりも表面2a側に配置される。また、グランド層12は、図示しない接地電位に接続される。
 給電パッチ層13は、基板2の内部において、グランド層12よりも表面2a側に配置される。給電パッチ層13は、給電ビア21を介して給電層11に電気的に接続され、上述の制御ICから電気信号が給電される。
 給電パッチ層13は、たとえば図3に示すように、送受信される電波の周波数などに応じた辺の長さを有する正方形状である。なお、本開示において、給電パッチ層13は、正方形状に限られず、さまざまな形状であってもよい。
 第1の無給電パッチ層14は、基板2の表面2aに配置される。第1の無給電パッチ層14は、たとえば図3に示すように、正方形状であり、給電パッチ層13と概ね同じ大きさおよび同じ形状である。なお、ここでいう第1の無給電パッチ層14や給電パッチ層13の大きさとは、各層の平面視における面積とすることができる。また、第1の無給電パッチ層14は、平面視で給電パッチ層13と重なるように配置される。
 第2の無給電パッチ層15は、基板2の内部において給電パッチ層13と第1の無給電パッチ層14との間に配置される。より具体的には、第2の無給電パッチ層15は、基板2の厚み方向(Z方向)において、給電パッチ層13と第1の無給電パッチ層14との間に配置される。第2の無給電パッチ層15は、たとえば図3に示すように、正方形状であり、給電パッチ層13および第1の無給電パッチ層14よりも平面視における面積が小さい。また、第2の無給電パッチ層15は、平面視で給電パッチ層13の内側に配置される。
 給電ビア21は、給電層11と給電パッチ層13との間を電気的に接続する。なお、給電ビア21とグランド層12との間には基板2を構成する誘電体が配置されることから、給電ビア21とグランド層12とは互いに電気的に絶縁されている。
 また、実施形態に係るアンテナ3では、図3に示すように、1つの給電パッチ層13に2つの給電ビア21(以下、給電ビア21A、21Bとも呼称する。)が接続される。
 また、給電ビア21は、たとえばアンテナ3における入力インピーダンス(反射特性)の要求から、給電パッチ層13の中心から離れた位置に接続され、直交2方向の偏波特性に対応できるように90(°)異なる位置にある。たとえば、給電ビア21Aは、給電パッチ層13の中心から-Y方向に離れた位置に接続され、給電ビア21Bは、給電パッチ層13の中心から-X方向に離れた位置に接続される。
 パッチ間ビア22は、給電パッチ層13と、第2の無給電パッチ層15と、第1の無給電パッチ層14との間を電気的に接続する。
 また、実施形態に係るアンテナ3では、図3に示すように、1つの給電パッチ層13に2つのパッチ間ビア22(以下、パッチ間ビア22A、22Bとも呼称する。)が接続される。
 また、パッチ間ビア22は、たとえば、給電パッチ層13の中心から離れ、かつ給電ビア21よりも給電パッチ層13の中心に近い位置に接続される。たとえば、パッチ間ビア22Aは、給電パッチ層13の中心から-Y方向に離れた位置に接続され、パッチ間ビア22Bは、給電パッチ層13の中心から-X方向に離れた位置に接続される。
 短絡ビア23は、給電パッチ層13とグランド層12との間を電気的に接続する。また、実施形態に係るアンテナ3では、図3に示すように、1つの給電パッチ層13に2つの短絡ビア23(以下、短絡ビア23A、23Bとも呼称する。)が接続される。
 また、短絡ビア23は、たとえば、給電パッチ層13の中心から離れ、かつ給電ビア21よりも給電パッチ層13の中心に近い位置に接続される。たとえば、短絡ビア23Aは、給電パッチ層13の中心から+Y方向に離れた位置に接続され、短絡ビア23Bは、給電パッチ層13の中心から+X方向に離れた位置に接続される。
 ここで、実施形態では、給電パッチ層13と第1の無給電パッチ層14との間に、第2の無給電パッチ層15が設けられる。また、第2の無給電パッチ層15は、給電パッチ層13および第1の無給電パッチ層14よりも小さい。すなわち、第2の無給電パッチ層15の平面視における面積は、給電パッチ層13および第1の無給電パッチ層14の平面視における面積よりも小さい。
 これにより、実施形態では、広帯域において、アンテナ3およびアレイアンテナ1の利得特性を向上させることができる。以下にその結果の詳細について説明する。
 図4は、実施形態および参考例1のアンテナ3の利得特性を示す図である。なお、本開示において、参考例1のアンテナ3とは、図2および図3に示した実施形態に係るアンテナ3から、第2の無給電パッチ層15を除いた構成を備えるアンテナである。
 図4に示すように、実施形態に係るアンテナ3は、参考例1と比べて、より広帯域(たとえば、31(GHz)付近)にまで高利得の範囲を広げることができる。
 このように、実施形態では、給電パッチ層13および第1の無給電パッチ層14よりも面積の小さい第2の無給電パッチ層15を設けることで、広帯域において、アンテナ3およびアレイアンテナ1の利得特性を向上させることができる。
 図5は、実施形態および参考例1のアンテナ3の反射特性を示す図である。実施形態に係るアンテナ3は、参考例1と比べて、より広帯域(たとえば、31.5(GHz)付近)にまで共振周波数を広げることができる。
 図6は、実施形態および参考例1のアレイアンテナ1において一方の給電ビア21Aから給電した際の利得特性を示す図である。なお、本開示において、参考例1のアレイアンテナ1とは、図1などに示したアレイアンテナ1において、すべてのアンテナ3から第2の無給電パッチ層15を除いた構成を備えるアレイアンテナである。
 図6に示すように、実施形態に係るアレイアンテナ1は、参考例1と比べて、すべての帯域で高い利得を得るとともに、より広帯域(たとえば、31(GHz)付近)にまで高利得の範囲を広げることができる。
 また、図6の例では、参考例1と比べて、26.5(GHz)~29.5(GHz)における帯域内の変動が小さくなっている。具体的には、参考例1では変動幅が0.5(dBi)であるのに対し、実施形態では変動幅が0.4(dBi)となっている。
 すなわち、実施形態では、給電パッチ層13および第1の無給電パッチ層14よりも面積の小さい第2の無給電パッチ層15を設けることで、所望の帯域内における利得特性の変動を小さくすることができる。
 図7は、実施形態および参考例1のアレイアンテナ1において他方の給電ビア21Bから給電した際の利得特性を示す図である。
 図7に示すように、実施形態に係るアレイアンテナ1は、参考例1と比べて、すべての帯域で高い利得を得るとともに、より広帯域(たとえば、31(GHz)付近)にまで高利得の範囲を広げることができる。
 また、図7の例では、参考例1と比べて、26.5(GHz)~29.5(GHz)における帯域内の変動が小さくなっている。具体的には、参考例1では変動幅が0.6(dBi)であるのに対し、実施形態では変動幅が0.5(dBi)となっている。
 すなわち、実施形態では、給電パッチ層13および第1の無給電パッチ層14よりも面積の小さい第2の無給電パッチ層15を設けることで、別の給電点から給電された場合でも、所望の帯域内における利得特性の変動を小さくすることができる。
 図8~図13は、実施形態および参考例1のアレイアンテナ1のビームステアリング特性を示す図である。なお、図8~図10は、アレイアンテナ1のE面におけるビームステアリング特性を示し、図11~図13は、アレイアンテナ1のH面におけるビームステアリング特性を示す。なお、図8~図13に示す結果は、給電ビア21A(図3参照)におけるE面ステアリングおよびH面ステアリングに相当する。
 また、図8および図11では周波数が26.5(GHz)のビームステアリング特性を示し、図9および図12では周波数が28(GHz)のビームステアリング特性を示し、図10および図13では周波数が29.5(GHz)のビームステアリング特性を示す。
 図8~図10に示すように、実施形態に係るアレイアンテナ1は、参考例1と比べて、広帯域(ここでは26.5(GHz)~29.5(GHz))において、E面の正面方向(たとえば、±30(°)以内)の利得を向上させることができる。
 また、図11~図13に示すように、実施形態に係るアレイアンテナ1は、参考例1と比べて、広帯域(ここでは26.5(GHz)~29.5(GHz))において、H面の正面方向(たとえば、±30(°)以内)の利得を向上させることができる。
 図14は、実施形態に係るアレイアンテナ1において一方の給電ビア21Aから給電した際に、第2の無給電パッチ層15のサイズ(大きさ)を変更した場合の利得特性を示す図である。また、図15は、実施形態に係るアレイアンテナ1において他方の給電ビア21Bから給電した際に、第2の無給電パッチ層15のサイズを変更した場合の利得特性を示す図である。なお、ここでいう第2の無給電パッチ層15のサイズとは、平面視における第2の無給電パッチ層15の面積ともいえる。
 具体的には、図14および図15では、2.67(mm)角の給電パッチ層13および第1の無給電パッチ層14に対して、第2の無給電パッチ層15の1辺の長さを1.5(mm)~1.8(mm)に変更した場合の結果について示す。
 図14および図15に示すように、実施形態に係るアレイアンテナ1では、第2の無給電パッチ層15が1.7(mm)角(すなわち、1辺の長さが給電パッチ層13に対して約64(%))である場合に、もっとも利得特性が良好になっている。
 このように、実施形態では、第2の無給電パッチ層15の1辺の長さを、給電パッチ層13の1辺の長さの50(%)~70(%)にすることで、良好な利得特性を得ることができる。
 図16は、実施形態および参考例1のアンテナ3において給電パッチ層13と第2の無給電パッチ層15との間隔d2および第1の無給電パッチ層14と第2の無給電パッチ層15との間隔d3を変更した場合の利得特性を示す図である。なお、間隔d2(図2参照)は、間隔d3(図2参照)と同じ値である。
 具体的には、図16では、グランド層12と給電パッチ層13との間隔d1(図2参照)が612(μm)である場合に、給電パッチ層13と第2の無給電パッチ層15との間隔d2および第1の無給電パッチ層14と第2の無給電パッチ層15との間隔d3を80(μm)~150(μm)に変更した場合の結果について示す。
 図16に示すように、実施形態に係るアンテナ3では、給電パッチ層13と第2の無給電パッチ層15との間隔d2および第1の無給電パッチ層14と第2の無給電パッチ層15との間隔d3を120(μm)以下にすることで、より広帯域(たとえば、31(GHz)付近)にまで高利得の範囲を広げることができる。
 このように、実施形態では、給電パッチ層13と第2の無給電パッチ層15との間隔d2および第1の無給電パッチ層14と第2の無給電パッチ層15との間隔d3を、給電パッチ層13とグランド層12との間隔d1の10(%)~20(%)にすることで、より広帯域にまで高利得の範囲を広げることができる。
 また、実施形態では、給電パッチ層13と第2の無給電パッチ層15との間隔d2および第1の無給電パッチ層14と第2の無給電パッチ層15との間隔d3を、給電パッチ層13とグランド層12との間隔d1の15(%)~20(%)にすると好ましい。これにより、より広帯域にまで高利得の範囲を広げることができるとともに、所望の帯域での利得低下を抑えることができる。
 また、実施形態では、給電パッチ層13と第2の無給電パッチ層15との間隔d2および第1の無給電パッチ層14と第2の無給電パッチ層15との間隔d3が、給電パッチ層13から放射される電波の波長の0.8(%)~3(%)であってもよい。たとえば、基板2の誘電率が3.28、電波の周波数が28(GHz)である場合、給電パッチ層13から放射される電波の波長は5.92(mm)である。これにより、実施形態では、より広帯域にまで高利得の範囲を広げることができる。
 図17は、実施形態において第2の無給電パッチ層15のサイズを変化させたときの利得特性の変化を示す図である。なお、図17の例では、給電パッチ層13および第1の無給電パッチ層14のサイズが2.67(mm)角である場合の利得特性の変化を示している。
 図17に示すように、第2の無給電パッチ層15のサイズが、給電パッチ層13および第1の無給電パッチ層14のサイズと同等もしくはこれらよりも大きくなると、26.5(GHz)~29.5(GHz)の帯域内の利得特性が低下する。なお、上述した図4~図16の例は、第2の無給電パッチ層15のサイズが1.7(mm)角である場合の結果について示している。
 また、実施形態では、給電パッチ層13と第1の無給電パッチ層14とが同じ大きさであってもよい。これにより、アンテナ3の利得特性をさらに向上させることができる。
 なお、本開示では、給電パッチ層13と第1の無給電パッチ層14とが同じ大きさである場合に限られず、給電パッチ層13と第1の無給電パッチ層14とが異なる大きさであってもよい。
 また、実施形態では、給電パッチ層13と、第2の無給電パッチ層15と、第1の無給電パッチ層14との間を接続するパッチ間ビア22がアンテナ3に設けられてもよい。これにより、アンテナ3の利得特性をさらに向上させることができる。
 また、実施形態では、給電パッチ層13とグランド層12との間を接続する短絡ビア23がアンテナ3に設けられてもよい。これにより、アンテナ3の利得特性をさらに向上させることができる。
<別の実施形態>
 つづいて、実施形態の別の実施形態に係るアンテナ3の詳細について、図18~図23を参照しながら説明する。図18は、実施形態の別の実施形態に係るアンテナ3の構成の一例を示す断面図であり、図19は、実施形態の別の実施形態に係るアンテナ3の構成の一例を示す正面図である。
 図18などに示すように、別の実施形態に係るアンテナ3は、パッチ間ビア22が設けられない点が上述の実施形態と異なる。
 このような構成であっても、給電パッチ層13と第1の無給電パッチ層14との間に、かかる給電パッチ層13および第1の無給電パッチ層14よりも小さい第2の無給電パッチ層15が設けられることで、アンテナ3およびアレイアンテナ1の利得特性を向上させることができる。以下にその結果の詳細について説明する。
 図20は、実施形態の別の実施形態および参考例2のアンテナ3の利得特性を示す図である。なお、本開示において、参考例2のアンテナ3とは、図18および図19に示した別の実施形態に係るアンテナ3から、第2の無給電パッチ層15を除いた構成を備えるアンテナである。
 図20に示すように、別の実施形態に係るアンテナ3は、参考例2と比べて、より広帯域(たとえば、30(GHz)付近)にまで高利得の範囲を広げることができる。
 このように、別の実施形態では、給電パッチ層13および第1の無給電パッチ層14よりも面積の小さい第2の無給電パッチ層15を設けることで、広帯域において、アンテナ3およびアレイアンテナ1の利得特性を向上させることができる。
 図21は、実施形態の別の実施形態および参考例2のアンテナ3の反射特性を示す図である。別の実施形態に係るアンテナ3は、参考例2と比べて、より広帯域(たとえば、30(GHz)付近)にまで共振周波数を広げることができる。
 図22は、実施形態の別の実施形態および参考例2のアレイアンテナ1において一方の給電ビア21Aから給電した際の利得特性を示す図である。なお、本開示において、参考例2のアレイアンテナ1とは、図1などに示したアレイアンテナ1において、すべてのアンテナ3から第2の無給電パッチ層15およびパッチ間ビア22を除いた構成を備えるアレイアンテナである。
 図22に示すように、別の実施形態に係るアレイアンテナ1は、参考例2と比べて、所望の26.5(GHz)~29.5(GHz)の帯域で高い利得を得ることができる。
 図23は、実施形態の別の実施形態および参考例2のアレイアンテナ1において他方の給電ビア21Bから給電した際の利得特性を示す図である。
 図23に示すように、別の実施形態に係るアレイアンテナ1は、参考例2と比べて、所望の26.5(GHz)~29.5(GHz)の帯域で高い利得を得ることができる。
 上記したアンテナ3は、たとえば、RF素子との組合せにより通信モジュールとなる。そのため、この通信モジュールについても、利得特性の広帯域化、利得特性の向上を図ることができる。
 実施形態に係るアンテナ3は、基板2と、グランド層12と、給電パッチ層13と、第1の無給電パッチ層14と、第2の無給電パッチ層15とを備える。基板2は、誘電体で構成される。グランド層12は、接地電位に接続される。給電パッチ層13は、基板2の内部でグランド層12よりも基板2の表面2a側に位置する。第1の無給電パッチ層14は、給電パッチ層13よりも基板2の表面2a側に位置する。第2の無給電パッチ層15は、基板2の内部で給電パッチ層13と第1の無給電パッチ層14との間に位置する。また、第2の無給電パッチ層15は、給電パッチ層13および第1の無給電パッチ層14よりも小さい。これにより、広帯域において利得特性を向上させることができる。
 また、実施形態に係るアンテナ3において、第1の無給電パッチ層14は、給電パッチ層13と同じ大きさである。これにより、アンテナ3の利得特性をさらに向上させることができる。
 また、実施形態に係るアンテナ3は、給電パッチ層13と、第2の無給電パッチ層15と、第1の無給電パッチ層14との間を接続する第1のビア導体(パッチ間ビア22)をさらに備える。これにより、アンテナ3の利得特性をさらに向上させることができる。この場合、利得の向上とともに帯域幅を広げることが可能になる。
 また、実施形態に係るアンテナ3は、給電パッチ層13とグランド層12との間を接続する第2のビア導体(短絡ビア23)をさらに備える。これにより、アンテナ3の利得特性をさらに向上させることができる。
 また、実施形態に係るアンテナ3において、給電パッチ層13および第2の無給電パッチ層15は、平面視で正方形状を有し、第2の無給電パッチ層15の1辺の長さは、給電パッチ層13の1辺の長さの50(%)~70(%)である。これにより、良好な利得特性を得ることができる。
 また、実施形態に係るアンテナ3において、給電パッチ層13と第2の無給電パッチ層15との間隔d2は、給電パッチ層13とグランド層12との間隔d1の10(%)~20(%)である。これにより、さらに広帯域にまで高利得の範囲を広げることができる。
 また、実施形態に係るアンテナ3において、給電パッチ層13と第2の無給電パッチ層15との間隔d2は、給電パッチ層13から放射される電波の波長の0.8(%)~3(%)である。これにより、さらに広帯域にまで高利得の範囲を広げることができる。
 以上、本開示の実施形態について説明したが、本開示は上記実施形態に限定されるものではなく、その趣旨を逸脱しない限りにおいて種々の変更が可能である。たとえば、上記の実施形態では、第1の無給電パッチ層14が基板2の表面2aに配置される例について示したが、本開示はかかる例に限られず、第1の無給電パッチ層14が基板2の内部に配置されていてもよい。
 また、上記の実施形態では、アンテナ3にグランド層12と給電パッチ層13とを接続する短絡ビア23が設けられる例について示したが、本開示はかかる例に限られず、かかる短絡ビア23がアンテナ3に設けられなくてもよい。
 さらなる効果や他の態様は、当業者によって容易に導き出すことができる。このため、本開示のより広範な態様は、以上のように表しかつ記述した特定の詳細および代表的な実施形態に限定されるものではない。したがって、添付の請求の範囲およびその均等物によって定義される総括的な発明の概念の精神または範囲から逸脱することなく、様々な変更が可能である。
 1   アレイアンテナ
 2   基板
 2a  表面
 3   アンテナ
 11  給電層
 12  グランド層
 13  給電パッチ層
 14  第1の無給電パッチ層
 15  第2の無給電パッチ層
 21、21A、21B 給電ビア
 22、22A、22B パッチ間ビア(第1のビア導体の一例)
 23、23A、23B 短絡ビア(第2のビア導体の一例)
 d1、d2、d3 間隔

Claims (8)

  1.  誘電体で構成される基板と、
     接地電位に接続されるグランド層と、
     前記基板の内部で前記グランド層よりも前記基板の表面側に位置する給電パッチ層と、
     前記給電パッチ層よりも前記基板の表面側に位置する第1の無給電パッチ層と、
     前記基板の内部で前記給電パッチ層と前記第1の無給電パッチ層との間に位置する第2の無給電パッチ層と、
     を備え、
     前記第2の無給電パッチ層は、前記給電パッチ層および前記第1の無給電パッチ層よりも小さい
     アンテナ。
  2.  前記第1の無給電パッチ層は、前記給電パッチ層と同じ大きさである
     請求項1に記載のアンテナ。
  3.  前記給電パッチ層と、前記第2の無給電パッチ層と、前記第1の無給電パッチ層との間を接続する第1のビア導体、をさらに備える
     請求項1または2に記載のアンテナ。
  4.  前記給電パッチ層と前記グランド層との間を接続する第2のビア導体、をさらに備える
     請求項1~3のいずれか一つに記載のアンテナ。
  5.  前記給電パッチ層および前記第2の無給電パッチ層は、平面視で正方形状を有し、
     前記第2の無給電パッチ層の1辺の長さは、前記給電パッチ層の1辺の長さの50(%)~70(%)である
     請求項1~4のいずれか一つに記載のアンテナ。
  6.  前記給電パッチ層と前記第2の無給電パッチ層との間隔は、前記給電パッチ層と前記グランド層との間隔の10(%)~20(%)である
     請求項1~5のいずれか一つに記載のアンテナ。
  7.  前記給電パッチ層と前記第2の無給電パッチ層との間隔は、前記給電パッチ層から放射される電波の波長の0.8(%)~3(%)である
     請求項1~6のいずれか一つに記載のアンテナ。
  8.  請求項1~7のいずれか一つに記載のアンテナと、
     RF素子と、
     を備える通信モジュール。
PCT/JP2023/002881 2022-01-28 2023-01-30 アンテナおよび通信モジュール WO2023145937A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-011918 2022-01-28
JP2022011918 2022-01-28

Publications (1)

Publication Number Publication Date
WO2023145937A1 true WO2023145937A1 (ja) 2023-08-03

Family

ID=87471680

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/002881 WO2023145937A1 (ja) 2022-01-28 2023-01-30 アンテナおよび通信モジュール

Country Status (1)

Country Link
WO (1) WO2023145937A1 (ja)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02256305A (ja) * 1988-12-24 1990-10-17 Kojima Press Co Ltd マイクロストリップアンテナ
US5307075A (en) * 1991-12-12 1994-04-26 Allen Telecom Group, Inc. Directional microstrip antenna with stacked planar elements
WO2003041222A1 (fr) * 2001-11-09 2003-05-15 Nippon Tungsten Co., Ltd. Antenne
WO2003075402A1 (en) * 2002-03-01 2003-09-12 Massachusetts Institute Of Technology Tunable multi-band antenna array
JP2012204848A (ja) * 2011-03-23 2012-10-22 Murata Mfg Co Ltd アンテナ装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02256305A (ja) * 1988-12-24 1990-10-17 Kojima Press Co Ltd マイクロストリップアンテナ
US5307075A (en) * 1991-12-12 1994-04-26 Allen Telecom Group, Inc. Directional microstrip antenna with stacked planar elements
WO2003041222A1 (fr) * 2001-11-09 2003-05-15 Nippon Tungsten Co., Ltd. Antenne
WO2003075402A1 (en) * 2002-03-01 2003-09-12 Massachusetts Institute Of Technology Tunable multi-band antenna array
JP2012204848A (ja) * 2011-03-23 2012-10-22 Murata Mfg Co Ltd アンテナ装置

Similar Documents

Publication Publication Date Title
US9698487B2 (en) Array antenna
KR100542829B1 (ko) 송/수신용 고이득 광대역 마이크로스트립 패치 안테나 및이를 배열한 배열 안테나
KR100917847B1 (ko) 전방향 복사패턴을 갖는 평면형 안테나
JP4620018B2 (ja) アンテナ装置
KR20070009199A (ko) 수직배열 내장형 안테나
US8648762B2 (en) Loop array antenna system and electronic apparatus having the same
US20240079787A1 (en) High gain and fan beam antenna structures
JP2011526469A (ja) バラン非実装の単純な給電素子を用いた広帯域の長スロットアレイアンテナ
JP2010124194A (ja) アンテナ装置
JP4323413B2 (ja) パッチアンテナ、アレイアンテナおよびそれを備えた実装基板
US11456526B2 (en) Antenna unit, antenna system and electronic device
JP2002330024A (ja) スロットアンテナ
JPWO2014122925A1 (ja) アンテナ装置
WO2023145937A1 (ja) アンテナおよび通信モジュール
KR20050075966A (ko) 전방향 방사 안테나
US20210359423A1 (en) Antenna module
TWI451632B (zh) 高增益迴圈陣列天線系統及電子裝置
US10804609B1 (en) Circular polarization antenna array
KR20180123804A (ko) 초광대역 평면 안테나
JP5803741B2 (ja) 3周波共用アンテナ
WO2023145887A1 (ja) アンテナおよび通信モジュール
JP6052344B2 (ja) 3周波共用アンテナ
JP7315043B2 (ja) パッチアンテナ
KR20050065958A (ko) 다공진 안테나
JP2003347842A (ja) アレイアンテナ装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23747147

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023577072

Country of ref document: JP