WO2021066361A2 - 3d 프린팅을 이용한 다공성 고분자 인공 지지체 및 이의 제조방법 - Google Patents

3d 프린팅을 이용한 다공성 고분자 인공 지지체 및 이의 제조방법 Download PDF

Info

Publication number
WO2021066361A2
WO2021066361A2 PCT/KR2020/012566 KR2020012566W WO2021066361A2 WO 2021066361 A2 WO2021066361 A2 WO 2021066361A2 KR 2020012566 W KR2020012566 W KR 2020012566W WO 2021066361 A2 WO2021066361 A2 WO 2021066361A2
Authority
WO
WIPO (PCT)
Prior art keywords
printing
deciduous
porous polymer
cells
scaffold
Prior art date
Application number
PCT/KR2020/012566
Other languages
English (en)
French (fr)
Other versions
WO2021066361A3 (ko
Inventor
오세행
김민지
김호용
노하연
박수아
변준호
이진호
Original Assignee
단국대학교 천안캠퍼스 산학협력단
한국기계연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 단국대학교 천안캠퍼스 산학협력단, 한국기계연구원 filed Critical 단국대학교 천안캠퍼스 산학협력단
Publication of WO2021066361A2 publication Critical patent/WO2021066361A2/ko
Publication of WO2021066361A3 publication Critical patent/WO2021066361A3/ko

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/50Materials characterised by their function or physical properties, e.g. injectable or lubricating compositions, shape-memory materials, surface modified materials
    • A61L27/56Porous materials, e.g. foams or sponges
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/14Macromolecular materials
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/36Materials for grafts or prostheses or for coating grafts or prostheses containing ingredients of undetermined constitution or reaction products thereof, e.g. transplant tissue, natural bone, extracellular matrix
    • A61L27/38Materials for grafts or prostheses or for coating grafts or prostheses containing ingredients of undetermined constitution or reaction products thereof, e.g. transplant tissue, natural bone, extracellular matrix containing added animal cells
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/36Materials for grafts or prostheses or for coating grafts or prostheses containing ingredients of undetermined constitution or reaction products thereof, e.g. transplant tissue, natural bone, extracellular matrix
    • A61L27/38Materials for grafts or prostheses or for coating grafts or prostheses containing ingredients of undetermined constitution or reaction products thereof, e.g. transplant tissue, natural bone, extracellular matrix containing added animal cells
    • A61L27/3804Materials for grafts or prostheses or for coating grafts or prostheses containing ingredients of undetermined constitution or reaction products thereof, e.g. transplant tissue, natural bone, extracellular matrix containing added animal cells characterised by specific cells or progenitors thereof, e.g. fibroblasts, connective tissue cells, kidney cells
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/50Materials characterised by their function or physical properties, e.g. injectable or lubricating compositions, shape-memory materials, surface modified materials
    • A61L27/54Biologically active materials, e.g. therapeutic substances
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/50Materials characterised by their function or physical properties, e.g. injectable or lubricating compositions, shape-memory materials, surface modified materials
    • A61L27/58Materials at least partially resorbable by the body
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/10Processes of additive manufacturing
    • B29C64/106Processes of additive manufacturing using only liquids or viscous materials, e.g. depositing a continuous bead of viscous material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y10/00Processes of additive manufacturing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y80/00Products made by additive manufacturing
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2300/00Biologically active materials used in bandages, wound dressings, absorbent pads or medical devices
    • A61L2300/60Biologically active materials used in bandages, wound dressings, absorbent pads or medical devices characterised by a special physical form
    • A61L2300/602Type of release, e.g. controlled, sustained, slow
    • A61L2300/604Biodegradation

Definitions

  • the present invention relates to a porous polymer artificial support using 3D printing and a method for manufacturing the same, and in detail, the artificial support manufactured by 3D printing is processed by a simple method to have a porous structure such as that in which fallen leaves are stacked, and the porous structure
  • the present invention relates to a porous polymer artificial scaffold using 3D printing that enables sustained release by loading various cells and physiological activating factors on the substrate, and a method of manufacturing the same.
  • the most attention-grabbing in tissue engineering is an artificial scaffold that can more effectively implement organs similar to human tissues by increasing the efficiency of cell culture, loading physiologically active factors, and enhancing structural performance.
  • Patent Document 1 Korean Patent Registration No. 10-1772861
  • Patent Document 2 Korean Patent Application No. 2017-0071744
  • Non-Patent Document 1 Kim et al, “Release of BMP-2 from Porous Particles with Leaf-stacked Structure for Bone Regeneration” ACS Applied materials & interfaces, 10(25), 21091-21102, (2018
  • the present invention uses 3D printing to provide biofunctionality to artificial scaffolds manufactured by conventional 3D printing to improve material-level functions, as well as attachment and proliferation/differentiation of cells, and loading and release of physiologically active factors.
  • An object thereof is to prepare a porous polymer artificial support using 3D printing in which the prepared artificial support has a porosity of a deciduous laminated structure.
  • another object of the present invention is to provide a method of manufacturing a 3D printed porous polymer artificial scaffold in which an artificial scaffold manufactured using 3D printing has a desired porosity through a very simple treatment process.
  • a further object of the present invention is to provide a polymer artificial scaffold in which cells are attached to a plurality of pores formed in a deciduous laminate structure of the prepared 3D printed polymer artificial scaffold, and a method of manufacturing the same.
  • the present invention is to provide a porous polymer artificial support using 3D printing in which a physiologically active factor is mounted in a plurality of pores formed in a deciduous laminate structure of the prepared porous polymer artificial support, and a method of manufacturing the same.
  • the present invention is used to regenerate any one tissue selected from bone tissue, cartilage tissue, liver tissue, tooth tissue, salivary gland tissue, and parathyroid tissue using the porous polymer artificial scaffold using 3D printing on which the bioactive factor is mounted. Can provide a use.
  • the porous polymer artificial support using 3D printing according to the present invention for achieving the above object has a deciduous layered porous structure on its surface and a depth of 1 to 50% from the surface based on the diameter of the fiber, and the center from the depth Until then, each of the fibers having a non-porous structure may be stacked in a lattice shape.
  • Polymers used for the porous polymer artificial support are polylactic acid (poly(lactic acid)), poly(glycolic acid), polylactic acid-glycolic acid copolymer (poly(lactic acid)) having a molecular weight of 1,000 to 1,000,000 g/mol. (lactic acid-co-glycolic acid)), polycaprolactone copolymer (polycaprolactone), polylactic acid-caprolactone copolymer (poly(lactic acid-co- ⁇ -caprolactone)), polyhydroxybutyric acid-hydroxy Single or two types of biocompatible and biodegradable polymers selected from polyhydroxybutyric acid-co-hydroxyvaleric acid, poly(dioxanone), and poly(phosphoester) It is preferable to use it above.
  • the present invention can provide a 3D printed porous polymer artificial scaffold with cells, characterized in that cells are attached to the deciduous laminated porous structure of the 3D printed porous polymer scaffold.
  • Cells attached to the deciduous laminated porous structure include epithelial cells, fibroblasts, osteoblasts, chondrocytes, cardiomyocytes, myocytes, hepatocytes, human umbilical cord blood cells, mesenchymal stem cells, bone marrow-derived stem cells, periosteum-derived stem cells, and blood vessels. It may be one or two or more selected from the group consisting of endothelial progenitor cells, embryonic stem cells, and induced pluripotent stem cells.
  • the attachment of the cells is performed by dispensing cells in the range of 1x10 3 to 1x10 7 based on a dimension of 4000*4000*4000 ⁇ m in width*length*height of the 3D-printed porous polymer artificial scaffold. It may be to use.
  • the present invention can provide a 3D printed porous polymer artificial scaffold equipped with a physiologically active factor, characterized in that a bioactive factor is mounted on a deciduous laminated porous structure of the 3D printed porous polymer artificial scaffold.
  • the physiologically active factor is at least one peptide/protein selected from the group consisting of cytokines, hormones, insulin, and antibodies; fibroblast growth factors (FGFs), vascular endothelial growth factor (VEGF), nerve growth factor (NGF), brain-derived neurotrophic factor (BDNF), transforming growth factors (TGFs), bone morphogenetic proteins (BMPs), epidermal growth factor (EGF) ), insulin-like growth factor (IGF), and platelet-derived growth factor (PDGF); gene; And it may be any one selected from a vaccine.
  • FGFs fibroblast growth factors
  • VEGF vascular endothelial growth factor
  • NGF nerve growth factor
  • BDNF brain-derived neurotrophic factor
  • TGFs transforming growth factors
  • BMPs bone morphogenetic proteins
  • EGF epidermal growth factor
  • IGF insulin-like growth factor
  • PDGF platelet-derived growth factor
  • the loaded bioactive factor may be characterized in that the sustained release is released from the porous polymer artificial support.
  • the bioactive factor is the surface of each fiber constituting the 3D-printed porous polymer artificial support, and the bioactive factor mounted on the deciduous layered porous structure to a depth of 1 to 50% from the surface passes through the deciduous layered porous structure. When it exits, it may be characterized in that the desorption and adsorption are repeated in the fallen-leaf laminated porous structure, and the sustained-release type is released.
  • the physiologically active factor is released in a sustained release form from the mounted artificial scaffold, and is characterized in accelerating cell differentiation and tissue regeneration.
  • the method of manufacturing a 3D printing porous polymer artificial support comprises the steps of manufacturing a 3D printing polymer artificial support by melting a polymer having biocompatibility and biodegradability and laminating the extruded fibers using a 3D printer.
  • the 3D printing polymer artificial support is heat-treated in a solvent harmless to the human body to dissolve a part of the surface of the fibers, and the heated 3D printing polymer artificial support is cooled so that the dissolved parts of each fiber are stacked and stacked. It characterized in that it comprises the step of converting into a deciduous laminated porous structure such as that there is.
  • the solvents harmless to the human body include tetraglycol, 1-methyl-2-pyrrolidinone (NMP), triacetin, benzyl alcohol, and dimethylaceta.
  • NMP 1-methyl-2-pyrrolidinone
  • triacetin benzyl alcohol
  • dimethylaceta One or a mixture of two or more selected from mate (N,N Dimethyl Acetamide) is preferred.
  • the heat treatment is preferably performed for 1 second to 5 hours at the temperature of the solvent 30 ⁇ 150 °C.
  • the present invention can be used to regenerate any one tissue selected from bone tissue, cartilage tissue, liver tissue, tooth tissue, salivary gland tissue, and parathyroid tissue using the 3D printed porous polymer artificial scaffold loaded with the physiologically active factor.
  • the artificial support manufactured by 3D printing technology is processed in a very simple manner, and the surface of each fiber constituting the artificial support and fallen leaves are stacked to a certain depth. It is possible to manufacture a porous 3D printed artificial scaffold of the structure. In addition, according to the present invention, it is possible to manufacture and apply a fallen leaf layered structure to a 3D printing artificial support having various sizes and shapes in the same manner as the above method.
  • the porous 3D printing artificial scaffold of the deciduous laminate structure according to the present invention greatly increases the porosity of the artificial scaffold material due to the introduced deciduous laminate structure, so that cell adhesion is easy and cell proliferation and differentiation are possible.
  • the unique deciduous laminated structure it is possible to mount a physiologically active factor in a very simple manner without additional surface treatment or chemical treatment, and the loaded physiologically active factor is released in a sustained-release form for a certain period of time above an appropriate concentration. This is possible.
  • the technology for manufacturing a porous 3D printing artificial scaffold of a deciduous laminate structure overcomes the limitations of a conventional artificial scaffold and an artificial scaffold manufactured using 3D printing, and a new concept of an artificial scaffold in various bio fields for tissue regeneration. It can be used very usefully.
  • Example 1 is a diagram showing a manufacturing process of a porous 3D printing artificial scaffold having a deciduous laminate structure of Example 1 of the present invention.
  • Example 2 is a scanning electron micrograph showing the shape and surface of a porous 3D printing artificial support having a deciduous laminate structure of Example 1 of the present invention.
  • FIG. 3 is a scanning electron micrograph showing the shape and surface of a 3D-printed artificial scaffold to which the deciduous laminated structure of the control group 1 was not introduced.
  • FIG. 4 is an SEM cross-sectional photograph comparing the fiber diameters of the porous 3D printed artificial scaffold of Example 1 with the deciduous laminated structure and the 3D printed artificial scaffold to which the deciduous laminated structure of Control 1 was not introduced.
  • FIG. 4 is an SEM cross-sectional photograph comparing the fiber diameters of the porous 3D printed artificial scaffold of Example 1 with the deciduous laminated structure and the 3D printed artificial scaffold to which the deciduous laminated structure of Control 1 was not introduced.
  • 5 to 7 are scanning electrons confirming the structure of the 3D printing artificial scaffold according to Comparative Example 1 manufactured while changing the heat treatment time at 20°C for 1 second (A), 1 minute (B), and 6 hours (C), respectively. This is a micrograph.
  • FIG. 8 is a result of measuring the compressive strength of the 3D printed artificial scaffold prepared according to Example 1 and Control 1.
  • FIG. 9 is a diagram showing a process of dispensing and attaching a cell suspension to a porous 3D printed artificial scaffold of a deciduous laminate structure prepared in Example 1 and Control 1 of the present invention.
  • SEM scanning electron microscopy
  • FIG. 12 is a graph quantifying the survival rate and proliferation rate of cells attached to the surface and inside of the artificial scaffold prepared according to Example 2 and Control 2 through the Cell Counting Kit-8 (CCK-8) assay (**P ⁇ 0.01).
  • FIG. 13 is a graph showing the release behavior (cumulative) of BMP-2 from a porous 3D printed artificial scaffold having a deciduous laminated structure equipped with each bioactive factor prepared according to Example 3 and Control 3;
  • the present invention relates to a porous polymer artificial scaffold using 3D printing and a method for manufacturing the same, a porous polymer artificial scaffold in which cells and various physiological activating factors are attached to the porous polymer artificial scaffold, and to use the same for various purposes.
  • the porous polymer artificial support using 3D printing according to the present invention has a surface of the fiber based on the diameter of the fiber, and a deciduous layered porous structure from the surface to a depth of 1 to 50%, and a non-porous structure from the depth to the center.
  • Each of the fibers may be stacked in a lattice shape.
  • the present invention manufactures an artificial support by using a 3D printing technique, and each fiber constituting the artificial support by simply processing the artificial support is a deciduous laminated structure in which a plurality of pores are included only to the surface and a certain depth. To have.
  • the meaning of'a large number of pores are included only to a certain depth and the surface of the artificial support' means that it has a deciduous layered porous structure to a depth of 1 to 50% from the surface and the surface of the fiber based on the diameter of the fiber. .
  • the fiber has a non-porous structure from a certain depth having the porous structure to the center of the fiber based on the diameter of the fiber.
  • the present invention is characterized in that the porous structure is adjusted in the final manufactured artificial support so that the physical properties of the 3D artificial support can be maintained while having appropriate porosity.
  • the depth may be adjusted and used according to a desired use, and it may be apparent to those skilled in the art that as the depth having a porous structure increases, it has a structure that is advantageous for attaching cells or physiologically active factors in the future.
  • Materials used for the artificial support of the present invention are polylactic acid having a molecular weight of 1,000 to 1,000,000 g/mol, poly(glycolic acid), polylactic acid-glycolic acid copolymer ( poly(lactic acid-co-glycolic acid)), polycaprolactone copolymer (polycaprolactone), polylactic acid-caprolactone copolymer (poly(lactic acid-co- ⁇ -caprolactone)), polyhydroxybutyric acid-hydroxyl
  • the method of manufacturing a porous polymer artificial scaffold using 3D printing by imparting porosity to the artificial scaffold is a 3D printing polymer artificial scaffold by melting a polymer having biocompatibility and biodegradability and laminating the extruded fibers using a 3D printer.
  • the first step is to melt a biocompatible and biodegradable polymer, and laminate the extruded fibers using a 3D printer to prepare a 3D printed polymer artificial scaffold.
  • the standard of the 3D printing polymer artificial support can be manufactured by stacking (stacking) the extruded fibers in a grid shape to a certain height, and the size can be appropriately adjusted according to a predetermined use.
  • the second step is a process of dissolving a portion of the surface of the fibers by heat-treating the prepared 3D printing polymer artificial support in a solvent harmless to the human body.
  • the “part of the surface of the fibers” may mean the surface of the fiber and a depth of 1 to 50% from the surface of the fiber.
  • the heat treatment process is a process of dissolving the fibers constituting the artificial support to a partial depth and surface, and is preferably performed for 1 second to 5 hours at a solvent temperature of 30 to 150°C.
  • the heat treatment temperature is less than 30°C, the biocompatible and biodegradable polymer used in the manufacture of the artificial scaffold in the present invention may not be dissolved, and when it exceeds 150°C, the biocompatibility and biodegradability used in the production may be It is not preferable because there may be a problem that all of the polymers are dissolved.
  • the heat treatment time in order to dissolve to an appropriate depth, it is preferable to perform the heat treatment time appropriately within the range of 1 second to 5 hours.
  • the solvents harmless to the human body include tetraglycol, 1-methyl-2-pyrrolidinone (NMP), triacetin, benzyl alcohol, and dimethylaceta.
  • NMP 1-methyl-2-pyrrolidinone
  • triacetin benzyl alcohol
  • dimethylaceta dimethylaceta.
  • One or a mixture of two or more selected from mate N,N Dimethyl Acetamide may be preferably used.
  • the heat-treated 3D printing polymer artificial support is cooled, and the dissolved portions of each of the fibers are transformed into a deciduous layered porous structure such as a number of deciduous leaves stacked on top of each other.
  • Patent Document 1 Korean Patent Registration No. 10-1772861
  • the biocompatible and biodegradable polymer is dissolved in a solvent harmless to the human body, and then the entire surface and interior are It was possible to prepare polymer microparticles having a deciduous laminated structure including a plurality of pores throughout.
  • the artificial support prepared by 3D printing the biocompatible and biodegradable polymer is used, in order to secure the physical properties of the artificial support and to secure long-term durability, the surface from microparticles as in Patent Document 1 And it is characterized in that the porous structure formed throughout the interior is formed only on the surface of the artificial support.
  • an artificial support is prepared by 3D printing using a biocompatible and biodegradable polymer, immersed in each solvent capable of dissolving the polymer, and then the temperature of each solvent is temporarily increased and then cooled again.
  • the temperature of the solvent means a temperature at which each polymer can be dissolved, and when the temperature of the solvent is temporarily increased, only a portion of the fibers constituting the artificial support is dissolved in the solvent to a predetermined depth, and the solvent When the temperature is lowered again to cool it, the outer surface of the melted fiber is changed to a porous structure such as that in which a plurality of fallen leaves as in Patent Document 1 are stacked only to a certain depth.
  • the cooling process may be performed at room temperature, and may be appropriately adjusted according to the solvent and temperature used.
  • the porous 3D-printing artificial support having a deciduous layered structure according to the present invention can introduce a deciduous layered porous structure to the material extruded by 3D printing only by a separate simple heat treatment process.
  • the porous polymer artificial support using 3D printing according to the present invention thus prepared has a deciduous laminated porous structure only on its surface and a certain depth, and thus has the effect of attaching various components without additional surface treatment or additives.
  • a porous polymer artificial scaffold using 3D printing of a cell-attached structure characterized in that cells are attached to a deciduous laminated porous structure of a porous polymer artificial scaffold using the prepared 3D printing.
  • Cells capable of attaching to the deciduous laminate structure include epithelial cells, fibroblasts, osteoblasts, chondrocytes, cardiomyocytes, myocytes, hepatocytes, human umbilical cord blood cells, mesenchymal stem cells, bone marrow-derived stem cells, periosteum-derived stem cells, vascular endothelium.
  • One or two or more selected from the group consisting of progenitor cells, embryonic stem cells, and induced pluripotent stem cells may be used, and the degree of adhesion of various other cells for a predetermined effect is not limited thereto. The possibility is obvious to those skilled in the art.
  • the attachment method of the cells listed above can be used by dispensing cells in the range of 1x10 3 to 1x10 7 based on a standard of 4000 * 4000 * 4000 ⁇ m in width * length * height of the porous polymer artificial scaffold using the 3D printing.
  • the size of the artificial support can be adjusted according to the use of the product.
  • porous polymer artificial scaffold using 3D printing prepared as in the present invention can effectively attach cells due to the porous structure of a unique deciduous laminate formed to a certain depth with the surface thereof.
  • the attached cells are proliferated on an artificial scaffold of a porous structure, and are released from this in a sustained sustained release for a long period of time, and have the effect of being differentiated so that they can continuously perform the roles of the cells, so that various cell carrier roles are possible. .
  • the present invention is a porous polymer artificial support using 3D printing with a bioactive factor, characterized in that a bioactive factor is mounted on a plurality of pores formed in the deciduous laminated porous structure of the porous polymer artificial support using 3D printing. Can provide.
  • the physiologically active factor is at least one peptide/protein selected from the group consisting of cytokines, hormones, insulin, and antibodies; fibroblast growth factors (FGFs), vascular endothelial growth factor (VEGF), nerve growth factor (NGF), brain-derived neurotrophic factor (BDNF), transforming growth factors (TGFs), bone morphogenetic proteins (BMPs), epidermal growth factor (EGF) ), insulin-like growth factor (IGF), and platelet-derived growth factor (PDGF); gene; And it may be any one selected from a vaccine.
  • FGFs fibroblast growth factors
  • VEGF vascular endothelial growth factor
  • NGF nerve growth factor
  • BDNF brain-derived neurotrophic factor
  • TGFs transforming growth factors
  • BMPs bone morphogenetic proteins
  • EGF epidermal growth factor
  • IGF insulin-like growth factor
  • PDGF platelet-derived growth factor
  • physiologically active factor can be carried out in the same manner as in conventional polymer microparticles,
  • a simple adsorption method of a physiologically active factor in a physiologically active factor solution may be used, but is not limited thereto.
  • the bioactive factor has a characteristic of sustained release from the porous polymer artificial support prepared by the 3D printing.
  • Bioactive factor mounted on the surface of the porous 3D printing artificial support of the deciduous laminated structure and the pores formed to a certain depth through the porous structure in which a plurality of fallen leaves are stacked.
  • the printing is made while desorption/adsorption is repeated in the porous structure.
  • the physiologically active factor is released in a sustained release form from the mounted artificial scaffold, and has an effect of promoting the differentiation and regeneration of cells in the damaged area.
  • porous polymer artificial scaffold using 3D printing equipped with the bioactive factor according to the present invention can be used for regeneration of any one tissue selected from bone tissue, cartilage tissue, liver tissue, tooth tissue, salivary gland tissue, and parathyroid tissue. I can.
  • porous 3D printing artificial scaffold of the deciduous laminate structure according to the present invention can be applied to various fields such as tissue engineering, regenerative medicine, diagnostic medicine, drug screening, and substitute for animal testing.
  • Example 1 Preparation of a porous 3D printing artificial scaffold with a deciduous laminated structure
  • PCL Polycaprolactone
  • tetraglycol a solvent
  • tetraglycol a solvent
  • Heat treatment was performed for 1 minute by putting the prepared artificial support into the solvent so that the support is completely immersed.
  • the artificial support was taken out of tetraglycol, placed on a glass Petri dish, and cooled at room temperature for 10 minutes.
  • the cooled artificial support was immersed in and removed from new tetraglycol at room temperature to wash the remaining polycaprolactone solution between the deciduous laminated porous structures on the surface of the artificial support. Thereafter, an excess of distilled water was added to completely wash off the remaining tetraglycol.
  • the artificial scaffold was lyophilized to prepare a porous 3D printed artificial scaffold having a deciduous laminate structure (refer to the schematic diagram of the manufacturing process in FIG. 1).
  • Control 1 Preparation of 3D printing artificial scaffold without introducing a porous structure
  • PCL Polycaprolactone
  • Comparative Examples 1 to 2 Preparation of 3D printing artificial scaffold for introducing various porous structures
  • the 3D printing artificial support In order to introduce the porosity of various structures to the 3D printing artificial support, it was manufactured under conditions outside the range of the aforementioned manufacturing conditions.
  • the specifications of the 3D printing artificial support were the same as before, and the manufactured temperature conditions were carried out at 20°C and 160°C outside the existing heat treatment temperature 30 ⁇ 150°C, and the heat treatment time conditions were 1 second, 1 minute, and the existing 1 second. It proceeded to 6 hours out of ⁇ 5 hours.
  • Other manufacturing conditions and manufacturing methods were carried out in the same manner as in Example 1.
  • a plurality of deciduous laminated porous structures are formed on the surface (a) of the fibers constituting the artificial support.
  • a deciduous laminated porous structure is formed up to a certain depth (50 ⁇ m of the total fiber diameter) with the outer outer surface, and the depth It can be seen that it is made of a smooth non-porous (dense) structure from to the inside of the fiber.
  • the surface (a) is smooth and the cross-section (b) of the fiber and the enlarged photo thereof are circular. A smooth structure without porosity could be observed.
  • porous 3D-printed artificial scaffold having a deciduous layer structure formed a deciduous layer structure on the entire surface of the scaffold, and as a result, it was confirmed that the diameter of the entire fiber was increased when compared with the SEM image of the control group 1 without introducing the deciduous layer structure. (See Fig. 4)
  • FIG. 5 is the result of Comparative Example 1 prepared by heat treatment at 20° C. for 1 second, 1 minute, and 6 hours, respectively, even if sufficient heat was not transferred to the 3D printing artificial support, the heat treatment time increased accordingly. No porous structure was formed on the 3D printing artificial support, and when looking at the enlarged photo, it was also possible to observe a smooth structure with no porosity on the surface of the fiber. That is, it was confirmed that it had a structure similar to that of the control group 1.
  • the dry and wet compressive strengths of each artificial scaffold were observed through a compressive strength tester, and the results are shown in FIG. 8, respectively.
  • the dried support was put into a syringe with PBS at 37°C, and positive and negative pressures were applied once. Then, it was fixed by applying positive pressure with a woodworking clamp and stored for 24 hours at 37°C. After 24 hours, only excess moisture on the surface of the support was absorbed using a towel, and the compressive strength was measured. Compressive strength was measured using a compressive strength tester, and the measurement conditions were measured using a 3kN load cell and a cross-head speed of 1 mm/min.
  • the load (N) value according to the stroke (mm) was obtained. Based on this data, a stress/strain curve was drawn to compare the physical properties of each experimental group. In the strain (%) part, the stroke (mm) value was divided by 4mm, which is the height of the support, and then converted into a percentage, and in the stress (MPa) part, the load (N) value was divided by the area of the support body by 16mm 2.
  • Example 2 Cell adhesion to a porous 3D printing artificial scaffold of a deciduous laminated structure
  • PBS or a medium was mounted inside the porous 3D-printed artificial scaffold with a deciduous-layered structure to have hydrophilicity on the surface of the porous 3D-printed artificial scaffold with a deciduous-laminated structure and allowed to sink inside the medium during cell culture.
  • Control 2 Cell adhesion to 3D printing artificial scaffold
  • Example 2 Cells were attached and compared in the same manner as in Example 2 using a 3D-printed artificial scaffold to which the deciduous laminated structure prepared according to Control 1 was not introduced.
  • the 3D-printed artificial scaffold without the introduction of the deciduous laminate structure (FIG. 11) has a smooth surface similar to that before attaching the cells, and when enlarged, almost no cells adhere to the surface of the fibers, and the cells are located in the gap between the fibers. It was confirmed that a small amount was attached.
  • Example 2 the survival rate and proliferation rate of the cells attached to the artificial scaffold were quantified by performing the Cell Counting Kit-8 (CCK-8) assay, and the results are shown in FIG. 12 below.
  • CCK-8 Cell Counting Kit-8
  • Example 3 Mounting of physiologically active factors on a porous 3D printing artificial scaffold of a deciduous laminated structure
  • BMP-2 bone morphogenetic protein-2
  • Control 3 Physiologically active factor mounted on 3D printing artificial scaffold
  • the loading amount of the physiologically active factor is about 3 times higher due to porosity in the porous 3D printing artificial support (Example 3) of the deciduous layered structure than the 3D printing artificial support (control 3) without the introduction of the deciduous layered structure. It was confirmed that approximately more physiologically active factors were loaded. In the case of the release behavior, it was confirmed that an effective concentration of physiologically active factors for differentiation of cells into bone cells and formation of new bones was released in a sustained-release form. It was confirmed that the amount of bioactive factor released from the 3D-printed artificial scaffold was released for a longer period of time.
  • bioactive factor was mounted and sustained release in the unique porous deciduous laminate structure of the 3D printing artificial support of the present invention without any additives and surface modification method. Therefore, it could be expected that tissue regeneration could be more effectively induced by promoting the differentiation of cells attached to a deciduous-layered porous 3D-printed artificial scaffold loaded with physiologically active factors.

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Medicinal Chemistry (AREA)
  • Oral & Maxillofacial Surgery (AREA)
  • General Health & Medical Sciences (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • Animal Behavior & Ethology (AREA)
  • Epidemiology (AREA)
  • Transplantation (AREA)
  • Dermatology (AREA)
  • Materials Engineering (AREA)
  • Biomedical Technology (AREA)
  • Manufacturing & Machinery (AREA)
  • Dispersion Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Cell Biology (AREA)
  • Botany (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Molecular Biology (AREA)
  • Zoology (AREA)
  • Mechanical Engineering (AREA)
  • Urology & Nephrology (AREA)
  • Materials For Medical Uses (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Immobilizing And Processing Of Enzymes And Microorganisms (AREA)
  • Apparatus Associated With Microorganisms And Enzymes (AREA)

Abstract

본 발명은 파이버의 직경을 기준으로 그 표면, 및 상기 표면으로부터 1~50%의 깊이까지는 낙엽 적층형 다공성 구조를 가지며, 상기 깊이로부터 중심까지는 비다공성 구조를 가지는 각각의 파이버들이 격자 형태로 적층되어 이루어진 3D 프린팅을 이용한 다공성 고분자 인공 지지체와 이의 제조방법, 및 상기 낙엽적층구조를 가지는 3D 프린팅을 이용한 다공성 고분자 인공 지지체에 세포와 생리활성인자를 탑재시킨 3D 프린팅 다공성 인공지지체에 관한 것이다.

Description

3D 프린팅을 이용한 다공성 고분자 인공 지지체 및 이의 제조방법
본 발명은 3D 프린팅을 이용한 다공성 고분자 인공 지지체 및 이의 제조방법에 관한 것으로서, 상세하게는 3D 프린팅으로 제조된 인공 지지체를 간단한 방법으로 처리하여 낙엽이 적층된 것과 같은 다공성 구조를 갖도록 하고, 상기 다공성 구조에 다양한 세포와 생리활성인자를 탑재시켜 서방형 방출이 가능하도록 한 3D 프린팅을 이용한 다공성 고분자 인공 지지체와 이의 제조방법에 관한 것이다.
현대 사회의 산업화와 고령화로 인해 의료기술이 발달하면서 다양한 질병과 사고에 대한 치료가 가능하지만, 여전히 한계점이 존재한다. 특히 손상된 조직이나 기능을 상실한 장기의 치료와 대체가 부족한 상황이다. 따라서 초고령화 사회와 수명연장 가속화가 진행됨에 따라 손상된 조직과 기능을 상실한 장기의 치료를 위한 연구가 현재 활발히 진행되고 있다.
손상된 조직과 장기를 치료하고 재생하기 위해서는 세포를 주입하여 치료하는 방법, 인공 지지체를 이식하여 치료하는 방법, 인공 지지체에 세포를 부착하거나 생리활성인자를 탑재하여 함께 이식하는 방법 등이 연구되고 활용되고 있다.
특히 조직공학에서 가장 주목받고 있는 것은 세포 배양의 효율을 높이고 생리활성인자 탑재 및 구조적 성능을 높여 더욱 효과적으로 인체 조직과 유사한 장기를 구현할 수 있는 인공 지지체이다.
최근 3D 프린팅 기술이 발달하면서 단순한 제품 모형 제작뿐 아니라 적극적으로 조직공학 분야에도 도입되어 사용되고 있다. 이는 면역 거부반응을 최소화 할 수 있는 개인 맞춤형 인공장기나 조직 등의 인공 지지체 제작에 혁신을 가져왔으며, 새로운 가능성으로 주목받고 있다.
현재 3D 프린팅 기술을 조직공학 분야에 효과적으로 도입시키기 위한 기술 개발이 활발히 진행중이며 기존 기술과 융합하여 다양한 분야에서 시도되고 있다. 더 나아가 3D 프린팅으로 제조된 인공 지지체에 생체기능성을 향상시킬 수 있는 재료 차원의 기능 향상; 세포의 부착과 증식 및 분화; 또는 생리활성인자의 탑재와 방출이 가능한 다공성 구조를 가지는 3D 프린팅 지지체의 제조 등 미세 구조적 기능 향상을 위한 연구 또한 활발히 진행되고 있다.
3D 프린팅 인공 지지체에 다공성 구조를 구현하는 방법으로는 고분자 용액에서 고분자 입자만을 녹여내 고분자 입자가 있던 자리에 공극을 형성시키거나; 상분리, 가스 발포 등을 이용하여 공극 공간을 비워내는 방법; 또는 미세 단위 구조물을 부착시키거나 첨가하는 등을 사용하는데 이러한 방법들은 그 과정이 매우 복잡하다는 문제가 있다.
생리활성인자의 탑재 역시 적층 제조기술과 온도 감응성 고분자를 이용하는 등 다양한 종류의 약물 전달 시스템들이 개발되고 있지만, 장기간 방출 조절이 어려우며 독성이 있는 화학물질을 사용하지 않은 시스템의 개발 사례는 매우 적다.
이처럼 3D 프린팅 기술을 이용한 인공 지지체 제작 방법에 대해 많은 연구가 진행되고 있음에도 불구하고 아직까지는 상기 문제점을 해결하기는 어려운 상황이다. 따라서 이러한 한계점을 극복할 수 있는 간단한 제조공정을 가지며 기능향상이 가능한 제조방법이 필요한 실정이다.
<선행기술문헌>
(특허문헌 1) 한국등록특허 제10-1772861호
(특허문헌 2) 한국특허출원 제2017-0071744호
(비특허문헌 1) Kim et al, “Release of BMP-2 from Porous Particles with Leaf-stacked Structure for Bone Regeneration”ACS Applied materials & interfaces, 10(25), 21091-21102, (2018
이에 본 발명은 종래 3D 프린팅으로 제조된 인공 지지체에 생체기능성을 부여하여 재료 차원의 기능 향상은 물론, 세포의 부착과 증식/분화, 및 생리활성인자의 탑재와 방출이 가능하도록 3D 프린팅을 이용하여 제조된 인공 지지체에 낙엽적층 구조의 다공성을 부여한 3D 프린팅을 이용한 다공성 고분자 인공 지지체를 제조하는 데 그 목적이 있다.
또한, 본 발명의 다른 목적은 3D 프린팅을 이용하여 제조된 인공 지지체를 매우 간단한 처리 과정을 거쳐 원하는 다공성을 가지도록 한 3D 프린팅 다공성 고분자 인공 지지체의 제조방법을 제공하는 데 있다.
또한, 본 발명의 추가의 목적은 상기 제조된 3D 프린팅 고분자 인공 지지체의 낙엽적층구조에 형성된 다수의 다공들에 세포를 부착시킨 고분자 인공 지지체와 이의 제조방법을 제공하는 데 있다.
또한, 본 발명은 상기 제조된 다공성 고분자 인공 지지체의 낙엽적층구조에 형성된 다수의 다공들에 생리활성인자가 탑재된 3D 프린팅을 이용한 다공성 고분자 인공 지지체와 이의 제조방법을 제공하는 데 있다.
또한, 본 발명은 상기 생리활성인자가 탑재된 3D 프린팅을 이용한 다공성 고분자 인공 지지체를 골 조직, 연골 조직, 간 조직, 치아 조직, 침샘 조직, 부갑상선 조직 중에서 선택되는 어느 하나의 조직의 재생에 사용하는 용도를 제공할 수 있다.
상기 목적을 달성하기 위한 본 발명에 따른 3D 프린팅을 이용한 다공성 고분자 인공 지지체는 파이버의 직경을 기준으로 그 표면, 및 상기 표면으로부터 1~50%의 깊이까지는 낙엽 적층형 다공성 구조를 가지며, 상기 깊이로부터 중심까지는 비다공성 구조를 가지는 각각의 파이버들이 격자 형태로 적층되어 이루어질 수 잇다.
상기 다공성 고분자 인공 지지체에 사용되는 고분자는 분자량 1,000 ~ 1,000,000 g/mol인 폴리락틱산 (poly(lactic acid)), 폴리글리콜산 (poly(glycolic acid)), 폴리락틱산-글리콜산 공중합체(poly(lactic acid-co-glycolic acid)), 폴리카프로락톤 공중합체(polycaprolactone), 폴리락틱산-카프로락톤 공중합체 (poly(lactic acid-co-ε-caprolactone)), 폴리하이드록시부티릭산-하이드록시발러릭산 공중합체(polyhydroxybutyric acid-co-hydroxyvaleric acid), 폴리다이옥사논 (poly(dioxanone), 폴리포스포에스터 (poly(phosphoester)) 중에서 선택되는 생체적합성과 생분해성을 가지는 고분자를 단독 또는 2 종 이상 사용하는 것이 바람직하다.
또한, 본 발명은 상기 3D 프린팅 다공성 고분자 인공 지지체의 낙엽적층형 다공성 구조에 세포를 부착시킨 것을 특징으로 하는 세포가 부착된 3D 프린팅 다공성 고분자 인공 지지체를 제공할 수 있다.
상기 낙엽적층형 다공성 구조에 부착되는 세포는 상피세포, 섬유아세포, 골아세포, 연골세포, 심근 세포, 근세포, 간세포, 인간 유래 제대혈 세포, 중간엽 줄기세포, 골수유래줄기세포, 골막유래줄기세포, 혈관내피전구세포, 배아줄기세포, 및 유도만능줄기세포 (induced pluripotent stem cell) 로 이루어진 그룹으로부터 선택되는 1종 또는 2종 이상일 수 있다.
본 발명의 일 실시예에 따르면, 상기 세포의 부착은 상기 3D 프린팅 다공성 고분자 인공 지지체의 가로*세로*높이가 4000*4000*4000㎛인 규격을 기준으로 1x10 3 내지 1x10 7 범위의 세포를 분주시켜 이용하는 것일 수 있다.
또한, 본 발명은 상기 3D 프린팅 다공성 고분자 인공 지지체의 낙엽적층형 다공성 구조에 생리활성인자를 탑재시킨 것을 특징으로 하는 생리활성인자가 탑재된 3D 프린팅 다공성 고분자 인공 지지체를 제공할 수 있다.
상기 생리활성인자는 사이토카인, 호르몬, 인슐린, 및 항체로 이루어진 그룹으로부터 선택되는 1종 이상의 펩타이드/단백질; fibroblast growth factors (FGFs), vascular endothelial growth factor (VEGF), nerve growth factor (NGF), brain-derived neurotrophic factor (BDNF), transforming growth factors (TGFs), bone morphogenetic proteins (BMPs), epidermal growth factor (EGF), insulin-like growth factor (IGF), 및 platelet-derived growth factor (PDGF) 중에서 선택되는 1종 이상의 성장인자; 유전자; 및 백신 중에서 선택되는 어느 하나일 수 있다.
상기 탑재된 생리활성인자는 상기 다공성 고분자 인공 지지체로부터 서방형 방출되는 것을 특징으로 할 수 있다.
상기 생리활성인자는 상기 3D 프린팅 다공성 고분자 인공 지지체를 구성하는 각 파이버의 표면, 및 상기 표면으로부터 1~50%의 깊이까지의 낙엽 적층형 다공성 구조에 탑재된 생리활성인자가 상기 낙엽적층형 다공성 구조를 통과하여 빠져나올 때, 상기 낙엽적층형 다공성 구조에 탈착과 흡착이 반복되면서 서방형 방출되는 것을 특징으로 할 수 있다.
또한, 상기 생리활성인자는 탑재된 상기 인공 지지체로부터 서방형 방출되어, 세포의 분화 및 조직의 재생을 가속화시키는 데 특징이 있다.
추가로 본 발명의 3D 프린팅 다공성 고분자 인공 지지체의 제조방법은 생체적합성과 생분해성을 가지는 고분자를 용융시키고, 3D 프린터를 이용하여 압출된 파이버들을 적층시켜 3D 프린팅 고분자 인공 지지체를 제조하는 단계, 상기 제조된 3D 프린팅 고분자 인공 지지체를 인체에 무해한 용매에서 열처리시켜 상기 파이버들의 표면 일부를 용해시키는 단계, 및 상기 열처리된 3D 프린팅 고분자 인공 지지체를 냉각시켜 상기 각 파이버들의 용해된 부분이 수많은 낙엽이 적층되어 쌓여 있는 것과 같은 낙엽적층형 다공성 구조로 변환되는 단계를 포함하는 것을 그 특징으로 한다.
상기 인체에 무해한 용매는 테트라글리콜 (Tetraglycol), 1-메틸-2-피롤리디논 (1-methyl-2-Pyrrolidinone (NMP)), 트리아세틴 (triacetin), 벤질 알콜 (benzyl alcohol), 디메틸아세타메이트 (N,N Dimethyl Acetamide) 중에서 선택되는 1종 혹은 2 종 이상의 혼합물이 바람직하다.
상기 열처리는 용매의 온도 30~150℃에서 1초~5시간 동안 이루어지는 것이 바람직하다.
또한, 본 발명은 상기 생리활성인자가 탑재된 3D 프린팅 다공성 고분자 인공 지지체를 골 조직, 연골 조직, 간 조직, 치아 조직, 침샘 조직, 부갑상선 조직 중에서 선택되는 어느 하나의 조직의 재생에 사용할 수 있다.
본 발명에 따르면, 3D 프린팅 기술로 제조한 인공 지지체를 매우 간단한 방법으로 처리하여 상기 인공 지지체를 구성하는 각각의 파이버의 표면과 일정 깊이까지 낙엽이 적층되어 있는 것과 같은 미세 다공 구조를 도입한 낙엽적층구조의 다공성 3D 프린팅 인공 지지체를 제조할 수 있다. 또한 본 발명에 따르면, 다양한 크기와 모양을 가지는 3D 프린팅 인공 지지체에도 상기 방법과 동일하게 낙엽적층구조를 도입하여 제조 및 응용이 가능하다.
또한, 본 발명에 따른 상기 낙엽적층구조의 다공성 3D 프린팅 인공 지지체는 도입된 낙엽적층구조로 인하여 인공 지지체 재료의 다공성이 크게 증가되어 세포 부착이 용이하고 세포의 증식과 분화가 가능하다. 또한, 독특한 낙엽적층구조로 인하여 추가의 표면처리나, 화학물질의 처리 없이 매우 간단한 방법으로 생리활성인자의 탑재가 가능하고 또한, 상기 탑재된 생리활성인자는 적정농도 이상으로 일정 기간 동안 서방형 방출이 가능하다.
따라서, 본 발명에 따른 낙엽적층구조의 다공성 3D 프린팅 인공 지지체 제조기술은 종래의 인공 지지체와 3D 프린팅을 이용하여 제조된 인공지지체의 한계점을 뛰어넘고 조직 재생을 위한 다양한 바이오 분야에서 새로운 개념의 인공 지지체로서 매우 유용하게 사용될 수 있다.
도 1은 본 발명의 실시예 1의 낙엽적층구조의 다공성 3D 프린팅 인공 지지체의 제조과정을 나타낸 그림이다.
도 2는 본 발명의 실시예 1의 낙엽적층구조의 다공성 3D 프린팅 인공 지지체의 형태와 표면을 나타낸 주사전자현미경사진이다.
도 3은 대조군 1의 낙엽적층구조가 도입되지 않은 3D 프린팅 인공 지지체의 형태와 표면을 나타낸 주사전자현미경사진이다.
도 4는 실시예 1의 낙엽적층구조의 다공성 3D 프린팅 인공 지지체와 대조군 1의 낙엽적층구조가 도입되지 않은 3D 프린팅 인공 지지체의 파이버 직경을 비교한 SEM 단면 사진이다.
도 5 내지 도 7은 20℃에서 열처리 시간을 각각 1초(A), 1분(B), 6시간(C) 동안 변화시키면서 제조된 비교예 1에 따른 3D 프린팅 인공 지지체의 구조를 확인한 주사전자현미경사진이다.
도 8은 실시예 1과 대조군 1에 따라 제조된 3D 프린팅 인공 지지체의 압축강도 측정 결과이다.
도 9는 본 발명의 실시예 1과 대조군 1 에서 제조된 낙엽적층구조의 다공성 3D 프린팅 인공 지지체에 세포 현탁액 분주 및 세포 부착 과정을 나타낸 그림이다.
도 10 및 도 11은 각각 실시예 2와 대조군 2에 따라 제조된 인공 지지체에 세포의 부착 여부를 확인한 주사전자현미경 (SEM) 사진이다.
도 12는 실시예 2와 대조군 2에 따라 제조된 인공 지지체의 표면 및 내부에 부착된 세포의 생존율과 증식율을 Cell Counting Kit-8 (CCK-8) assay를 통해 정량화한 그래프이다 (**P<0.01).
도 13은 실시예 3과 대조군 3에 따라 제조된 각 생리활성인자가 탑재된 낙엽적층구조의 다공성 3D 프린팅 인공 지지체로부터 BMP-2 방출 거동 (누적)을 나타낸 그래프이다.
이하에서 본 발명을 더욱 상세하게 설명하면 다음과 같다.
본 명세서에서 사용된 용어는 특정 실시예를 설명하기 위하여 사용되며, 본 발명을 제한하기 위한 것이 아니다.
본 명세서에서 사용된 바와 같이, 단수 형태는 문맥상 다른 경우를 분명히 지적하는 것이 아니라면, 복수의 형태를 포함할 수 있다. 또한, 본 명세서에서 사용되는 경우 "포함한다(comprise)" 및/또는 "포함하는 (comprising)"은 언급한 형상들, 숫자, 단계, 동작, 부재, 요소 및/또는 이들 그룹의 존재를 특정하는 것이며, 하나 이상의 다른 형상, 숫자, 동작, 부재, 요소 및/또는 그룹들의 존재 또는 부가를 배제하는 것이 아니다.
본 발명은 3D 프린팅을 이용한 다공성 고분자 인공 지지체와 이의 제조방법, 상기 다공성 고분자 인공 지지체에 세포와 다양한 생리활성인자를 부착시킨 다공성 고분자 인공 지지체와 이를 다양한 용도에 사용하는 것에 관한 것이다.
본 발명에 따른 3D 프린팅을 이용한 다공성 고분자 인공 지지체는 파이버의 직경을 기준으로 그 표면, 및 상기 표면으로부터 1~50%의 깊이까지는 낙엽 적층형 다공성 구조를 가지며, 상기 깊이로부터 중심까지는 비다공성 구조를 가지는 각각의 파이버들이 격자 형태로 적층되어 이루어질 수 있다.
즉, 본 발명은 3D 프린팅 기법을 이용하여 인공 지지체를 제조하고, 상기 인공 지지체를 간단하게 처리하여 인공지지체를 구성하는 각각의 파이버들이 그 표면과 일정 깊이에까지만 다수의 다공들이 포함된 낙엽적층 구조를 가지도록 한 것이다.
본 발명에서 ‘인공지지체의 표면과 일정 깊이까지만 다수의 다공들이 포함된다’라는 의미는 파이버의 직경을 기준으로 그 표면, 및 상기 표면으로부터 1~50%의 깊이까지 낙엽 적층형 다공성 구조를 가진다는 것이다.
또한, 파이버의 직경을 기준으로 상기 다공성 구조를 가지는 일정 깊이로부터 파이버의 중심까지는 비다공성 구조를 가지는 것이다.
이는 본 발명에서 3D 프린팅으로 제조된 다공성 구조의 인공지지체를 구성하는 각 파이버들이 내부 전체에까지 다공성 구조를 가지게 되면 이들로 구성된 인공지지체의 물성이 저하되어 차후 소정의 용도로 사용될 때 제약이 따를 수 있다. 따라서, 본 발명에서는 적절한 다공성을 가지면서 3D 인공지지체의 물성을 함께 유지할 수 있도록 최종 제조된 인공지지체에서 그 다공성 구조를 조절한 데 특징이 있다.
또한, 상기 깊이는 원하는 용도에 따라 조정하여 사용할 수 있으며, 다공성 구조를 가지는 깊이가 깊어질수록 차후 세포나 생리활성인자들을 부착시키는 데는 유리한 구조를 가짐은 당업자에게 자명하다 할 수 있다.
이러한 본 발명의 인공 지지체에 사용되는 재료는 분자량 1,000~1,000,000 g/mol인 폴리락틱산 (poly(lactic acid)), 폴리글리콜산 (poly(glycolic acid)), 폴리락틱산-글리콜산 공중합체(poly(lactic acid-co-glycolic acid)), 폴리카프로락톤 공중합체(polycaprolactone), 폴리락틱산-카프로락톤 공중합체 (poly(lactic acid-co-ε-caprolactone)), 폴리하이드록시부티릭산-하이드록시발러릭산 공중합체(polyhydroxybutyric acid-co-hydroxyvaleric acid), 폴리다이옥사논 (poly(dioxanone), 폴리포스포에스터 (poly(phosphoester)) 중에서 선택되는 생체적합성과 생분해성 고분자를 단독 또는 2 종 이상 사용하는 것이 바람직하다.
본 발명에서 인공 지지체에 다공성을 부여하여 3D 프린팅을 이용한 다공성 고분자 인공 지지체의 제조방법은 생체적합성과 생분해성을 가지는 고분자를 용융시키고, 3D 프린터를 이용하여 압출된 파이버들을 적층시켜 3D 프린팅 고분자 인공 지지체를 제조하는 단계, 상기 제조된 3D 프린팅 고분자 인공 지지체를 인체에 무해한 용매에서 열처리시켜 상기 파이버들의 표면 일부를 용해시키는 단계, 및 상기 열처리된 3D 프린팅 고분자 인공 지지체를 냉각시켜 상기 각 파이버들의 용해된 부분이 수많은 낙엽이 적층되어 쌓여 있는 것과 같은 낙엽적층형 다공성 구조로 변환시키는 단계를 구비할 수 있다.
첫 번째 단계는 생체적합성과 생분해성을 가지는 고분자를 용융시키고, 3D 프린터를 이용하여 압출된 파이버들을 적층시켜 3D 프린팅 고분자 인공 지지체를 제조한다.
상기 3D 프린팅 고분자 인공 지지체의 규격은 압출된 파이버를 격자 모양으로 일정한 높이로 쌓아올려(적층) 제조할 수 있으며, 그 크기는 소정의 용도에 따라 적절히 조절될 수 있다.
두 번째 단계는, 상기 제조된 3D 프린팅 고분자 인공 지지체를 인체에 무해한 용매에서 열처리시켜 상기 파이버들의 표면 일부를 용해시키는 과정을 거친다. 여기서 상기 ‘파이버들의 표면 일부’라는 것은 파이버의 직경을 기준으로 그 표면, 및 상기 표면으로부터 1~50%의 깊이까지를 의미할 수 있다.
상기 열처리 과정은 인공지지체를 구성하는 파이버들의 표면과 일부 깊이까지 용해시키는 과정으로서, 용매 온도 30~150℃에서 1초~5시간 동안 이루어지는 것이 바람직하다. 열처리 온도가 30℃ 미만인 경우 본 발명에서 인공지지체 제조에 사용된 상기 생체적합성과 생분해성을 가지는 고분자가 용해되지 않을 수 있고, 또한 150℃를 초과하는 경우 제조에 사용된 상기 생체적합성과 생분해성을 가지는 고분자가 모두 용해되는 문제가 있을 수 있어 바람직하지 못하다.
또한, 적절한 깊이까지 용해시키기 위하여 열처리 시간도 1초~5시간의 범위 내에서 적절히 수행하는 것이 바람직하다.
상기 인체에 무해한 용매는 테트라글리콜 (Tetraglycol), 1-메틸-2-피롤리디논 (1-methyl-2-Pyrrolidinone (NMP)), 트리아세틴 (triacetin), 벤질 알콜 (benzyl alcohol), 디메틸아세타메이트 (N,N Dimethyl Acetamide) 중에서 선택되는 1종 혹은 2 종 이상의 혼합물이 바람직하게 사용될 수 있다.
마지막 제3단계는 상기 열처리된 3D 프린팅 고분자 인공 지지체를 냉각시켜 상기 각 파이버들의 용해된 부분이 수많은 낙엽이 적층되어 쌓여 있는 것과 같은 낙엽적층형 다공성 구조로 변환시키는 과정을 거친다.
본 발명 출원인의 기 등록특허인 특허문헌 1(한국등록특허 제10-1772861호)에 따르면, 상기 생체적합성과 생분해성 고분자를 인체에 무해한 용매에 녹인 다음 이중분사노즐장치를 이용하여 표면 및 내부 전반에 걸쳐 다수의 다공들을 포함하는 낙엽적층구조의 고분자 미세입자를 제조할 수 있었다.
그러나, 본 발명에서는 상기 생체적합성과 생분해성을 가지는 고분자를 3D 프린팅법으로 제조한 인공 지지체를 이용하는 것인 만큼, 인공지지체의 물성 확보와 장기적인 내구성 확보를 위해 종래 특허문헌 1과 같이 미세입자에서 표면 및 내부 전체에 형성시켰던 다공 구조를 인공지지체 표면에만 형성되도록 한 데 특징이 있다.
이를 위해 본 발명에서는 생체적합성과 생분해성을 가지는 고분자를 이용하여 3D 프린팅으로 인공 지지체를 제조하고, 상기 고분자를 용해시킬 수 있는 각 용매에 이를 침지시킨 다음 각 용매의 온도를 일시적으로 높였다가 다시 냉각시키는 방법을 이용한다. 여기서, 상기 용매의 온도는 각 고분자를 용해시킬 수 있는 온도를 의미하여, 일시적으로 용매의 온도를 높이게 되면 상기 인공지지체를 구성하는 파이버들의 외표면과 일정 깊이까지 일부분만 용매에 녹게 되고, 상기 용매의 온도를 다시 낮추어 이를 냉각시키면, 녹았던 파이버의 외표면과 일정 깊이까지만 상기 특허문헌 1과 같은 다수의 낙엽들이 적층된 것과 같은 다공성 구조로 바뀌는 원리이다.
상기 냉각 과정은 상온에서 이루어질 수 있으며, 사용되는 용매와 온도에 따라 적절히 조절될 수 있다.
결과적으로, 본 발명에 따른 낙엽적층구조의 다공성 3D 프린팅 인공 지지체는 3D 프린팅으로 압출된 재료에 별도의 간단한 열처리 과정만으로 낙엽적층형 다공성 구조를 도입시킬 수 있다.
이렇게 제조된 본 발명에 따른 3D 프린팅을 이용한 다공성 고분자 인공 지지체는 그 표면과 일정 깊이에만 낙엽적층형 다공성 구조를 가지므로, 별도의 표면처리나 첨가제의 없이도 다양한 성분들을 부착시킬 수 있는 효과를 가진다.
따라서, 본 발명의 일 실시예에 따르면, 상기 제조된 3D 프린팅을 이용한 다공성 고분자 인공 지지체의 낙엽적층형 다공성 구조에 세포를 부착시킨 것을 특징으로 하는 세포가 부착된 구조의 3D 프린팅을 이용한 다공성 고분자 인공 지지체를 제공할 수 있다.
상기 낙엽적층구조에 부착 가능한 세포는 상피세포, 섬유아세포, 골아세포, 연골세포, 심근 세포, 근세포, 간세포, 인간 유래 제대혈 세포, 중간엽 줄기세포, 골수유래줄기세포, 골막유래줄기세포, 혈관내피전구세포, 배아줄기세포, 및 유도만능줄기세포 (induced pluripotent stem cell) 로 이루어진 그룹으로부터 선택되는 1종 또는 2종 이상을 사용할 수 있으며, 이에 한정되지 않고 소정의 효과를 위하여 다양한 다른 세포의 부착도 가능함은 당업자들에게 자명하다.
상기 나열된 세포들의 부착 방법은 상기 3D 프린팅을 이용한 다공성 고분자 인공 지지체의 가로 * 세로 * 높이가 4000 * 4000 * 4000 ㎛인 규격을 기준으로 1x10 3 내지 1x10 7 범위의 세포를 분주시켜 이용할 수 있으나, 소정의 용도에 따라 인공지지체 규격을 조절할 수 있음은 물론이다.
본 발명과 같이 제조된 3D 프린팅을 이용한 다공성 고분자 인공 지지체는 그 표면과 일정 깊이까지 형성된 독특한 낙엽적층의 다공성 구조로 인해 효과적으로 세포들을 부착시킬 수 있다.
또한, 이렇게 부착된 세포들은 다공성 구조의 인공 지지체에서 증식되고, 이로로부터 장기간 지속적인 서방형으로 방출되어 상기 세포들이 가진 역할들을 지속적으로 수행할 수 있도록 분화되는 효과를 가지므로 다양한 세포 전달체 역할이 가능하다.
또한, 본 발명은 상기 3D 프린팅을 이용한 다공성 고분자 인공 지지체의 낙엽적층형 다공성 구조에 형성된 다수의 다공들에 생리활성인자를 탑재시킨 것을 특징으로 하는 생리활성인자가 탑재된 3D 프린팅을 이용한 다공성 고분자 인공 지지체를 제공할 수 있다.
본 발명에서는 3D 프린팅 인공 지지체 표면에 형성된 독특한 낙엽이 적층된 것과 같은 다공성 구조로 인해 어떠한 화학물질의 처리 없이 생리활성인자의 탑재가 가능하며 장기간 적정농도 이상으로 지속적인 방출이 가능하다. 이를 이용하여 종래 기술적 한계가 있던 3D 프린팅 인공 지지체의 기능향상을 위한 복잡한 공정과정을 극복하여 생리활성인자의 탑재가 용이한 3D 프린팅 인공 지지체를 제공할 수 있다.
상기 생리활성인자는 사이토카인, 호르몬, 인슐린, 및 항체로 이루어진 그룹으로부터 선택되는 1종 이상의 펩타이드/단백질; fibroblast growth factors (FGFs), vascular endothelial growth factor (VEGF), nerve growth factor (NGF), brain-derived neurotrophic factor (BDNF), transforming growth factors (TGFs), bone morphogenetic proteins (BMPs), epidermal growth factor (EGF), insulin-like growth factor (IGF), 및 platelet-derived growth factor (PDGF) 중에서 선택되는 1종 이상의 성장인자; 유전자; 및 백신 중에서 선택되는 어느 하나일 수 있다.
상기 생리활성인자의 탑재는 종래 고분자 미세입자에 탑재시키는 것과 동일한 방법을 사용할 수 있으며, 예를 들어 생리활성인자 용액 내의 생리활성인자의 단순 흡착의 방법을 사용할 수 있으나, 이에 한정되는 것은 아니다.
상기 생리활성인자는 상기 3D 프린팅으로 제조된 다공성 고분자 인공 지지체로부터 서방형 방출되는 특징을 가진다.
이러한 생리활성인자의 서방형 방출은 상기 낙엽적층구조의 다공성 3D 프린팅 인공 지지체 표면과 일정 깊이까지 형성된 다공들에 탑재된 생리활성인자가 다수의 낙엽들이 적층된 형태의 다공 구조를 통과하면서 상기 생리활성인자가 상기 다공 구조에 탈착/흡착이 반복되면서 이루어지는 것이다.
또한, 상기 생리활성인자는 탑재된 상기 인공 지지체로부터 서방형 방출되어, 손상된 부위에서 세포의 분화 및 재생을 촉진하는 효과를 가진다.
추가적으로, 본 발명에 따른 상기 생리활성인자가 탑재된 3D 프린팅을 이용한 다공성 고분자 인공 지지체를 골 조직, 연골 조직, 간 조직, 치아 조직, 침샘 조직, 부갑상선 조직 중에서 선택되는 어느 하나의 조직의 재생에 사용할 수 있다.
따라서, 본 발명에 따른 낙엽적층구조의 다공성 3D 프린팅 인공 지지체는 조직공학적, 재생의학적, 진단의학적, 약물스크리닝, 동물실험대체재 등 다양한 분야로의 응용이 가능하다.
이하에서 본 발명의 바람직한 실시예를 상세히 설명하기로 한다. 이하의 실시예는 본 발명을 예시하기 위한 것일 뿐, 본 발명의 범위가 이들 실시예에 의해 제한되는 것으로 해석되어서는 안 된다. 또한, 이하의 실시예에서는 특정 화합물을 이용하여 예시하였으나, 이들의 균등물을 사용한 경우에 있어서도 동등 유사한 정도의 효과를 발휘할 수 있음은 당업자에게 자명하다.
실시예 1: 낙엽적층 구조의 다공성 3D 프린팅 인공 지지체의 제조
생체적합성·생분해성을 나타내는 폴리카프로락톤 (polycaprolactone, PCL) 펠렛을 용융시켜 3D 프린터기에 넣고 압출 성형시켜 3D 프린팅 인공 지지체를 제작하였다. 3D 프린팅 인공 지지체의 규격은 파이버의 직경을 300㎛로 하여 사출시켜 가로*세로=300*600㎛의 격자 모양으로 하여 높이가 4000 ㎛가 되도록 쌓아 올려 3D 프린팅법을 이용하여 인공 지지체를 제조하였다.
그 후 용매 테트라글리콜을 오일 배쓰 (oil bath)를 이용하여 오일 중탕시켜 온도를 55℃가 되도록 맞추었다. 상기 제조된 인공 지지체를 상기 용매에 넣어 지지체가 완전히 잠기도록 하여 1분 동안 열처리를 진행하였다.
열처리 후 상기 인공 지지체를 테트라글리콜에서 꺼내어 유리 페트리 접시 위에 올려 실온에서 10분 동안 냉각시켰다.
냉각된 상기 인공 지지체를 상온의 새로운 테트라글리콜에 담구었다 빼는 과정을 진행하여 인공 지지체 표면에 생성된 낙엽적층 다공성 구조 사이의 잔여 폴리카프로락톤 용액을 세척시켰다. 그 후 증류수를 과량 넣어서 잔여 테트라글리콜을 완전히 세척해내었다.
세척이 끝난 인공 지지체는 동결건조시켜 낙엽적층 구조의 다공성 3D 프린팅 인공 지지체를 제조하였다 (도 1의 제조과정 모식도 참조).
대조군 1 : 다공성 구조가 도입되지 않은 3D 프린팅 인공 지지체의 제조
생체적합성·생분해성을 나타내는 폴리카프로락톤 (polycaprolactone, PCL)펠렛을 용융시켜 3D 프린터기에 넣어, 사출시켜 3D 프린팅 인공 지지체를 제작하였다. 3D 프린팅 인공 지지체의 규격은 파이버의 직경을 300 ㎛로 하여 사출시켜 가로*세로=300*600㎛의 격자 모양으로 하여 높이가 4000 ㎛가 되도록 쌓아 올려 3D 프린팅 인공 지지체를 제조하였다.
이후, 열처리 과정은 거치지 않고 3D 프린팅 인공 지지체를 본 발명에 따른 다공성 구조를 가지는 인공지지체와 비교하였다.
비교예 1~2 : 다양한 다공성 구조를 도입하기 위한 3D 프린팅 인공 지지체의 제조
3D 프린팅 인공 지지체에 다양한 구조의 다공성을 도입하기 위해 앞서 언급한 제조 조건의 범위를 벗어난 조건에서 제조하였다. 3D 프린팅 인공 지지체의 규격은 기존과 동일하게 진행하였으며, 제조한 온도 조건은 기존 열처리 온도 30~150℃를 벗어난 20℃, 160℃에서 진행하였고, 열처리 시간 조건은 1초, 1분 그리고 기존 1초~5시간을 벗어난 6시간으로 진행하였다. 그 외의 제조 조건과 제조 방법은 상기 실시예 1과 동일하게 진행하였다.
실험예 1 : 3D 프린팅 인공 지지체의 구조 확인
상기 실시예 1, 대조군 1, 및 비교예 1~2에 따라 각각 제조된 3D 프린팅 인공 지지체의 구조를 주사전자현미경 (SEM)을 통해 관찰하였으며 그 결과를 각각 도 2 내지 5에 나타내었다.
실시예 1에 따른 3D 프린팅 인공 지지체의 구조(도 2)를 참조하면, 인공지지체를 구성하는 파이버의 표면(a)에는 다수의 낙엽적층형 다공성 구조가 형성되어 있음을 확인할 수 있으며, 또한, 인공지지체를 구성하는 파이버의 단면(b)을 잘라 관찰한 사진과 이의 확대사진을 참조하면, 바깥 외표면과 일정깊이(전체 파이버 직경 200㎛ 중 50㎛)까지 낙엽적층형 다공성 구조가 형성되어 있으며, 상기 깊이부터 파이버 내부까지는 매끈한 비다공성(dense) 구조로 이루어져 있음을 확인할 수 있다.
그러나, 낙엽적층구조를 도입하지 않은 대조군 1에 따른 3D 프린팅 인공 지지체의 구조를 나타낸 다음 도 3을 참조하면, 표면(a)이 매끄러우며 파이버의 단면(b)과 이의 확대사진을 보았을 때 원형의 다공성이 없는 매끈한 구조를 관찰할 수 있었다.
또한, 낙엽적층구조의 다공성 3D 프린팅 인공 지지체는 지지체 전체 표면에 낙엽적층구조가 형성되었으며 이로 인해 낙엽적층 구조를 도입하지 않은 대조군 1의 SEM 사진과 비교하였을 때 전체 파이버의 직경이 증가한 것을 확인하였다.(도 4 참조)
또한, 20℃에서 각각 1초, 1분, 6시간동안 열처리하여 제조한 비교예 1의 결과인 도 5를 참조하면, 3D 프린팅 인공 지지체에 충분한 열이 전달되지 않았고 이에 따라 열처리 시간이 증가하여도 3D 프린팅 인공 지지체에 다공성 구조가 형성되지 않았으며 확대사진을 보았을 때 또한 파이버의 표면이 다공성이 없는 매끈한 구조를 관찰 할 수 있었다. 즉, 상기 대조군 1과 유사한 구조를 가짐을 확인할 수 있었다.
뿐만 아니라, 160℃에서 1초, 1분, 6시간동안 열처리를 진행한 비교예 2에 있어서는 열처리 온도가 너무 높아 3D 프린팅 인공 지지체가 모두 녹아 더 이상의 실험을 진행할 수 없었다.
이러한 결과를 통해 본 발명과 같은 3D 프린팅 인공 지지체에 적절한 낙엽적층구조 및 다공성을 부여할 수 있는 열처리 조건은 최적의 온도와 시간 조건이 만족할 때만 가능함을 확인하였다.
실험예 2 : 낙엽적층구조의 다공성 3D 프린팅 인공 지지체의 물성 측정
상기 실시예 1과 대조군 1에 따라 각각 제조된 낙엽적층구조의 다공성 3D 프린팅 인공 지지체와 낙엽적층구조가 도입되지 않은 3D 프린팅 인공 지지체를 이용하여 가로*세로*높이=4000*4000*4000㎛의 규격으로 하여 압축 강도를 측정하였다.
각 인공 지지체의 각각 건조된 상태와 젖은 상태의 압축 강도를 압축강도시험기를 통해 관찰하였으며 그 결과를 각각 다음 도 8에 나타내었다. 젖은 상태의 지지체를 제조하기 위해서 건조된 상태의 지지체를 37℃의 PBS와 함께 주사기에 넣고 양압과 음압을 한 번씩 가해주었다. 그 다음 목공용 클램프로 양압을 가해 고정시킨 뒤 37℃의 조건에서 24시간 동안 보관하였다. 24시간 후 지지체 표면의 과량의 물기만을 타올을 이용하여 흡수시킨 후 압축 강도를 측정하였다. 압축 강도는 압축강도시험기를 이용하여 측정하였으며 측정 조건은 3kN load cell을 이용하고 cross-head speed는 1 mm/min으로 하여 측정하였다. 측정 결과 stroke(mm)에 따른 하중(N) 값을 얻을 수 있었는데 이 데이터를 기반으로 stress/strain curve를 그려서 각 실험군의 물성을 비교하였다. Strain(%) 부분은 stroke(mm) 값을 지지체의 높이인 4mm로 나눈 뒤 백분율로 변환하였고 stress(MPa) 부분은 하중(N) 값을 지지체의 면적인 16mm 2로 나누었다.
다음 도 8의 결과를 참조하면, 각각 건조된 상태와 젖은 상태의 낙엽적층구조를 도입하지 않은 3D 프린팅 인공 지지체(대조군 1)와 낙엽적층구조의 다공성 3D 프린팅 인공 지지체(실시예 1)의 압축 강도 측정 결과 물성 변화에 큰 차이가 없는 것을 확인하였다. 이를 통해 기존의 낙엽적층구조가 도입되지 않은 3D 프린팅 인공 지지체와, 같은 재료로 제조된 낙엽적층구조의 다공성 3D 프린팅 인공 지지체의 물성을 비교하였을 때 큰 변화가 없는 것으로 보아 도입된 낙엽들이 적층된 형태의 다공 구조가 지지체의 물성 변화에 영향을 미치지 않으며 기능 향상이 가능하다는 것을 확인하였다.
실시예 2 : 낙엽적층구조의 다공성 3D 프린팅 인공 지지체에 세포 부착
상기 실시예 1에 따라 제조된 낙엽적층구조의 다공성 3D 프린팅 인공 지지체의 가로*세로*높이=4000*4000*4000㎛의 규격으로 하여 총 분주 된 세포 수가 2x10 5 세포가 되도록 세포를 분주하였다. 세포를 분주하기 전 낙엽적층구조의 다공성 3D 프린팅 인공 지지체의 내부에 PBS 또는 배지를 탑재하여 낙엽적층구조의 다공성 3D 프린팅 인공 지지체 표면에 친수성을 가지며 세포 배양 시 배지 내부에 가라앉을 수 있게 하였다. 그 다음 2x10 5 세포 현탁액의 부피가 1 mL가 되게 하여 낙엽적층구조의 다공성 3D 프린팅 인공 지지체의 표면에 세포 현탁액을 분주한 후 약 16시간 동안 37℃, 5% CO 2 인큐베이터에서 배양하여 세포 부착을 유도하였다. (도 9 세포 부착 과정 참조).
대조군 2 : 3D 프린팅 인공 지지체에 세포 부착
상기 대조군 1에 따라 제조된 낙엽적층구조가 도입되지 않은 3D 프린팅 인공 지지체를 이용하여 상기 실시예 2와 동일하게 세포를 부착시켜 비교하였다.
실험예 3 : 인공 지지체에 부착시킨 세포의 부착 확인
상기 실시예 2와 대조군 2에 따라 인공 지지체에 부착된 세포를 주사전자현미경 (SEM)을 통해 관찰하였으며 그 결과를 각각 다음 도 10 및 도 11에 나타내었다.
낙엽적층구조를 도입하지 않은 3D 프린팅 인공 지지체(도 11)는 전체적으로 표면이 세포를 부착하기 전과 유사하게 매끈하며 확대했을 때 파이버의 표면에 세포가 거의 부착되지 않았고, 파이버들 간의 사이 간격에 세포가 적은 양 부착되어 있는 것을 확인하였다.
그러나, 본 발명의 실시예 2에 따른 낙엽적층구조의 다공성 3D 프린팅 인공 지지체(도 10)는 전체적으로 보았을 때, 표면에 낙엽적층구조가 보이지 않을 정도로 많은 양의 세포가 부착되어 있는 것을 확인하였다. 표면을 확대했을 때 세포들이 낙엽적층구조의 표면에 부착한 것을 확인하였고, 세포 부착 후 0일 보다 3일, 7일차가 될수록 세포가 증식하여 지지체 표면을 뒤덮은 것을 확인하였다.
실험예 4 : 4공 지지체에 부착시킨 세포의 생존율 및 증식률 분석
상기 실시예 2와 대조군 2에 따라 인공 지지체에 부착된 세포의 생존율 및 증식률을 Cell Counting Kit-8 (CCK-8) assay를 실시하여 정량화 하였으며, 그 결과를 다음 도 12에 나타내었다.
다음 도 12를 참조하면, 상기 도 10 및 도 11의 결과와 같이 낙엽적층구조를 도입하지 않은 3D 프린팅 인공 지지체(대조군 2)보다 낙엽적층구조의 다공성 3D 프린팅 인공 지지체(실시예 2)에서 세포가 더 많이 부착된 것을 확인하였다. 또한, 시간이 지날수록 세포가 점점 증식하였고 계속해서 낙엽적층구조의 다공성 3D 프린팅 인공 지지체에서 더 많은 세포 수가 측정되었다.
실시예 3 : 낙엽적층구조의 다공성 3D 프린팅 인공 지지체에 생리활성인자 탑재
상기 실시예 1에서 제조된 낙엽적층구조의 다공성 3D 프린팅 인공 지지체에 골형성단백질인 BMP-2(bone morphogenetic protein-2)를 탑재시켰다. 상기 낙엽적층구조의 다공성 3D 프린팅 인공 지지체를 가로*세로*높이=4000*4000*4000㎛의 규격으로 하였고, 상기 BMP-2를 낙엽적층구조의 다공성 3D 프린팅 인공 지지체 부피당 1 μ의 농도로 제조하여 낙엽적층구조의 다공성 3D 프린팅 인공 지지체에 양압과 음압을 통하여 탑재시켰다. 그 후 4℃에서 3시간 보관하여 BMP-2를 낙엽적층구조의 다공성 3D 프린팅 인공 지지체 표면에 흡착을 유도하였고 이후 PBS로 1회 세척하여 흡착되지 않은 BMP-2를 세척하였다. 그 후 동결 건조시켜 BMP-2가 흡착된 낙엽적층구조의 다공성 3D 프린팅 인공 지지체를 제조하였다.
대조군 3 : 3D 프린팅 인공 지지체에 생리활성인자 탑재
상기 대조군 1에 따라 제조된 낙엽적층구조가 도입되지 않은 3D 프린팅 인공 지지체를 이용하여 상기 실시예 3과 동일하게 생리활성인자를 탑재시켜 비교하였다.
실험예 5 : 낙엽적층구조의 다공성 3D 프린팅 인공 지지체에 탑재된 BMP-2 방출 거동 확인
상기 실시예 3과 대조군 3에 따라 제조된 BMP-2가 흡착된 인공 지지체(가로*세로*높이=4000*4000*4000㎛)를 소태 아혈청이 1% 비율로 들어있는 PBS (보관용액)에 넣고 37℃, 50 rpm에서 보관하였다. 매일 보관용액을 채취하고 새로운 보관용액으로 갈아주었으며, 채취한 보관용액은 효소면역정량법으로 BMP-2의 양을 측정하였다. 측정된 양은 누적 방출량으로 나타내었으며, 그 결과를 다음 도 13에 나타내었다.
다음 도 13을 참조하면, 생리활성인자의 탑재량은 낙엽적층구조를 도입하지 않은 3D 프린팅 인공 지지체(대조군 3)보다 낙엽적층구조의 다공성 3D 프린팅 인공 지지체(실시예 3)에서 다공성으로 인해 약 3배 가량 생리활성인자가 더 많이 탑재된 것을 확인하였다. 방출거동의 경우, 세포의 골세포로의 분화 및 신생골 형성을 위한 유효농도의 생리활성인자가 서방형으로 방출되고 있음을 확인하였고 낙엽적층구조를 도입하지 않은 3D 프린팅 인공 지지체보다 낙엽적층구조의 다공성 3D 프린팅 인공 지지체에서 생리활성인자의 방출량이 더 많이 오랜기간 방출되는 것을 확인하였다. 즉, 어떠한 첨가제 및 표면 개질법 없이도 본 발명의 3D 프린팅 인공 지지체의 독특한 다공성의 낙엽적층구조에 생리활성인자가 탑재 및 서방형 방출되고 있음을 확인할 수 있었다. 따라서, 생리활성인자가 탑재된 낙엽적층구조의 다공성 3D 프린팅 인공 지지체에 부착된 세포의 분화 촉진을 통한 조직의 재생을 보다 효과적으로 유도할 수 있음을 기대할 수 있었다.

Claims (14)

  1. 파이버의 직경을 기준으로 그 표면, 및 상기 표면으로부터 1~50%의 깊이까지는 낙엽 적층형 다공성 구조를 가지며,
    상기 깊이로부터 중심까지는 비다공성 구조를 가지는 각각의 파이버들이 격자 형태로 적층되어 이루어진 것을 특징으로 하는 3D 프린팅 다공성 고분자 인공 지지체.
  2. 제 1 항에 있어서,
    상기 다공성 고분자 인공 지지체에 사용되는 고분자는 분자량 1,000 ~ 1,000,000 g/mol인 폴리락틱산 (poly(lactic acid)), 폴리글리콜산 (poly(glycolic acid)), 폴리락틱산-글리콜산 공중합체(poly(lactic acid-co-glycolic acid)), 폴리카프로락톤 공중합체(polycaprolactone), 폴리락틱산-카프로락톤 공중합체 (poly(lactic acid-co-ε-caprolactone)), 폴리하이드록시부티릭산-하이드록시발러릭산 공중합체(polyhydroxybutyric acid-co-hydroxyvaleric acid), 폴리다이옥사논 (poly(dioxanone), 폴리포스포에스터 (poly(phosphoester)) 중에서 선택되는 생체적합성과 생분해성을 가지는 고분자를 단독 또는 2 종 이상 사용하는 것인 3D 프린팅 다공성 고분자 인공 지지체.
  3. 제 1 항에 따른 3D 프린팅 다공성 고분자 인공 지지체의 낙엽적층형 다공성 구조에 세포를 부착시킨 것을 특징으로 하는 세포가 부착된 3D 프린팅 다공성 고분자 인공 지지체.
  4. 제 3 항에 있어서,
    상기 낙엽적층형 다공성 구조에 부착되는 세포는 상피세포, 섬유아세포, 골아세포, 연골세포, 심근 세포, 근세포, 간세포, 인간 유래 제대혈 세포, 중간엽 줄기세포, 골수유래줄기세포, 골막유래줄기세포, 혈관내피전구세포, 배아줄기세포, 및 유도만능줄기세포 (induced pluripotent stem cell) 로 이루어진 그룹으로부터 선택되는 1종 또는 2종 이상인 것인 세포가 부착된 3D 프린팅 다공성 고분자 인공 지지체.
  5. 제 3 항에 있어서,
    상기 세포의 부착은 상기 3D 프린팅 다공성 고분자 인공 지지체의 가로*세로*높이가 4000*4000*4000㎛인 규격을 기준으로 1x10 3 내지 1x10 7 범위의 세포를 분주시켜 이용하는 것을 특징으로 하는 세포가 부착된 3D 프린팅 다공성 고분자 인공 지지체.
  6. 제 1 항에 따른 3D 프린팅 다공성 고분자 인공 지지체의 낙엽적층형 다공성 구조에 생리활성인자를 탑재시킨 것을 특징으로 하는 생리활성인자가 탑재된 3D 프린팅 다공성 고분자 인공 지지체.
  7. 제 6 항에 있어서,
    상기 생리활성인자는 사이토카인, 호르몬, 인슐린, 및 항체로 이루어진 그룹으로부터 선택되는 1종 이상의 펩타이드/단백질; fibroblast growth factors (FGFs), vascular endothelial growth factor (VEGF), nerve growth factor (NGF), brain-derived neurotrophic factor (BDNF), transforming growth factors (TGFs), bone morphogenetic proteins (BMPs), epidermal growth factor (EGF), insulin-like growth factor (IGF), 및 platelet-derived growth factor (PDGF) 중에서 선택되는 1종 이상의 성장인자; 유전자; 및 백신 중에서 선택되는 어느 하나인 것인 생리활성인자가 탑재된 3D 프린팅 다공성 고분자 인공 지지체.
  8. 제 6 항에 있어서,
    상기 탑재된 생리활성인자는 상기 다공성 고분자 인공 지지체로부터 서방형 방출되는 것을 특징으로 하는 생리활성인자가 탑재된 3D 프린팅 다공성 고분자 인공 지지체.
  9. 제 6 항에 있어서,
    상기 생리활성인자는 상기 3D 프린팅 다공성 고분자 인공 지지체를 구성하는 각 파이버의 표면, 및 상기 표면으로부터 1~50%의 깊이까지의 낙엽 적층형 다공성 구조에 탑재된 생리활성인자가 상기 낙엽적층형 다공성 구조를 통과하여 빠져나올 때,
    상기 낙엽적층형 다공성 구조에 탈착과 흡착이 반복되면서 서방형 방출되는 것인 생리활성인자가 탑재된 3D 프린팅 다공성 고분자 인공 지지체.
  10. 제 6 항에 있어서,
    상기 생리활성인자는 탑재된 상기 인공 지지체로부터 서방형 방출되어, 세포의 분화 및 조직의 재생을 가속화시키는 것인 생리활성인자가 탑재된 3D 프린팅 다공성 고분자 인공 지지체.
  11. 생체적합성과 생분해성을 가지는 고분자를 용융시키고, 3D 프린터를 이용하여 압출된 파이버들을 적층시켜 3D 프린팅 고분자 인공 지지체를 제조하는 단계,
    상기 제조된 3D 프린팅 고분자 인공 지지체를 인체에 무해한 용매에서 열처리시켜 상기 파이버들의 표면 일부를 용해시키는 단계, 및
    상기 열처리된 3D 프린팅 고분자 인공 지지체를 냉각시켜 상기 각 파이버들의 용해된 부분이 수많은 낙엽이 적층되어 쌓여 있는 것과 같은 낙엽적층형 다공성 구조로 변환되는 단계를 포함하는 제 1항에 따른 3D 프린팅 다공성 고분자 인공 지지체의 제조방법.
  12. 제 11 항에 있어서,
    상기 인체에 무해한 용매는 테트라글리콜 (Tetraglycol), 1-메틸-2-피롤리디논 (1-methyl-2-Pyrrolidinone (NMP)), 트리아세틴 (triacetin), 벤질 알콜 (benzyl alcohol), 디메틸아세타메이트 (N,N Dimethyl Acetamide) 중에서 선택되는 1종 혹은 2 종 이상의 혼합물인 것인 제조방법.
  13. 제 11 항에 있어서,
    상기 열처리는 용매의 온도 30~150℃에서 1초~5시간 동안 이루어지는 것인 제조방법.
  14. 제 6 항에 따른 생리활성인자가 탑재된 3D 프린팅 다공성 고분자 인공 지지체를 골 조직, 연골 조직, 간 조직, 치아 조직, 침샘 조직, 부갑상선 조직 중에서 선택되는 어느 하나의 조직의 재생에 사용하는 용도.
PCT/KR2020/012566 2019-10-02 2020-09-17 3d 프린팅을 이용한 다공성 고분자 인공 지지체 및 이의 제조방법 WO2021066361A2 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2019-0121918 2019-10-02
KR1020190121918A KR102308484B1 (ko) 2019-10-02 2019-10-02 3d 프린팅을 이용한 다공성 고분자 인공 지지체 및 이의 제조방법

Publications (2)

Publication Number Publication Date
WO2021066361A2 true WO2021066361A2 (ko) 2021-04-08
WO2021066361A3 WO2021066361A3 (ko) 2021-05-27

Family

ID=75337164

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2020/012566 WO2021066361A2 (ko) 2019-10-02 2020-09-17 3d 프린팅을 이용한 다공성 고분자 인공 지지체 및 이의 제조방법

Country Status (2)

Country Link
KR (1) KR102308484B1 (ko)
WO (1) WO2021066361A2 (ko)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI744300B (zh) * 2016-03-23 2021-11-01 里爾中央醫學中心 改良性熱處理的血小板顆粒裂解液在製備用於治療神經系統疾病的組合物的用途

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101655888B1 (ko) * 2014-07-17 2016-09-08 고려대학교 산학협력단 매크로/마이크로 이중 기공구조형 3차원 다공성 지지체의 제조 방법 및 이에 의해 제조된 매크로/마이크로 이중 기공구조형 3차원 다공성 지지체
KR101712862B1 (ko) * 2015-08-28 2017-03-08 단국대학교 천안캠퍼스 산학협력단 다공성 고분자 미세입자, 이의 제조방법, 및 이를 이용한 바이오 소재
KR101891384B1 (ko) 2015-12-16 2018-08-24 박철웅 전력선 지지용 클램프와 절연애자의 체결구조
KR101772861B1 (ko) 2016-03-28 2017-08-30 단국대학교 천안캠퍼스 산학협력단 고분자 재생막 및 이의 제조방법
KR20180134188A (ko) * 2017-06-08 2018-12-18 단국대학교 천안캠퍼스 산학협력단 다양한 생리활성인자들이 탑재된 낙엽 적층형 다공성 고분자 미세입자 및 이의 제조방법
KR102189844B1 (ko) * 2018-11-27 2020-12-11 단국대학교 천안캠퍼스 산학협력단 고분자-세포 혼합 스페로이드, 이의 제조방법 및 이를 사용하는 방법

Also Published As

Publication number Publication date
KR102308484B1 (ko) 2021-10-06
WO2021066361A3 (ko) 2021-05-27
KR20210039549A (ko) 2021-04-12

Similar Documents

Publication Publication Date Title
WO2020204230A1 (ko) 나노섬유 및 하이드로젤의 복합체 및 이를 포함하는 조직 재생용 스캐폴드
US9725693B2 (en) Three-dimensional scaffolds for tissue engineering made by processing complex extracts of natural extracellular matrices
Shin et al. Contractile cardiac grafts using a novel nanofibrous mesh
US20090202616A1 (en) Composite, Method of Producing the Composite and Uses of the Same
US20080085292A1 (en) Composite Scaffolds Seeded with Mammalian Cells
WO2017209521A1 (ko) 세포배양용 또는 조직공학용 지지체
US20060153894A1 (en) Multi-compartment delivery system
WO2010107236A2 (ko) 연골 재생을 위한 다공성 연골-골 복합 지지체 및 이의 제조 방법
WO2011105724A2 (ko) 관절연골 재생용 지지체 및 이의 제조방법
Zhou et al. Fabrication and characterization of collagen/PVA dual-layer membranes for periodontal bone regeneration
US20190060517A1 (en) Scaffold for cardiac patch
WO2015008877A1 (ko) 단일공정에 의한 이중층 스캐폴드의 제조방법 및 상기 제조방법에 의해 얻어진 이중층 스캐폴드를 이용한 조직 재생방법
Zhao et al. Toward improved wound dressings: Effects of polydopamine-decorated poly (lactic-co-glycolic acid) electrospinning incorporating basic fibroblast growth factor and ponericin G1
WO2020022870A1 (ko) 말뼈 나노세라믹 및 pcl을 포함하는 치주조직 재생용 지지체 및 이의 제조방법
WO2017217736A1 (ko) 세포배양 지지체용 원사 및 이를 포함하는 원단
WO2021066361A2 (ko) 3d 프린팅을 이용한 다공성 고분자 인공 지지체 및 이의 제조방법
WO2012086988A2 (en) Artificial silk membrane having excellent flexibility and suturing ability and method of manufacturing the same
WO2016122080A2 (ko) 다공성 고분자 재료, 이의 제조방법, 및 이를 이용한 바이오 소재
WO2011004968A2 (ko) 조직 재생용 구조체 및 그 제조방법
WO2021071307A1 (ko) 신규한 다공성 스캐폴드 및 이의 제조방법
WO2021133143A1 (ko) 세포배양기재 및 이의 제조방법
WO2012046957A2 (ko) 상분리법을 이용한 나노섬유 구조 생체고분자의 제조방법
WO2017171313A1 (ko) 고분자 재생막 및 이의 제조방법
WO2023106475A1 (ko) 연조직 재생 및 강화용 나노섬유 시트 및 이의 제조방법
WO2022191580A1 (ko) 생리활성물질을 포함하는 생분해성 고분자 지지체 및 이의 제조방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20870641

Country of ref document: EP

Kind code of ref document: A2

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20870641

Country of ref document: EP

Kind code of ref document: A2