JP2015171108A - パッチアンテナ - Google Patents

パッチアンテナ Download PDF

Info

Publication number
JP2015171108A
JP2015171108A JP2014046938A JP2014046938A JP2015171108A JP 2015171108 A JP2015171108 A JP 2015171108A JP 2014046938 A JP2014046938 A JP 2014046938A JP 2014046938 A JP2014046938 A JP 2014046938A JP 2015171108 A JP2015171108 A JP 2015171108A
Authority
JP
Japan
Prior art keywords
insulating layer
patch antenna
lower via
line
transmission line
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2014046938A
Other languages
English (en)
Inventor
高橋 聡
Satoshi Takahashi
聡 高橋
孝郎 藤井
Takaro Fujii
孝郎 藤井
赤瀬川 章彦
Akihiko Akasegawa
章彦 赤瀬川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP2014046938A priority Critical patent/JP2015171108A/ja
Publication of JP2015171108A publication Critical patent/JP2015171108A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Waveguide Aerials (AREA)

Abstract

【課題】パッチアンテナの小型化に起因するパッチアンテナの特性の劣化を軽減すること。
【解決手段】パッチアンテナは、第1の絶縁層上に形成されかつ第1及び第2の給電部を有するパッチと、第1の給電部に結合されかつ第1の絶縁層を貫通して形成された第1の上位ビアと、第1の上位ビアに結合されかつ第1の絶縁層より下位に位置する第2の絶縁層を貫通して形成された第1の下位ビアと、第2の給電部に結合されかつ第1の絶縁層を貫通して形成された第2の上位ビアと、第2の絶縁層を貫通して形成された第2の下位ビアと、第2の上位ビアと第2の下位ビアとを結合するように、第1及び第2の絶縁層の間に延びる伝送線路と、第1の貫通部及び第2の貫通部を有するグランドであって、第1の貫通部において第1の下位ビアとグランドの導電部との間に絶縁部が介在し、第2の貫通部において第2の下位ビアとグランドの導電部との間に絶縁部が介在しているグランドとを有する。
【選択図】図1

Description

本発明は、パッチアンテナに関連する。
円偏波を用いた通信は、様々な偏波の傾きで到来する電波を受信する等の観点から好ましい。円偏波を用いた通信は、例えば、パッチアンテナに形成された2つの給電部に、位相が異なる2つの信号を与えることで行われてもよい。
一方、周波数資源の有効利用等の観点から、低い周波数だけでなく例えばミリ波帯のような高い周波数も利用されつつある。周波数が高いほど電波の波長は短くなるので、高い周波数の円偏波を利用する場合、パッチアンテナは、波長に応じた小さなサイズで設計されることが好ましい。
特開2004-64397号公報 特開2007-208013号公報
W. Simon, J. Kassner, O. Litschke, H. Fischer and S. Holzwarth,"Highly Integrated Ka-band TX Front-end Module with an 8×8 Antenna Array", MICROWAVE Journal, January, 2011
しかしながら、例えば波長に応じてパッチアンテナが小型化されると、2つの給電部間の距離が短くなり、給電部を介して送受信される信号が互いに干渉し、パッチアンテナの特性(例えば、反射特性、利得、アイソレーション、軸比等)の劣化が懸念される。
一つの側面では、本発明は、パッチアンテナの小型化に起因するパッチアンテナの特性の劣化を軽減することを課題とする。
1つの態様では、パッチアンテナは、
第1の絶縁層上に形成され、第1及び第2の給電部を有するパッチと、
前記第1の給電部に結合され、前記第1の絶縁層を貫通して形成された第1の上位ビアと、
前記第1の上位ビアに結合され、前記第1の絶縁層より下位に位置する第2の絶縁層を貫通して形成された第1の下位ビアと、
前記第2の給電部に結合され、前記第1の絶縁層を貫通して形成された第2の上位ビアと、
前記第2の絶縁層を貫通して形成された第2の下位ビアと、
前記第2の上位ビアと前記第2の下位ビアとを結合するように、前記第1及び第2の絶縁層の間に延びる伝送線路と、
第1の貫通部及び第2の貫通部を有するグランドであって、前記第1の貫通部において前記第1の下位ビアと前記グランドの導電部との間に絶縁部が介在し、前記第2の貫通部において前記第2の下位ビアと前記グランドの導電部との間に絶縁部が介在しているグランドと
を有するパッチアンテナである。
1つの側面として、パッチアンテナの特性の劣化を軽減することが可能になる。
パッチアンテナの斜視図。 パッチアンテナの層構造を示す図。 導電層のパターンを示す図。 パッチアンテナの層構造を示す図。 導電層のパターンを示す図。 導電層のパターンを示す図。 パッチアンテナの層構造を示す図。 導電層のパターンを示す図。 導電層のパターンを示す図。 パッチアンテナの層構造を示す図。 パッチアンテナの層構造を示す図。 導電層のパターンを示す図。 導電層のパターンを示す図。 パッチアンテナの層構造を示す図。 導電層のパターンを示す図。 導電層のパターンを示す図。 パッチアンテナの層構造を示す図。 パッチアンテナの斜視図。 パッチアンテナの平面図。 パッチアンテナの斜視図。 パッチアンテナの平面図。 パッチアンテナの層構造を示す図。 パッチアンテナの斜視図。 パッチアンテナの層構造を示す図。 パッチアンテナの層構造を示す図。 パッチアンテナの層構造を示す図。 アレイアンテナを示す図。 反射特性の周波数依存性を示す図。 利得の周波数依存性を示す図。 アイソレーションの周波数依存性を示す図。 軸比の周波数依存性を示す図。 パッチアンテナの小型化に伴って2つの給電部が接近している様子を示す図。 パッチの辺の部分に給電部を形成する例を示す図。
添付図面を参照しながら以下の観点から実施の形態を説明する。図中、同様な要素には同じ参照番号又は参照符号が付されている。
1.パッチアンテナ
1.1 構造
1.2 動作
2.変形例
2.1 線路の種類に関する変形例
2.2 給電線路の延長方向に関する変形例
2.3 ビアに関する変形例
2.4 アレイアンテナに関する変形例
3.実施の形態による効果
以下の説明における項目の区分けは実施の形態に本質的ではなく、2つ以上の項目に記載された事項が必要に応じて組み合わせて使用されてよいし、ある項目に記載された事項が、別の項目に記載された事項に(矛盾しない限り)適用されてよい。
<1.パッチアンテナ>
実施の形態で使用されるパッチアンテナを構造及び動作の観点から説明する。
<<1.1 構造>>
図1は実施の形態で使用されるパッチアンテナ100の斜視図を示す。パッチアンテナは平面アンテナと言及されてもよい。図2は図1に示すパッチアンテナ100をx軸(y=0及びz=0)の方向から眺めた場合の層構造を示す。パッチアンテナ100は、第1の絶縁層10上のパッチ1と、第2の絶縁層20の下位にあるグランドGNDと、パッチ1及びグランドGNDの間における給電及び受電のための構造とを少なくとも有する。第1の絶縁層10及び第2の絶縁層20は図2には示されているが、図示の簡明化のため、図1には描かれていない。図2に示されているように、パッチアンテナ100は1つ以上の導電層と1つ以上の絶縁層とを含む多層構造を有する。導電層及び絶縁層の数は適切な如何なる数であってもよい。
図3(A)-(C)は多層構造のうちの導電層のパターンを示す。実施の形態では無線通信に円偏波が使用される。円偏波は、通信装置の姿勢の影響を受けにくくする等の観点から好ましい。パッチアンテナ100は円偏波を送受信することが可能な適切な如何なる寸法、形状及び構造等を有してもよい。図1及び図3(A)に示す例では、パッチ1は略正方形の形状を有する。パッチ1は適切な如何なる寸法で形成されてもよい。一例として、パッチ1は1辺が約1.49mmの略正方形の形状を有する。1辺の長さは、約λg/2等に基づいて決定されてもよい。λgは絶縁層の材料(誘電体等)により波長短縮された周波数(送受信する電波の周波数)fに対応する波長の長さである。パッチ1の高さ(後述する第1、第2の絶縁層10、20の厚みの合計h)は、例えば、約0.003λ≦h≦約0.05λに基づいて決定されてもよい。なお、図1、図3(A)ではパッチ1が略正方形をなしているが、円偏波を送受信する観点からは他の形状が使用されてもよい。例えば、パッチ1は、円形、長方形、多角形等であってもよい。
パッチ1は第1の給電部P1及び第2の給電部P2を有する。第1の給電部P1及び第2の給電部P2に、位相が実質的に90度異なる信号が流れることで円偏波を送受信することができる。円偏波はz軸方向に沿って送受信される。パッチ1の表面側で円偏波が送受信され、パッチ1の背面側で給電及び受電される。ただし、表面及び背面はパッチ1の面に言及する際の便宜的な相対的な用語に過ぎない。第1の給電部P1及び第2の給電部P2は原点OGから所定の距離だけ離れている。第1の給電部P1の場所(例えば、xy面内での座標)は、第1の給電部P1から見たインピーダンスが整合インピーダンスになるような場所であることが好ましい。整合インピーダンスは、例えば50Ω等である。第1の給電部P1から見たインピーダンスは、原点OGからの距離、パッチ1の材料、パッチ1より下位の構造及び材料等に応じて変化する。例えば、インピーダンスの大きさは原点OGからの距離が増えるほど大きくなる。
第2の給電部P2の場所も、第1の給電部P1と同様に、第2の給電部P2から見たインピーダンスが整合インピーダンスになるような場所であることが好ましい。適切な円偏波を形成する観点からは、第1の給電部P1を流れる信号(給電される信号)の位相と、第2の給電部P2を流れる信号(給電される信号)の位相とは、実質的に90度又は270度異なっていることが好ましい。この場合、原点OG及び第1の給電部P1を通る直線と原点OG及び第2の給電部P2を通る直線とが実質的に直交することが好ましい。図3(A)に示す例では、第1の給電部P1がx軸上にあり、第2の給電部P2がy軸上にある。
図1、図2及び図3(A)に示すように、パッチアンテナ100は、第1の給電部P1に結合された第1の上位ビア11を有する。第1の上位ビア11は第1の絶縁層10(図2)を介して又は貫通して形成されている。第1の上位ビア11は、適切な直径及び長さを有しかつ導電性の材料で形成された円柱状の構造を有していてもよい。一例として、第1の上位ビア11の直径は約0.1mmである。
図1、図2及び図3(C)に示すように、パッチアンテナ100は、第1の絶縁層10(図2)より下位に位置する第2の絶縁層20(図2)を介して又は貫通して形成された第1の下位ビア21を有する。第2の絶縁層20より下位には、第1の貫通部H1及び第2の貫通部H2を有するグランドGNDが存在する。第1の下位ビア21は、第1の貫通部H1に充填されている絶縁材料を貫通している。第1の下位ビア21は、送受信回路(図示せず)に結合され、第1の給電部P1に給電される信号を送受信する。第1の下位ビア21は、適切な直径及び長さを有しかつ導電性の材料で形成された円柱状の構造を有していてもよい。一例として、第1の下位ビア21の直径は約0.1mmである。第1の貫通部H1は、グランドGNDと第1の下位ビア21とが電気的に絶縁されるように、第1の下位ビア21の直径より大きな直径を有することが好ましい。第1の貫通部H1の形状を定める輪郭と第1の下位ビア21の輪郭との間の領域には絶縁材料が介在している。
図1、図2及び図3(B)に示すように、パッチアンテナ100は、第1の絶縁層10(図2)及び第2の絶縁層20(図2)の間でx軸に沿って延びる第1の伝送線路M1を有する。第1の伝送線路M1は、パッチ1の配下の第1、第2の絶縁層10、20の中で導電性の内層又は中層を形成している。第1の伝送線路M1は、第1の上位ビア11と第1の下位ビア21とを電気的に結合する。第1の伝送線路M1は、x軸に沿って少なくともX12だけ延びた長さを有する。X12は第1の給電部P1(又は第1の上位ビア11)のx座標と第1の下位ビア21のx座標との間の間隔である。第1の伝送線路M1の長さX12は、所定の下限値以上所定の上限値以下の範囲内にあってよい。所定の下限値は、第1の下位ビア21を流れる信号と第2の下位ビア22を流れる信号とが実質的に干渉しないようにする等の観点から決定されてもよい。本明細書において、実質的に干渉しないとは、干渉が存在しない場合だけでなく、干渉したとしても許容範囲内である場合も含む概念である。一例として、所定の下限値はビア直径よりも大きな値(約0.012λ)である。λは送受信する電波の波長である。所定の上限値は第1の下位ビア21を流れる信号が、不図示の隣接する素子に実質的に干渉しないようにする等の観点から決定されてもよい。一例として、所定の上限値は約1.2λである。第1の伝送線路M1は、適切な如何なる線幅を有していてもよい。一例として、第1の伝送線路M1の線幅は、約0.1mmである。
図1、図2、図3に示す例では、パッチアンテナ100は、第1の上位ビア11、第1の下位ビア21及び第1の伝送線路M1と同様に、第2の上位ビア12、第2の下位ビア22及び第2の伝送線路M2を有する。
第2の上位ビア12は第1の絶縁層10(図2)を介して又は貫通して形成されている。第2の上位ビア12は適切な直径及び長さを有しかつ導電性の材料で形成された円柱状の構造を有していてもよい。一例として、第2の上位ビア12の直径は約0.1mmである。
第2の下位ビア22は、第1の絶縁層10より下位に位置する第2の絶縁層20を介して又は貫通して形成された第2の下位ビア22を有する。第1の下位ビア21を説明する際に述べたように、第2の絶縁層20より下位には、第1の貫通部H1及び第2の貫通部H2を有するグランドGNDが存在する。第2の下位ビア22は、第2の貫通部H2に充填されている絶縁材料を貫通している。第2の下位ビア22は送受信回路(図示せず)に結合され、第2の給電部P2に給電される信号を送受信する。第2の下位ビア22は適切な直径及び長さを有しかつ導電性の材料で形成で形成された円柱状の構造を有していてもよい。一例として、第2の下位ビア22の直径は約0.1mmである。第2の貫通部H2は、グランドGNDと第2の下位ビア22とが電気的に絶縁されるように、第2の下位ビア22の直径より大きな直径を有することが好ましい。第2の貫通部H2の形状を定める輪郭と第2の下位ビア22の輪郭との間の領域には絶縁材料が介在している。
第2の伝送線路M2は、第1の絶縁層10及び第2の絶縁層20の間でy軸に沿って延びている。第2の伝送線路M2は、パッチ1の配下の第1、第2の絶縁層10、20の中で導電性の内層又は中層を形成している。第2の伝送線路M2は、第2の上位ビア12と第2の下位ビア22とを電気的に結合する。第2の伝送線路M2は、y軸に沿って少なくともY12だけ延びた長さを有する。Y12は第2の給電部P2(又は第2の上位ビア12)のy座標と第2の下位ビア22のy座標との間の間隔である。第2の伝送線路M2の長さY12は、所定の下限値以上所定の上限値以下の範囲内にある。所定の下限値は、第1の下位ビア21を流れる信号と第2の下位ビア22を流れる信号とが実質的に干渉しないようにする等の観点から決定されてもよい。一例として、所定の下限値はビア直径よりも大きな値(約0.012λ)である。λは送受信する電波の波長である。所定の上限値は第2の下位ビア22を流れる信号が、不図示の隣接する素子に実質的に干渉しないようにする等の観点から決定されてもよい。一例として、所定の上限値は約1.2λである。第2の伝送線路M1は、適切な如何なる線幅を有していてもよい。一例として、第2の伝送線路M1の線幅は、約0.1mmである。
パッチ1、第1の上位ビア11、第1の下位ビア21、第1の伝送線路M1、第2の上位ビア12、第2の下位ビア22、及び第2の伝送線路M2は、適切な如何なる導電性の材料で形成されてもよく、それらは同一の材料で形成されてもよいし、2つ以上が同じ材料で形成されていてもよい。導電性の材料は、例えば、銅(Cu)、銀(Ag)、金(Au)等であってもよい。
第1の絶縁層10、第2の絶縁層20、第1の貫通部H1に充填される絶縁材料、及び第2の貫通部H2に充填される絶縁材料等は、適切な如何なる絶縁性の材料で形成されてもよく、それらは同一の材料で形成されてもよいし、2つ以上が同じ材料で形成されていてもよい。絶縁性の材料は、例えば、セラミックス、ガラスエポキシ樹脂により形成されたFR4(Flame Retardant Type 4)、テフロン(登録商標)等であってもよい。一例として、絶縁性の材料は約6.8の比誘電率を有する。
例えば、低抵抗の導電性の材料を利用して多層構造のパッチアンテナ100を形成する等の観点からは、低温同時焼成セラミックス(Low Temperature Co-fired Ceramics:LTCC)基板を利用することが好ましい。
<<1.2 動作>>
送信の場合、不図示の送受信回路は第1の下位ビア21に第1の高周波信号を与える。第1の高周波信号は第1の下位ビア21、第1の伝送線路M1、及び第1の上位ビア11を経て第1の給電部P1に至る。また、不図示の送受信回路は第2の下位ビア22に第2の高周波信号を与える。第2の高周波信号は第2の下位ビア22、第2の伝送線路M2、及び第2の上位ビア12を経て第2の給電部P2に至る。第1、第2の給電部P1、P2に与えられた第1、第2の高周波信号はパッチ1に流れ、グランドGND等との相互作用により、z軸プラス方向に電波が放射される。第1及び第2の高周波信号は位相が約90度だけ異なっているので、z軸プラス方向に放射される電波は円偏波である。例えば、電波の周波数は約36GHzである。
受信の場合、送信と逆の動作が行われる。z軸プラス方向からパッチ1に到来した円偏波に起因して、第1の給電部P1に第1の高周波信号が生じる。第1の高周波信号は、第1の上位ビア11、第1の伝送線路M1、及び第1の下位ビア21を経て、不図示の送受信回路に至る。また、z軸プラス方向からパッチ1に到来した円偏波に起因して、第2の給電部P2に第2の高周波信号が生じる。第1及び第2の高周波信号は位相が約90度だけ異なっている。第2の高周波信号は、第2の上位ビア12、第2の伝送線路M2、及び第2の下位ビア22を経て、不図示の送受信回路に至る。
実施の形態によれば、第1、第2の伝送線路M1、M2が設けられているので、第1の下位ビア21と第2の下位ビア22との間の距離は、第1の上位ビア11と第2の上位ビア12との間の距離より長い。第1、第2の下位ビア21、22の位置は外側にスライドしている。これは、少なくとも、第1の下位ビア21を介して流れる信号と、第2の下位ビア22を介して流れる信号との干渉を軽減する等の観点から好ましい。実施の形態によるパッチアンテナ100は、第1、第2の給電部P1、P2を介して流れる信号の干渉を効果的に軽減する等の観点から好ましい。
<2.変形例>
<<2.1 線路の種類に関する変形例>>
図1、図2、図3に示す第1、第2の下位ビア21、22は第1、第2の高周波信号を伝送する。第1、第2の高周波信号は不図示の送受信回路との間で何らかの伝送路を介して送受信される。適切な如何なる伝送路がパッチアンテナに使用されてよい。例えば、(A)ストリップ線路又はストリップライン、(B)コプレーナ線路又はコプレーナライン、(C)マイクロストリップ線路又はマイクロストリップライン、(D)同軸線路又は同軸ケーブル等を利用した伝送路が使用されてもよい。
<<2.1A ストリップ線路>>
図4、図5、図6は、伝送路PAがストリップ線路又はストリップラインにより形成されている例を示す。図4は伝送路PAを有するパッチアンテナ400をx軸(y=0及びz=0)の方向から眺めた場合の層構造を示す。図4に示すように、パッチアンテナ400は、図2に示す例と同様に、パッチ1、第1の上位ビア11、第1の下位ビア21、第1の伝送線路M1、第2の上位ビア12、第2の下位ビア22、第2の伝送線路M2、第1の絶縁層10、第2の絶縁層20及びグランドGND1を少なくとも有する。図5(A)-(B)、図6(A)-(C)は図4に示す多層構造のうち導電層のパターンを示す。図5(A)-(B)は図3(A)-(B)と同様な導電層のパターンを示す。図6(A)-(C)は、図4に示す伝送路PAに関する導電層のパターンを示す。
図4に示すように、第1の下位ビア21及び第2の下位ビア22の長さは、図2に示す例よりも長い。第1の下位ビア21及び第2の下位ビア22は、第2の絶縁層20、グランドGND1及び第3の絶縁層30を介して(又は貫通して)延びている。
伝送路PAは、第1のグランドGND1を有する。図6(A)に示すように、第1のグランドGND1は、図3(C)に示す例と同様に、第1の下位ビア21と電気的に接触しないように、第1の下位ビア21の位置に第1の貫通部H1(穴、溝、ホール、スルーホール等)を有する。第1の下位ビア21は第1の貫通部H1を貫通する。第1のグランドGND1は、第2の下位ビア22と電気的に接触しないように、第2の下位ビア22の位置に第2の貫通部H2(穴、溝、ホール、スルーホール等)を有する。第2の下位ビア22は第2の貫通部H2を貫通する。
伝送路PAは、第1の下位ビア21に結合された第1の給電線路41を有する。図4及び図6(B)に示すように、第1の給電線路41は、第3の絶縁層30及び第4の絶縁層40の間でx軸に沿って延びる。第4の絶縁層40は第3の絶縁層30より下位に位置する。第1の給電線路41は第3、第4の絶縁層30、40の中で導電性の内層又は中層を形成している。第1の給電線路41は、第1の下位ビア21を通じて送受信される第1の高周波信号を流す。
伝送路PAは、第2の下位ビア22に結合された第2の給電線路42を有する。図4及び図6(B)に示すように、第2の給電線路42は、第3の絶縁層30及び第4の絶縁層40の間でy軸に沿って延びる。第2の給電線路42は第3、第4の絶縁層30、40の中で導電性の内層又は中層を形成している。第2の給電線路42は、第2の下位ビア22を通じて送受信される第2の高周波信号を流す。
伝送路PAは、図4及び図6(C)に示すように、第2のグランドGND2を有する。実施の形態では、例えば、パッチ1と第2のグランドGND2との間の厚みが、約0.62mmである。
伝送路PAは、第1のグランドGND1と第2のグランドGND2との間に位置する第1、第2の給電線路41、42等によりストリップ線路を形成し、第1、第2の高周波信号を伝送する。
<<2.1B コプレーナ線路>>
図7、図8、図9は、伝送路PBがコプレーナ線路又はコプレーナラインにより形成されている例を示す。図7は伝送路PBを有するパッチアンテナ700をx軸(y=0及びz=0)の方向から眺めた場合の層構造を示す。図7に示すように、パッチアンテナ700は、図2に示す例と同様に、パッチ1、第1の上位ビア11、第1の下位ビア21、第1の伝送線路M1、第2の上位ビア12、第2の下位ビア22、第2の伝送線路M2、第1の絶縁層10、第2の絶縁層20及びグランドGND1を少なくとも有する。図8(A)-(B)、図9(A)-(B)は図7に示す多層構造のうち導電層のパターンを示す。図8(A)-(B)は図3(A)-(B)と同様な導電層のパターンを示す。図9(A)-(B)は、図7に示す伝送路PBに関する導電層のパターンを示す。
伝送路PBは、第1の下位ビア21に結合された第1の給電線路91(図9(A))を有する。第1の給電線路91は、第2の絶縁層20及び第5の絶縁層50の間でx軸に沿って延びる。第5の絶縁層50は第2の絶縁層20より下位に位置する。第1の給電線路91は、第1の下位ビア21を通じて送受信される第1の高周波信号を流す。
伝送路PBは、第2の下位ビア22に結合された第2の給電線路92(図9(A))を有する。第2の給電線路92は、第2の絶縁層20及び第5の絶縁層50の間でy軸に沿って延びる。第2の給電線路92は、第2の下位ビア22を通じて送受信される第2の高周波信号を流す。
伝送路PBは、図7及び図9(A)に示すように、第5の絶縁層50上に第1のグランドGND1を有する。第1のグランドGND1は、第1の給電線路91と電気的に接触しないように、第1の給電線路91の位置に第1の貫通部H11(穴、溝、ホール、スルーホール等)を有する。第1のグランドGND1は、第2の給電線路92と電気的に接触しないように、第2の給電線路92の位置に第2の貫通部H22(穴、溝、ホール、スルーホール等)を有する。
第1の貫通部H11は、グランドGND1と第1の給電線路91との間の絶縁性を確保する等のため、x軸方向に沿って第1の給電線路91より広い面積を占めることが好ましい。第1の貫通部H11の形状を定める輪郭と第1の給電線路91の輪郭との間の領域には絶縁材料が介在している。第2の貫通部H22は、グランドGND1と第2の給電線路91との間の絶縁性を確保する等のため、y軸方向に沿って第2の給電線路91より広い面積を占めることが好ましい。第2の貫通部H22の形状を定める輪郭と第2の給電線路92の輪郭との間の領域には絶縁材料が介在している。
伝送路PBは、図7及び図9(B)に示すように、第5の絶縁層50の下に第2のグランドGND2を有する。
伝送路PBは、第5の絶縁層50上の第1のグランドGND1、第1、第2の給電線路91、92等によりコプレーナ線路を形成し、高周波信号を伝送する。
図7に示す伝送路PBは、第2のグランドGND2を有するいわゆるグランド付きコプレーナ線路を形成し、第1、第2の高周波信号を伝送する。
図10Aは、第2のグランドGND2が設けられていない例を示す。図10Aに示すパッチアンテナ1000の伝送路PBは、第2のグランドGND2を有しないコプレーナ線路を形成し、第1、第2の高周波信号を伝送する。
なお、本明細書における「貫通部」は、ビアや線路等のような信号の経路が、貫通部により占められる領域を垂直に貫く形態(図3(C)、図6(A)における第1、第2の貫通部H1、H2等)に限定されない。例えば、グランドに形成される「貫通部」は、グランドから信号の経路を電気的に絶縁しつつ、貫通部により占められる領域内に、その信号の経路を含む形態(図9(A)における第1、第2の貫通部H11、H22等)であってもよい。貫通部は、信号の経路とグランドとが電気的に絶縁された状態になるように、信号の経路とグランドの導電性材料部との間に絶縁性材料部を介在させた構造であると表現されてもよい。この場合における信号の経路は、絶縁層を介するビアであってもよいし、絶縁層に沿って延びる線路(例えば、伝送線路又は給電線路)等であってもよい。
図7に示す例では、第1、第2の給電線路91、92が、第5の絶縁層50上でグランドGND1と同じ面内に形成されているが、第1、第2の下位ビア21、22がグランドGND1及び第5の絶縁層50を貫通し、第1、第2の給電線路91、92が第5の絶縁層50の下位に形成されてもよい。
図10B、図10C、図10Dは、第1、第2の下位ビア21、22がグランドGND1及び第5の絶縁層50を貫通し、第1、第2の給電線路91、92が第5の絶縁層50の下位におけるグランドGND2と同じ面内に形成されている例を示す。図10B等も、図7等に示す例と同様に、伝送路PBがコプレーナ線路又はコプレーナラインにより形成されている例を示す。
図10B等に示す伝送路PBは、図7等に示す例とは異なり、図10D(A)に示すように、第1のグランドGND1は、第1の下位ビア21と電気的に接触しないように、第1の下位ビア21の位置に第1の貫通部H1を有する。第1の下位ビア21は第1の貫通部H1を貫通する。第1のグランドGND1は、第2の下位ビア22と電気的に接触しないように、第2の下位ビア22の位置に第2の貫通部H2を有する。第2の下位ビア22は第2の貫通部H2を貫通する。
伝送路PBは、グランドGND2が形成されている面内において、第1の下位ビア21に結合された第1の給電線路91(図10D(B))を有する。第1の給電線路91は、第5の絶縁層50においてx軸に沿って延びる。第1の給電線路91は、第1の下位ビア21を通じて送受信される第1の高周波信号を流す。
伝送路PBは、グランドGND2が形成されている面内において、第2の下位ビア22に結合された第2の給電線路92(図10D(B))を有する。第2の給電線路92は、第5の絶縁層50においてy軸に沿って延びる。第2の給電線路92は、第2の下位ビア22を通じて送受信される第2の高周波信号を流す。
伝送路PBは、第5の絶縁層50における第2のグランドGND2、第1、第2の給電線路91、92等によりコプレーナ線路を形成し、高周波信号を伝送する。
<<2.1C マイクロストリップ線路>>
図11、図12、図13は、伝送路PCがマイクロストリップ線路又はマイクロストリップラインにより形成されている例を示す。図11は伝送路PCを有するパッチアンテナ1100をx軸(y=0及びz=0)の方向から眺めた場合の層構造を示す。図11に示すように、パッチアンテナ1100は、図2に示す例と同様に、パッチ1、第1の上位ビア11、第1の下位ビア21、第1の伝送線路M1、第2の上位ビア12、第2の下位ビア22、第2の伝送線路M2、第1の絶縁層10、及び第2の絶縁層20を有する。図12(A)-(B)、図13(A)-(B)は図11に示す多層構造のうち導電層のパターンを示す。図12(A)-(B)は図3(A)-(B)と同様な導電層のパターンを示す。図13(A)-(B)は、図11に示す伝送路PCに関する導電層のパターンを示す。
伝送路PCは、図11及び図13(A)に示すように、第1の下位ビア21及び第2の下位ビア22は、第2の絶縁層20、グランドGND及び第5の絶縁層50を介して(貫通して)延びている。図13(A)に示すように、グランドGNDは、第1の下位ビア21と電気的に接触しないように、第1の下位ビア21の位置に第1の貫通部H1を有する。第1の下位ビア21は第1の貫通部H1を貫通する。グランドGNDは、第2の下位ビア22と電気的に接触しないように、第2の下位ビア22の位置に第2の貫通部H2を有する。第2の下位ビア22は第2の貫通部H2を貫通する。
伝送路PCは、第1の下位ビア21に結合された第1の給電線路111を有する。図11及び図13(B)に示すように、第1の給電線路111は、第5の絶縁層50においてx軸に沿って延びる。第1の給電線路111は、第1の下位ビア21を通じて送受信される第1の高周波信号を流す。
伝送路PCは、第2の下位ビア22に結合された第2の給電線路112を有する。図11及び図13(B)に示すように、第2の給電線路112は、第5の絶縁層50においてy軸に沿って延びる。第2の給電線路112は、第2の下位ビア22を通じて送受信される第2の高周波信号を流す。
伝送路PCは、グランドGND、第1、第2の給電線路111、112等によりマイクロストリップ線路を形成し、第1、第2の高周波信号を伝送する。
<<2.1D 同軸ケーブル>>
図14は、伝送路PDが同軸線路又は同軸ケーブルにより形成されている例を示す。図14は伝送路PDを有するパッチアンテナ1400をx軸(y=0及びz=0)の方向から眺めた場合の層構造を示す。図14に示すように、パッチアンテナ1400は、図2に示す例と同様に、パッチ1、第1の上位ビア11、第1の下位ビア21、第1の伝送線路M1、第2の上位ビア12、第2の下位ビア22、第2の伝送線路M2、第1の絶縁層10、第2の絶縁層20及びグランドGNDを少なくとも有する。
伝送路PDは、図14に示すように、第1の同軸線路141を有する。第1の同軸線路141は、第1の下位ビア21に電気的に結合された内部導体S1iと、グランドGNDに結合された外部導体S1eと、絶縁層D1とを有する。内部導体S1iは外部導体S1eにより包囲され、内部導体S1iと外部導体S1eとの間に絶縁層D1が介在している。第1の同軸線路141は、第1の下位ビア21を通じて送受信される第1の高周波信号を流す。
伝送路PDは、第2の同軸線路142を有する。第2の同軸線路142は、第2の下位ビア22に電気的に結合された内部導体S2iと、グランドGNDに結合された外部導体S2eと、絶縁層D2とを有する。内部導体S2iは外部導体S2eにより包囲され、内部導体S2iと外部導体S2eとの間に絶縁層D2が介在している。第2の同軸線路142は、第2の下位ビア22を通じて送受信される第2の高周波信号を流す。
図14に示す例では、第1、第2の下位ビア21、22に第1、第2の同軸線路141、142がそれぞれ直接的に結合されているが、不図示のコネクタのような要素を介して第1、第2の同軸線路141、142が結合されてもよい。
<<2.2 給電線路の延長方向に関する変形例>>
図3(A)を参照しながら説明したように、原点OG及び第1の給電部P1を通る直線と原点OG及び第2の給電部P2を通る直線とが実質的に直交することが好ましい。しかしながら、第1の伝送線路M1(図3(B)等)及び第2の伝送線路M2(図3(B)等)については、直交する2直線上に位置していてもいなくてもよい。第1の給電線路(41、91、111、141等)及び第2の給電線路(42、92、112、142等)についても、直交する2直線上に位置していてもいなくてもよい。第1の下位ビア21と第2の下位ビア22との間の距離を、第1の上位ビア11と第2の上位ビア12との間の距離より長くする等の観点からは、直交する位置関係に限定されないからである。
図15及び図16は、図1及び図3等と同様に、第1の伝送線路M1がx軸に沿って延び、第2の伝送線路M2がy軸に沿って延びている例を示す。図15は斜視図を示す。図16は平面図を示す。実際には第1の絶縁層10、第2の絶縁層20等も存在するが、図示の簡明化のため描かれていない。図15、図16に示す例では、第1の給電線路151がx軸に沿って延び、第2の給電線路152がy軸に沿って延びている。第1の給電線路151及び第2の給電線路152は、図4ないし図14等を参照しながら説明した何れかの伝送路又は適切な他の伝送路を用いて形成されてよい。
図17及び図18は、第1の伝送線路M1が第1の給電部P1からx軸プラス方向に沿って第1の下位ビア21まで延び、第2の伝送線路M2が第2の給電部P2からx軸マイナス方向に沿って第2の下位ビア22まで延びている例を示す。図17は斜視図を示す。図18は平面図を示す。実際には第1の絶縁層10や第2の絶縁層20等も存在するが、図示の簡明化のため描かれていない。図17、図18に示す例では、第1の給電線路171及び第2の給電線路172が実質的に平行な線に沿って延びている(x軸方向に延びている)。第1の給電線路171及び第2の給電線路172は、図4ないし図14等を参照しながら説明した何れかの伝送路又は適切な他の伝送路を用いて形成されてよい。
図15ないし図18に示す例では、第1の伝送線路M1及び第1の給電線路151、171は同じ方向(x軸方向)に延びている。しかし、同じ方向に延びることは必須でない。第2の伝送線路M2及び第2の給電線路152、172は90度違う方向に延びている(図15、図16に示す例ではy軸方向に延びている。図17、図18に示す例ではx軸方向に延びている)。従って、同じ方向に延びることは必須でない。例えば、図15及び図16に示す例において、第2の給電線路152が第2の下位ビア22からx軸マイナス方向に向かって延びてもよい。或いは、図17及び図18に示す例において、第2の給電線路172が第2の下位ビア22からy軸プラス方向に向かって延びてもよい。
第1の伝送線路M1は、第1の上位ビア11から、xy面内で適切な任意の方向に延びてよい(第1の下位ビア21は、xy面内で適切な任意の位置に存在してよい)。第1の給電線路151、171は、第1の下位ビア21から、xy面内で適切な任意の方向に延びてよい。第2の伝送線路M2は、第2の上位ビア12から、xy面内で適切な任意の方向に延びてよい(第2の下位ビア22は、xy面内で適切な任意の位置に存在してよい)。第2の給電線路152、172は、第2の下位ビア22から、xy面内で適切な任意の方向に延びてよい。第1、第2の下位ビア21、22間の距離を広げる観点からは、第1、第2の伝送線路M1、M2のなす角度は約90度ないし約270度の範囲内にあることが好ましい。
<<2.3 ビアに関する変形例>>
図19は、図1に示すパッチアンテナ100をy=xの直線の方向から眺めた場合の層構造を示す。従って、図19及び図2は同じパッチアンテナ100を異なる角度から眺めた様子を示す。図1等を参照しながら説明したように、x軸に沿って第1の伝送線路M1が形成され、y軸に沿って第2の伝送線路M2が形成されている。第1の下位ビア21と第2の下位ビア22との間の距離が、第1の上位ビア11と第2の上位ビア12との間の距離より長いことは、第1、第2の給電部P1、P2を介して流れる信号の干渉を効果的に軽減できる等の観点から好ましい。しかしながら、第1、第2の伝送線路M1、M2の双方が長く延びていることは必須ではない。例えば、第1、第2の給電部P1、P2を介して流れる信号の干渉を許容範囲内に抑制する等の観点からは、第1、第2の伝送線路M1、M2のうち一方が省略されてもよい。
図20は、第1、第2の伝送線路M1、M2のうち第1の伝送線路M1を形成していないパッチアンテナ2000の斜視図を示す。図21は図20に示すパッチアンテナ2000をy=xの方向から眺めた場合の層構造を示す。図20、図21に示すように、パッチアンテナ2000においては、第1の伝送線路M1が形成されておらず、第1の上位ビア11が第1の下位ビア21に第1の伝送線路M1を介さずに結合されている。第2の上位ビア12は図1及び図2に示す例と同様に第2の伝送線路M2を介して第2の下位ビア22に結合されている。
図20、図21に示すパッチアンテナ2000においても、第1の下位ビア21と第2の下位ビア22との間の距離は、第1の上位ビア11と第2の上位ビア12との間の距離より長い。従って、パッチアンテナ2000は、第1、第2の給電部P1、P2を介して流れる信号の干渉を少なくとも軽減できる等の観点から好ましい。
第1の下位ビア21と第2の下位ビア22との間の距離を或る程度以上長くして干渉を抑制する等の観点からは、第1、第2の伝送線路M1、M2の双方を形成してもよいし、何れか一方しか形成しなくてもよい。第1、第2の伝送線路M1、M2の双方を形成する場合に、双方とも同じ長さに形成されてもよいし、異なる長さに形成されてもよい(一方が他方より長く又は短く形成されてもよい)。
図2等に示す構造においては、第1の絶縁層10及び第2の絶縁層20が同程度の厚みを有している。第1の絶縁層10を貫通する第1の上位ビア11の長さと、第2の絶縁層20を貫通する第1の下位ビア21の長さとが同程度に設定されている。しかし、第1の絶縁層10を貫通する第1の上位ビア11の長さと、第2の絶縁層20を貫通する第1の下位ビア21の長さとは、異なっていてもよい。
図22は、図2に示すような多層構造において、第1の絶縁層10の厚み(第1の上位ビア11の長さ)が、第2の絶縁層20の厚み(第1の下位ビア21の長さ)より小さい例を示す。
図23は、図2に示すような多層構造において、第1の絶縁層10の厚み(第1の上位ビア11の長さ)が、第2の絶縁層20の厚み(第1の下位ビア21の長さ)より大きい例を示す。
図3(A)を参照しながら説明したように、第1、第2の給電部P1、P2は、それらの地点から見たインピーダンスが所定値(例えば、整合インピーダンス)になる場所に設けられる。インピーダンスは、パッチ1の原点OGからの距離だけでなく、パッチ1より下位の構造及び材料等にも依存する。従って、パッチ1における第1、第2の給電部P1、P2の場所、第1の絶縁層10の厚み及び比誘電率、第2の絶縁層20の厚み及び比誘電率、第1の伝送線路M1の長さX12、第2の伝送線路M1の長さY12等は、それぞれ所望値になるように総合的に決定されることが好ましい。
<<2.4 アレイアンテナに関する変形例>>
図1ないし図23を参照しながら説明したパッチアンテナは、単独で使用されてもよいし、複数個組み合わせて使用されてもよい。例えば、複数のパッチアンテナが(n行m列の)行列形式に並べられているアレイアンテナが形成されてもよい。ただし、n、mは自然数である。図24では方形配列の例が示されているが、アレイアンテナは方形配列に限定されず、適切な如何なる配列が使用されてよい。例えば、複数のパッチを等間隔又は不等間隔に並べた構造、パッチの所定の配列を周期的に反復した構造、パッチを千鳥配列に並べた構造等のような平面的な構造や、コンフォーマルアレイアンテナのような立体的な構造等が、アレイアンテナに使用されてもよい。
図24は、パッチアンテナをx軸方向に8個及びy軸方向に8個並べて形成されたアレイアンテナ2400を示す。パッチアンテナのサイズや個数は任意である。隣接するパッチアンテナ間の間隔(x 軸方向の間隔dx及びy軸方向の間隔dy)は、アレイアンテナ2400の用途に応じて決定されてよい。
例えば、アレイアンテナ2400がフェーズドアレイアンテナを形成しない場合、隣接するパッチアンテナ間の間隔は約1波長(λ)程度であってもよい。利得を大きくする等の観点からは、パッチアンテナの数を多くし、開口面積を広くすることが好ましい。λは自由空間における周波数fに対応する波長の長さ(電波の波長)である。
例えば、アレイアンテナ2400が、フェーズドアレイアンテナを形成する場合、隣接するパッチアンテナ間の間隔は、約半波長(λ/2)以下であることが好ましい。フェーズドアレイアンテナを形成する場合、メインビームを鋭くする、利得を大きくする等の観点からは、パッチアンテナの数を多くし、開口面積を広くすることが好ましい。
図3(B)等を参照しながら説明したように、第1、第2の伝送線路M1、M2の長さX12、Y12は、第1、第2の下位ビア21、22間の距離を十分に確保する一方、隣接する素子を考慮して決定されてよい。例えば、図24に示す例の場合、隣接するパッチアンテナへの構造的な干渉が無い範囲で、第1、第2の伝送線路M1、M2の長さX12、Y12の上限値が決定されてもよい。一例として、そのような上限値は約1.2λである。
<3.実施の形態による効果>
図1に示すようなパッチアンテナについて、シミュレーションが行われた。シミュレーションでは、反射特性、利得、アイソレーション及び軸比の各々についての周波数依存性が計算された。
図25は反射特性の周波数依存性を示す。反射特性は反射損失、反射率或いはSパラメータ(S11)等と言及されてもよい。図25に示されているように、このパッチアンテナの場合、36GHz帯で整合が取れている。
図26は利得の周波数依存性を示す。利得は等方性アンテナ又はアイソトロピックアンテナを基準としている。図26に示されているように、約35GHzないし約36GHz帯にて約2dBicの利得が得られている。
図27はアイソレーションの周波数依存性を示す。アイソレーションは、例えば、パッチアンテナの2つの給電部同士の間でどの程度の漏洩電力(又は洩れ込み)が生じるかを示す。例えば、アイソレーションは、第1の給電部P1からの給電した場合の電力が、第2の給電部P2へどの程度漏洩するかを示す。従って、アイソレーションの値が低いほど、給電部同士の干渉は低い。図27に示されているように、約35GHzないし約36GHz帯で約-23dB以下という低い値が得られている。
図28は軸比の周波数依存性を示す。軸比は楕円偏波の長軸方向の振幅と短軸方向の振幅との比率を示す。従って、完全な円偏波の場合、軸比は1である(対数ならば、0dB)。図28に示されているように、約35GHzないし約36GHz帯にて約1.2dB以下という低い値が得られている。
従って図1に示すようなパッチアンテナを利用して円偏波を適切に送受信することが可能である。
以上説明したように、実施の形態のパッチアンテナによれば、小型化した場合でも、送受信される円偏波の劣化を適切に軽減することが可能になる。
仮に、実施の形態のような工夫をしなかった場合、高周波数化に応じてパッチアンテナを小型化すると、2つの給電部が接近し、給電される信号が互いに干渉してしまうことが懸念される。
図29は、パッチアンテナの小型化に伴って2つの給電部が接近している様子を示す。図29に示す例の場合、2つの給電部に至る信号が互いに干渉し、本願で懸念している問題が生じてしまう。
2つの給電部に至る信号を干渉しにくくする観点からは、パッチの背面(表面は電波を送受信する側)からビアを介して給電するのではなく、パッチと同一平面内で給電を行うことが考えられる。
図30はパッチの縁又は辺に給電部を形成し、2つの給電部に至る信号を干渉しにくくしている。パッチと同一平面内で給電が行われる。図30に示すパッチアンテナの場合、給電部から見たインピーダンスは整合インピーダンスには一致しないので、給電線路とパッチとの間でインピーダンスを整合させる必要がある。このため、給電線路と給電部との間に整合回路として例えばλg/4整合線路が挿入されている。図1に関する説明で言及したように、λgは絶縁層により波長短縮された周波数に対応する波長を示す。図30に示すパッチアンテナの場合、パッチアンテナ毎に、λg/4整合線路を形成する必要があり、寸法上の制約やミリ波帯の場合ライン幅が狭くなり実現が困難になってしまう等の問題が懸念される。この問題は、多数のパッチアンテナを有するアレイアンテナ等の場合に更に深刻になる。
実施の形態によれば、第1、第2の伝送線路M1、M2の少なくとも一方を形成することで、第1の下位ビア21と第2の下位ビア22との間の距離を、第1の上位ビア11と第2の上位ビア12との間の距離より長くする。第1、第2の下位ビア21、22の位置を外側にスライドさせる。これは、第1、第2の給電部P1、P2を介して流れる信号が互いに干渉しにくくなり、送受信される円偏波の劣化を軽減することが可能になる等の観点から好ましい。
実施の形態によるパッチアンテナは、高い周波数(例えば、ミリ波帯)の円偏波を適切に送受信する等の観点から好ましいので、例えば、ミリ波を用いるレーダ等に利用されてもよい。実施の形態によるパッチアンテナは第1、第2の伝送線路M1、M2等を有する。第1、第2の伝送線路M1、M2等は多層基板の内部配線層等を活用することにより、量産に適した簡易な方法で形成することが可能である。従って、実施の形態によるパッチアンテナは簡易かつ安価に製造できる等の観点から好ましい。実施の形態によるパッチアンテナは、例えば、製作性の向上、電気的特性の安定化、断線等の不具合の低減等の観点から好ましい。実施の形態によるパッチアンテナは、例えば、大規模アレイ製造時の歩留まりを向上させる(又は不良率を低減させる)等の観点から好ましい。実施の形態によるパッチアンテナは、例えば、給電位置を調整することで、設計の自由度を向上させる等の観点から好ましい。
以上、円偏波を送受信するパッチアンテナを説明してきたが、開示される実施の形態はそのような実施形態に限定されず、当業者は様々な変形例、修正例、代替例、置換例等を理解することが可能である。実施の形態の理解を促すため具体的な数値例が示されたが、特に断りのない限り、それらの数値は単なる一例に過ぎず、適切な如何なる値が使用されてもよい。構造や形状等の幾何学的な位置関係を説明するために使用された座標(及び座標系)は単なる一例に過ぎず、適切な如何なる座標(及び座標系)が使用されてよい。信号を伝送する要素(パッチ、線路等)は、適切な如何なる導電性の材料で形成されてもよい。例えば導電性の材料は銅(Cu)、銀(Ag)、金(Au)等であってもよい。信号を伝送する要素の下位又は上位に存在する絶縁層は、適切な如何なる絶縁性の材料で形成されてもよい。絶縁性の材料は、例えば、セラミックス、ガラスエポキシ樹脂により形成されたFR4(Flame Retardant Type 4)、テフロン、低温同時焼成セラミックス(LTCC)等であってもよい。
上記の説明における項目の区分けは開示される実施の形態に本質的ではなく、2つ以上の項目に記載された事項が必要に応じて組み合わせて使用されてよいし、ある項目に記載された事項が、別の項目に記載された事項に(矛盾しない限り)適用されてよい。
上記の説明において、「実施の形態」は必ずしも全てが同じ形態を指すわけではない。実施の形態は、上記の例に限定されず、開示される実施の形態の精神から逸脱することなく、様々な変形例、修正例、代替例、置換例等が当業者にとって明らかであり、そのような変形例、修正例、代替例、置換例等は添付の特許請求の範囲に包含されることが意図されている。
以上の実施の形態に関し、更に以下の付記を開示する。
(付記1)
前記第1の給電部に結合され、前記第1の絶縁層を貫通して形成された第1の上位ビア第1の絶縁層上に形成され、第1及び第2の給電部を有するパッチと、
と、
前記第1の上位ビアに結合され、前記第1の絶縁層より下位に位置する第2の絶縁層を貫通して形成された第1の下位ビアと、
前記第2の給電部に結合され、前記第1の絶縁層を貫通して形成された第2の上位ビアと、
前記第2の絶縁層を貫通して形成された第2の下位ビアと、
前記第2の上位ビアと前記第2の下位ビアとを結合するように、前記第1及び第2の絶縁層の間に延びる伝送線路と、
第1の貫通部及び第2の貫通部を有するグランドであって、前記第1の貫通部において前記第1の下位ビアと前記グランドの導電部との間に絶縁部が介在し、前記第2の貫通部において前記第2の下位ビアと前記グランドの導電部との間に絶縁部が介在しているグランドと
を有するパッチアンテナ。
(付記2)
前記第1の下位ビアと前記第2の下位ビアとの間の距離は、前記第1の上位ビアと前記第2の上位ビアとの間の距離より長い、付記1に記載のパッチアンテナ。
(付記3)
前記伝送線路は、送受信される円偏波の波長の0.012倍ないし1.2倍の範囲内の長さを有する、付記1又は2に記載のパッチアンテナ。
(付記4)
前記伝送線路が第2の伝送線路であり、当該パッチアンテナが、前記第1の上位ビアと前記第1の下位ビアとを結合するように、前記第1及び第2の絶縁層の間に延びる第1の伝送線路を有する、付記1から3の何れか1項に記載のパッチアンテナ。
(付記5)
前記第1の伝送線路及び前記第2の伝送線路が、直交する直線に沿って設けられている、付記4に記載のパッチアンテナ。
(付記6)
前記第1の伝送線路及び前記第2の伝送線路が、平行な直線に沿って設けられている、付記4に記載のパッチアンテナ。
(付記7)
前記第1の給電部を通じて送受信する第1の信号を流すように前記第1の下位ビアに結合された第1の給電線路と、
前記第2の給電部を通じて送受信する第2の信号を流すように前記第2の下位ビアに結合された第2の給電線路と
を有する付記1から6の何れか1項に記載のパッチアンテナ。
(付記8)
前記第1の給電線路及び前記第2の給電線路が、ストリップ線路、コプレーナ線路、マイクロストリップ線路又は同軸線路により形成されている、付記7に記載のパッチアンテナ。
(付記9)
付記1から8の何れか1項に記載のパッチアンテナが行列形式に複数個並べられているアレイアンテナ。
(付記10)
前記第1及び第2の絶縁層が低温同時焼成セラミックス基板を形成している、付記1から9の何れか1項に記載のパッチアンテナ。
100 パッチアンテナ
1 パッチ
11、12 第1、第2の上位ビア
12、22 第1、第2の下位ビア
M1、M2 第1、第2の伝送線路
10、20 第1、第2の絶縁層
H1、H2 第1、第2の貫通部

Claims (6)

  1. 第1の絶縁層上に形成され、第1及び第2の給電部を有するパッチと、
    前記第1の給電部に結合され、前記第1の絶縁層を貫通して形成された第1の上位ビアと、
    前記第1の上位ビアに結合され、前記第1の絶縁層より下位に位置する第2の絶縁層を貫通して形成された第1の下位ビアと、
    前記第2の給電部に結合され、前記第1の絶縁層を貫通して形成された第2の上位ビアと、
    前記第2の絶縁層を介して形成された第2の下位ビアと、
    前記第2の上位ビアと前記第2の下位ビアとを結合するように、前記第1及び第2の絶縁層の間に延びる伝送線路と、
    第1の貫通部及び第2の貫通部を有するグランドであって、前記第1の貫通部において前記第1の下位ビアと前記グランドの導電部との間に絶縁部が介在し、前記第2の貫通部において前記第2の下位ビアと前記グランドの導電部との間に絶縁部が介在しているグランドと
    を有するパッチアンテナ。
  2. 前記第1の下位ビアと前記第2の下位ビアとの間の距離は、前記第1の上位ビアと前記第2の上位ビアとの間の距離より長い、請求項1に記載のパッチアンテナ。
  3. 前記伝送線路が第2の伝送線路であり、当該パッチアンテナが、前記第1の上位ビアと前記第1の下位ビアとを結合するように、前記第1及び第2の絶縁層の間に延びる第1の伝送線路を有する、請求項1又は2に記載のパッチアンテナ。
  4. 前記第1の伝送線路及び前記第2の伝送線路が、直交する直線に沿って設けられている、請求項3に記載のパッチアンテナ。
  5. 前記第1の伝送線路及び前記第2の伝送線路が、平行な直線に沿って設けられている、請求項3に記載のパッチアンテナ。
  6. 前記第1の給電部を通じて送受信する第1の信号を流すように前記第1の下位ビアに結合された第1の給電線路と、
    前記第2の給電部を通じて送受信する第2の信号を流すように前記第2の下位ビアに結合された第2の給電線路と
    を有する請求項1から4の何れか1項に記載のパッチアンテナ。
JP2014046938A 2014-03-10 2014-03-10 パッチアンテナ Pending JP2015171108A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014046938A JP2015171108A (ja) 2014-03-10 2014-03-10 パッチアンテナ

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014046938A JP2015171108A (ja) 2014-03-10 2014-03-10 パッチアンテナ

Publications (1)

Publication Number Publication Date
JP2015171108A true JP2015171108A (ja) 2015-09-28

Family

ID=54203441

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014046938A Pending JP2015171108A (ja) 2014-03-10 2014-03-10 パッチアンテナ

Country Status (1)

Country Link
JP (1) JP2015171108A (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106299673A (zh) * 2016-11-08 2017-01-04 中国电子科技集团公司第二十研究所 一种小型宽带圆极化天线
CN106921037A (zh) * 2017-04-20 2017-07-04 上海微小卫星工程中心 一种x波段星载数传天线
CN111183554A (zh) * 2017-10-03 2020-05-19 株式会社村田制作所 天线模块以及天线模块的检查方法
CN112736423A (zh) * 2020-12-10 2021-04-30 重庆大学 一种紧凑型低剖面差分滤波微带贴片天线

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4827271A (en) * 1986-11-24 1989-05-02 Mcdonnell Douglas Corporation Dual frequency microstrip patch antenna with improved feed and increased bandwidth
JP2006304006A (ja) * 2005-04-21 2006-11-02 Mitsubishi Electric Corp マイクロストリップアンテナとその製造方法及びそれを用いた装置
US20130072136A1 (en) * 2011-09-21 2013-03-21 Broadcom Corporation Antenna having polarization diversity

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4827271A (en) * 1986-11-24 1989-05-02 Mcdonnell Douglas Corporation Dual frequency microstrip patch antenna with improved feed and increased bandwidth
JP2006304006A (ja) * 2005-04-21 2006-11-02 Mitsubishi Electric Corp マイクロストリップアンテナとその製造方法及びそれを用いた装置
US20130072136A1 (en) * 2011-09-21 2013-03-21 Broadcom Corporation Antenna having polarization diversity

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106299673A (zh) * 2016-11-08 2017-01-04 中国电子科技集团公司第二十研究所 一种小型宽带圆极化天线
CN106921037A (zh) * 2017-04-20 2017-07-04 上海微小卫星工程中心 一种x波段星载数传天线
CN111183554A (zh) * 2017-10-03 2020-05-19 株式会社村田制作所 天线模块以及天线模块的检查方法
CN112736423A (zh) * 2020-12-10 2021-04-30 重庆大学 一种紧凑型低剖面差分滤波微带贴片天线

Similar Documents

Publication Publication Date Title
US11081804B2 (en) Antenna-integrated type communication module and manufacturing method for the same
US10431892B2 (en) Antenna-in-package structures with broadside and end-fire radiations
US10854994B2 (en) Broadband phased array antenna system with hybrid radiating elements
US10424847B2 (en) Wideband dual-polarized current loop antenna element
US9865928B2 (en) Dual-polarized antenna
KR100917847B1 (ko) 전방향 복사패턴을 갖는 평면형 안테나
US7545329B2 (en) Apparatus and methods for constructing and packaging printed antenna devices
US9160065B2 (en) Substrate embedded antenna and antenna array constituted thereby
WO2012099739A1 (en) Laminated antenna structures for package applications
EP3214697A1 (en) Antenna and antenna module comprising the same
WO2017107501A1 (en) A low coupling 2×2 mimo array
US20140091979A1 (en) Near-closed polygonal chain microstrip antenna
EP3221926B1 (en) Dual band multi-layer dipole antennas for wireless electronic devices
Artemenko et al. 2D electronically beam steerable integrated lens antennas for mmWave applications
JP2015171108A (ja) パッチアンテナ
KR101833037B1 (ko) 다중편파 안테나
JP6439481B2 (ja) アンテナ装置
US9906202B1 (en) Multi-layer wideband antenna with integrated impedance matching
KR20140101657A (ko) 초광대역 다이폴 안테나
US20190103666A1 (en) Mountable Antenna Fabrication and Integration Methods
US20200395676A1 (en) Array antenna device
TWI600209B (zh) Antenna reset circuit
WO2022105567A1 (en) Dielectrically loaded printed dipole antenna
JP3006399B2 (ja) デュアルバンドアンテナ
Van Messem et al. Substrate integrated components for passive millimeterwave-frequency beamforming networks

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20161102

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170605

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170613

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170714

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20170815