WO2021065551A1 - Al配線材 - Google Patents

Al配線材 Download PDF

Info

Publication number
WO2021065551A1
WO2021065551A1 PCT/JP2020/035337 JP2020035337W WO2021065551A1 WO 2021065551 A1 WO2021065551 A1 WO 2021065551A1 JP 2020035337 W JP2020035337 W JP 2020035337W WO 2021065551 A1 WO2021065551 A1 WO 2021065551A1
Authority
WO
WIPO (PCT)
Prior art keywords
wiring material
weight
present
content
less
Prior art date
Application number
PCT/JP2020/035337
Other languages
English (en)
French (fr)
Inventor
佑仁 栗原
良 大石
基稀 江藤
大造 小田
哲哉 小山田
裕弥 須藤
宇野 智裕
Original Assignee
日鉄マイクロメタル株式会社
日鉄ケミカル&マテリアル株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日鉄マイクロメタル株式会社, 日鉄ケミカル&マテリアル株式会社 filed Critical 日鉄マイクロメタル株式会社
Priority to KR1020227009855A priority Critical patent/KR20220064974A/ko
Priority to EP20873056.4A priority patent/EP4040448A4/en
Priority to CN202080069219.0A priority patent/CN114467167A/zh
Priority to US17/764,872 priority patent/US20220341004A1/en
Priority to JP2021550614A priority patent/JPWO2021065551A1/ja
Publication of WO2021065551A1 publication Critical patent/WO2021065551A1/ja

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/42Wire connectors; Manufacturing methods related thereto
    • H01L24/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L24/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C21/00Alloys based on aluminium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/02Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of metals or alloys
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/06Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of rods or wires
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C16/00Alloys based on zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C19/00Alloys based on nickel or cobalt
    • C22C19/03Alloys based on nickel or cobalt based on nickel
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C28/00Alloys based on a metal not provided for in groups C22C5/00 - C22C27/00
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/002Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working by rapid cooling or quenching; cooling agents used therefor
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/04Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/02Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of metals or alloys
    • H01B1/023Alloys based on aluminium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B5/00Non-insulated conductors or conductive bodies characterised by their form
    • H01B5/02Single bars, rods, wires, or strips
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/42Wire connectors; Manufacturing methods related thereto
    • H01L24/43Manufacturing methods
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/42Wire connectors; Manufacturing methods related thereto
    • H01L24/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L24/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L24/85Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a wire connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/05Structure, shape, material or disposition of the bonding areas prior to the connecting process of an individual bonding area
    • H01L2224/0554External layer
    • H01L2224/05599Material
    • H01L2224/056Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/05617Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than or equal to 400°C and less than 950°C
    • H01L2224/05624Aluminium [Al] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/43Manufacturing methods
    • H01L2224/432Mechanical processes
    • H01L2224/4321Pulling
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/43Manufacturing methods
    • H01L2224/438Post-treatment of the connector
    • H01L2224/43848Thermal treatments, e.g. annealing, controlled cooling
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • H01L2224/45001Core members of the connector
    • H01L2224/4501Shape
    • H01L2224/45012Cross-sectional shape
    • H01L2224/45014Ribbon connectors, e.g. rectangular cross-section
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • H01L2224/45001Core members of the connector
    • H01L2224/4501Shape
    • H01L2224/45012Cross-sectional shape
    • H01L2224/45015Cross-sectional shape being circular
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • H01L2224/45001Core members of the connector
    • H01L2224/45099Material
    • H01L2224/451Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof
    • H01L2224/45117Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof the principal constituent melting at a temperature of greater than or equal to 400°C and less than 950°C
    • H01L2224/45124Aluminium (Al) as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/484Connecting portions
    • H01L2224/4847Connecting portions the connecting portion on the bonding area of the semiconductor or solid-state body being a wedge bond
    • H01L2224/48472Connecting portions the connecting portion on the bonding area of the semiconductor or solid-state body being a wedge bond the other connecting portion not on the bonding area also being a wedge bond, i.e. wedge-to-wedge
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/85Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a wire connector
    • H01L2224/85909Post-treatment of the connector or wire bonding area
    • H01L2224/85948Thermal treatments, e.g. annealing, controlled cooling
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/02Bonding areas ; Manufacturing methods related thereto
    • H01L24/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L24/05Structure, shape, material or disposition of the bonding areas prior to the connecting process of an individual bonding area
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/00014Technical content checked by a classifier the subject-matter covered by the group, the symbol of which is combined with the symbol of this group, being disclosed without further technical details

Definitions

  • the present invention relates to an Al wiring material. Furthermore, the present invention relates to a semiconductor device containing the Al wiring material.
  • an electrode formed on a semiconductor chip and an electrode on a lead frame or a substrate are connected by a bonding wire or a bonding ribbon (collectively referred to as "wiring material”).
  • Wiring materials mainly made of aluminum (Al) (hereinafter, also simply referred to as "Al wiring materials”) are used in power semiconductor devices.
  • Al wiring materials mainly made of aluminum (Al)
  • 300 ⁇ m ⁇ is used in a power semiconductor module.
  • An example of using the Al bonding wire of the above is shown.
  • wedge bonding is used for both the first connection with the electrode on the semiconductor chip and the second connection with the electrode on the lead frame or the substrate. ing.
  • Power semiconductor devices using Al wiring materials are often used as high-power devices such as air conditioners and photovoltaic power generation systems, and semiconductor devices for vehicles.
  • the joint portion of the wiring material may be exposed to a high temperature of 150 ° C. or higher when the device is operated.
  • a material made of only high-purity Al is used as the wiring material, it is difficult to use it in a high temperature environment because the wiring material tends to soften in the temperature environment when the device is operated.
  • Patent Document 2 discloses an Al bonding wire having improved mechanical strength by adding 0.05 to 1% by weight of scandium (Sc) to Al and precipitating hardening.
  • Patent Document 3 an Al wiring material containing one or more of nickel (Ni), silicon (silicon) (Si) and phosphorus (P) in a total of 800 ppm by weight or less has good bonding strength and weather resistance. It is disclosed to present.
  • Patent Document 4 contains 0.01 to 0.2% by weight of iron (Fe) and 1 to 20% by weight of Si, and the solid solution amount of Fe is 0.01 to 0.06% by weight.
  • An Al bonding wire having a Fe precipitation amount of 7 times or less of the solid solution amount and an average crystal particle size of 6 to 12 ⁇ m is disclosed, and it is described that the wire exhibits good bonding reliability. ing.
  • JP-A-2002-314038 Special Table 2016-511529 Japanese Unexamined Patent Publication No. 2016-152316 Japanese Unexamined Patent Publication No. 2014-129578
  • a shocking thermal stress is generated due to the temperature change (hereinafter, such a phenomenon is also referred to as “thermal shock"), and the Al wiring material and the connected member are connected.
  • the connection with the device may be damaged.
  • cracks may occur at the interface of the connecting portion due to the difference in the coefficient of thermal expansion between the Al wiring material and the connected member due to the temperature change accompanying the operation cycle (hereinafter, such a phenomenon is referred to as "the phenomenon”. Also called "bond crack”).
  • cracks may also occur in the loop rising portion near the connecting portion due to bending stress due to expansion and contraction of the Al wiring material itself (hereinafter, such a phenomenon is also referred to as “heel crack”). Corrosion in the environment during operation of the device may cause these bond cracks and heel cracks to progress, and eventually the Al wiring material may peel off from the connected member, resulting in impaired joining reliability.
  • thermal shock resistance Although some reports have been made on Al wiring materials that have been made stronger by adding other elements to Al, while suppressing a decrease in yield during manufacturing, chip cracks can be suppressed and thermal shock associated with the operation cycle of the device can be suppressed. There was room for improvement in achieving both resistance (hereinafter, also simply referred to as "thermal shock resistance").
  • An object of the present invention is to provide an Al wiring material that has both suppression of chip cracks and thermal shock resistance while suppressing a decrease in yield during manufacturing.
  • the present inventors have found that the above problems can be solved by an Al wiring material having the following configuration, and have completed the present invention by conducting further studies based on such findings. That is, the present invention includes the following contents. [1] When at least Sc and Zr are contained, the Sc content is x1 [% by weight], and the Zr content is x2 [% by weight]. 0.01 ⁇ x1 ⁇ 0.5 and 0.01 ⁇ x2 ⁇ 0.3 Al wiring material that meets the requirements and the rest contains Al. [2] The Al wiring material according to [1], which further contains Ni and satisfies 10 ⁇ x3 ⁇ 500 when the content thereof is x3 [weight ppm].
  • an Al wiring material that has both suppression of chip cracks and thermal shock resistance while suppressing a decrease in yield during manufacturing.
  • Al wiring material of the present invention contains at least scandium (Sc) and zirconium (Zr), and is 0.01 when the Sc content is x1 [% by weight] and the Zr content is x2 [% by weight]. It is characterized in that ⁇ x1 ⁇ 0.5 and 0.01 ⁇ x2 ⁇ 0.3 are satisfied.
  • Sc raises the recrystallization temperature of the Al wiring material and contributes to suppressing the coarsening of crystal grains and maintaining the strength of the Al wiring material even when the semiconductor device is continuously used in a high temperature environment.
  • the larger the amount of Sc added the more the coarsening of crystal grains tends to be suppressed in a high temperature environment.
  • disconnection and scratches occur during the production of Al wiring material, and the yield is increased. May decrease, or chip cracks may occur when the Al wiring material is connected to the connected member.
  • the intermetallic compound formed between Sc and Al aggregates and coarsens it may adversely affect the generation / growth of bond cracks and heel cracks (that is, accelerate the generation / growth of cracks).
  • the Al wiring material of the present invention containing Sc in the range of 0.01 to 0.5% by weight and Zr in the range of 0.01 to 0.3% by weight is used in a high temperature environment. While maintaining the effect of Sc that can suppress the coarsening of crystal grains, it exhibits appropriate strength and hardness before the connection of the Al wiring material, and can suppress the decrease in yield during manufacturing and the occurrence of chip cracks during connection. ..
  • the Al wiring material of the present invention suppresses aggregation and coarsening of intermetallic compounds between Al and Sc even when used in a power semiconductor device in which the temperature changes significantly with the operation cycle of the device, resulting in bond cracks and heels. It is possible to remarkably suppress the generation and growth of cracks.
  • the Al wiring material of the present invention achieves both suppression of chip cracks and thermal shock resistance while suppressing a decrease in yield during manufacturing, and is a semiconductor whose temperature changes significantly with the operation cycle of the device. This contributes significantly to improving the long-term operational reliability of the device.
  • the Al wiring material of the present invention contains Sc as the first element in the range of 0.01 to 0.5% by weight. That is, when the Sc content in the Al wiring material is x1 [% by weight], 0.01 ⁇ x1 ⁇ 0.5 is satisfied.
  • the Sc content in the Al wiring material is 0.01% by weight or more, preferably 0. 02% by weight or more, 0.03% by weight or more, 0.04% by weight or more, or 0.05% by weight or more.
  • the upper limit of the Sc content x1 is 0.5% by weight or less, preferably 0.48% by weight or less, 0.46% by weight or less, from the viewpoint of suppressing a decrease in yield during manufacturing and chip cracking during connection. It is 0.45% by weight or less, 0.44% by weight or less, 0.42% by weight or less, or 0.4% by weight or less.
  • the Al wiring material of the present invention contains Zr as a second element in the range of 0.01 to 0.3% by weight. That is, when the content of Zr in the Al wiring material is x2 [% by weight], 0.01 ⁇ x2 ⁇ 0.3 is satisfied.
  • the Al wiring material of the present invention can achieve both suppression of chip cracks and thermal shock resistance while suppressing a decrease in yield during manufacturing.
  • focusing only on the improvement of the strength of the Al wiring material it can be achieved to some extent even when Sc is contained alone or Zr is contained alone, but chip crack suppression and thermal shock resistance can be achieved to some extent. Achievement of both is specifically achieved at a particularly high level when Sc and Zr are contained in combination.
  • the content of Zr in the Al wiring material is 0.01% by weight or more, preferably 0.02% by weight or more, 0. It is 0.03% by weight or more, 0.04% by weight or more, or 0.05% by weight or more.
  • the upper limit of the Zr content x2 is 0.3% by weight or less, preferably 0.28% by weight or less, 0.26% by weight or less, from the viewpoint of suppressing a decrease in yield during manufacturing and chip cracking during connection. It is 0.25% by weight or less, 0.24% by weight or less, 0.22% by weight or less, or 0.2% by weight or less.
  • the ratio x2 / x1 of the Sc content x1 [% by weight] and the Zr content x2 [% by weight] is not particularly limited as long as each of x1 and x2 is within the above-mentioned preferable range, and is, for example, 0.05 or more and 0. It can be 1 or more, 0.2 or more, and so on.
  • x1 and x2 satisfy the relationship of x2 / x1> 0.5, and more preferably x2 / x1 ⁇ 0.55.
  • the upper limit of the x2 / x1 ratio is not particularly limited as long as each of x1 and x2 is within the above-mentioned preferable range, but is preferably 10 from the viewpoint of easily realizing an Al wiring material exhibiting the desired strength in a high temperature environment. It can be less than or equal to (ie, 10 ⁇ x2 / x1), 8 or less, 6 or less, or 5 or less.
  • the x2 / x1 ratio is within the above-mentioned preferable range, the benefit of the above-mentioned effect can be further enjoyed especially when 0.15 ⁇ x1.
  • the Al wiring material of the present invention may further contain Ni.
  • Ni in addition to Sc and Zr, corrosion resistance can be improved, coarsening of crystal grains in a high temperature environment can be further suppressed, and the strength of the Al wiring material can be maintained at a high level. ..
  • the content of Ni in the Al wiring material may be in the range of 10 to 500 ppm by weight. That is, when the content of Ni in the Al wiring material is x3 [weight ppm], 10 ⁇ x3 ⁇ 500 may be satisfied.
  • the Ni content in the Al wiring material, that is, x3 is preferably 10 ppm by weight.
  • the above is more preferably 15% by weight or more, 20% by weight or more, 25% by weight or more, or 30% by weight or more.
  • the upper limit of the Ni content x3 is preferably 500 ppm by weight or less, more preferably 450 ppm by weight or less, 400 ppm or less, 350 ppm or less, from the viewpoint of suppressing a decrease in yield during manufacturing and chip cracking during connection. It is 300 ppm or less, 250 ppm or less, 200 ppm or less, 150 ppm or less, or 100 ppm or less.
  • the rest of the Al wiring material of the present invention contains Al.
  • As the aluminum raw material for producing the Al wiring material it is preferable to use aluminum having a purity of 5N (Al: 99.999% by weight or more) or more.
  • the rest of the Al wiring material of the present invention may contain an element other than Al as long as the effect of the present invention is not impaired.
  • the Al content in the balance of the Al wiring material of the present invention is not particularly limited as long as the effect of the present invention is not impaired, but is preferably 98% by weight or more, 98.5% by weight or more, 99% by weight or more, 99. 5% by weight or more, 99.6% by weight or more, 99.7% by weight or more, 99.8% by weight or more, or 99.9% by weight or more.
  • the remainder of the Al wiring material of the present invention consists of Al and unavoidable impurities.
  • the following shows a particularly suitable embodiment as an Al wiring material capable of suppressing chip crack suppression and thermal shock resistance at a high level while suppressing a decrease in yield during manufacturing.
  • the Al wiring material of the present invention contains Sc and Zr, and when the Sc content is x1 [% by weight] and the Zr content is x2 [% by weight], 0. It is characterized in that 01 ⁇ x1 ⁇ 0.15 and 0.01 ⁇ x2 ⁇ 0.3 are satisfied, and the balance is composed of Al and unavoidable impurities.
  • first embodiment such an embodiment is also referred to as a "first embodiment”.
  • the Al wiring material of the present invention contains Sc, Zr and Ni, with a Sc content of x1 [% by weight], a Zr content of x2 [% by weight], and Ni.
  • the content of is x3 [weight ppm]
  • 0.01 ⁇ x1 ⁇ 0.15, 0.01 ⁇ x2 ⁇ 0.3, 10 ⁇ x3 ⁇ 500 are satisfied, and the balance is composed of Al and unavoidable impurities. It is characterized by.
  • such an embodiment is also referred to as a “second embodiment”.
  • the Al wiring material of the present invention contains Sc and Zr
  • the Sc content is x1 [% by weight]
  • the Zr content is x2 [% by weight]. It is characterized in that 0.15 ⁇ x1 ⁇ 0.5 and 0.01 ⁇ x2 ⁇ 0.3 are satisfied, and the balance is composed of Al and unavoidable impurities.
  • such an embodiment is also referred to as a "third embodiment”.
  • the Al wiring material of the present invention contains Sc, Zr and Ni, with a Sc content of x1 [% by weight], a Zr content of x2 [% by weight], and Ni.
  • the content of is x3 [weight ppm]
  • 0.15 ⁇ x1 ⁇ 0.5, 0.01 ⁇ x2 ⁇ 0.3, 10 ⁇ x3 ⁇ 500 are satisfied, and the balance is composed of Al and unavoidable impurities. It is characterized by.
  • such an embodiment is also referred to as a "fourth embodiment”.
  • the Sc content x1 [weight%] and the Zr content x2 are , X2 / x1> 0.5.
  • the preferred range of such ratio x2 / x1 is as described above.
  • the content of Sc, Zr, Ni, etc. in the Al wiring material can be measured by the method described in [Measurement of element content] described later.
  • the Al wiring material of the present invention may or may not have a coating containing a metal other than Al as a main component on the outer periphery of the Al wiring material.
  • the Al wiring material of the present invention does not have a coating containing a metal other than Al as a main component on the outer periphery of the Al wiring material.
  • the "coating containing a metal other than Al as a main component” means a coating in which the content of the metal other than Al is 50% by weight or more.
  • the Al wiring material of the present invention may be an Al bonding wire or an Al bonding ribbon.
  • the Al wiring material of the present invention is an Al bonding wire
  • its wire diameter is not particularly limited and may be, for example, 50 to 600 ⁇ m.
  • the Al wiring material of the present invention is an Al bonding ribbon
  • the rectangular or substantially rectangular cross-sectional dimensions (w ⁇ t) are not particularly limited, and for example, w may be 100 to 3000 ⁇ m and t may be 50. It may be up to 600 ⁇ m.
  • the method for producing the Al wiring material of the present invention is not particularly limited, and for example, it may be produced using a known processing method such as extrusion processing, aging processing, wire drawing processing, and rolling processing.
  • a known processing method such as extrusion processing, aging processing, wire drawing processing, and rolling processing.
  • This is melt-mixed to obtain an ingot.
  • a mother alloy containing these elements may be used as a raw material for Sc, Zr, Ni and the like.
  • This ingot can be processed to the final size to form an Al wiring material.
  • the Al wiring material of the present invention in which the content of Sc, Zr and Ni, etc. in the above specific range is within the above-mentioned specific range can be manufactured (processed) while suppressing the occurrence of disconnection and scratches to a level that does not cause a problem in mass production. ..
  • solution heat treatment During the processing or after the processing is completed, Sc, Zr and, if contained, Ni and the like are dissolved, so it is preferable to perform solution heat treatment.
  • the conditions of the solution heat treatment may be, for example, 570 to 640 ° C. for 30 minutes to 3 hours.
  • x2 satisfies 0.01 ⁇ x2 ⁇ 0.15, Sc, Zr, etc. can all be solid-solved during ingot production, so that solution heat treatment is performed. Does not have to be carried out in particular.
  • the heat treatment for heat treatment for softening the wire is performed at a subsequent stage.
  • a tempering heat treatment may be added during the processing.
  • the tempering heat treatment changes the crystal structure of the wire from a processed structure to a recrystallized structure. As a result, the crystal structure becomes a recrystallized structure, so that the wire can be softened.
  • the temperature condition of the tempering heat treatment for example, the tensile strength of the tempered wire is confirmed by changing only the temperature inside the furnace at a constant transmission speed, and the heat treatment temperature is set so that the tensile strength is in the range of 60 to 140 MPa. Should be decided.
  • the heat treatment temperature may be, for example, in the range of 580 to 640 ° C.
  • the tempering heat treatment time is 30 seconds or less (more preferably 25 seconds or less or 20 seconds or less).
  • the Al wiring material of the present invention preferably, Sc, Zr, Ni and the like when contained, and their intermetallic compounds are not precipitated by performing the solution treatment in the manufacturing process thereof. Therefore, in the Al wiring material according to a preferred embodiment, when the total content of Sc and Zr in the Al wiring material is 100% by weight, Sc and Sc existing in the phase separated from Al are used as the intermetallic compound phase.
  • the total amount of Zr is preferably 5% by weight or less, more preferably 4% by weight or less, 3% by weight or less, 2% by weight or less, or 1% by weight or less.
  • the total amount of Sc and Zr present in the intermetallic compound phase in the Al wiring material can be measured by chemical analysis of the electrolytic extraction residue of the Al wiring material.
  • the Al wiring material exhibits an appropriate hardness.
  • the Vickers hardness of the longitudinal axis portion is 40 Hv or less.
  • the longitudinal axis of the Al wiring material is the central axis of the Al wiring material when the Al wiring material is an Al bonding wire, and the Al bonding ribbon having a rectangular or substantially rectangular cross section (w ⁇ t) in the Al wiring material.
  • it means the central axis that satisfies the center of w and the center of t.
  • the Al wiring material of the present invention has such an appropriate hardness at the time of connection to the connected member, the occurrence of chip cracks can be suppressed.
  • the Vickers hardness of the Al wiring material can be measured by the method described in [Measurement of Vickers hardness] described later.
  • the average crystal grain size in the cross section (C cross section) perpendicular to the wire longitudinal direction is preferably 1 to 50 ⁇ m. If the average crystal grain size is 1 ⁇ m or more, recrystallization by heat treatment during processing has progressed moderately, and solution heat treatment is performed in the manufacturing process of the Al wiring material to forcibly dissolve the contained components. In combination with this, the Al wiring material is softened, and it is possible to prevent the occurrence of chip cracks during bonding and deterioration of the bondability of the bonded portion. On the other hand, if the average crystal grain size exceeds 50 ⁇ m, it indicates that the recrystallization of the Al wiring material has progressed too much, and the reliability of the joint portion may decrease.
  • the average crystal grain size in the C cross section of the Al wiring material can be easily set to 1 to 50 ⁇ m.
  • the average crystal grain size is obtained by determining the area of each crystal grain using a measuring method such as EBSD (Electron Backscatter Diffraction Patterns), and the average grain size is taken as the average of the diameters when the area of each crystal grain is regarded as a circle.
  • the average crystal grain size of the C cross section of the Al wiring material can be measured by the method described in [Measurement of the average crystal grain size of the C cross section] described later.
  • the specific resistance of the Al wiring material of the present invention is preferably 3.6 ⁇ ⁇ cm or less. Further, when the Al wiring material of the present invention is subjected to heat treatment at 300 ° C. for 30 minutes, its specific resistance is preferably 3.0 ⁇ ⁇ cm or less. Since the Al wiring material of the present invention has such a low resistivity, it is possible to reduce the amount of heat generated when the device is operated, (1) recrystallization and softening of the Al wiring material, and (2) suppressing the occurrence and progression of cracks. Therefore, the joining reliability can be ensured even during long-term operation of the semiconductor device.
  • the specific resistance of the Al wiring material can be measured by the DC 4-terminal measuring method. For example, using an RM3544-01 manufactured by Hioki Electric Co., Ltd. as a resistance meter, measurement can be performed under the conditions of a sample length of 400 mm and a measurement current of 1 mA. The number of measurements is 5, and the arithmetic mean value can be obtained as the specific resistance value of each sample.
  • the Al wiring material of the present invention contains Sc, Zr, and Ni, etc. in the above-mentioned specific amount when contained, and has an appropriate strength by the action of solid solution strengthening and structure control by heat treatment in the wiring material manufacturing process.
  • the Al wiring material of the present invention can exhibit a breaking strength of 50 to 130 MPa.
  • the breaking strength of the Al wiring material can be measured by the method described in [Measurement of mechanical properties] described later.
  • connection between the Al wiring material and the connected member of the present invention is either a first connection with an electrode on a semiconductor chip or a second connection with an electrode on a lead frame or a circuit board (also simply referred to as a "board"). Also, it is carried out by wedge joining. It is preferable to perform aging heat treatment of the semiconductor device containing the Al wiring material after the connection with the connected member. As a result of the aging heat treatment, Sc and Zr in the Al wiring material satisfy the intermetallic compound Al 3 (Sc x, Zr 1-x ) (in the formula, x satisfies 0 ⁇ x ⁇ 1. The same is true.) Is formed, and a fine phase of the intermetallic compound is precipitated.
  • the Al wiring material is precipitated and strengthened, and its strength is increased.
  • the aging heat treatment conditions are not particularly limited as long as a fine phase of the intermetallic compound Al 3 (Sc x , Zr 1-x ) can be formed, but for example, 250 to 400 ° C. and 30 to 60 minutes are preferable.
  • Sc and Zr are added independently to the Al wiring material, Al 3 Sc and Al 3 Zr are formed as intermetallic compounds, respectively.
  • the fine phases of Al 3 Sc and Al 3 Zr also have the effect of increasing the strength of the Al wiring material by precipitation strengthening, the present inventors have compared the fine phases of Al 3 Sc and Al 3 Zr with Al.
  • the fine phase of 3 (Sc x , Zr 1-x ) has a remarkably low rate of aggregation and coarsening, and in addition, the coarsening of Al (matrix) crystal grains can be remarkably suppressed over a long period of time. It was found that exceptionally excellent thermal shock resistance can be realized.
  • the present invention also provides a method for manufacturing a semiconductor device.
  • the method for manufacturing a semiconductor device of the present invention Includes (A) a step of connecting an electrode on a semiconductor chip and an electrode on a lead frame or a substrate with the Al wiring material of the present invention, and (B) a step of performing aging heat treatment after connecting with the Al wiring material. To do.
  • step (A) As the semiconductor chip, lead frame or substrate used in the step (A), known ones that can be used for forming the semiconductor device may be used as described later. The details and preferred embodiments of the Al wiring material of the present invention used in the step (A) are as described above.
  • step (A) both the first connection with the electrode on the semiconductor chip and the second connection with the electrode on the lead frame or the substrate are carried out by wedge bonding.
  • step (B) Sc and Zr in the Al wiring material form an intermetallic compound Al 3 (Sc x , Zr 1-x ) with Al, and a fine phase of the intermetallic compound is precipitated.
  • a semiconductor device can be manufactured by connecting an electrode on a semiconductor chip with an electrode on a lead frame or a circuit board using the Al wiring material of the present invention.
  • the semiconductor device of the present invention includes the Al wiring material of the present invention.
  • the Al wiring material of the present invention has both suppression of chip cracks and thermal shock resistance while suppressing a decrease in yield during manufacturing, and a semiconductor device containing the Al wiring material is used in the operation cycle of the device. Excellent operational reliability can be achieved even when the accompanying temperature change is significant.
  • the semiconductor device of the present invention includes a circuit board, a semiconductor chip, and an Al wiring material for conducting the circuit board and the semiconductor chip, and the Al wiring material is the Al wiring material of the present invention. It is characterized by.
  • the "Al wiring material of the present invention” referred to in the semiconductor device of the present invention refers to Sc, Zr and, if contained, Sc, Zr and, as long as the content of Ni and the like is within the above-mentioned preferable range. It should be noted that this includes the case where at least a part of Ni or the like forms an intermetallic compound with Al.
  • the total amount of Sc and Zr present in the phase separated from Al is maintained in a suitable range as the intermetallic compound phase even when the device is operated for a long time in a high temperature environment. It is possible to maintain the intermetallic compound in a fine phase.
  • the circuit board and the semiconductor chip are not particularly limited, and known circuit boards and semiconductor chips that can be used to form the semiconductor device may be used.
  • a lead frame may be used instead of the circuit board.
  • the semiconductor device may be configured to include a lead frame and a semiconductor chip mounted on the lead frame.
  • Semiconductor devices are used in electrical products (for example, computers, mobile phones, digital cameras, televisions, air conditioners, solar power generation systems, etc.) and vehicles (for example, motorcycles, automobiles, trains, ships, aircraft, etc.).
  • electrical products for example, computers, mobile phones, digital cameras, televisions, air conditioners, solar power generation systems, etc.
  • vehicles for example, motorcycles, automobiles, trains, ships, aircraft, etc.
  • power semiconductor devices power semiconductor devices
  • Aluminum having a purity of 5N (99.999% by weight or more) and Sc, Zr, and Ni having a purity of 99.9% by weight or more were melted as raw materials to obtain an Al ingot having the composition shown in Table 1.
  • the ingot was extruded and aged, then heat-treated at 580 ° C. for 2 hours, and further wire-drawn.
  • solution heat treatment was performed at 580 ° C. for 1 hour, and quenching (water cooling) was performed.
  • the die wire drawing process was performed with the final wire diameter set to 200 ⁇ m, and after the wire drawing process was completed, the heat treatment was performed so that the tensile strength became 120 MPa in the heat treatment time of 15 seconds to obtain an Al wiring material.
  • the content of Sc, Zr, Ni, etc. in the Al wiring material can be determined by ICP-OES (“PS3520U VDDII” manufactured by Hitachi High-Tech Science Co., Ltd.) or ICP-MS (“Agilent 7700x” manufactured by Agilent Technologies America, Inc.) as an analyzer. It was measured using ICP-MS ").
  • the Vickers hardness of the longitudinal axis portion of the Al wiring material was measured using a Micro Vickers hardness tester (“HM-200” manufactured by Mitutoyo Co., Ltd.). The hardness at the longitudinal axis portion (that is, the center position of the Al wiring material) was measured with the cross section (L cross section) parallel to the longitudinal direction including the longitudinal axis of the Al wiring material as the measurement target surface. The average of the measured values at 5 points was used as the Vickers hardness of the sample.
  • the average crystal grain size of the C cross section was measured using the EBSD method (measuring device EBSD analysis system "AZtec HKL] manufactured by Oxford Instruments Co., Ltd.). Specifically, each crystal was measured for the entire C cross section. The area of the grains was obtained, the area of each crystal grain was converted into the area of a circle, the average of the diameters was calculated, and this was adopted as the average crystal grain size. The area of each crystal grain was measured at adjacent measurement points. The position where the azimuth difference between them was 15 degrees or more was defined as the grain boundary and obtained.
  • the breaking strength of the Al wiring material was measured by using an Instron tensile tester under the conditions of a distance between gauge points of 100 mm, a tensile speed of 10 mm / min, and a load cell rated load of 1 kN. The measurement was carried out 5 times, and the average value was adopted as the breaking strength of the sample.
  • the disconnection rate [times / km] is the number of wire breaks (N [times]) when the die wire is drawn from 1 mm to 200 ⁇ m, and the length of the Al wiring material (wire diameter 200 ⁇ m) after the die wire drawing (wire diameter 200 ⁇ m). It was calculated by the formula: N / L based on L [km]).
  • the electrode of the semiconductor chip was an Al-Cu pad, and the external terminal was Ag. Both the first connection portion between the electrode of the semiconductor chip and the Al wiring material and the second connection portion between the external terminal and the Al wiring material are wedge-bonded. After the connection, aging heat treatment was performed at 300 ° C. for 30 minutes.
  • Thermal shock resistance was performed by a power cycle test. In the power cycle test, heating and cooling are alternately repeated for the semiconductor device to which the Al wiring material is connected. The heating is performed over 2 seconds until the temperature of the connection portion of the Al wiring material in the semiconductor device reaches 120 ° C., and then cools over 20 seconds until the temperature of the connection portion reaches 30 ° C. This heating / cooling cycle is repeated 100,000 times.
  • the joint share strength of the first connection part was measured and the reliability of the connection part was evaluated.
  • the share strength measurement was performed as a comparison with the share strength of the initial connection part. 90% or more of the initial connection strength is " ⁇ ", 80% or more is “ ⁇ ", 60% or more is “ ⁇ ”, and less than 60% is “ ⁇ ”. Described in.
  • Table 1 shows the manufacturing conditions and manufacturing results.
  • Table 1 the numerical values whose content of the additive element is out of the range of the present invention are underlined.
  • the present invention example No. Nos. 1 to 9 are described in the first embodiment of the present invention.
  • 10 to 22 are described in the third embodiment of the present invention
  • Example No. 23 to 35 are the second embodiments of the present invention example No. 36 to 53 correspond to the fourth embodiment, respectively.
  • the present invention example No. In No. 53 the Ni content was out of the upper limit of the preferable range, and the value of the disconnection rate was higher than that of other examples of the present invention.
  • Comparative Example No. 1 and 2 contained only one of Sc and Zr, and the thermal shock test was x. Comparative Example No. In Nos. 3 and 4, the Sc or Zr content was out of the lower limit of the range of the present invention, and the thermal shock test was ⁇ . Comparative Example No. In Nos. 5 and 6, the Sc or Zr content was out of the upper limit of the range of the present invention, and the chip damage was x.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Thermal Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Conductive Materials (AREA)
  • Wire Bonding (AREA)

Abstract

製造時の歩留まり低下を抑制しつつ、チップクラックの抑制と、熱衝撃耐性とを両立したAl配線材を提供する。該Al配線材は、少なくともScとZrを含有し、Scの含有量をx1[重量%]、Zrの含有量をx2[重量%]としたとき、0.01≦x1≦0.5、及び0.01≦x2≦0.3を満たし、残部はAlを含む。

Description

Al配線材
 本発明は、Al配線材に関する。さらには、該Al配線材を含む半導体装置に関する。
 半導体装置では、半導体チップ上に形成された電極と、リードフレームや基板上の電極との間をボンディングワイヤやボンディングリボン(これらを総称して「配線材」ともいう。)によって接続している。パワー半導体装置においては主にアルミニウム(Al)を材質とする配線材(以下、単に「Al配線材」ともいう。)が用いられており、例えば、特許文献1には、パワー半導体モジュールにおいて、300μmφのAlボンディングワイヤを用いる例が示されている。また、Al配線材を用いたパワー半導体装置において、ボンディング方法としては、半導体チップ上電極との第1接続と、リードフレームや基板上の電極との第2接続のいずれも、ウェッジ接合が用いられている。
 Al配線材を用いたパワー半導体装置は、エアコンや太陽光発電システムなどの大電力機器、車載用の半導体装置として用いられることが多い。これらの半導体装置においては、装置作動時に、配線材の接合部は150℃以上の高温にさらされる場合もある。配線材として高純度のAlのみからなる材料を用いた場合、装置作動時の温度環境において配線材の軟化が進行しやすいため、高温環境で使用することが困難であった。
 Alに特定の元素を添加した材料からなるAl配線材が提案されている。例えば、特許文献2には、Alに0.05~1重量%のスカンジウム(Sc)を添加し析出硬化させることによって機械的強度の向上したAlボンディングワイヤが開示されている。特許文献3には、ニッケル(Ni)、珪素(シリコン)(Si)及びリン(P)のうちの1種以上を合計で800重量ppm以下含有するAl配線材が良好な接合強度、耐候性を呈することが開示されている。特許文献4には、0.01~0.2重量%の鉄(Fe)と1~20重量ppmのSiを含有し、Feの固溶量が0.01~0.06重量%であり、Feの析出量が固溶量の7倍以下であり、かつ、平均結晶粒径が6~12μmであるAlボンディングワイヤが開示されており、当該ワイヤが良好な接合信頼性を呈することが記載されている。
特開2002-314038号公報 特表2016-511529号公報 特開2016-152316号公報 特開2014-129578号公報
 装置の作動サイクルに伴う温度変化の著しいパワー半導体装置においては、温度変化に伴う衝撃的な熱応力が生じ(以下、斯かる現象を「熱衝撃」ともいう。)、Al配線材と被接続部材との接続部等が損傷する場合がある。詳細には、作動サイクルに伴う温度変化に伴い、Al配線材と被接続部材との熱膨張率差に起因して、接続部界面にクラックが発生する場合がある(以下、斯かる現象を「ボンドクラック」ともいう。)。パワー半導体装置ではまた、Al配線材自体の伸縮による曲げ応力に起因して接続部近傍のループ立ち上がり部にクラックが生じる場合もある(以下、斯かる現象を「ヒールクラック」ともいう。)。装置作動時の環境下における腐食により、これらボンドクラックやヒールクラックは進展し、最終的にAl配線材が被接続部材から剥離するなどして接合信頼性は損なわれる場合があった。
 他方、高温環境下におけるAl配線材の軟化を抑制する方法として、Al配線材に他元素を添加して結晶粒の粗大化を抑制し、Al配線材を高強度化させる方法が考えられる。Al配線材について、結晶粒の粗大化を抑制するには、ScやNi、Feといった元素を添加することが効果的であるが、これらの元素の含有量が高まるにつれて、Al配線材の製造時に断線や傷が生じ歩留まりが低下したり、Al配線材を被接続部材と接続する際に被接続部材が損傷したり(以下、斯かる現象を「チップクラック」ともいう。)する場合がある。また、これらの添加元素がAlとの間で形成した金属間化合物が凝集し粗大化すると、ボンドクラックやヒールクラックの発生・進展に悪影響を及ぼす(すなわち、クラックの発生・進展を加速させる)場合もある。
 Alに他元素を添加し高強度化されたAl配線材については幾つか報告されているものの、製造時の歩留まり低下を抑制しつつ、チップクラックの抑制と、装置の作動サイクルに伴う熱衝撃に対する耐性(以下、単に「熱衝撃耐性」ともいう)とを両立させることには、改善の余地があった。
 本発明は、製造時の歩留まり低下を抑制しつつ、チップクラックの抑制と、熱衝撃耐性とを両立したAl配線材を提供することを課題とする。
 本発明者らは、上記課題につき鋭意検討した結果、下記構成を有するAl配線材によって上記課題を解決できることを見出し、斯かる知見に基づいて更に検討を重ねることによって本発明を完成した。
 すなわち、本発明は以下の内容を含む。
[1] 少なくともScとZrを含有し、Scの含有量をx1[重量%]、Zrの含有量をx2[重量%]としたとき、
 0.01≦x1≦0.5、及び
 0.01≦x2≦0.3
を満たし、残部はAlを含む、Al配線材。
[2] さらにNiを含有し、その含有量をx3[重量ppm]としたとき、10≦x3≦500を満たす、[1]に記載のAl配線材。
[3] x1とx2がx2/x1>0.5の関係を満たす、[1]又は[2]に記載のAl配線材。
[4] Al配線材の長手軸線部のビッカース硬度が40Hv以下である、[1]~[3]の何れかに記載のAl配線材。
[5] 580~640℃にて30秒間以下の調質熱処理に付されてなる、[1]~[4]の何れかに記載のAl配線材。
[6] Al以外の金属を主成分とする被覆を有していない、[1]~[5]の何れかに記載のAl配線材。
[7] ボンディングワイヤである、[1]~[6]の何れかに記載のAl配線材。
[8] 被接続部材との接続後に250~400℃にて30~60分間の時効熱処理に付される、[1]~[7]の何れかに記載のAl配線材。
[9] [1]~[8]の何れかに記載のAl配線材を含む半導体装置。
 本発明によれば、製造時の歩留まり低下を抑制しつつ、チップクラックの抑制と、熱衝撃耐性とを両立したAl配線材を提供することができる。
 以下、本発明をその好適な実施形態に即して詳細に説明する。
 [Al配線材]
 本発明のAl配線材は、少なくともスカンジウム(Sc)とジルコニウム(Zr)を含有し、Scの含有量をx1[重量%]、Zrの含有量をx2[重量%]としたとき、0.01≦x1≦0.5、及び0.01≦x2≦0.3を満たすことを特徴とする。
 Scは、Al配線材の再結晶温度を上昇させ、半導体装置を高温環境で使用し続けたときにおいても、結晶粒の粗大化を抑制しAl配線材の強度を維持することに寄与する。Scの添加量が多いほど、高温環境下における結晶粒の粗大化は抑制される傾向にあるが、先述のとおり、Scの添加量が高まると、Al配線材の製造時に断線や傷が生じ歩留まりが低下したり、Al配線材を被接続部材と接続する際にチップクラックが生じたりする場合がある。また、ScとAlとの間で形成した金属間化合物が凝集し粗大化すると、ボンドクラックやヒールクラックの発生・進展に悪影響を及ぼす(すなわち、クラックの発生・進展を加速させる)場合もある。これに対し、Scを0.01~0.5重量%の範囲で含有すると共に、Zrを0.01~0.3重量%の範囲で含有する本発明のAl配線材は、高温環境下における結晶粒の粗大化を抑制し得るというScの効果はそのままに、Al配線材の接続以前においては適度な強度・硬度を呈し、製造時の歩留まり低下や接続時のチップクラックの発生を抑制し得る。加えて、本発明のAl配線材は、装置の作動サイクルに伴う温度変化の著しいパワー半導体装置における使用に際しても、AlとScとの金属間化合物の凝集・粗大化を抑制し、ボンドクラックやヒールクラックの発生・進展を著しく抑制することが可能である。このように、本発明のAl配線材は、製造時の歩留まり低下を抑制しつつ、チップクラックの抑制と、熱衝撃耐性とを両立したものであり、装置の作動サイクルに伴う温度変化の著しい半導体装置の長期的な作動信頼性の向上に著しく寄与するものである。
 -Sc(第1元素)-
 本発明のAl配線材は、第1元素として、Scを0.01~0.5重量%の範囲にて含有する。すなわち、Al配線材中のScの含有量をx1[重量%]としたとき、0.01≦x1≦0.5を満たす。
 高温環境下における結晶粒の粗大化を抑制しAl配線材の強度を維持する観点から、Al配線材中のScの含有量、すなわちx1は、0.01重量%以上であり、好ましくは0.02重量%以上、0.03重量%以上、0.04重量%以上又は0.05重量%以上である。
 Scの含有量x1の上限は、製造時の歩留まり低下と接続時のチップクラックを抑える観点から、0.5重量%以下であり、好ましくは0.48重量%以下、0.46重量%以下、0.45重量%以下、0.44重量%以下、0.42重量%以下又は0.4重量%以下である。
 -Zr(第2元素)-
 本発明のAl配線材は、第2元素として、Zrを0.01~0.3重量%の範囲にて含有する。すなわち、Al配線材中のZrの含有量をx2[重量%]としたとき、0.01≦x2≦0.3を満たす。
 ZrをScと組み合わせて含有することによって、本発明のAl配線材は、製造時の歩留まり低下を抑制しつつ、チップクラックの抑制と、熱衝撃耐性とを両立することができる。ここで、Al配線材の強度向上のみに着目すれば、Scを単独で含有する場合やZrを単独で含有する場合であっても或る程度達成し得るが、チップクラックの抑制と熱衝撃耐性の両立は、ScとZrを組み合わせて含有させる場合において特異的に格別高いレベルにて達成される。
 Scとの組み合わせにおいて特に優れた熱衝撃耐性を実現する観点から、Al配線材中のZrの含有量、すなわちx2は、0.01重量%以上であり、好ましくは0.02重量%以上、0.03重量%以上、0.04重量%以上又は0.05重量%以上である。
 Zrの含有量x2の上限は、製造時の歩留まり低下と接続時のチップクラックを抑える観点から、0.3重量%以下であり、好ましくは0.28重量%以下、0.26重量%以下、0.25重量%以下、0.24重量%以下、0.22重量%以下又は0.2重量%以下である。
 Scの含有量x1[重量%]とZrの含有量x2[重量%]の比x2/x1は、x1及びx2の各々が上記好適範囲にある限り特に限定されず、例えば0.05以上、0.1以上、0.2以上などとし得る。とりわけ長期にわたって優れた熱衝撃耐性を呈するAl配線材を実現し得る観点から、x1とx2は、x2/x1>0.5の関係を満たすことが好ましく、より好ましくはx2/x1≧0.55、x2/x1≧0.6、x2/x1≧0.65、x2/x1≧0.7、x2/x1≧0.75、又はx2/x1≧0.8の関係を満たす。斯かるx2/x1比の上限は、x1及びx2の各々が上記好適範囲にある限り特に限定されないが、高温環境下において所期の強度を呈するAl配線材を実現し易い観点から、好ましくは10以下(すなわち、10≧x2/x1)、8以下、6以下又は5以下とし得る。x2/x1比が上記の好適範囲内であると、特に0.15≦x1の場合に、上記効果の恩恵をより享受することができる。
 -Ni(第3元素)-
 本発明のAl配線材は、さらにNiを含有してよい。ScとZrに加えて、Niを含有することにより、耐食性を向上させ得ると共に、高温環境下における結晶粒の粗大化をより一層抑制しAl配線材の強度を高いレベルにて維持することができる。
 Al配線材中のNiの含有量は10~500重量ppmの範囲としてよい。すなわち、Al配線材中のNiの含有量をx3[重量ppm]としたとき、10≦x3≦500を満たしてよい。
 優れた耐食性を実現すると共に、高温環境下における結晶粒の粗大化を抑制しAl配線材の強度を維持する観点から、Al配線材中のNiの含有量、すなわちx3は、好ましくは10重量ppm以上、より好ましくは15重量ppm以上、20重量ppm以上、25重量ppm以上又は30重量ppm以上である。
 Niの含有量x3の上限は、製造時の歩留まり低下と接続時のチップクラックを抑える観点から、好ましくは500重量ppm以下、より好ましくは450重量ppm以下、400重量ppm以下、350重量ppm以下、300重量ppm以下、250重量ppm以下、200重量ppm以下、150重量ppm以下又は100重量ppm以下である。
 本発明のAl配線材の残部は、Alを含む。Al配線材を製造する際のアルミニウム原料としては、純度が5N(Al:99.999重量%以上)以上のアルミニウムを用いることが好適である。本発明の効果を阻害しない範囲において、本発明のAl配線材の残部は、Al以外の元素を含有してよい。本発明のAl配線材の残部におけるAlの含有量は、本発明の効果を阻害しない限りにおいて特に限定されないが、好ましくは98重量%以上、98.5重量%以上、99重量%以上、99.5重量%以上、99.6重量%以上、99.7重量%以上、99.8重量%以上、又は99.9重量%以上である。好適な一実施形態において、本発明のAl配線材の残部は、Al及び不可避不純物からなる。
 製造時の歩留まり低下を抑制しつつ、チップクラックの抑制と、熱衝撃耐性とを高いレベルにて両立し得るAl配線材として、特に好適な実施形態を以下に示す。
 特に好適な一実施形態において、本発明のAl配線材は、ScとZrを含有し、Scの含有量をx1[重量%]、Zrの含有量をx2[重量%]としたとき、0.01≦x1<0.15、及び0.01≦x2≦0.3を満たし、残部がAl及び不可避不純物からなることを特徴とする。以下、斯かる実施形態を「第1実施形態」ともいう。
 他の特に好適な一実施形態において、本発明のAl配線材は、ScとZrとNiを含有し、Scの含有量をx1[重量%]、Zrの含有量をx2[重量%]、Niの含有量をx3[重量ppm]としたとき、0.01≦x1<0.15、0.01≦x2≦0.3、10≦x3≦500を満たし、残部がAl及び不可避不純物からなることを特徴とする。以下、斯かる実施形態を「第2実施形態」ともいう。
 他の特に好適な一実施形態において、本発明のAl配線材は、ScとZrを含有し、Scの含有量をx1[重量%]、Zrの含有量をx2[重量%]としたとき、0.15≦x1≦0.5、及び0.01≦x2≦0.3を満たし、残部がAl及び不可避不純物からなることを特徴とする。以下、斯かる実施形態を「第3実施形態」ともいう。
 他の特に好適な一実施形態において、本発明のAl配線材は、ScとZrとNiを含有し、Scの含有量をx1[重量%]、Zrの含有量をx2[重量%]、Niの含有量をx3[重量ppm]としたとき、0.15≦x1≦0.5、0.01≦x2≦0.3、10≦x3≦500を満たし、残部がAl及び不可避不純物からなることを特徴とする。以下、斯かる実施形態を「第4実施形態」ともいう。
 とりわけ長期にわたる熱衝撃耐性に優れるAl配線材を実現し得る観点から、上記第3及び第4実施形態、特に第3実施形態では、Scの含有量x1[重量%]とZrの含有量x2は、x2/x1>0.5の関係を満たすことが好ましい。斯かる比x2/x1の好適範囲は先述のとおりである。
 Al配線材中のSc、Zr、Ni等の含有量は、後述の[元素含有量の測定]に記載の方法により測定することができる。
 本発明のAl配線材は、該Al配線材の外周に、Al以外の金属を主成分とする被覆を有していてもよく該被覆を有していなくてもよい。好適な一実施形態において、本発明のAl配線材は、該Al配線材の外周に、Al以外の金属を主成分とする被覆を有していない。ここで、「Al以外の金属を主成分とする被覆」とは、Al以外の金属の含有量が50重量%以上である被覆をいう。
 本発明のAl配線材は、Alボンディングワイヤであってもよく、Alボンディングリボンであってもよい。本発明のAl配線材がAlボンディングワイヤである場合、その線径は特に限定されず、例えば、50~600μmであってよい。本発明のAl配線材がAlボンディングリボンである場合、その矩形若しくは略矩形の断面の寸法(w×t)は、特に限定されず、例えば、wは100~3000μmであってよく、tは50~600μmであってよい。
 本発明のAl配線材の製造方法は特に限定されず、例えば、押し出し加工、スエージング加工、伸線加工、圧延加工等の公知の加工方法を用いて製造してよい。例えば、Sc、Zr及び含有する場合にはNi等の含有量が上記特定範囲となるように、アルミニウム原料と、Sc、Zr及び含有する場合にはNi等の原料とを出発原料として秤量した後、これを溶融混合することでインゴットを得る。あるいは、Sc、Zr、Ni等の原料としては、それら元素を含む母合金を用いてもよい。このインゴットを最終寸法となるまで加工して、Al配線材を形成することができる。Sc、Zr及び含有する場合にはNi等の含有量が上記特定範囲にある本発明のAl配線材では、断線や傷の発生を量産に問題無いレベルに抑えつつ製造(加工)することができる。
 加工の途中、あるいは加工終了後に、Sc、Zr及び含有する場合にはNi等を固溶させるため、溶体化熱処理を行うと好ましい。溶体化熱処理の条件は、例えば、570~640℃で30分間~3時間としてよい。なお、先述の第1、第2実施形態において、x2が0.01≦x2≦0.15を満たす場合には、インゴット製造時にSc、Zr等を全て固溶させることができるため、溶体化熱処理は特に実施しなくてもよい。
 以下、Alボンディングワイヤの製造に即してさらに説明する。
 加工終了後であって、上記溶体化熱処理を実施した場合はその後の段階で、ワイヤ軟質化のための調質熱処理を行う。加工途中で調質熱処理を付加しても良い。調質熱処理によって、ワイヤの結晶組織を、加工組織から再結晶組織に変化させる。これにより、結晶組織が再結晶組織となるため、ワイヤの軟質化を実現することができる。調質熱処理の温度条件としては、例えば、送線速度一定で炉内温度のみを変更して調質したワイヤの引張強度を確認し、該引張強度が60~140MPaの範囲となるように熱処理温度を決定すればよい。熱処理温度は、例えば、580~640℃の範囲としてよい。好適な一実施形態において、調質熱処理の時間は30秒間以下(より好ましくは25秒間以下又は20秒間以下)である。斯かる短時間の調質熱処理を行うことにより、先述の第3、第4実施形態のようにSc含有量が比較的高い場合であっても、金属間化合物の析出なしに結晶組織を再結晶組織に変化させることができる。
 本発明のAl配線材においては、好ましくは、その製造過程で溶体化処理を行うことにより、Sc、Zr、含有する場合にはNi等、及びそれらの金属間化合物が析出していない。したがって、好適な一実施形態に係るAl配線材において、Al配線材中のSc及びZrの合計含有量を100重量%としたとき、金属間化合物相として、Alと分離した相に存在するSc及びZrの合計量は、好ましくは5重量%以下、より好ましくは4重量%以下、3重量%以下、2重量%以下又は1重量%以下である。Al配線材において金属間化合物相に存在するSc及びZrの合計量は、Al配線材の電解抽出残渣の化学分析により測定することができる。
 Sc及びZrが固溶され、また結晶組織を再結晶組織とすることにより、Al配線材は適度な硬さを呈することとなる。本発明のAl配線材において、その長手軸線部(長手方向における軸線部;すなわち、Al配線材の中心部)のビッカース硬度は40Hv以下である。ここで、Al配線材の長手軸線とは、Al配線材がAlボンディングワイヤである場合はその中心軸線を、また、Al配線材が矩形又は略矩形の断面(w×t)を有するAlボンディングリボンである場合はwの中心かつtの中心を満たす中心軸線を意味する。本発明のAl配線材は、被接続部材への接続の時点においては、このように適度な硬さを有することから、チップクラックの発生を抑制し得る。Al配線材のビッカース硬度は、後述の[ビッカース硬度の測定]に記載の方法により測定することができる。
 本発明のAl配線材において、ワイヤ長手方向に垂直な断面(C断面)における平均結晶粒径は、好ましくは1~50μmである。平均結晶粒径が1μm以上であれば、加工時の調質熱処理による再結晶化が適度に進行しており、Al配線材の製造過程で溶体化熱処理を行って含有成分を強制固溶することと相まって、Al配線材が軟化し、ボンディング時のチップクラックの発生、接合部の接合性の低下などを防止することができる。一方、平均結晶粒径が50μmを超えると、Al配線材の再結晶化が進行しすぎていることを示し、接合部の信頼性が低下する恐れがある。加工の過程で調質熱処理を行うことにより、Al配線材のC断面における平均結晶粒径を1~50μmとし易い。平均結晶粒径は、EBSD(Electron Back Scatter Diffraction Patterns)などの測定方法を用いて各結晶粒の面積を求め、各結晶粒の面積を円に見なした時の直径の平均とする。Al配線材のC断面の平均結晶粒径は、後述の[C断面の平均結晶粒径の測定]に記載の方法により測定することができる。
 本発明のAl配線材の比抵抗は、好ましくは3.6μΩ・cm以下である。また、本発明のAl配線材を300℃、30分間の熱処理に付したとき、その比抵抗は、好ましくは3.0μΩ・cm以下である。本発明のAl配線材はこのように比抵抗が低いことから、装置作動時の発熱量を低減でき、(1)再結晶化とAl配線材の軟化、(2)クラックの発生・進展を抑えることができ、半導体装置の長期作動時においても接合信頼性を担保させ得る。Al配線材の比抵抗は、直流4端子測定法により測定することができる。例えば、抵抗計として日置電機株式会社製RM3544-01を用い、試料長さ400mm、測定電流1mAの条件にて測定することができる。測定回数は5回とし、その算術平均値を各試料の比抵抗値として求めることができる。
 本発明のAl配線材は、Sc、Zr及び含有する場合にはNi等を上記特定量にて含有すると共に、固溶強化と配線材製造過程の熱処理による組織制御の働きによって、適度な強度を呈する。例えば、本発明のAl配線材は、50~130MPaの破断強度を呈し得る。Al配線材の破断強度は、後述の[機械的特性の測定]に記載の方法により測定することができる。
 本発明のAl配線材と被接続部材との接続は、半導体チップ上電極との第1接続と、リードフレームや回路基板(単に「基板」ともいう。)上の電極との第2接続のいずれも、ウェッジ接合により実施する。被接続部材との接続後に、Al配線材を含む半導体装置の時効熱処理を行うことが好ましい。時効熱処理の結果として、Al配線材中のSc及びZrはAlとの間で金属間化合物Al(Sc,Zr1-x)(式中、xは0<x<1を満たす。以下、同じである。)を形成し、該金属間化合物の微細な相が析出する。Al配線材中に斯かる微細相が形成された結果として、Al配線材が析出強化され、その強度が増大する。時効熱処理条件としては、金属間化合物Al(Sc,Zr1-x)の微細相を形成し得る限り特に限定されないが、例えば、250~400℃、30~60分間が好適である。なお、Al配線材にSc、Zrをそれぞれ単独で添加する場合等は、金属間化合物としてそれぞれAlSc、AlZrが形成される。これらAlSc、AlZrの微細相も、析出強化によりAl配線材の強度を増大させる効果は奏するものの、本発明者らは、これらAlSc、AlZrの微細相に比しAl(Sc,Zr1-x)の微細相は凝集、粗大化の速度が顕著に低く、その上、Al(母相)の結晶粒の粗大化も顕著に抑制し得ることから、長期にわたって格別優れた熱衝撃耐性を実現し得ることを見出したものである。
 したがって、本発明は、半導体装置の製造方法も提供する。好適な一実施形態において、本発明の半導体装置の製造方法は、
 (A)半導体チップ上の電極と、リードフレーム又は基板上の電極とを、本発明のAl配線材により接続する工程、及び
 (B)Al配線材による接続の後、時効熱処理を行う工程
を包含する。
 工程(A)で用いる半導体チップ、リードフレーム又は基板は、後述のとおり、半導体装置を構成するために使用し得る公知のものを用いてよい。また、工程(A)で用いる本発明のAl配線材の詳細・好適な態様は、先述のとおりである。工程(A)において、半導体チップ上の電極との第1接続と、リードフレーム又は基板上の電極との第2接続のいずれも、ウェッジ接合により実施する。
 工程(B)において、Al配線材中のSc及びZrはAlとの間で金属間化合物Al(Sc,Zr1-x)を形成し、該金属間化合物の微細な相が析出する。
 [半導体装置]
 本発明のAl配線材を用いて、半導体チップ上の電極と、リードフレームや回路基板上の電極とを接続することによって、半導体装置を製造することができる。
 本発明の半導体装置は、本発明のAl配線材を含む。本発明のAl配線材は、製造時の歩留まり低下を抑制しつつ、チップクラックの抑制と、熱衝撃耐性とを両立したものであり、該Al配線材を含む半導体装置は、装置の作動サイクルに伴う温度変化が著しい場合であっても、優れた作動信頼性を実現し得る。
 一実施形態において、本発明の半導体装置は、回路基板、半導体チップ、及び回路基板と半導体チップとを導通させるためのAl配線材を含み、該Al配線材が本発明のAl配線材であることを特徴とする。ここで、本発明の半導体装置についていう「本発明のAl配線材」とは、Sc、Zr及び含有する場合にはNi等の含有量が先述の好適範囲にある限りにおいて、Sc、Zr及び含有する場合にはNi等の少なくとも一部がAlとの間で金属間化合物を形成している場合も包含することに留意されたい。本発明の半導体装置においては、高温環境下において長時間作動させた場合であっても、金属間化合物相として、Alと分離した相に存在するSc及びZrの合計量を好適な範囲に維持することができ、金属間化合物を微細な相のまま維持することが可能である。
 本発明の半導体装置において、回路基板及び半導体チップは特に限定されず、半導体装置を構成するために使用し得る公知の回路基板及び半導体チップを用いてよい。あるいはまた、回路基板に代えてリードフレームを用いてもよい。例えば、特開2002-246542号公報に記載される半導体装置のように、リードフレームと、該リードフレームに実装された半導体チップとを含む半導体装置の構成としてよい。
 半導体装置としては、電気製品(例えば、コンピューター、携帯電話、デジタルカメラ、テレビ、エアコン、太陽光発電システム等)及び乗物(例えば、自動二輪車、自動車、電車、船舶及び航空機等)等に供される各種半導体装置が挙げられ、中でも電力用半導体装置(パワー半導体装置)が好適である。
 純度5N(99.999重量%以上)のアルミニウムと、純度99.9重量%以上のSc、Zr、Niを原料として溶融し、表1に示す組成のAlインゴットを得た。該インゴットを押し出し加工、スエージング加工した後、580℃で2時間の熱処理を施し、さらに伸線加工を行った。線径が1mmの段階で、580℃、1時間の溶体化熱処理を行い、急冷(水冷)した。その後、最終線径を200μmとしてダイス伸線加工を行い、伸線加工終了後に15秒間の熱処理時間において引張強度が120MPaとなるように調質熱処理を行い、Al配線材を得た。
 [元素含有量の測定]
 Al配線材中のSc、Zr及びNi等の含有量は、分析装置として、ICP-OES((株)日立ハイテクサイエンス製「PS3520UVDDII」)又はICP-MS(アジレント・テクノロジーズ(株)製「Agilent 7700x ICP-MS」)を用いて測定した。
 [ビッカース硬度の測定]
 Al配線材の長手軸線部のビッカース硬度は、マイクロビッカース硬度計((株)ミツトヨ製「HM-200」)を用いて測定を行った。Al配線材の長手軸線を含む、長手方向に平行な断面(L断面)を測定対象面として、長手軸線部(すなわち、Al配線材の中心位置)における硬度を測定した。5箇所の測定値の平均を、そのサンプルのビッカース硬度として採用した。
 [C断面の平均結晶粒径の測定]
 C断面の平均結晶粒径の測定は、EBSD法(測定装置 オックスフォード・インストゥルメンツ(株)製EBSD分析システム「AZtec HKL])を用いて測定した。詳細には、C断面の全体について各結晶粒の面積を求め、各結晶粒の面積を円の面積に換算してその直径の平均を算出し、これを平均結晶粒径として採用した。なお、各結晶粒の面積は、隣り合う測定点間の方位差が15度以上の位置を粒界と定義して求めた。
 [機械的特性の測定]
 Al配線材の破断強度は、Instron製引張試験機を用いて、標点間距離100mm、引張速度10mm/分、ロードセル定格荷重1kNの条件で引っ張り、測定した。測定は5回実施し、その平均値をそのサンプルの破断強度として採用した。
 <断線率の評価>
 断線率[回/km]は、線径1mmから200μmまでダイス伸線加工した際の断線回数(N[回])と、ダイス伸線加工後のAl配線材(線径200μm)の長さ(L[km])とに基づき、式:N/Lにより算出した。
 半導体装置において、半導体チップの電極はAl-Cuパッドであり、外部端子はAgを用いた。半導体チップの電極とAl配線材との間の第1接続部、外部端子とAl配線材との間の第2接続部ともに、ウェッジ接合とした。接続の後に、300℃、30分間の時効熱処理を行った。
 <チップダメージの評価>
 半導体装置におけるチップクラックは、パッド表面の金属を酸にて溶かし、パッド下を顕微鏡にて観察して評価した(評価数N=50)。クラック及びボンディングの痕跡等も観られない良好な場合を「◎」とし、クラックは無いもののボンディングの痕跡が確認される箇所があるもの(評価数50中、3箇所以下)を「○」とし、それ以外を「×」として、表1の「チップダメージ」欄に記載した。
 <熱衝撃耐性の評価>
 熱衝撃耐性は、パワーサイクル試験によって行った。パワーサイクル試験は、Al配線材が接続された半導体装置について、加熱と冷却を交互に繰り返す。加熱は、半導体装置におけるAl配線材の接続部の温度が120℃になるまで2秒間かけて加熱し、その後、接続部の温度が30℃になるまで20秒間かけて冷却する。この加熱・冷却のサイクルを10万回繰り返す。
 上記パワーサイクル試験の後、第1接続部の接合シェア強度を測定し、接続部信頼性の評価を行った。シェア強度測定は初期の接続部のシェア強度との比較として行った。初期の接続強度の90%以上を「◎」とし、80%以上を「○」とし、60%以上を「△」とし、60%未満を「×」として、表1の「熱衝撃試験」欄に記載した。
 製造条件、製造結果を表1に示す。表1において、添加元素の含有量が本発明の範囲から外れる数値に下線を付している。
Figure JPOXMLDOC01-appb-T000001
 本発明例No.1~53はいずれも、Sc及びZrの含有量が本発明範囲内にあり、断線率、チップダメージ、熱衝撃試験のいずれも良好な結果であった。なお、本発明例No.1~9は第1実施形態に、本発明例No.10~22は第3実施形態に、本発明例No.23~35は第2実施形態に、本発明例No.36~53は第4実施形態にそれぞれ該当する。第3実施形態に該当し且つZr/Sc重量比が0.5を超える本発明例No.10~20、22は、熱衝撃試験において極めて良好な結果を示すことを確認した。なお、本発明例No.53は、Niの含有量が好適範囲の上限を外れており、断線率の値が他の本発明例と比較して高かった。
 比較例No.1、2は、Sc及びZrの一方しか含有せず、熱衝撃試験が×であった。
 比較例No.3、4は、Sc又はZrの含有量が本発明範囲の下限を外れ、熱衝撃試験が×であった。
 比較例No.5、6は、Sc又はZrの含有量が本発明範囲の上限を外れ、チップダメージが×であった。

Claims (9)

  1.  少なくともScとZrを含有し、Scの含有量をx1[重量%]、Zrの含有量をx2[重量%]としたとき、
     0.01≦x1≦0.5、及び
     0.01≦x2≦0.3
    を満たし、残部はAlを含む、Al配線材。
  2.  さらにNiを含有し、その含有量をx3[重量ppm]としたとき、10≦x3≦500を満たす、請求項1に記載のAl配線材。
  3.  x1とx2がx2/x1>0.5の関係を満たす、請求項1又は2に記載のAl配線材。
  4.  Al配線材の長手軸線部のビッカース硬度が40Hv以下である、請求項1~3の何れか1項に記載のAl配線材。
  5.  580~640℃にて30秒間以下の調質熱処理に付されてなる、請求項1~4の何れか1項に記載のAl配線材。
  6.  Al以外の金属を主成分とする被覆を有していない、請求項1~5の何れか1項に記載のAl配線材。
  7.  ボンディングワイヤである、請求項1~6の何れか1項に記載のAl配線材。
  8.  被接続部材との接続後に250~400℃にて30~60分間の時効熱処理に付される、請求項1~7の何れか1項に記載のAl配線材。
  9.  請求項1~8の何れか1項に記載のAl配線材を含む半導体装置。
PCT/JP2020/035337 2019-10-01 2020-09-17 Al配線材 WO2021065551A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
KR1020227009855A KR20220064974A (ko) 2019-10-01 2020-09-17 Al 배선재
EP20873056.4A EP4040448A4 (en) 2019-10-01 2020-09-17 AL WIRING MATERIAL
CN202080069219.0A CN114467167A (zh) 2019-10-01 2020-09-17 Al布线材料
US17/764,872 US20220341004A1 (en) 2019-10-01 2020-09-17 Al wiring material
JP2021550614A JPWO2021065551A1 (ja) 2019-10-01 2020-09-17

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019-181187 2019-10-01
JP2019181187 2019-10-01

Publications (1)

Publication Number Publication Date
WO2021065551A1 true WO2021065551A1 (ja) 2021-04-08

Family

ID=75338202

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/035337 WO2021065551A1 (ja) 2019-10-01 2020-09-17 Al配線材

Country Status (7)

Country Link
US (1) US20220341004A1 (ja)
EP (1) EP4040448A4 (ja)
JP (1) JPWO2021065551A1 (ja)
KR (1) KR20220064974A (ja)
CN (1) CN114467167A (ja)
TW (1) TW202122597A (ja)
WO (1) WO2021065551A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20230074994A (ko) * 2021-11-22 2023-05-31 삼원동관 주식회사 고내열성 알루미늄 합금

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001348637A (ja) * 2000-06-05 2001-12-18 Hitachi Cable Ltd アルミニウム合金材及びそれを用いた配線材の製造方法
JP2002246542A (ja) 2001-02-15 2002-08-30 Matsushita Electric Ind Co Ltd パワーモジュール及びその製造方法
JP2002314038A (ja) 2001-04-18 2002-10-25 Hitachi Ltd パワー半導体モジュール
JP2004218090A (ja) * 2003-01-15 2004-08-05 United Technol Corp <Utc> アルミニウム基合金
JP2014047417A (ja) * 2012-09-03 2014-03-17 Tanaka Electronics Ind Co Ltd アルミニウム合金ボンディングワイヤ
JP2014129578A (ja) 2012-12-28 2014-07-10 Tanaka Electronics Ind Co Ltd パワ−半導体装置用アルミニウム合金細線
JP2016511529A (ja) 2012-11-22 2016-04-14 ヘレウス ドイチェラント ゲーエムベーハー ウント カンパニー カーゲー ボンディング用途のアルミニウム合金ワイヤ
JP2016152316A (ja) 2015-02-17 2016-08-22 住友金属鉱山株式会社 ボンディング用アルミニウム配線材及び電子部品

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5589175B2 (ja) * 2011-09-05 2014-09-17 大電株式会社 アルミニウム基導電材料並びにそれを用いた電線及びケーブル
EP3115473B1 (en) * 2014-03-06 2020-07-15 Furukawa Electric Co. Ltd. Aluminum alloy wire, aluminum alloy strand wire, coated electric wire, wire harness, process for producing aluminum alloy wire, and method for examining aluminum alloy wire
US9312235B1 (en) * 2014-12-17 2016-04-12 Metal Industries Research & Development Centre Aluminum-based alloy conductive wire used in semiconductor package and manufacturing method thereof
CN109457145A (zh) * 2018-12-25 2019-03-12 有研工程技术研究院有限公司 一种超薄宽幅雷电防护用微孔铝网及其制备方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001348637A (ja) * 2000-06-05 2001-12-18 Hitachi Cable Ltd アルミニウム合金材及びそれを用いた配線材の製造方法
JP2002246542A (ja) 2001-02-15 2002-08-30 Matsushita Electric Ind Co Ltd パワーモジュール及びその製造方法
JP2002314038A (ja) 2001-04-18 2002-10-25 Hitachi Ltd パワー半導体モジュール
JP2004218090A (ja) * 2003-01-15 2004-08-05 United Technol Corp <Utc> アルミニウム基合金
JP2014047417A (ja) * 2012-09-03 2014-03-17 Tanaka Electronics Ind Co Ltd アルミニウム合金ボンディングワイヤ
JP2016511529A (ja) 2012-11-22 2016-04-14 ヘレウス ドイチェラント ゲーエムベーハー ウント カンパニー カーゲー ボンディング用途のアルミニウム合金ワイヤ
JP2014129578A (ja) 2012-12-28 2014-07-10 Tanaka Electronics Ind Co Ltd パワ−半導体装置用アルミニウム合金細線
JP2016152316A (ja) 2015-02-17 2016-08-22 住友金属鉱山株式会社 ボンディング用アルミニウム配線材及び電子部品

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20230074994A (ko) * 2021-11-22 2023-05-31 삼원동관 주식회사 고내열성 알루미늄 합금
KR102617693B1 (ko) * 2021-11-22 2023-12-27 삼원동관 주식회사 고내열성 알루미늄 합금

Also Published As

Publication number Publication date
CN114467167A (zh) 2022-05-10
EP4040448A4 (en) 2023-09-13
KR20220064974A (ko) 2022-05-19
TW202122597A (zh) 2021-06-16
EP4040448A1 (en) 2022-08-10
JPWO2021065551A1 (ja) 2021-04-08
US20220341004A1 (en) 2022-10-27

Similar Documents

Publication Publication Date Title
JP6698735B2 (ja) 自動車用アルミ電線
JP5312920B2 (ja) 電子材料用銅合金板又は条
JP4516154B1 (ja) Cu−Mg−P系銅合金条材及びその製造方法
JP4563508B1 (ja) Cu−Mg−P系銅合金条材及びその製造方法
US8361255B2 (en) Copper alloy material and method of making same
JP5054160B2 (ja) Cu−Mg−P系銅合金条材及びその製造方法
JP5475230B2 (ja) 電子材料用銅合金
JP4494258B2 (ja) 銅合金およびその製造方法
JP5225787B2 (ja) 電子材料用Cu−Ni−Si系合金板又は条
JP2006009137A (ja) 銅合金
JP5437519B1 (ja) Cu−Co−Si系銅合金条及びその製造方法
US11293084B2 (en) Sheet matertal of copper alloy and method for producing same
JP7126321B2 (ja) Alボンディングワイヤ
WO2021065551A1 (ja) Al配線材
JP2018076588A (ja) 銅合金板材およびその製造方法
JP7126322B2 (ja) Alボンディングワイヤ
WO2022045133A1 (ja) Al配線材
WO2022045134A1 (ja) Al配線材
JP5595961B2 (ja) 電子材料用Cu−Ni−Si系銅合金及びその製造方法
CN115315793A (zh) Al接合线
TW202136533A (zh) Al接合線
JP2011012302A (ja) 端子・コネクタ用銅合金材及びその製造方法
JP2010209379A (ja) 端子・コネクタ用銅合金材及びその製造方法
JP2012012630A (ja) 電子材料用銅合金の製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20873056

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021550614

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20227009855

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2020873056

Country of ref document: EP

Effective date: 20220502