WO2021059693A1 - アンテナ基板、アンテナモジュール、アンテナ基板の製造方法 - Google Patents

アンテナ基板、アンテナモジュール、アンテナ基板の製造方法 Download PDF

Info

Publication number
WO2021059693A1
WO2021059693A1 PCT/JP2020/027834 JP2020027834W WO2021059693A1 WO 2021059693 A1 WO2021059693 A1 WO 2021059693A1 JP 2020027834 W JP2020027834 W JP 2020027834W WO 2021059693 A1 WO2021059693 A1 WO 2021059693A1
Authority
WO
WIPO (PCT)
Prior art keywords
conductor wiring
substrate
antenna
copper foil
particle size
Prior art date
Application number
PCT/JP2020/027834
Other languages
English (en)
French (fr)
Inventor
俊 坂井田
尾仲 健吾
Original Assignee
株式会社村田製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社村田製作所 filed Critical 株式会社村田製作所
Publication of WO2021059693A1 publication Critical patent/WO2021059693A1/ja
Priority to US17/702,804 priority Critical patent/US12027754B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • H01Q21/06Arrays of individually energised antenna units similarly polarised and spaced apart
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/08Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of copper or alloys based thereon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/12Supports; Mounting means
    • H01Q1/22Supports; Mounting means by structural association with other equipment or articles
    • H01Q1/2283Supports; Mounting means by structural association with other equipment or articles mounted in or on the surface of a semiconductor substrate as a chip-type antenna or integrated with other components into an IC package
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/12Supports; Mounting means
    • H01Q1/22Supports; Mounting means by structural association with other equipment or articles
    • H01Q1/24Supports; Mounting means by structural association with other equipment or articles with receiving set
    • H01Q1/241Supports; Mounting means by structural association with other equipment or articles with receiving set used in mobile communications, e.g. GSM
    • H01Q1/242Supports; Mounting means by structural association with other equipment or articles with receiving set used in mobile communications, e.g. GSM specially adapted for hand-held use
    • H01Q1/243Supports; Mounting means by structural association with other equipment or articles with receiving set used in mobile communications, e.g. GSM specially adapted for hand-held use with built-in antennas
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • H01Q21/0006Particular feeding systems
    • H01Q21/0025Modular arrays
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • H01Q21/06Arrays of individually energised antenna units similarly polarised and spaced apart
    • H01Q21/20Arrays of individually energised antenna units similarly polarised and spaced apart the units being spaced along or adjacent to a curvilinear path
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q9/00Electrically-short antennas having dimensions not more than twice the operating wavelength and consisting of conductive active radiating elements
    • H01Q9/04Resonant antennas
    • H01Q9/0407Substantially flat resonant element parallel to ground plane, e.g. patch antenna
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/0277Bendability or stretchability details
    • H05K1/028Bending or folding regions of flexible printed circuits
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/09Use of materials for the conductive, e.g. metallic pattern
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/46Manufacturing multilayer circuits
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working

Definitions

  • the present disclosure relates to an antenna substrate having a flexible portion, an antenna module including an antenna substrate, and a method for manufacturing an antenna substrate.
  • an antenna module including a feeding component (RFIC) and an antenna substrate.
  • the antenna substrate is flexible and is arranged between the first flat portion on which the feeding component (RFIC) is mounted, the second flat portion on which the antenna element is mounted, and the first flat portion and the second flat portion. It is provided with a flexible portion having the above, and a conductor wiring extending in the in-plane direction inside the first flat portion, the second flat portion, and the flexible portion to connect the feeding component and the antenna element.
  • the first flat portion and the second flat portion are arranged at positions orthogonal to each other.
  • the flexible portion is arranged in a bent state in order to connect the first flat portion and the second flat portion arranged at positions orthogonal to each other.
  • the conductor wiring used for the antenna substrate is made of electrolytic copper foil having a polycrystalline structure.
  • the electrolytic copper foil is made by immersing a polar drum whose surface is mirror-finished in an electrolytic solution and depositing copper ions in the electrolytic solution on the surface of the polar drum using the principle of electroplating to form a copper foil. It is manufactured by peeling off the copper foil from the surface of the polar drum and winding it up when the thickness reaches the target value.
  • the electrolytic copper foil has high dimensional accuracy and is suitable for use in an antenna substrate that requires impedance adjustment.
  • electrolytic copper foil has the characteristics of having isotropic grains and a small grain size. Therefore, if the material of the conductor wiring arranged in the flexible portion of the antenna substrate is electrolytic copper foil, cracks are likely to proceed in the thickness direction of the conductor wiring due to the bending stress generated when the flexible portion is bent, and in some cases, the conductor. There is a concern that the wiring will break.
  • the present disclosure has been made to solve such a problem, and an object thereof includes a flat portion in which an antenna element is arranged and a flexible portion in which a conductor wiring connected to the antenna element is arranged.
  • a flat portion in which an antenna element is arranged
  • a flexible portion in which a conductor wiring connected to the antenna element is arranged.
  • the antenna substrate according to the present disclosure is an antenna substrate having an antenna element, and includes a plate-shaped flat portion on which the antenna element is arranged and a flexible plate-shaped flexible portion arranged adjacent to the flat portion.
  • a first conductor wiring having a polycrystal structure and a second conductor wiring having a polycrystal structure are provided.
  • the first conductor wiring extends along the in-plane direction of the flat portion inside the flat portion, and one end thereof is connected to the antenna element.
  • the second conductor wiring extends along the in-plane direction of the flexible portion inside the flexible portion, and one end is connected to the other end of the first conductor wiring.
  • the average or median particle size in the extending direction of the second conductor wiring is larger than the average or median particle size in the extending direction of the first conductor wiring, and the thickness direction of the second conductor wiring.
  • the average or median of the ratio of the particle size in the extending direction to the particle size of the first conductor wiring is larger than the average or median of the ratio of the particle size in the extending direction to the particle size in the thickness direction of the first conductor wiring.
  • the average value or median value of the particle size in the extending direction of the second conductor wiring of the flexible portion is larger than the average value or median value of the particle size in the extending direction of the first conductor wiring of the flat portion.
  • the average value or median of the aspect ratio of the second conductor wiring (the ratio of the particle size in the extending direction to the particle size in the thickness direction) is larger than the average value or the median of the aspect ratio of the first conductor wiring. ..
  • the material of the first conductor wiring of the flat portion an electrolytic copper foil having a small size and an isotropic particle structure and having good dimensional accuracy can be used. As a result, it is possible to suppress variations in the length of the first conductor wiring, so that variations in antenna characteristics (for example, deviations in frequency bands in reflection characteristics) can be reduced. As a result, it is possible to secure the bending resistance of the second conductor wiring arranged in the flexible portion while suppressing the variation in the antenna characteristics.
  • the method for manufacturing an antenna substrate according to the present disclosure includes a step of preparing a first substrate using electrolytic copper foil as a material and having a conductor wiring at one end connected to an antenna element inside, and a step of preparing the prepared first substrate.
  • This includes a step of forming a second substrate by growing particles in a specific portion of the conductor wiring by performing an annealing treatment in which a specific portion is heated while pressurizing.
  • the average value or median of the particle size in the extending direction of the conductor wiring included in the specific part is the average value or the median of the particle size in the extending direction of the conductor wiring included in the part other than the specific part.
  • the average value or median value of the ratio of the particle size in the extending direction to the particle size in the thickness direction of the conductor wiring that is larger than the value and is included in the specific part is the conductor wiring that is included in the part other than the specific part. Greater than the mean or median ratio of the particle size in the extending direction to the particle size in the thickness direction.
  • the average value or the median value of the particle size in the extending direction of the conductor wiring (hereinafter, also referred to as “second conductor wiring”) included in the specific portion is specific. It is larger than the average value or the median value of the particle size in the extending direction of the conductor wiring (hereinafter, also referred to as “first conductor wiring”) included in the portion other than the portion. Further, the average or median aspect ratio of the first conductor wiring is larger than the average or median aspect ratio of the second conductor wiring. Therefore, even if a minute crack occurs in the second conductor wiring when a specific part is bent, it is difficult for the crack to proceed in the thickness direction of the second conductor wiring, and the second conductor wiring is electrically connected.
  • the material of the first conductor wiring an electrolytic copper foil having a small size and an isotropic particle structure and having good dimensional accuracy can be used. As a result, it is possible to suppress variations in the length of the first conductor wiring, so that variations in antenna characteristics (for example, deviations in frequency bands in reflection characteristics) can be reduced. As a result, it is possible to secure the bending resistance of the second conductor wiring included in the specific portion while suppressing the variation in the antenna characteristics.
  • the antenna substrate including a flat portion on which an antenna element is arranged and a flexible portion on which conductor wiring connected to the antenna element is arranged, the antenna substrate is arranged in the flexible portion while suppressing variation in antenna characteristics. Bending resistance of the conductor wiring can be ensured.
  • FIG. 1 is an example of a block diagram of a communication device 10 to which the antenna substrate 120 according to the present embodiment is applied.
  • the communication device 10 is, for example, a mobile terminal such as a mobile phone, a smartphone or a tablet, or a personal computer having a communication function.
  • the communication device 10 includes an antenna module 100 including an antenna substrate 120 and a BBIC 200 constituting a baseband signal processing circuit.
  • the antenna module 100 includes an RFIC 110, which is an example of a power feeding component, in addition to the antenna substrate 120.
  • the communication device 10 up-converts the signal transmitted from the BBIC 200 to the antenna module 100 into a high-frequency signal and radiates it from the antenna board 120, and down-converts the high-frequency signal received by the antenna board 120 to process the signal at the BBIC 200. To do.
  • the antenna substrate 120 includes a plurality of radiating elements 121.
  • FIG. 1 shows an example in which the antenna substrate 120 includes a plurality of radiating elements 121 arranged in a two-dimensional array, the arrangement shape of the radiating elements 121 does not necessarily have to be in an array. Further, the number of radiating elements 121 does not necessarily have to be a plurality.
  • the radiating element 121 is a patch antenna having a substantially square flat plate shape.
  • the RFIC 110 includes switches 111A to 111D, 113A to 113D, 117, power amplifiers 112AT to 112DT, low noise amplifiers 112AR to 112DR, attenuators 114A to 114D, phase shifters 115A to 115D, and signal synthesizer / demultiplexer. It includes 116, a mixer 118, and an amplifier circuit 119.
  • the switches 111A to 111D and 113A to 113D are switched to the power amplifiers 112AT to 112DT side, and the switch 117 is connected to the transmitting side amplifier of the amplifier circuit 119.
  • the switches 111A to 111D and 113A to 113D are switched to the low noise amplifiers 112AR to 112DR side, and the switch 117 is connected to the receiving side amplifier of the amplifier circuit 119.
  • the signal transmitted from the BBIC 200 is amplified by the amplifier circuit 119 and up-converted by the mixer 118.
  • the transmitted signal which is an up-converted high-frequency signal, is demultiplexed by the signal synthesizer / demultiplexer 116, passes through the four signal paths, and is fed to different radiation elements 121.
  • the directivity of the radio waves radiated from the antenna substrate 120 can be adjusted by individually adjusting the phase shift degrees of the phase shifters 115A to 115D arranged in each signal path.
  • the received signal which is a high-frequency signal received by each radiating element 121, passes through four different signal paths and is combined by the signal synthesizer / demultiplexer 116.
  • the combined received signal is down-converted by the mixer 118, amplified by the amplifier circuit 119, and transmitted to the BBIC 200.
  • the RFIC 110 is formed as, for example, a one-chip integrated circuit component including the above circuit configuration.
  • the devices switch, power amplifier, low noise amplifier, attenuator, phase shifter
  • corresponding to each radiating element 121 in the RFIC 110 may be formed as an integrated circuit component of one chip for each corresponding radiating element 121. ..
  • FIG. 2 is a diagram for explaining the arrangement of the antenna substrate 120 in the first embodiment.
  • the antenna substrate 120 includes a plate-shaped flat portion 131, 133 and a plate-shaped flexible portion 132 connecting the flat portion 131 and the flat portion 133.
  • Radiating elements 121a and 121b are arranged on the flat portions 131 and 133, respectively.
  • the flat portion 131 is arranged on one main surface 21 of the mounting substrate 20 via the RFIC 110.
  • the flat portion 131 extends along the main surface 21 of the mounting substrate 20.
  • the flat portion 133 extends along the side surface 22 of the mounting substrate 20. That is, the flat portion 131 and the flat portion 133 are arranged at positions orthogonal to each other.
  • the normal direction of the main surface 21 of the mounting board 20 is the "Z-axis direction”
  • the normal direction of the side surface 22 of the mounting board 20 is the "X-axis direction”
  • the directions perpendicular to the Z-axis direction and the X-axis direction are defined. Also referred to as "Y-axis direction”.
  • the radiating element 121b of the flat portion 131 is arranged so that radio waves are radiated in the normal direction (that is, the Z-axis direction) of the main surface 21.
  • the radiating element 121a of the flat portion 133 is arranged so that radio waves are radiated in the normal direction (that is, the X-axis direction) of the side surface 22.
  • the flexible portion 132 is arranged in a curved state in order to connect the flat portion 131 and the flat portion 133 arranged at positions orthogonal to each other.
  • radio waves can be radiated in two different directions.
  • the thickness of the flexible portion 132 is set to a value smaller than the thickness of the flat portions 131 and 133.
  • the antenna substrate 120 (flat portions 131, 133 and flexible portion 132) is composed of a resin multilayer substrate formed by laminating sheets of a liquid crystal polymer (LCP) having thermoplasticity.
  • LCP liquid crystal polymer
  • FIG. 3 is a perspective view of the inside of the antenna substrate 120 from the positive direction side of the Y axis in FIG.
  • the flat portions 131 and 133 and the flexible portion 132 that form the antenna substrate 120 each have a multilayer structure.
  • Radiating element 121b, conductor wiring 141, and ground electrode GND are laminated on the flat portion 131 in this order at predetermined intervals.
  • the radiating element 121b extends in a plate shape along the in-plane direction of the flat portion 131.
  • the conductor wiring 141 extends linearly along the in-plane direction of the flat portion 131.
  • the ground electrode GND extends in a plate shape along the in-plane direction of the flat portion 131.
  • the radiating element 121a extends in a plate shape along the in-plane direction of the flat portion 133.
  • the conductor wiring 143 extends linearly along the in-plane direction of the flat portion 133.
  • the ground electrode GND extends in a plate shape along the in-plane direction of the flat portion 133.
  • Conductor wiring 142 and ground electrode GND are laminated in this order on the flexible portion 132 at predetermined intervals.
  • the conductor wiring 142 extends linearly along the in-plane direction of the flexible portion 132.
  • the ground electrode GND extends in a plate shape along the in-plane direction of the flexible portion 132.
  • the ground electrode GND is integrally formed over the flat portions 131 and 133 and the flexible portion 132.
  • the radiating element 121b is connected to the RFIC 110 via the via V1.
  • radio waves are radiated from the radiating element 121b.
  • One end of the conductor wiring 141 is connected to the RFIC 110 via the via V2, and the other end of the conductor wiring 141 is connected to one end of the conductor wiring 142 via the via V3.
  • the radiating element 121a is connected to one end of the conductor wiring 143 via the via V5.
  • the other end of the conductor wiring 143 is connected to the other end of the conductor wiring 141 via the via V4. That is, the radiating element 121a of the flat portion 133 is connected to the RFIC 110 via the conductor wirings 141 to 143 and the vias V2 to V5.
  • the high frequency signal from the RFIC 110 is supplied to the radiating element 121a via the conductor wirings 141 to 143 and the vias V2 to V5, so that the radio wave is radiated from the radiating element 121a.
  • the flexible portion 132 is arranged in a curved state as described above. Therefore, when the flexible portion 132 is bent from a flat state to a curved state, bending stress acts on the flexible portion 132.
  • the conductor wiring used inside the multilayer substrate is often made of an electrolytic copper foil having a polycrystalline structure.
  • the electrolytic copper foil is made into a copper foil by immersing a polar drum whose surface is mirror-finished in an electrolytic solution and rotating it, and depositing copper ions in the electrolytic solution on the surface of the polar drum using the principle of electroplating. , It is manufactured by peeling the copper foil from the surface of the polar drum and winding it when the thickness of the copper foil reaches the target value.
  • the electrolytic copper foil has high dimensional accuracy due to its manufacturing principle and is suitable for use in an antenna substrate that requires impedance adjustment.
  • the grains of electrolytic copper foil have the characteristics of being small in size and having an isotropic structure. Therefore, if the material of the conductor wiring 142 arranged in the flexible portion 132 is an electrolytic copper foil, the thickness of the conductor wiring 142 is due to the bending stress (particularly the tensile stress generated on the outer peripheral side of the bending portion) generated when the flexible portion 132 is bent. There is a concern that cracks are likely to proceed in the direction and the conductor wiring 142 may be broken in some cases.
  • electrolytic copper foil having high dimensional accuracy is used as the material of the conductor wirings 141 and 143 of the flat portions 131 and 133 on which bending stress does not act.
  • rolled copper foil is used instead of electrolytic copper foil.
  • Rolled copper foil is manufactured by repeating the rolling process of thinning the thickness of copper by passing a copper material between rolling rolls and stretching it until the thickness of copper reaches the target value. Since the copper particles grow in the extending direction by repeating the rolling process, the grain of the rolled copper foil is characterized by being larger in size than before rolling and having an anisotropic structure long in the extending direction. is there.
  • FIG. 4 is a diagram showing a cross section of the conductor wiring 142 (rolled copper foil) of the flexible portion 132.
  • FIG. 5 is a view showing a cross section of conductor wirings 141 and 143 (electrolytic copper foil) of flat portions 131 and 133.
  • the horizontal direction of the paper surface indicates the extending direction of each conductor wiring
  • the vertical direction of the paper surface indicates the thickness direction of each conductor wiring.
  • Both the rolled copper foil and the electrolytic copper foil have a polycrystalline structure, but the grain size and the ratio of the size in the extending direction to the size in the thickness direction of the grain (hereinafter, also referred to as “aspect ratio”) are different. ..
  • the grain of the conductor wiring 142 (rolled copper foil) shown in FIG. 4 has an anisotropic structure that is large in size and long in the extending direction because copper particles grow in the extending direction by the rolling process.
  • the grains of the conductor wiring 141 and 143 (electrolytic copper foil) shown in FIG. 5 are smaller in size and have an isotropic structure than the grains of the conductor wiring 142 (rolled copper foil) shown in FIG. Has.
  • the average or median grain size in the extending direction of the conductor wiring 142 (rolled copper foil) shown in FIG. 4 is the average grain size in the extending direction of the conductor wiring 141, 143 (electrolytic copper foil) shown in FIG. Greater than the value or median. Further, the average or median aspect ratio of the conductor wiring 142 (rolled copper foil) shown in FIG. 4 is larger than the average or median aspect ratio of the conductor wiring 141, 143 (electrolytic copper foil) shown in FIG. large.
  • each grain for example, the cross section of each conductor wiring is image-analyzed to identify the portion surrounded by the same boundary surface as each grain, and the size of each identified grain in the thickness direction and the extension direction is measured.
  • the average value of the grain size in the extending direction is 2.0 to 4.0 ⁇ m, and the average value of the grain size in the thickness direction is 0.5. It is ⁇ 1.5 ⁇ m.
  • the average value of the grain size in the extending direction is generally 0.1 to 0.5 ⁇ m, and the average value of the grain size in the thickness direction is 0.1 to 0.5 ⁇ m. Is 0.1 to 0.5 ⁇ m.
  • the material of the conductor wirings 141 and 143 of the flat portions 131 and 133 electrolytic copper foil having higher dimensional accuracy than the rolled copper foil is used. Therefore, it is possible to suppress variations in the lengths of the conductor wirings 141 and 143 as compared with the case where the material of the conductor wirings 141 and 143 is rolled copper foil. As a result, the dimensional accuracy of the entire length of the conductor wiring 141, 142, 143 from the RFIC 110 to the radiating element 121a is improved, so that the variation in the antenna characteristics of the radiating element 121a (for example, the deviation of the frequency band in the reflection characteristics) is reduced. be able to.
  • electrolytic copper foil instead of rolled copper foil as the material for the conductor wiring 141 and 143
  • the adhesion between the conductor wiring 141 and 143 and the surrounding liquid crystal polymer base material can be improved. That is, since the rolled copper foil is produced by stretching copper with a rolling roll, the surface of the rolled copper foil tends to be rougher than the surface of the electrolytic copper foil. On the other hand, since the electrolytic copper foil is manufactured by depositing it on the surface of a polar drum finished in a mirror surface shape, the surface of the electrolytic copper foil is smooth. Therefore, by using electrolytic copper foil instead of rolled copper foil as the material for the conductor wiring 141 and 143, the adhesion strength between the conductor wiring 141 and 143 and the surrounding liquid crystal polymer base material can be further increased.
  • the electrolytic copper foil can be generally manufactured at a lower cost than the rolled copper foil, the cost of the antenna substrate 120 can be suppressed. That is, rolled copper foil is used for the conductor wiring 142 of the flexible portion 132 on which bending stress can act, and rolled copper is used for the conductor wiring 141 and 143 of the flat portions 131 and 133 on which bending stress does not act.
  • the electrolytic copper foil which has a lower cost than the foil, the cost can be suppressed as compared with the case where all of the conductor wirings 141, 142, and 143 are made of rolled copper foil.
  • the antenna substrate 120 has a plate-shaped flat portion 133 on which the radiating element 121a is arranged, a plate-shaped flexible portion 132 arranged adjacent to the flat portion 133, and a flat portion. Inside the 133, one end is connected to the radiating element 121a, and inside the flexible portion 132, one end is connected to the other end of the conductor wiring 143. ..
  • the conductor wiring 143 is made of electrolytic copper foil, and the conductor wiring 142 is made of rolled copper foil.
  • the average or median grain size in the extending direction of the conductor wiring 142 is larger than the average or median grain size in the extending direction of the conductor wiring 143, and the average or median aspect ratio of the conductor wiring 142. Is greater than the mean or median aspect ratio of the conductor wiring 143.
  • the rolled copper foil having a larger grain size and aspect ratio than the electrolytic copper foil as the material of the conductor wiring 142 of the flexible portion 132, the bending resistance of the conductor wiring 142 when bending the flexible portion 132 is ensured. be able to.
  • an electrolytic copper foil having a higher dimensional accuracy than the rolled copper foil as the material of the conductor wiring 143 of the flat portion 133, the dimensions of the entire length of the conductor wiring 141, 142, 143 from the RFIC 110 to the radiating element 121a Since the accuracy is improved, the variation in the antenna characteristics of the radiating element 121a can be reduced.
  • the flexible portion while suppressing the variation in the antenna characteristics.
  • the bending resistance of the conductor wiring 142 arranged at 132 can be ensured.
  • the radiating element 121a, the flat portion 133, the flexible portion 132, the conductor wiring 143, and the conductor wiring 142 according to the present embodiment are the “antenna element”, the “flat portion”, the “flexible portion”, and the “first conductor wiring” of the present disclosure. , And “second conductor wiring”, respectively.
  • the material of the ground electrode GND of the flexible portion 132 is rolled copper foil, and the material of the ground electrode GND of the flat portions 131 and 133 is electrolytic copper foil. Is desirable. On the other hand, from the viewpoint of cost reduction, all the materials of the ground electrode GND may be electrolytic copper foil.
  • the average value or the median value of the grain size and aspect ratio of the conductor wiring 142 of the flexible portion 132 is the grain size and aspect ratio of the conductor wiring 141 and 143 of the flat portions 131 and 133. It has a configuration that is larger than the average value or the median value (hereinafter, also referred to as “characteristic configuration of the present disclosure”).
  • the antenna substrate 120 having the characteristic configuration of the present disclosure is provided with the conductor wiring 142 made of rolled copper foil and the conductor wiring 141 and 143 made of electrolytic copper foil as vias V3. An example of manufacturing by connecting with V4 has been described.
  • the antenna substrate 120B having the characteristic configuration of the present disclosure is manufactured by performing the preparation step and the annealing treatment (heat treatment) step described below in this order.
  • FIG. 6 is a diagram for explaining the preparation process in the present modification 1.
  • FIG. 7 is a diagram for explaining the annealing process in the first modification.
  • FIG. 8 is a diagram showing an antenna substrate 120B generated by the annealing process.
  • the antenna substrate 120A is prepared.
  • the conductor wirings 141, 142, 143 and vias V3, V4 of the antenna board 120 described above are changed to one conductor wiring 140 made of electrolytic copper foil.
  • the flexible portion 132 of the antenna substrate 120A prepared in the preparation step is subjected to the annealing treatment of heating while pressurizing in the thickness direction using the manufacturing devices 200a and 200b.
  • the grain of the portion included in the flexible portion 132 of the conductor wiring 140 is grown in the extending direction.
  • the flexible portion 132 of the antenna substrate 120A is pressurized at a predetermined holding time (for example, a time of 30 minutes or more and less than 3 hours) and a predetermined pressure value (for example, a pressure of 8.4 MPa or less).
  • a predetermined holding time for example, a time of 30 minutes or more and less than 3 hours
  • a predetermined pressure value for example, a pressure of 8.4 MPa or less.
  • Heat at a predetermined temperature for example, a temperature of 230 ° C. or higher and lower than 300 ° C.
  • the resin multilayer substrate which is the base material of the antenna substrate 120A, melts and decomposes. It is desirable to perform the annealing treatment by appropriately setting the pressure value and heating temperature.
  • Heating is preferably performed at 250 ° C. for 1 hour, more preferably at 280 ° C. for 30 minutes, and at 230 ° C. for 2 to 3 hours to prevent damage to mounted components and the like.
  • the pressure value is 8.4 MPa or less as described above, considering the manufacturing conditions and the local heating press. It is desirable to do.
  • the characteristic configuration of the present disclosure can be obtained. That is, the average value or median value of the grain size and aspect ratio of the flexible portion 132 portion of the conductor wiring 140 is larger than the average value or median value of the grain size and aspect ratio of the portions of the flat portions 131 and 133 of the conductor wiring 140. growing. As a result, as shown in FIG. 8, in the antenna substrate 120B generated by the annealing process, the flat portions 131 and 133 of the conductor wiring 140 become the conductor wirings 141B and 143B made of electrolytic copper foil, and the conductors. The portion of the flexible portion 132 in the wiring 140 becomes the conductor wiring 142B having a grain structure similar to that of the rolled copper foil.
  • FIG. 8 shows an example in which the boundary portion B1 between the conductor wiring 142B and the conductor wiring 141B and the boundary portion between the flexible portion 132 and the flat portion 131 substantially coincide with each other, but even if they are slightly deviated from each other. Good.
  • FIG. 8 shows an example in which the boundary portion B1 between the conductor wiring 142B and the conductor wiring 143B and the boundary portion between the flexible portion 132 and the flat portion 133 substantially coincide with each other, but they are slightly deviated from each other. May be good.
  • the grain structure of the boundary portions B1 and B2 may gradually change from a grain structure equivalent to rolled copper foil to a grain structure of electrolytic copper foil from the conductor wiring 142B side to the conductor wiring 141B and 143B side. ..
  • FIG. 9 is a diagram in which the antenna board 120B generated by the annealing process according to the first modification is mounted on the mounting board 20.
  • the conductor wiring 142B of the flexible portion 132 is integrally formed with the conductor wirings 141B and 143B of the flat portions 131 and 133.
  • the grain structure of the conductor wirings 141B and 142B of the flat portions 131 and 133 is the same as the grain structure of the electrolytic copper foil shown in FIG.
  • the grain structure of the conductor wiring 142B of the flexible portion 132 has a structure equivalent to the grain structure of the rolled copper foil shown in FIG. 4 as a result of growing the grain in the extending direction by the annealing treatment.
  • the "antenna substrate 120A”, "preparation step”, “annealing process”, “antenna substrate 120B”, and “annealing process” of the present modification 1 are the “first substrate” and “first substrate” of the present disclosure. Can correspond to the “step of preparing”, “annealing”, “second substrate”, and “step of producing the second substrate”, respectively.
  • the flat portions 131, 133 and the flexible portion 132 are both composed of only a flexible substrate having thermoplasticity.
  • at least one of the flat portions 131 and 133 may have a structure in which the flat substrate is laminated on the flexible substrate.
  • the flat substrate is connected to the flexible substrate by, for example, solder mounting, crimping, or an adhesive layer.
  • FIG. 10 is a perspective view of the inside of the antenna substrate 120C according to the second modification from the positive direction side of the Y axis.
  • the flexible substrate 122 extending over the entire flat portions 131, 133 and the flexible portion 132, and the flat substrates 123a, 123b laminated in the regions of the flat portions 131, 133 of the flexible substrate 122, respectively.
  • the flat substrates 123a, 123b laminated in the regions of the flat portions 131, 133 of the flexible substrate 122, respectively.
  • Each of the flat substrates 123a and 123b is a multilayer resin formed by laminating a plurality of resin layers composed of, for example, low temperature co-fired ceramics (LCC) multilayer substrates and resins such as epoxy and polyimide.
  • LCC low temperature co-fired ceramics
  • a multilayer resin substrate formed by laminating a plurality of resin layers composed of a liquid crystal polymer a multilayer resin substrate formed by laminating a plurality of resin layers composed of a fluororesin, and a PET (Polyethylene Terephthalate) material.
  • PET Polyethylene Terephthalate
  • the flat substrates 123a and 123b do not necessarily have to have a multi-layer structure, and may be a single-layer substrate. Further, the flat substrates 123a and 123b may be arranged on the housing side (including a display panel such as a liquid crystal panel) of the communication device 10.
  • the conductor wiring 142 made of rolled copper foil extends from the flexible portion 132 to the flat portion 131 and the flat portion 133.
  • a radiating element 121a On the flat substrate 123b of the flat portion 133, a radiating element 121a, a conductor wiring 143 made of electrolytic copper foil, and a via V5 connecting the radiating element 121a and one end of the conductor wiring 143 are arranged. ..
  • the other end of the conductor wiring 143 is connected to one end of the conductor wiring 142 arranged on the flexible substrate 122 via the via V4.
  • the other end of the conductor wiring 142 is connected to the RFIC 110 via the via V2 at the flat portion 131.
  • the radiating element 121a is electrically connected to the RFIC 110.
  • a radiating element 121b On the flat substrate 123a of the flat portion 131, a radiating element 121b, a conductor wiring 144 made of electrolytic copper foil, and a via V6 connecting the radiating element 121b and one end of the conductor wiring 144 are arranged. .. The other end of the conductor wiring 144 is connected to the RFIC 110 via the via V1. As a result, the radiating element 121b is electrically connected to the RFIC 110.
  • FIG. 11 is a perspective view of the inside of the other antenna substrate 120D according to the present modification 2 from the positive direction side of the Y axis.
  • a part of the flat substrate 123a is outside the one end of the flexible substrate 122 (on the negative direction side of the X axis in FIG. 11) with respect to the antenna substrate 120C shown in FIG.
  • a part of the flat substrate 123b is staggered to the outside (Z-axis negative direction side in FIG. 11) from the other end of the flexible substrate 122.
  • the flexible substrate 122 is crimped, bonded, or connected by a connector on the plane of each of the flat substrates 123a and 123b.
  • the conductor wiring 144 in the flat portion 131 is arranged on the flexible substrate 122 instead of the flat substrate 123a, and the radiating element 121b and the via V6 are made of electrolytic copper foil in the flat substrate 123a. It is connected via conductor wiring 145.
  • Other configurations of the antenna board 120D are the same as those of the antenna board 120C described above.
  • the flexible portion 132 may be configured by the flexible substrate, and the flat portions 131 and 133 may have a laminated structure of the flexible substrate and the flat substrate.
  • the "flexible substrate 122" and “flat substrate 123b" of the second modification can correspond to the "flexible substrate” and “flat substrate” of the present disclosure, respectively.
  • 10 communication device 20 mounting board, 21 main surface, 22 side surface, 100 antenna module, 111A to 113D, 117 switch, 112AR to 112DR low noise amplifier, 112AT to 112DT power amplifier, 114A to 114D attenuator, 115A to 115D phase shifter , 116 Signal synthesizer / demultiplexer, 118 mixer, 119 amplifier circuit, 120, 120A, 120B antenna board, 121, 121a, 121b radiating element, 131, 133 flat part, 132 flexible part, 140, 141, 141B, 142, 142B, 143, 143B conductor wiring, 200a, 200b manufacturing equipment, GND ground electrode, V1 to V5 vias.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Chemical & Material Sciences (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Thermal Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Details Of Aerials (AREA)

Abstract

アンテナ基板(120)は、放射素子(121a)が配置される平坦部(133)と、平坦部(133)に隣接して配置されるフレキシブル部(132)と、平坦部(133)の内部において一方の端部が放射素子(121a)に接続される導体配線(143)と、フレキシブル部(132)の内部において一方の端部が導体配線(143)の他方の端部に接続される導体配線(142)とを備える。導体配線(142)の延在方向のグレインサイズの平均値または中央値は導体配線(143)の延在方向のグレインサイズの平均値または中央値よりも大きく、かつ導体配線(142)のアスペクト比の平均値または中央値は導体配線(143)のアスペクト比の平均値または中央値よりも大きい。

Description

アンテナ基板、アンテナモジュール、アンテナ基板の製造方法
 本開示は、フレキシブル部を有するアンテナ基板、アンテナ基板を備えるアンテナモジュール、アンテナ基板の製造方法に関する。
 国際公開第2019/026595号公報には、給電部品(RFIC)と、アンテナ基板とを備えるアンテナモジュールが開示されている。アンテナ基板は、給電部品(RFIC)が実装される第1平坦部と、アンテナ素子が実装される第2平坦部と、第1平坦部と第2平坦部との間に配置される可撓性を有するフレキシブル部と、第1平坦部、第2平坦部およびフレキシブル部の内部において面内方向に延在し、給電部品とアンテナ素子とを接続する導体配線とを備える。
 このアンテナモジュールにおいては、第1平坦部と第2平坦部とが互いに直交する位置に配置される。フレキシブル部は、互いに直交する位置に配置される第1平坦部と第2平坦部と接続するために、曲げられた状態で配置される。
国際公開第2019/026595号公報
 一般に、アンテナ基板に用いられる導体配線は、多結晶構造を有する電解銅箔を素材としている。電解銅箔は、表面が鏡面状に仕上げられた極性ドラムを電解液に浸し、電気めっきの原理を利用して電解液中の銅イオンを極性ドラムの表面に沈着させて銅箔とし、銅箔の厚さが目標値となったところで極性ドラムの表面から銅箔を剥がして巻き取ることによって製造される。電解銅箔は、寸法精度が高く、インピーダンス調整を要するアンテナ基板に用いられるのに適している。
 その一方で、電解銅箔は、等方的なグレインを有し、かつグレインのサイズが小さいという特性がある。そのため、アンテナ基板のフレキシブル部に配置される導体配線の素材を電解銅箔とすると、フレキシブル部を曲げる際に生じる曲げ応力によって導体配線の厚さ方向にクラックが進行し易くなり、場合によっては導体配線が破断してしまうことが懸念される。
 本開示は、このような課題を解決するためになされたものであって、その目的は、アンテナ素子が配置される平坦部とアンテナ素子に接続される導体配線が配置されるフレキシブル部とを備えるアンテナ基板において、アンテナ特性のばらつきを抑制しつつ、フレキシブル部に配置される導体配線の曲げ耐性を確保することである。
 本開示によるアンテナ基板は、アンテナ素子を有するアンテナ基板であって、アンテナ素子が配置される板状の平坦部と、平坦部に隣接して配置される可撓性を有する板状のフレキシブル部と、多結晶構造を有する第1導体配線と、多結晶構造を有する第2導体配線とを備える。第1導体配線は、平坦部の内部において平坦部の面内方向に沿って延在し、一方の端部がアンテナ素子に接続される。第2導体配線は、フレキシブル部の内部においてフレキシブル部の面内方向に沿って延在し、一方の端部が第1導体配線の他方の端部に接続される。第2導体配線の延在方向の粒子サイズの平均値または中央値は、第1導体配線の延在方向の粒子サイズの平均値または中央値よりも大きく、かつ、第2導体配線の厚さ方向の粒子サイズに対する延在方向の粒子サイズの比の平均値または中央値は、第1導体配線の厚さ方向の粒子サイズに対する延在方向の粒子サイズの比の平均値または中央値よりも大きい。
 上記のアンテナ基板においては、フレキシブル部の第2導体配線の延在方向の粒子サイズの平均値または中央値は、平坦部の第1導体配線の延在方向の粒子サイズの平均値または中央値よりも大きい。さらに、第2導体配線のアスペクト比(厚さ方向の粒子サイズに対する延在方向の粒子サイズの比)の平均値または中央値は、第1導体配線のアスペクト比の平均値または中央値よりも大きい。このような構成によって、フレキシブル部が曲げられる際に微小なクラックが第2導体配線に発生したとしても、そのクラックが第2導体配線の厚さ方向に進行し難くし、第2導体配線が電気的に破断するのを防ぎ易くすることができる。一方、平坦部の第1導体配線の素材には、サイズが小さくかつ等方的な粒子構造を有し、さらに寸法精度のよい電解銅箔を用いることができる。これにより、第1導体配線の長さがばらつくことを抑制することができるため、アンテナ特性のばらつき(たとえば反射特性における周波数帯のずれ)を小さくすることができる。その結果、アンテナ特性のばらつきを抑制しつつ、フレキシブル部に配置される第2導体配線の曲げ耐性を確保することができる。
 本開示によるアンテナ基板の製造方法は、電解銅箔を素材とし、一方の端部がアンテナ素子に接続される導体配線を内部に有する第1基板を準備する工程と、準備された第1基板の特定の部分を加圧しながら加熱するアニール処理を行なって導体配線の特定の部分の粒子を成長させることによって第2基板を生成する工程とを含む。第2基板において、特定の部分に含まれる導体配線の延在方向の粒子サイズの平均値または中央値は特定の部分以外の部分に含まれる導体配線の延在方向の粒子サイズの平均値または中央値よりも大きくし、かつ、特定の部分に含まれる導体配線の厚さ方向の粒子サイズに対する延在方向の粒子サイズの比の平均値または中央値は特定の部分以外の部分に含まれる導体配線の厚さ方向の粒子サイズに対する延在方向の粒子サイズの比の平均値または中央値よりも大きい。
 上記の製造方法によって生成される第2基板においては、特定の部分に含まれる導体配線(以下「第2導体配線」ともいう)の延在方向の粒子サイズの平均値または中央値が、特定の部分以外の部分に含まれる導体配線(以下「第1導体配線」ともいう)の延在方向の粒子サイズの平均値または中央値よりも大きい。さらに、第1導体配線のアスペクト比の平均値または中央値が、第2導体配線のアスペクト比の平均値または中央値よりも大きい。そのため、特定の部分が曲げられた場合に、微小なクラックが第2導体配線に発生したとしても、そのクラックが第2導体配線の厚さ方向に進行し難くし、第2導体配線が電気的に破断するのを防ぎ易くすることができる。一方、第1導体配線の素材には、サイズが小さくかつ等方的な粒子構造を有し、さらに寸法精度のよい電解銅箔を用いることができる。これにより、第1導体配線の長さがばらつくことを抑制することができるため、アンテナ特性のばらつき(たとえば反射特性における周波数帯のずれ)を小さくすることができる。その結果、アンテナ特性のばらつきを抑制しつつ、特定の部分に含まれる第2導体配線の曲げ耐性を確保することができる。
 本開示によれば、アンテナ素子が配置される平坦部とアンテナ素子に接続される導体配線が配置されるフレキシブル部とを備えるアンテナ基板において、アンテナ特性のばらつきを抑制しつつ、フレキシブル部に配置される導体配線の曲げ耐性を確保することができる。
アンテナ基板が適用される通信装置のブロック図の一例である。 アンテナ基板の配置を説明するための図である。 アンテナ基板の内部を透視した図(その1)である。 フレキシブル部の導体配線(圧延銅箔)の断面を示す図である。 平坦部の導体配線(電解銅箔)の断面を示す図である。 準備工程を説明するための図である。 アニール処理工程を説明するための図である。 アニール処理工程によって生成されるアンテナ基板を示す図である。 アニール処理工程によって生成されたアンテナ基板を実装基板に実装した図である。 アンテナ基板の内部を透視した図(その2)である。 アンテナ基板の内部を透視した図(その3)である。
 以下、本開示の実施の形態について、図面を参照しながら詳細に説明する。なお、図中同一または相当部分には同一符号を付してその説明は繰り返さない。
 (通信装置の基本構成)
 図1は、本実施の形態に係るアンテナ基板120が適用される通信装置10のブロック図の一例である。通信装置10は、たとえば、携帯電話、スマートフォンあるいはタブレットなどの携帯端末、あるいは通信機能を備えたパーソナルコンピュータなどである。
 図1を参照して、通信装置10は、アンテナ基板120を含むアンテナモジュール100と、ベースバンド信号処理回路を構成するBBIC200とを備える。アンテナモジュール100は、アンテナ基板120に加えて、給電部品の一例であるRFIC110を備える。通信装置10は、BBIC200からアンテナモジュール100へ伝達された信号を高周波信号にアップコンバートしてアンテナ基板120から放射するとともに、アンテナ基板120で受信した高周波信号をダウンコンバートしてBBIC200にて信号を処理する。
 アンテナ基板120は、複数の放射素子121を含む。図1では、説明を容易にするために、アンテナ基板120に含まれる複数の放射素子121のうち、4つの放射素子121に対応する構成のみ示され、同様の構成を有する他の放射素子121に対応する構成については省略されている。なお、図1においては、アンテナ基板120が二次元のアレイ状に配置された複数の放射素子121を含む例を示しているが、放射素子121の配置形状は必ずしもアレイ状である必要はなく、また放射素子121は必ずしも複数である必要はない。本実施の形態においては、放射素子121は、略正方形の平板形状を有するパッチアンテナである。
 RFIC110は、スイッチ111A~111D,113A~113D,117と、パワーアンプ112AT~112DTと、ローノイズアンプ112AR~112DRと、減衰器114A~114Dと、移相器115A~115Dと、信号合成/分波器116と、ミキサ118と、増幅回路119とを備える。
 高周波信号を送信する場合には、スイッチ111A~111D,113A~113Dがパワーアンプ112AT~112DT側へ切換えられるとともに、スイッチ117が増幅回路119の送信側アンプに接続される。高周波信号を受信する場合には、スイッチ111A~111D,113A~113Dがローノイズアンプ112AR~112DR側へ切換えられるとともに、スイッチ117が増幅回路119の受信側アンプに接続される。
 BBIC200から伝達された信号は、増幅回路119で増幅され、ミキサ118でアップコンバートされる。アップコンバートされた高周波信号である送信信号は、信号合成/分波器116で4分波され、4つの信号経路を通過して、それぞれ異なる放射素子121に給電される。このとき、各信号経路に配置された移相器115A~115Dの移相度が個別に調整されることにより、アンテナ基板120から放射される電波の指向性を調整することができる。
 各放射素子121で受信された高周波信号である受信信号は、それぞれ、異なる4つの信号経路を経由し、信号合成/分波器116で合波される。合波された受信信号は、ミキサ118でダウンコンバートされ、増幅回路119で増幅されてBBIC200へ伝達される。
 RFIC110は、例えば、上記回路構成を含む1チップの集積回路部品として形成される。あるいは、RFIC110における各放射素子121に対応する機器(スイッチ、パワーアンプ、ローノイズアンプ、減衰器、移相器)については、対応する放射素子121毎に1チップの集積回路部品として形成されてもよい。
 (アンテナ基板の配置および構成)
 図2は、本実施の形態1におけるアンテナ基板120の配置を説明するための図である。図2を参照して、アンテナ基板120は、板状の平坦部131,133と、平坦部131と平坦部133とを接続する板状のフレキシブル部132とを含む。平坦部131,133には、放射素子121a,121bがそれぞれ配置される。
 平坦部131は、RFIC110を介して実装基板20の一方の主面21に配置される。平坦部131は、実装基板20の主面21に沿って延在する。平坦部133は、実装基板20の側面22に沿って延在する。すなわち、平坦部131と平坦部133とは、互いに直交する位置に配置される。以下では、実装基板20の主面21の法線方向を「Z軸方向」、実装基板20の側面22の法線方向を「X軸方向」、Z軸方向およびX軸方向に垂直な方向を「Y軸方向」とも称する。
 平坦部131の放射素子121bは、主面21の法線方向(すなわちZ軸方向)へ電波が放射されるように配置されている。平坦部133の放射素子121aは、側面22の法線方向(すなわちX軸方向)へ電波が放射されるように配置されている。
 フレキシブル部132は、互いに直交する位置に配置される平坦部131と平坦部133とを接続するために、湾曲した状態で配置される。湾曲したフレキシブル部132を用いて2つの平坦部131,133を接続することで、異なる2つの方向へ電波を放射することができる。フレキシブル部132が湾曲した状態で配置されることに鑑み、フレキシブル部132の厚さは平坦部131,133の厚さよりも小さい値に設定される。
 アンテナ基板120(平坦部131,133およびフレキシブル部132)は、熱可塑性を有する液晶ポリマー(Liquid Crystal Polymer:LCP)のシートを積層することによって形成される樹脂多層基板によって構成される。
 図3は、図2中のY軸の正方向側からアンテナ基板120の内部を透視した図である。アンテナ基板120を構成する平坦部131,133およびフレキシブル部132は、いずれも多層構造を有している。
 平坦部131には、放射素子121b、導体配線141および接地電極GNDが、この順に所定間隔を隔てて積層されている。放射素子121bは、平坦部131の面内方向に沿って板状に延在する。導体配線141は、平坦部131の面内方向に沿って線状に延在する。接地電極GNDは、平坦部131の面内方向に沿って板状に延在する。
 平坦部133には、放射素子121a、導体配線143、および接地電極GNDが、この順に所定間隔を隔てて積層されている。放射素子121aは、平坦部133の面内方向に沿って板状に延在する。導体配線143は、平坦部133の面内方向に沿って線状に延在する。接地電極GNDは、平坦部133の面内方向に沿って板状に延在する。
 フレキシブル部132には、導体配線142および接地電極GNDがこの順に所定間隔を隔てて積層されている。導体配線142は、フレキシブル部132の面内方向に沿って線状に延在する。接地電極GNDは、フレキシブル部132の面内方向に沿って板状に延在する。なお、接地電極GNDは、平坦部131,133およびフレキシブル部132に亘って一体的に形成されている。
 平坦部131において、放射素子121bは、ビアV1を介してRFIC110に接続される。RFIC110からの高周波信号がビアV1を介して放射素子121bに供給されることによって、放射素子121bから電波が放射される。導体配線141の一方の端部はビアV2を介してRFIC110に接続され、導体配線141の他方の端部はビアV3を介して導体配線142の一方の端部に接続される。
 平坦部133において、放射素子121aは、ビアV5を介して導体配線143の一方の端部に接続される。導体配線143の他方の端部は、ビアV4を介して導体配線141の他方の端部に接続される。すなわち、平坦部133の放射素子121aは、導体配線141~143およびビアV2~V5を介してRFIC110に接続される。RFIC110からの高周波信号が導体配線141~143およびビアV2~V5を介して放射素子121aに供給されることによって、放射素子121aから電波が放射される。
 フレキシブル部132は、上述したように湾曲した状態で配置される。したがって、フレキシブル部132を平らな状態から湾曲した状態に曲げる際には、フレキシブル部132に曲げ応力が作用する。
 (導体配線のグレイン構造)
 一般に、多層基板の内部に用いられる導体配線は、多結晶構造を有する電解銅箔を素材としていることが多い。電解銅箔は、表面が鏡面状に仕上げられた極性ドラムを電解液に浸して回転させ、電気めっきの原理を利用して電解液中の銅イオンを極性ドラムの表面に沈着させて銅箔とし、銅箔の厚さが目標値となったところで極性ドラムの表面から銅箔を剥がして巻き取ることによって製造される。電解銅箔は、その製造原理によって寸法精度が高く、インピーダンス調整を要するアンテナ基板に用いるのに適している。
 その一方で、電解銅箔のグレイン(粒子)は、サイズが小さく、かつ等方的な構造を有するという特性がある。そのため、フレキシブル部132に配置される導体配線142の素材を電解銅箔とすると、フレキシブル部132を曲げる際に生じる曲げ応力(特に曲げ部の外周側に生じる引っ張り応力)によって導体配線142の厚さ方向にクラックが進行し易くなり、場合によっては導体配線142が破断してしまうことが懸念される。
 そこで、本実施の形態によるアンテナ基板120においては、曲げ応力の作用しない平坦部131,133の導体配線141,143の素材には、寸法精度の高い電解銅箔が用いられる。一方、曲げ応力が作用し得るフレキシブル部132の導体配線142の素材には、電解銅箔ではなく、圧延銅箔が用いられる。
 圧延銅箔は、銅材を圧延ロールの間に通して引き延ばすことによって銅の厚さを薄くする圧延工程を、銅の厚さが目標値となるまで繰り返すことによって製造される。圧延工程が繰り返されることで銅粒子が延在方向に成長するため、圧延銅箔のグレインは、圧延前よりもサイズが大きくなり、かつ延在方向に長い異方的な構造を有するという特徴がある。
 図4は、フレキシブル部132の導体配線142(圧延銅箔)の断面を示す図である。図5は、平坦部131,133の導体配線141,143(電解銅箔)の断面を示す図である。図4および図5において、紙面の横方向が各導体配線の延在方向を示し、紙面の縦方向が各導体配線の厚さ方向を示す。
 圧延銅箔および電解銅箔は、どちらも多結晶構造を有するが、グレインのサイズ、および、グレインの厚さ方向のサイズに対する延在方向のサイズの比(以下「アスペクト比」ともいう)が異なる。
 図4に示す導体配線142(圧延銅箔)のグレインは、圧延工程によって銅粒子が延在方向に成長するため、サイズが大きく、かつ延在方向に長い異方的な構造を有する。これに対し、図5に示す導体配線141,143(電解銅箔)のグレインは、図4に示す導体配線142(圧延銅箔)のグレインに比べると、サイズが小さく、かつ等方的な構造を有する。
 図4に示す導体配線142(圧延銅箔)の延在方向のグレインサイズの平均値または中央値は、図5に示す導体配線141,143(電解銅箔)の延在方向のグレインサイズの平均値または中央値よりも大きい。さらに、図4に示す導体配線142(圧延銅箔)のアスペクト比の平均値または中央値は、図5に示す導体配線141,143(電解銅箔)のアスペクト比の平均値または中央値よりも大きい。
 各グレインのサイズは、たとえば、各導体配線の断面を画像解析して同じ境界面で囲われた部分を各グレインと特定し、特定された各グレインの厚み方向および延在方向のサイズを測定することによって得ることができる。グレインサイズの平均値および中央値、およびアスペクト比の平均値および中央値は、複数のグレインサイズの演算結果を統計的に処理することによって得ることができる。
 なお、図4に示す導体配線142(圧延銅箔)においては、概ね、延在方向のグレインサイズの平均値は2.0~4.0μm、厚さ方向のグレインサイズの平均値は0.5~1.5μmである。これに対し、図5に示す導体配線141,143(電解銅箔)においては、概ね、延在方向のグレインサイズの平均値は0.1~0.5μm、厚さ方向のグレインサイズの平均値は0.1~0.5μmである。
 フレキシブル部132の導体配線142の素材として電解銅箔よりもグレインサイズおよびアスペクト比の大きい圧延銅箔を用いることによって、電解銅箔を用いる場合に比べて、同じ曲げ応力が作用してもクラックを延在方向に進行し易くし、厚さ方向には進行し難くすることができる。言い換えれば、フレキシブル部132を曲げる際に微小なクラックが導体配線142に発生したとしても、そのクラックが導体配線142の厚さ方向に進行するのを抑制し、導体配線142が電気的に破断するのを防ぎ易くすることができる。その結果、フレキシブル部132の導体配線142の曲げ耐性を確保することができる。
 一方、平坦部131,133の導体配線141,143の素材には、圧延銅箔よりも寸法精度が高い電解銅箔が用いられる。そのため、導体配線141,143の素材を圧延銅箔とする場合に比べて、導体配線141,143の長さがばらつくことを抑制することができる。その結果、RFIC110から放射素子121aまでの導体配線141,142,143の全体の長さの寸法精度が上がるため、放射素子121aのアンテナ特性のばらつき(たとえば反射特性における周波数帯のずれ)を小さくすることができる。
 また、導体配線141,143の素材を圧延銅箔ではなく電解銅箔とすることで、導体配線141,143と周囲の液晶ポリマー基材との密着性を向上させることができる。すなわち、圧延銅箔は銅を圧延ロールで引き延ばして製造されるため、圧延銅箔の表面は電解銅箔の表面に比べて粗くなる傾向にある。これに対し、電解銅箔は鏡面状に仕上げられた極性ドラムの表面に沈着させて製造されるため、電解銅箔の表面は滑らかである。そのため、導体配線141,143の素材を圧延銅箔ではなく電解銅箔とすることで、導体配線141,143と周囲の液晶ポリマー基材との密着強度をより大きくすることができる。
 また、一般的に電解銅箔は圧延銅箔よりも安く製造することができるため、アンテナ基板120のコストも抑制することができる。すなわち、曲げ応力が作用し得るフレキシブル部132の導体配線142には曲げ耐性を確保するために圧延銅箔を用い、曲げ応力が作用しない平坦部131,133の導体配線141,143には圧延銅箔よりも低コストである電解銅箔を用いることで、導体配線141,142,143のすべてを圧延銅箔にする場合に比べて、コストを抑えることができる。
 以上のように、本実施の形態によるアンテナ基板120は、放射素子121aが配置される板状の平坦部133と、平坦部133に隣接して配置される板状のフレキシブル部132と、平坦部133の内部において一方の端部が放射素子121aに接続される導体配線143と、フレキシブル部132の内部において一方の端部が導体配線143の他方の端部に接続される導体配線142とを備える。導体配線143は電解銅箔を素材とし、導体配線142は圧延銅箔を素材とする。導体配線142の延在方向のグレインサイズの平均値または中央値は導体配線143の延在方向のグレインサイズの平均値または中央値よりも大きく、かつ導体配線142のアスペクト比の平均値または中央値は導体配線143のアスペクト比の平均値または中央値よりも大きい。
 このように、フレキシブル部132の導体配線142の素材として電解銅箔よりもグレインサイズおよびアスペクト比の大きい圧延銅箔を用いることによって、フレキシブル部132を曲げる際の導体配線142の曲げ耐性を確保することができる。一方、平坦部133の導体配線143の素材として圧延銅箔よりも寸法精度が高い電解銅箔を用いることによって、RFIC110から放射素子121aまでの導体配線141,142,143の全体の長さの寸法精度が上がるため、放射素子121aのアンテナ特性のばらつきを小さくすることができる。その結果、放射素子121aが配置される平坦部133と放射素子121aに接続される導体配線142が配置されるフレキシブル部132とを備えるアンテナ基板120において、アンテナ特性のばらつきを抑制しつつ、フレキシブル部132に配置される導体配線142の曲げ耐性を確保することができる。
 本実施の形態による放射素子121a、平坦部133、フレキシブル部132、導体配線143、および導体配線142は、本開示の「アンテナ素子」、「平坦部」、「フレキシブル部」、「第1導体配線」、および「第2導体配線」にそれぞれ対応し得る。
 なお、接地電極GNDのグレイン構造については、クラック防止という視点では、フレキシブル部132の接地電極GNDの素材を圧延銅箔とし、平坦部131,133の接地電極GNDの素材を電解銅箔とすることが望ましい。一方、低コスト化という視点から、接地電極GNDの素材を全て電解銅箔としてもよい。
 [変形例]
 (変形例1)
 上述の実施の形態によるアンテナ基板120は、フレキシブル部132の導体配線142のグレインサイズおよびアスペクト比の平均値または中央値が、平坦部131,133の導体配線141,143のグレインサイズおよびアスペクト比の平均値または中央値よりも大きいという構成(以下「本開示の特徴的な構成」ともいう)を有する。上述の実施の形態においては、本開示の特徴的な構成を有するアンテナ基板120を、圧延銅箔を素材とする導体配線142と電解銅箔を素材とする導体配線141,143とをビアV3,V4で接続することによって製造する例を説明した。
 これに対し、本変形例1においては、本開示の特徴的な構成を有するアンテナ基板120Bを、以下に説明する準備工程およびアニール処理(熱処理)工程をこの順に行なうことによって製造する。
 図6は、本変形例1における準備工程を説明するための図である。図7は、本変形例1におけるアニール処理工程を説明するための図である。図8は、アニール処理工程によって生成されるアンテナ基板120Bを示す図である。
 図6に示すように、準備工程においては、アンテナ基板120Aを準備する。アンテナ基板120Aは、上述のアンテナ基板120の導体配線141,142,143およびビアV3,V4を、電解銅箔を素材とする1本の導体配線140に変更したものである。
 図7に示すように、アニール処理工程においては、準備工程で準備されたアンテナ基板120Aのフレキシブル部132を製造装置200a,200bを用いて厚さ方向に加圧しながら加熱するアニール処理を行なうことによって、導体配線140におけるフレキシブル部132に含まれる部分のグレインを延在方向に成長させる。
 なお、アニール処理においては、アンテナ基板120Aのフレキシブル部132を、所定の保持時間(たとえば30分以上3時間未満以下の時間)、所定の圧力値(たとえば8.4MPa以下の圧力)で加圧しながら、所定の温度(たとえば230℃以上300℃未満の温度)で加熱する。グレインサイズを成長(肥大化)させるためには加熱温度を230℃以上とすることが望ましいが、300℃付近ではアンテナ基板120Aの基材である樹脂多層基板の溶融分解が起こるので、保持時間、圧力値、加熱温度を適切に設定してアニール処理を行なうことが望まれる。望ましくは250℃で1時間、より望ましくは280℃で30分、実装部品などへのダメージを抑えるなら230℃で2~3時間の加熱を行なう。アンテナ基板120Aが一括プレス積層で製造される集合基板である場合、圧力値としては、製造時の条件および局所的な加熱プレスであることを考慮すると、上述したように8.4MPa以下の圧力とすることが望ましい。
 上記のような処理をアンテナ基板120Aのフレキシブル部132に施すことによって、本開示の特徴的な構成を得ることができる。すなわち、導体配線140におけるフレキシブル部132の部分のグレインサイズおよびアスペクト比の平均値または中央値は、導体配線140における平坦部131,133の部分のグレインサイズおよびアスペクト比の平均値または中央値よりも大きくなる。その結果、図8に示すように、アニール処理工程によって生成されるアンテナ基板120Bにおいては、導体配線140における平坦部131,133の部分が電解銅箔を素材とする導体配線141B,143Bとなり、導体配線140におけるフレキシブル部132の部分が圧延銅箔と同じようなグレイン構造を有する導体配線142Bとなる。
 なお、図8には、導体配線142Bと導体配線141Bとの境界部分B1と、フレキシブル部132と平坦部131との境界部分とがほぼ一致する例が示されるが、両者が多少ずれていてもよい。同様に、図8には、導体配線142Bと導体配線143Bとの境界部分B1と、フレキシブル部132と平坦部133との境界部分とがほぼ一致する例が示されるが、両者が多少ずれていてもよい。また、境界部分B1,B2のグレイン構造は、導体配線142B側から導体配線141B,143B側にかけて、圧延銅箔相当のグレイン構造から電解銅箔のグレイン構造に徐々に変化するものであってもよい。
 図9は、本変形例1によるアニール処理工程によって生成されたアンテナ基板120Bを実装基板20に実装した図である。アンテナ基板120Bにおいては、図9に示すように、フレキシブル部132の導体配線142Bが平坦部131,133の導体配線141B,143Bと一体的に形成されている。
 平坦部131,133の導体配線141B,142Bのグレイン構造は、図5に示した電解銅箔のグレイン構造と同じである。これに対し、フレキシブル部132の導体配線142Bのグレイン構造は、アニール処理によってグレインを延在方向に成長させた結果、図4に示した圧延銅箔のグレイン構造と同等の構造になっている。これにより、上述の実施の形態と同様、アンテナ特性のばらつきを抑制しつつ、フレキシブル部132に配置される導体配線142Bの曲げ耐性を確保することができる。
 なお、本変形例1の「アンテナ基板120A」、「準備工程」、「アニール処理」、「アンテナ基板120B」、および「アニール処理工程」は、本開示の「第1基板」、「第1基板を準備する工程」、「アニール処理」、「第2基板」、および「第2基板を生成する工程」にそれぞれ対応し得る。
 (変形例2)
 上述の図3に示すアンテナ基板120においては、平坦部131,133およびフレキシブル部132が、いずれも、熱可塑性を有するフレキシブル基板のみによって構成される。しかしながら、平坦部131,133の少なくとも一方において、フレキシブル基板の上に平坦基板が積層された構造を有していてもよい。この場合、平坦基板は、フレキシブル基板に対して、たとえば、はんだ実装、圧着、あるいは接着層などによって接続される。
 図10は、本変形例2によるアンテナ基板120Cの内部をY軸の正方向側から透視した図である。このアンテナ基板120Cにおいては、平坦部131,133およびフレキシブル部132の全体に渡って延在するフレキシブル基板122と、フレキシブル基板122における平坦部131,133の領域にそれぞれ積層される平坦基板123a,123bとを備える。
 平坦基板123a,123bの各々は、たとえば、低温同時焼成セラミックス(LTCC:Low Temperature Co-fired Ceramics)多層基板、エポキシ、ポリイミドなどの樹脂から構成される樹脂層を複数積層して形成された多層樹脂基板、液晶ポリマーから構成される樹脂層を複数積層して形成された多層樹脂基板、フッ素系樹脂から構成される樹脂層を複数積層して形成された多層樹脂基板、PET(Polyethylene Terephthalate)材から構成される樹脂層を複数積層して形成された多層樹脂基板、あるいは、LTCC以外のセラミックス多層基板である。なお、平坦基板123a,123bは必ずしも多層構造でなくてもよく、単層の基板であってもよい。また、平坦基板123a,123bは、通信装置10の筐体側(液晶パネル等の表示パネルも含む)に配置されてもよい。
 さらに、フレキシブル基板122においては、圧延銅箔を素材とする導体配線142が、フレキシブル部132から平坦部131および平坦部133にまで延在している。
 平坦部133における平坦基板123bには、放射素子121aと、電解銅箔を素材とする導体配線143と、放射素子121aと導体配線143の一方の端部とを接続するビアV5とが配置される。導体配線143の他方の端部は、ビアV4を介して、フレキシブル基板122に配置される導体配線142の一方の端部に接続される。導体配線142の他方の端部は、平坦部131において、ビアV2を介してRFIC110に接続される。これにより、放射素子121aがRFIC110に電気的に接続される。
 平坦部131における平坦基板123aには、放射素子121bと、電解銅箔を素材とする導体配線144と、放射素子121bと導体配線144の一方の端部とを接続するビアV6とが配置される。導体配線144の他方の端部は、ビアV1を介してRFIC110に接続される。これにより、放射素子121bがRFIC110に電気的に接続される。
 図11は、本変形例2による他のアンテナ基板120Dの内部をY軸の正方向側から透視した図である。このアンテナ基板120Dにおいては、上述の図10に示すアンテナ基板120Cに対して、平坦基板123aの一部がフレキシブル基板122の一方の端部よりも外側(図11においてはX軸負方向側)にずらして配置されるともに、平坦基板123bの一部がフレキシブル基板122の他方の端部よりも外側(図11においてはZ軸負方向側)にずらして配置される。フレキシブル基板122は、各平坦基板123a,123bの平面上で圧着、もしくは接着、もしくはコネクタによって接続される。
 さらに、アンテナ基板120Dにおいては、平坦部131における導体配線144が平坦基板123aではなくフレキシブル基板122に配置されるとともに、放射素子121bとビアV6とが平坦基板123a内において電解銅箔を素材とする導体配線145を介して接続される。アンテナ基板120Dのその他の構成については、上述のアンテナ基板120Cと同じである。
 以上のように、フレキシブル部132をフレキシブル基板によって構成し、平坦部131,133をフレキシブル基板と平坦基板との積層構造とするようにしてもよい。なお、本変形例2の「フレキシブル基板122」および「平坦基板123b」は、本開示の「フレキシブル基板」および「平坦基板」にそれぞれ対応し得る。
 今回開示された実施の形態は、すべての点で例示であって制限的なものではないと考えられるべきである。本開示の範囲は、上記した実施の形態の説明ではなくて請求の範囲によって示され、請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。
 10 通信装置、20 実装基板、21 主面、22 側面、100 アンテナモジュール、111A~113D,117 スイッチ、112AR~112DR ローノイズアンプ、112AT~112DT パワーアンプ、114A~114D 減衰器、115A~115D 移相器、116 信号合成/分波器、118 ミキサ、119 増幅回路、120,120A,120B アンテナ基板、121,121a,121b 放射素子、131,133 平坦部、132 フレキシブル部、140,141,141B,142,142B,143,143B 導体配線、200a,200b 製造装置、GND 接地電極、V1~V5 ビア。

Claims (6)

  1.  アンテナ素子を有するアンテナ基板であって、
     前記アンテナ素子が配置される板状の平坦部と、
     前記平坦部に隣接して配置される可撓性を有する板状のフレキシブル部と、
     前記平坦部の内部において前記平坦部の面内方向に沿って延在し、一方の端部が前記アンテナ素子に接続される、多結晶構造を有する第1導体配線と、
     前記フレキシブル部の内部において前記フレキシブル部の面内方向に沿って延在し、一方の端部が前記第1導体配線の他方の端部に接続される、多結晶構造を有する第2導体配線とを備え、
     前記第2導体配線の延在方向の粒子サイズの平均値または中央値は、前記第1導体配線の延在方向の粒子サイズの平均値または中央値よりも大きく、かつ、前記第2導体配線の厚さ方向の粒子サイズに対する延在方向の粒子サイズの比の平均値または中央値は、前記第1導体配線の厚さ方向の粒子サイズに対する延在方向の粒子サイズの比の平均値または中央値よりも大きい、アンテナ基板。
  2.  前記平坦部および前記フレキシブル部は液晶ポリマーを素材とし、
     前記第1導体配線および前記第2導体配線は銅箔を素材とする、請求項1に記載のアンテナ基板。
  3.  前記第1導体配線は電解銅箔を素材とし、
     前記第2導体配線は圧延銅箔を素材とする、請求項2に記載のアンテナ基板。
  4.  前記フレキシブル部は、フレキシブル基板によって構成され、
     前記平坦部は、前記フレキシブル基板と、前記フレキシブル基板に積層される平坦基板とによって構成される、請求項1~3のいずれかに記載のアンテナ基板。
  5.  請求項1~4のいずれかに記載のアンテナ基板と、
     前記アンテナ基板の前記第2導体配線の他方の端部に接続される給電部品とを備える、アンテナモジュール。
  6.  電解銅箔を素材とし、一方の端部がアンテナ素子に接続される導体配線を内部に有する第1基板を準備する工程と、
     準備された前記第1基板の特定の部分を加圧しながら加熱するアニール処理を行なって前記導体配線の前記特定の部分の粒子を成長させることによって第2基板を生成する工程とを含み、
     前記第2基板において、前記特定の部分に含まれる導体配線の延在方向の粒子サイズの平均値または中央値は前記特定の部分以外の部分に含まれる導体配線の延在方向の粒子サイズの平均値または中央値よりも大きくし、かつ、前記特定の部分に含まれる導体配線の厚さ方向の粒子サイズに対する延在方向の粒子サイズの比の平均値または中央値は前記特定の部分以外の部分に含まれる導体配線の厚さ方向の粒子サイズに対する延在方向の粒子サイズの比の平均値または中央値よりも大きい、アンテナ基板の製造方法。
PCT/JP2020/027834 2019-09-27 2020-07-17 アンテナ基板、アンテナモジュール、アンテナ基板の製造方法 WO2021059693A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/702,804 US12027754B2 (en) 2019-09-27 2022-03-24 Antenna substrate, antenna module, and method of manufacturing antenna substrate

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019-176991 2019-09-27
JP2019176991 2019-09-27

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/702,804 Continuation US12027754B2 (en) 2019-09-27 2022-03-24 Antenna substrate, antenna module, and method of manufacturing antenna substrate

Publications (1)

Publication Number Publication Date
WO2021059693A1 true WO2021059693A1 (ja) 2021-04-01

Family

ID=75166542

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/027834 WO2021059693A1 (ja) 2019-09-27 2020-07-17 アンテナ基板、アンテナモジュール、アンテナ基板の製造方法

Country Status (2)

Country Link
US (1) US12027754B2 (ja)
WO (1) WO2021059693A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023074306A1 (ja) * 2021-10-27 2023-05-04 株式会社村田製作所 アンテナモジュールおよびそれを搭載した通信装置、誘電体基板、ならびに、アンテナモジュールの製造方法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11088468B2 (en) * 2017-12-28 2021-08-10 Samsung Electro-Mechanics Co., Ltd. Antenna module

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004237596A (ja) * 2003-02-06 2004-08-26 Nippon Steel Chem Co Ltd フレキシブル銅張積層板およびその製造方法
JP2006040995A (ja) * 2004-07-23 2006-02-09 Hitachi Cable Ltd 配線板及び半導体装置
JP2014214376A (ja) * 2013-04-30 2014-11-17 株式会社Shカッパープロダクツ 圧延銅箔、フレキシブル銅張積層板及びフレキシブルプリント配線板
JP2019004241A (ja) * 2017-06-13 2019-01-10 Tdk株式会社 アンテナ装置及びこれを備える回路基板

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3843461B2 (ja) * 1997-07-31 2006-11-08 株式会社トヨトミ 機器操作用パネル
KR20040077655A (ko) * 2001-10-19 2004-09-06 슈페리어 마이크로파우더스 엘엘씨 전자 형상 증착용 테잎 조성물
JP4668232B2 (ja) 2007-04-16 2011-04-13 株式会社フジクラ フレキシブルプリント基板
JP5057932B2 (ja) 2007-10-31 2012-10-24 Jx日鉱日石金属株式会社 圧延銅箔及びフレキシブルプリント配線板
WO2009148001A1 (en) * 2008-06-06 2009-12-10 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing semiconductor device
JP6348874B2 (ja) * 2015-05-19 2018-06-27 富士フイルム株式会社 タッチセンサパネル
WO2016203842A1 (ja) * 2015-06-16 2016-12-22 株式会社村田製作所 電子機器、およびアンテナ素子
US10105100B2 (en) * 2015-07-28 2018-10-23 Verily Life Sciences Llc Display on a bandage-type monitoring device
US9792516B2 (en) * 2016-01-26 2017-10-17 Next Biometrics Group Asa Flexible card with fingerprint sensor
JP6930591B2 (ja) 2017-07-31 2021-09-01 株式会社村田製作所 アンテナモジュールおよび通信装置
US10797394B2 (en) * 2018-06-05 2020-10-06 Intel Corporation Antenna modules and communication devices
KR102527295B1 (ko) * 2018-08-14 2023-05-02 삼성전자주식회사 플렉서블 접속 부재 및 그를 포함하는 전자 장치

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004237596A (ja) * 2003-02-06 2004-08-26 Nippon Steel Chem Co Ltd フレキシブル銅張積層板およびその製造方法
JP2006040995A (ja) * 2004-07-23 2006-02-09 Hitachi Cable Ltd 配線板及び半導体装置
JP2014214376A (ja) * 2013-04-30 2014-11-17 株式会社Shカッパープロダクツ 圧延銅箔、フレキシブル銅張積層板及びフレキシブルプリント配線板
JP2019004241A (ja) * 2017-06-13 2019-01-10 Tdk株式会社 アンテナ装置及びこれを備える回路基板

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023074306A1 (ja) * 2021-10-27 2023-05-04 株式会社村田製作所 アンテナモジュールおよびそれを搭載した通信装置、誘電体基板、ならびに、アンテナモジュールの製造方法

Also Published As

Publication number Publication date
US20220216591A1 (en) 2022-07-07
US12027754B2 (en) 2024-07-02

Similar Documents

Publication Publication Date Title
US11171421B2 (en) Antenna module and communication device equipped with the same
WO2021059693A1 (ja) アンテナ基板、アンテナモジュール、アンテナ基板の製造方法
WO2020031875A1 (ja) アンテナモジュール、およびアンテナモジュールの製造方法
CN113330644B (zh) 天线模块、搭载有该天线模块的通信装置以及天线模块的制造方法
WO2005114676A1 (ja) フレキシブルフラットケーブル
US11888245B2 (en) Flexible substrate and antenna module including flexible substrate
WO2019222585A1 (en) Antenna element having a segmentation cut plane
US11223122B2 (en) Antenna
WO2021059738A1 (ja) アンテナモジュールおよびその製造方法、ならびに、集合基板
US11417949B2 (en) Antenna module and communication device having same mounted therein
JPWO2022004169A5 (ja)
JP7166226B2 (ja) アンテナ装置および製造方法
US20120306700A1 (en) Surface mount module embedded antenna
US10561023B2 (en) Method of making an electronic device having a thin film resistor formed on an LCP solder mask and related devices
US20240039143A1 (en) Coupling structure and antenna module
US20240047883A1 (en) Antenna module and communication apparatus equipped with the same
JP2015171108A (ja) パッチアンテナ
US11588243B2 (en) Antenna module and communication apparatus equipped with the same
US20190103666A1 (en) Mountable Antenna Fabrication and Integration Methods
JP2019016929A (ja) 多層基板型アレイアンテナ
WO2018215055A1 (en) Antenna assembly
CN113439365B (zh) 天线
JP4084595B2 (ja) 高周波フレキシブル多芯同軸ケーブルの製造方法およびその応用電子機器
WO2023095643A1 (ja) アンテナモジュール、およびそれを搭載した通信装置
JP2008011169A (ja) アンテナ装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20868037

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20868037

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP