WO2021065499A1 - 薄膜付ウェーハの膜厚分布の測定方法 - Google Patents

薄膜付ウェーハの膜厚分布の測定方法 Download PDF

Info

Publication number
WO2021065499A1
WO2021065499A1 PCT/JP2020/035018 JP2020035018W WO2021065499A1 WO 2021065499 A1 WO2021065499 A1 WO 2021065499A1 JP 2020035018 W JP2020035018 W JP 2020035018W WO 2021065499 A1 WO2021065499 A1 WO 2021065499A1
Authority
WO
WIPO (PCT)
Prior art keywords
thin film
wafer
wavelength
film
thin
Prior art date
Application number
PCT/JP2020/035018
Other languages
English (en)
French (fr)
Inventor
登 桑原
ケビン クァクァエ
フィリップ ガスタルド
Original Assignee
信越半導体株式会社
ユニティ セミコンダクター
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 信越半導体株式会社, ユニティ セミコンダクター filed Critical 信越半導体株式会社
Priority to KR1020227010562A priority Critical patent/KR102679254B1/ko
Priority to EP20870881.8A priority patent/EP4040106A4/en
Priority to US17/762,859 priority patent/US11965730B2/en
Priority to CN202080068610.9A priority patent/CN114450778A/zh
Publication of WO2021065499A1 publication Critical patent/WO2021065499A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/02Measuring arrangements characterised by the use of optical techniques for measuring length, width or thickness
    • G01B11/06Measuring arrangements characterised by the use of optical techniques for measuring length, width or thickness for measuring thickness ; e.g. of sheet material
    • G01B11/0616Measuring arrangements characterised by the use of optical techniques for measuring length, width or thickness for measuring thickness ; e.g. of sheet material of coating
    • G01B11/0625Measuring arrangements characterised by the use of optical techniques for measuring length, width or thickness for measuring thickness ; e.g. of sheet material of coating with measurement of absorption or reflection
    • G01B11/0633Measuring arrangements characterised by the use of optical techniques for measuring length, width or thickness for measuring thickness ; e.g. of sheet material of coating with measurement of absorption or reflection using one or more discrete wavelengths
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L22/00Testing or measuring during manufacture or treatment; Reliability measurements, i.e. testing of parts without further processing to modify the parts as such; Structural arrangements therefor
    • H01L22/10Measuring as part of the manufacturing process
    • H01L22/12Measuring as part of the manufacturing process for structural parameters, e.g. thickness, line width, refractive index, temperature, warp, bond strength, defects, optical inspection, electrical measurement of structural dimensions, metallurgic measurement of diffusions
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/02Measuring arrangements characterised by the use of optical techniques for measuring length, width or thickness
    • G01B11/06Measuring arrangements characterised by the use of optical techniques for measuring length, width or thickness for measuring thickness ; e.g. of sheet material
    • G01B11/0616Measuring arrangements characterised by the use of optical techniques for measuring length, width or thickness for measuring thickness ; e.g. of sheet material of coating
    • G01B11/0625Measuring arrangements characterised by the use of optical techniques for measuring length, width or thickness for measuring thickness ; e.g. of sheet material of coating with measurement of absorption or reflection
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/02Measuring arrangements characterised by the use of optical techniques for measuring length, width or thickness
    • G01B11/06Measuring arrangements characterised by the use of optical techniques for measuring length, width or thickness for measuring thickness ; e.g. of sheet material
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/02Measuring arrangements characterised by the use of optical techniques for measuring length, width or thickness
    • G01B11/06Measuring arrangements characterised by the use of optical techniques for measuring length, width or thickness for measuring thickness ; e.g. of sheet material
    • G01B11/0616Measuring arrangements characterised by the use of optical techniques for measuring length, width or thickness for measuring thickness ; e.g. of sheet material of coating
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/8422Investigating thin films, e.g. matrix isolation method
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B21/00Microscopes
    • G02B21/0004Microscopes specially adapted for specific applications
    • G02B21/0016Technical microscopes, e.g. for inspection or measuring in industrial production processes
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B21/00Microscopes
    • G02B21/0004Microscopes specially adapted for specific applications
    • G02B21/002Scanning microscopes
    • G02B21/0024Confocal scanning microscopes (CSOMs) or confocal "macroscopes"; Accessories which are not restricted to use with CSOMs, e.g. sample holders
    • G02B21/0052Optical details of the image generation
    • G02B21/006Optical details of the image generation focusing arrangements; selection of the plane to be imaged
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B2210/00Aspects not specifically covered by any group under G01B, e.g. of wheel alignment, caliper-like sensors
    • G01B2210/56Measuring geometric parameters of semiconductor structures, e.g. profile, critical dimensions or trench depth
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination
    • G01N21/95Investigating the presence of flaws or contamination characterised by the material or shape of the object to be examined
    • G01N21/9501Semiconductor wafers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L22/00Testing or measuring during manufacture or treatment; Reliability measurements, i.e. testing of parts without further processing to modify the parts as such; Structural arrangements therefor
    • H01L22/20Sequence of activities consisting of a plurality of measurements, corrections, marking or sorting steps

Definitions

  • the present invention relates to a method for measuring the film thickness distribution of a wafer with a thin film.
  • an SOI wafer having an oxide film as a BOX layer and a single crystal silicon film as an SOI layer on a substrate is known.
  • the SOI layer thickness and the BOX layer thickness of the SOI wafer to be manufactured are set according to the user's specifications (thickness specifications), and the SOI wafer is set with the set value as the target value.
  • the in-plane distribution of the SOI layer thickness is evaluated in an inspection process or the like.
  • FD-SOI devices with a design rule of 28 nm or less are required to have strict film thickness uniformity of the SOI layer. Not only the film thickness uniformity of the entire SOI wafer having a diameter of 300 mm, but also the film thickness uniformity of the SOI layer is required even in a micro region.
  • the present inventor irradiates a part of the wafer surface with light having a single wavelength ⁇ , detects the reflected light from the region, and measures the reflected light intensity for each pixel obtained by dividing the region into a large number.
  • a method for evaluating a wafer with a thin film which obtains the reflected light intensity distribution in the region and calculates the film thickness distribution of the thin film in the region from the reflected light intensity distribution (for example, Patent Documents 1-3).
  • Patent Document 4 also discloses a method for measuring the thickness variation of layers of a multilayer semiconductor structure.
  • the present invention has been made to solve the above problems, and it is possible to measure the film thickness distribution in the micro region of the thin film with high accuracy and stability, and to obtain the film thickness distribution of the thin film wafer. It is an object of the present invention to provide a measuring method.
  • the present invention has been made to achieve the above object, and includes a thin film having at least a first thin film formed on the surface of the substrate and a second thin film formed on the surface of the first thin film.
  • a method for measuring the thickness distribution of a thin-film wafer which measures the thickness distribution of the second thin film of the wafer, using an optical microscope having an autofocus function using the thin-film wafer and irradiation light having a wavelength of ⁇ 0. Focusing is performed to determine the height Z1 of the focal point, the step of determining the wavelength ⁇ 1 of the irradiation light used to acquire the observation image of the second thin film of the thin film-attached wafer, and the focus based on the Z1.
  • the step of correcting the autofocus function of the optical microscope and the focus using the corrected autofocus function are performed, and the second thin film of the thin film-attached wafer is observed by the optical microscope.
  • a method for measuring the film thickness distribution of a thin-film wafer which comprises a step of acquiring an image and calculating the film thickness distribution from the reflected light intensity distribution in the observed image.
  • the measurement of the film thickness distribution in the micro region of the thin film can be performed with high accuracy, stability, and convenience.
  • the steps of determining the wavelength ⁇ 1 include the step of calculating the profile P1 showing the wavelength dependence of the reflectance with respect to the light in the wavelength region equal to or higher than the wavelength of the visible light of the thin film wafer by simulation, and the first step of the thin film wafer.
  • the film thickness distribution of the second thin film in the irradiation region can be calculated more accurately with higher spatial resolution without being affected by the film thickness distribution of the first thin film. Can be easily obtained.
  • the method for measuring the film thickness distribution of the wafer with a thin film is that the wafer with a thin film is an SOI wafer, the first thin film is an embedded oxide film layer, and the second thin film is an SOI layer made of a silicon single crystal. it can.
  • the film thickness distribution of the SOI layer in the irradiation region can be calculated accurately.
  • the irradiation light having a wavelength ⁇ 0 has a longer wavelength than the wavelength ⁇ 1, and the wavelength ⁇ 1 can be used as a method for measuring the film thickness distribution of the thin film wafer, which is a single wavelength selected from the visible light wavelengths.
  • measurement can be performed with visible light using a normal optical microscope (measurement system), so it can be carried out easily at low cost.
  • the film thickness distribution in the micro region of the thin film on the thin film wafer can be measured accurately, stably and easily. It becomes possible.
  • the relationship between the standard deviation of the reflection intensity distribution obtained at the time of calculating Z2 and the height Z of the SOI wafer used in the examples is shown.
  • the relationship between the standard deviation of the reflection intensity distribution obtained when calculating Z2 and the height Z of the SOI wafer used in the reference example is shown.
  • the film thickness distribution (standard deviation) evaluation results of the SOI layers of Examples and Comparative Examples are shown.
  • a thin film-attached wafer having at least a first thin film formed on the surface of the substrate and a second thin film formed on the surface of the first thin film.
  • This is a method for measuring the thickness distribution of a thin-film wafer, which measures the thickness distribution of the second thin film, and is focused by an optical microscope having an autofocus function using the thin-film wafer and irradiation light having a wavelength of ⁇ 0.
  • a step of correcting the autofocus function of the optical microscope and focusing using the corrected autofocus function are performed, and an observation image of the second thin film of the thin film-attached wafer is performed by the optical microscope. Is obtained, and the thickness distribution is calculated from the reflected light intensity distribution in the observed image.
  • the thickness distribution in the micro region of the thin film on the thin film is measured by the method of measuring the thickness distribution of the thin film wafer.
  • an optical microscope 2 as shown in FIG. 2 can be used.
  • the irradiation light from the light source 3 of the general optical microscope 2 to which the bandpass filter 4 for wavelength selection is attached can be irradiated to a part of the area of the thin film-attached wafer 1 to be evaluated.
  • the optical microscope 2 has an autofocus function (hereinafter, may be simply referred to as “AF”), and can automatically focus.
  • AF autofocus function
  • the irradiation light used in the AF function is preferably a long wavelength light having a wavelength longer than the measurement wavelength of the film thickness measurement and having a low energy that does not affect the measurement wavelength, and has a long wavelength of 750 nm or more.
  • the optical microscope 2 includes a control unit, and the control unit acquires measurement data, analyzes the acquired data, controls the measurement according to the input measurement conditions, and corrects the operating conditions based on the input data. And so on.
  • the thin film wafer which is the target of the method for measuring the film thickness distribution of the thin film wafer according to the present invention, includes a first thin film formed on the surface of the substrate and a first thin film formed on the surface of the first thin film. It has at least two thin films.
  • a wafer with a thin film for example, it is preferable to use an SOI wafer having an embedded oxide film layer (BOX layer) corresponding to the first thin film and an SOI layer corresponding to the second thin film.
  • BOX layer embedded oxide film layer
  • SOI layer embedded oxide film layer
  • FIG. 1 shows a flow chart of a method for measuring the film thickness distribution of the wafer with a thin film according to the present invention.
  • an optical microscope is used, a wafer with a thin film for evaluation is used, and focusing is performed by an AF function using irradiation light having a wavelength of ⁇ 0 to obtain a focal height Z1. Perform the process.
  • the evaluation wafer with a thin film is a wafer with a thin film to be actually measured.
  • the step shown in S2 of FIG. 1 is a step of determining the wavelength ⁇ 1 of the irradiation light used for acquiring the observation image of the second thin film of the wafer with the thin film.
  • the optimum wavelength ⁇ 1 is selected as the irradiation light to be performed.
  • the optimum wavelength ⁇ 1 corresponding to the set value (specification) of the film thickness of the second thin film and the first thin film is the film thickness of the first thin film by fixing the film thickness of the second thin film to the set value (specification).
  • this step can be performed as described in Patent Document 2, for example.
  • the profile P1 showing the wavelength dependence of the reflectance with respect to the light in the wavelength region equal to or higher than the wavelength of visible light of the thin film-attached wafer to be evaluated is calculated by simulation.
  • the profile P22 showing the dependency is calculated by simulation.
  • the wavelength of is determined to be the wavelength ⁇ 1.
  • the first thin film corresponds to the BOX layer and the second thin film corresponds to the SOI layer.
  • the film thickness specifications of the SOI wafer are SOI layer: 12 nm and BOX layer: 20 nm, it is optimal to use 492 nm as the measurement wavelength ⁇ 1 (optimum wavelength is ⁇ 1), and the film thickness specifications of the SOI wafer are the SOI layer: In the case of 12 nm and BOX layer: 25 nm, it is optimal to use 520 nm as the measurement wavelength ⁇ 1.
  • process of S2 is a process of performing simulation, and the order with the process of S1 described above does not matter. It is possible to carry out S2 before S1, and it is also possible to carry out the steps of S1 and S2 in parallel at the same time.
  • the second thin film of the wafer with a thin film is measured by an optical microscope using the irradiation light of the wavelength ⁇ 1 determined in S2 while changing the focal height with reference to Z1 acquired in S1.
  • This is the process of acquiring the observation image of.
  • the pitch of the focal height position for acquiring the observation image is preferably 0.5 ⁇ m or less, and more preferably 0.2 ⁇ m or less. Within such a range, measurement can be performed with higher accuracy.
  • the standard deviation of the reflected light intensity distribution in the observation image of the second thin film acquired in S3 is calculated, and the focal point corresponding to the peak position where the standard deviation of the reflected light intensity distribution is maximized.
  • the position Z2 where the standard deviation of the reflected light intensity distribution of the observation image of the second thin film acquired in S3 is maximum can be regarded as the focal position when the irradiation light having the wavelength ⁇ 1 is used.
  • ⁇ Z Z1-Z2 can be obtained.
  • ⁇ Z is the focal position Z1 obtained by the AF function using the irradiation light of the wavelength ⁇ 0 and the focal position Z2 when the irradiation light of the wavelength ⁇ 1 used for acquiring the observation image of the second thin film is used. This is the difference from the above, and is the correction value used for the correction of the AF function in the next step (S5).
  • the step shown in S5 of FIG. 1 is a step of correcting the AF function of the optical microscope using ⁇ Z obtained in S4 as a correction value.
  • the calculated ⁇ Z may be input to the control unit of the optical microscope as a correction value, or ⁇ Z obtained by calculation in the control unit from the input Z2 may be read as a correction value.
  • the corrected AF function is used, the correction value ⁇ Z is corrected for the focal position obtained by operating the AF function. Therefore, the second thin film has a highly accurate focal position when the irradiation light of the wavelength ⁇ 1 is used.
  • the observation image of the above will be acquired.
  • the optical microscope which is the film thickness measurement system used in Examples, Reference Examples, and Comparative Examples, has an AF function and can acquire an observation image (microscope image).
  • the wavelength of the irradiation light used in the AF function is 785 nm. Further, the wavelength of the irradiation light for acquiring the observation image is adjusted and selected by using a bandpass filter.
  • Example 2 An SOI wafer having a film thickness specification of 12 nm for the SOI layer and 20 nm for the BOX layer was used. First, this SOI wafer was set in an optical microscope (film thickness measurement system), and focusing was performed using the AF function to obtain the focal position Z1. Z1 was acquired automatically.
  • the measurement wavelength ⁇ 1 492 nm.
  • FIG. 3 shows the relationship between the height Z and the standard deviation of the reflection intensity distribution.
  • the height at which the standard deviation peaks, as shown in FIG. 3, is Z2.
  • the position of Z1 is located in a range deviating from the right side of the graph (outside the numerical range on the horizontal axis) in FIG. 3 and FIG. 4 described later.
  • the correction value ⁇ Z is corrected for the focal position obtained by AF, the observation image of the SOI layer of the SOI wafer is acquired, and the standard deviation of the film thickness distribution is calculated from the reflected light intensity distribution in the observation image of the measurement area.
  • the standard deviation of the film thickness distribution of the SOI layer is calculated based on the reflected light intensity distribution in the observation image for 5 points in the wafer surface (1 point in the center + 4 points in the position 5 mm inside from the outer peripheral edge). did.
  • the measurement area is 266 ⁇ m ⁇ 266 ⁇ m (2048 ⁇ 2048 pixels).
  • the film thickness distribution was measured using the same SOI wafers as in the examples except that the conventional film thickness distribution measuring method shown below was adopted.
  • the film thickness distribution measurement of Examples and Comparative Examples was evaluated as follows. First, according to the measurement method of the comparative example, the measurement of the frequency three times a day was repeated for 31 days. Then, the measurement method was switched to the example, and the measurement was repeated for 42 days.
  • the evaluation results are shown in Fig. 5.
  • the number of each plot represents the measurement position shown in the conceptual diagram of the wafer in the drawing.
  • the order of measurement is from right to left on the horizontal axis of FIG.
  • the standard deviation of the film thickness distribution of the SOI layer of the example using the measurement method of the present invention is reduced in variation between measurements as compared with the comparative example using the conventional measurement method. It can be seen that stable measurement results are obtained.
  • the value of the film thickness distribution standard deviation of the SOI layer in the examples is larger than that in the comparative example, but this is because the focus of the measurement wavelength is accurately adjusted, so that the film thickness distribution is reproducible. It means that it has become possible to measure well and accurately.
  • the needle with a rounded tip is changed to a stylus with a sharp tip to change the same region.
  • the surface roughness (RMS) of the above is measured, the surface roughness (RMS) is measured more accurately, and as a result, the numerical value of the surface roughness (RMS) becomes large, which is the same phenomenon.
  • the present invention is not limited to the above embodiment.
  • the above-described embodiment is an example, and any object having substantially the same configuration as the technical idea described in the claims of the present invention and exhibiting the same effect and effect is the present invention. Is included in the technical scope of.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Optics & Photonics (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Mathematical Physics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Length Measuring Devices By Optical Means (AREA)
  • Testing Or Measuring Of Semiconductors Or The Like (AREA)

Abstract

本発明は、基板と、その表面上の第一薄膜と、その上の第二薄膜とを有するウェーハの第二薄膜の膜厚分布の測定方法であって、波長λ0の照射光を用いたオートフォーカス機能を有する光学顕微鏡により焦点合わせを行って焦点の高さZ1を求め、第二薄膜の観察画像の取得に使用する照射光の波長λ1を決定し、Z1を基準に焦点の高さを変化させながら波長λ1の照射光を使用して第二薄膜の観察画像を取得し、観察画像内の反射光強度分布の標準偏差を算出し標準偏差が最大となるピーク位置に対応する焦点の高さZ2を取得しZ1とZ2との差ΔZを算出し、ΔZを補正値としてオートフォーカス機能の補正を行い、補正されたオートフォーカス機能を用いて焦点合わせを行って第二薄膜の観察画像を取得し観察画像内の反射光強度分布から膜厚分布を算出する測定方法である。これにより、膜厚分布の測定を精度高く安定して行うことが可能な方法が提供される。

Description

薄膜付ウェーハの膜厚分布の測定方法
 本発明は、薄膜付ウェーハの膜厚分布の測定方法に関する。
 薄膜付ウェーハとして、例えば、基板上にBOX層としての酸化膜、SOI層としての単結晶シリコン膜を有するSOIウェーハが知られている。一般に、SOIウェーハの製造工程において、製造するSOIウェーハのSOI層膜厚、BOX層膜厚はユーザーの仕様(膜厚スペック)により設定されており、その膜厚設定値を狙い値としてSOIウェーハを製造した後に、検査工程などでSOI層膜厚の面内分布が評価される。
 特に、デザインルール28nm以下のFD-SOIデバイスでは、SOI層の厳しい膜厚均一性が要求されている。直径300mmのSOIウェーハ全体の膜厚均一性のみでなく、ミクロな領域内においてもSOI層の膜厚均一性が要求されている。
 因ってウェーハ全体のSOI膜厚均一性を評価するだけでなく、ミクロな領域内のSOI層膜厚均一性を評価し、品質改善、品質保証する必要が生じている。従来から行われている測定領域の大きい測定スポットの膜厚測定では不十分で、顕微鏡レベルのミクロな領域内におけるSOI層の膜厚評価が必要になってきた。
 本発明者は、ウェーハ表面の一部領域に単一波長λの光を照射し、前記領域からの反射光を検出して前記領域を多数に分割したピクセル毎の反射光強度を測定することによって、前記領域内の反射光強度分布を求め、該反射光強度分布から前記領域内における薄膜の膜厚分布を算出する薄膜付ウェーハの評価方法を提案した(例えば、特許文献1-3)。また、特許文献4にも、多層半導体構造の層の厚さバラツキを測定するための方法が開示されている。
特開2011-249621号公報(特許第5365581号公報) 特開2016-114506号公報 特開2017-125782号公報 特表2016-504566号公報
 しかしながら、特許文献1-4に記載の方法によって測定を行っても、SOIウェーハのSOI層のミクロな領域内における膜厚分布の測定の精度が悪く、バラつきが大きく安定しないという問題があった。そこで、本発明者が測定に影響する様々なファクタを検討したところ、特許文献1-3に記載の方法では、SOIウェーハの膜厚スペック(膜厚仕様)毎に測定波長が異なるため、測定の精度や、安定性が異なること、各SOIウェーハの膜厚スペック毎に測定方法を検討することが必要であること等の問題があることを見出した。
 本発明は、上記問題を解決するためになされたものであり、薄膜のミクロな領域における膜厚分布の測定を、精度高くかつ安定して行うことが可能な、薄膜付ウェーハの膜厚分布の測定方法を提供することを目的とする。
 本発明は、上記目的を達成するためになされたものであり、基板の表面上に形成された第一薄膜と、該第一薄膜の表面上に形成された第二薄膜とを少なくとも有する薄膜付ウェーハの前記第二薄膜の膜厚分布を測定する薄膜付ウェーハの膜厚分布の測定方法であって、前記薄膜付ウェーハを用い、波長λ0の照射光を用いたオートフォーカス機能を有する光学顕微鏡により焦点合わせを行って、焦点の高さZ1を求める工程と、前記薄膜付ウェーハの前記第二薄膜の観察画像の取得に使用する照射光の波長λ1を決定する工程と、前記Z1を基準に焦点の高さを変化させながら、前記波長λ1の照射光を使用して、前記光学顕微鏡により前記薄膜付ウェーハの前記第二薄膜の観察画像を取得する工程と、前記観察画像内の反射光強度分布の標準偏差を算出し、前記反射光強度分布の標準偏差が最大となるピーク位置に対応する焦点の高さZ2を取得し、前記Z1と前記Z2との差ΔZを算出する工程と、前記ΔZを補正値として前記光学顕微鏡の前記オートフォーカス機能の補正を行う工程と、前記補正されたオートフォーカス機能を用いて焦点合わせを行って、前記光学顕微鏡により前記薄膜付ウェーハの前記第二薄膜の観察画像を取得し、該観察画像内の反射光強度分布から膜厚分布を算出する工程とを有する薄膜付ウェーハの膜厚分布の測定方法を提供する。
 このような薄膜付ウェーハの膜厚分布の測定方法によれば、薄膜のミクロな領域における膜厚分布の測定を、精度高く、安定して、簡便に行うことができる。
 このとき、波長λ1を決定する工程は、薄膜付ウェーハの可視光の波長以上の波長領域の光に対する反射率の波長依存性を示すプロファイルP1をシミュレーションにより算出する工程と、薄膜付ウェーハの第一薄膜の設定膜厚T1よりt[nm]だけ薄い又は厚い第一薄膜を有する薄膜付ウェーハの、可視光以上の波長領域の光に対する反射率の波長依存性を示すプロファイルP22をシミュレーションにより算出する工程と、算出した前記プロファイルP1と前記プロファイルP22の差のプロファイルP32(=P22-P1)を算出し、該算出した差のプロファイルP32が0となるときの波長λ1に決定する工程である薄膜付ウェーハの膜厚分布の測定方法とすることができる。
 これにより、照射領域内の第二薄膜の膜厚分布を、第一薄膜の膜厚分布の影響を受けずにより高い空間分解能でより精度よく算出することが可能な画像取得用照射光の波長λ1を、容易に得ることができる。
 このとき、薄膜付ウェーハがSOIウェーハであり、第一薄膜が埋め込み酸化膜層であり、第二薄膜がシリコン単結晶からなるSOI層である薄膜付ウェーハの膜厚分布の測定方法とすることができる。
 このように、測定対象の薄膜付ウェーハがSOIウェーハである場合、照射領域内のSOI層の膜厚分布を、精度よく算出することができる。
 このとき、波長λ0の照射光は波長λ1よりも長波長であり、波長λ1は可視光波長から選択された単一の波長である薄膜付ウェーハの膜厚分布の測定方法とすることができる。
 これにより、通常の光学顕微鏡(測定システム)を用いて可視光で測定を行えるため、低コストで簡便に実施できる。
 以上のように、本発明の薄膜付ウェーハの膜厚分布の測定方法によれば、薄膜付ウェーハ上の薄膜のミクロな領域における膜厚分布の測定を、正確に、安定して、簡便に行うことが可能となる。
本発明に係る薄膜付ウェーハの膜厚分布の測定方法の工程を示すフロー図である。 本発明に係る薄膜付ウェーハの膜厚分布の測定方法で使用することができる光学顕微鏡を示す概略図である。 実施例で使用したSOIウェーハの、Z2算出時に得た反射強度分布の標準偏差と高さZの関係を示す。 参考例で使用したSOIウェーハの、Z2算出時に得た反射強度分布の標準偏差と高さZの関係を示す。 実施例と比較例のSOI層の膜厚分布(標準偏差)評価結果を示す。
 以下、本発明を詳細に説明するが、本発明はこれらに限定されるものではない。
 上述のように、薄膜のミクロな領域における膜厚分布の測定を、精度高くかつ安定して行うことが可能な、薄膜付ウェーハの膜厚分布の測定方法が求められていた。
 本発明者らは、上記課題について鋭意検討を重ねた結果、基板の表面上に形成された第一薄膜と、該第一薄膜の表面上に形成された第二薄膜とを少なくとも有する薄膜付ウェーハの前記第二薄膜の膜厚分布を測定する薄膜付ウェーハの膜厚分布の測定方法であって、前記薄膜付ウェーハを用い、波長λ0の照射光を用いたオートフォーカス機能を有する光学顕微鏡により焦点合わせを行って、焦点の高さZ1を求める工程と、前記薄膜付ウェーハの前記第二薄膜の観察画像の取得に使用する照射光の波長λ1を決定する工程と、前記Z1を基準に焦点の高さを変化させながら、前記波長λ1の照射光を使用して、前記光学顕微鏡により前記薄膜付ウェーハの前記第二薄膜の観察画像を取得する工程と、前記観察画像内の反射光強度分布の標準偏差を算出し、前記反射光強度分布の標準偏差が最大となるピーク位置に対応する焦点の高さZ2を取得し、前記Z1と前記Z2との差ΔZを算出する工程と、前記ΔZを補正値として前記光学顕微鏡の前記オートフォーカス機能の補正を行う工程と、前記補正されたオートフォーカス機能を用いて焦点合わせを行って、前記光学顕微鏡により前記薄膜付ウェーハの前記第二薄膜の観察画像を取得し、該観察画像内の反射光強度分布から膜厚分布を算出する工程とを有する薄膜付ウェーハの膜厚分布の測定方法により、薄膜付ウェーハ上の薄膜のミクロな領域における膜厚分布の測定を、正確に、安定して行うことが可能となることを見出し、本発明を完成した。
 以下、図面を参照して説明する。
 本発明に係る薄膜付ウェーハの膜厚分布の測定方法では、例えば図2に示すような光学顕微鏡2を用いることができる。波長選択のためのバンドパスフィルター4を取り付けた一般的な光学顕微鏡2の光源3からの照射光を、評価する薄膜付ウェーハ1の一部領域に照射することができる。光学顕微鏡2はオートフォーカス(以下、単に「AF」ということもある)機能を有しており、自動的に焦点合わせを行うことができる。AF機能で使用する照射光は、膜厚測定の測定波長よりも長波長で、測定波長に影響を及ぼさないエネルギーの低い長波長の光を用い、750nm以上の長波長とすることが望ましい。また、光学顕微鏡2は制御部を備えており、制御部は、測定データの取得、取得したデータの解析処理、入力した測定条件に応じて測定を行う制御、入力したデータに基づく動作条件の補正などを行うことができる。
 また、本発明に係る薄膜付ウェーハの膜厚分布の測定方法の対象である薄膜付ウェーハは、基板の表面上に形成された第一薄膜と、該第一薄膜の表面上に形成された第二薄膜とを少なくとも有するものである。このような薄膜付ウェーハとしては、例えば、第一薄膜に対応する埋め込み酸化膜層(BOX層)、第二薄膜に対応するSOI層を有する、SOIウェーハを用いることが好ましい。特に、このようなSOIウェーハを測定対象とした場合、SOI層の膜厚分布を精度よく算出することができる。
 図1に本発明に係る薄膜付ウェーハの膜厚分布の測定方法のフロー図を示す。
 図1のS1に示すように、まず、光学顕微鏡を使用し、評価用の薄膜付ウェーハを用い、波長λ0の照射光を用いたAF機能により焦点合わせを行って、焦点の高さZ1を求める工程を行う。評価用の薄膜付ウェーハは、実際に測定を行う対象の薄膜付ウェーハである。
 図1のS2に示す工程は、薄膜付ウェーハの第二薄膜の観察画像の取得に使用する照射光の波長λ1を決定する工程である。まず、この第二薄膜と第一薄膜の膜厚の設定値(仕様)を使用して、照射光の波長と反射光の反射率等との関係をシミュレーションにより算出し、その結果から、測定を行う照射光として最適な波長λ1を選択する。第二薄膜と第一薄膜の膜厚の設定値(仕様)に対応する最適波長λ1は、第二薄膜の膜厚を設定値(仕様)の膜厚に固定して、第一薄膜の膜厚を変動させた時に、反射率の変化がない波長を選ぶ。このような最適波長λ1を選ぶことで、第一薄膜の膜厚変動による反射率変動をなくし、第二薄膜の膜厚変動の影響のみが反射率変動に対して反映されることになる。
 この工程は、具体的には、例えば、特許文献2に記載されているようにして行うことができる。まず、評価対象の薄膜付ウェーハの可視光の波長以上の波長領域の光に対する反射率の波長依存性を示すプロファイルP1をシミュレーションにより算出する。次に、評価対象の薄膜付ウェーハの第一薄膜の設定膜厚T1よりt[nm]だけ薄い、又は厚い第一薄膜を有する薄膜付ウェーハの可視光以上の波長領域の光に対する反射率の波長依存性を示すプロファイルP22をシミュレーションにより算出する。次に、シミュレーションにより算出した両方のプロファイルP1、P22の差のプロファイルP32(=P22-P1)を算出し、該算出した差のプロファイルP32がゼロとなるとき、すなわち反射率差がゼロになるときの波長を波長λ1と決定する。
 例えば、SOIウェーハでは、上記説明において、第一薄膜がBOX層に、第二薄膜がSOI層に相当する。SOIウェーハの膜厚スペックが、SOI層:12nm、BOX層:20nmの場合、測定波長λ1として492nmを用いることが最適であり(最適波長がλ1)、SOIウェーハの膜厚スペックが、SOI層:12nm、BOX層:25nmの場合、測定波長λ1として520nmを用いることが最適である。
 なお、S2の工程は、シミュレーションを行う工程であり、上述のS1の工程との順番は問わない。S2をS1より先に実施することも可能であるし、S1とS2の工程を同時進行で並行して行うことも可能である。
 図1のS3に示す工程は、S1で取得したZ1を基準に焦点の高さを変化させながら、S2で決定した波長λ1の照射光を使用して、光学顕微鏡により薄膜付ウェーハの第二薄膜の観察画像を取得する工程である。観察画像を取得する焦点高さ位置のピッチは、0.5μm以下とすることが好ましく、0.2μm以下とすることがさらに好ましい。このような範囲であれば、より高い精度で測定を行うことができる。
 図1のS4に示す工程は、S3で取得した第二薄膜の観察画像内の反射光強度分布の標準偏差を算出し、反射光強度分布の標準偏差が最大となるピーク位置に対応する焦点の高さZ2を取得し、Z1とZ2との差ΔZ(=Z1-Z2)を算出する工程である。ΔZの算出は、Z2を光学顕微鏡の制御部に入力することで、制御部内でΔZ(=Z1-Z2)の演算を行ってもよい。S3で取得した第二薄膜の観察画像の反射光強度分布の標準偏差が最大となる位置Z2は、波長λ1の照射光を使用したときの焦点位置と見做すことができる。このZ2を用いて、ΔZ=Z1-Z2を得ることができる。このようにΔZは、波長λ0の照射光を用いたAF機能で得た焦点位置Z1と、第二薄膜の観察画像を取得するときに使用する波長λ1の照射光を用いたときの焦点位置Z2との差であり、次の工程(S5)のAF機能の補正に用いる補正値となる。
 図1のS5に示す工程は、S4で求めたΔZを補正値として、光学顕微鏡のAF機能の補正を行う工程である。算出したΔZを補正値として光学顕微鏡の制御部に入力してもよいし、入力したZ2から制御部内で演算して得たΔZを補正値として読み込んでもよい。
 図1のS6に示す工程は、補正されたAF機能を用いて焦点合わせを行って、光学顕微鏡により薄膜付ウェーハの第二薄膜の観察画像を取得し、該観察画像内の反射光強度分布から膜厚分布を算出する工程である。補正されたAF機能を使用すると、AF機能を作動させて得た焦点位置に対し補正値ΔZの補正を行うため、波長λ1の照射光を用いたときの精度の高い焦点位置で、第二薄膜の観察画像の取得が行われることになる。このようにして取得した観察画像の反射強度分布に基づいて膜厚分布を求めることで、精度の高い膜厚分布評価を行うことが可能となる。膜厚分布の評価は、例えば、膜厚分布の標準偏差で行うことが好ましい。
 以下、実施例を挙げて本発明について詳細に説明するが、これは本発明を限定するものではない。
 実施例、参考例、比較例で使用した膜厚測定システムである光学顕微鏡は、AF機能を有し観察画像(顕微鏡画像)の取得が可能なものである。AF機能で使用する照射光の波長は785nmである。また、観察画像取得用の照射光の波長の調節、選択は、バンドパスフィルターを用いて行う。
 (実施例)
 SOIウェーハの膜厚スペックが、SOI層12nm、BOX層20nmのSOIウェーハを用いた。まず、このSOIウェーハを光学顕微鏡(膜厚測定システム)にセットし、AF機能を使用して焦点合わせを行い、焦点位置Z1を求めた。Z1は自動で取得した。
 また、このSOIウェーハのSOI層の観察画像取得に使用する照射光の波長λ1を、シミュレーションにより求めたところ、測定波長λ1=492nmであった。
 次に、バンドパスフィルターを使用して観察画像取得用の照射光の波長の調節を行い、照射光の波長をλ1=492nmとした。そして、Z1を基準として焦点の高さを上下に変化させながら、観察画像を取得し、取得した観察画像の反射強度分布の標準偏差と高さZの関係を求めた。図3に、高さZと反射強度分布の標準偏差の関係を示す。図3に示された、標準偏差がピーク値になる高さがZ2である。なお、Z1の位置は、図3及び後述の図4において、グラフの右側に外れた範囲(横軸の数値範囲外)に位置している。
 このようにして得たZ2を光学顕微鏡に入力し、光学顕微鏡内の制御部で、補正値ΔZ(=Z1-Z2)を算出するとともに、この補正値ΔZを用いてAF機能の補正を行った。
 そして、AFで得た焦点位置に対し補正値ΔZの補正を行い、SOIウェーハのSOI層の観察画像を取得し、測定領域の観察画像内の反射光強度分布から膜厚分布の標準偏差を算出した。具体的には、ウェーハ面内5点(中心1点+外周端から5mm内側の位置4点)について、SOI層の膜厚分布の標準偏差を、観察画像内の反射光強度分布に基づいて算出した。なお、測定領域は、266μm×266μm(2048×2048ピクセル)である。
 (参考例)
 SOIウェーハの膜厚スペックが、SOI層12nm、BOX層25nmのSOIウェーハを用いた。このSOIウェーハのSOI層の観察画像の取得に使用する照射光の波長λ1は520nmである。実施例と同様にして取得した観察画像の高さZと反射強度分布の標準偏差の関係を求めたところ、図4に示されるような関係が得られた。この結果からわかるように、BOX層の厚さが異なると、λ1が異なり、その結果、焦点のピーク位置Z2による補正値も異なることがわかる。
 (比較例)
 下記に示す従来の膜厚分布測定方法を採用したこと以外は、実施例と同じSOIウェーハを使用して、膜厚分布の測定を行った。具体的な手順は以下のとおりである。
 (1)パターン付きサンプルウェーハを使って、膜厚測定システムである光学顕微鏡のAF機能を用いて焦点の高さZ1を求める。
 (2)その位置で測定波長λ1を得るためのフィルターを使って波長λ1の照射光を照射し、顕微鏡画像のパターンに目視で焦点を合わせ、焦点が合った位置の高さZ2を求める。
 (3)Z2を光学顕微鏡に入力し、光学顕微鏡内の制御部で、補正値ΔZ(=Z1-Z2)を算出するとともに、この補正値ΔZを用いてAF機能の補正を行う。
 (4)膜厚分布測定中は、AF機能により合わせた焦点位置にΔZの補正を行い、観察画像を取得し、その反射強度分布から、膜厚分布の標準偏差を求める。
 実施例及び比較例の膜厚分布測定の評価は、以下のようにして行った。まず、比較例の測定方法により、1日3回の頻度の測定を31日間繰り返した。その後、実施例の測定方法に切り替えて、更に、42日間繰り返し測定を行った。
 評価結果を、図5に示す。各プロットの番号は、図中のウェーハの概念図に示す測定位置を表している。なお、測定の順番は、図5の横軸の右から左に向かう順となっている。図5に示されるように、本発明の測定方法を用いた実施例のSOI層の膜厚分布標準偏差は、従来の測定方法を用いた比較例に比べて、測定間のバラツキが低減され、安定した測定結果が得られていることがわかる。
 なお、実施例のSOI層の膜厚分布標準偏差の値は、比較例に比べて大きくなっているが、これは、測定波長の焦点が正確に調整されたことによって、膜厚分布が再現性よく正確に測定できるようになったことを意味している。例えるならば、AFM(原子間力顕微鏡)によって、所定領域の表面粗さ(RMS)を測定する際、先端が丸くなった形状の針を先端がシャープな形状の触針に変更して同一領域の表面粗さ(RMS)を測定すると、より正確な表面粗さ(RMS)が測定されることとなる結果、表面粗さ(RMS)の数値が大きくなることと、同様の現象である。
 なお、本発明は、上記実施形態に限定されるものではない。上記実施形態は例示であり、本発明の特許請求の範囲に記載された技術的思想と実質的に同一な構成を有し、同様な作用効果を奏するものは、いかなるものであっても本発明の技術的範囲に包含される。

Claims (4)

  1.  基板の表面上に形成された第一薄膜と、該第一薄膜の表面上に形成された第二薄膜とを少なくとも有する薄膜付ウェーハの前記第二薄膜の膜厚分布を測定する薄膜付ウェーハの膜厚分布の測定方法であって、
     前記薄膜付ウェーハを用い、波長λ0の照射光を用いたオートフォーカス機能を有する光学顕微鏡により焦点合わせを行って、焦点の高さZ1を求める工程と、
     前記薄膜付ウェーハの前記第二薄膜の観察画像の取得に使用する照射光の波長λ1を決定する工程と、
     前記Z1を基準に焦点の高さを変化させながら、前記波長λ1の照射光を使用して、前記光学顕微鏡により前記薄膜付ウェーハの前記第二薄膜の観察画像を取得する工程と、
     前記観察画像内の反射光強度分布の標準偏差を算出し、前記反射光強度分布の標準偏差が最大となるピーク位置に対応する焦点の高さZ2を取得し、前記Z1と前記Z2との差ΔZを算出する工程と、
     前記ΔZを補正値として前記光学顕微鏡の前記オートフォーカス機能の補正を行う工程と、
     前記補正されたオートフォーカス機能を用いて焦点合わせを行って、前記光学顕微鏡により前記薄膜付ウェーハの前記第二薄膜の観察画像を取得し、該観察画像内の反射光強度分布から膜厚分布を算出する工程とを有することを特徴とする薄膜付ウェーハの膜厚分布の測定方法。
  2.  前記波長λ1を決定する工程は、
     前記薄膜付ウェーハの可視光の波長以上の波長領域の光に対する反射率の波長依存性を示すプロファイルP1をシミュレーションにより算出する工程と、
     前記薄膜付ウェーハの前記第一薄膜の設定膜厚T1よりt[nm]だけ薄い又は厚い第一薄膜を有する薄膜付ウェーハの、前記可視光以上の波長領域の光に対する反射率の波長依存性を示すプロファイルP22をシミュレーションにより算出する工程と、
     前記算出した前記プロファイルP1と前記プロファイルP22の差のプロファイルP32(=P22-P1)を算出し、該算出した差のプロファイルP32が0となるときの波長λ1に決定する工程であることを特徴とする請求項1に記載の薄膜付ウェーハの膜厚分布の測定方法。
  3.  前記薄膜付ウェーハがSOIウェーハであり、前記第一薄膜が埋め込み酸化膜層であり、前記第二薄膜がシリコン単結晶からなるSOI層であることを特徴とする請求項1又は請求項2に記載の薄膜付ウェーハの膜厚分布の測定方法。
  4.  前記波長λ0の照射光は前記波長λ1よりも長波長であり、前記波長λ1は可視光波長から選択された単一の波長であることを特徴とする請求項1から請求項3のいずれか一項に記載の薄膜付ウェーハの膜厚分布の測定方法。
PCT/JP2020/035018 2019-10-03 2020-09-16 薄膜付ウェーハの膜厚分布の測定方法 WO2021065499A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
KR1020227010562A KR102679254B1 (ko) 2019-10-03 2020-09-16 박막부착 웨이퍼의 막두께분포의 측정방법
EP20870881.8A EP4040106A4 (en) 2019-10-03 2020-09-16 METHOD FOR MEASURING THE LAYER THICKNESS DISTRIBUTION OF A WAFER WITH A THIN FILM
US17/762,859 US11965730B2 (en) 2019-10-03 2020-09-16 Method for measuring film thickness distribution of wafer with thin films
CN202080068610.9A CN114450778A (zh) 2019-10-03 2020-09-16 带薄膜晶圆的膜厚分布的测量方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019-182831 2019-10-03
JP2019182831A JP7160779B2 (ja) 2019-10-03 2019-10-03 薄膜付ウェーハの膜厚分布の測定方法

Publications (1)

Publication Number Publication Date
WO2021065499A1 true WO2021065499A1 (ja) 2021-04-08

Family

ID=75338000

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/035018 WO2021065499A1 (ja) 2019-10-03 2020-09-16 薄膜付ウェーハの膜厚分布の測定方法

Country Status (6)

Country Link
US (1) US11965730B2 (ja)
EP (1) EP4040106A4 (ja)
JP (1) JP7160779B2 (ja)
CN (1) CN114450778A (ja)
TW (1) TWI799738B (ja)
WO (1) WO2021065499A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116124017B (zh) * 2023-01-06 2024-03-22 深圳市埃芯半导体科技有限公司 薄膜膜厚的测量方法、装置、电子设备及存储介质

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07260437A (ja) * 1993-12-22 1995-10-13 Hughes Aircraft Co 多層の薄膜積層における膜厚の測定方法およびその装置
JP2011249621A (ja) 2010-05-28 2011-12-08 Shin Etsu Handotai Co Ltd 薄膜付ウェーハの評価方法
JP2016504566A (ja) 2012-11-12 2016-02-12 ソイテックSoitec 多層半導体構造の層の厚さばらつきを測定するための方法
JP2016114506A (ja) 2014-12-16 2016-06-23 信越半導体株式会社 薄膜付ウェーハの評価方法
WO2017122248A1 (ja) * 2016-01-14 2017-07-20 信越半導体株式会社 薄膜付ウェーハの膜厚分布の測定方法
JP2017198491A (ja) * 2016-04-26 2017-11-02 レーザーテック株式会社 膜厚測定装置及び膜厚測定方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006184303A (ja) * 2004-12-24 2006-07-13 Olympus Corp 画像検査装置
DE102017116745A1 (de) * 2017-07-25 2019-01-31 Carl Zeiss Microscopy Gmbh Konfokalmikroskop zur Schichtdickenmessung und Mikroskopieverfahren zur Schichtdickenmessung
JP7023703B2 (ja) * 2017-12-26 2022-02-22 レーザーテック株式会社 段差測定方法及び段差測定装置

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07260437A (ja) * 1993-12-22 1995-10-13 Hughes Aircraft Co 多層の薄膜積層における膜厚の測定方法およびその装置
JP2011249621A (ja) 2010-05-28 2011-12-08 Shin Etsu Handotai Co Ltd 薄膜付ウェーハの評価方法
JP5365581B2 (ja) 2010-05-28 2013-12-11 信越半導体株式会社 薄膜付ウェーハの評価方法
JP2016504566A (ja) 2012-11-12 2016-02-12 ソイテックSoitec 多層半導体構造の層の厚さばらつきを測定するための方法
JP2016114506A (ja) 2014-12-16 2016-06-23 信越半導体株式会社 薄膜付ウェーハの評価方法
WO2017122248A1 (ja) * 2016-01-14 2017-07-20 信越半導体株式会社 薄膜付ウェーハの膜厚分布の測定方法
JP2017125782A (ja) 2016-01-14 2017-07-20 信越半導体株式会社 薄膜付ウェーハの膜厚分布の測定方法
JP2017198491A (ja) * 2016-04-26 2017-11-02 レーザーテック株式会社 膜厚測定装置及び膜厚測定方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4040106A4

Also Published As

Publication number Publication date
US20220341728A1 (en) 2022-10-27
JP7160779B2 (ja) 2022-10-25
EP4040106A4 (en) 2023-11-15
KR20220054654A (ko) 2022-05-03
CN114450778A (zh) 2022-05-06
US11965730B2 (en) 2024-04-23
JP2021060208A (ja) 2021-04-15
TW202129224A (zh) 2021-08-01
EP4040106A1 (en) 2022-08-10
TWI799738B (zh) 2023-04-21

Similar Documents

Publication Publication Date Title
TWI515518B (zh) 量測微結構不對稱性的方法及裝置、位置量測方法、位置量測裝置、微影裝置及半導體元件製造方法
KR101656436B1 (ko) 박막 웨이퍼의 막두께 분포 측정 방법
KR100988454B1 (ko) 두께 측정방법
KR20130037723A (ko) 비구면을 정밀 고해상도로 측정하는 방법
CN1847783A (zh) 确定表面特征的装置和方法
TWI571709B (zh) 聚焦監控之配置及包括此種配置之檢測裝置
JP2011027461A (ja) パターン形状計測方法、半導体装置の製造方法、およびプロセス制御システム
TW201723421A (zh) 用於使用cgs干涉儀進行處理控制的特徵化處理誘導晶圓形狀之系統及方法
JP5459944B2 (ja) 表面形状測定装置および応力測定装置、並びに、表面形状測定方法および応力測定方法
WO2021065499A1 (ja) 薄膜付ウェーハの膜厚分布の測定方法
CN101331376A (zh) 确定表面特性的装置和方法
JP5273644B2 (ja) 膜厚測定装置及び膜厚測定方法
WO2017122248A1 (ja) 薄膜付ウェーハの膜厚分布の測定方法
KR102679254B1 (ko) 박막부착 웨이퍼의 막두께분포의 측정방법
JP2007205791A (ja) セル内膜厚測定装置
JP5108447B2 (ja) 半導体表面歪測定装置、方法及びプログラム
JP2016114506A (ja) 薄膜付ウェーハの評価方法
JP2021518667A (ja) 深紫外(duv)光学撮像システム向け任意波面補償器
JP4715199B2 (ja) 膜厚測定装置及び膜厚測定方法
CN112437867B (zh) 用于决定层的厚度和折射率的方法
US20220373894A1 (en) Measurement system and method for characterizing a patterning device
JP2005311057A (ja) 露光装置
JPH06249620A (ja) 膜厚測定方法
JP2009042072A (ja) 薄膜層の膜厚良否判別方法
Litwin et al. Chromatic sensor-based-profilometer for the focusing mirror in the Scanning Helium Microscope

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20870881

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20227010562

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2020870881

Country of ref document: EP

Effective date: 20220503