WO2021114862A1 - 压缩机和氟泵复合空调系统 - Google Patents

压缩机和氟泵复合空调系统 Download PDF

Info

Publication number
WO2021114862A1
WO2021114862A1 PCT/CN2020/121340 CN2020121340W WO2021114862A1 WO 2021114862 A1 WO2021114862 A1 WO 2021114862A1 CN 2020121340 W CN2020121340 W CN 2020121340W WO 2021114862 A1 WO2021114862 A1 WO 2021114862A1
Authority
WO
WIPO (PCT)
Prior art keywords
conditioning system
compressor
fluorine pump
bypass branch
air conditioning
Prior art date
Application number
PCT/CN2020/121340
Other languages
English (en)
French (fr)
Inventor
彭志鹏
李马林
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2021114862A1 publication Critical patent/WO2021114862A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B1/00Compression machines, plants or systems with non-reversible cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • F25B41/20Disposition of valves, e.g. of on-off valves or flow control valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • F25B41/30Expansion means; Dispositions thereof
    • F25B41/31Expansion valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B49/00Arrangement or mounting of control or safety devices
    • F25B49/02Arrangement or mounting of control or safety devices for compression type machines, plants or systems
    • F25B49/022Compressor control arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/02Compressor control
    • F25B2600/025Compressor control by controlling speed
    • F25B2600/0251Compressor control by controlling speed with on-off operation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/13Pump speed control

Definitions

  • This application relates to the field of air conditioning technology, and in particular to a compressor and fluorine pump combined air conditioning system.
  • Data center IT equipment has high power density, high heat load, and high requirements for temperature and humidity.
  • a dedicated air conditioning system is required to ensure the stable operation of the data center.
  • the air conditioning system is the largest energy consumption system in the data center except for IT equipment, and its power consumption accounts for 35%-40% of the total power consumption of the data center.
  • the existing air-conditioning system usually adopts a compound air-conditioning system consisting of a fluorine pump and a compressor.
  • the fluorine pump system is connected in series with the traditional compressor system, and the compressor is used when the outdoor temperature is high in summer Refrigeration cycle.
  • a fluorine pump refrigeration cycle is used, and the fluorine pump is used to drive the refrigerant to guide the heat in the computer room to the outside of the computer room and dissipate it to the environment. Since the operating power consumption of the fluorine pump is less than the operating power consumption of the compressor, the use of a fluorine pump refrigeration cycle to replace the compressor refrigeration cycle can achieve the purpose of energy saving.
  • the present application provides a compressor and fluorine pump composite air-conditioning system, which can simplify the refrigeration system, reduce the control difficulty of the entire system, reduce the risk of single-point failure, and improve the reliability of system operation.
  • a compressor and a fluorine pump composite air-conditioning system includes a compressor, a condenser, a fluorine pump, a throttling element, and an evaporator, which are sequentially connected by pipelines and form a closed circuit;
  • the pipeline between the condensers is provided with a loop check valve, and the pipeline between the condenser and the fluorine pump is provided with a liquid storage tank;
  • the air conditioning system also includes a first bypass branch, and a second bypass branch of the first bypass branch.
  • the air conditioning system also includes a second bypass branch, the first end of the second bypass branch is connected to the pipeline between the condenser and the liquid storage tank, and the second end of the second bypass branch Connected to the pipeline between the fluorine pump and the throttling element, the second bypass branch is provided with a second one-way valve;
  • the air conditioning system also includes a third bypass branch, the first end of the third bypass branch It is connected with the pipeline between the condenser and the liquid storage tank, and the second end of the third bypass branch is connected with the pipeline between the liquid storage tank and the fluorine pump.
  • the refrigerant that comes out of the condenser of this application flows into the fluorine pump through the liquid storage tank, and the other way flows into the fluorine pump through the third bypass branch (the liquid storage tank is equivalent to a large pipeline, which will not affect the refrigerant.
  • the third bypass branch will not “short-circuit” the liquid storage tank.)
  • the third bypass branch can be used in the event of operating mode switching and other refrigerant pressure fluctuations in the system. Play a certain pressure relief function, so that the flow state of the refrigerant in the system is more stable, and can prevent the gaseous refrigerant from entering the fluorine pump and causing "cavitation" problems.
  • the present application uses a one-way valve with one-way conduction capability on the first bypass branch, the second bypass branch, and the outlet side of the compressor, instead of installing a solenoid valve. Due to the simple structure of the one-way valve, There is no need for electric control, so it has a more stable and reliable performance than solenoid valves, which can reduce the risk of single-point failure and improve the reliability of system operation. At the same time, the air-conditioning system provided by the embodiments of the present application only needs to control the start and stop of the compressor and the fluorine pump to switch the working mode of the air-conditioning system, and the one-way valve does not need to be electrically controlled, thereby reducing the complexity of the air-conditioning system control. degree.
  • the fluorine pump may be any one of a fluorine-lined centrifugal pump, a fluorine-lined magnetic pump, a fluorine-lined self-priming pump, and the like.
  • a condensing fan is provided on the condenser, and an evaporating fan is provided on the evaporator, so that the heat exchange effect can be enhanced by forced convection.
  • the evaporating fan and/or the condensing fan may be an EC fan, so that the speed regulation performance of the fan can be improved and the operation reliability of the fan can be higher.
  • the throttling element is an electronic expansion valve.
  • the throttling element installed in the circulation loop of this application is an electronic expansion valve.
  • the electronic expansion valve has higher adjustment capabilities and adjustment accuracy, and is able to pass the suction of the compressor. Heat is better controlled, which can prevent the compressor from sucking in liquid refrigerant and causing "liquid hammer" problems.
  • the air conditioning system further includes a controller, which is electrically connected to the electronic expansion valve and a condensing fan provided on the condenser.
  • the controller controls the opening of the electronic expansion valve and the condensing fan.
  • the rotation speed of the compressor can be used to control the superheating degree of the compressor inlet and the supercooling degree of the condenser outlet.
  • the opening degree of the electronic expansion valve and the speed of the condensing fan are adjusted through the controller (for example, the control circuit board), so that the compressor inlet superheat and the condenser outlet supercool can be controlled to prevent the fluorine pump and
  • the compressor has the problems of "cavitation” and "liquid hammer” respectively.
  • the compressor inlet superheat can be controlled within 6-8°C to prevent liquid refrigerant from entering the compressor;
  • the condenser outlet supercooling can be controlled Within 6-8°C, ensure that the liquid refrigerant enters the fluorine pump to prevent cavitation and downtime.
  • temperature sensors can be provided on both sides of the compressor and the condenser.
  • the temperature sensors can be electrically connected to the controller, and the temperature of the refrigerant on both sides of the compressor and the condenser can be collected through the temperature sensors. And feedback to the controller, the controller performs corresponding operations according to the received temperature data. For example, increase or decrease the opening of the electronic expansion valve, increase or decrease the speed of the condensing fan.
  • the compressor and the fluorine pump are respectively electrically connected to the controller, so that the controller can control the start and stop of the compressor and the fluorine pump according to the outdoor temperature, thereby switching the working mode of the air conditioning system.
  • the air-conditioning system provided by the present application only needs to control the start and stop of the compressor and the fluorine pump to switch the working mode of the air-conditioning system, and the one-way valve does not need to be electrically controlled, thereby reducing the complexity of the air-conditioning system control.
  • the air-conditioning system further includes a temperature sensor arranged outdoors, the temperature sensor is electrically connected to the controller, can obtain the outdoor ambient temperature and report it to the controller, and the controller can determine where the air-conditioning system switches to according to the outdoor ambient temperature A working mode to work.
  • a temperature sensor arranged outdoors, the temperature sensor is electrically connected to the controller, can obtain the outdoor ambient temperature and report it to the controller, and the controller can determine where the air-conditioning system switches to according to the outdoor ambient temperature A working mode to work.
  • a backup capacitor is provided on the controller. Therefore, in special circumstances such as sudden power failure of the air conditioning system, the backup capacitor can supply power to the electronic expansion valve, so that the electronic expansion valve can automatically close when the power is cut off, and act as a solenoid valve to prevent liquid refrigerant from entering the compression Inside the machine, improve the reliability of system operation.
  • a third check valve is provided on the third bypass branch. Therefore, the entire refrigerant circulation system can be controlled more reliably, and it can be ensured that the fluorine pump sucks in liquid refrigerant instead of gaseous refrigerant during the startup of the fluorine pump and the operation mode switching process, thereby further preventing the occurrence of the fluorine pump.
  • the problem of "cavitation" is provided on the third bypass branch.
  • At least one filter drier is also provided on the closed loop.
  • the filter drier can absorb the moisture and impurities in the refrigerant, so as to prevent the air-conditioning system from causing "dirty blockage” or “icing blockage” during operation, and improve the reliability of the air-conditioning system.
  • a sight glass is provided on the pipeline between the fluorine pump and the throttling element.
  • the setting of the sight glass can help maintenance personnel understand the quality and water content of the refrigerant in the circulating pipeline, and improve the efficiency of maintenance.
  • the compressor is an inverter compressor, which can save cooling costs.
  • the fluorine pump is a variable frequency fluorine pump, which can save refrigeration costs.
  • the condenser and evaporator are coil heat exchangers.
  • the coil type heat exchanger can be provided with radiating fins to improve the heat exchange efficiency.
  • Fig. 1 is a schematic structural diagram of an example of a compressor and a fluorine pump combined air-conditioning system provided by an embodiment of the present application.
  • Fig. 2 is a schematic structural diagram of the system shown in Fig. 1 in a compressor refrigeration mode.
  • Fig. 3 is a schematic structural diagram of the system shown in Fig. 1 in a fluorine pump refrigeration mode.
  • Fig. 4 is a schematic structural diagram of the system shown in Fig. 1 in a mixed refrigeration mode.
  • Fig. 5 is a schematic structural diagram of another example of a compressor and a fluorine pump compound air-conditioning system provided by an embodiment of the present application.
  • Fig. 6 is a schematic structural diagram of another example of a compressor and a fluorine pump combined air conditioning system provided by an embodiment of the present application.
  • connection and “connected” should be understood in a broad sense, for example, it can be a fixed connection, a detachable connection, or an integral Ground connection; it can be a mechanical connection, it can be an electrical connection, or it can communicate with each other; it can be directly connected, or indirectly connected through an intermediate medium, it can be the internal communication of two components or the interaction relationship between two components.
  • connection should be understood in a broad sense, for example, it can be a fixed connection, a detachable connection, or an integral Ground connection; it can be a mechanical connection, it can be an electrical connection, or it can communicate with each other; it can be directly connected, or indirectly connected through an intermediate medium, it can be the internal communication of two components or the interaction relationship between two components.
  • the embodiments of the present application provide a compressor and a fluorine pump composite air conditioning system, which can prevent the fluorine pump and the compressor from causing the problems of "cavitation” and "liquid hammer", while simplifying the structure of the air conditioning system and reducing the cost of the air conditioning system. Control difficulty, reduce the risk of single point of failure, and improve the reliability of system operation.
  • Fig. 1 is a schematic structural diagram of a compressor and a fluorine pump combined air-conditioning system provided by an embodiment of the present application.
  • the air conditioning system is connected in series with the fluorine pump refrigeration system in the traditional compressor refrigeration system, so that it can make full use of the natural cold source of the outdoor environment and save the cooling cost of the computer room.
  • the air-conditioning system includes a compressor 1, a condenser 2, a fluorine pump 3, a throttling element 4, and an evaporator 5 connected in sequence through pipelines and forming a closed circuit.
  • the compressor 1 and the fluorine pump 3 can drive the refrigerant to circulate in a closed circuit.
  • the evaporator 5 is installed indoors for absorbing indoor heat, and the condenser 2 is installed outdoors for absorbing the evaporator 5 The heat is dissipated to the outdoor environment.
  • the pipeline between the compressor 1 and the condenser 2 is provided with a loop check valve 6, and the pipeline between the condenser 2 and the fluorine pump 3 is provided with a liquid storage tank 9.
  • the setting of the loop check valve 6 can control the flow direction of the refrigerant through its unidirectional conduction, and prevent the refrigerant from flowing back into the compressor 1 and affecting the reliability of the operation of the compressor 1.
  • the liquid storage tank 9 can play the roles of storage, gas-liquid separation, filtration, noise reduction, and refrigerant buffering in the system, so as to improve the stability of system operation.
  • the air conditioning system also includes a first bypass branch 11, the first end of the first bypass branch 11 is connected to the pipeline between the evaporator 5 and the compressor 1, and the first bypass branch 11 is connected to the pipeline between the evaporator 5 and the compressor 1.
  • the two ends are connected with the pipeline between the loop check valve 6 and the condenser 2, and a first check valve 7 is provided on the first bypass branch 11.
  • the first one-way valve 7 can control the flow direction of the refrigerant through its unidirectional conduction, which can ensure that the discharge pressure of the compressor 1 will not act on the suction pipe of the compressor 1 through the first bypass branch 11 on.
  • the flow path of the refrigerant can be selected.
  • the compressor 1 is controlled to run and the fluorine pump 3 is stopped, the refrigerant flows into the condenser 2 after passing through the compressor 1 and the loop check valve 6.
  • the compressor 1 is controlled to stop and the fluorine pump 3 runs, the refrigerant enters the condenser 2 after passing through the first bypass branch 11.
  • the compressor 1 is controlled to run and the fluorine pump 3 is run, the refrigerant flows into the condenser 2 after passing through the compressor 1 and the loop check valve 6 (at this time, the pressure on the outlet side of the compressor 1 is greater than the pressure on the inlet side. , The refrigerant will not enter the first bypass branch 11).
  • the air conditioning system also includes a second bypass branch 12, the first end of the second bypass branch 12 is connected to the pipeline between the condenser 2 and the liquid storage tank 9, and the second bypass branch 12 is connected to the pipe between the condenser 2 and the liquid storage tank 9. The end is connected with the pipeline between the fluorine pump 3 and the throttling element 4, and a second one-way valve 8 is provided on the second bypass branch 12.
  • the second check valve 8 can control the flow direction of the refrigerant through its unidirectional conduction, which can ensure that the fluorine pump 3 does not form a small self-circulation through the second bypass branch 12. By controlling the start and stop of the compressor 1 and the fluorine pump 3, the flow path of the refrigerant can be selected.
  • the compressor 1 is controlled to run and the fluorine pump 3 is stopped, the refrigerant enters the throttle element 4 through the second bypass branch 12.
  • the compressor 1 is controlled to stop and the fluorine pump 3 runs, the refrigerant flows into the throttle element 4 through the fluorine pump 3.
  • the refrigerant flows into the throttling element 4 through the fluorine pump 3 (at this time, since the pressure on the outlet side of the fluorine pump 3 is greater than the pressure on the inlet side, the refrigerant will not enter The second bypass branch 12).
  • the air conditioning system also includes a third bypass branch 13.
  • the first end of the third bypass branch 13 is connected to the pipeline between the condenser 2 and the liquid storage tank 9, and the second end of the third bypass branch 13 The end is connected with the pipeline between the liquid storage tank 9 and the fluorine pump 3.
  • the refrigerant from the condenser 2 flows into the fluorine pump 3 through the liquid storage tank 9 all the way, and the other way flows into the fluorine pump 3 through the third bypass branch 13 (the liquid storage tank 9 is equivalent to a large
  • the pipeline does not produce resistance to the flow of refrigerant, so the setting of the third bypass branch 13 will not “short-circuit” the liquid storage tank 9), and the third bypass branch 13 is undergoing operating mode switching, etc.
  • the pressure of the refrigerant in the system fluctuates, it can play a role in pressure relief, so that the flow of the refrigerant in the system is more stable, and it can prevent the gaseous refrigerant from entering the fluorine pump 3 and causing "cavitation" problems. .
  • the refrigerant inlet side of the fluorine pump 3 does not need to be provided with an additional solenoid valve, thereby simplifying the structure of the air conditioning system, reducing the complexity and control difficulty of the system, and reducing Single point of failure risk improves the reliability of system operation.
  • the present application uses a one-way valve with one-way communication capability on the outlet side of the first bypass branch 11, the second bypass branch 12, and the compressor 1, instead of installing a solenoid valve, because the one-way valve
  • the structure is simple and does not require electrical control, so that compared with solenoid valves, it has more stable and reliable performance, can reduce the risk of single-point failure, and improve the reliability of system operation.
  • the air-conditioning system provided by the embodiments of the present application only needs to control the start and stop of the compressor 1 and the fluorine pump 3 to switch the working mode of the air-conditioning system, and the one-way valve does not need to be electrically controlled, thereby reducing the control of the air-conditioning system. Complexity.
  • the compressor 1 may be an inverter compressor, so that the cooling cost can be saved.
  • the fluorine pump 3 may be a variable frequency fluorine pump, so that the refrigeration cost can be saved.
  • the fluorine pump 3 may be any one of a fluorine-lined centrifugal pump, a fluorine-lined magnetic pump, a fluorine-lined self-priming pump, and the like.
  • the condenser 2 and the evaporator 5 are coil heat exchangers.
  • the coil type heat exchanger can be provided with radiating fins to improve the heat exchange efficiency.
  • the condenser 2 is provided with a condensing fan
  • the evaporator 5 is provided with an evaporating fan, so that the heat exchange effect can be enhanced by forced convection.
  • the evaporating fan and/or the condensing fan may be an EC fan, so that the speed regulation performance of the fan can be improved and the operation reliability of the fan can be higher.
  • the throttle element 4 may be an electronic expansion valve.
  • the throttling element provided in the circulation circuit in the embodiment of the present application is the electronic expansion valve 4.
  • the electronic expansion valve 4 has higher adjustment capability and adjustment accuracy, and can Better control of the suction superheat of the compressor 1 can prevent the compressor 1 from causing the problem of "liquid hammer" due to the inhalation of liquid refrigerant.
  • the air conditioning system further includes a controller (not shown in the figure), which is electrically connected to the electronic expansion valve 4 and the condensing fan, and the controller controls the opening of the electronic expansion valve 4 And control the rotation speed of the condensing fan to control the inlet superheat degree of the compressor 1 and the outlet supercool degree of the condenser 2.
  • the air conditioning system provided by the embodiment of the present application can adjust the opening degree of the electronic expansion valve 4 and the rotation speed of the condensing fan through a controller (for example, a control circuit board), so as to adjust the superheat and condensation of the inlet of the compressor 1
  • the subcooling degree of the outlet of the device 2 is controlled to prevent the "cavitation” and "liquid hammer” problems of the fluorine pump and the compressor respectively.
  • the compressor inlet superheat can be controlled within 6-8°C to prevent liquid refrigerant from entering the compressor 2; making the outlet of the condenser 2 pass
  • the cooling degree is controlled within 6-8°C to ensure that the liquid refrigerant enters the fluorine pump 3 to prevent cavitation and downtime.
  • temperature sensors can be provided on both sides of the compressor and the condenser.
  • the temperature sensors can be electrically connected to the controller, and the temperature of the refrigerant on both sides of the compressor and the condenser can be collected through the temperature sensors. And feedback to the controller, the controller performs corresponding operations according to the received temperature data. For example, the opening degree of the electronic expansion valve 4 is increased or decreased, and the rotation speed of the condensing fan is increased or decreased.
  • the controller of the air conditioning system provided in the embodiment of the present application is also provided with a backup capacitor.
  • the controller is electrically connected to the electronic expansion valve 4, so that in special circumstances such as a sudden power failure of the air-conditioning system or other protection shutdowns, the backup capacitor can supply power to the electronic expansion valve 4, so that the electronic expansion valve 4 can automatically be powered off. It is closed to act as a solenoid valve to prevent liquid refrigerant from entering the compressor 1.
  • the compressor and fluorine pump composite air conditioning system provided by the embodiments of the present application can make full use of outdoor natural cold sources.
  • the fluorine pump refrigeration system can be used to cool the machine room, thereby achieving the purpose of energy saving.
  • the compressor and fluorine pump compound air conditioning system provided by the embodiment of the present application has three working modes: a compressor refrigeration mode, a fluorine pump refrigeration mode, and a mixed refrigeration mode.
  • Fig. 2 is a schematic structural diagram of the air-conditioning system provided by an embodiment of the present application in a compressor cooling mode.
  • Fig. 3 is a schematic structural diagram of the air conditioning system provided by an embodiment of the present application in a fluorine pump cooling mode.
  • Fig. 4 is a schematic structural diagram of an air conditioning system in a mixed refrigeration mode provided by an embodiment of the present application. The above three working modes will be further described below with reference to Figures 2-4.
  • FIG. 2 is a schematic structural diagram of the compressor and fluorine pump compound air conditioning system in the compressor refrigeration mode. As shown in Figure 2, after the refrigerant flows out of the compressor 1, it passes through the loop check valve 6, the condenser 2, and the second one in sequence. The one-way valve 8, the electronic expansion valve 4, and the evaporator 5 then return to the compressor 1 to complete the entire refrigeration cycle.
  • the compressor 1 highly compresses the refrigerant circulating from the evaporator 5, compresses the gaseous refrigerant into a high-temperature and high-pressure state, and sends it to the condenser 2, where it dissipates heat and becomes a medium-temperature and high-pressure liquid refrigerant.
  • the liquid refrigerant can be further reduced in pressure and temperature through the electronic expansion valve 4, and becomes a low-pressure and low-temperature gas-liquid mixed state, and then enters the evaporator 5.
  • the gas-liquid two-phase refrigerant is vaporized in the evaporator 5.
  • the phase change process of the refrigerant from liquid to gas absorbs a large amount of heat to realize the cooling of the environment in the computer room.
  • the refrigerant coming out of the evaporator 5 becomes a superheated gas, and then the gas refrigerant returns to the compressor 1 to continue to circulate.
  • FIG. 3 is a schematic structural diagram of a compressor and a fluorine pump compound air conditioning system in a fluorine pump refrigeration mode. As shown in Figure 3, after the refrigerant flows out of the fluorine pump 3, it passes through the electronic expansion valve 4, the evaporator 5, the first one-way valve 7, the condenser 2, the liquid storage tank 9 (the third bypass branch 13) in sequence Then return to the fluorine pump 3 to complete the entire refrigeration cycle.
  • the lower temperature refrigerant flows through the evaporator 5 and absorbs the heat in the machine room in the evaporator 5 to achieve a cooling effect on the environment in the machine room, and then the temperature rises due to heat absorption.
  • the high refrigerant flows through the condenser 2 set outside the machine room. Since the ambient temperature outside the machine room is low, and the temperature of the refrigerant in the condenser 2 is higher than the outdoor ambient temperature, there is a certain temperature gradient, so it can be condensed
  • the device 2 dissipates the absorbed heat to the environment outside the machine room, and the refrigerant whose temperature has decreased can return to the fluorine pump 3 to continue to circulate.
  • the fluorine pump 3 is used instead of the compressor 1 to provide power for the system cycle. Since the power of the fluorine pump 3 is much smaller than that of the compressor 1, it has a significant energy saving effect.
  • a third bypass branch 13 is connected in parallel on both sides of the liquid storage tank 9, and the refrigerant can flow into the fluorine pump 3 through the liquid storage tank 9 and the third bypass branch 13 at the same time.
  • the third bypass branch 13 is provided to make the flow state of the refrigerant in the system more stable, and can prevent the gaseous refrigerant from entering the fluorine pump 3 and causing the problem of "cavitation".
  • the fluorine pump 3 A solenoid valve is installed on the inlet side of the fluorine pump to prevent the "cavitation" problem of the fluorine pump 3 during the mode switching process.
  • the air conditioning system provided in this application simplifies the structure of the system, reduces the risk of single point failure, and improves the reliability of system operation.
  • Fig. 5 is a schematic structural diagram of another example of a compressor and a fluorine pump combined air-conditioning system provided by the present application.
  • a third check valve 15 is provided on the third bypass branch 13, so that the entire refrigerant circulation system can be controlled more reliably. It is ensured that during the startup of the fluorine pump 3 and the operation mode switching process, the fluorine pump 3 sucks in liquid refrigerant instead of gaseous refrigerant, thereby further preventing the problem of "cavitation" in the fluorine pump 3.
  • the first end of the third bypass branch 13 can pass through the front end of the second bypass branch 12 and the condenser 2 and the storage tank.
  • the pipelines between the liquid tanks 9 are "indirectly" connected.
  • the first end of the third bypass branch 13 can be connected to the pipeline between the first end of the second bypass branch 12 and the second one-way valve 8, and the refrigerant can pass through the second bypass The front end of the branch 12 then flows into the third bypass branch 13.
  • Fig. 6 is a schematic structural diagram of another example of the compressor and fluorine pump combined air-conditioning system provided by the present application.
  • the third bypass branch 13 can also be "directly" connected to the pipeline between the condenser 2 and the liquid storage tank 9, and the third bypass
  • the branch 13 and the second bypass branch 12 are arranged independently of each other, which is not limited in this application.
  • FIG. 4 is a schematic diagram of the structure of the compressor and fluorine pump compound air conditioning system in the mixed refrigeration mode. As shown in Figure 4, the refrigerant flows from the compressor 1 through the loop check valve 6, the condenser 2, and the liquid storage tank in sequence. 9 (the third bypass branch 13), the fluorine pump 3, the electronic expansion valve 4, and the evaporator 5 return to the compressor 1 to complete the entire refrigeration cycle.
  • the compressor 1 and the fluorine pump 3 work at the same time, partially using outdoor natural cold sources, reducing the energy consumption of the compressor 1, and having a certain energy saving effect.
  • the air-conditioning system provided by the embodiments of the application has three operation modes: compressor refrigeration mode, fluorine pump refrigeration mode, and mixed refrigeration mode.
  • the air-conditioning system can select different operation modes to cool the computer room according to different outdoor temperatures, so as to make full use of The outdoor natural cold source saves the cost of refrigeration.
  • a controller can be used to perform switching control on the above-mentioned different working modes.
  • the compressor 1 and the fluorine pump 3 are respectively electrically connected to the controller, so that the controller can control the start and stop of the compressor 1 and the fluorine pump 3 according to the outdoor temperature, so as to realize the conversion of different working modes.
  • the air-conditioning system provided by the embodiment of the present application only needs to control the start and stop of the compressor 1 and the fluorine pump 3 to switch the working mode of the air-conditioning system, and the one-way valve does not need to be electrically controlled, thereby reducing the complexity of the air-conditioning system control. degree.
  • the air-conditioning system further includes a temperature sensor arranged outdoors, the temperature sensor is electrically connected to the controller, can obtain the outdoor ambient temperature and report it to the controller, and the controller can determine where the air-conditioning system switches to according to the outdoor ambient temperature A working mode to work.
  • a temperature sensor arranged outdoors, the temperature sensor is electrically connected to the controller, can obtain the outdoor ambient temperature and report it to the controller, and the controller can determine where the air-conditioning system switches to according to the outdoor ambient temperature A working mode to work.
  • At least one filter drier 10 is also provided on the circulation loop of the air conditioning system.
  • the filter drier 10 can absorb moisture and impurities in the refrigerant, thereby preventing the air conditioning system from running Problems such as "dirty blockage” or “ice blockage” are generated in the process, which improves the reliability of the air conditioning system operation.
  • the circulating loop of the air conditioning system is also provided with a sight glass 14.
  • the setting of the sight glass 14 can help maintenance personnel understand the quality and water content of the refrigerant in the circulating pipeline. And other information to improve the efficiency of maintenance.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Air Conditioning Control Device (AREA)

Abstract

一种压缩机和氟泵复合空调系统,该空调系统包括通过管路依次连接并形成封闭回路的压缩机(1)、冷凝器(2)、氟泵(3)、节流元件(4)和蒸发器(5);所述压缩机(1)和所述冷凝器(2)之间的管路上设置有回路单向阀(6),所述冷凝器(2)和所述氟泵(3)之间的管路上设置有储液罐(9);所述空调系统还包括第一旁通支路(11)、第二旁通支路(12)、和第三旁通支路(13),所述第一旁通支路(11)、第二旁通支路(12)上分别设置有第一单向阀(7)和第二单向阀(8);所述第三旁通支路(13)的第一端与所述冷凝器(2)和所述储液罐(9)之间的管路连接,所述第三旁通支路(13)的第二端与所述储液罐(9)和所述氟泵(3)之间的管路连接。该空调系统能够降低单点故障风险,提高系统运行的可靠性。

Description

压缩机和氟泵复合空调系统
本申请要求于2019年12月13日提交中国专利局、申请号为201911279899.4、申请名称为“压缩机和氟泵复合空调系统”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及空气调节技术领域,特别涉及一种压缩机和氟泵复合空调系统。
背景技术
数据中心IT设备功率密度大,热负荷高,对温湿度有较高的要求,通常需要专用的空调系统保证数据中心的稳定运行。根据对数据中心的能耗分析,空调系统是数据中心内除了IT设备以外第一大能耗系统,其耗电量占数据中心总耗电的35%-40%。
为了节约空调系统的耗电量,现有的空调系统通常采用氟泵和压缩机的复合空调系统,在传统压缩机系统中串联进氟泵系统,在夏季等室外温度较高情况下采用压缩机制冷循环,而在冬季等室外温度较低情况下采用氟泵制冷循环,利用氟泵驱动制冷剂将机房内的热量引导至机房外部,并散发至环境中。由于氟泵的运行功耗要小于压缩机的运行功耗,使用氟泵制冷循环来取代压缩机制冷循环能够达到节能的目的。
针对当前的氟泵和压缩机的复合空调系统,为了防止在工作模式切换时氟泵和压缩机分别发生“汽蚀”和“液击”的问题,需要在氟泵和压缩机的制冷剂入口侧设置额外的电磁阀,还可能需要在压缩机的入口侧设置气液分离器,由此使得整个空调系统结构复杂,增加了整个系统的控制难度,同时也增加了单点故障风险。
发明内容
本申请提供一种压缩机和氟泵复合空调系统,能够简化制冷系统,降低整个系统的控制难度,降低单点故障风险,提高系统运行的可靠性。
第一方面,提供了一种压缩机和氟泵复合空调系统,该空调系统包括通过管路依次连接并形成封闭回路的压缩机、冷凝器、氟泵、节流元件和蒸发器;压缩机和冷凝器之间的管路上设置有回路单向阀,冷凝器和氟泵之间的管路上设置有储液罐;该空调系统还包括第一旁通支路,第一旁通支路的第一端与蒸发器和压缩机之间的管路连接,第一旁通支路的第二端与回路单向阀和冷凝器之间的管路连接,第一旁通支路上设置有第一单向阀;该空调系统还包括第二旁通支路,第二旁通支路的第一端与冷凝器和储液罐之间的管路连接,第二旁通支路的第二端与氟泵和节流元件之间的管路连接,第二旁通支路上设置有第二单向阀;该空调系统还包括第三旁通支路,第三旁通支路的第一端与冷凝器和储液罐之间的管路连接,第三旁通支路的第二端与储液罐和氟泵之间的管路连接。
本申请在冷凝器中出来的制冷剂一路经过储液罐流入氟泵内,另一路通过第三旁通支 路流入氟泵内(储液罐相当于一个大的管路,不会对制冷剂的流动产生阻力,因此第三旁通支路的设置并不会将储液罐“短路”掉),第三旁通支路在发生工作模式切换等系统内制冷剂压力发生波动的情况下能够起到一定的泄压作用,从而使得系统内制冷剂的流态更加稳定,能够防止气态的制冷剂进入氟泵内而发生“汽蚀”的问题。
本申请通过设置第三旁通支路,能够使得氟泵的制冷剂入口侧无需设置额外的电磁阀,从而简化了空调系统的结构,降低了系统的复杂度和控制难度,降低单点故障风险,提高系统运行的可靠性。
此外,本申请通过用在第一旁通支路、第二旁通支路以及压缩机的出口侧设置具有单向导通能力的单向阀,而不是设置电磁阀,由于单向阀结构简单,无需电控,从而相比于电磁阀具有更加稳定可靠的使用性能,能够降低单点故障风险,提高系统运行的可靠性。同时,本申请实施例提供的空调系统,仅需要控制压缩机和氟泵的启停即可对空调系统的工作模式进行切换,单向阀无需电控,由此也降低了空调系统控制的复杂度。
可选地,氟泵可以为衬氟离心泵、衬氟磁力泵、衬氟自吸泵等中的任意一种。
可选地,冷凝器上设置有冷凝风机,蒸发器上设置有蒸发风机,从而能够通过强制对流来增强换热效果。
可选地,该蒸发风机和/或冷凝风机可以为EC风机,从而可以提高风机的调速性能以及具有更高的运行可靠性。
在一种可能的设计中,节流元件为电子膨胀阀。本申请在循环回路中设置的节流元件为电子膨胀阀,相对于热力膨胀阀、毛细管等其他节流装置,电子膨胀阀具有更高的调节能力和调节精度,能够对压缩机的吸气过热度进行更好的控制,从而能够防止压缩机因为吸入液态的冷媒从而发生“液击”的问题。
在该基础之上,压缩机的制冷剂入口侧无需设置额外的电磁阀(以及气液分离器),从而进一步简化了空调系统的结构,降低了系统的复杂度和控制难度,降低单点故障风险,提高系统运行的可靠性。
在一种可能的设计中,该空调系统还包括控制器,控制器分别与所述电子膨胀阀、冷凝器上设置的冷凝风机电连接,控制器通过控制电子膨胀阀的开度以及控制冷凝风机的转速,以对压缩机的进口过热度和冷凝器的出口过冷度进行控制。
本申请通过控制器(例如控制电路板)对电子膨胀阀的开度以及冷凝风机的转速进行调节,进而可以对压缩机的进口过热度和冷凝器的出口过冷度进行控制,防止氟泵和压缩机分别发生“汽蚀”和“液击”的问题。例如,可以通过调节电子膨胀阀的开度以及冷凝风机的转速,使得压缩机进口过热度控制在6-8℃之内,预防液态制冷剂进入压缩机内;使得冷凝器的出口过冷度控制在6-8℃之内,保证液态制冷剂进入氟泵内,防止发生汽蚀宕机。
可选地,为了实现闭环控制,在压缩机、冷凝器的两侧可以分别设置温度传感器,该温度传感器可以与控制器电连接,通过温度传感器采集压缩机和冷凝器两侧制冷剂的温度,并且反馈至控制器,控制器根据接收到的温度数据执行相应的操作。例如,增大或者减小电子膨胀阀的开度,增大或者减小冷凝风机的转速。
在一种可能的设计中,压缩机、氟泵分别与控制器电连接,以使控制器能够根据室外温度控制压缩机、氟泵的启停,进而对所述空调系统的工作模式进行切换。本申请提供的空调系统,仅需要控制压缩机和氟泵的启停即可对空调系统的工作模式进行切换,单向阀 无需电控,由此也降低了空调系统控制的复杂度。
可选地,空调系统还包括设置于室外的温度传感器,该温度传感器与控制器电连接,能够获取室外的环境温度并且上报给控制器,控制器能够根据室外的环境温度决定空调系统切换至哪一种工作模式进行工作。
在一种可能的设计中,控制器上设置有备电电容。从而在空调系统突然断电等特殊情况下,该备电电容能够给电子膨胀阀进行供电,使得电子膨胀阀能够在断电时自动关闭,起到电磁阀的作用,防止液态的制冷剂进入压缩机内,提高系统运行的可靠性。
在一种可能的设计中,第三旁通支路上设置有第三单向阀。从而可以对整个制冷剂的循环系统进行更加可靠的控制,可以保证在氟泵的启动以及运行模式切换过程中氟泵吸入的为液态制冷剂,而不是气态制冷剂,从而能够进一步防止氟泵发生“汽蚀”的问题。
在一种可能的设计中,封闭回路上还设置有至少一个干燥过滤器。干燥过滤器能够对制冷剂中的水分以及杂质进行吸收,从而防止空调系统在运行过程中产生“脏堵”或者“冰堵”等问题,提高空调系统运行的可靠性。
在一种可能的设计中,氟泵与所述节流元件之间的管路上设置有视液镜。该视液镜的设置,能够帮助检修人员了解循环管路中制冷剂的品质和含水量等信息,提高检修的效率。
在一种可能的设计中,压缩机为变频压缩机,从而能够节约制冷成本。
在一种可能的设计中,氟泵为变频氟泵,从而能够节约制冷成本。
在一种可能的设计中,冷凝器和蒸发器为盘管式换热器。该盘管式换热器上可以设置散热翅片以提高换热效率。
附图说明
图1是本申请实施例提供的压缩机和氟泵复合空调系统的一例的结构示意图。
图2是图1所示系统处于压缩机制冷模式下的结构示意图。
图3是图1所示系统处于氟泵制冷模式下的结构示意图。
图4是图1所示系统处于混合制冷模式下的结构示意图。
图5是本申请实施例提供的压缩机和氟泵复合空调系统的另一例的结构示意图。
图6是本申请实施例提供的压缩机和氟泵复合空调系统的再一例的结构示意图。
具体实施方式
为使本申请实施例的目的、技术方案和优点更加清楚,下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
在本申请的描述中,需要理解的是,术语“第一”、“第二”、“第三”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”、“第三”的特征可以明示或者隐含地包括一个或者更多个所述特征。在本申请的描述中,“多个”的含义是两个或两个以上,除非另有明确具体的限定。
在本申请的描述中,需要说明的是,除非另有明确的规定和限定,术语“相连”、“连接”应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或一体地连接;可以 是机械连接,也可以是电连接或可以相互通讯;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通或两个元件的相互作用关系。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本申请中的具体含义。
在本申请的描述中,需要说明的是,术语“和/或”,仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。
本申请实施例提供一种压缩机和氟泵复合空调系统,能够在防止氟泵和压缩机分别发生“汽蚀”和“液击”的问题的同时,简化空调系统的结构,降低空调系统的控制难度,降低单点故障风险,提高系统运行的可靠性。
图1是本申请实施例提供的压缩机和氟泵复合空调系统的结构示意图。如图1所示,该空调系统在传统的压缩机制冷系统中串联进氟泵制冷系统,从而能够充分利用室外环境的自然冷源,节约机房的制冷成本。
该空调系统包括通过管路依次连接并形成封闭回路的压缩机1、冷凝器2、氟泵3、节流元件4和蒸发器5。
其中,压缩机1和氟泵3能够驱动制冷剂在封闭回路内进行循环流动,蒸发器5设置于室内,用于吸收室内的热量,冷凝器2设置于室外,用于将蒸发器5吸收的热量散发至室外的环境中。
压缩机1和所述冷凝器2之间的管路上设置有回路单向阀6,冷凝器2和氟泵3之间的管路上设置有储液罐9。
其中,回路单向阀6的设置,可以通过其单方向导通来控制制冷剂的流向,防止制冷剂回流至压缩机1内,影响压缩机1运行的可靠性。储液罐9的在系统中能够起到贮藏、气液分离、过滤、消音和制冷剂缓冲等作用,提高系统运行的稳定性。
该空调系统还包括第一旁通支路11,第一旁通支路11的第一端与所述蒸发器5和压缩机1之间的管路连接,第一旁通支路11的第二端与回路单向阀6和冷凝器2之间的管路连接,第一旁通支路11上设置有第一单向阀7。
其中,第一单向阀7可以通过其单方向导通来控制制冷剂的流向,可以保证压缩机1的排气压力不会通过第一旁通支路11作用在压缩机1的吸气管上。通过控制压缩机1和氟泵3的启停可以对制冷剂的流路进行选择。
例如,控制压缩机1运行,氟泵3停机,则制冷剂通过压缩机1、回路单向阀6之后流入冷凝器2内。
再例如,控制压缩机1停机,氟泵3运行,则制冷剂通过第一旁通支路11后进入冷凝器2内。
再例如,控制压缩机1运行,氟泵3运行,则制冷剂通过压缩机1、回路单向阀6之后流入冷凝器2内(此时由于压缩机1出口侧的压力要大于入口侧的压力,制冷剂不会进入第一旁通支路11)。
该空调系统还包括第二旁通支路12,第二旁通支路12的第一端与冷凝器2和储液罐9之间的管路连接,第二旁通支路12的第二端与氟泵3和节流元件4之间的管路连接,第二旁通支路12上设置有第二单向阀8。
其中,第二单向阀8可以通过其单方向导通来控制制冷剂的流向,可以保证氟泵3不 会通过第二旁通支路12形成自我小循环。通过控制压缩机1和氟泵3的启停可以对制冷剂的流路进行选择。
例如,控制压缩机1运行,氟泵3停机,则制冷剂通过第二旁通支路12进入节流元件4内。
再例如,控制压缩机1停机,氟泵3运行,则制冷剂通过氟泵3流入节流元件4内。
再例如,控制压缩机1运行,氟泵3运行,则制冷剂通过氟泵3流入节流元件4内(此时由于氟泵3出口侧的压力要大于入口侧的压力,制冷剂不会进入第二旁通支路12)。
该空调系统还包括第三旁通支路13,第三旁通支路13的第一端与冷凝器2和储液罐9之间的管路连接,第三旁通支路13的第二端与储液罐9和氟泵3之间的管路连接。
通过以上设置,在冷凝器2中出来的制冷剂一路经过储液罐9流入氟泵3内,另一路通过第三旁通支路13流入氟泵3内(储液罐9相当于一个大的管路,不会对制冷剂的流动产生阻力,因此第三旁通支路13的设置并不会将储液罐9“短路”掉),第三旁通支路13在发生工作模式切换等系统内制冷剂压力发生波动的情况下能够起到一定的泄压作用,从而使得系统内制冷剂的流态更加稳定,能够防止气态的制冷剂进入氟泵3内而发生“汽蚀”的问题。
本申请实施例通过设置第三旁通支路13,能够使得氟泵3的制冷剂入口侧无需设置额外的电磁阀,从而简化了空调系统的结构,降低了系统的复杂度和控制难度,降低单点故障风险,提高系统运行的可靠性。
此外,本申请通过用在第一旁通支路11、第二旁通支路12以及压缩机1的出口侧设置具有单向导通能力的单向阀,而不是设置电磁阀,由于单向阀结构简单,无需电控,从而相比于电磁阀具有更加稳定可靠的使用性能,能够降低单点故障风险,提高系统运行的可靠性。同时,本申请实施例提供的空调系统,仅需要控制压缩机1和氟泵3的启停即可对空调系统的工作模式进行切换,单向阀无需电控,由此也降低了空调系统控制的复杂度。
可选地,压缩机1可以为变频压缩机,从而能够节约制冷成本。
可选地,氟泵3可以为变频氟泵,从而能够节约制冷成本。
可选地,氟泵3可以为衬氟离心泵、衬氟磁力泵、衬氟自吸泵等中的任意一种。
可选地,冷凝器2和蒸发器5为盘管式换热器。该盘管式换热器上可以设置散热翅片以提高换热效率。
可选地,冷凝器2上设置有冷凝风机,蒸发器5上设置有蒸发风机,从而能够通过强制对流来增强换热效果。
可选地,该蒸发风机和/或冷凝风机可以为EC风机,从而可以提高风机的调速性能以及具有更高的运行可靠性。
在本申请实施例中,节流元件4可以为电子膨胀阀。
具体地,本申请实施例在循环回路中设置的节流元件为电子膨胀阀4,相对于热力膨胀阀、毛细管等其他节流装置,电子膨胀阀4具有更高的调节能力和调节精度,能够对压缩机1的吸气过热度进行更好的控制,从而能够防止压缩机1因为吸入液态的冷媒从而发生“液击”的问题。
在该基础之上,压缩机1的制冷剂入口侧无需设置额外的电磁阀(以及气液分离器),从而进一步简化了空调系统的结构,降低了系统的复杂度和控制难度,降低单点故障风险, 提高系统运行的可靠性。
进一步地,在本申请实施例中,该空调系统还包括控制器(图中未示出),该控制器分别与电子膨胀阀4、冷凝风机电连接,控制器通过控制电子膨胀阀4的开度以及控制冷凝风机的转速,以对压缩机1的进口过热度和冷凝器2的出口过冷度进行控制。
具体地,本申请实施例提供的空调系统,可以通过控制器(例如控制电路板)对电子膨胀阀4的开度以及冷凝风机的转速进行调节,进而可以对压缩机1的进口过热度和冷凝器2的出口过冷度进行控制,防止氟泵和压缩机分别发生“汽蚀”和“液击”的问题。例如,可以通过调节电子膨胀阀4的开度以及冷凝风机的转速,使得压缩机进口过热度控制在6-8℃之内,预防液态制冷剂进入压缩机2内;使得冷凝器2的出口过冷度控制在6-8℃之内,保证液态制冷剂进入氟泵3内,防止发生汽蚀宕机。
可选地,为了实现闭环控制,在压缩机、冷凝器的两侧可以分别设置温度传感器,该温度传感器可以与控制器电连接,通过温度传感器采集压缩机和冷凝器两侧制冷剂的温度,并且反馈至控制器,控制器根据接收到的温度数据执行相应的操作。例如,增大或者减小电子膨胀阀4的开度,增大或者减小冷凝风机的转速。
可选地,为了防止在断电等特殊情况下液态制冷剂进入压缩机1内,从而提高系统运行的可靠性,本申请实施例提供的空调系统的控制器上还设置有备电电容,该控制器与电子膨胀阀4电连接,从而在空调系统突然断电或其他保护停机等特殊情况下,该备电电容能够给电子膨胀阀4进行供电,使得电子膨胀阀4能够在断电时自动关闭,起到电磁阀的作用,防止液态的制冷剂进入压缩机1内。
本申请实施例提供的压缩机和氟泵复合空调系统能够充分利用室外的自然冷源,在室外温度低于室内温度时,可以通过氟泵制冷系统对机房进行制冷,从而能够达到节能的目的。
通过控制压缩机1和氟泵3的启停,本申请实施例提供的压缩机和氟泵复合空调系统具有压缩机制冷模式、氟泵制冷模式以及混合制冷模式共三种工作模式。图2是本申请实施例提供的空调系统处于压缩机制冷模式下的结构示意图。图3是本申请实施例提供的空调系统处于氟泵制冷模式下的结构示意图。图4是本申请实施例提供的空调系统处于混合制冷模式下的结构示意图。下面结合附图2-4,分别对以上三种工作模式作进一步说明。
(1)压缩机制冷模式
当室外环境温度较高(例如处于夏季)时,空调系统可以使用压缩机制冷模式对机房进行制冷。此时,可以控制压缩机1运行,并且控制氟泵3停机,电子膨胀阀4根据吸气过热度调节开度。图2是压缩机和氟泵复合空调系统处于压缩机制冷模式下的结构示意图,如图2所示,制冷剂从压缩机1流出后,依次通过回路单向阀6、冷凝器2、第二单向阀8、电子膨胀阀4、蒸发器5之后回到压缩机1内完成整个制冷循环。
具体地,压缩机1将从蒸发器5循环过来的制冷剂进行高度压缩,将气态的制冷剂压缩为高温高压的状态并送到冷凝器2中,进行散热后成为中温高压的液态制冷剂。而该液态制冷剂又可通过电子膨胀阀4进行进一步进行降压、降温,变成低压低温的气液混合状态,然后进入蒸发器5中,气液两相的制冷剂在蒸发器5内汽化,制冷剂从液态到气态的相变过程吸收大量的热量,实现对机房内环境的制冷。从蒸发器5出来的制冷剂变成了过热的气态,然后气态的制冷剂回到压缩机1继续循环。
(2)氟泵制冷模式
当室外环境温度较低(例如处于冬季)时,空调系统可以使用氟泵制冷模式对机房进行制冷,从而可以充分利用室外的冷源。此时,可以控制压缩机1停机,氟泵3运行,电子膨胀阀4可以保持全开状态。图3是压缩机和氟泵复合空调系统处于氟泵制冷模式下的结构示意图。如图3所示,制冷剂从氟泵3流出后,依次通过电子膨胀阀4、蒸发器5、第一单向阀7、冷凝器2、储液罐9(第三旁通支路13)之后回到氟泵3完成整个制冷循环。
具体地,在氟泵3的作用下,较低温度的制冷剂流经蒸发器5,在蒸发器5内吸收机房内的热量,实现对机房内环境的制冷效果,之后因为吸热而温度升高的制冷剂流经设置于机房外部的冷凝器2,由于机房外部的环境温度较低,而冷凝器2内制冷剂的温度要高于室外环境温度,存在一定的温度梯度,因此可以通过冷凝器2将吸收的热量散发到机房外部的环境中,而温度降低的制冷剂可以回到氟泵3中继续循环。使用氟泵3代替压缩机1来为系统循环提供动力,由于氟泵3功率远小于压缩机1的功率,因此具有显著的节能效果。
在氟泵制冷模式下,储液罐9的两侧并联有第三旁通支路13,制冷剂可以同时通过储液罐9和第三旁通支路13流入氟泵3内,本申请通过设置第三旁通支路13,使得系统内制冷剂的流态更加稳定,能够防止气态的制冷剂进入氟泵3内而发生“汽蚀”的问题,相对于现有技术通过在氟泵3的入口侧设置电磁阀来防止在模式切换过程中氟泵3发生“汽蚀”的问题,本申请提供的空调系统简化了系统的结构,降低单点故障风险,提高了系统运行的可靠性。
图5是本申请提供的压缩机和氟泵复合空调系统的另一例的结构示意图。可选地,如图5所示,在其他实施例中,在第三旁通支路13上设置有第三单向阀15,从而可以对整个制冷剂的循环系统进行更加可靠的控制,可以保证在氟泵3的启动以及运行模式切换过程中氟泵3吸入的为液态制冷剂,而不是气态制冷剂,从而能够进一步防止氟泵3发生“汽蚀”的问题。
如图1、3所示,为了节约管路成本,在本申请实施例中,第三旁通支路13的第一端可以通过第二旁通支路12的前端部分与冷凝器2和储液罐9之间的管路“间接”连接。具体地,第三旁通支路13的第一端可以与第二旁通支路12的第一端与第二单向阀8之间的管路相连接,制冷剂可以通过第二旁通支路12的前端部分之后流入第三旁通支路13内。
图6是本申请提供的压缩机和氟泵复合空调系统的再一例的结构示意图。可选地,如图6所示,在其他实施例中,第三旁通支路13也可以“直接”与冷凝器2和储液罐9之间的管路连接,此时第三旁通支路13与第二旁通支路12相互独立设置,本申请对此不做限定。
(3)混合制冷模式
当室外环境温度适中(例如处于春季或者秋季)时,空调系统可以使用混合制冷模式对机房进行制冷,此时,可以控制压缩机1运行,并且控制氟泵3运行,电子膨胀阀4根据吸气过热度调节开度。图4是压缩机和氟泵复合空调系统处于混合制冷模式下的结构示意图,如图4所示,制冷剂从压缩机1流出后,依次通过回路单向阀6、冷凝器2、储液罐9(第三旁通支路13)、氟泵3、电子膨胀阀4、蒸发器5之后回到压缩机1内完成整 个制冷循环。
在混合制冷模式下,压缩机1和氟泵3同时工作,部分利用室外自然冷源,降低压缩机1的能耗,具有一定的节能效果。
综上所述,根据本申请实施例提供的空调系统,不需要额外设置过多的电磁阀来防止氟泵和压缩机在模式切换等过程中发生“汽蚀”或者“液击”的问题,从而简化了系统的结构,降低单点故障风险,提高了系统运行的可靠性。
本申请实施例提供的空调系统共有压缩机制冷模式、氟泵制冷模式以及混合制冷模式共三种运行模式,空调系统能够根据室外温度的不同选择不同的运行模式对机房进行制冷,从而能够充分利用室外的自然冷源,节约制冷的成本。
可选地,为了实现自动化控制,可以通过控制器来对上述不同工作模式执行切换控制。具体地,压缩机1、氟泵3分别与控制器电连接,以使控制器能够根据室外温度控制压缩机1、氟泵3的启停,从而实现不同工作模式的转换。本申请实施例提供的空调系统,仅需要控制压缩机1和氟泵3的启停即可对空调系统的工作模式进行切换,单向阀无需电控,由此也降低了空调系统控制的复杂度。
可选地,空调系统还包括设置于室外的温度传感器,该温度传感器与控制器电连接,能够获取室外的环境温度并且上报给控制器,控制器能够根据室外的环境温度决定空调系统切换至哪一种工作模式进行工作。
可选地,如图1-6所示,空调系统的循环回路上还设置有至少一个干燥过滤器10,干燥过滤器10能够对制冷剂中的水分以及杂质进行吸收,从而防止空调系统在运行过程中产生“脏堵”或者“冰堵”等问题,提高空调系统运行的可靠性。
可选地,如图1-6所示,空调系统的循环回路上还设置有视液镜14,该视液镜14的设置,能够帮助检修人员了解循环管路中制冷剂的品质和含水量等信息,提高检修的效率。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以所述权利要求的保护范围为准。

Claims (11)

  1. 一种压缩机和氟泵复合空调系统,其特征在于,所述空调系统包括通过管路依次连接并形成封闭回路的压缩机、冷凝器、氟泵、节流元件和蒸发器;
    所述压缩机和所述冷凝器之间的管路上设置有回路单向阀,所述冷凝器和所述氟泵之间的管路上设置有储液罐;
    所述空调系统还包括第一旁通支路,所述第一旁通支路的第一端与所述蒸发器和压缩机所述之间的管路连接,所述第一旁通支路的第二端与所述回路单向阀和所述冷凝器之间的管路连接,所述第一旁通支路上设置有第一单向阀;
    所述空调系统还包括第二旁通支路,所述第二旁通支路的第一端与所述冷凝器和所述储液罐之间的管路连接,所述第二旁通支路的第二端与所述氟泵和所述节流元件之间的管路连接,所述第二旁通支路上设置有第二单向阀;
    所述空调系统还包括第三旁通支路,所述第三旁通支路的第一端与所述冷凝器和所述储液罐之间的管路连接,所述第三旁通支路的第二端与所述储液罐和所述氟泵之间的管路连接。
  2. 根据权利要求1所述的空调系统,其特征在于,所述节流元件为电子膨胀阀。
  3. 根据权利要求2所述的空调系统,其特征在于,还包括控制器,所述控制器分别与所述电子膨胀阀、所述冷凝器上设置的冷凝风机电连接,所述控制器通过控制所述电子膨胀阀的开度以及控制所述冷凝风机的转速,以对所述压缩机的进口过热度和所述冷凝器的出口过冷度进行控制。
  4. 根据权利要求3所述的空调系统,其特征在于,所述压缩机、氟泵分别与所述控制器电连接,以使所述控制器能够根据室外温度控制所述压缩机和所述氟泵的启停,进而对所述空调系统的工作模式进行切换。
  5. 根据权利要求3或4所述的空调系统,其特征在于,所述控制器上设置有备电电容。
  6. 根据权利要求1-5中任一项所述的空调系统,其特征在于,所述第三旁通支路上设置有第三单向阀。
  7. 根据权利要求1-6中任一项所述的空调系统,其特征在于,所述封闭回路上还设置有至少一个干燥过滤器。
  8. 根据权利要求1-7中任一项所述的空调系统,其特征在于,所述氟泵与所述节流元件之间的管路上设置有视液镜。
  9. 根据权利要求1-8中任一项所述的空调系统,其特征在于,所述压缩机为变频压缩机。
  10. 根据权利要求1-9中任一项所述的空调系统,其特征在于,所述氟泵为变频氟泵。
  11. 根据权利要求1-10中任一项所述的空调系统,其特征在于,所述冷凝器和蒸发器为盘管式换热器。
PCT/CN2020/121340 2019-12-13 2020-10-16 压缩机和氟泵复合空调系统 WO2021114862A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201911279899.4A CN111043781A (zh) 2019-12-13 2019-12-13 压缩机和氟泵复合空调系统
CN201911279899.4 2019-12-13

Publications (1)

Publication Number Publication Date
WO2021114862A1 true WO2021114862A1 (zh) 2021-06-17

Family

ID=70235977

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/121340 WO2021114862A1 (zh) 2019-12-13 2020-10-16 压缩机和氟泵复合空调系统

Country Status (2)

Country Link
CN (1) CN111043781A (zh)
WO (1) WO2021114862A1 (zh)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114941914A (zh) * 2022-04-28 2022-08-26 青岛海尔空调电子有限公司 复叠式热泵系统的控制方法
CN114941913A (zh) * 2022-04-28 2022-08-26 青岛海尔空调电子有限公司 复叠式热泵系统
CN115264978A (zh) * 2022-07-06 2022-11-01 中国电信股份有限公司 一种双制冷联合氟泵循环制冷系统及其控制方法
CN115789911A (zh) * 2022-11-17 2023-03-14 中国联合网络通信集团有限公司 一种空调控制方法、装置、电子设备及存储介质
CN116147217A (zh) * 2023-04-03 2023-05-23 西安交通大学 一种用于数据中心冷却的喷射器-液泵复合增效的制冷循环系统

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111043781A (zh) * 2019-12-13 2020-04-21 华为技术有限公司 压缩机和氟泵复合空调系统
CN112378037B (zh) * 2020-11-13 2022-03-18 青岛海信电子设备股份有限公司 一种风冷氟泵空调系统及其控制方法
CN112413941B (zh) * 2020-11-24 2024-07-09 珠海格力电器股份有限公司 液泵系统、空调系统及液泵系统的控制方法
CN112413942A (zh) * 2020-11-24 2021-02-26 珠海格力电器股份有限公司 空调系统及空调系统的控制方法
CN112682910B (zh) * 2020-12-08 2021-11-23 珠海格力电器股份有限公司 一种切换双动力冷却系统的运行模式的方法及系统
CN113932467A (zh) * 2021-11-18 2022-01-14 阿尔西制冷工程技术(北京)有限公司 制冷系统及其控制方法
CN114992891B (zh) * 2022-05-25 2024-08-09 青岛海尔空调电子有限公司 复叠式热泵系统
CN114992892B (zh) * 2022-05-25 2024-07-09 青岛海尔空调电子有限公司 复叠式热泵系统及其控制方法
CN114992890B (zh) * 2022-05-25 2024-08-09 青岛海尔空调电子有限公司 复叠式热泵系统
CN115377778B (zh) * 2022-10-24 2023-02-07 中国航天三江集团有限公司 基于两相流体的光纤激光器热控装置及方法
CN115899885A (zh) * 2022-11-11 2023-04-04 珠海格力电器股份有限公司 氟泵空调系统及其控制方法
CN116951800B (zh) * 2023-09-15 2024-01-02 广东美的暖通设备有限公司 控制方法、控制装置、双循环制冷系统及存储介质
CN116928902A (zh) * 2023-09-15 2023-10-24 广东美的暖通设备有限公司 双循环制冷系统及其防断流供液装置

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08313082A (ja) * 1995-05-17 1996-11-29 Daikin Ind Ltd 冷凍装置
CN206556168U (zh) * 2017-01-24 2017-10-13 徐生恒 高效节能空气能双机热泵空调系统
CN107830666A (zh) * 2017-11-29 2018-03-23 郑州云海信息技术有限公司 一种制冷系统及空调系统
CN207230986U (zh) * 2017-08-30 2018-04-13 杭州卓邦环境设备有限公司 一种机房空调系统
CN108362029A (zh) * 2018-02-06 2018-08-03 西安交通大学 一种气液分离器辅助式空调器系统及其控制方法
CN108613430A (zh) * 2018-04-26 2018-10-02 广东海悟科技有限公司 一种压缩机与氟泵循环制冷系统
CN111043781A (zh) * 2019-12-13 2020-04-21 华为技术有限公司 压缩机和氟泵复合空调系统

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105928064B (zh) * 2016-04-29 2018-11-20 广东美的暖通设备有限公司 多联机系统及其过冷回路的阀体控制方法
CN206113173U (zh) * 2016-07-06 2017-04-19 广东海悟科技有限公司 一种动力式热管空调一体机
CN206281102U (zh) * 2016-11-14 2017-06-27 南京五洲制冷集团有限公司 交变季节用双蒸发式制冷循环的节能型机柜空调
CN208108560U (zh) * 2018-04-26 2018-11-16 广东海悟科技有限公司 一种氟泵的管路系统
CN209744618U (zh) * 2019-04-02 2019-12-06 广东海悟科技有限公司 一种机房空调的节能改造系统

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08313082A (ja) * 1995-05-17 1996-11-29 Daikin Ind Ltd 冷凍装置
CN206556168U (zh) * 2017-01-24 2017-10-13 徐生恒 高效节能空气能双机热泵空调系统
CN207230986U (zh) * 2017-08-30 2018-04-13 杭州卓邦环境设备有限公司 一种机房空调系统
CN107830666A (zh) * 2017-11-29 2018-03-23 郑州云海信息技术有限公司 一种制冷系统及空调系统
CN108362029A (zh) * 2018-02-06 2018-08-03 西安交通大学 一种气液分离器辅助式空调器系统及其控制方法
CN108613430A (zh) * 2018-04-26 2018-10-02 广东海悟科技有限公司 一种压缩机与氟泵循环制冷系统
CN111043781A (zh) * 2019-12-13 2020-04-21 华为技术有限公司 压缩机和氟泵复合空调系统

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114941914A (zh) * 2022-04-28 2022-08-26 青岛海尔空调电子有限公司 复叠式热泵系统的控制方法
CN114941913A (zh) * 2022-04-28 2022-08-26 青岛海尔空调电子有限公司 复叠式热泵系统
CN115264978A (zh) * 2022-07-06 2022-11-01 中国电信股份有限公司 一种双制冷联合氟泵循环制冷系统及其控制方法
CN115789911A (zh) * 2022-11-17 2023-03-14 中国联合网络通信集团有限公司 一种空调控制方法、装置、电子设备及存储介质
CN115789911B (zh) * 2022-11-17 2024-05-03 中国联合网络通信集团有限公司 一种空调控制方法、装置、电子设备及存储介质
CN116147217A (zh) * 2023-04-03 2023-05-23 西安交通大学 一种用于数据中心冷却的喷射器-液泵复合增效的制冷循环系统
CN116147217B (zh) * 2023-04-03 2024-03-12 西安交通大学 一种用于数据中心冷却的喷射器-液泵复合增效的制冷循环系统

Also Published As

Publication number Publication date
CN111043781A (zh) 2020-04-21

Similar Documents

Publication Publication Date Title
WO2021114862A1 (zh) 压缩机和氟泵复合空调系统
CN200996753Y (zh) 带经济器的中间补气压缩机制冷系统
JP4018443B2 (ja) 寒冷地対応サーモサイホンチラー冷凍機
WO2016058280A1 (zh) 一种复合式制冷多联空调系统及其控制方法
CN103175276A (zh) 一种风冷直流变频磁悬浮自然冷源冷水机组
CN107906640B (zh) 一种用于数据中心的集成蓄冷空调系统及其控制方法
EP4033179A1 (en) Non-stop defrosting multi-connected hot water system and control method thereof
CN112268376A (zh) 一种氟泵型热管与喷射制冷循环复合系统及其控制方法
CN103344016A (zh) 一种机房节能空调
CN101943449A (zh) 一种双循环式机房节能空调
CN110762875A (zh) 一种大温差变组分浓度自复叠热泵机组
CN203442994U (zh) 一种热管空调一体机
CN210861760U (zh) 一种自然冷却制冷系统
CN219083278U (zh) 氟冷三集一体变频除湿机
CN208901537U (zh) 一种精确供液式热管一体机空调系统
CN209622999U (zh) 一种双冷源热管背板空调多联机组
CN215073552U (zh) 一种紧凑型功率器件散热系统
CN115103579A (zh) 一种基于液冷机柜的压缩机与氟泵系统
CN213687346U (zh) 一种蒸发冷热泵机组
CN214746165U (zh) 机组冷媒散热系统、机组和空调系统
CN114198872B (zh) 一种机房空调、机房空调的运行控制方法及装置
CN210089184U (zh) 一种增焓型冷热全能效回收热泵
US20220252317A1 (en) A heat pump
CN112954969A (zh) 一种紧凑型功率器件散热系统及工作方法
CN108870818B (zh) 一种水汽能热泵系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20900281

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20900281

Country of ref document: EP

Kind code of ref document: A1