WO2021062916A1 - 一种采用钙钛矿型复合氧化物催化合成茶香酮的方法 - Google Patents

一种采用钙钛矿型复合氧化物催化合成茶香酮的方法 Download PDF

Info

Publication number
WO2021062916A1
WO2021062916A1 PCT/CN2019/115744 CN2019115744W WO2021062916A1 WO 2021062916 A1 WO2021062916 A1 WO 2021062916A1 CN 2019115744 W CN2019115744 W CN 2019115744W WO 2021062916 A1 WO2021062916 A1 WO 2021062916A1
Authority
WO
WIPO (PCT)
Prior art keywords
perovskite
type composite
catalyst
ketones
composite oxide
Prior art date
Application number
PCT/CN2019/115744
Other languages
English (en)
French (fr)
Inventor
乔胜超
张玉霞
潘洪
严宏岳
毛建拥
韦良
胡鹏翔
胡柏剡
Original Assignee
浙江新和成股份有限公司
山东新和成维生素有限公司
山东新和成药业有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 浙江新和成股份有限公司, 山东新和成维生素有限公司, 山东新和成药业有限公司 filed Critical 浙江新和成股份有限公司
Publication of WO2021062916A1 publication Critical patent/WO2021062916A1/zh

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/002Mixed oxides other than spinels, e.g. perovskite
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/83Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with rare earths or actinides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/84Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/889Manganese, technetium or rhenium
    • B01J23/8892Manganese
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/89Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with noble metals
    • B01J23/8933Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with noble metals also combined with metals, or metal oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/8946Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with noble metals also combined with metals, or metal oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with alkali or alkaline earth metals
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C45/00Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds
    • C07C45/27Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by oxidation
    • C07C45/32Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by oxidation with molecular oxygen
    • C07C45/33Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by oxidation with molecular oxygen of CHx-moieties
    • C07C45/34Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by oxidation with molecular oxygen of CHx-moieties in unsaturated compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2523/00Constitutive chemical elements of heterogeneous catalysts
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2601/00Systems containing only non-condensed rings
    • C07C2601/12Systems containing only non-condensed rings with a six-membered ring
    • C07C2601/16Systems containing only non-condensed rings with a six-membered ring the ring being unsaturated

Definitions

  • the invention belongs to the technical field of organic chemical engineering, and relates to a method for catalytically synthesizing tea aroma ketones by using perovskite-type composite oxides.
  • Tea aroma ketone also known as 4-oxoisophorone (KIP for short), is a light yellow liquid or crystal and is a natural compound found in many plants. Its pure product has a strong aroma and lasting fragrance. The aroma is slightly sour and sweet woody and dried fruit, which has a significant effect on all kinds of cigarettes. Tea flavor ketone is an important chemical and pharmaceutical intermediate. It can be used as a flavoring agent or spice in food additives, and can also be used in the synthesis of cosmetics. It is also an important intermediate for the preparation of vitamins and carotenoids. It has a wide range of uses.
  • ⁇ -IP oxidized ⁇ -isophorone
  • ⁇ -IP oxidized ⁇ -isophorone
  • This process is a relatively common method for preparing KIP. Firstly, ⁇ -IP is converted into ⁇ -IP, and then ⁇ -IP is oxidized to obtain KIP. Among them, ⁇ -IP and ⁇ -IP are isomers. Due to the conjugation effect, ⁇ -IP is more thermodynamically stable than ⁇ -IP, and ⁇ -IP can be converted into ⁇ -IP through isomerization. The isomerization between ⁇ -IP and ⁇ -IP is a reversible reaction, and there is a chemical equilibrium. The ⁇ -IP produced by reactive distillation must be removed continuously to make the reaction continue in a favorable direction. This isomerization process is carried out under the action of strong acid and strong base and other catalysts, and requires high temperature and low conversion rate, so the equipment requirements are relatively high, and the energy consumption is relatively large.
  • the synthetic route is as follows:
  • Patent DE2459148 describes the use of V(acac) 3 , Fe(acac) 3 , Co(acac) 3 and other transition metal complexes as catalysts to catalyze the oxidation of ⁇ -IP to KIP, react at 130°C for 5 days, and the maximum yield is 20% .
  • Patent US3960966 reported that phosphomolybdic acid, silicomolybdic acid or vanadium-molybdenum complex and copper sulfate were used as catalysts to catalyze the oxidation of ⁇ -IP to KIP. Air was used as the oxidant and reacted at 100°C for 95 hours. The conversion rate could reach 98.5%. The yield Is 45%.
  • Patent DE2526851 discloses a method for preparing KIP by catalytic oxidation of ⁇ -IP when molybdenum trioxide is added. The reaction is carried out at 80°C for 72 hours, and the yield is 50%.
  • Chemistry Letters, 1984, 2031 uses phosphomolybdic acid, potassium dichromate and copper sulfate as catalysts, air as oxidant, and continuous aeration reaction at 100°C for 84 hours. The ⁇ -IP conversion is almost complete, and the yield of tea aroma ketones is 60%. .
  • Patent CN101143810A uses V 2 O 5 or VO(acac) 2 as a catalyst, tert-butyl hydroperoxide as an oxidant, and acetone as a solvent to catalyze the oxidation of ⁇ -IP to KIP, react at 50°C for 18 hours, and the yield is 40%.
  • Patent CN101417936A adopts a metal-free catalytic system (a co-catalytic system composed of N-hydroxyphthalimide and its analogues as the main catalyst and an organic promoter (such as benzoyl peroxide)), in the organic solvent ethyl acetate
  • an organic promoter such as benzoyl peroxide
  • Patent CN102329202B uses a metal-free catalytic system (a co-catalytic system composed of N-hydroxyphthalimide and its analogues as the main catalyst and a metal salt promoter (such as CuCl 2 )), in the presence of the organic solvent acetonitrile, Using oxygen or oxygen-enriched gas as oxidant, catalytic oxidation of ⁇ -IP to prepare KIP, reaction at 75°C for 5 hours, selectivity of 86.8%, and conversion rate of 90.3%.
  • the above technical scheme has reduced the reaction temperature and shortened the reaction time, but has the problem of lower yield.
  • CN105601490B uses dirhodium complex Rh 2 (esp) 2 as a catalyst and an aqueous solution of tert-butyl hydrogen peroxide as an oxidant to catalyze the oxidation of ⁇ -IP to KIP under solvent-free conditions.
  • the reaction is performed at 25°C for 24 hours, and the conversion rate is 91%. The yield was 78%.
  • This technical solution has the problems of long reaction time and insufficient environmental protection of the oxidant.
  • the homogeneous catalyst system generally has the problem that the catalyst is not easy to separate.
  • Tetrahedron Letters, 1997, 38, 5659 uses molybdovanadium phosphate or its supported activated carbon as a catalyst, molecular oxygen as an oxidant, and toluene as a solvent.
  • the reaction is conducted at 80-100°C under normal pressure for 20 hours, and the ⁇ -IP conversion rate is up to 93%.
  • KIP selectivity is up to 47%. This technical solution has the problem of low catalyst selectivity.
  • Catalysis Communication, 2007, August, 1156 adopts Ru/MgAl hydrotalcite as catalyst, tert-butyl hydroperoxide as oxidant, acetonitrile as solvent, reaction at 60°C for 48 hours, selectivity is 100%, but the conversion rate is up to 60% .
  • the above technical solutions are highly selective, but the reaction time is longer.
  • the present invention provides a method for catalytically synthesizing tea ketones by using perovskite-type composite oxides.
  • the method has high reaction conversion rate and selectivity, and at the same time, the catalyst has a long life and is easy to separate. .
  • a method for catalyzing the synthesis of tea aroma ketones using perovskite-type composite oxides Under the catalysis of perovskite-type composite oxides, oxygen or air is used as oxidant, and ⁇ -isophorone is oxidized under solvent-free conditions. Reaction to obtain the tea aroma ketone;
  • the perovskite-type composite oxide is La 1-x X x Co 1-y Y y O 3+ ⁇ ;
  • X is selected from one of K, Ca, Sr, and Ba; Y is selected from one of Mn, Fe, Cu, Ru, Rh, Pd, and Pt; wherein, x is selected from 0.1-0.5, and y is selected from 0.1-0.5; ⁇ is used to indicate lattice defects or oxygen vacancies.
  • the present invention applies a new perovskite-type composite oxide catalyst to the oxidation reaction of ⁇ -isophorone to synthesize tea flavone, the reaction conversion rate is generally above 70%, and the reaction selectivity is generally above 90%; at the same time, The catalyst life is relatively high, and the conversion rate and selectivity are still at a relatively high level during long-term operation.
  • the perovskite-type composite oxide is preferably La 0.9 K 0.1 Co 0.9 Mn 0.1 O 3+ ⁇ , La 0.5 Ca 0.5 Co 0.5 Fe 0.5 O 3+ ⁇ , La 0.9 Sr 0.1 Co 0.5 Cu 0.5 O 3+ ⁇ , La 0.5 Ba 0.5 Co 0.9 Ru 0.1 O 3+ ⁇ , La 0.7 K 0.3 Co 0.8 Rh 0.2 O 3+ ⁇ , La 0.8 Ca 0.2 Co 0.6 Pd 0.4 O 3+ ⁇ , La 0.6 Sr 0.4 Co 0.7 Pt 0.3 O 3+ ⁇ , La 0.6 Ba 0.4 Co 0.5 Cu 0.5 O 3+ ⁇ or La 0.6 Ba 0.4 CoO 3+ ⁇ .
  • the particle size of the perovskite-type composite oxide is 10-20 mesh.
  • the reaction of the present invention can be carried out in batch reactors, such as various reaction flasks or reactors, etc., and can also be carried out in various continuous reactors, such as pipeline reactors or trickle bed reactors.
  • the oxidation reaction is carried out in a trickle bed reactor;
  • the perovskite-type composite oxide is immobilized in a trickle bed reactor, and ⁇ -isophorone and oxygen or air are continuously passed into the trickle bed reactor for reaction.
  • reaction raw materials are continuously input into the trickle bed reactor, and the reaction product tea flavor ketone is continuously output, and the reaction efficiency is greatly improved.
  • the molar ratio of the reaction materials and the mass space velocity will affect the result of the reaction.
  • the molar ratio of the oxygen contained in the oxygen or air to the ⁇ -isophorone is 1.1- 5:1.
  • the mass space velocity of ⁇ -isophorone is 0.05-1.6 h -1 .
  • the reaction pressure is 0.1-2 MPa, and the reaction temperature is 30-90°C.
  • the preparation of the perovskite-type composite oxide is simple, and the specific steps are as follows:
  • the mixed salt is obtained by mixing the salt formed by La, X, Co, and Y, wherein, in the perovskite-type composite oxide, the values of x and y are determined by the molar amount of the salt.
  • the amount of water mentioned can dissolve each component, and the amount usually added is 3-5 times the mass of the mixed salt.
  • the evaporation temperature is 80-90°C;
  • the drying process is carried out in an oven, and the drying temperature is 110 ⁇ 130°C;
  • the baking temperature is 600 to 800°C, and the baking time is 1 to 3 hours.
  • the "salt formed by La, X, Co, Y" refers to the salt containing La, X, Co or Y, in these salts, La, X, Co or Y exists in the form of cations ,
  • the anion is not limited.
  • the salt used must be convenient to dissolve and easy to obtain.
  • the salt is one of nitrate, acetate, sulfate, chloride and oxalate or Many kinds.
  • the present invention has the following beneficial effects:
  • the synthetic route of the present invention is simple, the isomerization process of ⁇ -isophorone is omitted, and the energy consumption cost is reduced.
  • reaction of the present invention is carried out in a trickle bed reactor, and the whole process is a continuous process, which is beneficial to increase production capacity and has low labor intensity.
  • reaction conditions of the catalytic system are mild, the raw material conversion rate is high, and the product selectivity is high.
  • the catalyst used in the present invention has good stability, is used for a long time, and the catalytic activity can be better maintained.
  • the catalyst of the present invention is easy to prepare, and at the same time, the catalyst used is a heterogeneous catalyst, and the same product is easy to separate.
  • the perovskite composite oxide catalyst La 0.6 Ba 0.4 CoO 3+ ⁇ can be obtained, which is recorded as catalyst I and serves as a comparative catalyst.
  • Catalyst performance evaluation 20g of catalyst A was added to a stainless steel tubular reactor with an inner diameter of 12 mm, and the catalyst particle size was 10-20 mesh.
  • the raw material ⁇ -isophorone and oxygen are continuously fed into the reactor equipped with the catalyst, and the reaction temperature is 50°C, the space velocity is 1.0h -1 , and the molar ratio of oxygen to ⁇ -isophorone is 2.5:1 ,
  • the reaction was carried out under the condition of a pressure of 0.3 MPa, and the liquid product was detected and analyzed by gas chromatography.
  • the conversion rate was 80.3% and the selectivity was 93.7%.
  • the catalyst is operated for a long period of time. After 1000 hours, the conversion rate is 79.7-80.1%, and the selectivity is 93.5-94.0%, that is, the catalyst has good stability.
  • Catalyst performance evaluation 20g of catalyst B was added to a stainless steel tubular reactor with an inner diameter of 12mm, and the catalyst particle size was 10-20 mesh.
  • the raw material ⁇ -isophorone and oxygen are continuously fed into the reactor equipped with the catalyst.
  • the reaction temperature is 30°C
  • the space velocity is 0.05h -1
  • the molar ratio of oxygen to ⁇ -isophorone is 5:1
  • the reaction was carried out under the condition of a pressure of 0.6 MPa, and the liquid product was detected and analyzed by gas chromatography.
  • the conversion rate was 79.4% and the selectivity was 94.8%.
  • Catalyst performance evaluation 20g of catalyst C was added to a stainless steel tubular reactor with an inner diameter of 12mm, and the catalyst particle size was 10-20 mesh.
  • the raw material ⁇ -isophorone and oxygen are continuously fed into the reactor equipped with the catalyst.
  • the reaction temperature is 90°C
  • the space velocity is 1.6h -1
  • the molar ratio of oxygen to ⁇ -isophorone is 1.1:1
  • the reaction was carried out under the condition of a pressure of 0.1 MPa, and the liquid product was detected and analyzed by gas chromatography.
  • the conversion rate was 77.2% and the selectivity was 92.9%.
  • Catalyst performance evaluation 20g of catalyst D was added to a stainless steel tubular reactor with an inner diameter of 12mm, and the catalyst particle size was 10-20 mesh.
  • the raw material ⁇ -isophorone and air are continuously passed into the reactor equipped with the catalyst.
  • the reaction temperature is 40°C
  • the space velocity is 0.3h -1
  • the molar ratio of oxygen to ⁇ -isophorone in the air is 1.5 :1.
  • the reaction was carried out under the condition of a pressure of 2MPa, and the liquid product was detected and analyzed by gas chromatography.
  • the conversion rate was 76.6% and the selectivity was 93.1%.
  • Catalyst performance evaluation 20g of catalyst E was added to a stainless steel tubular reactor with an inner diameter of 12mm, and the catalyst particle size was 10-20 mesh.
  • the raw material ⁇ -isophorone and air are continuously passed into the reactor equipped with the catalyst.
  • the reaction temperature is 60°C
  • the space velocity is 0.5h -1
  • the molar ratio of oxygen to ⁇ -isophorone in the air is 2.0 :1.
  • the reaction was carried out under the condition of a pressure of 0.5MPa, and the liquid product was detected and analyzed by gas chromatography.
  • the conversion rate was 75.4% and the selectivity was 94.5%.
  • Catalyst performance evaluation 20g of catalyst F was added to a stainless steel tubular reactor with an inner diameter of 12mm, and the catalyst particle size was 10-20 mesh.
  • the raw material ⁇ -isophorone and oxygen are continuously fed into the reactor equipped with the catalyst.
  • the reaction temperature is 70°C
  • the space velocity is 0.8h -1
  • the molar ratio of oxygen to ⁇ -isophorone is 3.0:1
  • the reaction was carried out under the condition of 0.8MPa, and the liquid product was detected and analyzed by gas chromatography.
  • the conversion rate was 74.7% and the selectivity was 92.0%.
  • Catalyst performance evaluation 20g of catalyst G was added to a stainless steel tubular reactor with an inner diameter of 12 mm, and the catalyst particle size was 10-20 mesh.
  • the raw material ⁇ -isophorone and oxygen are continuously fed into the reactor equipped with the catalyst.
  • the reaction temperature is 80°C
  • the space velocity is 1.2h -1
  • the molar ratio of oxygen to ⁇ -isophorone is 3.5:1
  • the reaction was carried out under the condition of a pressure of 1.0 MPa, and the liquid product was detected and analyzed by gas chromatography.
  • the conversion rate was 73.8% and the selectivity was 93.6%.
  • Catalyst performance evaluation 20g of catalyst H was added to a stainless steel tubular reactor with an inner diameter of 12mm, and the catalyst particle size was 10-20 mesh.
  • the raw material ⁇ -isophorone and oxygen are continuously fed into the reactor equipped with the catalyst.
  • the reaction temperature is 50°C
  • the space velocity is 1.4h -1
  • the molar ratio of oxygen to ⁇ -isophorone is 4.5:1
  • the reaction was carried out under the condition of a pressure of 1.5 MPa, and the liquid product was detected and analyzed by gas chromatography.
  • the conversion rate was 72.1% and the selectivity was 92.8%.
  • Catalyst performance evaluation 20g of catalyst I was added to a stainless steel tubular reactor with an inner diameter of 12mm, and the catalyst particle size was 10-20 mesh.
  • the raw material ⁇ -isophorone and oxygen are continuously fed into the reactor equipped with the catalyst.
  • the reaction temperature is 50°C
  • the space velocity is 1.4h -1
  • the molar ratio of oxygen to ⁇ -isophorone is 4.5:1
  • the reaction was carried out under the condition of a pressure of 1.5 MPa, and the liquid product was detected and analyzed by gas chromatography.
  • the conversion rate was 58.6% and the selectivity was 80.7%.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Catalysts (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

提供了一种采用钙钛矿型复合氧化物催化合成茶香酮的方法,该方法以α-异佛尔酮为原料,在无溶剂条件下,采用钙钛矿型复合氧化物为催化剂,以分子氧或空气为氧化剂,在滴流床反应器中进行连续氧化反应合成茶香酮。该方法反应条件温和,催化效率高,选择性好,催化剂稳定性高,适合工业化生产。

Description

一种采用钙钛矿型复合氧化物催化合成茶香酮的方法 技术领域
本发明属于有机化工技术领域,涉及一种采用钙钛矿型复合氧化物催化合成茶香酮的方法。
背景技术
茶香酮,又名4-氧代异佛尔酮(简称KIP),为淡黄色液体或结晶体,是存在于多种植物中的天然化合物。其纯品香气强烈,留香持久,香气为微酸蜜甜的木香、干果香,对各种卷烟都有显著的加香效果。茶香酮是一种重要的化工医药中间体,可用作食品添加剂中的调味剂或香料,也可用于合成化妆品,还是制备维生素和类胡萝卜素的重要中间体,用途十分广泛。
目前,KIP的合成路线主要有两种:氧化β-异佛尔酮(简称β-IP)法和氧化α-异佛尔酮(简称α-IP)法。
1、氧化β-IP合成KIP
该工艺是制取KIP比较常用的方法,首先为α-IP转化为β-IP,然后再氧化β-IP制得KIP。其中α-IP和β-IP是同分异构体,由于共轭效应,α-IP比β-IP在热力学上更为稳定,β-IP要通过异构化α-IP才能够转化得到,α-IP与β-IP之间的异构化是可逆反应,存在化学平衡,必须不断的通过移走反应蒸馏产生的β-IP,才能够使反应不断的朝有利的方向进行。这个异构化的过程是在强酸强碱等催化剂作用下进行的,且需要的温度高,转化率低,所以设备条件要求较高,能耗比较大。合成路线如下:
Figure PCTCN2019115744-appb-000001
2.氧化α-IP合成KIP
该方法直接氧化α-IP制备KIP,消除了异构化过程;且相对于β-IP, α-IP是大宗工业化学品,来源丰富,价格低廉,故直接氧化工艺具有更明显的应用优势和更广阔的前景。合成路线如下:
Figure PCTCN2019115744-appb-000002
目前关于α-IP直接氧化制KIP的研究报道已经很多,按照催化体系可以分为两大类:均相催化体系和多相催化体系。
均相催化体系:
专利DE2459148描述了以V(acac) 3、Fe(acac) 3、Co(acac) 3等过渡金属配合物为催化剂,催化氧化α-IP制KIP,130℃反应5天,最高收率为20%。专利US3960966报道了以磷钼酸、硅钼酸或钒钼络合物及硫酸铜为催化剂催化氧化α-IP制KIP,以空气为氧化剂,100℃反应95h,转化率可达98.5%,收率为45%。专利DE2526851公开了添加三氧化钼的情况下,催化氧化α-IP制备KIP的方法,80℃反应72h,收率为50%。Chemistry Letters,1984,2031采用磷钼酸、重铬酸钾及硫酸铜为催化剂,以空气为氧化剂,在100℃下连续通气反应84h,α-IP基本转化完全,茶香酮收率为60%。Journal of Molecular Catalysis A:Chemical,2002,179,233用磷钼酸/DMSO/KOBu t催化体系,在115℃反应24h,α-IP转化率99.1%,茶香酮选择性可以维持在70.3%。以上技术方案存在反应温度较高、反应时间较长,收率较低的问题。
Chemistry Letters,1983,1082采用Pd(II)(如Pd(Ac) 2、(PhCN) 2PdCl 2)和三乙胺组成的催化体系或CuCl催化体系,叔丁基过氧化氢为氧化物,苯为溶剂,25-50℃反应19-24h,收率为49-55%。专利CN101143810A以V 2O 5或VO(acac) 2为催化剂,叔丁基过氧化氢为氧化剂,丙酮为溶剂,催化氧化α-IP制KIP,50℃反应18h,收率为40%。专利CN101417936A采用无金属催化体系(由N-羟基邻苯二甲酰亚胺及其类似物为主催化剂及有机助催化剂(如过氧化苯甲酰)组成的共催化体系),在有机溶剂乙酸乙酯存在下,以氧气或富氧气体为氧化剂,催化氧化α-IP制备KIP,50℃反应24h,选择性可达93%,但转化率只有43%。专利CN102329202B采用无金属催化体系(由N-羟基邻苯二甲酰亚胺及其类似物为主催化剂及 金属盐助催化剂(如CuCl 2)组成的共催化体系),在有机溶剂乙腈存在下,以氧气或富氧气体为氧化剂,催化氧化α-IP制备KIP,75℃反应5h,选择性为86.8%,转化率可达90.3%。以上技术方案反应温度有所降低,反应时间有所缩短,但存在收率较低的问题。
Chemistry-A European Journal,2005,11,3899使用Ru IV(2,6-Cl 2tpp)Cl 2作为催化剂,以2,6-Cl 2pyNO为氧化剂,以CH 2Cl 2为溶剂,40℃反应6-8h,转化率为75%,选择性达到99%。该技术方案可以在较低的反应温度较短的反应时间内实现较高的收率,但氧化剂价格昂贵且不够绿色环保,不利于工业化生产。
同时,上述技术方案均是在有机溶剂存在下进行的,普遍还存在溶剂分离回收成本问题。
CN105601490B在无溶剂条件下,以二铑配合物Rh 2(esp) 2为催化剂,叔丁基过氧化氢水溶液为氧化剂,催化氧化α-IP制KIP,25℃反应24h,转化率为91%,收率为78%。该技术方案存在反应时间较长,氧化剂不够绿色环保的问题。
另外,均相催化体系普遍还存在催化剂不易分离问题。
多相催化体系:
Tetrahedron Letters,1997,38,5659采用钼钒磷酸盐或其负载的活性炭为催化剂,以分子氧为氧化剂,以甲苯为溶剂,常压下80-100℃反应20h,α-IP转化率最高93%,KIP选择性最高47%。该技术方案存在催化剂选择性较低的问题。
Catalysis Communication,2007,8,1156采用Ru/MgAl水滑石为催化剂,以叔丁基过氧化氢为氧化剂,以乙腈为溶剂,60℃反应48h,选择性为100%,但转化率最高为60%。Applied Cataysis A:General,2008,345,104采用Cu/Co/Fe-MgAl水滑石为催化剂,以叔丁基过氧化氢为氧化剂,以乙腈为溶剂,60℃反应48h,选择性为100%,但转化率最高为74%。以上技术方案选择性很高,但反应时间较长。
综上所述,现有关于α-IP直接氧化制备KIP的研究,催化效果普遍还不够理想,有的反应条件苛刻,有的催化剂活性选择性较低,有的催化剂不易分离套用,有的使用大量溶剂,有的氧化剂价格昂贵。因此还没有一种反应条件温和,催化剂性能高效、寿命较长、易分离,氧化剂廉价、 环境友好,无溶剂,且连续化的直接氧化α-IP制备KIP的方法。
发明内容
针对现有技术的以上缺陷或改进需求,本发明提供了一种采用钙钛矿型复合氧化物催化合成茶香酮的方法,该方法反应转化率和选择性高,同时催化剂寿命长且易分离。
本发明的技术方案如下:
一种采用钙钛矿型复合氧化物催化合成茶香酮的方法,在钙钛矿型复合氧化物的催化下,以氧气或空气为氧化剂,α-异佛尔酮在无溶剂条件下进行氧化反应,得到所述的茶香酮;
所述的钙钛矿型复合氧化物为La 1-xX xCo 1-yY yO 3+δ
X选自K、Ca、Sr、Ba中的一种;Y选自Mn、Fe、Cu、Ru、Rh、Pd、Pt中的一种;其中,x取0.1-0.5,y取0.1-0.5;δ用于表示晶格缺陷或氧缺位。
本发明通过采用新的钙钛矿型复合氧化物催化剂应用于α-异佛尔酮氧化合成茶香酮的反应,反应转化率普遍在70%以上,反应选择性普遍在90%以上;同时,催化剂寿命较高,长时间运行时转化率和选择性仍然具有较高的水平。
本发明中,所述的钙钛矿型复合氧化物优选为La 0.9K 0.1Co 0.9Mn 0.1O 3+δ、La 0.5Ca 0.5Co 0.5Fe 0.5O 3+δ、La 0.9Sr 0.1Co 0.5Cu 0.5O 3+δ、La 0.5Ba 0.5Co 0.9Ru 0.1O 3+δ、La 0.7K 0.3Co 0.8Rh 0.2O 3+δ、La 0.8Ca 0.2Co 0.6Pd 0.4O 3+δ、La 0.6Sr 0.4Co 0.7Pt 0.3O 3+δ、La 0.6Ba 0.4Co 0.5Cu 0.5O 3+δ或La 0.6Ba 0.4CoO 3+δ。进一步地,所述的钙钛矿型复合氧化物的粒度为10-20目。
本发明的反应可以在间歇式反应器中进行,例如各种反应瓶或反应釜等,也可以在各种连续式反应器中进行,例如管道式反应器或者滴流床反应器等。作为优选,所述的氧化反应在滴流床反应器中进行;
所述的钙钛矿型复合氧化物固载于滴流床反应器中,α-异佛尔酮和氧气或者空气连续通入滴流床反应器中进行反应。
此时,反应原料连续输入滴流床反应器中,反应产物茶香酮连续输出,反应效率大大提高。
在滴流床反应器中,反应物料的摩尔比以及质量空速会对反应结果产 生影响,作为优选,所述氧气或空气中所含的氧气与α-异佛尔酮的摩尔比为1.1-5:1。
作为优选,α-异佛尔酮的质量空速为0.05-1.6h -1
作为优选,反应压力为0.1-2MPa,反应温度为30-90℃。
本发明中,所述的钙钛矿型复合氧化物制备简单,具体步骤如下:
向水中加入混合盐和柠檬酸,然后超声促进溶解,加热条件下蒸发水分至溶胶状态,然后进行干燥、烘焙得到所述的钙钛矿型复合氧化物催化剂;
所述的混合盐由所述的La、X、Co、Y所形成的盐混合得到,其中,钙钛矿型复合氧化物中,x、y的数值由盐的摩尔用量所决定。
所述的水的用量能将各组分溶解即可,通常加入量为混合盐质量的3-5倍。
作为优选,蒸发温度80~90℃;
干燥过程在烘箱中进行,干燥温度为110~130℃;
烘焙温度为600~800℃,烘焙时间为1~3小时。
本发明中,所述的“La、X、Co、Y所形成的盐”指的是含La、X、Co或Y的盐,在这些盐中,La、X、Co或Y以阳离子形式存在,阴离子不做限定,进一步地,所采用的盐要求方便溶解,并且容易获得,作为优选,所述的盐为硝酸盐、醋酸盐、硫酸盐、氯化物和草酸盐中的一种或多种。
与现有技术相比,本发明具有以下有益效果:
(1)本发明的合成路线简单,省去α-异佛尔酮异构化过程,降低了能耗成本。
(2)本发明的反应在滴流床反应器中进行,整个过程为连续化工艺,利于提高产能,劳动强度小。
(3)催化体系反应条件温和,原料转化率高,产品选择性高。
(4)本发明所采用的催化剂稳定性好,使用较长时间,催化活性能够得到较好的保持。
(5)本发明的催化剂易于制备,同时,所用的催化剂为异相催化剂,同产物易于分离。
具体实施方式
下面结合具体实施例对本发明作进一步的说明。
实施例1
催化剂的制备:按照化学计量摩尔比La:K:Co:Mn=9:1:9:1称取一定量的硝酸镧、硝酸钾、硝酸钴以及硝酸锰,再按摩尔比金属阳离子:柠檬酸=1:1.1称取适量的柠檬酸,将其加入蒸馏水中,并采用超声震荡促进其溶解,在80℃下水浴搅拌蒸干至溶胶状态,置于烘箱中在120℃下进行干燥,而后将样品700℃焙烧3h,即可得到钙钛矿复合氧化物催化剂La 0.9K 0.1Co 0.9Mn 0.1O 3+δ,记为催化剂A。
实施例2
催化剂的制备:按照化学计量摩尔比La:Ca:Co:Fe=1:1:1:1称取一定量的硝酸镧、硝酸钙、硝酸钴以及氯化铁,再按摩尔比金属阳离子:柠檬酸=1:1.1称取适量的柠檬酸,将其加入蒸馏水中,并采用超声震荡促进其溶解,在80℃下水浴搅拌蒸干至溶胶状态,置于烘箱中在120℃下进行干燥,而后将样品700℃焙烧3h,即可得到钙钛矿复合氧化物催化剂La 0.5Ca 0.5Co 0.5Fe 0.5O 3+δ,记为催化剂B。
实施例3
催化剂的制备:按照化学计量摩尔比La:Sr:Co:Cu=9:1:5:5称取一定量的醋酸镧、硝酸锶、氯化钴以及硫酸铜,再按摩尔比金属阳离子:柠檬酸=1:1.1称取适量的柠檬酸,将其加入蒸馏水中,并采用超声震荡促进其溶解,在80℃下水浴搅拌蒸干至溶胶状态,置于烘箱中在120℃下进行干燥,而后将样品700℃焙烧3h,即可得到钙钛矿复合氧化物催化剂La 0.9Sr 0.1Co 0.5Cu 0.5O 3+δ,记为催化剂C。
实施例4
催化剂的制备:按照化学计量摩尔比La:Ba:Co:Ru=5:5:9:1称取一定量的硝酸镧、醋酸钡、硝酸钴以及氯化钌,再按摩尔比金属阳离子:柠檬酸=1:1.1称取适量的柠檬酸,将其加入蒸馏水中,并采用超声震荡促进其溶解,在80℃下水浴搅拌蒸干至溶胶状态,置于烘箱中在120℃下进行干燥,而后将样品700℃焙烧3h,即可得到钙钛矿复合氧化物催化剂La 0.5Ba 0.5Co 0.9Ru 0.1O 3+δ,记为催化剂D。
实施例5
催化剂的制备:按照化学计量摩尔比La:K:Co:Rh=7:3:8:2称取一定量的硝酸镧、醋酸钾、硝酸钴以及硝酸铑,再按摩尔比金属阳离子:柠檬酸=1:1.1称取适量的柠檬酸,将其加入蒸馏水中,并采用超声震荡促进其溶解,在80℃下水浴搅拌蒸干至溶胶状态,置于烘箱中在120℃下进行干燥,而后将样品700℃焙烧3h,即可得到钙钛矿复合氧化物催化剂La 0.7K 0.3Co 0.8Rh 0.2O 3+δ,记为催化剂E。
实施例6
催化剂的制备:按照化学计量摩尔比La:Ca:Co:Pd=8:2:6:4称取一定量的硝酸镧、硝酸钙、草酸钴以及氯化钯,再按摩尔比金属阳离子:柠檬酸=1:1.1称取适量的柠檬酸,将其加入蒸馏水中,并采用超声震荡促进其溶解,在80℃下水浴搅拌蒸干至溶胶状态,置于烘箱中在120℃下进行干燥,而后将样品700℃焙烧3h,即可得到钙钛矿复合氧化物催化剂La 0.8Ca 0.2Co 0.6Pd 0.4O 3+δ,记为催化剂F。
实施例7
催化剂的制备:按照化学计量摩尔比La:Sr:Co:Pt=6:4:7:3称取一定量的硝酸镧、硝酸锶、硝酸钴以及氯铂酸,再按摩尔比金属阳离子:柠檬酸=1:1.1称取适量的柠檬酸,将其加入蒸馏水中,并采用超声震荡促进其溶解,在80℃下水浴搅拌蒸干至溶胶状态,置于烘箱中在120℃下进行干燥,而后将样品700℃焙烧3h,即可得到钙钛矿复合氧化物催化剂La 0.6Sr 0.4Co 0.7Pt 0.3O 3+δ,记为催化剂G。
实施例8
催化剂的制备:按照化学计量摩尔比La:Ba:Co:Cu=6:4:5:5称取一定量的硝酸镧、硝酸钡、草酸钴以及硫酸铜,再按摩尔比金属阳离子:柠檬酸=1:1.1称取适量的柠檬酸,将其加入蒸馏水中,并采用超声震荡促进其溶解,在80℃下水浴搅拌蒸干至溶胶状态,置于烘箱中在120℃下进行干燥,而后将样品700℃焙烧3h,即可得到钙钛矿复合氧化物催化剂La 0.6Ba 0.4Co 0.5Cu 0.5O 3+δ,记为催化剂H。
实施例9
催化剂的制备:按照化学计量摩尔比La:Ba:Co=6:4:10称取一定量的硝酸镧、硝酸钡以及草酸钴,再按摩尔比金属阳离子:柠檬酸=1:1.1称取适量的柠檬酸,将其加入蒸馏水中,并采用超声震荡促进其溶解,在 80℃下水浴搅拌蒸干至溶胶状态,置于烘箱中在120℃下进行干燥,而后将样品700℃焙烧3h,即可得到钙钛矿复合氧化物催化剂La 0.6Ba 0.4CoO 3+δ,记为催化剂I,作为对比催化剂。
实施例10
催化剂性能评价:向内径为12mm的不锈钢管式反应器中加入20g催化剂A,催化剂粒度为10-20目。将原料α-异佛尔酮和氧气连续通入装有催化剂的反应器,在反应温度为50℃,空速为1.0h -1,氧气与α-异佛尔酮的摩尔比为2.5:1,压力为0.3MPa的条件下进行反应,将液体产物经气相色谱检测分析,转化率为80.3%,选择性为93.7%。将该催化剂进行长周期运行,经过1000h,转化率为79.7-80.1%,选择性为93.5-94.0%,即催化剂有很好的稳定性。
实施例11
催化剂性能评价:向内径为12mm的不锈钢管式反应器中加入20g催化剂B,催化剂粒度为10-20目。将原料α-异佛尔酮和氧气连续通入装有催化剂的反应器,在反应温度为30℃,空速为0.05h -1,氧气与α-异佛尔酮的摩尔比为5:1,压力为0.6MPa的条件下进行反应,将液体产物经气相色谱检测分析,转化率为79.4%,选择性为94.8%。
实施例12
催化剂性能评价:向内径为12mm的不锈钢管式反应器中加入20g催化剂C,催化剂粒度为10-20目。将原料α-异佛尔酮和氧气连续通入装有催化剂的反应器,在反应温度为90℃,空速为1.6h -1,氧气与α-异佛尔酮的摩尔比为1.1:1,压力为0.1MPa的条件下进行反应,将液体产物经气相色谱检测分析,转化率为77.2%,选择性为92.9%。
实施例13
催化剂性能评价:向内径为12mm的不锈钢管式反应器中加入20g催化剂D,催化剂粒度为10-20目。将原料α-异佛尔酮和空气连续通入装有催化剂的反应器,在反应温度为40℃,空速为0.3h -1,空气中氧气与α-异佛尔酮的摩尔比为1.5:1,压力为2MPa的条件下进行反应,将液体产物经气相色谱检测分析,转化率为76.6%,选择性为93.1%。
实施例14
催化剂性能评价:向内径为12mm的不锈钢管式反应器中加入20g催 化剂E,催化剂粒度为10-20目。将原料α-异佛尔酮和空气连续通入装有催化剂的反应器,在反应温度为60℃,空速为0.5h -1,空气中氧气与α-异佛尔酮的摩尔比为2.0:1,压力为0.5MPa的条件下进行反应,将液体产物经气相色谱检测分析,转化率为75.4%,选择性为94.5%。
实施例15
催化剂性能评价:向内径为12mm的不锈钢管式反应器中加入20g催化剂F,催化剂粒度为10-20目。将原料α-异佛尔酮和氧气连续通入装有催化剂的反应器,在反应温度为70℃,空速为0.8h -1,氧气与α-异佛尔酮的摩尔比为3.0:1,压力为0.8MPa的条件下进行反应,将液体产物经气相色谱检测分析,转化率为74.7%,选择性为92.0%。
实施例16
催化剂性能评价:向内径为12mm的不锈钢管式反应器中加入20g催化剂G,催化剂粒度为10-20目。将原料α-异佛尔酮和氧气连续通入装有催化剂的反应器,在反应温度为80℃,空速为1.2h -1,氧气与α-异佛尔酮的摩尔比为3.5:1,压力为1.0MPa的条件下进行反应,将液体产物经气相色谱检测分析,转化率为73.8%,选择性为93.6%。
实施例17
催化剂性能评价:向内径为12mm的不锈钢管式反应器中加入20g催化剂H,催化剂粒度为10-20目。将原料α-异佛尔酮和氧气连续通入装有催化剂的反应器,在反应温度为50℃,空速为1.4h -1,氧气与α-异佛尔酮的摩尔比为4.5:1,压力为1.5MPa的条件下进行反应,将液体产物经气相色谱检测分析,转化率为72.1%,选择性为92.8%。
对比实施例
催化剂性能评价:向内径为12mm的不锈钢管式反应器中加入20g催化剂I,催化剂粒度为10-20目。将原料α-异佛尔酮和氧气连续通入装有催化剂的反应器,在反应温度为50℃,空速为1.4h -1,氧气与α-异佛尔酮的摩尔比为4.5:1,压力为1.5MPa的条件下进行反应,将液体产物经气相色谱检测分析,转化率为58.6%,选择性为80.7%。
以上所述均是本发明较佳的实施例而已。凡是依据本发明的技术实质对以上实施例所做的任何简单修改、等同变化与修饰,均落入本发明的保护范围内。

Claims (11)

  1. 一种采用钙钛矿型复合氧化物催化合成茶香酮的方法,其特征在于,在钙钛矿型复合氧化物的催化下,以氧气或空气为氧化剂,α-异佛尔酮在无溶剂条件下进行氧化反应,得到所述的茶香酮;
    所述的钙钛矿型复合氧化物为La 1-xX xCo 1-yY yO 3+δ
    X选自K、Ca、Sr、Ba中的一种;Y选自Mn、Fe、Cu、Ru、Rh、Pd、Pt中的一种;其中,x取0.1-0.5,y取0.1-0.5。
  2. 根据权利要求1所述的采用钙钛矿型复合氧化物催化合成茶香酮的方法,其特征在于,所述的氧化反应在间歇式反应器或连续式反应器中进行。
  3. 根据权利要求2所述的采用钙钛矿型复合氧化物催化合成茶香酮的方法,其特征在于,所述的氧化反应在管道式反应器或者滴流床反应器中进行。
  4. 根据权利要求3所述的采用钙钛矿型复合氧化物催化合成茶香酮的方法,其特征在于,所述的氧化反应在滴流床反应器中进行;
    所述的钙钛矿型复合氧化物固载于滴流床反应器中,α-异佛尔酮和氧气或者空气连续通入滴流床反应器中进行反应。
  5. 根据权利要求4所述的采用钙钛矿型复合氧化物催化合成茶香酮的方法,其特征在于,所述氧气或空气中所含的氧气与α-异佛尔酮的摩尔比为1.1-5:1。
  6. 根据权利要求4所述的采用钙钛矿型复合氧化物催化合成茶香酮的方法,其特征在于,α-异佛尔酮的质量空速为0.05-1.6h -1
  7. 根据权利要求1所述的采用钙钛矿型复合氧化物催化合成茶香酮的方法,其特征在于,反应压力为0.1-2MPa,反应温度为30-90℃。
  8. 根据权利要求1所述的采用钙钛矿型复合氧化物催化合成茶香酮的方法,其特征在于,所述的钙钛矿型复合氧化物的制备方法如下:
    向水中加入混合盐和柠檬酸,然后超声促进溶解,加热条件下蒸发水分至溶胶状态,然后进行干燥、烘焙得到所述的钙钛矿型复合氧化物催化剂;
    所述的混合盐由所述的La、X、Co、Y所形成的盐混合得到。
  9. 根据权利要求8所述的采用钙钛矿型复合氧化物催化剂的制备方法,其特征在于,蒸发温度80~90℃;
    干燥过程在烘箱中进行,干燥温度为110~130℃;
    烘焙温度为600~800℃,烘焙时间为1~3小时。
  10. 根据权利要求8所述的钙钛矿型复合氧化物催化剂的制备方法,其特征在于,所述的盐为硝酸盐、醋酸盐、硫酸盐、氯化物和草酸盐中的一种或多种。
  11. 根据权利要求1所述的采用钙钛矿型复合氧化物催化合成茶香酮的方法,其特征在于,所述的钙钛矿型复合氧化物为La 0.9K 0.1Co 0.9Mn 0.1O 3+δ、La 0.5Ca 0.5Co 0.5Fe 0.5O 3+δ、La 0.9Sr 0.1Co 0.5Cu 0.5O 3+δ、La 0.5Ba 0.5Co 0.9Ru 0.1O 3+δ、La 0.7K 0.3Co 0.8Rh 0.2O 3+δ、La 0.8Ca 0.2Co 0.6Pd 0.4O 3+δ、La 0.6Sr 0.4Co 0.7Pt 0.3O 3+δ、La 0.6Ba 0.4Co 0.5Cu 0.5O 3+δ或La 0.6Ba 0.4CoO 3+δ
PCT/CN2019/115744 2019-10-01 2019-11-05 一种采用钙钛矿型复合氧化物催化合成茶香酮的方法 WO2021062916A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910945972.0A CN110721696B (zh) 2019-10-01 2019-10-01 一种采用钙钛矿型复合氧化物催化合成茶香酮的方法
CN201910945972.0 2019-10-01

Publications (1)

Publication Number Publication Date
WO2021062916A1 true WO2021062916A1 (zh) 2021-04-08

Family

ID=69219694

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/115744 WO2021062916A1 (zh) 2019-10-01 2019-11-05 一种采用钙钛矿型复合氧化物催化合成茶香酮的方法

Country Status (2)

Country Link
CN (1) CN110721696B (zh)
WO (1) WO2021062916A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115703702B (zh) * 2021-08-16 2024-05-28 安徽圣诺贝化学科技有限公司 一种氧化α-异佛尔酮制备茶香酮的方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011106166A1 (en) * 2010-02-26 2011-09-01 Vertellus Specialties Inc. Methods for using allylic oxidation catalysts to perform oxidation reactions
CN105601490A (zh) * 2014-11-13 2016-05-25 四川大学 高效催化氧化α-异佛尔酮制备氧代异佛尔酮
CN106565447A (zh) * 2016-11-01 2017-04-19 辽宁石油化工大学 一种制备茶香酮的方法和装置

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CH611590A5 (en) * 1974-06-28 1979-06-15 Hoffmann La Roche Process for the preparation of a diketo compound
JPH11342342A (ja) * 1998-06-01 1999-12-14 Daicel Chem Ind Ltd 酸化触媒及びそれを用いた酸化方法
JPH11342340A (ja) * 1998-06-01 1999-12-14 Daicel Chem Ind Ltd 酸化触媒系及びそれを用いたケトイソホロンの製造方法
DE19929362A1 (de) * 1999-06-25 2000-12-28 Basf Ag Verfahren zur Herstellung von Oxoisophoron unter Verwendung von Additiven
CN108440262B (zh) * 2018-04-11 2021-04-20 万华化学集团股份有限公司 一种固液两相催化氧化β-异佛尔酮制备4-氧代异佛尔酮的方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011106166A1 (en) * 2010-02-26 2011-09-01 Vertellus Specialties Inc. Methods for using allylic oxidation catalysts to perform oxidation reactions
CN105601490A (zh) * 2014-11-13 2016-05-25 四川大学 高效催化氧化α-异佛尔酮制备氧代异佛尔酮
CN106565447A (zh) * 2016-11-01 2017-04-19 辽宁石油化工大学 一种制备茶香酮的方法和装置

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
AGUADERO, A. ET AL.: "An Oxygen-Deficient Perovskite as Selective Catalyst in the Oxidation of Alkyl Benzenes", ANGEWANDTE CHEMIE, INTERNATIONAL EDITION, vol. 50, no. 29, 31 May 2011 (2011-05-31), pages 6557 - 6561, XP055005083, ISSN: 1433-7851, DOI: 10.1002/anie.201007941 *
SHIBATA SATOMI, SUGAHARA KOSEI, KAMATA KEIGO, HARA MICHIKAZU: "Liquid-phase oxidation of alkanes with molecular oxygen catalyzed by high valent iron-based perovskite", CHEMICAL COMMUNICATIONS, ROYAL SOCIETY OF CHEMISTRY, vol. 54, no. 50, 1 January 2018 (2018-01-01), pages 6772 - 6775, XP055797580, ISSN: 1359-7345, DOI: 10.1039/C8CC02185F *
SINGH, SAVITA J. ET AL.: "Oxidation of alkylaromatics to benzylic ketones using TBHP as an oxidant over LaMO3 (M = Cr, Co, Fe, Mn, Ni) perovskites", CATALYSIS COMMUNICATIONS, vol. 10, no. 15, 25 July 2006 (2006-07-25), pages 2004 - 2007, XP026542422, ISSN: 1566-7367, DOI: 10.1016/j.catcom.2009.07.018 *

Also Published As

Publication number Publication date
CN110721696B (zh) 2020-06-05
CN110721696A (zh) 2020-01-24

Similar Documents

Publication Publication Date Title
Katryniok et al. Selective catalytic oxidation of glycerol: perspectives for high value chemicals
Hirasawa et al. Selective oxidation of glycerol to dihydroxyacetone over a Pd–Ag catalyst
CN110102350A (zh) 用于氧化合成2,5-呋喃二甲酸的催化剂及其制备方法和应用
EP2493837B1 (en) Hydrocarbon selective oxidation with heterogenous gold catalysts
CN101972656B (zh) 一种乙醇自热重整制取氢气的镍基催化剂及其制备方法
CN103214336A (zh) 环己烷氧化脱氢制环己烯的方法
CN109926056A (zh) 一种以碳纳米管为载体的催化剂、制备方法及应用
KR20130074393A (ko) 효율적인 이산화탄소 전환 촉매 및 이의 제조 방법
CN115178282B (zh) 一种由乙醇酸甲酯选择性氧化脱氢制备乙醛酸甲酯的催化剂及其制备和使用方法
CN105435779B (zh) 一氧化碳气相合成草酸酯催化剂
CN107349956B (zh) 乙醇水蒸气重整制氢催化剂及其制备方法
US20140148616A1 (en) Processo catalitico oxidativo para sintese de acido latico
Machado et al. Catalysts and processes for gluconic and glucaric acids production: A comprehensive review of market and chemical routes
EP2694205A1 (en) Catalysts for the conversion of synthesis gas to alcohols
WO2021062916A1 (zh) 一种采用钙钛矿型复合氧化物催化合成茶香酮的方法
DK202370589A1 (en) Method for preparing water gas shift catalysts, catalysts and process for reducing carbon monoxide content
US12071400B2 (en) Process of selective oxidation of glycerol
CN110256198B (zh) 一种1,4-戊二醇的生产方法
CN110872208B (zh) 一种耦合环己烷混合物脱氢技术的环己醇制备方法
CN109705069B (zh) 一种2,5-呋喃二甲酸的制备方法
JP3885139B2 (ja) エタノール水蒸気改質触媒、その製造方法及び水素の製造方法
EP3323801B1 (en) Methods of preparing cyclohexanone and derivatives
CN110026191B (zh) 一种催化剂及甘油氢解制备1,3-丙二醇的方法
JP3873964B2 (ja) エタノール水蒸気改質触媒、その製造方法及び水素の製造方法
JPH08176034A (ja) メタノールの合成方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19947510

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19947510

Country of ref document: EP

Kind code of ref document: A1