WO2021057827A1 - 用于制冷电器的线性压缩机和制冷系统 - Google Patents

用于制冷电器的线性压缩机和制冷系统 Download PDF

Info

Publication number
WO2021057827A1
WO2021057827A1 PCT/CN2020/117284 CN2020117284W WO2021057827A1 WO 2021057827 A1 WO2021057827 A1 WO 2021057827A1 CN 2020117284 W CN2020117284 W CN 2020117284W WO 2021057827 A1 WO2021057827 A1 WO 2021057827A1
Authority
WO
WIPO (PCT)
Prior art keywords
linear compressor
oil
refrigeration system
lubricating oil
housing
Prior art date
Application number
PCT/CN2020/117284
Other languages
English (en)
French (fr)
Inventor
哈恩·格雷戈里·威廉
伯恩斯·贾斯汀
Original Assignee
青岛海尔电冰箱有限公司
海尔智家股份有限公司
海尔美国电器解决方案有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 青岛海尔电冰箱有限公司, 海尔智家股份有限公司, 海尔美国电器解决方案有限公司 filed Critical 青岛海尔电冰箱有限公司
Priority to CN202080067367.9A priority Critical patent/CN114466974B/zh
Priority to EP20868244.3A priority patent/EP4036406B1/en
Publication of WO2021057827A1 publication Critical patent/WO2021057827A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B35/00Piston pumps specially adapted for elastic fluids and characterised by the driving means to their working members, or by combination with, or adaptation to, specific driving engines or motors, not otherwise provided for
    • F04B35/04Piston pumps specially adapted for elastic fluids and characterised by the driving means to their working members, or by combination with, or adaptation to, specific driving engines or motors, not otherwise provided for the means being electric
    • F04B35/045Piston pumps specially adapted for elastic fluids and characterised by the driving means to their working members, or by combination with, or adaptation to, specific driving engines or motors, not otherwise provided for the means being electric using solenoids
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B39/00Component parts, details, or accessories, of pumps or pumping systems specially adapted for elastic fluids, not otherwise provided for in, or of interest apart from, groups F04B25/00 - F04B37/00
    • F04B39/02Lubrication
    • F04B39/0223Lubrication characterised by the compressor type
    • F04B39/023Hermetic compressors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B39/00Component parts, details, or accessories, of pumps or pumping systems specially adapted for elastic fluids, not otherwise provided for in, or of interest apart from, groups F04B25/00 - F04B37/00
    • F04B39/02Lubrication
    • F04B39/0223Lubrication characterised by the compressor type
    • F04B39/023Hermetic compressors
    • F04B39/0261Hermetic compressors with an auxiliary oil pump
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B39/00Component parts, details, or accessories, of pumps or pumping systems specially adapted for elastic fluids, not otherwise provided for in, or of interest apart from, groups F04B25/00 - F04B37/00
    • F04B39/02Lubrication
    • F04B39/0284Constructional details, e.g. reservoirs in the casing
    • F04B39/0292Lubrication of pistons or cylinders
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B39/00Component parts, details, or accessories, of pumps or pumping systems specially adapted for elastic fluids, not otherwise provided for in, or of interest apart from, groups F04B25/00 - F04B37/00
    • F04B39/04Measures to avoid lubricant contaminating the pumped fluid
    • F04B39/041Measures to avoid lubricant contaminating the pumped fluid sealing for a reciprocating rod
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B39/00Component parts, details, or accessories, of pumps or pumping systems specially adapted for elastic fluids, not otherwise provided for in, or of interest apart from, groups F04B25/00 - F04B37/00
    • F04B39/12Casings; Cylinders; Cylinder heads; Fluid connections
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B39/00Component parts, details, or accessories, of pumps or pumping systems specially adapted for elastic fluids, not otherwise provided for in, or of interest apart from, groups F04B25/00 - F04B37/00
    • F04B39/16Filtration; Moisture separation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B49/00Control, e.g. of pump delivery, or pump pressure of, or safety measures for, machines, pumps, or pumping installations, not otherwise provided for, or of interest apart from, groups F04B1/00 - F04B47/00
    • F04B49/06Control using electricity
    • F04B49/065Control using electricity and making use of computers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B31/00Compressor arrangements
    • F25B31/02Compressor arrangements of motor-compressor units
    • F25B31/023Compressor arrangements of motor-compressor units with compressor of reciprocating-piston type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/07Details of compressors or related parts
    • F25B2400/073Linear compressors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B31/00Compressor arrangements
    • F25B31/002Lubrication
    • F25B31/004Lubrication oil recirculating arrangements

Definitions

  • the present invention generally relates to a compressor used for refrigeration appliances, such as a compressor of a refrigerator.
  • Some refrigeration appliances include a refrigeration system for cooling the refrigeration compartment of the refrigeration appliance.
  • the refrigeration system generally includes a compressor that generates compressed refrigerant during the operation of the refrigeration system.
  • the compressed refrigerant flows to the evaporator, where the heat exchange between the refrigerating compartment and the refrigerant cools the refrigerating compartment and the food located therein.
  • Linear compressors for compressing refrigerant.
  • Linear compressors usually include pistons and drive coils.
  • the drive coil generates a force for sliding the piston forward or backward in the chamber.
  • the piston compresses the refrigerant.
  • the friction between the piston and the chamber wall may adversely affect the operation of the linear compressor.
  • the friction loss due to the friction of the piston on the chamber wall may adversely affect the efficiency of the refrigeration appliance. This friction may also reduce the hot lubricating oil between the piston and the chamber wall, thereby reducing the effectiveness of the lubricating oil.
  • linear compressors may have problems caused by the mixing of refrigerant and lubricating oil.
  • refrigerant bleed in a linear compressor may prevent lubricating oil from flowing as needed (e.g., to/or out of the piston).
  • bleed during oil operation may result in a lack of lubrication conditions on the piston of the compressor, causing damage and higher friction over time.
  • typical rotary shaft type compressors ie, reciprocating type, rotary type, scroll type, screw type, etc.
  • vent holes on the rotating shaft which is usually used for pumping oil by centrifugal force.
  • vent holes in the shaft allow the refrigerant to escape and separate from the oil, which prevents vapor lockup and provides lubricating oil to the bearings and sliding surfaces as needed.
  • a rotary oil pump does not exist, and therefore, as the oil is delivered by the pump to a surface that requires lubricant (i.e., a piston sliding in a cylinder), it may be particularly difficult to remove refrigerant vapor from the oil.
  • a linear compressor having features for limiting friction or contact between the piston and the cylinder wall during the operation of the linear compressor would be useful. Additionally or alternatively, a linear compressor with features for cooling the lubricating oil of the linear compressor would be useful. Also additionally or alternatively, a linear compressor having features for preventing insufficient lubrication due to outgassing of refrigerant in the linear compressor would be useful.
  • a sealing system is provided.
  • the refrigeration system includes:
  • a linear compressor comprising: a housing extending from a first end to a second end in an axial direction, the housing including a cylinder assembly defining a cavity close to the second end; And a piston, the piston is slidably received in the chamber of the cylinder assembly; a shell, the shell defines an internal volume enclosing the linear compressor and the lubricating oil therein; a condenser, the condenser is connected downstream
  • the linear compressor is in fluid communication to receive the compressed refrigerant therefrom; an oil outlet pipe that extends through the shell to the housing of the linear compressor; and a heat exchanger that is connected to The internal volume is separated and is in fluid communication with the oil outlet pipe to receive lubricating oil from the linear compressor, wherein the housing further defines an oil reservoir, an oil discharge port, and a vent hole.
  • the oil reservoir Is arranged radially outward from the chamber of the cylinder assembly to selectively guide lubricating oil thereto, the oil discharge port extends from the oil reservoir to the oil outlet pipe, and the vent hole is connected to The oil discharge port fluidly extends from the oil reservoir to the internal volume in parallel.
  • a sealing system may include a linear compressor including a housing extending from a first end to a second end in the axial direction, the housing including a cavity defined close to the second end A cylinder assembly of the chamber; and a piston slidably received in the chamber of the cylinder assembly; a shell defining an internal volume with a sump, the shell enclosing the linear compressor and the lubrication therein Oil; and a condenser that is downstream in fluid communication with the linear compressor to receive compressed refrigerant therefrom; wherein the housing also defines an oil reservoir and a vent hole, the oil reservoir
  • the chamber of the cylinder assembly is arranged radially outward to selectively guide lubricating oil thereto, the vent hole extends from the oil reservoir to the internal volume through the second end, and wherein
  • the linear compressor further includes an oil-proof cover arranged at the second end of the housing in front of the vent hole to guide the lubricating oil from the vent hole to the downstream
  • the storage may include a linear compressor including a
  • Fig. 1 is a front view of a refrigerating appliance according to an exemplary embodiment of the present invention.
  • Fig. 2 is a schematic diagram of certain components of the refrigeration appliance according to the exemplary embodiment of Fig. 1 according to the present invention, with a corresponding exemplary oil cooling circuit.
  • Fig. 3 provides a cross-sectional view of a linear compressor according to an exemplary embodiment of the present invention.
  • FIG. 4 provides a cross-sectional view of the exemplary linear compressor of FIG. 3 according to the present invention, the cross-sectional view illustrating a flow east path.
  • FIG. 5 provides a side perspective cross-sectional view of a portion of the exemplary linear compressor of FIG. 3.
  • FIG. 6 provides a bottom perspective cross-sectional view of a portion of the exemplary linear compressor of FIG. 3.
  • upstream and downstream refer to the direction of relative flow of fluid in the fluid passage.
  • upstream refers to the direction of fluid flow
  • downstream refers to the direction of fluid flow.
  • or is generally intended to be inclusive (ie, "A or B” is intended to mean “A or B or both”).
  • Fig. 1 depicts a refrigeration appliance 10 including a sealed refrigeration system 60 (Fig. 2).
  • refrigeration appliance is used herein in a general sense to include any manner of refrigeration appliances, such as freezers, refrigerating/freezing combinations, and conventional refrigerators of any style or model.
  • the present invention is not limited to use in refrigeration appliances.
  • the subject matter can be used for any other suitable purpose, such as vapor compression in an air conditioner or air compression in an air compressor.
  • the refrigerating appliance 10 is depicted as an upright refrigerator having a box or outer shell 12 defining a plurality of internal refrigerating storage compartments.
  • the refrigerating appliance 10 includes an upper food preservation compartment 14 having a door 16 and a lower freezing compartment 18 having an upper drawer 20 and a lower drawer 22.
  • the drawers 20 and 22 are "pull-out" drawers because they can be moved in and out of the freezer compartment 18 manually on a suitable sliding mechanism.
  • FIG. 2 provides a schematic diagram of certain components of the refrigeration appliance 10, including the sealed refrigeration system 60 of the refrigeration appliance 10.
  • FIG. 2 provides an exemplary oil cooling circuit with a sealed refrigeration system 60 according to an exemplary embodiment of the present invention.
  • the exemplary oil cooling circuit of FIG. 2 may be modified or used in or with any suitable electrical appliance.
  • the exemplary oil cooling circuit of FIG. 2 may be used in or together with heat pump dryers, heat pump water heaters, air-conditioning appliances, and the like.
  • the machine room 10 of the refrigeration appliance 10 may contain components for performing a known vapor compression cycle for cooling air. These components include a compressor 64, a condenser 66, an expansion device 68, and an evaporator 70 connected in series and filled with refrigerant. As understood by those skilled in the art, the refrigeration system 60 may include additional components (for example, at least one additional evaporator, compressor, expansion device, or condenser). As an example, the refrigeration system 60 may include two evaporators.
  • the refrigerant usually flows into the compressor 64, and the dry work of the compressor is to increase the pressure of the refrigerant.
  • the compression of the refrigerant increases its temperature, which is lowered by passing the refrigerant through the condenser 66.
  • heat exchange with ambient air is performed to cool the refrigerant.
  • the condenser fan 72 is used to blow air through the condenser 66 to provide forced convection for faster and efficient heat exchange between the refrigerant in the condenser 66 and the surrounding air.
  • increasing the air flow through the condenser 66 can increase the efficiency of the condenser 66, for example, by improving the cooling of the refrigerant contained therein.
  • An expansion device (for example, a valve, capillary tube, or other restriction device) 68 receives the refrigerant from the condenser 66.
  • the refrigerant enters the evaporator 70 from the expansion device 68.
  • the pressure of the refrigerant drops. Due to the pressure drop or phase change of the refrigerant, the evaporator 70 is cooled relative to the compartments 14 and 18 of the refrigerating appliance 10.
  • cooling air is generated and the compartments 14 and 18 of the refrigerating appliance 10 are cooled.
  • the evaporator 70 is a kind of heat exchanger that transfers heat from the air passing through the evaporator 70 to the refrigerant flowing through the evaporator 70.
  • the vapor compression cycle components, related fans, and related compartments in the refrigeration circuit are sometimes referred to as an operable sealed refrigeration system that forces cold air through the compartments 14, 18 ( Figure 1).
  • the refrigeration system 60 described in FIG. 2 is provided by way of example only. Therefore, refrigeration systems using other configurations are also within the scope of the present invention.
  • an oil cooling circuit 200 is shown together with the refrigeration system 60.
  • the compressor 64 of the refrigeration system 60 may include or be disposed in a housing 302 (FIG. 3), which also retains lubricating oil therein.
  • the lubricating oil can assist in reducing the friction between sliding or moving parts of the compressor 64 during the operation. For example, when the piston slides in the cylinder to compress the refrigerant, the lubricating oil can reduce the friction between the piston of the compressor 64 and the cylinder, as discussed in more detail below.
  • an oil cooling circuit 200 is provided to assist in discharging heat from the lubricating oil. By cooling the lubricating oil, the efficiency of the compressor 64 can be improved. Thus, the oil cooling circuit 200 can help improve the efficiency of the compressor 64 by reducing the temperature of the lubricating oil in the compressor 64 (for example, relative to a compressor without the oil cooling circuit 200).
  • the oil cooling circuit 200 includes a heat exchanger 210 that may be separated from at least a portion of the compressor 64.
  • the lubricating oil pipe 220 extends between the compressor 64 and the heat exchanger 210.
  • the lubricating oil from the compressor 64 may flow to the heat exchanger 210 via the lubricating oil pipe 220.
  • the lubricating oil pipe 220 may include a supply pipe 222 and a return pipe 224.
  • the supply pipe 222 extends between the compressor 64 and the heat exchanger 210 and is configured to guide lubricating oil from the compressor 64 to the heat exchanger 210.
  • the return duct 224 extends between the heat exchanger 210 and the compressor 64 and is configured to guide lubricating oil from the heat exchanger 210 to the compressor 64.
  • the lubricating oil can dissipate heat to the ambient air around the heat exchanger 210.
  • the lubricating oil flows from the heat exchanger 210 via the lubricating oil pipe 220 back to the compressor 64.
  • the lubricating oil pipe 220 can circulate lubricating oil between the compressor 64 and the heat exchanger 210, and the heat exchanger 210 can lower the temperature of lubricating oil from the compressor 64 before returning the lubricating oil to the compressor 64.
  • the oil cooling circuit 200 can remove the lubricating oil from the compressor 64 via the lubricating oil pipe 220 after cooling the lubricating oil in the heat exchanger 210 and return the lubricating oil to the compressor 64 via the lubricating oil pipe 220.
  • the heat exchanger 210 is provided at or adjacent to the fan 72.
  • the heat exchanger 210 may be arranged and oriented such that the fan 72 pulls or pushes air through the heat exchanger 210 to provide forced convection between the lubricating oil in the heat exchanger 210 and the ambient air surrounding the refrigeration system 60 For faster and more efficient heat exchange.
  • the heat exchanger 210 may be arranged between the fan 72 and the condenser 66.
  • the heat exchanger 210 may be arranged downstream of the fan 72 and upstream of the condenser 66 relative to the air flow from the fan 72. In this way, the air from the fan 72 can exchange heat with the lubricating oil in the heat exchanger 210 before it exchanges heat with the refrigerant in the condenser 66.
  • the heat exchanger 210 is provided at or on the condenser 66.
  • the heat exchanger 210 may be installed on the condenser 66 such that the heat exchanger 210 and the condenser 66 conduct heat communication with each other.
  • the condenser 66 and the heat exchanger 210 can conduct heat exchange.
  • the heat exchanger 210 and the condenser 66 can provide heat exchange between the lubricating oil in the heat exchanger 210 and the refrigerant in the condenser 66.
  • the heat exchanger 210 may be a tube-to-tube heat exchanger 210 integrated in or on the condenser 66 (eg, part of the condenser 66).
  • the heat exchanger 210 may be welded or welded to the condenser 66.
  • the heat exchanger 210 is arranged on a part of the condenser 66 between the inlet and the outlet of the condenser 66.
  • the refrigerant may enter the condenser 66 at the inlet of the condenser 66 at a first temperature (for example, one hundred and fifty degrees Fahrenheit (150°F)), and the heat exchanger 210 may be disposed at the inlet of the condenser 66 On the downstream condenser 66, the refrigerant immediately upstream of the part where the heat exchanger 210 is installed in the condenser 66 may have a second temperature (for example, ninety degrees Fahrenheit (90°F)).
  • a first temperature for example, one hundred and fifty degrees Fahrenheit (150°F)
  • the heat exchanger 210 may be disposed at the inlet of the condenser 66
  • the refrigerant immediately upstream of the part where the heat exchanger 210 is installed in the condenser 66 may have a second temperature (for example, ninety degrees Fahrenheit (90°F)).
  • the heat exchanger 210 may also be provided on the condenser 66 upstream of the outlet of the condenser 66, so that the refrigerant immediately downstream of the portion where the heat exchanger 210 is installed in the condenser 66 may have a third temperature (for example, one hundred Fifty degrees Fahrenheit (105°F)), and the refrigerant may exit the condenser 66 at the outlet of the condenser 66 at a fourth temperature (eg, ninety degrees Fahrenheit (90°F)).
  • 105°F one hundred Fifty degrees Fahrenheit
  • the refrigerant in the condenser 66 may increase in temperature at the portion where the heat exchanger 210 is installed in the condenser 66, so as to cool the lubricating oil in the heat exchanger 210.
  • the portion of the condenser 66 downstream of the heat exchanger 210 may assist in discharging heat to the ambient air around the condenser 66.
  • the linear compressor 300 may operate to increase the pressure of the fluid within the chamber 312 of the linear compressor 300.
  • the linear compressor 300 can be used to compress any suitable fluid, such as a refrigerant.
  • the linear compressor 300 may be used in refrigeration appliances, such as the refrigeration appliance 10 (FIG. 1), and the linear compressor 300 may be used as the compressor 64 (FIG. 2).
  • the linear compressor 300 defines an axial direction A and a radial direction R.
  • the linear compressor 300 may be enclosed in an airtight or airtight shell 302.
  • the linear compressor 300 may be enclosed in the internal volume 303 defined by the shell 302.
  • the impermeable shell 302 hinders or prevents refrigerant or lubricating oil from leaking or overflowing the refrigeration system 60 ( Figure 2).
  • the linear compressor 300 includes a housing 308 that extends between a first end 304 and a second end 306 (e.g., along the axial direction A).
  • the housing 308 includes various relatively static or non-moving structural components of the linear compressor 300.
  • the housing 308 includes a cylinder assembly 310 that defines a cavity 312.
  • the cylinder assembly 310 is provided at or adjacent to the second end 306 of the housing 308.
  • the cavity 312 extends longitudinally along the axial direction A.
  • the motor of the housing 308 is mounted in the middle portion 314 (e.g., at the second end 306) to support the stator of the motor.
  • the stator may include an outer back iron 364 and a driving coil 366 sandwiched between the first end 304 and the second end 306.
  • the linear compressor 300 also includes one or more valves (eg, discharge valve assembly 320 at the end of the chamber 312) that allow refrigerant to enter and leave the chamber 312 during operation of the linear compressor 300.
  • the discharge valve assembly 320 is mounted to the housing 308 (e.g., at the second end 306).
  • the discharge valve assembly 320 may include a muffler housing 322, a valve head 324 and a valve spring 338.
  • the muffler housing 322 may include an end wall 326 and a cylindrical side wall 328.
  • the cylindrical side wall 328 is mounted to the end wall 326, and the cylindrical side wall 328 extends from the end wall 326 (for example, along the axial direction A) to the cylinder assembly 310 of the housing 308.
  • the refrigerant outlet pipe 330 may extend from the muffler housing 322 or through the muffler housing 322 and through the housing 302 (for example, to reach the condenser 66 shown in FIG. 2 or be in fluid communication with it) to provide a linear compressor
  • the refrigerant is selectively allowed to flow out of the discharge valve assembly 320 during the operation of 300.
  • the muffler housing 322 may be installed or fixed to the housing 308, and other components of the discharge valve assembly 320 may be arranged in the muffler housing 322.
  • the plate 332 of the muffler housing 322 at the distal end of the cylindrical side wall 328 may be provided at or on the cylinder assembly 310, and a seal (for example, an O-ring or gasket) may be connected to the cylinder assembly 310 Extend between the plates 332 of the muffler housing 322 (for example, along the axial direction A) so as to restrict fluid leakage at the axial gap between the housing 308 and the muffler housing 322.
  • Fasteners may extend through the plate 332 into the housing 308 to mount the muffler housing 322 to the housing 308.
  • the valve head 324 is disposed at or adjacent to the cavity 312 of the cylinder assembly 310.
  • the valve head 324 selectively covers a passage extending through the cylinder assembly 310 (for example, along the axial direction A). Such a channel may be continuous with the chamber 312.
  • the valve spring 338 is coupled to the muffler housing 322 and the valve head 324.
  • the valve spring 338 may be configured to urge the valve head 324 toward or against the cylinder assembly 310 (e.g., along the axial direction A).
  • a piston assembly 316 having a piston head 318 is slidably received in the cavity 312 of the cylinder assembly 310.
  • the piston assembly 316 can slide along the axial direction A in the chamber 312.
  • the piston head 318 compresses the refrigerant in the chamber 312.
  • the piston head 318 may slide in the chamber 312 from the top dead center position along the axial direction A toward the bottom dead center position (ie, the expansion stroke of the piston head 318).
  • the piston head 318 changes direction and slides back in the chamber 312 toward the top dead center position (ie, the compression stroke of the piston head 318).
  • the expansion valve assembly 320 may be opened.
  • the valve head 324 may be pushed away from the cylinder assembly 310, which allows the refrigerant to flow from the chamber 312 and through the discharge valve assembly 320 to the outlet refrigerant pipe 330.
  • the linear compressor 300 may include additional piston heads or additional chambers at the opposite end of the linear compressor 300 (eg, near the first end 304).
  • the linear compressor 300 may have multiple piston heads.
  • the linear compressor 300 includes an inner back iron assembly 352.
  • the inner back iron assembly 352 is arranged in the stator of the motor.
  • the outer back iron 364 or the drive coil 366 may extend around the inner back iron assembly 352 (for example, along the circumferential direction).
  • the inner back iron component 352 also has an outer surface.
  • At least one driving magnet 362 is mounted to the inner back iron assembly 352 (for example, installed at the outer surface of the inner back iron assembly 352).
  • the driving magnet 362 may face or be exposed to the driving coil 366.
  • the driving magnet 362 may be spaced apart from the driving coil 366 (for example, an air gap is spaced along the radial direction R).
  • an air gap can be defined between the opposing surfaces of the driving magnet 362 and the driving coil 366.
  • the driving magnet 362 can also be installed or fixed to the inner back iron assembly 352 so that the outer surface of the driving magnet 362 is substantially flush with the outer surface of the inner back iron assembly 352.
  • the driving magnet 362 can be inserted into the inner back iron assembly 352.
  • the magnetic field from the driving coil 366 may only pass through a single air gap between the outer back iron 364 and the inner back iron assembly 352, and the linear compressor 300 is relative to the driving magnet 362 Linear compressors with air gaps on both sides of the compressor may be more efficient.
  • the drive coil 366 may extend around the inner back iron assembly 352 (e.g., in the circumferential direction). Generally, during the operation of the driving coil 366, the driving coil 366 is operable to move the inner back iron assembly 352 along the axial direction A.
  • a current source (not shown) can induce current in the drive coil 366 to generate a magnetic field that attracts the drive magnet 362 and pushes the piston assembly 316 to move along the axial direction A to compress the chamber as described above 312 refrigerant within.
  • the magnetic field of the driving coil 366 can attract the driving magnet 362 so as to move the inner back iron assembly 352 and the piston head 318 along the axial direction A.
  • the driving coil 366 can slide the piston assembly 316 between the top dead center position and the bottom dead center position.
  • the linear compressor 300 includes various components for allowing and/or regulating the operation of the linear compressor 300.
  • the linear compressor 300 includes a controller configured to regulate the operation of the linear compressor 300.
  • the controller is in operable communication with the motor (for example, the drive coil 366 of the motor), for example.
  • the controller can selectively activate the drive coil 366, for example, by supplying current to the drive coil 366, so as to compress the refrigerant with the piston assembly 316 as described above.
  • the controller includes a memory and one or more processing devices, such as microprocessors, CPUs and the like, such as general-purpose or special-purpose microprocessors, which are operable to execute programming instructions related to the operation of the linear compressor 300 or Micro control code.
  • the memory may mean random access memory such as DRAM or read-only memory such as ROM or FLASH.
  • the processor executes programming instructions stored in the memory.
  • the memory may be a separate component from the processor, or may be included on a board within the processor.
  • the controller can be constructed without using a microprocessor (for example, using a combination of discrete analog or digital logic circuits; such as switches, amplifiers, integrators, comparators, flip-flops, AND gates, etc.) Perform control functions instead of relying on software.
  • the linear compressor 300 also includes one or more spring assemblies 340, 342 mounted to the housing 308.
  • a pair of spring components ie, the first spring component 340 and the second spring component 342 constrain the drive coil 366 along the axial direction A.
  • the first spring assembly 340 is arranged close to the first end 304 and the second spring assembly 342 is arranged close to the second end 306.
  • each spring assembly 340 and 342 includes one or more planar springs mounted or fixed to each other.
  • the planar springs may be installed or fixed to each other such that the respective planar springs of the corresponding assembly 340 or 342 are spaced apart from each other (for example, along the axial direction A).
  • the pair of spring assemblies 340, 342 assist in coupling the inner back iron assembly 352 to the housing 308.
  • the first outer set of fasteners 344 eg, bolts, nuts, clamps, lugs, welds, solder, etc.
  • the first inner group of fasteners 346 radially inward from the first outer group of fasteners 344 for example, along the vertical radial direction R close to the axial direction A
  • the first spring assembly 340 is fixed to the inner back iron assembly 352 at the portion 304.
  • a second inner group of fasteners 350 radially inward from the first outer group of fasteners 344 is at the second end 306
  • the second spring assembly 342 is fixed to the inner back iron assembly 352 at a location.
  • the spring assemblies 340, 342 support the inner back iron assembly 352.
  • the inner back iron assembly 352 is suspended in the stator or motor of the linear compressor 300 by the spring assemblies 340, 342, so that the movement of the inner back iron assembly 352 along the radial direction R is prevented or restricted, while the movement along the axial direction A The movement is relatively unimpeded.
  • the spring assembly 342 may be substantially harder along the radial direction R than along the axial direction A.
  • the spring assemblies 340, 342 can (for example, along the radial direction R) assist in maintaining the air gap between the driving magnet 362 and the driving coil 366 The uniformity.
  • the spring assemblies 340 and 342 can also assist in preventing the side pulling force of the motor from being transmitted to the piston assembly 316 and reacting as friction loss in the cylinder assembly 310.
  • the inner back iron assembly 352 includes an outer cylinder 354 and a sleeve 360.
  • the sleeve 360 is provided on or on the inner surface of the outer cylinder 354.
  • the first interference fit between the outer cylinder 354 and the sleeve 360 can couple or fix the outer cylinder 354 and the sleeve 360 together.
  • the sleeve 360 may be welded, glued, fastened, or connected to the outer cylinder 354 via any other suitable mechanism or method.
  • the sleeve 360 extends around the axial direction A (for example, along the circumferential direction).
  • the first interference fit between the outer cylinder 354 and the sleeve 360 may couple or fix the outer cylinder 354 and the sleeve 360 together.
  • the sleeve 360 is welded, glued, fastened, or connected to the outer cylinder 354 via any other suitable mechanism or method.
  • the sleeve 360 extends within the outer cylinder 354 (for example, along the axial direction A) between the first end 304 and the second end 306 of the inner back iron assembly 352,130.
  • the first spring assembly 340 and the second spring assembly 342 are mounted to the sleeve 360 (for example, using inner fasteners 346 and 350).
  • the outer cylinder 354 may be constructed of or constructed of any suitable material.
  • the outer cylinder 354 may be constructed from or with multiple (e.g., ferromagnetic) laminations.
  • the laminations are distributed along the circumferential direction so as to form an outer cylinder 354, and are mounted to each other or fixed together (for example, with rings pressed to both ends of the laminations).
  • the outer cylinder 354 defines a recess extending from the outer surface of the outer cylinder 354 inward (for example, along the radial direction R).
  • the driving magnet 362 is disposed in a recess on the outer cylinder 354 (for example, so that the driving magnet 362 is inserted into the outer cylinder 354).
  • the piston flexible mount 368 is mounted to the inner back iron assembly 352 and extends through the inner back iron assembly 352.
  • the piston flexible mounting member 368 is mounted to the inner back iron assembly 352 via the sleeve 360 and the spring assemblies 340 and 342.
  • the flexible piston mount 368 may be coupled (eg, threaded) to the sleeve 360 to install or fix the flexible piston mount 368 to the inner back iron assembly 352.
  • the coupling 370 extends between the piston flexible mount 368 and the piston assembly 316 (e.g., along the axial direction A).
  • the coupling 370 connects the inner back iron assembly 352 and the piston assembly 316 so that the movement of the inner back iron assembly 352 (for example, along the axial direction A) is transmitted to the piston assembly 316.
  • the coupling 370 may extend through the drive coil 366 (e.g., along the axial direction A).
  • the piston flexible mount 368 defines at least one channel 369.
  • the passage 369 of the piston flexible mount 368 extends through the piston flexible mount 368 (e.g., along the axial direction A).
  • a fluid flow such as air or refrigerant may pass through the flexible piston mount 368 via the passage 369 of the flexible piston mount 368.
  • one or more refrigerant inlet pipes 331 may extend through the shell 302 to return refrigerant from the evaporator 70 (or another part of the sealing system 60) (FIG. 2) to the compressor 300.
  • the piston head 318 also defines at least one opening (eg, selectively covered by the head valve).
  • the opening of the piston head 318 extends through the piston head 318.
  • the linear compressor 300 includes features for guiding oil through the linear compressor 300 and the oil cooling circuit 200 (FIG. 2).
  • One or more oil inlet pipes 380 or oil outlet pipes 382 may extend through the shell 302 to direct oil to/from the oil cooling circuit 200.
  • the oil inlet pipe 380 may be coupled to the return pipe 224 of the oil cooling circuit 200 (FIG. 2).
  • the lubricating oil can flow from the heat exchanger 210 to the linear compressor 300 via the oil inlet pipe 380.
  • the oil inlet pipe 380 may be provided at or adjacent to the storage tank 376.
  • the oil cooling circuit 200 can cool the lubricating oil from the linear compressor 300. After this cooling, the lubricating oil is returned to the linear compressor 300 via the oil inlet pipe 380.
  • the lubricating oil in the oil inlet pipe 380 can be relatively cool, and the lubricating oil in the storage tank 376 is assisted in cooling.
  • the linear compressor 300 includes a pump 372.
  • the pump 372 may be provided at or adjacent to the sump 376 of the housing 302 (e.g., within the pump housing 374).
  • the sump 376 corresponds to a part of the shell 302 at the bottom of the shell 302 or adjacent thereto.
  • a certain volume of lubricating oil 377 in the shell 302 can be collected in the sump 376 (for example, because the lubricating oil is denser than the refrigerant in the shell 302).
  • the pump 372 can pump lubricating oil from the volume 377 in the storage tank 376 to the pump 372 via the supply pipe 378 extending from the pump 372 to the storage tank 376.
  • a pair of check valves in the pump housing 374 at opposite ends of the pump 372 may selectively allow as the pump 372 oscillates within the pump housing 374 (e.g., as excited by the oscillation of the housing 308) The oil flows to/releases the oil from the pump housing 374. Additionally or alternatively, when the pump 372 actively oscillates, the volume of the lubricating oil 377 may be maintained at a predetermined level (for example, even in the case of the vertical midpoint of the pump 372).
  • the internal pipe 384 may extend from the pump 372 (eg, the pump housing 374) to an oil reservoir 386 defined within the housing 308.
  • the oil reservoir 386 is disposed radially outward from the cavity 312 of the cylinder assembly 310.
  • the oil reservoir 386 may be defined as extending in the circumferential direction (eg, around the axial direction A) as an annular chamber surrounding the chamber 312 of the cylinder assembly 310.
  • lubricating oil may be selectively directed from the oil reservoir 386 to the cylinder assembly 310.
  • one or more channels may extend from the oil reservoir 386 to the cavity 312.
  • Such a radial passage may terminate in a part of the sliding path of the piston head 318 (for example, between the top dead center and the bottom dead center with respect to the axial direction A).
  • the radial passage terminates in a groove 388 defined in the cavity 312 of the cylinder assembly 310.
  • the groove 388 can be opened to the cavity 312.
  • Lubricating oil from the oil reservoir 386 may flow into the cavity 312 of the cylinder assembly 310 (for example, via a radial passage to the groove 388) in order to lubricate the movement of the piston assembly 316 within the cavity 312 of the cylinder assembly 310.
  • the housing 308 may define an oil drain 390 together with the cavity 312 and the oil reservoir 386.
  • the oil drain 390 extends from the oil reservoir 386.
  • the oil drain 390 may extend outward from the oil reservoir 386 through the housing 308.
  • the oil drain 390 may be in fluid communication with the oil reservoir 386.
  • at least a portion of the lubricating oil that is pushed to the oil reservoir 386 may flow to the oil drain 390 (eg, as energized by the pump 372).
  • the lubricating oil may exit the housing 308 (usually with the linear compressor 300) from the oil drain 390.
  • the oil drain 390 is connected to the oil outlet pipe 382 in fluid communication.
  • the pump 372 can generally push the lubricating oil from the internal volume 303 to the oil outlet pipe 382 through the housing 308.
  • the oil outlet pipe 382 may be coupled to the supply pipe 222 of the oil cooling circuit 200 (FIG. 2).
  • the pump 372 can push the lubricating oil from the storage tank 376 into the supply pipe 222.
  • the pump 372 can supply lubricating oil to the oil cooling circuit 200 in order to cool the lubricating oil from the linear compressor 300, as described above.
  • the housing 308 also defines a vent 392.
  • the vent hole 392 extends from the oil reservoir 386 through to the internal volume 303.
  • the vent hole 392 is defined in fluid parallel with the oil discharge port 390.
  • the fluid is separately guided through the vent hole 392 and the oil discharge port 390.
  • the size of the vent hole 392 may be configured to restrict fluid more than the drain port 390.
  • the minimum diameter of the vent hole 392 may still be smaller than the minimum diameter of the oil discharge port 390.
  • the minimum diameter of the vent hole 392 may be less than two millimeters, and the minimum diameter of the oil discharge port is greater than four millimeters.
  • the length of the vent hole 392 can also be shorter than the length of the oil discharge port 390.
  • a larger volume of lubricating oil can be excited through the drain 390 than the vent 392.
  • gas for example, generated during deflation in the oil reservoir 386
  • the vent hole 392 may be defined at the upper portion of the housing 308 (for example, the upper end of the oil reservoir 386). Additionally or alternatively, the vent 392 may extend above the discharge valve assembly 320 (for example, parallel to the axial direction A). The vent hole 392 may also be located below the oil discharge port 390 (for example, V is lower than the oil discharge port 390 in the vertical direction). In some embodiments, the vent 392 is located at the second end 306 of the housing 308. The fluid from the vent hole 392 may be directed forward into the internal volume 303.
  • an oil-proof cover 394 is provided in front of the vent 392.
  • the oil shield 394 may be disposed on the housing 308 (e.g., at the second end 306). Between the oil-proof cover 394 and, for example, the muffler housing 322, a drip channel may be defined.
  • the oil shield 394 may extend outwardly from the housing 308 to the curved or inwardly extending wall portion 396.
  • the oil-proof cover 394 may extend around a portion of the muffler housing 322.
  • the oil-proof cover 394 may extend 180° along the top side of the muffler housing 322.
  • the lubricating oil discharged through the vent hole 392 can be guided downward to the storage tank 376.
  • the position or shape of the oil-proof cover 394 can prevent the lubricating oil from hitting the shell 302 (for example, hitting at a high speed, otherwise it may cause the lubricating oil in the internal volume 303 to atomize).

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Computer Hardware Design (AREA)
  • Compressor (AREA)

Abstract

一种制冷系统,包括线性压缩机(64)、壳(302)以及冷凝器(66),其中线性压缩机(64)可以包括外壳(308)和活塞(316),外壳(308)可以沿着轴向从第一端部(304)延伸到第二端部(306),外壳(308)包括限定接近第二端部(306)的腔室(312)的气缸组件(310),活塞(316)可以滑动地接收在气缸组件(310)的腔室(312)内,外壳(308)还限定储油器(386)、排油口(390)以及通气孔(392),壳(302)限定封闭线性压缩机(64)和其中的润滑油的内部容积(303),冷凝器(66)在下游与线性压缩机(64)流体联通,以从其接收压缩的制冷剂。该线性压缩机能够在运行期间限制活塞与气缸壁之间的摩擦或接触。

Description

用于制冷电器的线性压缩机和制冷系统 技术领域
本发明总体涉及一种用于制冷电器的压缩机,诸如冰箱的压缩机。
背景技术
某些制冷电器包括用于冷却制冷电器的制冷间室的制冷系统。制冷系统通常包括压缩机,该压缩机在制冷系统的运行期间生成压缩的制冷剂。压缩的制冷剂流到蒸发器,在该蒸发器处,制冷间室与制冷剂之间的热交换冷却制冷间室和位于其中的食品。
近来,某些制冷电器包括用于压缩制冷剂的线性压缩机。线性压缩机通常包括活塞和驱动线圈。驱动线圈生成用于使活塞在腔室内向前或向后滑动的力。在活塞在腔室内运动期间,活塞压缩制冷剂。然而,如果活塞在腔室内未适当地对齐,则活塞与腔室壁之间的摩擦可能对线性压缩机的操作产生不利的影响。特别地,由于活塞在腔室壁上的摩擦而产生的摩擦损失可能会对制冷电器的效率造成不利的影响。这种摩擦还可能减少活塞与腔室壁之间的热润滑油,从而降低润滑油的有效性。
通常除了摩擦问题,线性压缩机可能具有由于制冷剂与润滑油的混合而引起的问题。例如,线性压缩机内的制冷剂放气可能防止润滑油根据需要流动(例如,流向/或流出活塞)。具体地,在压缩机的运行期间,油运行期间的放气可能导致在压缩机的活塞上缺乏润滑条件,随着时间的流逝而造成损坏并导致更高的摩擦。为了解决该问题,典型的旋转轴型压缩机(即往复式、旋转式、涡旋式、螺杆式等)在转轴上包括通气孔,该转轴通常用于利用离心力来抽油。轴中的这些通气孔可以使制冷剂逸出并与机油分离,这防止蒸气锁定,并根据需要向轴承和滑动表面提供润滑油。在线性压缩机中,不存在这种旋转油泵,由此,随着油被 泵输送到需要润滑剂的表面(即,在气缸中滑动的活塞)时,从油去除制冷剂蒸气可能特别困难。
因此,一种具有用于在线性压缩机的运行期间限制活塞与气缸壁之间的摩擦或接触的特征的线性压缩机将是有用的。另外或可选地,一种具有用于冷却线性压缩机的润滑油的特征的线性压缩机将是有用的。同样另外或可选地,一种具有用于防止由于线性压缩机内的制冷剂的放气引起的润滑不足的特征的线性压缩机将是有用的。
发明内容
本发明的各个方面以及优点将会在下文的描述中进行阐述,或者是通过描述可以显而易见的,或者是可以通过实施本发明而学到。
在本发明的一个示例性方面,提供了一种密封系统。该制冷系统包括:
线性压缩机,该线性压缩机包括:外壳,该外壳沿着轴向从第一端部延伸到第二端部,所述外壳包括限定有接近所述第二端部的腔室的气缸组件;和活塞,该活塞可滑动地接收在所述气缸组件的所述腔室内;壳,该壳限定封闭所述线性压缩机和其中的润滑油的内部容积;冷凝器,该冷凝器在下游与所述线性压缩机流体连通,以从其接收压缩的制冷剂;出油管道,该出油管道通过所述壳延伸到所述线性压缩机的所述外壳;以及热交换器,该热交换器与所述内部容积隔开,与所述出油管道流体连通,以从所述线性压缩机接收润滑油,其中,所述外壳还限定储油器、排油口以及通气孔,所述储油器从所述气缸组件的所述腔室径向向外设置,以向其选择性地引导润滑油,所述排油口从所述储油器延伸到所述出油管道,所述通气孔与所述排油口流体平行地从所述储油器延伸到所述内部容积。
在本发明的另一个示例性方面,提供了一种密封系统。该密封系统可以包括线性压缩机,该线性压缩机包括:外壳,该外壳沿着轴向从第 一端部延伸到第二端部,所述外壳包括限定有接近所述第二端部的腔室的气缸组件;和活塞,该活塞可滑动地接收在所述气缸组件的所述腔室内;壳,该壳限定具有贮槽的内部容积,所述壳封闭所述线性压缩机和其中的润滑油;以及冷凝器,该冷凝器在下游与所述线性压缩机流体连通,以从其接收压缩的制冷剂;其中,所述外壳还限定储油器和通气孔,所述储油器从所述气缸组件的所述腔室径向向外设置,以向其选择性地引导润滑油,所述通气孔通过所述第二端部从所述储油器延伸到所述内部容积,并且其中,所述线性压缩机还包括防油罩,该防油罩布置在所述外壳的所述通气孔前面的所述第二端部处,以将润滑油从所述通气孔向下游引导到所述壳的所述贮槽。
参照下文的描述以及所附权利要求,本发明的这些和其它的特征、方面以及优点将变得更容易理解。结合在本说明书中并且构成本说明书一部分的附图显示了本发明的实施方式并且与描述一起用于对本发明的原理进行解释。
附图说明
参照附图,说明书面向本领域普通技术人员中阐述了本发明的完整公开,这种公开使得本领域普通技术人员能够实现本发明,包括本发明的最佳实施例。
图1是根据本发明的示例性实施方式的制冷电器的主视图。
图2是根据本发明的图1的示例性实施方式的制冷电器的某些部件的示意图,具有相应的示例性油冷却回路。
图3提供了根据本发明的示例性实施方式的线性压缩机的剖视图。
图4提供了根据本发明的图3的示例性线性压缩机的剖视图,该剖视图例示了流东路径。
图5提供了图3的示例性线性压缩机的一部分的侧面立体剖视图。
图6提供了图3的示例性线性压缩机的一部分的底部立体剖视图。
具体实施方式
现在将详细地参照本发明的实施方式,其中的一个或多个示例示于附图中。每个示例都以对发明进行解释的方式给出,并不对本发明构成限制。实际上,对于本领域技术人员而言显而易见的是,能够在不偏离本发明的范围的前提下对本发明进行多种改型和变型。例如,作为一个实施方式的一部分示出或者进行描述的特征能够用于另一个实施方式,从而产生又一个实施方式。因此,期望的是,本发明覆盖落入所附权利要求及其等同形式的范围内的这些修改以及变型。
如本文所用的,术语“第一”、“第二”和“第三”可以互换使用以将一个部件与另一个部件区分开,并且这些术语并不旨在表示各个部件的位置或重要性。术语“上游”和“下游”是指相对于流体通路中的流体相对流动的方向。例如,“上游”是指流体流动的来向,而“下游”是指流体流动的去向。术语“或”通常旨在是包括的(即,“A或B”旨在意指“A或B或两者”)。
现在转向附图,图1描述了包含有密封制冷系统60(图2)的制冷电器10。应当理解,术语“制冷电器”在本文中以一般意义用于包含任意方式的制冷电器,诸如冰柜、冷藏/冷冻组合、以及任意样式或型号的常规冰箱。另外,应当理解,本发明不限于用于制冷电器中。由此,本主题可以用于任意其他合适的目的,诸如空调装置内的蒸气压缩或空气压缩机内的空气压缩。
在图1所示的示例性实施方式中,制冷电器10被描绘为具有定义了多个内部制冷储藏室的箱体或外壳12的直立式冰箱。特别地,制冷电器10包括具有门体16的上食物保鲜室14和具有上抽屉20和下抽屉22的下冷冻室18。抽屉20和22是“拉出式”抽屉,因为它们可以在合适的滑动机构上手动地移入和移出冷冻室18。
图2提供了制冷电器10的某些部件的示意图,包括制冷电器10的 密封制冷系统60。特别地,图2提供了根据本发明的示例性实施方式的具有密封制冷系统60的示例性油冷却回路。应当理解,除非另有说明,否则在可选示例性实施方式中,图2的示例性油冷却回路可以被修改或在任何合适的电器中使用或与其一起使用。例如,图2的示例性油冷却回路可以在热泵干燥器、热泵热水器、空调电器等中使用或与其一起使用。
制冷电器10的机械室10可以包含用于执行已知的用于冷却空气的蒸气压缩循环的部件。这些部件包括串联连接并填充有制冷剂的压缩机64、冷凝器66、膨胀装置68以及蒸发器70。如本领域技术人员理解的,制冷系统60可以包括额外部件(例如,至少一个额外的蒸发器、压缩机、膨胀装置或冷凝器)。作为示例,制冷系统60可以包括两个蒸发器。
在制冷系统60内,制冷剂通常流入压缩机64中,该压缩机的干工作是增加制冷剂的压力。对制冷剂的压缩使其温度升高,该温度通过使制冷剂穿过冷凝器66来降低。在冷凝器66内,进行与周围空气的热交换,以便冷却制冷剂。使用冷凝器风扇72来将空气吹过冷凝器66,以便提供强制对流,用于冷凝器66内的制冷剂与周围空气之间进行更快且高效的热交换。由此,如本领域技术人员所知的,增大穿过冷凝器66的气流例如通过改善其中所含制冷剂的冷却可以来提高冷凝器66的效率。
膨胀装置(例如,阀、毛细管或其他限制装置)68接收来自冷凝器66的制冷剂。制冷剂从膨胀装置68进入蒸发器70。在离开膨胀装置68并进入蒸发器70时,制冷剂的压力下降。由于制冷剂的压降或相变,蒸发器70相对于制冷电器10的间室14和18是冷却的。由此,产生冷却空气并且对制冷电器10的间室14和18进行制冷。由此,蒸发器70是一种热交换器,该热交换器将热量从经过蒸发器70的空气传递到流过蒸发器70的制冷剂。
总的来说,制冷回路中的蒸汽压缩循环部件、相关风扇以及相关间室有时被称为为迫使冷空气穿过间室14、18(图1)的可操作的密封制 冷系统。图2中描述的制冷系统60仅以示例的方式来提供。由此,使用其他构造的制冷系统也在本发明的范围内。
在一些实施方式中,与制冷系统60一起示出了根据本发明的示例性实施方式的油冷却回路200。制冷系统60的压缩机64可以包括或设置在壳302(图3)内,该壳也将润滑油保持在其中。在压缩机64的运行期间,润滑油可以辅助运行期间减小压缩机64的滑动或移动部件之间的摩擦。例如,当活塞在气缸内滑动以压缩制冷剂时,润滑油可以减小压缩机64的活塞与气缸之间的摩擦,如下面更详细地讨论的。
在压缩机64的运行期间,润滑油的温度可能升高。由此,设置了油冷却回路200来辅助排出来自润滑油的热量。通过冷却润滑油,可以提高压缩机64的效率。由此,油冷却回路200可以通过降低压缩机64内的润滑油的温度来帮助提高压缩机64的效率(例如,相对于没有油冷却回路200的压缩机)。
油冷却回路200包括可以与压缩机64的至少一部分隔开的热交换器210。润滑油管道220在压缩机64与热交换器210之间延伸。来自压缩机64的润滑油可以经由润滑油管道220流到热交换器210。如图2所示,润滑油管道220可以包括供应管道222和返回管道224。供应管道222在压缩机64与热交换器210之间延伸,并且被构造为将润滑油从压缩机64引导到热交换器210。相反,返回导管224在热交换器210与压缩机64之间延伸,并且被构造为将润滑油从热交换器210引导到压缩机64。
在热交换器210内,润滑油可以将热量排出到热交换器210周围的环境空气。润滑油从热交换器210经由润滑油管道220流回到压缩机64。这样,润滑油管道220可以使润滑油在压缩机64与热交换器210之间循环,并且热交换器210可以在将润滑油返回到压缩机64之前降低来自压缩机64的润滑油的温度。由此,油冷却回路200可以在热交换器210中冷却润滑油之后,经由润滑油管道220从压缩机64去除润滑油,并且经由润滑油管道220将润滑油返回到压缩机64。
在可选的实施方式中,热交换器210设置在风扇72处或与风扇72相邻。例如,热交换器210可以被设置并定向为使得风扇72拉动或推动空气穿过热交换器210,以便提供强制对流,以在热交换器210内的润滑油与围绕制冷系统60的环境空气之间进行更快速且高效的热交换。在某些示例性实施方式中,热交换器210可以布置在风扇72与冷凝器66之间。由此,在某些示例性实施方式中,相对于来自风扇72的空气流,热交换器210可以布置在风扇72的下游和冷凝器66的上游。这样,来自风扇72的空气可以在与冷凝器66中的制冷剂进行热交换之前与热交换器210中的润滑油进行热交换。
在另外或可选的实施方式中,热交换器210设置在冷凝器66处或冷凝器66上。例如,热交换器210可以安装到冷凝器66上,使得热交换器210和冷凝器66彼此传导热连通。由此,冷凝器66和热交换器210可以传导地换热。这样,热交换器210和冷凝器66可以提供热交换器210内的润滑油与冷凝器66内的制冷剂之间的热交换。在某些示例性实施方式中,热交换器210可以是集成在冷凝器66内或之上(例如,冷凝器66的一部分)的管对管热交换器210。例如,热交换器210可以被焊接或焊接到冷凝器66上。在可选实施方式中,热交换器210布置在冷凝器66的一部分上,该部分在冷凝器66的入口与出口之间。例如,制冷剂可以在第一温度(例如,一百五十华氏度(150°F))下在冷凝器66的入口处进入冷凝器66,并且热交换器210可以设置在冷凝器66的入口下游的冷凝器66上,使得紧接在冷凝器66中安装热交换器210的部分的上游的制冷剂可以具有第二温度(例如,九十华氏度(90°F))。热交换器210也可以设置在冷凝器66的出口上游的冷凝器66上,使得紧接在冷凝器66中安装热交换器210的部分的下游的制冷剂可以具有第三温度(例如,一百五十华氏度(105°F)),并且制冷剂可以在第四温度(例如,九十华氏度(90°F))下在冷凝器66的出口处离开冷凝器66。由此,在压缩机64的运行期间,冷凝器66内的制冷剂可以在冷凝器66中安装 热交换器210的部分处的温度升高,以便冷却热交换器210内的润滑油。然而,冷凝器66中在热交换器210下游的部分可以辅助将热量排出到冷凝器66周围的环境空气。
现在转向图3至图6,提供了根据本发明的示例性实施方式的线性压缩机300的各种剖视图。如下面更详细讨论的,线性压缩机300可操作为增大线性压缩机300的腔室312内的流体的压力。线性压缩机300可以用于压缩任意合适的流体,诸如制冷剂。特别地,线性压缩机300可以用于制冷电器中,诸如制冷电器10(图1),线性压缩机300可以用作压缩机64(图2)。如在图3中可以看到的,线性压缩机300限定轴向A和径向R。线性压缩机300可以被封闭在不透气或气密的壳302内。换言之,线性压缩机300可以被封闭在由壳302限定的内部容积303内。当组装时,不透气壳302阻碍或防止制冷剂或润滑油泄漏或溢出制冷系统60(图2)。
线性压缩机300包括外壳308,该外壳在第一端部304与第二端部306之间延伸(例如沿着轴向A)。外壳308包括线性压缩机300的各种相对静止或不移动的结构部件。特别地,外壳308包括限定腔室312的气缸组件310。气缸组件310设置在外壳308的第二端部306处或与其相邻。腔室312沿着轴向A纵向延伸。
在一些实施方式中,外壳308的电机安装在中间部分314(例如,在第二端部306处)支撑电机的定子。如图所示,定子可以包括夹在第一端部304与第二端部306之间的外背铁364和驱动线圈366。线性压缩机300还包括一个或多个阀(例如,在腔室312的端处的排出阀组件320),这些阀允许制冷剂在线性压缩机300的运行期间进入和离开腔室312。
在一些实施方式中,排出阀组件320被安装到外壳308(例如,在第二端部306处)。排出阀组件320可以包括消音器壳体322、阀头324以及阀弹簧338。
消音器壳体322可以包括端壁326和圆柱形侧壁328。圆柱形侧壁328安装到端壁326,并且圆柱形侧壁328从端壁326(例如,沿着轴向A)延伸到外壳308的气缸组件310。出制冷剂管道330可以从消音器壳体322延伸或穿过消音器壳体322并穿过壳302延伸(例如,到达图2所示的冷凝器66或与其流体连通),以在线性压缩机300的运行期间选择性地允许制冷剂从排出阀组件320流出。
消音器壳体322可以安装或固定到外壳308上,并且排出阀组件320的其他部件可以布置在消音器壳体322内。例如,在圆柱形侧壁328的远端处的消音器壳体322的板332可以设置在气缸组件310处或上,并且密封件(例如,O形环或垫圈)可以在气缸组件310与消音器壳体322的板332之间延伸(例如,沿着轴向A),以便限制流体在外壳308与消音器壳体322之间的轴向间隙处的泄漏。紧固件可以穿过板332延伸到外壳308中,以将消音器壳体322安装到外壳308。
阀头324设置在气缸组件310的腔室312处或与其相邻。阀头324选择性地覆盖延伸通过气缸组件310的通道(例如,沿着轴向A)。这种通道可以与腔室312连续。阀弹簧338联接至消音器壳体322和阀头324。阀弹簧338可以被构造为推动阀头324朝向或抵靠气缸组件310(例如,沿着轴向A)。
具有活塞头318的活塞组件316可滑动地接收在气缸组件310的腔室312内。特别地,活塞组件316可在腔室312内沿着轴向A滑动。在活塞头318在腔室312内的滑动期间,活塞头318压缩腔室312内的制冷剂。作为示例,活塞头318可以从上止点位置沿着轴向A朝向下止点位置在腔室312内滑动(即,活塞头318的膨胀行程)。当活塞头318到达下止点位置时,活塞头318改变方向并朝向上止点位置在腔室312中滑动返回(即,活塞头318的压缩行程)。随着或紧接在活塞头318到达上止点位置之前,膨胀阀组件320可以打开。比如,阀头324可以被推离气缸组件310,这允许制冷剂从腔室312并通过排出阀组件320流到 出制冷剂管道330。
应当理解,线性压缩机300可以在线性压缩机300的相对端处(例如,接近第一端部304)包括额外的活塞头或额外的腔室。由此,在可选的示例性实施方式中,线性压缩机300可以具有多个活塞头。
在某些实施方式中,线性压缩机300包括内背铁组件352。内背铁组件352设置在电机的定子中。特别地,外背铁364或驱动线圈366可以围绕内背铁组件352延伸(例如,沿着周向)。内背铁组件352还具有外表面。至少一个驱动磁铁362安装到内背铁组件352(例如,安装在内背铁组件352的外表面处)。驱动磁铁362可以面向或暴露于驱动线圈366。特别地,驱动磁铁362可以与驱动线圈366隔开(例如,沿着径向R隔开气隙)。由此,可以在驱动磁铁362与驱动线圈366的相对表面之间限定气隙。驱动磁铁362也可以安装或固定到内背铁组件352,使得驱动磁铁362的外表面与内背铁组件352的外表面基本上齐平。由此,驱动磁铁362可以插入在内背铁组件352内。这样,在线性压缩机300的运行期间,来自驱动线圈366的磁场可能必须仅穿过外背铁364与内背铁组件352之间的单个气隙,并且线性压缩机300相对于在驱动磁铁362的两侧上具有气隙的线性压缩机可能更高效。
如在图3中可以看到的,驱动线圈366可以围绕内背铁组件352延伸(例如,沿着周向)。通常,在驱动线圈366的运行期间,驱动线圈366可操作为使内背铁组件352沿着轴向A移动。作为示例,电流源(未示出)可以在驱动线圈366中感应出电流,以生成磁场,该磁场吸引驱动磁铁362并推动活塞组件316沿着轴向A移动,以便如上所述地压缩腔室312内的制冷剂。特别地,在驱动线圈366的运行期间,驱动线圈366的磁场可以吸引驱动磁铁362,以便使内背铁组件352和活塞头318沿着轴向A移动。由此,在驱动线圈366的运行期间,驱动线圈366可以使活塞组件316在上止点位置与下止点位置之间滑动。
在可选实施方式中,线性压缩机300包括用于允许和/或调节线性压 缩机300的操作的各种部件。特别地,线性压缩机300包括被配置为调节线性压缩机300的操作的控制器。控制器与电机(例如,电机的驱动线圈366)例如可操作地通信。由此,控制器可以例如通过向驱动线圈366供应电流来选择性地启动驱动线圈366,以便如上所述地用活塞组件316压缩制冷剂。
控制器包括存储器和一个或多个处理装置,诸如微处理器、CPU等类似装置,诸如通用或专用微处理器,该微处理器可操作为执行与线性压缩机300的操作相关的编程指令或微控制代码。存储器可以表示诸如DRAM的随机存取存储器或诸如ROM或FLASH的只读存储器。处理器执行存储在存储器中的编程指令。存储器可以是与处理器分开的部件,或者可以包括在处理器内的板上。可选地,控制器可以在不使用微处理器的情况下(例如,使用离散的模拟或数字逻辑电路的组合;诸如开关、放大器、积分器、比较器、触发器、与门等)构建为执行控制功能,而不是依靠软件。
线性压缩机300还包括安装到外壳308的一个或多个弹簧组件340、342。在某些实施方式中,一对弹簧组件(即,第一弹簧组件340和第二弹簧组件342)沿着轴向A限制驱动线圈366。换言之,第一弹簧组件340设置为接近第一端部304,并且第二弹簧组件342设置为接近第二端部306。
在一些实施方式中,各个弹簧组件340和342包括一个或多个安装或固定到彼此的平面弹簧。特别地,平面弹簧可以安装或固定到彼此,使得对应组件340或342的各个平面弹簧彼此隔开(例如,沿着轴向A)。
通常,该对弹簧组件340、342辅助将内背铁组件352联接至外壳308。在一些这种实施方式中,第一外组紧固件344(例如,螺栓、螺母、夹具、突耳、焊缝、焊料等)将第一弹簧组件340和第二弹簧组件342固定至外壳308(例如,定子的支架),而从第一外组紧固件344径向向内(例如,沿着垂直的径向R靠近轴向A)的第一内组紧固件346在第 一端部304处将第一弹簧组件340固定到内背铁组件352。在另外或可选实施方式中,从第一外组紧固件344径向向内(例如,沿着径向R靠近轴向A)的第二内组紧固件350在第二端部306处将第二弹簧组件342固定到内背铁组件352。
在驱动线圈366的运行期间,弹簧组件340、342支撑内背铁组件352。特别地,内背铁组件352被弹簧组件340、342悬挂在线性压缩机300的定子或电机内,使得内背铁组件352沿着径向R的运动被阻止或限制,而沿着轴向A的运动相对不受阻碍。由此,弹簧组件342沿着径向R可以比沿着轴向A实质上更硬。这样,在电机的操作和内背铁组件352在轴向A上的移动期间,弹簧组件340、342可以(例如,沿着径向R)辅助维持驱动磁铁362与驱动线圈366之间的气隙的均匀性。弹簧组件340、342还可以辅助阻止电机的侧拉力传递到活塞组件316并在气缸组件310中反应为摩擦损失。
内背铁组件352包括外缸354和套筒360。套筒360设置在外缸354的内表面上或处。外缸354与套筒360之间的第一过盈配合可以将外缸354和套筒360联接或固定在一起。在可选示例性实施方式中,套筒360可以经由任意其他合适的机构或方法焊接、胶合、紧固或连接到外缸354。
套筒360围绕轴向A延伸(例如,沿着周向)。在示例性实施方式中,外缸354与套筒360之间的第一过盈配合可以将外缸354和套筒360联接或固定在一起。在可选示例性实施方式中,套筒360经由任意其他合适的机构或方法焊接、胶合、紧固或连接到外缸354。如图所示,套筒360在外缸354内(例如,沿着轴向A)在内背铁组件352、130的第一端部304与第二端部306之间延伸。第一弹簧组件340和第二弹簧组件342安装到套筒360(例如,利用内组紧固件346和350)。
外缸354可以由或用任意合适的材料构造。例如,外缸354可以由或用多个(例如,铁磁的)叠片来构造。叠片沿着周向分布,以便形成外缸354,并且(例如,用压到叠片的两端的环)安装到彼此或固定在 一起。外缸354限定了从外缸354的外表面向内(例如,沿着径向R)延伸的凹部。驱动磁铁362设置在外缸354上的凹部中(例如,使得驱动磁铁362插入外缸354内)。
在一些实施方式中,活塞挠性安装件368安装到内背铁组件352并延伸穿过内背铁组件352。特别地,活塞挠性安装件368经由套筒360和弹簧组件340、342安装到内背铁组件352。由此,活塞挠性安装件368可以联接(例如,螺纹连接)到套筒360,以便将活塞挠性安装件368安装或固定到内背铁组件352。联接器370在活塞挠性安装件368与活塞组件316之间延伸(例如,沿着轴向A)。联接器370连接内背铁组件352和活塞组件316,使得内背铁组件352的运动(例如,沿着轴向A)传递到活塞组件316。联接器370可以延伸穿过驱动线圈366(例如,沿着轴向A)。
活塞挠性安装件368限定至少一个通道369。活塞挠性安装件368的通道369延伸并穿过活塞挠性安装件368(例如,沿着轴向A)。由此,在线性压缩机300的运行期间,诸如空气或制冷剂的流体流可以经由活塞挠性安装件368的通道369穿过活塞挠性安装件368。如图所示,一个或多个进制冷剂管道331可以延伸穿过壳302,以使制冷剂从蒸发器70(或密封系统60的另一部分)(图2)返回到压缩机300。
活塞头318还限定至少一个开口(例如,被头阀选择性地覆盖)。活塞头318的开口(例如,沿着轴向A)延伸穿过活塞头318。由此,在线性压缩机300的运行期间,制冷剂流可以经由活塞头的开口穿过活塞头318到达腔室312中。这样,流体(在腔室312内被活塞头318压缩)流可以穿过活塞挠性安装件368和内背铁组件352流到活塞组件316。
如图所示,线性压缩机300包括用于引导油通过线性压缩机300和油冷却回路200(图2)的特征。一个或多个进油管道380或出油管道382可以延伸穿过壳302,以将油引导至油冷却回路200/从油冷却回路200流出。
可选地,进油管道380可以联接至油冷却回路200(图2)的返回管道224。由此,润滑油可以从热交换器210经由进油管道380流到线性压缩机300。可选地,进油管道380可以设置在贮槽376处或与其相邻。由此,在进油管道380处到线性压缩机300的润滑油可以流入贮槽376。如上所述,油冷却回路200可以冷却来自线性压缩机300的润滑油。在这种冷却之后,润滑油经由进油管道380返回到线性压缩机300。由此,进油管道380中的润滑油可以是相对凉的,并且辅助冷却贮槽376中的润滑油。
在一些实施方式中,线性压缩机300包括泵372。泵372可以设置在壳302的贮槽376处或与其相邻(例如,在泵壳体374内)。贮槽376对应于在壳302的底部处或与其相邻的壳302的一部分。由此,壳302内的一定体积的润滑油377可以汇集在贮槽376内(例如,因为润滑油比壳302内的制冷剂致密)。在使用期间,泵372可以经由从泵372延伸到贮槽376的供应管道378将润滑油从贮槽376内的容积377抽到泵372。比如,在泵372的相对端处的泵壳体374内的一对止回阀可以随着泵372在泵壳体374内振荡(例如,如由外壳308的振荡激励的)而选择性地允许油流向泵壳体374/从其释放油。另外或可选地,当泵372主动振荡时,润滑油377的体积可以保持在预定水平(例如,即使在泵372的垂直中点的情况下)。
内部管道384可以从泵372(例如,泵壳体374)延伸到在外壳308内限定的储油器386。在一些实施方式中,储油器386从气缸组件310的腔室312径向向外设置。比如,储油器386可以被限定为沿着周向(例如,围绕轴向A)延伸,作为围绕气缸组件310的腔室312的环形腔室。
通常,润滑油可以被选择性地从储油器386引导至气缸组件310。特别地,一个或多个通道(例如,径向通道)可以从储油器386延伸到腔室312。这种径向通道可以终止于活塞头318的滑动路径的一部分(例如,相对于轴向A在上止点与下止点之间)。随着活塞头318在腔室312 内滑动,活塞头318的侧壁可以接收润滑油。在可选实施方式中,径向通道终止于由气缸组件310的腔室312内限定的凹槽388。由此,凹槽388可以向腔室312打开。来自储油器386的润滑油可以流入气缸组件310的腔室312中(例如,经由径向通道到凹槽388),以便润滑活塞组件316在气缸组件310的腔室312内的运动。
外壳308可以与腔室312和储油器386一起限定排油口390。在一些实施方式中,排油口390从储油器386延伸。例如,排油口390可以从储油器386向外延伸穿过外壳308。由此,排油口390可以与储油器386流体连通。在使用期间,被推动到储油器386的润滑油的至少一部分可以流到排油口390(例如,如由泵372激励的)。润滑油可以从排油口390离开外壳308(通常和线性压缩机300)。在某些实施方式中,排油口390流体连通地连接到出油管道382。由此,泵372通常可以将来自内部容积303的润滑油通过外壳308推动到出油管道382。出油管道382可以联接到油冷却回路200(图2)的供应管道222。由此,泵372可以将润滑油从贮槽376推入供应管道222中。这样,泵372可以将润滑油供应到油冷却回路200,以便冷却来自线性压缩机300的润滑油,如上所述。
除了排油口390外,外壳308还限定通气孔392。特别地,通气孔392从储油器386延伸穿过到达内部容积303。如图所示,通气孔392与排油口390流体平行地限定。由此,流体被单独引导通过通气孔392和排油口390。通常,通气孔392的尺寸可以被构造为比排油口390更多地限制流体。例如,通气孔392的最小直径仍可以小于排油口390的最小直径。可选地,通气孔392的最小直径可以小于两毫米,而排油口的最小直径大于四毫米。除了直径更小以外,通气孔392的长度还可以比排油口390的长度更短。在典型的泵送操作下,可以通过排油口390比通气孔392激励更大体积的润滑油。然而,可以允许气体(例如,在储油器386内的放气期间产生的)通过通气孔392进入内部容积303,同 时有利地允许润滑油连续地从储油器386流动到排油口390或腔室312。
通气孔392可以限定在外壳308的上部(例如,储油器386的上端)处。另外或可选地,通气孔392可以在排出阀组件320上方延伸(例如,平行于轴向A)。通气孔392还可以位于排油口390的下方(例如,沿竖向V比排油口390低)。在一些实施方式中,通气孔392位于外壳308的第二端部306处。来自通气孔392的流体可以被向前引导到内部容积303中。
在一些实施方式中,在通气孔392的前面设置防油罩394。如图所示,防油罩394可以布置在外壳308上(例如,在第二端部306处)。在防油罩394与例如消音器壳体322之间,可以限定滴液通道。比如,防油罩394可以从外壳308向外延伸到弯曲的或向内延伸的壁部分396。另外地或可选地,防油罩394可以围绕消音器壳体322的一部分延伸。比如,防油罩394可以沿着消音器壳体322的顶侧延伸180°。在使用期间,通过通气孔392排出的润滑油可以向下引导至贮槽376。有利地,防油罩394的位置或形状可以防止润滑油撞击壳302(例如,以高速撞击,否则可能导致内部容积303内的润滑油雾化)。
本书面描述使用示例对本发明进行了公开,其中包括最佳实施例,并且还使本领域技术人员能够实施本发明,其中包括制造和使用任何装置或系统并且执行所包含的任何方法。本发明的可专利范围通过权利要求进行限定,并且可以包括本领域技术人员能够想到的其它的示例。如果这种其它的示例包括与权利要求的字面语言没有区别的结构元件,或者如果这种其它的示例包括与权利要求的字面语言没有实质区别的等同结构元件,则期望这种其它的示例落入权利要求的范围中。

Claims (19)

  1. 一种用于电器的制冷系统,其特征在于,该制冷系统包括:
    线性压缩机,该线性压缩机包括:
    外壳,该外壳沿着轴向从第一端部延伸到第二端部,所述外壳包括限定有接近所述第二端部的腔室的气缸组件;和
    活塞,该活塞可滑动地接收在所述气缸组件的所述腔室内;
    壳,该壳限定封闭所述线性压缩机和其中的润滑油的内部容积;
    冷凝器,该冷凝器在下游与所述线性压缩机流体连通,以从其接收压缩的制冷剂;
    出油管道,该出油管道通过所述壳延伸到所述线性压缩机的所述外壳;以及
    热交换器,该热交换器与所述内部容积隔开,与所述出油管道流体连通,以从所述线性压缩机接收润滑油,
    其中,所述外壳还限定储油器、排油口以及通气孔,所述储油器从所述气缸组件的所述腔室径向向外设置,以向其选择性地引导润滑油,所述排油口从所述储油器延伸到所述出油管道,所述通气孔与所述排油口流体平行地从所述储油器延伸到所述内部容积。
  2. 根据权利要求1所述的制冷系统,其特征在于,所述线性压缩机还包括防油罩,该防油罩布置在所述外壳上位于所述通气孔前面的所述第二端部处,以将润滑油从所述通气孔向下游引导到所述壳的贮槽。
  3. 根据权利要求1所述的制冷系统,其特征在于,其还包括:
    制冷剂管道,该制冷剂管道在所述线性压缩机与所述冷凝器之间延伸,在所述线性压缩机的运行期间,所述制冷剂管道将压缩的制冷剂从所述线性压缩机引导到所述冷凝器,在运行期间,所述出油管道将润滑油从所述线性压缩机引导至所述热交换器。
  4. 根据权利要求1所述的制冷系统,其特征在于,所述线性压缩机还包括泵,所述泵可操作为在所述线性压缩机的运行期间推动润滑油从所述线性压缩机流向所述热交换器。
  5. 根据权利要求4所述的制冷系统,其特征在于,所述泵布置在所 述壳的所述内部容积内,以将润滑油从所述内部容积推到所述储油器。
  6. 根据权利要求1所述的制冷系统,其特征在于,其还包括:
    排出阀组件,该排出阀组件沿着轴向安装到在所述外壳的所述腔室前面的所述第二端部处,其中,所述通气孔布置在所述排出阀组件上方。
  7. 根据权利要求6所述的制冷系统,其特征在于,所述线性压缩机还包括防油罩,该防油罩布置在所述外壳的所述第二端部处,所述防油罩在所述通气孔的前面和所述排出阀组件的上方延伸,以将润滑油从所述通气孔向下游引导到所述壳的贮槽。
  8. 根据权利要求6所述的制冷系统,其特征在于,所述储油器围绕所述轴向环形延伸。
  9. 根据权利要求1所述的制冷系统,其特征在于,所述气缸组件还限定在所述腔室内围绕所述活塞环形地延伸的凹槽,所述凹槽与所述储油器流体连通。
  10. 根据权利要求1所述的制冷系统,其特征在于,所述通气孔限定的直径比所述排油口的直径小。
  11. 一种用于电器的制冷系统,其特征在于,该制冷系统包括:
    线性压缩机,该线性压缩机包括:
    外壳,该外壳沿着轴向从第一端部延伸到第二端部,所述外壳包括限定有接近所述第二端部的腔室的气缸组件;和
    活塞,该活塞可滑动地接收在所述气缸组件的所述腔室内;
    壳,该壳限定具有贮槽的内部容积,所述壳封闭所述线性压缩机和其中的润滑油;以及
    冷凝器,该冷凝器在下游与所述线性压缩机流体连通,以从其接收压缩的制冷剂;
    其中,所述外壳还限定储油器和通气孔,所述储油器从所述气缸组件的所述腔室径向向外设置,以向其选择性地引导润滑油,所述通气孔通过所述第二端部从所述储油器延伸到所述内部容积,并且
    其中,所述线性压缩机还包括防油罩,该防油罩布置在所述外壳的所述通气孔前面的所述第二端部处,以将润滑油从所述通气孔向下游引导到所述壳的所述贮槽。
  12. 根据权利要求11所述的制冷系统,其特征在于,其还包括:
    制冷剂管道,该制冷剂管道在所述线性压缩机与所述冷凝器之间延伸;和
    出油管道,该出油管道穿过所述壳延伸到所述线性压缩机的所述外壳,在所述线性压缩机的运行期间,所述制冷剂管道将压缩的制冷剂从所述线性压缩机引导到所述冷凝器,在所述线性压缩机的运行期间,所述出油管道将润滑油从所述线性压缩机引导出所述壳。
  13. 根据权利要求11所述的制冷系统,其特征在于,所述线性压缩机还包括泵,所述泵可操作为在所述线性压缩机的运行期间推动润滑油从所述贮槽流向所述线性压缩机。
  14. 根据权利要求12所述的制冷系统,其特征在于,所述泵布置在所述壳的所述内部容积内,以将润滑油从所述内部容积推到所述储油器。
  15. 根据权利要求11所述的制冷系统,其特征在于,其还包括:
    排出阀组件,该排出阀组件安装到所述外壳沿着轴向在所述腔室前面的所述第二端部处,其中,所述通气孔布置在所述排出阀组件上方。
  16. 根据权利要求11所述的制冷系统,其特征在于,所述防油罩在所述通气孔的前面和所述消音器壳体的上方延伸,以将润滑油从所述通气孔向下游引导到所述壳的贮槽。
  17. 根据权利要求11所述的制冷系统,其特征在于,所述储油器围绕所述轴向环形延伸。
  18. 根据权利要求11所述的制冷系统,其特征在于,所述气缸组件还限定了在所述腔室内围绕所述活塞环形地延伸的凹槽,所述凹槽与所述储油器流体连通。
  19. 根据权利要求11所述的制冷系统,其特征在于,所述通气孔限定的直径比所述排油口的直径小。
PCT/CN2020/117284 2019-09-26 2020-09-24 用于制冷电器的线性压缩机和制冷系统 WO2021057827A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202080067367.9A CN114466974B (zh) 2019-09-26 2020-09-24 用于制冷电器的线性压缩机和制冷系统
EP20868244.3A EP4036406B1 (en) 2019-09-26 2020-09-24 Sealed system for refrigeration appliance

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US16/583,681 US20210095652A1 (en) 2019-09-26 2019-09-26 Linear compressor and sealed system for an appliance
US16/583,681 2019-09-26

Publications (1)

Publication Number Publication Date
WO2021057827A1 true WO2021057827A1 (zh) 2021-04-01

Family

ID=75163104

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/117284 WO2021057827A1 (zh) 2019-09-26 2020-09-24 用于制冷电器的线性压缩机和制冷系统

Country Status (4)

Country Link
US (1) US20210095652A1 (zh)
EP (1) EP4036406B1 (zh)
CN (1) CN114466974B (zh)
WO (1) WO2021057827A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023131080A1 (zh) * 2022-01-04 2023-07-13 海尔智家股份有限公司 线性压缩机和平面弹簧组件
WO2023174419A1 (zh) * 2022-03-18 2023-09-21 青岛海尔电冰箱有限公司 压缩机及制冷设备

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102279782B1 (ko) * 2020-01-09 2021-07-21 엘지전자 주식회사 압축기
US11530695B1 (en) * 2021-07-01 2022-12-20 Haier Us Appliance Solutions, Inc. Suction muffler for a reciprocating compressor
CN116265738A (zh) * 2021-12-17 2023-06-20 青岛海尔电冰箱有限公司 压缩机供油装置、压缩机及制冷设备
CN115161059B (zh) * 2022-07-18 2023-10-27 山东昱铭环保工程有限公司 一种油气回收装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0994253B1 (en) * 1998-10-13 2005-08-10 Matsushita Electric Industrial Co., Ltd. Linear compressor
KR20060086674A (ko) * 2005-01-27 2006-08-01 엘지전자 주식회사 리니어 압축기의 오일공급장치
CN101205891A (zh) * 2006-12-20 2008-06-25 泰州乐金电子冷机有限公司 线性压缩机的供油装置
CN103362783A (zh) * 2013-06-27 2013-10-23 天津探峰科技有限公司 一种高效率且低成本的线性压缩机
CN104110360A (zh) * 2013-04-22 2014-10-22 海尔集团公司 一种直线压缩机及其润滑方法

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2905600B2 (ja) * 1995-06-23 1999-06-14 エルジー電子株式会社 リニアコンプレッサの摩擦部分用の給油装置
DE19922511B4 (de) * 1998-05-18 2004-07-08 Lg Electronics Inc. Ölumlaufstruktur für einen linearen Kompressor
KR100301509B1 (ko) * 1998-12-31 2001-11-15 구자홍 리니어압축기의누설가스배출구조
US20070134108A1 (en) * 2005-12-13 2007-06-14 Lg Electronics Inc. Reciprocating compressor
CN101932834B (zh) * 2007-10-24 2015-07-01 Lg电子株式会社 线性压缩机
US10247464B2 (en) * 2016-01-27 2019-04-02 Haier Us Appliance Solutions, Inc. Sealed system for an appliance
CN108457840B (zh) * 2017-12-19 2019-08-06 天津探峰科技有限公司 一种带有供油装置的线性压缩机

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0994253B1 (en) * 1998-10-13 2005-08-10 Matsushita Electric Industrial Co., Ltd. Linear compressor
KR20060086674A (ko) * 2005-01-27 2006-08-01 엘지전자 주식회사 리니어 압축기의 오일공급장치
CN101205891A (zh) * 2006-12-20 2008-06-25 泰州乐金电子冷机有限公司 线性压缩机的供油装置
CN104110360A (zh) * 2013-04-22 2014-10-22 海尔集团公司 一种直线压缩机及其润滑方法
CN103362783A (zh) * 2013-06-27 2013-10-23 天津探峰科技有限公司 一种高效率且低成本的线性压缩机

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4036406A4 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023131080A1 (zh) * 2022-01-04 2023-07-13 海尔智家股份有限公司 线性压缩机和平面弹簧组件
WO2023174419A1 (zh) * 2022-03-18 2023-09-21 青岛海尔电冰箱有限公司 压缩机及制冷设备

Also Published As

Publication number Publication date
CN114466974B (zh) 2024-03-22
US20210095652A1 (en) 2021-04-01
EP4036406B1 (en) 2024-05-29
EP4036406A4 (en) 2022-08-31
EP4036406A1 (en) 2022-08-03
CN114466974A (zh) 2022-05-10

Similar Documents

Publication Publication Date Title
WO2021057827A1 (zh) 用于制冷电器的线性压缩机和制冷系统
US10465671B2 (en) Compressor with a discharge muffler
US10247464B2 (en) Sealed system for an appliance
US9322401B2 (en) Linear compressor
US9932975B2 (en) Compressor
WO2020224400A1 (zh) 具有防油溅板的线性压缩机
US10113540B2 (en) Linear compressor
WO2023274334A1 (zh) 用于往复式压缩机的吸入消音器
WO2020143627A1 (en) Cooled piston and cylinder for compressors and engines
US20180051685A1 (en) Compressor with a discharge valve
WO2023131080A1 (zh) 线性压缩机和平面弹簧组件
WO2021213196A1 (zh) 线性压缩机的散热组件
WO2022073436A1 (zh) 直线压缩机的散热组件
WO2022105829A1 (zh) 线性压缩机和内部碰撞缓冲
AU2021260292B2 (en) Heat radiation assembly of linear compressor
JP7401801B2 (ja) 圧縮機、および冷凍装置
WO2022100542A1 (zh) 往复式压缩机及其阀门
WO2024114537A1 (zh) 用于往复式压缩机的降噪介质
JP5892261B2 (ja) 冷凍サイクル装置およびヒートポンプ給湯装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20868244

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2020868244

Country of ref document: EP

Effective date: 20220426