WO2021068327A1 - 一种空调器室外机及控制方法 - Google Patents

一种空调器室外机及控制方法 Download PDF

Info

Publication number
WO2021068327A1
WO2021068327A1 PCT/CN2019/117285 CN2019117285W WO2021068327A1 WO 2021068327 A1 WO2021068327 A1 WO 2021068327A1 CN 2019117285 W CN2019117285 W CN 2019117285W WO 2021068327 A1 WO2021068327 A1 WO 2021068327A1
Authority
WO
WIPO (PCT)
Prior art keywords
temperature
heat
refrigerant
heat exchange
driving module
Prior art date
Application number
PCT/CN2019/117285
Other languages
English (en)
French (fr)
Inventor
陈卫星
林忠超
曹培春
牛世波
董世雷
郑士坡
张东立
Original Assignee
青岛海信日立空调系统有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN201921706951.5U external-priority patent/CN210801418U/zh
Priority claimed from CN201921707838.9U external-priority patent/CN210772502U/zh
Priority claimed from CN201910970017.2A external-priority patent/CN112648685A/zh
Priority claimed from CN201921706388.1U external-priority patent/CN210801417U/zh
Priority claimed from CN201910970156.5A external-priority patent/CN110762788A/zh
Application filed by 青岛海信日立空调系统有限公司 filed Critical 青岛海信日立空调系统有限公司
Priority to EP19948665.5A priority Critical patent/EP4043809A4/en
Publication of WO2021068327A1 publication Critical patent/WO2021068327A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F1/00Room units for air-conditioning, e.g. separate or self-contained units or units receiving primary air from a central station
    • F24F1/06Separate outdoor units, e.g. outdoor unit to be linked to a separate room comprising a compressor and a heat exchanger
    • F24F1/20Electric components for separate outdoor units
    • F24F1/24Cooling of electric components
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F1/00Room units for air-conditioning, e.g. separate or self-contained units or units receiving primary air from a central station
    • F24F1/06Separate outdoor units, e.g. outdoor unit to be linked to a separate room comprising a compressor and a heat exchanger
    • F24F1/08Compressors specially adapted for separate outdoor units
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F1/00Room units for air-conditioning, e.g. separate or self-contained units or units receiving primary air from a central station
    • F24F1/06Separate outdoor units, e.g. outdoor unit to be linked to a separate room comprising a compressor and a heat exchanger
    • F24F1/26Refrigerant piping
    • F24F1/30Refrigerant piping for use inside the separate outdoor units

Definitions

  • This application relates to the technical field of air conditioners, and in particular to an outdoor unit of an air conditioner and a control method.
  • the compressor of the outdoor unit of the air conditioner is driven and operated by the drive module, and the cooling medium heat dissipation system is used to cool the drive module, so as to prevent excessive temperature rise of the drive module, causing the drive module to fail, causing safety problems such as fire.
  • refrigerant heat dissipation has the advantages of higher heat dissipation efficiency and easy control. Therefore, it is widely used in outdoor units of air conditioners.
  • the high-power multi-unit air conditioner outdoor unit it is generally driven by dual compressors, so its electrical system has two drive modules. As shown in Figure 1, there are two heat exchange blocks on the refrigerant tube 001 used to circulate the refrigerant. 002, the two heat exchange blocks 002 are respectively fixedly connected with the circuit board of the corresponding drive module, so as to dissipate heat and reduce the temperature of the drive module and the circuit board.
  • the two compressors work independently of each other, and the drive module corresponding to each compressor generates different heat during operation. Therefore, the two drive modules have different degrees of cold and heat, and the two compressors It is also possible that only one drive module is running, and the non-operating drive module does not generate heat, so there is no need to dissipate heat.
  • the refrigerant dissipates heat from the operating drive module, it will cause the temperature of the drive module that is not operating to decrease, and also cause two The degree of cold and heat of the drive module is different.
  • the amount of refrigerant flowing in the refrigerant tube 001 is the same, which causes the temperature of the drive module with a lower calorific value to further decrease after the refrigerant heat exchange. Therefore, condensation is prone to appear on the circuit board of the drive module. The circuit board is short-circuited, causing danger.
  • the embodiments of the present application provide an outdoor unit, a circulation system, and a control method of an air conditioner, which can control the heat transfer between the drive modules, improve the heat and cold balance between the drive modules, and avoid the drive modules from being too low in temperature. Condensation occurs, short-circuiting the drive module, causing danger.
  • An embodiment of the first aspect of the present application provides an outdoor unit of an air conditioner, including a housing, and at least two compressors are provided in the housing;
  • Heat exchange blocks different parts of which are respectively connected to different drive modules in a thermally conductive manner
  • the refrigerant tube has a refrigerant inside, which is inserted into the heat exchange block and can cool the heat exchange block.
  • the heat of the drive module with higher heat production can be transferred to the drive module with lower heat production, thereby The heat of the two adjacent drive modules is relatively balanced to avoid a low temperature of one of the drive modules, which may cause condensation on the drive module and cause short circuits.
  • the embodiment of the second aspect of the present application also provides a circulation system of the air conditioner as described above, comprising a subcooling heat exchanger, a main electronic expansion valve, a main electronic expansion valve, and a subcooling heat exchanger, which are arranged inside the outdoor unit and communicated in sequence through a circulating main liquid pipe
  • a circulation system of the air conditioner as described above, comprising a subcooling heat exchanger, a main electronic expansion valve, a main electronic expansion valve, and a subcooling heat exchanger, which are arranged inside the outdoor unit and communicated in sequence through a circulating main liquid pipe
  • An outdoor heat exchanger and a four-way valve the circulating main liquid pipe is in communication with the indoor unit, a compressor and a gas-liquid separator are connected to the four-way valve, and the compressor is in communication with the gas-liquid separator ,
  • the gas-liquid separator is in communication with the subcooling heat exchanger, a cooling circulation branch is provided on the circulation main liquid pipe, the cooling circulation branch is in communication
  • the circulation system for the outdoor unit of the air conditioner provided by the embodiment of the present application solves the same problems as the outdoor unit of the air conditioner provided by the embodiment of the first aspect, and achieves the same technical effects, so it will not be repeated here. .
  • each of the driving modules is provided with a temperature sensor, the temperature sensor is used to detect the temperature of the driving module, and the control method includes :
  • the temperature of the driving module is monitored by the temperature sensor, and a target temperature is set, the target temperature is within a safe temperature range, and then the auxiliary electronic expansion valve is adjusted to stabilize the temperature of the driving module within the target temperature ;
  • the temperature value of the set target temperature is increased to make the opening degree of the auxiliary electronic expansion valve Decrease, reduce the amount of refrigerant circulating in the refrigerant pipe, increase the temperature of the drive module that detects that the temperature difference is less than the first preset temperature, and make the temperature of the drive module be the same as the ambient temperature The difference is greater than the first preset temperature.
  • the control method of the above-mentioned circulatory system monitors the temperature of each drive module by setting a temperature sensor in each drive module, and takes a temperature value in the safe temperature interval and sets it as Target temperature, and then continuously adjust the opening of the auxiliary electronic expansion valve, so that the temperature of the drive module is stable near the target temperature, so that the temperature of the drive module is within the safe temperature range;
  • the temperature value reduces the opening of the auxiliary electronic expansion valve, reduces the amount of refrigerant in the refrigerant pipe, that is, reduces the heat taken away by the refrigerant, so that the temperature of all drive modules rises, and based on the heat conduction element, it can transmit adjacent
  • the heat between the drive modules so that the drive module with a higher temperature transfers heat to the drive module with a lower temperature, and the temperature of the drive module with a lower temperature is increased, and the temperature difference between the temperature and the ambient temperature is greater than the first Preset temperature to avoid condensation;
  • Figure 1 is a schematic diagram of the overall structure of a refrigerant tube and two heat exchange blocks arranged on the refrigerant tube in the prior art;
  • Fig. 2 is a schematic structural diagram of an outdoor unit of an air conditioner provided by an embodiment of the application;
  • FIG. 3 is a schematic diagram of the overall structure of a heat dissipation assembly for an outdoor unit of an air conditioner provided by an embodiment of the application;
  • FIG. 4 is a schematic diagram of the overall structure of a heat exchange block, a heat conduction element, and a refrigerant tube provided by an embodiment of the application;
  • FIG. 5 is a schematic diagram of the overall structure of a heat exchange block and a heat conducting element provided by an embodiment of the application;
  • FIG. 6 is a schematic diagram of a structure in which a heat conducting element and a heat exchange block provided by an embodiment of the application adopt the same structure and are connected to each other;
  • FIG. 7 is a schematic diagram of the internal through holes of the heat exchange block provided by an embodiment of the application.
  • FIG. 8 is a perspective view of two heat exchange blocks and a heat conducting element integrally formed according to an embodiment of the application;
  • Figure 9 is a front view of two heat exchange blocks and heat conducting elements integrally formed according to an embodiment of the application
  • Fig. 10 is a schematic structural diagram of a first circulation system of an air conditioner provided by an embodiment of the application.
  • Fig. 11 is a schematic structural diagram of a second circulation system of an air conditioner provided by an embodiment of the application.
  • Fig. 12 is a flowchart of a method for controlling the circulation system of an air conditioner provided by an embodiment of the application.
  • first and second are only used for descriptive purposes, and cannot be understood as indicating or implying relative importance or implicitly indicating the number of indicated technical features. Therefore, the features defined with “first” and “second” may explicitly or implicitly include one or more of these features. In the description of this application, unless otherwise specified, “plurality” means two or more.
  • connection should be understood in a broad sense, unless otherwise clearly specified and limited.
  • it can be a fixed connection or a detachable connection.
  • Connected, or integrally connected it can be directly connected, or indirectly connected through an intermediate medium, and it can be the internal communication between two components.
  • connection should be understood in a broad sense, unless otherwise clearly specified and limited.
  • it can be a fixed connection or a detachable connection.
  • Connected, or integrally connected it can be directly connected, or indirectly connected through an intermediate medium, and it can be the internal communication between two components.
  • the specific meanings of the above-mentioned terms in this application can be understood under specific circumstances.
  • An outdoor unit of an air conditioner provided by an embodiment of the present application is provided with a plurality of compressors 550 inside the outdoor unit, and each compressor 550 is correspondingly provided with a driving module 400,
  • a heat exchange block 100 is connected to each driving module 400, two heat exchange blocks 100 on two adjacent driving modules 400 are connected to each other, and a plurality of heat exchange blocks 100 are inserted inside
  • the same refrigerant pipe 200, the refrigerant pipe 200 is used to circulate the refrigerant, and the heat exchange block 100 is used to exchange heat between the refrigerant pipe 200 and the drive module 400 to reduce the load of the drive module 400 temperature.
  • the heat of the driving module 400 with higher heat production can be transferred to the driving module 400 with lower heat production.
  • the heat of the two driving modules 400 is relatively balanced, and the temperature of one of the driving modules 400 is relatively low, which may cause condensation on the driving module 400 and cause a short circuit.
  • two adjacent heat exchange blocks 100 are connected by a heat-conducting member 300, and the heat-conducting member 300 is used to connect between the two heat exchange blocks 100 Transfer heat.
  • Two adjacent heat exchange blocks 100 are connected by one heat conducting member 300, thereby improving the heat conduction efficiency between two adjacent heat exchange blocks 100, and better transferring heat between two adjacent driving modules 400.
  • the heat exchange block 100 provided by the embodiment of the present application may use a thicker heat dissipation plate made of thermally conductive material, a through hole 121 is opened in the heat dissipation plate along a direction parallel to the plate surface, and a refrigerant tube is inserted into the through hole 121 200, and then fixedly connect the heat sink to the driving module 400.
  • the heat exchange block 100 can also be arranged in the following structure, as shown in FIGS. 4 and 5, the heat exchange block 100 includes a fixed plate 110 and a heat conducting portion 120 provided on the fixed plate 110;
  • a through hole 121 is opened in the heat conducting portion 120 along the length direction of the fixing plate 110, the refrigerant tube 200 is inserted into the through hole 121, and the fixing plate 110 is connected to the driving module. 400 is connected, and the fixing plate 110 and the heat conducting portion 120 are made of the same material and have an integral structure.
  • the thickness of the heat sink must be at least greater than the outer diameter of the refrigerant pipe 200, but the cooling medium pipe is not provided inside the heat sink
  • the part 200 needs to be connected with the drive module 400 by screws. Because the heat dissipation plate is thick as a whole, it is inconvenient to open holes and increase the process difficulty. Also, because the heat dissipation plate is thick as a whole, the cooling capacity of the circulating refrigerant in the refrigerant pipe 200 is increased. The transfer efficiency to the entire heat sink is relatively reduced, and the transfer efficiency of the cold energy to the driving module 400 is further reduced.
  • the embodiment of the present application provides a technical solution in which the heat conducting portion 120 is provided on the fixing plate 110.
  • the heat conducting portion 120 is provided with a refrigerant tube 200 inside. Therefore, the thickness of the fixing plate 110 does not need to be too thick, and because the thickness of the fixing plate 110 is small, as shown in FIG. 3, the cold quantity of the refrigerant circulating in the refrigerant pipe 200 can be transferred to
  • the driving module 400 improves the efficiency of cold transfer, is beneficial to cooling the driving module 400, and ensures that the driving module 400 can operate stably.
  • the heat conducting member 300 provided in the embodiment of the present application is used to connect two heat exchange blocks 100 so as to transfer heat between the two heat exchange blocks 100.
  • the heat-conducting member 300 can be connected to the bottom surfaces of the two heat-exchange blocks 100 by using a connecting plate made of heat-conducting material, so as to transfer heat between the two heat-exchange blocks 100, or it can be the same as the heat-exchange block 100.
  • the structure is as shown in FIG. 5 and FIG. 6, and the two heat exchange blocks 100 are connected into one body, and the heat conducting member 300 is tightly connected with the end surface of the heat exchange block 100.
  • the heat-conducting member 300 is set to the same structure as the heat-exchange block 100, and the heat-conducting member 300 is The end face is tightly connected with the end face of the heat exchange block 100, so that no other structure is needed between the heat exchange block 100 and the drive module 400, which can transfer the heat of the two heat exchange blocks 100 without affecting the cooling of the refrigerant in the refrigerant tube 200. Measure the efficiency delivered to the drive module 400.
  • the above-mentioned heat-conducting member 300 and the heat-exchange block 100 can be made of different heat-conducting materials, and the end faces of the two can be fixed and tightly connected by welding or other processes, so as to ensure the heat transfer efficiency between the heat exchange blocks 100.
  • the heat conducting element 300 and the heat exchange block 100 are made of the same material and are integrally formed.
  • the technical solution of connecting the heat-conducting element 300 and the heat-exchange block 100 by welding will affect the heat transfer efficiency due to differences in the thermal conductivity of different heat-conducting materials, and the welded joints cannot be absolutely tightly attached. In combination, the heat transfer efficiency is further reduced.
  • the heat conducting element 300 and the heat exchange block 100 provided by the embodiment of the present application are made of the same material and are integrally formed, as shown in Figures 8 and 9, that is, this solution adopts An elongated heat exchange block 100 is connected to two driving modules 400 at both ends of the elongated heat exchange block 100. When the difference between the cold and heat of the two driving modules 400 is large, the heat exchange block 100 passes through the elongated heat exchange block 100. Heat is directly transferred, and because the heat exchange block 100 is an integrally formed structure, there is no connection gap, and the heat transfer efficiency will not be reduced.
  • the driving module 400 is disposed on the circuit substrate 410, the fixing plate 110 is closely attached to the circuit substrate 410, and the circuit substrate 410 can transfer the cold capacity of the refrigerant to the driving module 400 to reduce the temperature of the driving module 400.
  • the area on the fixing plate 110 where the heat conducting portion 120 is not provided is fixedly connected to the circuit substrate 410 by screws, and the surface of the fixing plate 110 is closely attached to the circuit substrate 410, so that the circuit substrate 410 lowers the drive module 400 temperature.
  • the refrigerant tube 200 is expanded to make the outer wall of the refrigerant tube 200 closely fit the inner wall of the through hole 121.
  • the outer wall of the refrigerant tube 200 is closely attached to the inner wall of the through hole 121 on the heat exchange block 100, so as to better exchange the cold capacity of the refrigerant inside the refrigerant tube 200 with the heat of the drive module 400 absorbed by the heat exchange block 100, thereby The heat of the driving module 400 is reduced, so that the driving module 400 can operate normally.
  • the refrigerant tube 200 can be bent to form multiple parallel structures, thereby increasing the refrigerant tube 200 and the heat exchange block 100. ⁇ contact area;
  • the drive module 400 is generally a chip and its volume is small, the volume of the circuit substrate 410 is also small. If too many parallel pipe sections are provided in the refrigerant pipe 200, the volume of the heat exchange block 100 will increase, thereby increasing the volume of the heat exchange block 100. The overall cost of the heat exchange block 100 is increased. Therefore, the refrigerant tube 200 provided in the embodiment of the present application preferably adopts a U-shaped tube.
  • the heat exchange block 100 includes two heat conducting parts 120, which are respectively disposed on the two sides of the fixed plate 110 along the length direction.
  • the two straight pipe sections are respectively inserted into the through holes 121 in the two heat conducting parts 120.
  • the refrigerant tube 200 adopts a U-shaped tube structure, and only two parallel pipe sections are provided, which not only does not increase the excessive cost, but also increases the contact area between the refrigerant tube 200 and the heat exchange block 100, thereby increasing the exchange rate per unit time.
  • the amount of refrigerant circulating in the thermal block 100 increases the amount of cold provided by the refrigerant, which can transfer more cold to the driving module 400 and reduce the temperature of the driving module 400.
  • the refrigerant pipe 200 provided in the embodiment of the present application is a copper pipe.
  • Copper pipe has the advantages of good thermal conductivity, corrosion resistance and high strength at low temperature.
  • the heat exchange block 100 provided in the application embodiment is made of aluminum.
  • Metal aluminum has the advantages of low price and good thermal conductivity. Therefore, under the premise of ensuring better thermal conductivity, it can also reduce costs.
  • the embodiment of the present application also provides a circulation system for an outdoor unit of an air conditioner as described in the above technical solution, as shown in FIG. 3 and FIG. 10, including a circulation system installed inside the outdoor unit and passing through a circulating main liquid pipe 500
  • the subcooling heat exchanger 510, the main electronic expansion valve 520, the outdoor heat exchanger 530 and the four-way valve 540 are connected in sequence.
  • the circulating main liquid pipe 500 is in communication with the indoor unit, and the four-way valve 540 is also connected There are a compressor 550 and a gas-liquid separator 560, the compressor 550 is in communication with the gas-liquid separator 560, the gas-liquid separator 560 is in communication with the subcooling heat exchanger 510, and the circulation main liquid pipe 500
  • a cooling circulation branch 600 is provided thereon, the cooling circulation branch 600 is in communication with the refrigerant pipe 200, and an auxiliary electronic expansion valve 610 is provided on the cooling circulation branch 600.
  • the circulation system provided by the embodiment of the present application is the same as the technical problem solved by the above-mentioned air conditioner and the technical effect obtained, so it is not repeated here.
  • the cooling cycle branch 600 provided by the embodiment of the present application is arranged between the subcooling heat exchanger 510 and the outdoor heat exchanger 530, and is connected in parallel with the main electronic expansion valve 520, as shown in Figs. 10 shown.
  • the refrigerant liquid refrigerant enters the cooling circulation branch 600 from the circulating main liquid pipe 500, exchanges heat with the driving module 400 in the refrigerant pipe 200, and takes away the heat of the driving module 400, and is used in the auxiliary electronic expansion valve 610 When throttling, it becomes a low-temperature and low-pressure refrigerant, and then enters the outdoor heat exchanger 530;
  • the liquid refrigerant flowing out of the outdoor heat exchanger 530 passes through the circulating main liquid pipe 500, then passes through the auxiliary electronic expansion valve 610, and then passes through the driving module 400, taking away the heat of the driving module 400, and then flows back to the circulation again.
  • the main liquid pipe 500 then flows to the subcooling heat exchanger 510.
  • the temperature of the driving module 400 can be adjusted.
  • the opening degree of the auxiliary electronic expansion valve 610 is controlled to increase, so that the cooling cycle branch 600
  • the opening degree of the control auxiliary electronic expansion valve 610 is reduced to reduce the amount of refrigerant in the cooling cycle branch 600, thereby reducing the temperature of the drive module 400.
  • Heat can be generated to increase the temperature of the driving module 400, thereby regulating the temperature of the driving module 400, and the heat can be transferred between the driving modules 400 through the heat conducting member 300, which further improves the balance between the driving modules 400.
  • the amount of refrigerant entering the cooling circuit branch 600 is increased, thereby increasing the cooling capacity for reducing the temperature of the driving module 400, so that the temperature of the driving module 400 is smoothly reduced to a safe interval, and preventing the driving module 400 from being damaged due to excessive temperature.
  • the opening degree of the auxiliary electronic expansion valve 610 can be set to 85% of the fully opened state.
  • the opening degree of the auxiliary electronic expansion valve 610 is greater than 85% of the fully opened state. At this time, it is controlled to decrease the opening degree of the main electronic expansion valve 520, thereby increasing the amount of refrigerant in the cooling circulation branch 600.
  • the cooling cycle branch 600 provided by the embodiment of the present application is arranged at an end of the subcooling heat exchanger 510 close to the indoor unit, and the outlet of the auxiliary electronic expansion valve 610 is in communication with the subcooling heat exchanger 510 , As shown in Figure 3 and Figure 11.
  • the cooling circulation branch 600 is arranged at the end of the subcooling heat exchanger 510 close to the indoor unit, and the auxiliary electronic expansion valve 610 can be used to replace the electronic expansion valve at the entrance of the subcooling heat exchanger 510, that is, only two electronic expansion valves are provided in the circulation system. The valve is sufficient, thereby reducing the cost;
  • the circulation direction of the cooling circulation branch 600 is the same, that is, the liquid refrigerant enters the cooling circulation branch 600 from the circulating main liquid pipe 500, and takes away the heat in the driving module 400, and then in the auxiliary
  • the electronic expansion valve 610 is throttled to become a low-temperature and low-pressure refrigerant, which exchanges heat with the refrigerant in the circulating main liquid pipe 500 through the subcooling heat exchanger 510 to cool the refrigerant in the circulating main liquid pipe 500 and increase its subcooling degree.
  • the low-temperature and low-pressure refrigerant in the cooling circulation branch 600 absorbs heat and returns to the gas-liquid separator 560 and then enters the compressor 550.
  • the temperature of the driving module 400 is also adjusted by adjusting the opening degree of the auxiliary electronic expansion valve 610.
  • the opening degree of the auxiliary electronic expansion valve 610 is controlled to increase, so that the cooling circuit branch The amount of refrigerant in 600 increases, thereby reducing the temperature of the driving module 400.
  • the opening degree of the control auxiliary electronic expansion valve 610 is reduced, reducing the amount of refrigerant in the cooling cycle branch 600, so that the driving module 400 can generate heat to increase the temperature of the driving module 400, thereby regulating the temperature of the driving module 400, and the heat can be transferred between the driving modules 400 through the heat conducting member 300, which further improves the balance between the driving modules 400.
  • the embodiment of the present application provides a method for controlling the circulation system of the above technical solution.
  • the flowchart of the method is shown in FIG. 12, and each of the driving modules 400 is provided with a temperature sensor, and the temperature sensor is used for detecting The temperature of the driving module 400.
  • the control method includes: monitoring the temperature Ta of the driving module 400 through the temperature sensor, and setting a target temperature Tft, and the target temperature Tft is within a safe temperature range, that is, the target temperature Tft satisfies, Tmin ⁇ Tft ⁇ Tmax, And the target temperature Tft is equal to the ambient temperature Tb + the deviation Td.
  • the deviation Td is used to ensure that the temperature of the drive module 400 is higher than the ambient temperature. It is the minimum deviation value to ensure that there is no risk of condensation, for example, 15°C ⁇ Td ⁇ 25°C, and then adjust the auxiliary
  • the electronic expansion valve 610 stabilizes the temperature of the driving module 400 at the target temperature.
  • the temperature value of the set target temperature is increased to make the auxiliary electronic expansion valve 610 Decrease the opening degree of the refrigerant tube 400, reduce the amount of refrigerant circulating in the refrigerant pipe 400, increase the temperature of the driving module 400 that detects that the temperature difference is less than the first preset temperature, and make the temperature of the driving module 400 and the environment The temperature difference is greater than the first preset temperature;
  • each drive module 400 is provided with a temperature sensor to monitor the temperature of each drive module 400, and a temperature value is taken within a safe temperature interval. Set the target temperature, and then continuously adjust the opening degree of the auxiliary electronic expansion valve 610, so that the temperature of the driving module 400 is stabilized near the target temperature, so that the temperature of the driving module 400 is within a safe temperature range;
  • increasing the temperature value of the set target temperature reduces the opening of the auxiliary electronic expansion valve 610, reducing the amount of refrigerant in the refrigerant pipe 200, that is, reducing the heat taken away by the refrigerant, so that the temperature of all the driving modules 400 is reduced.
  • Increase, and based on the thermal conductive member 300 can transfer heat between adjacent driving modules 400, so that the high temperature driving module 400 transfers heat to the low temperature driving module 400, thereby increasing the temperature of the lower temperature driving module , And make the temperature difference between the temperature and the ambient temperature greater than the first preset temperature to avoid condensation;
  • the expansion valve 610 can stabilize the temperature of the driving module 400 near the target temperature.
  • the control method of the embodiment of the present application sets a target temperature and monitors the temperature of the corresponding drive module through a temperature sensor, so as to use the target temperature as the target value to continuously control and adjust the opening of the auxiliary electronic expansion valve 610, that is, to adjust the refrigerant belt How much heat is removed, so that the temperature of the driving module 400 is stabilized near the target temperature, and the temperature of the driving module 400 is prevented from being too low and causing condensation.
  • Monitoring the minimum temperature of the driving module 400 can ensure that the driving module 400 does not produce condensation, but if the temperature of the driving module 400 is too high, the driving module 400 will be damaged and the normal operation of the outdoor unit will be affected. Therefore, as shown in Figure 12 As shown, when it is detected that the temperature Ta of the driving module 400 is greater than the target temperature Tft, the opening of the auxiliary electronic expansion valve 610 increases, increasing the amount of refrigerant circulating in the refrigerant pipe 200, so that the detected temperature is greater than The temperature of the driving module 400 of the target temperature is reduced, and the temperature of the driving module 400 is stabilized at the target temperature.
  • the temperature of each drive module 400 is monitored by a temperature sensor.
  • the temperature Ta of a drive module 400 is greater than the maximum value Tmax of the safe temperature range, it is determined that the temperature of the drive module 400 is too high, which may cause burns due to the high temperature , Damage, at this time, the opening of the auxiliary electronic expansion valve 610 is increased, that is, the amount of refrigerant circulating in the refrigerant pipe 200 is increased, and the heat generated by the driving module 400 is taken away by the refrigerant, so that the detected temperature is greater than the maximum of the safe temperature range The temperature of the driving module 400 is lowered and the temperature is within a safe temperature range. At the same time, heat is transferred between the adjacent driving modules 400 through the heat conducting member 300, so that the temperature between the plurality of driving modules 400 is more balanced, thereby Prevent the temperature of the driving module 400 from being too high.
  • control method allows setting a suitable target value and then continuously adjusting the opening of the auxiliary electronic expansion valve 610, that is, adjusting the amount of refrigerant, so that the temperature of the driving module 400 is stable.
  • the value within the safe temperature range due to the target temperature At the target temperature, the value within the safe temperature range due to the target temperature;
  • the temperature of the driving module 400 is within the safe temperature range. Specifically, when the temperature of the driving module 400 is too high, the opening of the auxiliary electronic expansion valve 610 increases, that is, the amount of refrigerant is increased, so that the driving module 400 is The temperature is reduced to the target temperature. When the temperature of the driving module 400 is too low, the temperature value of the target temperature is increased.
  • the opening degree of the auxiliary electronic expansion valve 610 is reduced, that is, the amount of refrigerant is reduced, so that the driving module 400
  • the temperature of the drive module 400 is increased, and the opening degree of the auxiliary electronic expansion valve 610 is constantly adjusted around the target temperature, so that the temperature of the driving module 400 is stabilized at the target temperature, so as to ensure that the temperature of the driving module 400 is neither too high nor too low. Ensure the normal and stable operation of the outdoor unit.
  • control method provided by the embodiment of the present application is to monitor the temperature of each drive module 400 through a temperature sensor, and set a target temperature value, through PID control, continuously feedback the temperature of the drive module 400, and constantly adjust the auxiliary electronics
  • the opening degree of the expansion valve 610 increases or decreases the amount of refrigerant circulating in the refrigerant pipe 200, and continuously adjusts the temperature of the driving module 400, and finally ensures that the temperature of the driving module 400 is stable within a safe temperature range.
  • the integrated structure of the thermal block 100 and the thermal conductive element 300 transfers heat between the driving modules 400, so that the temperature between the driving modules 400 is more balanced, thereby effectively preventing the driving module from being condensed due to low temperature, and ensuring the driving The module 400 can operate normally.
  • the driving module 400 near the entrance of the cooling cycle branch 600 is controlled to drive its corresponding The compressor 550 operates.
  • the compressor 550 far away from the inlet of the cooling circulation branch 600 is operating, when the refrigerant enters from the inlet of the cooling circulation branch 600, since the drive module 400 at the inlet is not running, there is no need to dissipate heat.
  • the drive module 400 at the entrance will cause the temperature of the drive module 400 at the entrance to be further reduced. Therefore, condensation may occur. Therefore, when only one compressor 550 needs to be operated, the compressor 550 at the entrance is controlled to operate, thereby When the refrigerant passes through the compressor 550, the temperature of the refrigerant rises through heat exchange, and then when it passes through the subsequent non-operating drive module 400, the temperature of the non-operating drive module 400 will not be lowered to prevent condensation. phenomenon.
  • the plurality of driving modules 400 near the entrance of the cooling circulation branch 600 are controlled to drive the corresponding plurality of compressors 550 to operate.
  • the multiple drive modules 400 close to the entrance of the cooling circulation branch 600 are controlled to operate in sequence. For example, if two compressors 550 are required to operate, the first and second drive modules 400 closest to the inlet of the cooling circuit branch 600 can be controlled to run.
  • the refrigerant passes through the operating drive module 400 and exchanges heat, the refrigerant
  • the temperature of the drive module 400 is increased to ensure that when the refrigerant passes through the drive module 400 that is not operating, the temperature of the drive module 400 that is not operating will not be too low, and condensation of the drive module 400 is prevented.
  • the target temperature is still set according to the above-mentioned control method. , And adjust the temperature of the driving module 400 to stabilize the temperature of the driving module 400 at the target temperature, thereby ensuring that the temperature of the driving module 400 will not be too high or too low.
  • control method provided by the embodiment of the present application is also applicable to an outdoor unit with a single compressor 550.
  • the first preset temperature is 2°C-5°C. That is, when the temperature difference between the temperature of the driving module 400 and the ambient temperature is less than the temperature value, it is determined that condensation may occur in the driving module 400. At this time, the opening degree of the auxiliary electronic expansion valve 610 is adjusted in time to adjust the driving module 400. To avoid further decrease in temperature and condensation.
  • the safe temperature range is 50°C-75°C. That is, when the temperature of the driving module 400 is greater than 75°C, it is determined that the temperature of the driving module 400 is too high and may be burnt or damaged. At this time, the opening degree of the auxiliary electronic expansion valve 610 is adjusted in time to adjust the temperature of the driving module 400. Prevent its temperature from continuing to rise, causing burnout and damage.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)
  • Air Conditioning Control Device (AREA)

Abstract

一种空调器室外机及控制方法,空调器室外机包括:壳体,壳体内设有至少两个压缩机(550);具有至少两个驱动模块(400),每个分别对应驱动一个压缩机(550);换热块(100),其不同部分分别与不同驱动模块(400)以可导热方式连接;冷媒管(200),内有冷媒,插入换热块(100)内且可对换热块(100)进行冷却。解决了多个压缩机(550)的驱动模块(400)温度不均衡,容易产生凝露现象的问题。

Description

一种空调器室外机及控制方法
Outdoor unit of air conditioner and control method
本申请要求在2019年10月12日提交中国专利局、申请号为201910970156.5、发明名称为“一种空调器室外机、循环系统以及控制方法”,的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及空调器技术领域,尤其涉及一种空调器室外机以及控制方法。
背景技术
空调室外机的压缩机由驱动模块驱动运行,采用冷媒散热系统对该驱动模块进行冷却,从而防止驱动模块温升过大,造成驱动模块失效,引起火灾等安全问题。冷媒散热相比风冷散热,其拥有散热效率高,便于控制等优点,因此,广泛应用于空调室外机上。
对于大功率多联式空调室外机,一般采用双压缩机驱动,所以,其电气系统具有两个驱动模块,如图1所示,用于循环冷媒的冷媒管001上设置有两个换热块002,两个换热块002分别与对应的驱动模块的电路板固定连接,从而对驱动模块以及电路板进行散热、降温。
但是,室外机运行时,两个压缩机是相互独立工作的,每个压缩机对应的驱动模块在工作时产生的热量不同,因此,造成两个驱动模块的冷热程度不同,并且两个压缩机也有可能仅有一个运行,而不运行的驱动模块不发热,因此也不需要散热,当冷媒对运行的驱动模块进行散热时,会导致未运行的驱动模块的温度降低,也会导致两个驱动模块的冷热程度不同。
而冷媒管001中流动的冷媒量是相同的,从而导致经冷媒换热后,发热量 较低的驱动模块的温度进一步降低,因此,在该驱动模块的电路板上容易出现凝露现象,使电路板短路,导致危险发生。
发明内容
本申请的实施例提供一种空调器室外机、循环系统以及控制方法,能够控制各个驱动模块之间的热量传递,提高驱动模块之间的冷热均衡性,从而避免驱动模块因温度过低,出现凝露现象,使驱动模块短路,导致危险发生。
为达到上述目的,本申请的实施例采用如下技术方案:
本申请第一方面实施例提供一种空调器室外机,包括壳体,所述壳体内设有至少两个压缩机;
驱动模块,具有至少两个,每个分别对应驱动一个所述压缩机;
换热块,其不同部分分别与不同所述驱动模块以可导热方式连接;
冷媒管,内有冷媒,插入所述换热块内且可对所述换热块进行冷却。
本申请实施例提供的空调器室外机,由于将相邻的两个换热块相互连接在一起,因此,产热量较高的驱动模块的热量可以传递至产热量较低的驱动模块上,从而使相邻的两个驱动模块的热量相对均衡,避免其中一个驱动模块的温度较低,导致该驱动模块上产生凝露现象,造成短路等情况。
本申请第二方面实施例还提供了一种如上所述空调器的循环系统,包括设置于所述室外机内部、并通过循环主液管依次连通的过冷换热器、主电子膨胀阀、室外换热器以及四通阀,所述循环主液管与所述室内机连通,所述四通阀上还连接有压缩机和气液分离器,所述压缩机和所述气液分离器连通,所述气液分离器与所述过冷换热器连通,所述循环主液管上设置有冷却循环支路,所述冷却循环支路与所述冷媒管连通,所述冷却循环支路上设置有辅助电子膨胀 阀。
本申请实施例提供的如上所述的空调器室外机的循环系统,与第一方面实施例提供的空调器室外机解决的问题相同,并取得了相同的技术效果,所以,在此不再赘述。
本申请第三方面实施例提供一种如上述循环系统的控制方法,每个所述驱动模块中均设置有温度传感器,所述温度传感器用于检测所述驱动模块的温度,所述控制方法包括:
通过所述温度传感器监测所述驱动模块的温度,并且设定目标温度,所述目标温度处于安全温度区间内,然后调节辅助电子膨胀阀,使所述驱动模块的温度稳定在所述目标温度内;
当检测到有温度低的所述驱动模块的温度与环境温度的温度差小于第一预设温度时,则提升设定的所述目标温度的温度值,使所述辅助电子膨胀阀的开度减小,减少所述冷媒管内循环的冷媒量,使检测到所述温度差小于所述第一预设温度的所述驱动模块的温度升高、并使该驱动模块的温度与环境温度的温度差大于所述第一预设温度。
本申请实施例提供的如上述循环系统的控制方法,通过在每个驱动模块中均设置一个温度传感器,从而监测每一个驱动模块的温度,并且在安全温度区间内取一个温度值,设定为目标温度,然后不断调节辅助电子膨胀阀的开度大小,使驱动模块的温度均稳定在目标温度附近,从而使驱动模块的温度均处于安全温度区间内;
当其中一个或者多个驱动模块的温度与环境温度的温度差小于第一预设温度时,则判定该驱动模块的温度过低,有产生凝露现象的可能,因此,升高设 定的目标温度的温度值,使辅助电子膨胀阀的开度减小,减小冷媒管内的冷媒量,即减少冷媒带走的热量,从而使所有驱动模块的温度升高,并且基于导热件可以传递相邻驱动模块之间的热量,从而使温度较高的驱动模块向温度低的驱动模块传递热量,进而使温度较低的驱动模块的温度升高、并且使其温度与环境温度的温度差大于第一预设温度,避免发生凝露现象;
当每一个驱动模块的温度与环境温度的温度差均大于第一预设温度时,则判定没有凝露风险,此时,不需改变设定的目标温度值,只需不断调节辅助电子膨胀阀,使驱动模块的温度稳定在安全温度区间内,避免驱动模块的温度过低,产生凝露现象。
附图说明
图1为现有技术中的冷媒管以及设置于冷媒管上的两个换热块的整体结构示意图;
图2为本申请实施例提供的空调器室外机的结构示意图;
图3为本申请实施例提供的用于空调器室外机的散热组件的整体结构示意图;
图4为本申请实施例提供的换热块、导热件以及冷媒管的整体结构示意图;
图5为本申请实施例提供的换热块以及导热件的整体结构示意图;
图6为本申请实施例提供的导热件与换热块采用相同结构、并相互连接的结构示意图;
图7为本申请实施例提供的换热块的内部通孔示意图;
图8为本申请实施例提供的两个换热块与导热件一体成型的立体图;
图9为本申请实施例提供的两个换热块与导热件一体成型的主视图
图10为本申请实施例提供的空调器的第一种循环系统结构示意图;
图11为本申请实施例提供的空调器的第二种循环系统结构示意图;
图12为本申请实施例提供的空调器循环系统控制方法的流程图。
附图标记:100、换热块;110、固定板;120、导热部;121、通孔;200、冷媒管;300、导热件;400、驱动模块;410、电路基板;500循环主液管;510、过冷换热器;520、主电子膨胀阀;530、室外换热器;540、四通阀;550、压缩机;560、气液分离器;600、冷却循环支路;610、辅助电子膨胀阀。
具体实施方式
下面结合附图对本申请实施例提供的一种空调器室外机、循环系统以及控制方法进行详细描述。
在本申请的描述中,需要理解的是,术语“中心”、“上”、“下”、“前”、“后”、“左”、“右”、“竖直”、“水平”、“顶”、“底”、“内”、“外”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本申请和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本申请的限制。
术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括一个或者更多个该特征。在本申请的描述中,除非另有说明,“多个”的含义是两个或两个以上。
在本申请的描述中,需要说明的是,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或一体地连接;可以是直接相连,也可以通过中间媒介间接相连,可 以是两个元件内部的连通。对于本领域的普通技术人员而言,可以具体情况理解上述术语在本申请中的具体含义。
本申请实施例提供的一种空调器室外机,如图2、图3所示,所述室外机内部设置有多个压缩机550,每个所述压缩机550均对应设置有驱动模块400,每个所述驱动模块400上均连接有换热块100,相邻的两个所述驱动模块400上的两个所述换热块100相互连接,多个所述换热块100内部插入有同一根冷媒管200,所述冷媒管200用于循环冷媒,所述换热块100用于在所述冷媒管200与所述驱动模块400之间进行换热,以降低所述驱动模块400的温度。
本申请实施例提供的空调器,由于将相邻的两个换热块100相互连接在一起,因此,产热量较高的驱动模块400的热量可以传递至产热量较低的驱动模块400上,从而使两个驱动模块400的热量相对均衡,避免其中一个驱动模块400的温度较低,导致该驱动模块400上产生凝露现象,造成短路等情况。
在本申请实施例提供的空调器室外机中,相邻的两个所述换热块100之间通过导热件300连接,所述导热件300用于在两个所述换热块100之间传递热量。通过一个导热件300连接相邻的两个换热块100,从而提高相邻的两个换热块100之间的导热效率,更好在相邻的两个驱动模块400之间传递热量。
本申请实施例提供的换热块100可以采用一块较厚的、由导热材料制成的散热板,在散热板内部沿平行于板面的方向开设通孔121,在通孔121内插入冷媒管200,然后将该散热板与驱动模块400固定连接即可。
也可以将换热块100设置为以下结构,如图4、图5所示,所述换热块100包括固定板110以及设置于所述固定板110上的导热部120;
如图6所示,所述导热部120内、沿所述固定板110长度方向开设有通孔 121,所述冷媒管200插入所述通孔121内,所述固定板110与所述驱动模块400连接,所述固定板110与与所述导热部120由相同材料制成、且为一体成型结构。
上述采用散热板的技术方案中,由于散热板内需要插入用于循环冷媒的冷媒管200,因此,散热板的厚度至少要大于冷媒管200的外径,但是,散热板的内部未设置冷媒管200的部分需要与驱动模块400通过螺钉连接,由于散热板的整体较厚,因此,导致开孔较为不便,增加了工艺难度,并且由于散热板整体较厚,冷媒管200内循环冷媒的冷量传递至整块散热板的传递效率相对降低,并且进一步降低了冷量传递至驱动模块400的传递效率。
相比于上述散热板的技术方案,本申请实施例提供的固定板110上设置导热部120的技术方案,如图6、图7所示,在导热部120的内部开设用于容纳冷媒管200的通孔121,因此,固定板110的厚度不需要设置过厚,并且由于固定板110的厚度较小,如图3所示,冷媒管200内循环的冷媒的冷量能够更快的传递至驱动模块400,提高了冷量传递的效率,有利于驱动模块400降温,保证驱动模块400能够稳定运行。
本申请实施例提供的所述导热件300用于连接两个换热块100,从而在两个换热块100之间传递热量。
该导热件300可以采用导热材料制成的连接板分别与两个换热块100的底面连接,从而在两个换热块100之间传递热量,也可以与所述换热块100采用相同的结构,如图5、图6所示,并且将两个换热块100连接为一体,所述导热件300与所述换热块100的端面紧密连接。
通过导热材料制成的连接板连接两个换热块100的技术方案,由于连接板 与换热块100的底面连接,即在换热块100与驱动模块400之间增加了连接板,即增加了冷媒管200与驱动模块400之间的厚度,不利于冷量向驱动模块400传递,相比于该方案,将导热件300设置为与换热块100相同的结构,并且将导热件300的端面与换热块100的端面紧密连接,从而换热块100与驱动模块400之间不需要增加其他结构,既能够传递两个换热块100的热量,又不影响冷媒管200内冷媒的冷量向驱动模块400传递的效率。
另外,上述导热件300与换热块100可以采用不同的导热材料,并且将二者的端面之间通过焊接等工艺固定紧密连接,从而确保换热块100之间的热量传递效率,也可以将所述导热件300与所述换热块100采用相同材料制成、并且一体成型。
导热件300与换热块100通过焊接连接的技术方案,由于不同的导热材料的导热性能上会存在差异,因此,会影响热传递效率,并且焊接的连接处,并不能做到绝对的紧密贴合,进一步降低了热传递效率,相比于该方案,本申请实施例提供的导热件300与换热块100采用相同材料、并且一体成型,如图8、图9所示,即本方案采用一个加长的换热块100,将该加长的换热块100的两端分别与两个驱动模块400连接,当两个驱动模块400的冷热差别较大时,通过该加长的换热块100直接传递热量,并且该换热块100由于是一体成型结构,因此,不存在连接缝隙,不会降低导热效率。
在本申请的某些实施例中,如图3、图4所示,所述驱动模块400设置于电路基板410上,所述固定板110与所述电路基板410紧密贴合,所述电路基板410能够将所述冷媒的冷量传递至所述驱动模块400,以降低所述驱动模块400的温度。
所述固定板110上未设置有导热部120的区域与电路基板410之间通过螺钉固定连接,并且固定板110的板面与电路基板410紧密贴合,从而通过电路基板410降低驱动模块400的温度。
在本申请的某些实施例中,所述冷媒管200通过胀管的方式,使所述冷媒管200的外壁与所述通孔121的内壁紧密贴合。
冷媒管200的外壁与换热块100上的通孔121内壁紧密贴合,从而更好的使冷媒管200内部冷媒的冷量与换热块100吸收的驱动模块400的热量进行热交换,从而降低驱动模块400的热量,使驱动模块400正常运行。
为了能够更好的降低驱动模块400产生的热量,增加冷媒是最直接的方法,因此冷媒管200可以采用弯折的方式,形成多段相互平行的结构,从而增加了冷媒管200与换热块100的接触面积;
但是,由于驱动模块400一般为芯片,其体积较小,所以电路基板410的体积也较小,如果冷媒管200中设置的平行管段过多,则会导致换热块100的体积增大,从而增加了换热块100整体成本,因此,本申请实施例提供的所述冷媒管200优选采用U型管。
如图3、图4所示,所述换热块100包括两个所述导热部120、并分别设置于所述固定板110上沿长度方向的两侧边缘处,所述U型管的两个直管段分别插入两个所述导热部120内的通孔121中。
冷媒管200采用U型管的结构,仅设置两个相互平行的管段,不仅不会增加过高的成本,而且增加了冷媒管200与换热块100的接触面积,从而增加了单位时间内在换热块100内循环的冷媒量,即增加了冷媒提供的冷量,能够向驱动模块400传递更多的冷量,使驱动模块400的温度降低。
本申请实施例提供的所述冷媒管200采用铜管。铜管具有较好的导热性能、抗腐蚀性能以及低温强度高等优点。
申请实施例提供的所述换热块100由铝制成。金属铝具有价格低,导热性能好等优点,因此,在保证较好的导热效率的前提下,还能够降低成本。
本申请实施例还提供了一种如上技术方案所述的空调器室外机的循环系统,如图3、图10所示,包括设置于所述所述室外机内部、并通过循环主液管500依次连通的过冷换热器510、主电子膨胀阀520、室外换热器530以及四通阀540,所述循环主液管500与所述室内机连通,所述四通阀540上还连接有压缩机550和气液分离器560,所述压缩机550和所述气液分离器560连通,所述气液分离器560与所述过冷换热器510连通,所述循环主液管500上设置有冷却循环支路600,所述冷却循环支路600与所述冷媒管200连通,所述冷却循环支路600上设置有辅助电子膨胀阀610。
本申请实施例提供的循环系统,与上述空调器解决的技术问题以及取得的技术效果相同,因此,不再赘述。
本申请实施例提供的所述冷却循环支路600设置于所述过冷换热器510与所述室外换热器530之间,且与所述主电子膨胀阀520并联,如图3、图10所示。
当制热时,冷媒液态冷媒由循环主液管500进入冷却循环支路600,在冷媒管200中与驱动模块400进行换热,将驱动模块400的热量带走,并且在辅助电子膨胀阀610处节流,变成低温低压冷媒,然后进入室外换热器530中;
当制冷时,由室外换热器530流出的液态冷媒,经循环主液管500,然后通过辅助电子膨胀阀610,再经过驱动模块400、并带走驱动模块400的热量,然 后重新流回循环主液管500,然后流向过冷换热器510中。
在循环过程中,通过调节辅助电子膨胀阀610的开度,可调节驱动模块400的温度,当驱动模块400温度高时,控制辅助电子膨胀阀610的开度增大,使冷却循环支路600中的冷媒量增大,从而降低驱动模块400的温度,当驱动模块400温度低时,控制辅助电子膨胀阀610的开度减小,减少冷却循环支路600中的冷媒量,使驱动模块400能够产生热量,使驱动模块400的温度升高,从而调控驱动模块400的温度,并且驱动模块400之间通过导热件300能够传递热量,进一步提高驱动模块400之间的均衡性。
需要指出的是,上述循环系统中由于主电子膨胀阀520与辅助电子膨胀阀610相互并联,因此,需要主电子膨胀阀520与辅助电子膨胀阀610相互调节使用,当有驱动模块400的温度高于安全区间、并且辅助电子膨胀阀610的开度接近完全打开时,此时,由于辅助电子膨胀阀610接近完全打开,同时驱动模块400的温度依然超过安全区间,因此,说明此时冷却循环支路600内的冷媒量不足,所以,此时,可以调节主电子膨胀阀520的开度,即减小主电子膨胀阀520的开度,从而减少通过循环主液管500内的冷媒量;
由此,使进入冷却循环支路600的冷媒量增加,从而增加用于降低驱动模块400温度的冷量,使驱动模块400的温度顺利降低至安全区间,防止温度过高导致驱动模块400损坏。
例如,辅助电子膨胀阀610的开度可以设置为完全打开状态的85%,当驱动模块400的温度超过安全区间,并且此时辅助电子膨胀阀610的开度大于完全打开状态的85%,此时则控制减小主电子膨胀阀520的开度,从而增加冷却循环支路600的冷媒量。
本申请实施例提供的所述冷却循环支路600设置于所述过冷换热器510靠近所述室内机的一端,所述辅助电子膨胀阀610的出口与所述过冷换热器510连通,如图3、图11所示。
将冷却循环支路600设置于过冷换热器510靠近室内机的一端,可用辅助电子膨胀阀610代替过冷换热器510入口处的电子膨胀阀,即循环系统中仅设置两个电子膨胀阀即可,从而降低成本;
并且该循环结构在制冷或制热时,冷却循环支路600的循环方向相同,即液态冷媒由循环主液管500进入冷却循环支路600,并带走驱动模块400中的热量,然后在辅助电子膨胀阀610处节流,变成低温低压冷媒,通过过冷换热器510与循环主液管500中的冷媒进行换热,冷却循环主液管500中的冷媒,提高其过冷度,通过冷却循环支路600中的低温低压冷媒吸热升温回到气液分离器560中,然后进入压缩机550。
在循环过程中,同样通过调节辅助电子膨胀阀610的开度,来调节驱动模块400的温度,当驱动模块400温度高时,控制辅助电子膨胀阀610的开度增大,使冷却循环支路600中的冷媒量增大,从而降低驱动模块400的温度,当驱动模块400温度低时,控制辅助电子膨胀阀610的开度减小,减少冷却循环支路600中的冷媒量,使驱动模块400能够产生热量,使驱动模块400的温度升高,从而调控驱动模块400的温度,并且驱动模块400之间通过导热件300能够传递热量,进一步提高驱动模块400之间的均衡性。
本申请实施例提供一种上述技术方案所述循环系统的控制方法,该方法的流程图如图12所示,每个所述驱动模块400中均设置有温度传感器,所述温度传感器用于检测所述驱动模块400的温度。
所述控制方法包括:通过所述温度传感器监测所述驱动模块400的温度Ta,并且设定目标温度Tft,且目标温度Tft处于安全温度区间内,即目标温度Tft满足,Tmin<Tft<Tmax,并且目标温度Tft等于环境温度Tb+偏差Td,偏差Td用于确保驱动模块400的温度高于环境温度,是确保没有凝露风险的最小偏差值,例如,15℃<Td<25℃,然后调节辅助电子膨胀阀610,使所述驱动模块400的温度稳定在所述目标温度。
当检测到有所述驱动模块400的温度Ta与环境温度Tb的温度差Tc小于第一预设温度t1时,则提升设定的所述目标温度的温度值,使所述辅助电子膨胀阀610的开度减小,减少所述冷媒管400内循环的冷媒量,使检测到所述温度差小于第一预设温度的驱动模块400的温度升高、并使该驱动模块400的温度与环境温度的温度差大于所述第一预设温度;
当每一个所述驱动模块400的温度与环境温度的温度差Tc均大于所述第一预设温度t1时,不需调整目标温度的温度值,然后不断调节辅助电子膨胀阀610,使驱动模块400的温度稳定在目标温度内即可。
本申请实施例提供的如上述循环系统的控制方法,通过在每个驱动模块400中均设置一个温度传感器,从而监测每一个驱动模块400的温度,并且在安全温度区间内取一个温度值,设定为目标温度,然后不断调节辅助电子膨胀阀610的开度大小,使驱动模块400的温度均稳定在目标温度附近,从而使驱动模块400的温度均处于安全温度区间内;
当其中一个或者多个驱动模块400的温度Ta与环境温度Tb的温度差Tc小于第一预设温度t1时,则判定该驱动模块400的温度过低,有产生凝露现象的可能;
因此,升高设定的目标温度的温度值,使辅助电子膨胀阀610的开度减小,减少冷媒管200内的冷媒量,即减少冷媒带走的热量,从而使所有驱动模块400的温度升高,并且基于导热件300可以传递相邻驱动模块400之间的热量,从而使温度高的驱动模块400向温度低的驱动模块400传递热量,进而使温度较低的驱动模块的温度升高、并使其温度与环境温度的温度差大于第一预设温度,避免发生凝露现象;
当每一个驱动模块400的温度与环境温度的温度差Tc均大于第一预设温度t1时,则判定没有凝露风险,此时,不需改变目标温度的温度值,只需不断调节辅助电子膨胀阀610,使驱动模块400的温度稳定在目标温度附近即可。
本申请实施例的控制方法通过设定一个目标温度,并通过温度传感器监测对应的驱动模块的温度,从而以目标温度为目标值,不断控制调节辅助电子膨胀阀610的开度,即调节冷媒带走的热量的多少,从而使驱动模块400的温度均稳定在目标温度附近,避免驱动模块400的温度过低,产生凝露现象。
监测驱动模块400的最低温度能够,确保驱动模块400不会产生凝露现象,但是如果驱动模块400的温度过高又会导致驱动模块400被损坏,影响室外机的正常运行,因此,如图12所示,当检测到有驱动模块400的温度Ta大于所述目标温度Tft时,所述辅助电子膨胀阀610的开度增大,增加冷媒管200内循环的冷媒量,以使检测到温度大于所述目标温度的驱动模块400的温度降低、并且使该驱动模块400的温度稳定在所述目标温度。
通过温度传感器监测每个驱动模块400的温度,当有驱动模块400的温度Ta大于安全温度区间的最大值Tmax时,则判定该驱动模块400的温度过高,有可能因温度过高而导致烧毁、损坏,此时,辅助电子膨胀阀610的开度增大, 即增加冷媒管200内循环的冷媒量,通过冷媒带走驱动模块400产生的热量,使检测到的温度大于安全温度区间的最大值的驱动模块400的温度降低,并且使其温度处于安全温度区间内,同时通过导热件300在相邻的驱动模块400之间传递热量,使多个驱动模块400之间的温度更加均衡,从而防止驱动模块400的温度过高。
综上所示,本申请实施例提供的控制方法,使通过设定合适的目标值,然后不断调节辅助电子膨胀阀610的开度大小,即调节冷媒量,从而使驱动模块400的温度均稳定在目标温度,由于目标温度时在安全温度区间内的取值;
因此,能够保证驱动模块400的温度处于安全温度区间内,详细来讲,当驱动模块400的温度过高时,辅助电子膨胀阀610的开度增大,即增加冷媒量,使驱动模块400的温度降低至目标温度即可,当驱动模块400的温度过低时,则升高目标温度的温度值,此时,辅助电子膨胀阀610的开度减小,即减少冷媒量,使驱动模块400的温度升高,从而围绕目标温度,不断调节辅助电子膨胀阀610的开度,使驱动模块400的温度稳定在目标温度,确保驱动模块400的温度不会过高也不会过低,以此保证室外机的正常稳定运行。
更进一步地,本申请实施例提供的控制方法是通过温度传感器监测各个驱动模块400的温度,并且设定一个目标温度值,通过PID控制方式,不断反馈驱动模块400的温度,并且不断调节辅助电子膨胀阀610的开度,增加或者减少冷媒管200内循环的冷媒量,对驱动模块400的温度进行不断的调节,最终保证驱动模块400的温度稳定在安全温度区间内,在调节过程中通过换热块100与导热件300的一体式结构,在驱动模块400之间传递热量,使驱动模块400之间的温度更加均衡,从而有效防止驱动模块因温度过低导致凝露的问题发生, 保证驱动模块400能够正常运行。
本申请实施例提供的多压缩机550的空调器,当全部压缩机550中只需要运行一个时,则控制靠近所述冷却循环支路600入口处的所述驱动模块400驱动其对应的所述压缩机550运行。
由于远离冷却循环支路600入口的压缩机550运行的情况下,当冷媒由冷却循环支路600的入口进入时,由于入口处驱动模块400没有运行,也就不需要散热,当冷媒经过入口处的驱动模块400时,会导致入口处的驱动模块400的温度进一步降低,因此,有可能出现凝露现象,因此,当只需要运行一个压缩机550时,控制入口处的压缩机550运行,从而当冷媒经过该压缩机550时,经过换热,使冷媒的温度升高,然后经过后面的未运行的驱动模块400时,则不会使未运行的驱动模块400的温度降低,防止出现凝露现象。
更进一步地,当全部所述压缩机550中需要运行多个时,则控制靠近所述冷却循环支路600入口处的多个所述驱动模块400驱动对应的多个所述压缩机550运行。
基于上述原因,为了防止未运行的驱动模块400被低温冷媒冷却,导致凝露现象发生,需要部分压缩机550运行时,则控制靠近冷却循环支路600入口处的多个驱动模块400依次运行,例如需要两个压缩机550运行,则控制距离冷却循环支路600入口最近的第一个和第二个驱动模块400运行即可,当冷媒经过运行的驱动模块400、并换热后,使冷媒的温度升高,从而保证冷媒经过未运行的驱动模块400时,不会使未运行的驱动模块400的温度过低,防止驱动模块400出现凝露现象。
需要指出的是,当需要运行部分压缩机550中的一个或者多个时,按上述 方式启动对应的驱动模块400、并驱动对应的压缩机550运行后,依然按照前述控制方法,设定目标温度,并且调节驱动模块400的温度,使驱动模块400的温度稳定在目标温度,从而保证驱动模块400的温度不会过高,也不会过低。
并且,本申请实施例提供的控制方法,也同样适用单压缩机550的室外机。
在本申请某些实施例中,所述第一预设温度为2℃-5℃。即当驱动模块400的温度与环境温度的温度差小于该温度值时,则判定该驱动模块400可能出现凝露现象,此时,及时调剂辅助电子膨胀阀610的开度,从而调节驱动模块400的温度,避免其温度进一步降低,发生凝露现象。
在本申请某些实施例中,所述安全温度区间为50℃-75℃。即当驱动模块400的温度大于75℃时,则判定该驱动模块400温度过高,可能出现烧毁、损坏,此时,及时调节辅助电子膨胀阀610的开度,从而调节驱动模块400的温度,避免其温度继续升高,发生烧坏、损坏。
在本说明书的描述中,具体特征、结构、材料或者特点可以在任何的一个或多个实施例或示例中以合适的方式结合。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以所述权利要求的保护范围为准。

Claims (17)

  1. 一种空调器室外机,其特征在于,包括:
    壳体,所述壳体内设有至少两个压缩机;
    驱动模块,具有至少两个,每个分别对应驱动一个所述压缩机;
    换热块,其不同部分分别与不同所述驱动模块以可导热方式连接;
    冷媒管,内有冷媒,插入所述换热块内且可对所述换热块进行冷却。
  2. 根据权利要求1所述的空调器室外机,其特征在于,相邻的两个所述换热块之间通过导热件连接,所述导热件用于在相邻的两个所述换热块之间传递热量。
  3. 根据权利要求2所述的空调器室外机,其特征在于,所述导热件与所述换热块采用相同材料制成、并且一体成型。
  4. 根据权利要求3所述的空调器室外机,其特征在于,所述换热块包括固定板以及设置于所述固定板上的导热部,所述导热部内、沿所述固定板长度方向开设有通孔,所述冷媒管插入所述通孔内,所述固定板与所述驱动模块连接,所述固定板与所述导热部由相同材料制成、且一体成型。
  5. 根据权利要求4所述的空调器室外机,其特征在于,所述导热件与所述换热块的结构相同,所述导热件的端面与所述换热块的端面紧密连接。
  6. 根据权利要求4所述的空调器室外机,其特征在于,所述驱动模块设置于电路基板上,所述固定板与所述电路基板紧密贴合,所述电路基板能够将所述冷媒的冷量传递至所述驱动模块,以降低所述驱动模块的温度。
  7. 根据权利要求4所述的空调器室外机,其特征在于,所述冷媒管通过胀管的方式,使所述冷媒管的外壁与所述通孔的内壁紧密贴合。
  8. 根据权利要求4所述的空调器室外机,其特征在于,所述冷媒管为U型管,所述换热块包括两个所述导热部、并分别设置于所述固定板上沿长度方向的两侧边缘处,所述U型管的两个直管段分别插入两个所述导热部内部的所述通孔中。
  9. 一种如权利要求1-8任一项所述的空调器室外机的循环系统,其特征在于,包括设置于所述所述室外机内部、并通过循环主液管依次连通的过冷换热器、主电子膨胀阀、室外换热器以及四通阀,所述循环主液管与所述室内机连通,所述四通阀上还连接有压缩机和气液分离器,所述压缩机和所述气液分离器连通,所述气液分离器与所述过冷换热器连通,所述循环主液管上设置有冷却循环支路,所述冷却循环支路与所述冷媒管连通,所述冷却循环支路上设置有辅助电子膨胀阀。
  10. 根据权利要求9所述的循环系统,其特征在于,所述冷却循环支路设置于所述过冷换热器与所述室外换热器之间,并且与所述主电子膨胀阀并联。
  11. 根据权利要求9所述的循环系统,其特征在于,所述冷却循环支路设置于所述过冷换热器靠近所述室内机的一端,所述辅助电子膨胀阀的出口与所述过冷换热器连通。
  12. 一种如权利要求9-11任一项所述的循环系统的控制方法,其特征在于,每个所述驱动模块中均设置有温度传感器,所述温度传感器用于检测所述驱动模块的温度,所述控制方法包括:
    通过所述温度传感器监测所述驱动模块的温度,并且设定目标温度,所述目标温度处于安全温度区间内,然后调节辅助电子膨胀阀,使所述驱动模块的温度稳定在所述目标温度;
    当检测到有所述驱动模块的温度与环境温度的温度差小于第一预设温度时,则提升设定的所述目标温度的温度值,使所述辅助电子膨胀阀的开度减小,减少所述冷媒管内循环的冷媒量,使检测到所述温度差小于所述第一预设温度的所述驱动模块的温度升高、并使该驱动模块的温度与环境温度的温度差大于所述第一预设温度。
  13. 根据权利要求12所述的控制方法,其特征在于,当检测到有所述驱动模块的温度大于所述目标温度时,所述辅助电子膨胀阀的开度增大,增加所述冷媒管内循环的冷媒量,使检测到温度大于所述目标温度的所述驱动模块的温度降低、并且使该驱动模块的温度稳定在所述目标温度。
  14. 根据权利要求13所述的控制方法,其特征在于,当全部所述压缩机中只需要运行一个时,则控制靠近所述冷却循环支路入口处的所述驱动模块驱动其对应的所述压缩机运行。
  15. 根据权利要求13所述的控制方法,其特征在于,当全部所述压缩机中需要运行多个时,则控制靠近所述冷却循环支路入口处的多个所述驱动模块驱动对应的多个所述压缩机运行。
  16. 根据权利要求13所述的控制方法,其特征在于,所述第一预设温度为2℃-5℃。
  17. 根据权利要求13所述的控制方法,其特征在于,所述安全温度区间为50℃-75℃。
PCT/CN2019/117285 2019-10-12 2019-11-12 一种空调器室外机及控制方法 WO2021068327A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP19948665.5A EP4043809A4 (en) 2019-10-12 2019-11-12 OUTDOOR UNIT OF AN AIR CONDITIONER AND CONTROL METHOD

Applications Claiming Priority (10)

Application Number Priority Date Filing Date Title
CN201921707838.9 2019-10-12
CN201910970156.5 2019-10-12
CN201921706951.5U CN210801418U (zh) 2019-10-12 2019-10-12 一种用于空调器的冷媒散热组件以及空调器
CN201921706951.5 2019-10-12
CN201921707838.9U CN210772502U (zh) 2019-10-12 2019-10-12 一种空调器室外机
CN201910970017.2 2019-10-12
CN201910970017.2A CN112648685A (zh) 2019-10-12 2019-10-12 一种空调器室外机、循环系统以及控制方法
CN201921706388.1U CN210801417U (zh) 2019-10-12 2019-10-12 一种用于空调室外机的散热组件以及空调器
CN201921706388.1 2019-10-12
CN201910970156.5A CN110762788A (zh) 2019-10-12 2019-10-12 一种空调器室外机、循环系统以及控制方法

Publications (1)

Publication Number Publication Date
WO2021068327A1 true WO2021068327A1 (zh) 2021-04-15

Family

ID=75436719

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/117285 WO2021068327A1 (zh) 2019-10-12 2019-11-12 一种空调器室外机及控制方法

Country Status (2)

Country Link
EP (1) EP4043809A4 (zh)
WO (1) WO2021068327A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114543384A (zh) * 2021-12-24 2022-05-27 青岛海尔空调电子有限公司 空调器

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106016505A (zh) * 2016-06-12 2016-10-12 青岛海尔空调器有限总公司 空调电路板降温装置
CN106610060A (zh) * 2015-10-26 2017-05-03 Lg电子株式会社 空气调节器
CN206207598U (zh) * 2016-10-11 2017-05-31 青岛海尔智能技术研发有限公司 空调器
CN107490090A (zh) * 2017-09-27 2017-12-19 广东美的暖通设备有限公司 空调器
CN108139087A (zh) * 2015-10-22 2018-06-08 三星电子株式会社 空气调节器的室外单元、应用于该室外单元的冷却单元及制造该冷却单元的方法
CN208804790U (zh) * 2018-08-21 2019-04-30 广东美的制冷设备有限公司 散热器和具有其的电控组件、空调器
WO2019146832A1 (ko) * 2018-01-26 2019-08-01 삼성전자(주) 공기조화기의 실외기

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005197454A (ja) * 2004-01-07 2005-07-21 Mitsubishi Electric Corp 冷却装置
KR102130738B1 (ko) * 2013-04-05 2020-07-07 삼성전자주식회사 공기조화기의 실외기 및 냉각장치
KR102283905B1 (ko) * 2014-12-30 2021-08-02 엘지전자 주식회사 공기 조화기의 실외기
KR101734640B1 (ko) * 2015-01-05 2017-05-11 엘지전자 주식회사 공기 조화기의 실외기
KR102253932B1 (ko) * 2017-10-06 2021-05-20 히타치 존슨 컨트롤즈 쿠쵸 가부시키가이샤 공기 조화기

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108139087A (zh) * 2015-10-22 2018-06-08 三星电子株式会社 空气调节器的室外单元、应用于该室外单元的冷却单元及制造该冷却单元的方法
CN106610060A (zh) * 2015-10-26 2017-05-03 Lg电子株式会社 空气调节器
CN106016505A (zh) * 2016-06-12 2016-10-12 青岛海尔空调器有限总公司 空调电路板降温装置
CN206207598U (zh) * 2016-10-11 2017-05-31 青岛海尔智能技术研发有限公司 空调器
CN107490090A (zh) * 2017-09-27 2017-12-19 广东美的暖通设备有限公司 空调器
WO2019146832A1 (ko) * 2018-01-26 2019-08-01 삼성전자(주) 공기조화기의 실외기
CN208804790U (zh) * 2018-08-21 2019-04-30 广东美的制冷设备有限公司 散热器和具有其的电控组件、空调器

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4043809A4

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114543384A (zh) * 2021-12-24 2022-05-27 青岛海尔空调电子有限公司 空调器

Also Published As

Publication number Publication date
EP4043809A4 (en) 2024-03-06
EP4043809A1 (en) 2022-08-17

Similar Documents

Publication Publication Date Title
WO2021000873A1 (zh) 一种高功率密度机柜的整体高效散热系统
JP2016532073A (ja) 冷却庫及び冷却面のための改良された熱輸送システム
CN104640421A (zh) 空调机组
CN206572645U (zh) 一种变频空调器及其电子模块散热装置
CN108470959A (zh) 一种动力电池包热管理总成
US11441789B2 (en) Convection/radiation air conditioning terminal and air conditioning system
WO2021068327A1 (zh) 一种空调器室外机及控制方法
CN203633039U (zh) 空调机组
CN114867306A (zh) 一种以纳米流体作为介质的5g基站机房节能液冷系统
CN110762788A (zh) 一种空调器室外机、循环系统以及控制方法
WO2023231432A1 (zh) 储物空调控制装置、控制方法及储物空调
CN210463644U (zh) 制冷系统以及空调器
JP6931093B2 (ja) 液体温度制御装置及び方法
CN203633038U (zh) 空调机组
CN210772502U (zh) 一种空调器室外机
CN217236132U (zh) 变频空调系统
CN215295145U (zh) 散热器和空调器
CN112648685A (zh) 一种空调器室外机、循环系统以及控制方法
CN217235882U (zh) 变频空调系统
CN210568872U (zh) 一种散热装置和空调器
CN209014892U (zh) 一种芯片散热装置及投影设备
CN210801417U (zh) 一种用于空调室外机的散热组件以及空调器
JP2001235182A (ja) ビル空気調和システム
CN208460920U (zh) 一种动力电池包热管理总成
CN216716398U (zh) 空调器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19948665

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2019948665

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2019948665

Country of ref document: EP

Effective date: 20220512