WO2021071048A1 - 리튬이 코팅된 금속 물질을 포함하는 전지용 전극 및 그 제조 방법 - Google Patents

리튬이 코팅된 금속 물질을 포함하는 전지용 전극 및 그 제조 방법 Download PDF

Info

Publication number
WO2021071048A1
WO2021071048A1 PCT/KR2020/006662 KR2020006662W WO2021071048A1 WO 2021071048 A1 WO2021071048 A1 WO 2021071048A1 KR 2020006662 W KR2020006662 W KR 2020006662W WO 2021071048 A1 WO2021071048 A1 WO 2021071048A1
Authority
WO
WIPO (PCT)
Prior art keywords
oxide layer
lithium
metal foam
coated
metal
Prior art date
Application number
PCT/KR2020/006662
Other languages
English (en)
French (fr)
Inventor
최유송
안태영
유혜련
조장현
Original Assignee
국방과학연구소
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020190178521A external-priority patent/KR102383755B1/ko
Application filed by 국방과학연구소 filed Critical 국방과학연구소
Priority to US17/636,360 priority Critical patent/US11508959B2/en
Publication of WO2021071048A1 publication Critical patent/WO2021071048A1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M12/00Hybrid cells; Manufacture thereof
    • H01M12/08Hybrid cells; Manufacture thereof composed of a half-cell of a fuel-cell type and a half-cell of the secondary-cell type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/366Composites as layered products
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0402Methods of deposition of the material
    • H01M4/0404Methods of deposition of the material by coating on electrode collectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0471Processes of manufacture in general involving thermal treatment, e.g. firing, sintering, backing particulate active material, thermal decomposition, pyrolysis
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0483Processes of manufacture in general by methods including the handling of a melt
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • H01M4/1395Processes of manufacture of electrodes based on metals, Si or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • H01M4/381Alkaline or alkaline earth metals elements
    • H01M4/382Lithium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/66Selection of materials
    • H01M4/661Metal or alloys, e.g. alloy coatings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/66Selection of materials
    • H01M4/664Ceramic materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/66Selection of materials
    • H01M4/665Composites
    • H01M4/667Composites in the form of layers, e.g. coatings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/70Carriers or collectors characterised by shape or form
    • H01M4/80Porous plates, e.g. sintered carriers
    • H01M4/808Foamed, spongy materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0065Solid electrolytes
    • H01M2300/0082Organic polymers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the invention proposed through the present specification relates to an electrode for a battery including a metal material coated with lithium and a method for manufacturing the same, and more particularly, to an electrode for a battery including a metal material obtained with lithium-friendly properties, and a method for manufacturing the same. will be.
  • Lithium (Li) metal has high utility as a next-generation battery electrode due to its high capacity, low electrochemical potential, and lightweight characteristics.
  • lithium has lithiophobic properties that are not easily coated on general metals, and thus, it is difficult to manufacture a battery electrode using lithium. Therefore, there are active studies to reduce the solitium properties of lithium and improve the lithiophilic properties.
  • lithium-ion batteries have limited battery capacity, making it difficult for electric vehicles to travel over long distances.
  • a large-capacity battery must be mounted on a vehicle, but since the sales price of a vehicle increases, a secondary battery having an energy density that is 6 to 7 times greater than that of a conventional secondary battery is required to supply electric vehicles. Accordingly, a lithium-air battery having a greater energy density than a lithium-ion battery is attracting attention.
  • lithium-air batteries In the case of most lithium-air batteries, they are formed in a pouch-type or coin-type similar to that of the existing metal-air batteries, and they are not deviating from the form in which a hole is made so that air can pass through only the positive electrode.
  • Such a configuration has difficulty in reducing the weight of the battery and simplifying the process because a process of drilling a hole in the positive electrode surface during battery manufacturing and a sealing process for shielding other components from outside air are additionally required.
  • the portion exposed to the air is very limited due to the battery structure, so that it is impossible to maximize the performance of the positive electrode active material.
  • a lithium coating method comprising the step of coating a lithium layer thereon may be provided.
  • the metal material, the oxide layer coated on the metal material by heating the metal material at a predetermined temperature, and the metal material coated with the oxide layer are contacted with molten lithium.
  • a battery electrode comprising a lithium layer coated on an oxide layer may be provided.
  • a metal material an oxide layer coated on the metal material by heating the metal material at a predetermined temperature, and a metal material coated with an oxide layer having a lithiophilic contact with molten lithium.
  • a battery including a negative electrode including a lithium layer coated on an oxide layer, a positive electrode, and an electrolyte disposed between the negative electrode and the positive electrode may be provided.
  • the lithium-friendly property of the metal foam is improved, it is easy to impregnate lithium into the pores of the metal foam, and thus a metal foam coated with lithium and an electrode for a battery including the same can be provided.
  • FIG. 1 is a diagram of an electrode for a battery including a metal foam coated with lithium according to embodiments.
  • FIG. 2 is a flowchart illustrating a method of manufacturing an electrode for a battery by coating lithium on a metal foam according to embodiments.
  • 3 is an image of forming an oxide layer by heating a metal foam according to embodiments.
  • FIG. 5 is a diagram illustrating the impregnation of lithium into a metal foam on which an oxide layer is formed.
  • FIG. 7 is a graph of a microscopic image of an oxide layer formed on the metal foam and constituent elements of the oxide layer when the metal foam is an alloy containing nickel, chromium, and aluminum according to an exemplary embodiment.
  • FIG. 8 is a microscope image of an oxide layer formed on the metal foam and a graph of constituent elements of the oxide layer when the metal foam is an alloy containing iron, chromium and aluminum according to another exemplary embodiment.
  • FIG. 9 is a diagram of a lithium-air battery 200 using a lithium-coated metal foam according to embodiments.
  • FIG. 10 is a flow chart illustrating a method of manufacturing a lithium-air battery according to embodiments.
  • FIG. 11 is an image of manufacturing a lithium-air battery according to embodiments.
  • a lithium coating method comprising the step of coating a lithium layer thereon may be provided.
  • the metal material may be heated in an air atmosphere, in a temperature range of 500 to 950° C., and a time range of 1 minute to 1 hour.
  • the molten lithium may be 350 to 450°C.
  • the metal material is a porous metal foam, and in the step of coating the lithium layer, molten lithium may be impregnated in the pores of the metal foam.
  • the metallic material may include at least one of nickel, iron, chromium, and aluminum.
  • the metal material, the oxide layer coated on the metal material by heating the metal material at a predetermined temperature, and the metal material coated with the oxide layer are contacted with molten lithium.
  • a battery electrode comprising a lithium layer coated on an oxide layer may be provided.
  • the metal material is a porous metal foam, and molten lithium may be impregnated in the pores of the metal foam.
  • the metallic material may include at least one of nickel, iron, chromium, and aluminum.
  • the oxide layer includes a first oxide layer formed on a metal material and a second oxide layer formed on the first oxide layer, and composition ratios of the first oxide layer and the second oxide layer may be different.
  • the content of chromium (Cr) in the second oxide layer may be greater than the content of iron in the first oxide layer.
  • the aluminum (Al) content of the first oxide layer may be greater than the aluminum content of the second oxide layer.
  • the oxide layer can be produced by heating the metal material in an air atmosphere, in a temperature range of 500 to 950° C. and a time range of 1 minute to 1 hour.
  • the lithium layer may be coated on 50 to 98% of the total surface area of the metal foam.
  • a ratio of the thickness of the oxide layer to the thickness of the ligament constituting the metal foam may be 0.002 to 0.005.
  • the porosity of the metal foam may be 60% to 99% relative to the volume of the metal foam.
  • a metal material an oxide layer coated on the metal material by heating the metal material at a predetermined temperature, and a metal material coated with an oxide layer having a lithiophilic contact with molten lithium.
  • a battery including a negative electrode including a lithium layer coated on an oxide layer, a positive electrode, and an electrolyte disposed between the negative electrode and the positive electrode may be provided.
  • FIG. 1 is a diagram of an electrode 100 for a battery including a metal foam coated with lithium according to embodiments.
  • the battery electrode 100 is formed on a porous metal foam 120, an oxide layer 140 having a lithiophilic property, and an oxide layer 140 coated on the metal foam 120. And a coated lithium layer 160.
  • the metal foam 120 is a three-dimensional porous structure having very excellent electrical conductivity.
  • the metal foam 120 may be used as a support for a battery and a negative electrode current collector.
  • Lithium has the highest theoretical capacity as a negative active material for batteries.
  • the metal foam 120 is preferably made of a material that is relatively stable to lithium, which is an example of an anode active material.
  • the metal foam 120 is a conductive metal material.
  • the metal foam 120 is manufactured by using any one or more of nickel, iron, nickel, aluminum, chromium, silicon, molybdenum, and stainless alloys.
  • the material of the metal foam 120 is very difficult to coat pure lithium on the surface of the metal foam 120 because it has a characteristic of Lithiophobic, which is not coated with pure lithium. Therefore, according to the manufacturing method of the battery electrode 100, by heating the metal foam 120 at a predetermined temperature, the oxide layer 140 having lithiophilic properties can be coated on the metal foam 120. have. Thereafter, the lithium layer 160 may be coated on the oxide layer 140 by contacting the metal foam 120 coated with the oxide layer 140 with molten lithium. As a result, pure lithium is evenly coated on the metal foam 120, and impregnation of lithium into the pores of the metal foam 120 is facilitated.
  • a ratio of the thickness of the oxide layer 140 to the thickness of a ligament constituting the metal foam 120 may be 0.002 to 0.005.
  • This thickness ratio is an optimum thickness in which the oxide layer exhibits a lithium to lithium lipophilic property on the surface of the metal foam 120 and does not form Li2O through a rapid exothermic reaction of the oxide with molten lithium during the lithium coating process. Outside this range, when the thickness of the oxide layer 140 becomes thick and the oxide exists on the surface of the metal foam 120 beyond this range, a rapid flame is generated, and the oxygen of the oxide and molten lithium react to generate Li2O.
  • the thickness of the ligament of the metal foam 120 is approximately 50 to 100 ⁇ m, and the thickness of the oxide layer 140 is approximately 100 to 500 nm.
  • the predetermined porosity of the metal foam 120 may be 60% to 99% of the volume of the metal foam 120.
  • the porosity of the metal foam 120 is less than 60% of the total volume, the amount of the coated active material may decrease, thereby reducing the electrochemical properties.
  • the porosity of the metal foam 120 exceeds 99%, a problem occurs in that the coating process is not well performed.
  • the lithium layer 160 may be coated on 50 to 98% of the total surface area of the metal foam 120.
  • the negative electrode active material is coated with 50% to 98% of the area of the metal foam 120.
  • the negative electrode active material When the negative electrode active material is coated with less than 50% of the area of the metal foam 120, the amount of the negative electrode active material to be coated is small, which is not preferable to construct a high-performance battery. On the other hand, when the negative active material is coated in excess of 98% of the area of the metal foam 120, the metal foam 120, which is a negative electrode current collector, is not exposed to the outside, and thus, it is not preferable to construct a battery.
  • FIG. 2 is a flowchart illustrating a method of manufacturing an electrode for a battery by coating lithium on a metal foam according to embodiments
  • FIG. 3 is an image of forming an oxide layer 140 by heating the metal foam according to the embodiments.
  • FIG. 4 is an image of coating lithium on a metal foam according to embodiments.
  • an oxide layer 140 having lithiophilic properties is coated on the metal foam 120 (S1100).
  • the metal foam 120 is heated in an air atmosphere.
  • the metal foam 120 may be heated in a temperature range of 500 to 950 °C.
  • the metal foam 120 is heated for about 1 minute to 1 hour.
  • the oxide layer may be formed to a thickness of 100 to 500 nm within about 1 minute.
  • the heating time must be increased up to about 1 hour to form an oxide layer exhibiting lithium-friendly properties.
  • the heating process is an isothermal heat treatment process and is independent of the rate of temperature increase of the furnace.
  • lithium may be evenly coated on the metal foam 120 in a subsequent process. If the oxidation process is not performed, the surface of the metal foam 120 is not wetted at all and is not coated due to the high surface tension of lithium.
  • the oxide layer 140 may include a plurality of oxide layers 140 having different compositions according to the radial direction of the stem of the metal foam 120, which will be described in more detail later with reference to FIGS. 7 and 8.
  • the metal foam 120 coated with the oxide layer 140 contacts the molten lithium, so that the lithium layer 160 is coated on the oxide layer 140 (S1200).
  • the metal foam 120 coated with the oxide layer 140 may be introduced into a container containing molten lithium at 350 to 450°C.
  • the surface of the metal foam 120 on which the oxide layer 140 having a lithiophilic property is formed is immersed in pure lithium melted at 350 to 450°C to coat the surface of the active material film composed of pure lithium on the surface of the metal foam 120 do.
  • the metal foam 120 of FIG. 4(a) may be changed into a metal foam 120 having an oxide layer 140 formed on the surface thereof, as shown in FIG. 4(b). Thereafter, the metal foam 120 on which the oxide layer 140 of FIG. 4(b) is formed may be coated with lithium on its surface and impregnated with lithium as shown in FIG. 4(c).
  • the molten lithium in the process of dissolving pure lithium has very high reactivity with moisture, oxygen, carbon dioxide, and nitrogen in the air, so it must be carried out under a high purity (99.999% or more) argon atmosphere.
  • molten lithium in the case of high-temperature molten lithium, it reacts with a very small amount of nitrogen to produce a black nitrided lithium (Li3N) compound, so more preferably, high purity argon is purged at least 1 liter per minute during the molten lithium coating process. It is preferable to coat the molten lithium.
  • FIG. 5 is a diagram illustrating the impregnation of lithium into a metal foam on which an oxide layer is formed.
  • lithium when the metal foam 120-1 on which the lithium-philic oxide layer 140 is formed is immersed in molten lithium, lithium is coated on the surface of the oxide layer 140 of the metal foam 120-1. , Lithium may be easily impregnated into the pores of the metal foam 120-1.
  • lithium is not impregnated in the metal foam 120-2 on which the oxide layer 140 is not formed on the surface.
  • the oxide layer 140 having lithium-friendly properties is coated on the metal foam 120.
  • the metal foam 120 may be made of pure nickel, and in this case, the oxide layer 140 may include nickel oxides (NiO, Ni2O3, and NiO2).
  • FIG. 7 is a graph of a microscopic image of an oxide layer formed on the metal foam and constituent elements of the oxide layer when the metal foam is an alloy containing nickel, chromium, and aluminum according to an exemplary embodiment.
  • the oxide layer 140 is formed on the metal foam 120.
  • the oxide layer 140 may include a plurality of oxide layers formed along the radial direction of the stem of the metal foam 120.
  • the plurality of oxides can be distinguished through a difference in crystallinity on the naked eye.
  • the oxide layer may include a first oxide layer 142 formed on the surface of the metal foam 120 and a second oxide layer 144 formed on the first oxide layer.
  • a plurality of oxides may have different compositions according to the radial direction of the stem of the metal foam 120.
  • Nickel tends to increase as it moves away from the center of the metal foam 120.
  • the chromium tends to increase as it moves away from the center of the metal foam 120.
  • Aluminum tends to decrease as it moves away from the center of the metal foam 120.
  • the content of nickel in the second oxide layer 144 is greater than the content of nickel in the first oxide layer 142.
  • the content of chromium in the second oxide layer 144 is greater than that of the first oxide layer 142.
  • the content of aluminum in the second oxide layer 144 is smaller than the content of aluminum in the first oxide layer 142.
  • FIG. 8 is a microscope image of an oxide layer formed on the metal foam 120 and a graph of elements of the oxide layer when the metal foam 120 is an alloy containing iron, chromium and aluminum according to another embodiment to be.
  • the oxide layer 140 is formed on the metal foam 120.
  • the oxide layer 140 may include a plurality of oxide layers formed along the radial direction of the stem of the metal foam 120.
  • the plurality of oxides can be distinguished through a difference in crystallinity on the naked eye.
  • the oxide layer may include a third oxide layer 146 formed on the surface of the metal foam 120 and a fourth oxide layer 148 formed on the first oxide layer.
  • a plurality of oxides may have different compositions according to the radial direction of the stem of the metal foam 120.
  • the chromium tends to increase as it moves away from the center of the metal foam 120.
  • Aluminum tends to decrease as it moves away from the center of the metal foam 120.
  • the content of chromium in the fourth oxide layer 148 is greater than the content of chromium in the third oxide layer 146.
  • the content of aluminum in the fourth oxide layer 148 is smaller than the content of aluminum in the third oxide layer 146.
  • the fourth oxide layer 148 contains a relatively large amount of chromium oxide (Cr2O3) having lithium-friendly properties, whereas the third oxide layer 146 is an aluminum oxide (Al2O3) that slightly reduces wettability with lithium. It can be seen that a relatively large number of is present compared to the fourth oxide layer 148.
  • Cr2O3 chromium oxide
  • Al2O3 aluminum oxide
  • an oxide layer is formed on the metal foam 120 made of any one or more of nickel, iron, chromium, aluminum, silicon, molybdenum, and stainless alloy through a heat treatment process.
  • the temperature and time it is important to optimize the temperature and time so that the closer to the surface far from the center of the metal foam 120, the lithium-philic materials increase and the solitium materials decrease.
  • oxides of iron, chromium, and nickel have lithium-philicity, and aluminum has somewhat solitium.
  • anisolithium aluminum oxide is present on the surface of the metal foam 120 on which the oxide layer is formed, and thus wettability with lithium may decrease.
  • the time exceeds 1 hour, the concentration of the lithium-friendly oxide on the surface of the metal foam 120 on which the oxide layer is formed may decrease.
  • FIG. 9 is a diagram of a lithium-air battery 200 using a metal foam 220 coated with lithium according to embodiments.
  • the present invention relates to a lithium-porous metal foam 220 serving as a support for the lithium-air battery 200 and a negative electrode current collector, an oxide layer 240 of lithium, a negative electrode active material 260, an electrolyte layer 270, a positive electrode active material layer ( 280) and the air diffusion layer 290 are sequentially multi-coated with a lithium-air battery 200 and a method of manufacturing the same.
  • FIG. 10 is a flowchart illustrating a method of manufacturing a lithium-air battery 200 according to embodiments
  • FIG. 11 is an image of manufacturing a lithium-air battery 200 according to embodiments.
  • the manufacturing method of the lithium-air battery 200 includes coating the oxide layer 240 having lithium-friendly properties on the metal foam 220 by heating the porous metal foam 220 at a predetermined temperature (S2100). To do. Referring to FIG. 11(b), the surface of the metal foam 220 is oxidized for 1 hour or less at a temperature of 500 to 950°C in atmospheric conditions. According to an embodiment, the surface of the metal foam 220 is oxidized for 1 minute to 1 hour at a temperature of 500 to 900° C. in an atmospheric condition. The contents described above in step S1100 may be applied to step S2100.
  • step S2200 a step of coating the negative active material on the metal foam 220 is performed (S2200).
  • the negative electrode active material lithium is impregnated into the pores of the metal foam 220 to coat the metal foam 220.
  • the contents described above in step S1200 may be applied to step S2200.
  • a process of thinly coating an alloy of copper and nickel may be added to the negative active material to protect the negative electrode from moisture and carbon dioxide in the air.
  • a step of coating an electrolyte on the metal foam 220 coated with the negative active material may be performed (S2300). Referring to FIG. 11(d), in order to prevent the negative active material coated on the metal foam 220 from being exposed to the air, the surface of the negative active material is completely blocked from the outside when the electrolyte is coated.
  • a material having excellent ionic conductivity it is preferable to use a material having excellent ionic conductivity, and preferably, an electrolyte having an ionic conductivity of 10 -3 to 10 -4 S/cm or more is used.
  • the electrolyte polymer material may include trimethyloppropane ethoxylate triacrylate (ETPTA) and poly(vinylidene fluoride-hexafluoropropylene) (PVDF-HFP), respectively, or a combination thereof.
  • ETPTA trimethyloppropane ethoxylate triacrylate
  • PVDF-HFP poly(vinylidene fluoride-hexafluoropropylene)
  • the electrolyte polymer material may contain 50% by weight of ETPTA and 50% by weight of PVDF-HFP.
  • the coated electrolyte may be cured through ultraviolet (UV) light.
  • UV ultraviolet
  • HMPP 2-Hydroxy-2methylpropiophenone
  • HMPP may use 0.1% of the weight of ETPTA.
  • PVDF-HFP as a solid electrolyte and NMP (N-methyl-2-pyrrolidone) or DMF (Dimethylformamide) are heated to 60° C. to 90° C., and stirred for 5 hours in a heated state to homogeneously do.
  • a carbonate-based or ether-based lithium battery electrolyte such as LiBF 4 , LIPF 6 , ethylene carbonate (EC), or di-methylether (DME) may be mixed in a polymer electrolyte in an amount of 30 to 70% by volume. Then, it can be thermally cured or UV cured.
  • an electrolyte containing 1M lithium bis (trifluoromethanesulfonyl)imide (LITFSI) lithium salt in tetraethylene glycol dimethyl ether (TEGDME) may be used.
  • the solid electrolyte polymer solution (ETPTA and PVDF-HFP) and the liquid electrolyte may be mixed in a volume ratio of 1M LITFSI + TEGDME in a volume ratio of 6:4.
  • the step of coating the positive electrode active material on the metal foam 220 coated with the solid electrolyte is performed (S2400).
  • the positive electrode active material is manufactured using a porous carbon material or a carbon material composite using the same in order to maximize a reaction area with air.
  • porous carbon material As the porous carbon material as the positive electrode active material, a material made of carbon, such as activated carbon, graphene, carbon nanofibers, carbon black, and reduced graphene oxide, may be used, and any one of composites prepared using these may be used. Thereafter, a step of drying the coated positive electrode active material is performed.
  • a material made of carbon such as activated carbon, graphene, carbon nanofibers, carbon black, and reduced graphene oxide
  • a step (S2500) of connecting the positive terminal to the metal foam 220 coated with the positive active material is performed.
  • an air diffusion layer (ADL) may be deposited.
  • the positive terminal is connected to the portion coated with the air diffusion layer 290.
  • the lithium-air battery 200 manufactured by the manufacturing method of the lithium-air battery 200 maintains the shape of the three-dimensional porous metal foam 220 as it is, and is a metal forming the metal foam 220 simply. Electrode active materials and electrolyte are coated on the surface.
  • the metal foam 220 as a support and negative electrode current collector of a battery
  • a lithium layer 260 as a negative electrode active material
  • an electrolyte layer 270 as a positive electrode active material
  • a positive electrode active material layer 280 are located in the center.
  • the coating is formed by sequentially stacking multiple layers.
  • the lithium-air battery 200 manufactured by such a manufacturing method has the effect of reducing the weight of the battery and simplifying the manufacturing process and structure of the battery.
  • the anode using a porous carbon material is coated on the surface of the porous metal foam 220, air exposure of the anode is maximized, thereby securing a double porosity effect.
  • a lithium metal electrode was prepared by coating lithium on a nickel-chromium-aluminum metal foam coated with an oxide layer, and after processing into a 12 mm diameter electrode, 1M LiTFSI TEGDME (Lithium bis (trifluoromethanesulfonyl)imide) Tetraethylene glycol dimethyl Using an ether electrolyte, a symmetric coin cell was prepared and charged and discharged at 0.05 mA/cm2.
  • LiTFSI TEGDME Lithium bis (trifluoromethanesulfonyl)imide
  • the electrode for a battery including such a lithium-coated metal foam and a lithium battery manufactured by the method of manufacturing the same are capable of coating pure lithium by forming a lithium-friendly oxide layer in a simple and easy way, and thus, a high-capacity lithium metal for lithium batteries.
  • the porous pores of the porous metal foam 220 are stably impregnated with lithium, and the metal foam not only solves the problem due to the volume change of the lithium cathode generated during the plating/stripping process of lithium during charging and discharging, but also exhibits excellent cycle characteristics. It works.

Abstract

일 실시예에 따른 리튬 코팅 방법은, 금속 물질을 소정의 온도에서 가열함으로써, 친리튬 특성(lithiophilic)을 갖는 산화물 층을 금속 물질 상에 코팅하는 단계 및 산화물 층이 코팅된 금속 물질을 용융 리튬과 접촉시킴으로써 산화물 층 상에 리튬 층을 코팅하는 단계를 포함할 수 있다.

Description

리튬이 코팅된 금속 물질을 포함하는 전지용 전극 및 그 제조 방법
본 명세서를 통해 제안되는 발명은 리튬이 코팅된 금속 물질을 포함하는 전지용 전극 및 그 제조 방법에 관한 것으로, 더욱 상세하게는 친리튬 특성을 획득한 금속 물질을 포함하는 전지용 전극 및 그 제조 방법에 관한 것이다.
리튬(Li) 금속은, 높은 용량, 낮은 전기 화학적 전위 및 경량 특성으로 인해 차세대 배터리 전극으로서 활용성이 높다. 그러나, 리튬은 일반 금속에 쉽사리 코팅이 되지 않는 소리튬(Lithiophobic) 특성을 갖고 있어, 리튬을 이용한 배터리 전극의 제조에 어려움을 겪고 있는 상황이다. 따라서, 리튬의 소리튬 특성을 줄이고, 친리튬(lithiophilic) 특성을 향상시키기 위한 연구가 활발한 실정이다.
한편, 화석연료 소비 증가에 따른 이산화탄소 배출을 저감하기 위해 전기자동차 및 하이브리드자동차의 보급이 확대되고 있다. 현재 리튬-이온 전지는 전지용량의 제약으로 전기자동차의 장거리 주행이 어렵다. 장거리 운행을 위해서는 대용량 전지가 자동차에 탑재되어야 하지만 자동차 판매가격이 상승하기 때문에 전기자동차 보급을 위해서는 기존의 이차전지보다 6 내지 7배 정도 큰 에너지 밀도를 갖는 이차전지가 필요하다. 이에 따라 리튬-이온 전지 보다 큰 에너지 밀도를 갖는 리튬-공기 전지가 주목받고 있다.
이러한 리튬-공기 전지의 상용화를 목적으로 전지의 효율 향상, 충/방전 특성 향상, 공기 중 수분 및 이산화탄소 등에 의한 음극의 안전과 오염방지를 위한 연구가 이루어지고 있다.
전술한 바와 같은 목적 달성을 위해 전극 및 전해질 재료 개발 또는 촉매 개발에 대한 연구가 활발히 진행되고 있지만, 리튬-공기 전지의 특성상 양극은 원활한 공기의 공급이 이루어져야 하고, 동시에 음극 및 전해질 등의 전지 구성 요소들은 공기와 원천적으로 차폐되어야 하므로 전지 구조의 단순화 및 경량화가 어렵고 그 형태가 매우 한정적이다.
대부분의 리튬-공기 전지의 경우 기존의 금속-공기 전지와 유사한 형태인 파우치형, 코인형 등으로 형성되며, 양극 부분에만 공기가 통할 수 있도록 구멍을 뚫어 놓은 형태를 벗어나지 못하고 있다.
이러한 구성은 전지 제조 시 양극 표면에 구멍을 뚫어야 하는 공정과 그 외 다른 구성품들을 외기와 차폐시키기 위한 실링 공정 등이 추가로 필요하기 때문에 전지의 경량화 및 공정의 단순화에 어려움이 있다.
또한, 양극의 경우 기공률이 높은 양극 활물질을 사용한다고 하더라도 실제 공기에 노출되는 부분이 전지 구조에 의해 매우 한정적이므로 양극 활물질의 성능을 최대한으로 활용하는 것이 불가능한 문제점이 있다.
일 실시예에 따르면, 금속 물질을 소정의 온도에서 가열함으로써, 친리튬 특성(lithiophilic)을 갖는 산화물 층을 금속 물질 상에 코팅하는 단계 및 산화물 층이 코팅된 금속 물질을 용융 리튬과 접촉시킴으로써 산화물 층 상에 리튬 층을 코팅하는 단계를 포함하는 리튬 코팅 방법이 제공될 수 있다.
다른 일 실시예에 따르면, 금속 물질, 금속 물질이 소정의 온도에서 가열됨으로써 금속 물질 상에 코팅된, 친리튬 특성(lithiophilic)을 갖는 산화물 층 및 산화물 층이 코팅된 금속 물질이 용융 리튬과 접촉됨으로써 산화물 층 상에 코팅된 리튬 층을 포함하는, 전지용 전극이 제공될 수 있다.
또 다른 일 실시예에 따르면, 금속 물질, 금속 물질이 소정의 온도에서 가열됨으로써 금속 물질 상에 코팅된, 친리튬 특성(lithiophilic)을 갖는 산화물 층 및 산화물 층이 코팅된 금속 물질이 용융 리튬과 접촉됨으로써 산화물 층 상에 코팅된 리튬 층을 포함하는 음극, 양극 및 음극 및 양극 사이에 배치되는 전해질을 포함하는 전지가 제공될 수 있다.
본 발명에 따르면, 메탈폼의 친리튬 특성이 향상되어, 메탈폼의 공극 내부로 리튬의 함침이 용이하여, 리튬을 코팅한 메탈폼 및 이를 포함하는 전지용 전극을 제공할 수 있다.
도 1은 실시예들에 따라 리튬이 코팅된 메탈폼을 포함하는 전지용 전극에 관한 도면이다.
도 2는 실시예들에 따라 메탈폼에 리튬을 코팅하여 전지용 전극을 제조하는 방법에 관한 순서도이다.
도 3은 실시예들에 따라 메탈폼이 가열되어 산화물 층이 형성되는 것에 관한 이미지이다.
도 4는 실시예들에 따라 메탈폼에 리튬이 코팅되는 것에 관한 이미지이다.
도 5는 산화물 층이 형성된 메탈폼에 리튬이 함침되는 것에 관한 도면이다.
도 6은 산화물 층이 코팅된 메탈폼에 관한 현미경 이미지이다.
도 7은 일 실시예에 따라 메탈폼이 니켈, 크롬 및 알루미늄을 포함하는 합금인 경우, 메탈폼 상에 형성된 산화물 층의 현미경 이미지 및 산화물 층의 구성 원소에 관한 그래프이다.
도 8은 다른 일 실시예에 따라 메탈폼이 철, 크롬 및 알루미늄을 포함하는 합금인 경우, 메탈폼상에 형성된 산화물 층에 관한 현미경 이미지 및 산화물 층의 구성 원소에 관한 그래프이다.
도 9는 실시예들에 따른 리튬이 코팅된 메탈폼을 이용한 리튬-공기 전지(200)에 관한 도면이다.
도 10은 실시예들에 따른 리튬-공기 전지 제조 방법에 관한 순서도이다.
도 11은 실시예들에 따라 리튬-공기 전지를 제조하는 것에 관한 이미지이다.
도 12는 실시예들에 따른 리튬 층이 코팅된 메탈폼을 이용한 리튬 코인셀의 사이클 방전 시험결과이다.
일 실시예에 따르면, 금속 물질을 소정의 온도에서 가열함으로써, 친리튬 특성(lithiophilic)을 갖는 산화물 층을 금속 물질 상에 코팅하는 단계 및 산화물 층이 코팅된 금속 물질을 용융 리튬과 접촉시킴으로써 산화물 층 상에 리튬 층을 코팅하는 단계를 포함하는 리튬 코팅 방법이 제공될 수 있다.
또, 산화물 층을 금속 물질 상에 코팅하는 단계에서,
금속 물질은 공기 분위기에서, 500 내지 950 ℃의 온도 범위에서, 1분 내지 1시간의 시간 범위에서 가열될 수 있다.
또, 산화물 층 상에 리튬 층을 코팅하는 단계에서, 용융 리튬은 350 내지 450℃ 일 수 있다.
또, 금속 물질은 다공성 메탈폼이고, 리튬 층을 코팅하는 단계에서, 메탈폼의 공극들에 용융 리튬이 함침될 수 있다.
또, 금속 물질은 니켈, 철, 크롬 및 알루미늄 중 적어도 하나를 포함할 수 있다.
다른 일 실시예에 따르면, 금속 물질, 금속 물질이 소정의 온도에서 가열됨으로써 금속 물질 상에 코팅된, 친리튬 특성(lithiophilic)을 갖는 산화물 층 및 산화물 층이 코팅된 금속 물질이 용융 리튬과 접촉됨으로써 산화물 층 상에 코팅된 리튬 층을 포함하는, 전지용 전극이 제공될 수 있다.
또, 금속 물질은 다공성 메탈폼이고, 메탈폼의 공극들에 용융 리튬이 함침될 수 있다.
또, 금속 물질은 니켈, 철, 크롬 및 알루미늄 중 적어도 하나를 포함할 수 있다.
또, 산화물 층은 금속 물질 상에 형성된 제1 산화물 층 및 제1 산화물 층 상에 형성된 제2 산화물 층을 포함하고, 제1 산화물 층 및 제2 산화물 층의 조성비는 상이할 수 있다.
또, 제2 산화물 층의 크롬(Cr) 함량은 제1 산화물 층의 철 함량보다 클 수 있다.
또, 제1 산화물 층의 알루미늄(Al) 함량은 제2 산화물 층의 알루미늄 함량보다 클 수 있다.
또, 산화물 층은 공기 분위기에서, 500 내지 950 ℃의 온도 범위 및 1분 내지 1시간의 시간 범위에서 금속 물질을 가열함으로써 생성될 수 있다.
또, 리튬 층은 메탈폼의 전체 표면적의 50 내지 98% 상에 코팅될 수 있다.
또, 메탈폼을 구성하는 줄기(ligament)의 두께 대비 산화물 층의 두께의 비는 0.002 내지 0.005 일 수 있다.
또, 메탈폼의 기공률은, 메탈폼의 부피 대비 60% 내지 99%일 수 있다.
또 다른 일 실시예에 따르면, 금속 물질, 금속 물질이 소정의 온도에서 가열됨으로써 금속 물질 상에 코팅된, 친리튬 특성(lithiophilic)을 갖는 산화물 층 및 산화물 층이 코팅된 금속 물질이 용융 리튬과 접촉됨으로써 산화물 층 상에 코팅된 리튬 층을 포함하는 음극, 양극 및 음극 및 양극 사이에 배치되는 전해질을 포함하는 전지가 제공될 수 있다.
도면을 참조하여 본 발명의 구체적인 실시예를 상세하게 설명한다. 다만, 본 발명의 사상은 제시되는 실시예에 제한되지 아니하고, 본 발명의 사상을 이해하는 당업자는 동일한 사상의 범위 내에서 다른 구성요소를 추가, 변경, 삭제 등을 통하여, 퇴보적인 다른 발명이나 본 발명 사상의 범위 내에 포함되는 다른 실시예를 용이하게 제안할 수 있을 것이나, 이 또한 본원 발명 사상 범위 내에 포함된다고 할 것이다.
또한, 각 실시예의 도면에 나타나는 동일한 사상의 범위 내의 기능이 동일한 구성요소는 동일한 참조부호를 사용하여 설명한다.
실시예들에서 사용되는 용어는 본 발명에서의 기능을 고려하면서 가능한 현재 널리 사용되는 일반적인 용어들을 선택하였으나, 이는 당 분야에 종사하는 기술자의 의도 또는 판례, 새로운 기술의 출현 등에 따라 달라질 수 있다. 또한, 특정한 경우는 출원인이 임의로 선정한 용어도 있으며, 이 경우 해당되는 발명의 설명 부분에서 상세히 그 의미를 기재할 것이다. 따라서 본 발명에서 사용되는 용어는 단순한 용어의 명칭이 아닌, 그 용어가 가지는 의미와 본 발명의 전반에 걸친 내용을 토대로 정의되어야 한다.
명세서 전체에서 어떤 부분이 어떤 구성요소를 "포함"한다고 할 때, 이는 특별히 반대되는 기재가 없는 한 다른 구성요소를 제외하는 것이 아니라 다른 구성요소를 더 포함할 수 있음을 의미한다. 또한, 명세서에 기재된 "부", "모듈" 등의 용어는 적어도 하나의 기능이나 동작을 처리하는 단위를 의미하며, 이는 하드웨어 또는 소프트웨어로 구현되거나 하드웨어와 소프트웨어의 결합으로 구현될 수 있다.
아래에서는 첨부한 도면을 참고하여 본 발명의 실시예에 대하여 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자가 용이하게 실시할 수 있도록 상세히 설명한다. 그러나 본 발명은 여러 가지 상이한 형태로 구현될 수 있으며 여기에서 설명하는 실시예에 한정되지 않는다.
이하, 본 발명의 바람직한 실시예들을 첨부도면을 참조하여 상세히 설명한다.
도 1은 실시예들에 따라 리튬이 코팅된 메탈폼을 포함하는 전지용 전극(100)에 관한 도면이다. 도 1을 참조하면, 전지용 전극(100)은 다공성 메탈폼(120), 메탈폼(120) 상에 코팅된, 친리튬 특성(lithiophilic)을 갖는 산화물 층(140), 산화물 층(140) 상에 코팅된 리튬 층(160)을 포함한다.
메탈폼(120)은 전기적 전도성이 매우 우수한 3차원 다공성 구조이다.
메탈폼(120)은 전지의 지지체이자 음극 집전체로 사용될 수 있다.
리튬은 전지의 음극 활물질로써 가장 높은 이론적 용량을 나타낸다.
메탈폼(120)은 음극 활물질의 일 예인 리튬에 상대적으로 안정적인 재료를 사용하는 것이 바람직하다.
메탈폼(120)은 전도성 금속 물질이다. 예를 들면, 메탈폼(120)은 니켈, 철, 니켈, 알루미늄, 크롬, 실리콘, 몰리브데넘 및 스테인레스 합금 중 어느 하나 이상의 재료가 사용되어 제작된다.
메탈폼(120) 재질은 순수 리튬의 코팅이 되지 않는 소리튬(Lithiophobic)한 특성을 가지고 있어 순수한 리튬을 메탈폼(120) 표면에 코팅하기 매우 어렵다. 따라서, 전지용 전극(100)의 제조 방법에 따르면, 메탈폼(120)을 소정의 온도에서 가열함으로써, 친리튬 특성(lithiophilic)을 갖는 산화물 층(140)을 메탈폼(120) 상에 코팅할 수 있다. 이후, 산화물 층(140)이 코팅된 메탈폼(120)을 용융 리튬과 접촉시킴으로써 산화물 층(140) 상에 리튬 층(160)을 코팅할 수 있다. 이로써, 순수 리튬이 메탈폼(120) 상에 고르게 코팅되고, 메탈폼(120)의 공극 내부로 리튬의 함침이 용이해진다.
일 실시예에 따르면, 메탈폼(120)을 구성하는 줄기(ligament)의 두께 대비 산화물 층(140)의 두께의 비는 0.002 내지 0.005일 수 있다. 이 두께비는 산화물층이 메탈폼(120)의 표면을 소리튬성에서 친리튬성을 나타내면서 산화물이 리튬 코팅과정에서 용융리튬과 급격한 발열 반응을 통해 Li2O를 형성시키지 않는 최적의 두께이다. 이 범위를 벗어나 산화물 층(140)의 두께가 두꺼워져 산화물이 메탈폼(120) 표면에 본 범위 이상 존재할 경우 급격한 화염을 일으키며 산화물의 산소와 용융리튬이 반응하여 Li2O를 생성시키게 된다.
일 실시예에 따르면, 가열 공정 전, 메탈폼(120)의 줄기(ligament)의 두께는 대략 50 내지 100 μm 이고, 생성되는 산화물 층(140)의 두께는 약 100 내지 500 nm 두께이다.
일 실시예에 따르면, 메탈폼(120)의 소정의 기공률은, 메탈폼(120)의 부피 대비 60% 내지 99%일 수 있다. 메탈폼(120)의 기공률이 전체 부피 대비 60% 미만일 경우에는 코팅된 활물질의 양이 감소하여 전기화학적 특성이 감소할 수 있다. 한편, 메탈폼(120)의 기공률이 99%를 초과할 경우에는 코팅 공정이 잘 이루어지지 않는 문제가 발생한다.
일 실시예에 따르면, 리튬 층(160)은 메탈폼(120)의 전체 표면적의 50 내지 98% 상에 코팅될 수 있다. 메탈폼(120)에 음극 활물질이 코팅되는 단계에서 메탈폼(120)은 음극의 집전체 역할을 하기 때문에 음극 활물질은 메탈폼(120)의 면적 대비 50% 내지 98% 로 코팅된다.
음극 활물질이 메탈폼(120)의 면적 대비 50% 미만으로 코팅될 경우에는 코팅되는 음극 활물질의 양이 적어 고성능의 전지를 구성하는데 바람직하지 않다. 한편, 음극 활물질이 메탈폼(120)의 면적 대비 98%를 초과하여 코팅될 경우에는 음극 집전체인 메탈폼(120)이 외부로 노출되지 않으므로 전지를 구성하는 데 바람직하지 않다.
도 2는 실시예들에 따라 메탈폼에 리튬을 코팅하여 전지용 전극을 제조하는 방법에 관한 순서도이고, 도 3은 실시예들에 따라 메탈폼이 가열되어 산화물 층(140)이 형성되는 것에 관한 이미지이고, 도 4는 실시예들에 따라 메탈폼에 리튬이 코팅되는 것에 관한 이미지이다.
도 2를 참조하면, 먼저 다공성 메탈폼(120)이 소정의 온도에서 가열됨으로써, 친리튬 특성(lithiophilic)을 갖는 산화물 층(140)이 메탈폼(120) 상에 코팅된다(S1100).
도 3을 참조하면, 메탈폼(120)은 공기 분위기에서 가열된다. 메탈폼(120)은 500 내지 950 ℃의 온도 범위에서 가열될 수 있다. 또한, 메탈폼(120)은 약 1분 내지 1시간 동안 가열된다. 온도가 950℃ 일 경우 약 1분 이내에 산화물층이 100 내지 500nm 두께로 형성될 수 있다. 반면 온도가 500℃일 경우 가열시간은 약 1 시간까지 증대되어야 친리튬 특성을 나타내는 산화물층을 형성 시킬 수 있다.
이 때, 가열 공정은 등온 열처리 공정으로서, 퍼니스(furnace)의 승온 속도와 무관하다.
메탈폼(120) 표면을 친리튬(lithiophilic)하게 표면 처리하는 과정을 거침으로써, 이후 공정에서 메탈폼(120)에 리튬이 고르게 코팅될 수 있다. 산화 공정을 거치지 않을 경우 리튬의 높은 표면장력으로 인해 메탈폼(120) 표면에 리튬이 전혀 젖지 않고 코팅되지 않는다.
산화물 층(140)은 메탈폼(120) 줄기의 반경 방향에 따라 조성이 상이한 복수의 산화물 층(140)들을 포함할 수 있으며, 이에 대해서는 도 7 및 도 8을 통해 더 자세히 후술한다.
이후, 산화물 층(140)이 코팅된 메탈폼(120)은 용융 리튬과 접촉함으로써 산화물 층(140) 상에 리튬 층(160)이 코팅된다(S1200).
이 때, 산화물 층(140)이 코팅된 메탈폼(120)은 350 내지 450℃의 용융 리튬을 포함하는 용기에 투입될 수 있다. 친리튬(lithiophilic) 특성을 갖는 산화물 층(140)이 형성된 메탈폼(120)을 350 내지 450℃로 용융된 순수리튬에 담그어 표면을 코팅하여 순수 리튬으로 구성된 활물질 막을 메탈폼(120) 표면에 코팅한다.
도 4를 참조하면, 도 4(a)의 메탈폼(120)은 도 4(b)와 같이 그 표면에 산화물 층(140)이 형성된 메탈폼(120)의 형태로 변화할 수 있다. 이후, 도 4(b)의 산화물 층(140)이 형성된 메탈폼(120)은 도 4(c)와 같이 그 표면에 리튬이 코팅되고, 리튬을 함침할 수 있다.
이 때, 순수 리튬을 용해시키는 공정에서 용융된 리튬은 공기 중 수분, 산소, 이산화탄소 및 질소와 반응성이 매우 높으므로 고순도 (99.999% 이상) 아르곤 분위기 하에서 수행되어야 한다.
특히, 고온 용융된 리튬의 경우 매우 소량의 질소와도 반응하여 검정색의 질소화 리튬(Li3N)화합물을 생성시키므로, 보다 바람직하게는 고순도 아르곤을 용융 리튬 코팅 공정 중 분당 1리터 이상 퍼징(purging)시키면서 용용 리튬을 코팅시키는 것이 바람직하다.
도 5는 산화물 층이 형성된 메탈폼에 리튬이 함침되는 것에 관한 도면이다.
도 5를 참조하면, 친리튬성 산화물 층(140)이 형성된 메탈폼(120-1)을 용융 리튬에 담갔을 때, 메탈폼(120-1)의 산화물 층(140) 표면에 리튬이 코팅되고, 메탈폼(120-1)의 공극 내부로 리튬이 용이하게 함침될 수 있다.
반면, 표면에 산화물 층(140)이 형성되지 않은 메탈폼(120-2)에는 리튬이 함침되지 않는다.
도 6은 산화물 층이 코팅된 메탈폼에 관한 현미경 이미지이다.
메탈폼(120)에 대해 800℃의 온도에서 5분 간 가열 공정 후, 친리튬 특성을 갖는 산화물 층(140)이 메탈폼(120) 상에 코팅됨을 확인할 수 있다.
일 실시예에 따라 메탈폼(120)은 순수 니켈로 구성될 수 있고, 이 경우, 산화물 층(140)은 니켈 산화물(NiO, Ni2O3, NiO2)을 포함할 수 있다.
도 7은 일 실시예에 따라 메탈폼이 니켈, 크롬 및 알루미늄을 포함하는 합금인 경우, 메탈폼 상에 형성된 산화물 층의 현미경 이미지 및 산화물 층의 구성 원소에 관한 그래프이다.
도 7(a)를 참조하면, 메탈폼(120) 상에 산화물 층(140)이 형성됨을 확인할 수 있다. 이 때, 산화물 층(140)은 메탈폼(120) 줄기의 반경 방향에 따라 형성되는 복수의 산화물 층들을 포함할 수 있다.
복수의 산화물들은 육안 상 결정질의 차이를 통해 구별될 수 있다. 예를 들면, 산화물 층은 메탈폼(120) 표면에 형성된 제1 산화물 층(142) 및 제1 산화물 층 상에 형성된 제2 산화물 층(144)을 포함할 수 있다.
도 7(b)를 참조하면, 복수의 산화물들은 메탈폼(120) 줄기의 반경 방향에 따라 조성이 상이할 수 있다. 니켈은 메탈폼(120)의 중심부로부터 멀어질수록 증가하는 경향을 보인다. 크롬은 메탈폼(120)의 중심부로부터 멀어질수록 증가하는 경향을 보인다. 알루미늄은 메탈폼(120)의 중심부로부터 멀어질수록 감소하는 경향을 보인다.
다시 말하면, 제2 산화물 층(144)에서 니켈의 함량은 제1 산화물 층(142)의 니켈의 함량보다 크다. 제2 산화물 층(144)에서 크롬의 함량은 제1 산화물 층(142)의 크롬의 함량보다 크다. 또, 제2 산화물 층(144)에서 알루미늄의 함량은 제1 산화물 층(142)의 알루미늄의 함량보다 작다.
도 8은 다른 일 실시예에 따라 메탈폼(120)이 철, 크롬 및 알루미늄을 포함하는 합금인 경우, 메탈폼(120) 상에 형성된 산화물 층에 관한 현미경 이미지 및 산화물 층의 구성 원소에 관한 그래프이다.
도 8(a)를 참조하면, 메탈폼(120) 상에 산화물 층(140)이 형성됨을 확인할 수 있다. 이 때, 산화물 층(140)은 메탈폼(120) 줄기의 반경 방향에 따라 형성되는 복수의 산화물 층들을 포함할 수 있다.
복수의 산화물들은 육안 상 결정질의 차이를 통해 구별될 수 있다. 예를 들면, 산화물 층은 메탈폼(120) 표면에 형성된 제3 산화물 층(146) 및 제1 산화물 층 상에 형성된 제4 산화물 층(148)을 포함할 수 있다.
도 8(b)를 참조하면, 복수의 산화물들은 메탈폼(120) 줄기의 반경 방향에 따라 조성이 상이할 수 있다. 크롬은 메탈폼(120)의 중심부로부터 멀어질수록 증가하는 경향을 보인다. 알루미늄은 메탈폼(120)의 중심부로부터 멀어질수록 감소하는 경향을 보인다.
다시 말하면, 제4 산화물 층(148)에서 크롬의 함량은 제3 산화물 층(146)의 크롬의 함량보다 크다. 또, 제4 산화물 층(148)에서 알루미늄의 함량은 제3 산화물 층(146)의 알루미늄의 함량보다 작다.
구체적으로, 제4 산화물 층(148)은 친리튬 특성을 가지는 크롬 산화물(Cr2O3)가 상대적으로 많은 량이 존재하는 반면 제3 산화물 층(146)에서는 리튬과의 젖음성을 다소 감소시키는 알루미늄 산화물(Al2O3)가 제4 산화물 층(148)에 비해 상대적으로 많이 존재하고 있음을 알 수 있다.
도 6 내지 도 8을 통해 상술한 바와 같이, 니켈, 철, 크롬, 알루미늄, 실리콘, 몰리브데넘 및 스테인레스 합금 중 어느 하나 이상의 재료로 구성되는 메탈폼(120)에 열처리 공정을 통해 산화물층이 형성될 때, 메탈폼(120)의 중심부로부터 먼 표면 상에 가까울수록 친리튬성 물질들은 증가하고, 소리튬성 물질들은 감소하도록, 온도 및 시간을 최적화하는 것이 중요하다.
예를 들면, 철, 크롬, 니켈 산화물들은 친리튬성을 갖고, 알루미늄은 다소 소리튬성을 갖는다.
최적의 온도 및 시간 범위를 벗어나면 소리튬성 알루미늄 산화물이 산화물층이 형성된 메탈폼(120)의 표면 상에 존재하여, 리튬과의 젖음성이 감소할 수 있다. 시간이 1시간을 초과하게 되면, 산화물층이 형성된 메탈폼(120)의 표면에서 친리튬성 산화물의 농도가 감소할 수 있다.
도 9는 실시예들에 따른 리튬이 코팅된 메탈폼(220)을 이용한 리튬-공기 전지(200)에 관한 도면이다. 본 발명은 리튬-공기 전지(200)의 지지체이자 음극 집전체가 되는 다공성 메탈폼(220)에 친리튬의 산화물 층(240), 음극 활물질(260), 전해질 층(270), 양극 활물질 층(280) 및 공기 확산층(290)을 순차적으로 다중 코팅하는 리튬-공기 전지(200) 및 그 제조 방법에 관한 발명이다.
도 10은 실시예들에 따른 리튬-공기 전지(200) 제조 방법에 관한 순서도이고, 도 11은 실시예들에 따라 리튬-공기 전지(200)를 제조하는 것에 관한 이미지이다.
리튬-공기 전지(200)의 제조 방법은, 다공성 메탈폼(220)을 소정의 온도에서 가열함으로써, 친리튬 특성을 갖는 산화물 층(240)을 메탈폼(220) 상에 코팅하는 단계(S2100)를 수행한다. 도 11(b)를 참조하면, 메탈폼(220) 표면은 대기 조건에서 500 내지 950 ℃ 온도에서 1시간 이하로 산화된다. 일 실시예에 따르면, 메탈폼(220) 표면은 대기 조건에서 500 내지 900 ℃ 온도에서 1분 내지 1시간 동안 산화된다. 단계 S1100에서 상술한 내용들은 단계 S2100에 적용될 수 있다.
이후, 메탈폼(220)에 음극 활물질이 코팅되는 단계가 수행된다(S2200). 도 11(c)를 참조하면, 음극 활물질의 일 예로서, 리튬이 메탈폼(220)의 공극 내부로 함침되어, 메탈폼(220)을 코팅할 수 있다. 단계 S1200에서 상술한 내용들은 단계 S2200에 적용될 수 있다.
일 실시예에 따르면, 리튬 층(260)에 전해질 층이 코팅되기 전 음극 활물질에 공기 중 수분 및 이산화탄소 등으로부터 음극을 보호하기 위해 구리 및 니켈의 합금을 얇게 코팅시키는 공정이 추가될 수 있다.
이후, 음극 활물질이 코팅된 메탈폼(220)에 전해질이 코팅되는 단계가 수행될 수 있다(S2300). 도 11(d)를 참조하면, 메탈폼(220)에 코팅된 음극 활물질이 공기 중에 노출되는 것을 방지하기 위해 전해질의 코팅 시 음극 활물질의 표면은 외부와 완전 차단된다.
이 때, 전해질은 이온전도성이 우수한 물질을 사용하는 것이 바람직하며, 바람직하게는 10-3 내지 10-4 S/cm이상의 이온전도도를 가지는 전해질을 사용하도록 한다.
일 실시예에 따르면, 전해질 고분자 물질은 ETPTA (Trimethyloppropane ethoxylate triacrylate) 및 PVDF-HFP (Poly(vinylidene fluoride-hexafluoropropylene))을 각각 또는 이들의 조합으로 포함할 수 있다. 예를 들어, 전해질 고분자 물질은 ETPTA는 50 중량% 및 PVDF-HFP는 50중량%를 포함할 수 있다.
도 11(e)를 참조하면, 코팅된 전해질을 자외선(UV)를 통해 경화될 수 있다. 일 실시예에 따르면, UV 경화 개시제로 HMPP(2-Hydroxy-2methylpropiophenone)를 사용할 수 있다. 예를 들어, HMPP는 ETPTA 중량의 0.1%를 사용할 수 있다.
일 실시예에 따르면, 고체 전해질로는 PVDF-HFP를 NMP(N-methyl-2-pyrrolidone) 또는 DMF(Dimethylformamide)를 60℃ 내지 90℃로 가열하고, 가열된 상태에서 5시간 정도 교반시킴으로써 균질하게 한다.
이 때, LiBF4, LIPF6, EC(ethylene carbonate) 또는 DME(di-methylether) 등 카보네이트계 또는 에테르계 리튬 전지 전해질을 고분자 전해질에 30 내지 70 부피%로 혼합될 수 있다. 이후, 열 경화 또는 UV 경화될 수 있다.
일 실시예에 따르면, 고체 전해질로는 TEGDME(Tetraethylene glycol dimethyl ether)에 1M LITFSI(Lithium bis(trifluoromethanesulfonyl)imide) 리튬염이 들어간 전해질이 사용될 수 있다. 이 때, 고체 전해질 고분자 용액 (ETPTA와 PVDF-HFP)와 액체 전해질은 1M LITFSI + TEGDME는 부피비로 6:4로 혼합될 수 있다.
이후, 고체 전해질이 코팅된 메탈폼(220)에 양극 활물질이 코팅되는 단계가 수행된다(S2400). 도 11(f)를 참조하면, 양극 활물질은 공기와의 반응 면적을 극대화하기 위하여 다공성 탄소 재료 또는 이를 이용한 탄소 재료 복합체를 사용하여 제조된다.
양극 활물질인 다공성 탄소 재료는 활성탄소, 그래핀, 탄소 나노섬유, 카본블랙, 환원 그래핀 산화물 등 탄소로 이루어진 재료가 사용될 수 있으며, 이들을 이용하여 제작된 복합체 중 어느 하나를 사용할 수 있다. 이후, 코팅된 양극활물질을 건조시키는 단계가 수행된다.
이후, 도 11(g)를 참조하면, 양극 활물질이 코팅된 메탈폼(220)에 양극 단자를 연결하는 단계(S2500)가 수행된다. 양극 활물질이 코팅된 후에는 공기 확산층(Air Diffusion Layer, ADL)이 적층될 수 있다. 양극 활물질 층(280)이 코팅된 메탈폼(220)에 양극 단자를 연결하는 단계에서 양극 단자는 공기 확산층(290)이 코팅된 부분에 연결된다.
즉, 리튬-공기 전지(200)의 제조 방법으로 제작된 리튬-공기 전지(200)는 3차원의 다공성 메탈폼(220)의 형태를 그대로 유지하며, 단순하게 메탈폼(220)을 이루고 있는 금속 표면에 전극 활물질들과 전해질이 코팅된 형태이다.
따라서, 전극 표면의 단면을 보면, 중앙에 전지의 지지체이자 음극 집전체인 메탈폼(220), 그 표면에 음극 활물질인 리튬 층(260), 전해질 층(270), 양극 활물질 층(280)이 순차적으로 다중 적층되어 코팅이 이루어진다.
이와 같은 제조 방법으로 제작된 리튬-공기 전지(200)는 전지를 경량화하고 전지의 제조 공정과 구조를 단순화할 수 있는 효과가 있다. 또한, 다공성 탄소 재료를 사용하는 양극이 다공성인 메탈폼(220)의 표면에 코팅된 형태이므로 양극의 공기 노출이 극대화되어 다공성 효과를 이중으로 확보할 수 있는 효과가 있다.
도 12는 실시예들에 따른 리튬 층이 코팅된 메탈폼을 이용한 리튬 코인셀의 사이클 방전 시험결과이다.
도 12를 참조하면, 산화물 층이 코팅된 니켈-크롬-알루미늄 메탈폼에 리튬을 코팅시켜 리튬 금속 전극을 제작하고, 직경 12mm 전극으로 가공 후 1M LiTFSI TEGDME (Lithium bis(trifluoromethanesulfonyl)imide) Tetraethylene glycol dimethyl ether 전해질을 사용해 대칭(symmetric) 코인셀(coin cell)을 제작하여 0.05mA/cm2로 충방전을 실시하였다.
방전시험 결과 10000초 대에서 순수 리튬(bare Li)의 경우 분극(polarization)이 크게 나타난 반면 산화물 층으로 코팅 후 리튬을 코팅한 리튬 층이 코팅된 니켈-크롬-알루미늄 메탈폼 음극의 경우 분극이 순수 리튬에 비해 훨씬 작으며 방전 전류에 따른 응답성(hysteresis) 또한 향상됨을 확인하였다.
이와 같은 리튬이 코팅된 메탈폼을 포함하는 전지용 전극 및 그 제조 방법으로 제작된 리튬 전지는 친리튬성 산화물 층을 단순하면서 용이한 방법으로 생성시켜 순수리튬을 코팅시킬 수 있도록 하여 리튬 전지용 고용량 리튬 메탈 전극을 제조하여 전지의 특성을 획기적으로 향상시키는 효과가 있다. 다공성인 메탈폼(220)의 다공성 기공에 리튬이 안정적으로 함침되고 메탈폼이 충방전 중 리튬의 plating/stripping 과정에서 발생되는 리튬음극의 부피 변화에 따른 문제를 해결 할 뿐만 아니라 우수한 싸이클 특성을 나타내는 효과가 있다.
제시된 실시예들에 대한 설명은 임의의 본 발명의 기술 분야에서 통상의 지식을 가진 자가 본 발명을 이용하거나 또는 실시할 수 있도록 제공된다. 이러한 실시예들에 대한 다양한 변형들은 본 발명의 기술 분야에서 통상의 지식을 가진 자에게 명백할 것이며, 여기에 정의된 일반적인 원리들은 본 발명의 범위를 벗어남이 없이 다른 실시예들에 적용될 수 있다. 그리하여, 본 발명은 여기에 제시된 실시예들로 한정되는 것이 아니라, 여기에 제시된 원리들 및 신규한 특징들과 일관되는 최광의의 범위에서 해석되어야 할 것이다.

Claims (16)

  1. 금속 물질을 소정의 온도에서 가열함으로써, 친리튬 특성(lithiophilic)을 갖는 산화물 층을 상기 금속 물질 상에 코팅하는 단계; 및
    상기 산화물 층이 코팅된 상기 금속 물질을 용융 리튬과 접촉시킴으로써 상기 산화물 층 상에 리튬 층을 코팅하는 단계를 포함하는,
    리튬 코팅 방법.
  2. 제1 항에 있어서,
    상기 산화물 층을 상기 금속 물질 상에 코팅하는 단계에서,
    상기 금속 물질은 공기 분위기에서, 500 내지 950 ℃의 온도 범위에서, 1분 내지 1시간의 시간 범위에서 가열되는,
    리튬 코팅 방법.
  3. 제1 항에 있어서,
    상기 산화물 층 상에 상기 리튬 층을 코팅하는 단계에서,
    상기 용융 리튬은 350 내지 450℃인
    리튬 코팅 방법.
  4. 제1 항에 있어서,
    상기 금속 물질은 다공성 메탈폼이고,
    상기 리튬 층을 코팅하는 단계에서,
    상기 메탈폼의 공극들에 상기 용융 리튬을 함침하는,
    리튬 코팅 방법.
  5. 제1 항에 있어서,
    상기 금속 물질은 니켈, 철, 크롬 및 알루미늄 중 적어도 하나를 포함하는,
    리튬 코팅 방법.
  6. 금속 물질;
    상기 금속 물질이 소정의 온도에서 가열됨으로써 상기 금속 물질 상에 코팅된, 친리튬 특성(lithiophilic)을 갖는 산화물 층; 및
    상기 산화물 층이 코팅된 상기 금속 물질이 용융 리튬과 접촉됨으로써 상기 산화물 층 상에 코팅된 리튬 층을 포함하는,
    전지용 전극.
  7. 제6 항에 있어서,
    상기 금속 물질은 다공성 메탈폼이고,
    상기 메탈폼의 공극들에 상기 용융 리튬이 함침되는,
    전지용 전극.
  8. 제6 항에 있어서,
    상기 금속 물질은 니켈, 철, 크롬 및 알루미늄 중 적어도 하나를 포함하는,
    전지용 전극.
  9. 제6 항에 있어서,
    상기 산화물 층은 상기 금속 물질 상에 형성된 제1 산화물 층 및 상기 제1 산화물 층 상에 형성된 제2 산화물 층을 포함하고,
    상기 제1 산화물 층 및 상기 제2 산화물 층의 조성비는 상이한,
    전지용 전극.
  10. 제9 항에 있어서,
    상기 제2 산화물 층의 크롬(Cr) 함량은 상기 제1 산화물 층의 철 함량보다 큰,
    전지용 전극.
  11. 제9 항에 있어서,
    상기 제1 산화물 층의 알루미늄(Al) 함량은 상기 제2 산화물 층의 알루미늄 함량보다 큰,
    전지용 전극.
  12. 제6 항에 있어서,
    상기 산화물 층은
    공기 분위기에서, 500 내지 950 ℃의 온도 범위 및 1분 내지 1시간의 시간 범위에서 상기 금속 물질을 가열함으로써 생성된,
    전지용 전극.
  13. 제7 항에 있어서,
    상기 리튬 층은 상기 메탈폼의 전체 표면적의 50 내지 98% 상에 코팅되는,
    전지용 전극.
  14. 제7 항에 있어서,
    상기 메탈폼을 구성하는 줄기(ligament)의 두께 대비 상기 산화물 층의 두께의 비는 0.002 내지 0.005인,
    전지용 전극.
  15. 제7 항에 있어서,
    상기 메탈폼의 기공률은, 상기 메탈폼의 부피 대비 60% 내지 99%인,
    전지용 전극.
  16. 금속 물질, 상기 금속 물질이 소정의 온도에서 가열됨으로써 상기 금속 물질 상에 코팅된, 친리튬 특성(lithiophilic)을 갖는 산화물 층 및 상기 산화물 층이 코팅된 상기 금속 물질이 용융 리튬과 접촉됨으로써 상기 산화물 층 상에 코팅된 리튬 층을 포함하는 음극;
    양극; 및
    상기 음극 및 상기 양극 사이에 배치되는 전해질을 포함하는
    전지.
PCT/KR2020/006662 2019-10-10 2020-05-21 리튬이 코팅된 금속 물질을 포함하는 전지용 전극 및 그 제조 방법 WO2021071048A1 (ko)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/636,360 US11508959B2 (en) 2019-10-10 2020-05-21 Battery electrode comprising lithium-coated metallic material, and method for manufacturing same

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR10-2019-0125695 2019-10-10
KR20190125695 2019-10-10
KR1020190178521A KR102383755B1 (ko) 2019-10-10 2019-12-30 리튬이 코팅된 금속 물질을 포함하는 전지용 전극 및 그 제조 방법
KR10-2019-0178521 2019-12-30

Publications (1)

Publication Number Publication Date
WO2021071048A1 true WO2021071048A1 (ko) 2021-04-15

Family

ID=75437176

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2020/006662 WO2021071048A1 (ko) 2019-10-10 2020-05-21 리튬이 코팅된 금속 물질을 포함하는 전지용 전극 및 그 제조 방법

Country Status (2)

Country Link
US (1) US11508959B2 (ko)
WO (1) WO2021071048A1 (ko)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20080092715A (ko) * 2007-04-13 2008-10-16 김영희 고내식성 컬러 산화피막층을 갖는 금속소재의 제조방법
KR20080095475A (ko) * 2007-04-24 2008-10-29 동아대학교 산학협력단 Ni도금층 표면에 고내식성 컬러 산화피막층을 갖는금속소재의 제조방법
KR20100037919A (ko) * 2008-10-02 2010-04-12 한국생산기술연구원 금속의 산화피막 형성을 위한 열처리 제어방법 및 장치
KR101449597B1 (ko) * 2014-03-04 2014-10-13 국방과학연구소 리튬함침 메탈폼을 포함하는 열활성화 방식 비축형 전지 및 그 제조 방법

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11145851B2 (en) 2015-11-11 2021-10-12 The Board Of Trustees Of The Leland Stanford Junior University Composite lithium metal anodes for lithium batteries with reduced volumetric fluctuation during cycling and dendrite suppression
KR20180004407A (ko) 2016-06-08 2018-01-12 국방과학연구소 메탈폼을 이용한 리튬-공기 전지 및 그 제조 방법

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20080092715A (ko) * 2007-04-13 2008-10-16 김영희 고내식성 컬러 산화피막층을 갖는 금속소재의 제조방법
KR20080095475A (ko) * 2007-04-24 2008-10-29 동아대학교 산학협력단 Ni도금층 표면에 고내식성 컬러 산화피막층을 갖는금속소재의 제조방법
KR20100037919A (ko) * 2008-10-02 2010-04-12 한국생산기술연구원 금속의 산화피막 형성을 위한 열처리 제어방법 및 장치
KR101449597B1 (ko) * 2014-03-04 2014-10-13 국방과학연구소 리튬함침 메탈폼을 포함하는 열활성화 방식 비축형 전지 및 그 제조 방법

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
JIN CHENGBIN, SHENG OUWEI, LUO JIANMIN, YUAN HUADONG, FANG CONG, ZHANG WENKUI, HUANG HUI, GAN YONGPING, XIA YANG, LIANG CHU, ZHANG: "Chengbin etal. 3D lithium metal embedded within lithiophilic porous matrix for stable lithium metal batteries", NANO ENERGY, vol. 37, 11 May 2017 (2017-05-11), pages 177 - 186, XP055817752 *

Also Published As

Publication number Publication date
US11508959B2 (en) 2022-11-22
US20220293916A1 (en) 2022-09-15

Similar Documents

Publication Publication Date Title
WO2017213325A1 (ko) 카본 나이트라이드와 그래핀 옥사이드의 자기조립 복합체 및 그 제조방법, 이를 적용한 양극 및 이를 포함하는 리튬-황 전지
WO2014014274A1 (ko) 탄소-실리콘 복합체, 이의 제조방법 및 이를 포함하는 음극 활물질
WO2018012694A1 (ko) 리튬 금속이 양극에 형성된 리튬 이차전지와 이의 제조방법
WO2019112167A1 (ko) 리튬금속전지용 음극 및 이를 포함한 리튬금속전지
WO2016137147A1 (ko) 이차 전지용 분리막, 그 제조 방법, 및 이를 포함하는 리튬 이차 전지
WO2018164405A1 (ko) 음극 활물질, 상기 음극 활물질을 포함하는 음극, 및 상기 음극을 포함하는 이차 전지
WO2019078544A1 (ko) 리튬 이차전지용 음극, 및 이를 포함하는 리튬 이차전지
WO2018088735A1 (ko) 음극 및 상기 음극의 제조방법
WO2018062882A1 (ko) 리튬 이차전지
WO2019054837A1 (ko) 지그를 이용한 고정 과정을 포함하는 파우치형 전지셀 제조방법
WO2020085823A1 (ko) 리튬 이차전지용 음극의 제조방법
WO2019098541A1 (ko) 이차전지용 양극 활물질, 그 제조방법 및 이를 포함하는 리튬 이차전지
WO2020071814A1 (ko) 실리콘계 화합물을 포함하는 다층 구조 음극 및 이를 포함하는 리튬 이차전지
WO2020162708A1 (ko) 음극 및 이를 포함하는 리튬 이차전지
WO2016010403A1 (ko) 리튬 공기 전지, 및 그 제조 방법
WO2022055309A1 (ko) 음극 활물질, 상기 음극 활물질을 포함하는 음극, 및 상기 음극을 포함하는 이차 전지
WO2014084636A1 (ko) 다공성 규소 산화물-탄소재 복합체를 포함하는 음극 활물질 및 이의 제조방법
WO2019147084A1 (ko) 리튬 이차전지용 음극의 제조방법
WO2019059662A2 (ko) 금속 전극을 구비하는 금속이차전지
WO2021071048A1 (ko) 리튬이 코팅된 금속 물질을 포함하는 전지용 전극 및 그 제조 방법
WO2020159263A1 (ko) 이차전지용 음극의 제조방법
WO2016088923A1 (ko) 금속-공기 전지용 양극, 그의 제조방법 및 그를 포함하는 금속-공기 전지
WO2019022358A1 (ko) 리튬-황 전지용 양극 및 이를 포함하는 리튬-황 전지
WO2022139008A1 (ko) 이차전지용 음극 슬러리 조성물
WO2021085946A1 (ko) 음극 활물질의 제조 방법, 음극 활물질, 이를 포함하는 음극, 및 상기 음극을 포함하는 이차 전지

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20874133

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20874133

Country of ref document: EP

Kind code of ref document: A1