WO2021059637A1 - 車両の制御装置及び車両の制御方法 - Google Patents

車両の制御装置及び車両の制御方法 Download PDF

Info

Publication number
WO2021059637A1
WO2021059637A1 PCT/JP2020/025238 JP2020025238W WO2021059637A1 WO 2021059637 A1 WO2021059637 A1 WO 2021059637A1 JP 2020025238 W JP2020025238 W JP 2020025238W WO 2021059637 A1 WO2021059637 A1 WO 2021059637A1
Authority
WO
WIPO (PCT)
Prior art keywords
rotation
rotation speed
torque converter
range
vehicle
Prior art date
Application number
PCT/JP2020/025238
Other languages
English (en)
French (fr)
Inventor
広宣 宮石
Original Assignee
ジヤトコ株式会社
日産自動車株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ジヤトコ株式会社, 日産自動車株式会社 filed Critical ジヤトコ株式会社
Publication of WO2021059637A1 publication Critical patent/WO2021059637A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H59/00Control inputs to control units of change-speed-, or reversing-gearings for conveying rotary motion
    • F16H59/02Selector apparatus
    • F16H59/08Range selector apparatus
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H59/00Control inputs to control units of change-speed-, or reversing-gearings for conveying rotary motion
    • F16H59/36Inputs being a function of speed
    • F16H59/38Inputs being a function of speed of gearing elements
    • F16H59/40Output shaft speed
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H59/00Control inputs to control units of change-speed-, or reversing-gearings for conveying rotary motion
    • F16H59/36Inputs being a function of speed
    • F16H59/38Inputs being a function of speed of gearing elements
    • F16H59/42Input shaft speed
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H61/00Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing
    • F16H61/02Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing characterised by the signals used
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H61/00Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing
    • F16H61/66Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing specially adapted for continuously variable gearings
    • F16H61/662Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing specially adapted for continuously variable gearings with endless flexible members

Definitions

  • the present invention relates to a vehicle control device and a vehicle control method.
  • JP11-63196A discloses that when the clutch (friction fastening element) is engaged, precharging is performed to maintain the clutch engagement hydraulic pressure at the critical pressure (standby pressure). According to this, the responsiveness of clutch engagement can be ensured, and the occurrence of engagement shock can be suppressed.
  • the traveling range may be selected while the output element of the friction fastening element is rotating.
  • the friction fastening element is fastened immediately when the traveling range in the direction opposite to the rotation direction of the output element is selected, the fastening shock is caused by the large difference rotation between the input element and the output element of the friction fastening element. There is a problem of increasing.
  • the present invention has been made in view of such technical problems, and an object of the present invention is to suppress a fastening shock of a friction fastening element.
  • a vehicle control device including a torque converter and a power transmission mechanism connected downstream of the torque converter and having a friction fastening element, wherein the lockup clutch of the torque converter is provided.
  • the friction fastening element is slipped, and the absolute value of the rotation speed of the output element of the torque converter starts to increase, and then the above.
  • a vehicle control device is provided that has a control unit for fastening friction fastening elements.
  • the friction fastening element is fastened after the absolute value of the rotational speed of the output element of the torque converter starts to rise.
  • the fact that the absolute value of the rotation speed of the output element of the torque converter started to increase means that the differential rotation between the input element and the output element of the friction fastening element decreased. Therefore, by fastening the friction fastening element after that, the fastening shock can be suppressed.
  • FIG. 1 is a schematic configuration diagram of a vehicle to which the control device according to the embodiment of the present invention is applied.
  • FIG. 2 is a flowchart showing the contents of the determination process.
  • FIG. 3 is a time chart showing how the friction fastening elements are fastened in the forward rotation state of the primary pulley.
  • FIG. 4 is a time chart showing how the friction fastening elements are fastened when the primary pulley is stopped.
  • FIG. 5 is a time chart showing how the friction fastening elements are fastened in the reverse rotation state of the primary pulley.
  • FIG. 1 is a schematic configuration diagram of the vehicle 100.
  • the vehicle 100 includes an engine 1, an automatic transmission 2 connected to the engine 1, an oil pump 3, a drive wheel 4, and a controller 5 as a control device.
  • Engine 1 is an internal combustion engine that uses gasoline, light oil, etc. as fuel, and functions as a driving source for traveling.
  • the engine 1 is controlled in rotation speed, torque, and the like based on a command from the controller 5.
  • the automatic transmission 2 includes a torque converter 21, a forward / backward switching mechanism 22 as a power transmission mechanism, a variator 23 as a belt continuously variable transmission, and a hydraulic control valve unit (hereinafter, referred to as “valve unit”) 24.
  • the oil pan 25 for storing the hydraulic oil is provided.
  • the torque converter 21 is provided on the power transmission path between the engine 1 and the drive wheels 4.
  • the torque converter 21 transmits power via a fluid.
  • the torque converter 21 has a lockup clutch 21a. When the lockup clutch 21a is engaged, the input shaft 21b as an input element of the torque converter 21 and the output shaft 21c as an output element are directly connected, and the input shaft 21b and the output shaft 21c rotate at the same speed.
  • the forward / backward switching mechanism 22 is provided on the power transmission path between the torque converter 21 and the variator 23.
  • the forward / backward switching mechanism 22 has a double pinion planetary gear set as a main component, the sun gear thereof is coupled to the engine 1 via a torque converter 21, and the carrier is coupled to the primary pulley 23a.
  • the forward / backward switching mechanism 22 further includes a forward clutch 22a as a friction engaging element that directly connects the sun gear and the carrier of the double pinion planetary gear set, and a reverse brake 22b as a friction engaging element that fixes the ring gear.
  • the input rotation from the engine 1 via the torque converter 21 is transmitted to the primary pulley 23a as it is, and when the reverse brake 22b is engaged, the input rotation from the engine 1 via the torque converter 21 is reversed and transmitted to the primary pulley 23a.
  • the forward clutch 22a and the reverse brake 22b are controlled by hydraulic oil adjusted by the valve unit 24 with the discharge pressure of the oil pump 3 as the main pressure based on a command from the controller 5.
  • the variator 23 is provided on the power transmission path between the forward / backward switching mechanism 22 and the drive wheels 4, and changes the gear ratio steplessly according to the vehicle speed, the accelerator pedal opening, and the like.
  • the variator 23 includes a primary pulley 23a, a secondary pulley 23b, and a belt 23c wound around both pulleys 23a and 23b.
  • the movable pulley of the primary pulley 23a and the movable pulley of the secondary pulley 23b are moved in the axial direction by the pulley pressure, and the pulley contact radius of the belt 23c is changed to change the gear ratio steplessly.
  • the pulley pressure acting on the primary pulley 23a and the pulley pressure acting on the secondary pulley 23b are adjusted by the valve unit 24 with the discharge pressure of the oil pump 3 as the original pressure.
  • a differential 6 is connected to the output shaft of the secondary pulley 23b of the variator 23 via a final reduction gear mechanism (not shown).
  • a drive wheel 4 is connected to the differential 6 via a drive shaft 7.
  • the output element of the upstream component is connected to the input element of the downstream component.
  • the output element of the engine 1 is connected (directly connected) to the input element of the torque converter 21.
  • the output element of the torque converter 21 is connected (directly connected) to the input element (input element of the friction fastening element) of the forward / backward switching mechanism 22.
  • the output element of the forward / backward switching mechanism 22 (the output element of the friction fastening element) is connected (directly connected) to the input element of the variator 23 (primary pulley 23a).
  • the oil pump 3 is driven by transmitting the rotation of the engine 1 via the belt.
  • the oil pump 3 is composed of, for example, a vane pump.
  • the oil pump 3 sucks up the hydraulic oil stored in the oil pan 25 and supplies the hydraulic oil to the valve unit 24.
  • the hydraulic oil supplied to the valve unit 24 is used for driving the pulleys 23a and 23b, driving the forward clutch 22a and the reverse brake 22b, and lubricating each element of the automatic transmission 2.
  • an electric oil pump that is driven by being supplied with electric power from a battery may be provided instead of the oil pump 3, or together with the oil pump 3, an electric oil pump that is driven by being supplied with electric power from a battery may be provided.
  • the controller 5 is composed of a microcomputer equipped with a central arithmetic unit (CPU), a read-only memory (ROM), a random access memory (RAM), and an input / output interface (I / O interface).
  • the controller 5 can also be configured by a plurality of microcomputers. Specifically, the controller 5 can also be configured by an ATCU that controls the automatic transmission 2, an SCU that controls the select range, an ECU that controls the engine 1, and the like.
  • the controller 5 controls each part of the vehicle 100 by the CPU reading and executing the program stored in the ROM.
  • the rotation speed sensor 52 as a second rotation speed sensor that detects the rotation speed Nt (turbine rotation speed) of the output shaft 21c of the torque converter 21, and the rotation speed of the primary pulley 23a, which is the rotation speed on the output side of the forward / backward switching mechanism 22.
  • Rotation speed sensor 53 as a first rotation speed sensor that detects Np and rotation direction, rotation speed sensor 54 that detects rotation speed Ns of secondary pulley 23b, vehicle speed sensor 55 that detects vehicle speed, select range (forward (D) range) , Inhibita switch 56 that detects (state of select lever or select switch that switches between reverse (R) range, neutral (N) range, and parking (P) range), accelerator opening sensor 57 that detects accelerator pedal opening, and brake A signal from the tread force sensor 58, etc. that detects the tread force is input.
  • the controller 5 controls various operations of the engine 1 and the automatic transmission 2 based on these input signals.
  • a traveling range in the direction opposite to the traveling direction may be selected during traveling. For example, it is a scene in which the select range is switched from the R range to the D range while traveling backward.
  • the select range in the direction opposite to the traveling direction is selected, the N range is passed through.
  • the friction engaging element to be engaged when the D range is selected is the forward clutch 22a, but when the vehicle 100 is traveling backward, the input element and the output element of the forward / backward switching mechanism 22 are in opposite directions. That is, the rotation direction of the input element of the forward clutch 22a being released and the rotation direction of the output element are opposite to each other. Therefore, if the forward clutch 22a is engaged immediately when the D range is selected, the engagement shock increases due to the large differential rotation between the input element and the output element of the forward clutch 22a. The same applies to the scene where the select range is switched from the D range to the R range while traveling forward.
  • the control unit of the controller 5 performs a determination process for determining whether or not the friction fastening element can be fastened, so that when the traveling range in the direction opposite to the traveling direction is selected while the vehicle 100 is traveling. It prevents the friction fastening element from being fastened when the differential rotation between the input element and the output element of the friction fastening element is large.
  • the control unit of the controller 5 is a virtual unit having a function of executing the determination process of the controller 5.
  • the controller 5 repeatedly executes the process shown in FIG. 2, for example, while the vehicle 100 is traveling.
  • the calculation cycle is, for example, 10 ms.
  • step S11 the controller 5 determines whether the select range is the N range based on the signal input from the inhibitor switch 56.
  • the controller 5 When the controller 5 detects that the select range is the N range, the controller 5 ends the process. Further, when the controller 5 detects that the select range is other than the N range, the controller 5 shifts the process to step S12.
  • step S12 the controller 5 determines whether the rotation direction of the primary pulley 23a is reverse rotation based on the signal input from the rotation speed sensor 53. As described above, the rotation speed sensor 53 can detect the rotation direction of the primary pulley 23a.
  • the fact that the rotation direction of the primary pulley 23a is reverse rotation means that the traveling direction of the vehicle 100 is the reverse direction.
  • the traveling direction of the vehicle 100 can be determined by detecting the rotation direction on the output side of the forward / backward switching mechanism 22. Therefore, for example, a sensor capable of detecting the rotation direction may be adopted as the rotation speed sensor 54 or the vehicle speed sensor 55 to determine the traveling direction of the vehicle 100.
  • step S13 If the controller 5 determines that the rotation direction of the primary pulley 23a is not reverse rotation, the controller 5 shifts the process to step S18.
  • step S13 the controller 5 determines whether the select range is the D range based on the signal input from the inhibitor switch 56.
  • the controller 5 When the controller 5 detects that the select range is the D range, the controller 5 shifts the process to step S14. Further, when the controller 5 detects that the select range is other than the D range, that is, the R range, the controller 5 shifts the process to step S17.
  • step S17 the controller 5 allows the friction fastening element to be fastened.
  • the friction fastening element to be fastened when the R range is selected is the reverse brake 22b.
  • the reverse brake 22b when the reverse brake 22b is engaged, the input rotation from the engine 1 via the torque converter 21 is reversed and transmitted to the primary pulley 23a. That is, when the reverse brake 22b is engaged, the rotation direction of the input element of the forward / backward switching mechanism 22 (reverse brake 22b) and the rotation direction of the output element are opposite to each other.
  • the rotation direction of the primary pulley 23a is reverse rotation, the rotation direction of the input element and the rotation direction of the output element of the reverse brake 22b being released are opposite to each other.
  • the controller 5 permits the fastening of the friction fastening element in step S17, the difference rotation between the input element and the output element of the reverse brake 22b by slip control for slipping the reverse brake 22b (turbine rotation speed Nt (detected value)). ) And the primary pulley rotation speed Np (detection value)) becomes less than a predetermined value, the reverse brake 22b is completely engaged.
  • the rotation speed sensor 53 can detect the rotation direction of the primary pulley 23a, the rotation speed sensor 52 cannot detect the rotation direction of the output shaft 21c of the torque converter 21. Therefore, the turbine rotation speed Nt (detection value) and the primary pulley rotation speed Np (detection value) used by the controller 5 for the calculation of the differential rotation are both absolute values.
  • Slip control is executed for the friction fastening element to be fastened according to the selected running range when the running range (D range, R range) is selected.
  • step S14 the controller 5 determines whether the turbine rotation speed Nt (detected value) has increased based on the signal input from the rotation speed sensor 52.
  • step S15 When the controller 5 determines that the turbine rotation speed Nt (detection value) has increased, the process proceeds to step S15. Further, when the controller 5 determines that the turbine rotation speed Nt (detected value) has not increased, the controller 5 shifts the process to step S16.
  • step S15 the controller 5 allows the friction fastening element to be fastened.
  • the friction engaging element to be engaged when the D range is selected is the forward clutch 22a.
  • the controller 5 completely engages the forward clutch 22a when the differential rotation between the input element and the output element of the forward clutch 22a becomes equal to or less than a predetermined value by slip control for slipping the forward clutch 22a.
  • step S16 the controller 5 prohibits the fastening of the friction fastening element.
  • the forward clutch 22a in the state where the forward clutch 22a is engaged, the input rotation from the engine 1 via the torque converter 21 is directly transmitted to the primary pulley 23a. That is, when the forward clutch 22a is engaged, the rotation direction of the input element of the forward / backward switching mechanism 22 (forward clutch 22a) and the rotation direction of the output element are the same. When the rotation direction of the primary pulley 23a is reverse rotation, the rotation direction of the input element and the rotation direction of the output element of the forward clutch 22a being released are opposite to each other.
  • step S18 the controller 5 determines whether the select range is the D range based on the signal input from the inhibitor switch 56.
  • the controller 5 When the controller 5 detects that the select range is the D range, the controller 5 shifts the process to step S19. Further, when the controller 5 detects that the select range is other than the D range, that is, the R range, the controller 5 shifts the process to step S20.
  • step S19 the controller 5 allows the friction fastening element to be fastened.
  • the friction engaging element to be engaged when the D range is selected is the forward clutch 22a.
  • the forward clutch 22a is completely engaged when the differential rotation between the input element and the output element of the forward clutch 22a becomes equal to or less than a predetermined value by slip control. ..
  • step S20 the controller 5 determines whether the turbine rotation speed Nt (detected value) has increased based on the signal input from the rotation speed sensor 52.
  • step S21 When the controller 5 determines that the turbine rotation speed Nt (detection value) has increased, the process proceeds to step S21. Further, when the controller 5 determines that the turbine rotation speed Nt (detection value) has not increased, the process proceeds to step S22.
  • step S21 the controller 5 allows the friction fastening element to be fastened.
  • the friction fastening element to be fastened when the R range is selected is the reverse brake 22b.
  • the controller 5 completely engages the reverse brake 22b when the differential rotation between the input element and the output element of the reverse brake 22b becomes equal to or less than a predetermined value due to slip control.
  • step S22 the controller 5 prohibits the fastening of the friction fastening element.
  • the friction fastening element when the traveling range in the direction opposite to the traveling direction of the vehicle 100 is selected, the friction fastening element is slipped and the absolute value of the rotation speed of the output shaft 21c of the torque converter 21 (turbine rotation) is selected.
  • the friction fastening element is fastened after the speed Nt (detected value) starts to rise.
  • the fact that the absolute value of the rotation speed of the output shaft 21c of the torque converter 21 has turned upward means that the differential rotation between the input element and the output element of the friction fastening element has decreased. Therefore, by fastening the friction fastening element after that, the fastening shock can be suppressed.
  • the protection control for suppressing the slip of the belt 23c can be executed.
  • FIG. 3 is a time chart showing how the friction fastening elements are fastened while the primary pulley 23a is rotating in the forward direction.
  • FIG. 4 is a time chart showing how the friction fastening elements are fastened while the primary pulley 23a is stopped.
  • FIG. 5 is a time chart showing how the friction fastening elements are fastened while the primary pulley 23a is rotating in the reverse direction. 3 to 5 show how the select range is switched from the N range to the D range, and the friction engaging element to be engaged is the forward clutch 22a.
  • the select range is the N range, and the forward clutch 22a and the reverse brake 22b are in the released state. Further, the vehicle 100 is traveling forward at a low vehicle speed, and the primary pulley 23a is rotating in the forward direction.
  • the forward clutch 22a When the D range is selected at time t11, the forward clutch 22a is precharged, and then the fastening pressure is gradually increased by slip control.
  • the select range is the N range, and the forward clutch 22a and the reverse brake 22b are in the released state. Further, the vehicle 100 is stopped and the primary pulley 23a is stopped.
  • the select range is the N range, and the forward clutch 22a and the reverse brake 22b are in the released state. Further, the vehicle 100 is traveling backward at a low vehicle speed, and the primary pulley 23a is rotating in the reverse direction.
  • the differential rotation between the input element and the output element of the forward clutch 22a becomes less than or equal to the predetermined value.
  • the turbine rotation speed Nt detected value
  • the engagement of the forward clutch 22a is prohibited. Therefore, at this timing, the forward clutch 22a is not engaged.
  • the forward friction fastening element when the input element and the output element of the friction fastening element after complete fastening are in the same direction of rotation and the direction of rotation of the input element being released and the output element are opposite.
  • the traveling range is selected and the friction fastening element is completely fastened immediately after the traveling range is selected (when the traveling range in the direction opposite to the traveling direction is selected)
  • the fastening shock is large.
  • the fact that the input element and the output element of the friction fastening element are in the same direction of rotation means that the rotation direction of the input element changes from plus to minus. That is, it is synonymous with the fact that the absolute value of the rotation speed of the input element drops once and then starts to rise.
  • the rotation directions of the input element and the output element of the friction fastening element after complete fastening are opposite to each other, and the rotation directions of the input element and the output element being released are the same.
  • the fact that the rotation directions of the input element and the output element of the friction fastening element are opposite means that the rotation direction of the input element changes from plus to minus. That is, it is synonymous with the fact that the absolute value of the rotation speed of the input element drops once and then starts to rise.
  • the vehicle 100 including the torque converter 21 and the forward / backward switching mechanism 22 connected to the downstream side of the torque converter 21 and having a friction engaging element (forward clutch 22a, reverse brake 22b).
  • the controller 5 slips the friction fastening element and the output shaft of the torque converter 21.
  • the friction fastening element is fastened after the absolute value of the rotation speed of 21c starts to rise.
  • the friction fastening element is fastened after the absolute value of the rotational speed of the output shaft 21c of the torque converter 21 starts to rise.
  • the fact that the absolute value of the rotation speed of the output shaft 21c of the torque converter 21 has turned upward means that the differential rotation between the input element and the output element of the friction fastening element has decreased. Therefore, by fastening the friction fastening element after that, the fastening shock can be suppressed.
  • the vehicle 100 includes a rotation speed sensor 53 that detects the rotation speed on the output side of the forward / backward switching mechanism 22, and a rotation speed sensor 52 that detects the rotation speed on the input side of the forward / backward switching mechanism 22.
  • the speed sensor 52 cannot detect the direction of rotation.
  • the rotation speed sensor 52 does not need to add a function of detecting the rotation direction, so that the cost can be reduced.
  • the fastening shock can be appropriately suppressed even with such an apparatus configuration.
  • the vehicle 100 includes a variator 23 connected to the forward / backward switching mechanism 22.
  • the power transmission mechanism is the forward / backward switching mechanism 22
  • the power transmission mechanism may be, for example, an auxiliary transmission mechanism provided on the downstream side of the variator 23, or may be a friction fastening element alone.
  • the second rotation sensor that detects the rotation speed on the upstream side of the power transmission mechanism cannot detect the rotation direction.
  • the present invention can be applied even if the second rotation sensor can detect the rotation direction.
  • the present invention may be adopted alone, for example, when the second rotation sensor can detect the rotation direction, or may be used in combination with another control for suppressing the fastening shock.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Control Of Transmission Device (AREA)

Abstract

トルクコンバータと、トルクコンバータの下流に接続され摩擦締結要素を有する動力伝達機構と、を備えた車両の制御装置は、トルクコンバータのロックアップクラッチが解放されている状態において車両の進行方向と逆方向の走行レンジが選択されると、摩擦締結要素をスリップさせ、トルクコンバータの出力要素の回転速度の絶対値が上昇に転じた後に摩擦締結要素を締結させる制御部を有する。

Description

車両の制御装置及び車両の制御方法
 本発明は、車両の制御装置及び車両の制御方法に関する。
 JP11-63196Aには、クラッチ(摩擦締結要素)を締結する際に、プリチャージを行ってクラッチの締結油圧を臨界圧(待機圧)に保持することが開示されている。これによれば、クラッチ締結の応答性を確保でき、締結ショックの発生を抑制できる。
 摩擦締結要素の出力要素の回転中に走行レンジが選択される場合がある。ここで、出力要素の回転方向に対して逆方向の走行レンジが選択された場合に直ぐに摩擦締結要素を締結すると、摩擦締結要素の入力要素と出力要素との差回転が大きいことにより締結ショックが増大するという問題がある。
 本発明は、このような技術的課題に鑑みてなされたもので、摩擦締結要素の締結ショックを抑制することを目的とする。
 本発明のある態様によれば、トルクコンバータと、前記トルクコンバータの下流に接続され摩擦締結要素を有する動力伝達機構と、を備えた車両の制御装置であって、前記トルクコンバータのロックアップクラッチが解放されている状態において前記車両の進行方向と逆方向の走行レンジが選択されると、前記摩擦締結要素をスリップさせ、前記トルクコンバータの出力要素の回転速度の絶対値が上昇に転じた後に前記摩擦締結要素を締結させる制御部を有する、車両の制御装置が提供される。
 また、これに対応する車両の制御方法が提供される。
 これらの態様によれば、トルクコンバータの出力要素の回転速度の絶対値が上昇に転じた後に摩擦締結要素が締結される。トルクコンバータの出力要素の回転速度の絶対値が上昇に転じたことは、摩擦締結要素の入力要素と出力要素との差回転が減少したことを意味する。よって、その後に摩擦締結要素を締結させることで、締結ショックを抑制することができる。
図1は、本発明の実施形態に係る制御装置が適用された車両の概略構成図である。 図2は、判定処理の内容を示すフローチャートである。 図3は、プライマリプーリ正回転状態で摩擦締結要素が締結される様子を示すタイムチャートである。 図4は、プライマリプーリ停止状態で摩擦締結要素が締結される様子を示すタイムチャートである。 図5は、プライマリプーリ逆回転状態で摩擦締結要素が締結される様子を示すタイムチャートである。
 以下、添付図面を参照しながら本発明の実施形態について説明する。
 図1は、車両100の概略構成図である。車両100は、エンジン1と、エンジン1と接続される自動変速機2と、オイルポンプ3と、駆動輪4と、制御装置としてのコントローラ5と、を備える。
 エンジン1は、ガソリン、軽油等を燃料とする内燃機関であり、走行用駆動源として機能する。エンジン1は、コントローラ5からの指令に基づいて、回転速度、トルク等が制御される。
 自動変速機2は、トルクコンバータ21と、動力伝達機構としての前後進切替機構22と、ベルト無段変速機としてのバリエータ23と、油圧コントロールバルブユニット(以下、「バルブユニット」という。)24と、作動油を貯留するオイルパン25と、を備える。
 トルクコンバータ21は、エンジン1と駆動輪4との間の動力伝達経路上に設けられる。トルクコンバータ21は、流体を介して動力を伝達する。また、トルクコンバータ21は、ロックアップクラッチ21aを有する。ロックアップクラッチ21aが締結されると、トルクコンバータ21の入力要素としての入力軸21bと出力要素としての出力軸21cとが直結し、入力軸21bと出力軸21cとが同速回転する。
 前後進切替機構22は、トルクコンバータ21とバリエータ23との間の動力伝達経路上に設けられる。前後進切替機構22は、ダブルピニオン遊星歯車組を主たる構成要素とし、そのサンギヤをトルクコンバータ21を介してエンジン1に結合し、キャリアをプライマリプーリ23aに結合する。前後進切替機構22は更に、ダブルピニオン遊星歯車組のサンギヤ及びキャリア間を直結する摩擦締結要素としての前進クラッチ22a、及びリングギヤを固定する摩擦締結要素としての後進ブレーキ22bを備え、前進クラッチ22aの締結時にエンジン1からトルクコンバータ21を経由した入力回転をそのままプライマリプーリ23aに伝達し、後進ブレーキ22bの締結時にエンジン1からトルクコンバータ21を経由した入力回転を逆転してプライマリプーリ23aへ伝達する。前進クラッチ22a及び後進ブレーキ22bは、コントローラ5からの指令に基づき、オイルポンプ3の吐出圧を元圧としてバルブユニット24によって調圧された作動油によって制御される。
 バリエータ23は、前後進切替機構22と駆動輪4との間の動力伝達経路上に設けられ、車速やアクセルペダル開度等に応じて変速比を無段階に変更する。バリエータ23は、プライマリプーリ23aと、セカンダリプーリ23bと、両プーリ23a,23bに巻き掛けられたベルト23cと、を備える。プーリ圧によりプライマリプーリ23aの可動プーリとセカンダリプーリ23bの可動プーリとを軸方向に動かし、ベルト23cのプーリ接触半径を変化させることで、変速比を無段階に変更する。プライマリプーリ23aに作用するプーリ圧及びセカンダリプーリ23bに作用するプーリ圧は、オイルポンプ3の吐出圧を元圧としてバルブユニット24によって調圧される。
 バリエータ23のセカンダリプーリ23bの出力軸には、図示しない終減速ギヤ機構を介してディファレンシャル6が接続される。ディファレンシャル6には、ドライブシャフト7を介して駆動輪4が接続される。
 動力伝達経路上において、上流にある部品の出力要素は下流にある部品の入力要素と接続されている。本実施形態では、エンジン1の出力要素がトルクコンバータ21の入力要素と接続(直結)されている。また、トルクコンバータ21の出力要素が前後進切替機構22の入力要素(摩擦締結要素の入力要素)と接続(直結)されている。また、前後進切替機構22の出力要素(摩擦締結要素の出力要素)がバリエータ23(プライマリプーリ23a)の入力要素と接続(直結)されている。
 オイルポンプ3は、エンジン1の回転がベルトを介して伝達されることによって駆動される。オイルポンプ3は、例えばベーンポンプによって構成される。オイルポンプ3は、オイルパン25に貯留される作動油を吸い上げ、バルブユニット24に作動油を供給する。バルブユニット24に供給された作動油は、各プーリ23a,23bの駆動や、前進クラッチ22a及び後進ブレーキ22bの駆動、自動変速機2の各要素の潤滑などに用いられる。なお、オイルポンプ3に代えて、又はオイルポンプ3と共に、バッテリから電力が供給されて駆動する電動オイルポンプを設けてもよい。
 コントローラ5は、中央演算装置(CPU)、読み出し専用メモリ(ROM)、ランダムアクセスメモリ(RAM)及び入出力インタフェース(I/Oインタフェース)を備えたマイクロコンピュータで構成される。コントローラ5は、複数のマイクロコンピュータで構成することも可能である。具体的には、コントローラ5は、自動変速機2を制御するATCU、セレクトレンジを制御するSCU、エンジン1の制御を行うECU等によって構成することもできる。コントローラ5は、CPUがROMに記憶されたプログラムを読み出して実行することで車両100の各部の制御を行う。
 コントローラ5には、エンジン1の回転速度Ne(=トルクコンバータ21の入力軸21bの回転速度(ポンプ回転速度))を検出する回転速度センサ51、前後進切替機構22の入力側の回転速度であるトルクコンバータ21の出力軸21cの回転速度Nt(タービン回転速度)を検出する第2回転速度センサとしての回転速度センサ52、前後進切替機構22の出力側の回転速度であるプライマリプーリ23aの回転速度Np及び回転方向を検出する第1回転速度センサとしての回転速度センサ53、セカンダリプーリ23bの回転速度Nsを検出する回転速度センサ54、車速を検出する車速センサ55、セレクトレンジ(前進(D)レンジ、後進(R)レンジ、ニュートラル(N)レンジ及びパーキング(P)レンジを切り替えるセレクトレバー又はセレクトスイッチの状態)を検出するインヒビタスイッチ56、アクセルペダル開度を検出するアクセル開度センサ57、ブレーキの踏力を検出する踏力センサ58、等からの信号が入力される。コントローラ5は、入力されるこれら信号に基づき、エンジン1及び自動変速機2の各種動作を制御する。
 ところで、車両100においては、走行中に進行方向と逆方向の走行レンジが選択される場合がある。例えば、後退走行しているときにセレクトレンジがRレンジからDレンジに切り替えられるシーンである。なお、進行方向と逆方向のセレクトレンジが選択される場合は、Nレンジが経由される。
 Dレンジが選択された場合に締結される摩擦締結要素は前進クラッチ22aであるところ、車両100が後退走行している状態では、前後進切替機構22の入力要素と出力要素とは逆方向になっており、すなわち、解放中の前進クラッチ22aの入力要素の回転方向と出力要素の回転方向とは逆方向になっている。そのため、Dレンジが選択された場合に直ぐに前進クラッチ22aを締結すると、前進クラッチ22aの入力要素と出力要素との差回転が大きいことにより締結ショックが増大する。前進走行しているときにセレクトレンジがDレンジからRレンジに切り替えられるシーンにおいても同様である。
 そこで、本実施形態では、コントローラ5の制御部は、摩擦締結要素の締結可否を判定する判定処理を行うことで、車両100の走行中に進行方向と逆方向の走行レンジが選択された場合に摩擦締結要素の入力要素と出力要素との差回転が大きい状態で摩擦締結要素が締結されることを防止する。なお、コントローラ5の制御部とは、コントローラ5の判定処理を実行する機能を仮想的なユニットとしたものである。
 以下、コントローラ5(制御部)が実行する判定処理の内容について、図2を参照しながら詳しく説明する。コントローラ5は、例えば車両100の走行中において、図2に示す処理を繰り返し実行する。演算周期は、例えば10msである。
 なお、上述した状況は、トルクコンバータ21のロックアップクラッチ21aが非締結である低車速領域において発生し得る。よって、以下に説明する判定処理は、ロックアップクラッチ21aが非締結であることが前提となる。
 ステップS11では、コントローラ5は、インヒビタスイッチ56から入力される信号に基づいて、セレクトレンジがNレンジか判定する。
 コントローラ5は、セレクトレンジがNレンジであることを検知すると、処理を終了する。また、コントローラ5は、セレクトレンジがNレンジ以外であることを検知すると、処理をステップS12に移行する。
 ステップS12では、コントローラ5は、回転速度センサ53から入力される信号に基づいて、プライマリプーリ23aの回転方向が逆回転か判定する。上述したように、回転速度センサ53は、プライマリプーリ23aの回転方向を検出可能である。
 プライマリプーリ23aの回転方向が逆回転であることは、車両100の進行方向が後進方向であることを意味する。なお、車両100の進行方向は、前後進切替機構22の出力側の回転方向を検出することで判定可能となる。よって、例えば、回転速度センサ54や車速センサ55として回転方向を検出可能なセンサを採用して車両100の進行方向を判定してもよい。
 コントローラ5は、プライマリプーリ23aの回転方向が逆回転であると判定すると、処理をステップS13に移行する。また、コントローラ5は、プライマリプーリ23aの回転方向が逆回転でないと判定すると、処理をステップS18に移行する。
 ステップS13では、コントローラ5は、インヒビタスイッチ56から入力される信号に基づいて、セレクトレンジがDレンジか判定する。
 コントローラ5は、セレクトレンジがDレンジであることを検知すると、処理をステップS14に移行する。また、コントローラ5は、セレクトレンジがDレンジ以外、すなわちRレンジであることを検知すると、処理をステップS17に移行する。
 ステップS17では、コントローラ5は、摩擦締結要素の締結を許可する。Rレンジが選択された場合に締結される摩擦締結要素は後進ブレーキ22bである。
 上述したように、後進ブレーキ22bが締結された状態では、エンジン1からトルクコンバータ21を経由した入力回転が逆転してプライマリプーリ23aへ伝達される。つまり、後進ブレーキ22bが締結された状態では、前後進切替機構22(後進ブレーキ22b)の入力要素の回転方向と出力要素の回転方向とは逆方向である。そして、プライマリプーリ23aの回転方向が逆回転の場合は、解放中の後進ブレーキ22bの入力要素の回転方向と出力要素の回転方向とは逆方向になっている。
 よって、コントローラ5は、ステップS17で摩擦締結要素の締結を許可した場合は、後進ブレーキ22bをスリップさせるスリップ制御により後進ブレーキ22bの入力要素と出力要素との差回転(タービン回転速度Nt(検出値)とプライマリプーリ回転速度Np(検出値)との差)が所定値以下になると、後進ブレーキ22bを完全締結する。
 なお、回転速度センサ53はプライマリプーリ23aの回転方向を検出可能であるものの、回転速度センサ52はトルクコンバータ21の出力軸21cの回転方向を検出不能である。そのため、コントローラ5が差回転の演算に用いるタービン回転速度Nt(検出値)及びプライマリプーリ回転速度Np(検出値)は、いずれも絶対値である。
 スリップ制御は、走行レンジ(Dレンジ、Rレンジ)が選択されると、選択された走行レンジに応じて締結される摩擦締結要素に対して実行される。
 ステップS14では、コントローラ5は、回転速度センサ52から入力される信号に基づいて、タービン回転速度Nt(検出値)が上昇したか判定する。
 コントローラ5は、タービン回転速度Nt(検出値)が上昇したと判定すると、処理をステップS15に移行する。また、コントローラ5は、タービン回転速度Nt(検出値)が上昇していないと判定すると、処理をステップS16に移行する。
 ステップS15では、コントローラ5は、摩擦締結要素の締結を許可する。Dレンジが選択された場合に締結される摩擦締結要素は前進クラッチ22aである。この場合、コントローラ5は、前進クラッチ22aをスリップさせるスリップ制御により前進クラッチ22aの入力要素と出力要素との差回転が所定値以下になると、前進クラッチ22aを完全締結する。
 ステップS16では、コントローラ5は、摩擦締結要素の締結を禁止する。
 上述したように、前進クラッチ22aが締結された状態では、エンジン1からトルクコンバータ21を経由した入力回転がそのままプライマリプーリ23aに伝達される。つまり、前進クラッチ22aが締結された状態では、前後進切替機構22(前進クラッチ22a)の入力要素の回転方向と出力要素の回転方向とは同じ方向である。そして、プライマリプーリ23aの回転方向が逆回転の場合は、解放中の前進クラッチ22aの入力要素の回転方向と出力要素の回転方向とは逆方向になっている。
 この場合は、Dレンジが選択されてスリップ制御が開始されると、前進クラッチ22aの出力要素から入力要素へ動力伝達が生じ、タービン回転速度Nt(検出値)が落ち込む。そして、タービン回転速度Nt(検出値)が低下する途中で、コントローラ5の演算上、前進クラッチ22aの入力要素と出力要素との差回転が所定値以下になるタイミングが存在する。しかしながら、このタイミングでは、前進クラッチ22aの入力要素の回転方向と出力要素の回転方向とは逆方向になっているので、実際には、前進クラッチ22aの入力要素と出力要素との差回転が大きい。よって、このタイミングで前進クラッチ22aを締結すると、前進クラッチ22aの入力要素と出力要素との差回転が大きいことにより締結ショックが増大する。
 これに対して、本実施形態では、上述したように、タービン回転速度Nt(検出値)が上昇していない場合は、摩擦締結要素(前進クラッチ22a)の締結が禁止される。
 よって、プライマリプーリ23aの回転方向が逆回転であってDレンジが選択された場合は、スリップ制御により前進クラッチ22aの出力要素から入力要素へ動力が伝達されて入力要素の回転速度の絶対値が一旦落ち込んでも、その途中で前進クラッチ22aが締結されることがなく、その後に入力要素の回転速度の絶対値が上昇に転ずる。
 前進クラッチ22aの入力要素の回転速度の絶対値が上昇に転じたことは、前進クラッチ22aの入力要素と出力要素との差回転が減少したことを意味する。よって、その後に前進クラッチ22aを締結させることで、締結ショックを抑制することができる。
 ステップS18では、コントローラ5は、インヒビタスイッチ56から入力される信号に基づいて、セレクトレンジがDレンジか判定する。
 コントローラ5は、セレクトレンジがDレンジであることを検知すると、処理をステップS19に移行する。また、コントローラ5は、セレクトレンジがDレンジ以外、すなわちRレンジであることを検知すると、処理をステップS20に移行する。
 ステップS19では、コントローラ5は、摩擦締結要素の締結を許可する。Dレンジが選択された場合に締結される摩擦締結要素は前進クラッチ22aである。
 前進クラッチ22aが締結された状態では、前後進切替機構22(前進クラッチ22a)の入力要素の回転方向と出力要素の回転方向とは同じ方向である。そして、プライマリプーリ23aの回転方向が正回転の場合は、解放中の前進クラッチ22aの入力要素の回転方向と出力要素の回転方向とは同じ方向になっている。
 よって、コントローラ5は、ステップS19で摩擦締結要素の締結を許可した場合は、スリップ制御により前進クラッチ22aの入力要素と出力要素との差回転が所定値以下になると、前進クラッチ22aを完全締結する。
 ステップS20では、コントローラ5は、回転速度センサ52から入力される信号に基づいて、タービン回転速度Nt(検出値)が上昇したか判定する。
 コントローラ5は、タービン回転速度Nt(検出値)が上昇したと判定すると、処理をステップS21に移行する。また、コントローラ5は、タービン回転速度Nt(検出値)が上昇していないと判定すると、処理をステップS22に移行する。
 ステップS21では、コントローラ5は、摩擦締結要素の締結を許可する。Rレンジが選択された場合に締結される摩擦締結要素は後進ブレーキ22bである。この場合、コントローラ5は、スリップ制御により後進ブレーキ22bの入力要素と出力要素との差回転が所定値以下になると、後進ブレーキ22bを完全締結する。
 ステップS22では、コントローラ5は、摩擦締結要素の締結を禁止する。
 上述したように、後進ブレーキ22bが締結された状態では、前後進切替機構22(後進ブレーキ22b)の入力要素の回転方向と出力要素の回転方向とは逆方向である。そして、プライマリプーリ23aの回転方向が正回転の場合は、解放中の後進ブレーキ22bの入力要素の回転方向と出力要素の回転方向とは同じ方向になっている。
 この場合は、Rレンジが選択されてスリップ制御が開始されると、後進ブレーキ22bの出力要素から入力要素へ動力伝達が生じ、タービン回転速度Nt(検出値)が落ち込む。そして、タービン回転速度Nt(検出値)が低下する途中で、コントローラ5の演算上、後進ブレーキ22bの入力要素と出力要素との差回転が所定値以下になるタイミングが存在する。しかしながら、このタイミングでは、後進ブレーキ22bの入力要素の回転方向と出力要素の回転方向とは同じ方向になっているので、実際には、後進ブレーキ22bの入力要素と出力要素との差回転が大きい。よって、このタイミングで後進ブレーキ22bを締結すると、後進ブレーキ22bの入力要素と出力要素との差回転が大きいことにより締結ショックが増大する。
 これに対して、本実施形態では、上述したように、タービン回転速度Nt(検出値)が上昇していない場合は、摩擦締結要素(後進ブレーキ22b)の締結が禁止される。
 よって、プライマリプーリ23aの回転方向が正回転であってRレンジが選択された場合は、スリップ制御により後進ブレーキ22bの出力要素から入力要素へ動力が伝達されて入力要素の回転速度の絶対値が一旦落ち込んでも、その途中で後進ブレーキ22bが締結されることがなく、その後に入力要素の回転速度の絶対値が上昇に転ずる。
 後進ブレーキ22bの入力要素の回転速度の絶対値が上昇に転じたことは、後進ブレーキ22bの入力要素と出力要素との差回転が減少したことを意味する。よって、その後に後進ブレーキ22bを締結させることで、締結ショックを抑制することができる。
 このように、本実施形態では、車両100の走行方向と逆方向の走行レンジが選択された場合は、摩擦締結要素をスリップさせ、トルクコンバータ21の出力軸21cの回転速度の絶対値(タービン回転速度Nt(検出値))が上昇に転じた後に摩擦締結要素が締結される。トルクコンバータ21の出力軸21cの回転速度の絶対値が上昇に転じたことは、摩擦締結要素の入力要素と出力要素との差回転が減少したことを意味する。よって、その後に摩擦締結要素を締結させることで、締結ショックを抑制することができる。
 また、判定処理を行うことで、例えば、バリエータ23の現在の回転方向に対して逆回転の入力トルクが伝達されるシーンにおいて、ベルト23cのスリップを抑制する保護制御を実行できることになる。
 続いて、図3~図5に示すタイムチャートを参照しながら、摩擦締結要素が締結される様子について説明する。
 図3は、プライマリプーリ23aが正回転状態で摩擦締結要素が締結される様子を示すタイムチャートである。図4は、プライマリプーリ23aが停止状態で摩擦締結要素が締結される様子を示すタイムチャートである。図5は、プライマリプーリ23aが逆回転状態で摩擦締結要素が締結される様子を示すタイムチャートである。なお、図3~図5は、セレクトレンジがNレンジからDレンジに切り換えられる様子を示しており、締結される摩擦締結要素は前進クラッチ22aである。
 まず、図3を参照しながらプライマリプーリ23aが正回転状態で前進クラッチ22aが締結される様子について説明する。
 時刻t11より前はセレクトレンジがNレンジであり、前進クラッチ22a及び後進ブレーキ22bは解放状態である。また、車両100が低車速で前進走行しており、プライマリプーリ23aが正回転している。
 時刻t11でDレンジが選択されると、前進クラッチ22aに対してプリチャージが行われ、続いてスリップ制御によって締結圧が徐々に上昇していく。
 スリップ制御により前進クラッチ22aの出力要素から入力要素へ動力伝達が生じ、タービン回転速度Nt(検出値)が落ち込む。そして、時刻t12で前進クラッチ22aの入力要素と出力要素との差回転が所定値以下になると、締結圧が上昇して前進クラッチ22aが締結される。
 続いて、図4を参照しながらプライマリプーリ23aが停止状態で前進クラッチ22aが締結される様子について説明する。
 時刻t21より前はセレクトレンジがNレンジであり、前進クラッチ22a及び後進ブレーキ22bは解放状態である。また、車両100が停車中であり、プライマリプーリ23aが停止している。
 時刻t21でDレンジが選択されると、前進クラッチ22aに対してプリチャージが行われ、続いてスリップ制御によって締結圧が徐々に上昇していく。
 スリップ制御により前進クラッチ22aの出力要素から入力要素へ動力伝達が生じ、タービン回転速度Nt(検出値)が落ち込む。そして、時刻t22で前進クラッチ22aの入力要素と出力要素との差回転が所定値以下になると、締結圧が上昇して前進クラッチ22aが締結される。
 続いて、図5を参照しながらプライマリプーリ23aが逆回転状態で前進クラッチ22aが締結される様子について説明する。
 時刻t31より前はセレクトレンジがNレンジであり、前進クラッチ22a及び後進ブレーキ22bは解放状態である。また、車両100が低車速で後退走行しており、プライマリプーリ23aが逆回転している。
 時刻t31でDレンジが選択されると、前進クラッチ22aに対してプリチャージが行われ、続いてスリップ制御によって締結圧が徐々に上昇していく。
 スリップ制御により前進クラッチ22aの出力要素から入力要素へ動力伝達が生じ、タービン回転速度Nt(検出値)が落ち込む。
 時刻t32で前進クラッチ22aの入力要素と出力要素との差回転が所定値以下になる。しかしながら、上述したように、タービン回転速度Nt(検出値)が上昇していない場合は、前進クラッチ22aの締結が禁止される。よって、このタイミングでは、前進クラッチ22aは締結されない。
 その後、時刻t33でタービン回転速度Nt(検出値)が上昇に転ずると、前進クラッチ22aの締結が許可される。
 そして、時刻t34で前進クラッチ22aの入力要素と出力要素との差回転が所定値以下になると、締結圧が上昇して前進クラッチ22aが締結される。
 このように、摩擦締結要素の出力要素の回転方向に対して逆方向の走行レンジが選択された場合、摩擦締結要素の出力要素から入力要素への動力伝達により入力要素の回転速度の絶対値は一旦落ち込み、その後、上昇に転ずることになる。これは、摩擦締結要素が前進用摩擦締結要素であっても後進用摩擦締結要素であっても同様である。
 前進用摩擦締結要素について説明すると、完全締結後の摩擦締結要素の入力要素と出力要素との回転方向が同じ方向であって解放中の入力要素と出力要素との回転方向が逆方向である場合(走行方向と逆方向の走行レンジが選択された場合)に、走行レンジが選択されて直ぐに摩擦締結要素を完全締結すると締結ショックが大きい。この場合、摩擦締結要素の入力要素と出力要素との回転方向が同じ方向になるということは、入力要素の回転方向がプラスからマイナスに転ずることを意味する。すなわち、入力要素の回転速度の絶対値が一旦落ち込み、その後に上昇に転ずることと同義である。
 また、後進用摩擦締結要素について説明すると、完全締結後の摩擦締結要素の入力要素と出力要素との回転方向が逆方向であって解放中の入力要素と出力要素との回転方向が同じ方向である場合(走行方向と逆方向の走行レンジが選択された場合)に、走行レンジが選択されて直ぐに摩擦締結要素を完全締結すると締結ショックが大きい。この場合、摩擦締結要素の入力要素と出力要素との回転方向が逆方向になるということは、入力要素の回転方向がプラスからマイナスに転ずることを意味する。すなわち、入力要素の回転速度の絶対値が一旦落ち込み、その後に上昇に転ずることと同義である。
 以上述べたように、本実施形態では、トルクコンバータ21と、トルクコンバータ21の下流に接続され摩擦締結要素(前進クラッチ22a、後進ブレーキ22b)を有する前後進切替機構22と、を備えた車両100のコントローラ5は、トルクコンバータ21のロックアップクラッチ21aが解放されている状態において車両100の進行方向と逆方向の走行レンジが選択されると、摩擦締結要素をスリップさせ、トルクコンバータ21の出力軸21cの回転速度の絶対値が上昇に転じた後に摩擦締結要素を締結させる。
 これによれば、トルクコンバータ21の出力軸21cの回転速度の絶対値が上昇に転じた後に摩擦締結要素が締結される。トルクコンバータ21の出力軸21cの回転速度の絶対値が上昇に転じたことは、摩擦締結要素の入力要素と出力要素との差回転が減少したことを意味する。よって、その後に摩擦締結要素を締結させることで、締結ショックを抑制することができる。
 また、車両100は、前後進切替機構22の出力側の回転速度を検出する回転速度センサ53と、前後進切替機構22の入力側の回転速度を検出する回転速度センサ52と、を備え、回転速度センサ52は、回転方向を検出不能である。
 これによれば、回転速度センサ52は、回転方向を検出する機能を付加しなくてよいので、コストを低減できる。本実施形態では、このような装置構成であっても適切に締結ショックを抑制することができる。
 また、車両100は、前後進切替機構22に接続されたバリエータ23を備える。
 本実施形態の判定処理を行うことで、例えば、バリエータ23の現在の回転方向に対して逆回転の入力トルクが伝達されるシーンにおいて、ベルト23cのスリップを抑制する制御を実行できることになる。また、このような構成を前提とした場合、判定処理を実行することで、摩擦締結要素の入力要素に対して逆回転を検出するセンサを設けずに済むので、コストの増加を抑制できる。
 以上、本発明の実施形態について説明したが、上記実施形態は本発明の適用例の一つを示したものに過ぎず、本発明の技術的範囲を上記実施形態の具体的構成に限定する趣旨ではない。
 例えば、上記実施形態では、動力伝達機構が前後進切替機構22である場合について説明した。しかしながら、動力伝達機構は、例えば、バリエータ23の下流側に設けられる副変速機構であってもよいし、摩擦締結要素単体であってもよい。
 また、上記実施形態では、動力伝達機構の上流側の回転速度を検出する第2回転センサが回転方向を検知不能である。しかしながら、第2回転センサが回転方向を検出可能であっても、本発明を適用可能である。また、本発明は、例えば、第2回転センサが回転方向を検出可能である場合に単体で採用してもよいし、他の締結ショックを抑制する別の制御と併用してもよい。
 本願は2019年9月24日に日本国特許庁に出願された特願2019-173281に基づく優先権を主張し、この出願の全ての内容は参照により本明細書に組み込まれる。

Claims (4)

  1.  トルクコンバータと、前記トルクコンバータの下流に接続され摩擦締結要素を有する動力伝達機構と、を備えた車両の制御装置であって、
     前記トルクコンバータのロックアップクラッチが解放されている状態において前記車両の進行方向と逆方向の走行レンジが選択されると、前記摩擦締結要素をスリップさせ、前記トルクコンバータの出力要素の回転速度の絶対値が上昇に転じた後に前記摩擦締結要素を締結させる制御部を有する、
    車両の制御装置。
  2.  請求項1に記載の車両の制御装置であって、
     前記車両は、
     前記動力伝達機構の出力側の回転速度を検出する第1回転速度センサと、
     前記動力伝達機構の入力側の回転速度を検出する第2回転速度センサと、
    を備え、
     前記第2回転速度センサは、回転方向を検出不能である、
    車両の制御装置。
  3.  請求項1又は2に記載の車両の制御装置であって、
     前記車両は、
     前記動力伝達機構に接続されたベルト無段変速機を備える、
    車両の制御装置。
  4.  トルクコンバータと、前記トルクコンバータの下流に接続され摩擦締結要素を有する動力伝達機構と、を備えた車両の制御方法であって、
     前記トルクコンバータのロックアップクラッチが解放されている状態において前記車両の進行方向と逆方向の走行レンジが選択されると、前記摩擦締結要素をスリップさせ、前記トルクコンバータの出力要素の回転速度の絶対値が上昇に転じた後に前記摩擦締結要素を締結させる、
    車両の制御方法。
PCT/JP2020/025238 2019-09-24 2020-06-26 車両の制御装置及び車両の制御方法 WO2021059637A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019-173281 2019-09-24
JP2019173281 2019-09-24

Publications (1)

Publication Number Publication Date
WO2021059637A1 true WO2021059637A1 (ja) 2021-04-01

Family

ID=75165949

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/025238 WO2021059637A1 (ja) 2019-09-24 2020-06-26 車両の制御装置及び車両の制御方法

Country Status (1)

Country Link
WO (1) WO2021059637A1 (ja)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001349421A (ja) * 2000-06-02 2001-12-21 Mitsubishi Motors Corp 自動変速機の変速制御装置
JP2017082987A (ja) * 2015-10-30 2017-05-18 ダイハツ工業株式会社 動力分割式無段変速機の制御装置
JP2018017298A (ja) * 2016-07-27 2018-02-01 ダイハツ工業株式会社 車両用制御装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001349421A (ja) * 2000-06-02 2001-12-21 Mitsubishi Motors Corp 自動変速機の変速制御装置
JP2017082987A (ja) * 2015-10-30 2017-05-18 ダイハツ工業株式会社 動力分割式無段変速機の制御装置
JP2018017298A (ja) * 2016-07-27 2018-02-01 ダイハツ工業株式会社 車両用制御装置

Similar Documents

Publication Publication Date Title
JP5756002B2 (ja) 車両制御装置および車両の制御方法
US10793156B2 (en) Vehicle control device
WO2012140731A1 (ja) 車両用駆動装置の制御装置
US9494204B2 (en) Controller for vehicle transmission
JP6176192B2 (ja) 車両の制御装置
WO2017051678A1 (ja) 車両のセーリングストップ制御方法及び制御装置
WO2018016391A1 (ja) 車両の制御装置及び車両の制御方法
JP2005291111A (ja) 車両用ベルト式無段変速機の入力トルク制御装置
US20160230886A1 (en) Control device for continuously variable transmission
JP2009191997A (ja) 車両用変速機の制御装置
JP7169457B2 (ja) 車両の制御装置及び車両の制御方法
WO2021059637A1 (ja) 車両の制御装置及び車両の制御方法
JP5712331B2 (ja) エンジン自動停止車両及びその制御方法
JP2010276084A (ja) 無段変速機のニュートラル制御装置
US10612656B2 (en) Control device for vehicle and control method of the same
JP4016562B2 (ja) 車両用無段変速機の変速制御装置
JP6293282B2 (ja) 車両の制御装置及び制御方法
WO2023162778A1 (ja) 車両の制御装置、車両の制御方法、及びプログラム
JP2009264475A (ja) 車両用無段変速機の制御装置
JP7053890B2 (ja) 車両の制御装置及び車両の制御方法
WO2015194206A1 (ja) 自動変速機の油圧制御装置、及びその制御方法
JP2017032074A (ja) ベルト式無段変速機の制御装置
JP2019203575A (ja) 車両の制御装置及び車両の制御方法
JP2017040315A (ja) 車両の制御装置
JP2017003007A (ja) 車両の制御装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20868475

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20868475

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP