WO2021057662A1 - 地图级别指示方法、地图级别获取方法及相关产品 - Google Patents

地图级别指示方法、地图级别获取方法及相关产品 Download PDF

Info

Publication number
WO2021057662A1
WO2021057662A1 PCT/CN2020/116532 CN2020116532W WO2021057662A1 WO 2021057662 A1 WO2021057662 A1 WO 2021057662A1 CN 2020116532 W CN2020116532 W CN 2020116532W WO 2021057662 A1 WO2021057662 A1 WO 2021057662A1
Authority
WO
WIPO (PCT)
Prior art keywords
vehicle
target vehicle
server
target
map
Prior art date
Application number
PCT/CN2020/116532
Other languages
English (en)
French (fr)
Inventor
陈军
伍勇
熊新
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to JP2022517302A priority Critical patent/JP2022549783A/ja
Priority to EP20868762.4A priority patent/EP4024006A4/en
Priority to KR1020227012267A priority patent/KR20220061225A/ko
Publication of WO2021057662A1 publication Critical patent/WO2021057662A1/zh
Priority to US17/703,079 priority patent/US20220214189A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C21/00Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00
    • G01C21/38Electronic maps specially adapted for navigation; Updating thereof
    • G01C21/3885Transmission of map data to client devices; Reception of map data by client devices
    • G01C21/3893Transmission of map data from distributed sources, e.g. from roadside stations
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C21/00Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00
    • G01C21/38Electronic maps specially adapted for navigation; Updating thereof
    • G01C21/3885Transmission of map data to client devices; Reception of map data by client devices
    • G01C21/3896Transmission of map data from central databases
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C21/00Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00
    • G01C21/38Electronic maps specially adapted for navigation; Updating thereof
    • G01C21/3885Transmission of map data to client devices; Reception of map data by client devices
    • G01C21/3889Transmission of selected map data, e.g. depending on route
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C21/00Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00
    • G01C21/26Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 specially adapted for navigation in a road network
    • G01C21/28Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 specially adapted for navigation in a road network with correlation of data from several navigational instruments
    • G01C21/30Map- or contour-matching
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C21/00Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00
    • G01C21/26Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 specially adapted for navigation in a road network
    • G01C21/34Route searching; Route guidance
    • G01C21/36Input/output arrangements for on-board computers
    • G01C21/3667Display of a road map
    • G01C21/367Details, e.g. road map scale, orientation, zooming, illumination, level of detail, scrolling of road map or positioning of current position marker
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C21/00Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00
    • G01C21/38Electronic maps specially adapted for navigation; Updating thereof
    • G01C21/3804Creation or updating of map data
    • G01C21/3833Creation or updating of map data characterised by the source of data
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C21/00Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00
    • G01C21/38Electronic maps specially adapted for navigation; Updating thereof
    • G01C21/3804Creation or updating of map data
    • G01C21/3833Creation or updating of map data characterised by the source of data
    • G01C21/3848Data obtained from both position sensors and additional sensors
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C21/00Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00
    • G01C21/38Electronic maps specially adapted for navigation; Updating thereof
    • G01C21/3863Structures of map data
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C21/00Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00
    • G01C21/38Electronic maps specially adapted for navigation; Updating thereof
    • G01C21/3863Structures of map data
    • G01C21/387Organisation of map data, e.g. version management or database structures
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F16/00Information retrieval; Database structures therefor; File system structures therefor
    • G06F16/20Information retrieval; Database structures therefor; File system structures therefor of structured data, e.g. relational data
    • G06F16/29Geographical information databases

Definitions

  • the invention relates to the field of smart cars, in particular to a map level indication method, a map level acquisition method and related products.
  • the on-board system determines the corresponding map level according to the driving condition of the vehicle, and downloads the corresponding map data according to the map level to maintain safe driving. Therefore, when the driving condition of the vehicle changes significantly, such as a significant change in geographic range , The vehicle speed is too fast, or the speed changes too fast, etc., you need to change the map level in time. However, the data processing capability of the vehicle-mounted system is relatively low or slow, and the map level cannot be changed according to the change information of the vehicle driving condition in time, which may lead to the use of a map level that does not match the current driving condition, thereby affecting traffic safety.
  • This application provides a method for indicating a map level, a method for obtaining a map level, and related products to improve driving safety.
  • an embodiment of the present application provides a map level indication method, including:
  • the server determines the first map level corresponding to the target vehicle according to the control parameter corresponding to the target vehicle;
  • the server sends a first message to the target in-vehicle system of the target vehicle, the first message indicating the first map level.
  • an embodiment of the present application provides a method for acquiring a map level, including:
  • the target in-vehicle system receives a first message sent by the server, where the first message indicates a first map level, and the first map level is determined according to a control parameter corresponding to the target vehicle to which the target in-vehicle system belongs;
  • the target in-vehicle system performs a control operation corresponding to the first map level.
  • the server determines the first map level corresponding to the target vehicle according to the control parameters corresponding to the target vehicle. Since the server's processing speed and processing capacity for driving conditions are higher than that of the on-board system, it can quickly calculate the matching for the on-board system.
  • the map level ensures that the on-board system can use the matched map level in time. Because the on-board system uses the matched first map level and performs control operations according to the first map level, driving safety is improved.
  • the method in this embodiment may be executed by a server, or may be executed by a chip in the server.
  • a server is taken as an example for description.
  • the server in this embodiment may be a map server or a cloud server.
  • the method before the server determines the first map level corresponding to the target vehicle according to the control parameter corresponding to the target vehicle, the method further includes:
  • the server obtains the control parameter corresponding to the target vehicle according to the driving status of the target vehicle uploaded by the RSU and/or the driving status of the target vehicle uploaded by the target in-vehicle system.
  • the server can receive the driving status of the target vehicle uploaded by the RSU and/or the target vehicle system, so that the current driving status of the target vehicle can be acquired in an all-round way, and the acquired control parameters can be more in line with the current driving status of the target vehicle.
  • the driving conditions further match the determined first map level with the current driving conditions of the target vehicle, thereby ensuring that the target vehicle-mounted system uses and matching the first map level, thereby improving driving safety.
  • the method of this embodiment further includes:
  • the server also receives driving conditions of other vehicles uploaded by at least one other on-board system other than the target on-board system,
  • the server obtains the control corresponding to the target vehicle according to the driving status of the other vehicle, the driving status of the target vehicle uploaded by the RSU, and/or the driving status of the target vehicle uploaded by the target in-vehicle system parameter.
  • the server can receive the driving status of the target vehicle uploaded by the RSU and/or the target in-vehicle system and the driving status of other vehicles uploaded by other in-vehicle systems, and comprehensively determine the control parameters of the target vehicle based on the driving status of multiple vehicles , So that the control parameters include the global information of the road on which the target vehicle is traveling, so that the determined first map level is more matched with the current driving condition of the target vehicle, thereby ensuring that the target vehicle system is using the first map level to control the target When the vehicle is running, driving safety is improved.
  • the server determining the first map level corresponding to the target vehicle according to the control parameter corresponding to the target vehicle includes:
  • the server determines a first map level corresponding to the target vehicle according to a preset mapping relationship and a control parameter corresponding to the target vehicle, wherein the preset mapping relationship includes the first map level and the Correspondence of control parameters.
  • the server can quickly determine the first map level through the preset mapping relationship, which improves the response speed of the server in executing the map service function.
  • control parameter includes one or more of a vehicle speed range, a vehicle acceleration range, a vehicle deceleration range, a vehicle automatic driving level, and a geographic environment classification where the vehicle is located.
  • control parameters include abundant vehicle driving status information, and the first map level determined by the server according to the above control parameters is more in line with the actual driving requirements of the target vehicle, thereby improving driving safety.
  • the vehicle speed range in the control parameters includes vehicle speed information
  • the geographic environment classification of the vehicle includes road condition information.
  • the server will determine the higher map level and indicate The vehicle-mounted system uses the map data with higher accuracy corresponding to the map level to avoid close traffic accidents of the vehicle; for another example, the geographical environment classification of the vehicle includes the type of the current road on which the target vehicle is driving, because different types of roads can The amount of traffic accommodated and the road facilities are different. Therefore, even if the target vehicle is traveling at the same speed, the map level required when driving on different types of roads is also different. Therefore, the first map determined by the server in this embodiment The level is more in line with the actual driving needs of the target vehicle.
  • the method before the server determines the first map level corresponding to the target vehicle according to the control parameter corresponding to the target vehicle, the method further includes:
  • the server obtains the control parameter corresponding to the target vehicle according to the driving condition of the target vehicle.
  • the first message is used to instruct the target vehicle-mounted system to perform a control operation corresponding to the first map level.
  • the execution of the control operation corresponding to the first map level by the target vehicle-mounted system includes:
  • the target vehicle-mounted system uses map data of a map accuracy level corresponding to the first map level; and/or,
  • the target vehicle-mounted system controls the driving of the target vehicle according to the mapping relationship between the first map level and driving parameters, where the driving parameters include: vehicle speed range, vehicle acceleration range, vehicle deceleration range, and vehicle automatic driving Level, one or more of vehicle hardware configuration levels.
  • the target vehicle-mounted system executes corresponding control operations according to the first map level to control the driving of the target vehicle, thereby improving the target vehicle Safety while driving, thereby improving traffic safety.
  • the map data is provided by the server to the target vehicle-mounted system.
  • the map data is obtained by the target vehicle-mounted system from the server.
  • the method before the server determines the first map level corresponding to the target vehicle according to the control parameter corresponding to the target vehicle, the method further includes:
  • the server receives a request message sent by the target in-vehicle system, where the request message is used to request the server to indicate a map level.
  • the method further includes:
  • the target vehicle-mounted system sends a request message to the server, where the request message is used to request the server to indicate the map level.
  • the target in-vehicle system actively sends a request message to the server.
  • the server responds to the request message in a timely manner and sends a matching map level to the target in-vehicle system, so that the target in-vehicle system can be used and driven
  • the map level matches the situation and controls the driving of the target vehicle, thereby improving driving safety.
  • the method before the server determines the first map level corresponding to the target vehicle according to the control parameter corresponding to the target vehicle, the method further includes:
  • the first message indicates the first map level through confirmation information.
  • the method further includes:
  • the first message indicates the first map level through confirmation information.
  • the target on-board system actively reports the map level that it wants to use to the server, thereby improving the flexibility of the target on-board system to use the map service function; moreover, the server determines that the target on-board system can actually be used according to the control parameters of the target vehicle.
  • the method before the server determines the first map level corresponding to the target vehicle according to the control parameters corresponding to the target vehicle, the method further includes:
  • the first message responds to the request message through the indication information of the first map level.
  • the method further includes:
  • the first message responds to the request message through the indication information of the first map level.
  • the target in-vehicle system can actively report the map level it wants to use to the server, thereby improving the flexibility of the target in-vehicle system to use the map service function; moreover, the server determines that the target in-vehicle system is actually in effect based on the control parameters of the target vehicle
  • the map level that can be used is based on the map level to determine whether the target vehicle system can use the map level you want. After the target vehicle system receives the map level that it can actually use, it controls the target vehicle’s performance based on the map level. Drive, thereby ensuring the safety of the target vehicle.
  • the method further includes:
  • the server sends a map stop instruction to the target in-vehicle system, where the map stop instruction is used to instruct the target in-vehicle system to stop the use of the first map level.
  • the method further includes:
  • the target vehicle-mounted system stops the use of the first map level according to the map stop instruction.
  • the server actively instructs the target on-board system to stop using the map level, that is, when the target on-board system does not need the map service function, the map service to the target on-board system is shut down in time.
  • Stop using the first map level in time to reduce additional costs (for example, the cost of using map service functions can be reduced).
  • the method before the server sends a map stop instruction to the target vehicle-mounted system, the method further includes:
  • the server receives a map stop request message sent by the target in-vehicle system, where the map stop request message includes the indication information of the first map level.
  • the method further includes:
  • the target vehicle-mounted system sends map stop request information to the server, and the map stop request message includes the first map level indication information.
  • the target vehicle system can actively request the server to stop using the map level, that is, request to close the map service function of the target vehicle system, which increases the flexibility when using the map service function; then, the server receives the map stop request If it is determined that the target on-board system does not need to use the map service at present, stop the map service to the target on-board system. After the target on-board system receives the map stop instruction, it will stop using the first map level in time, thereby reducing additional costs (such as Can reduce the cost of using the map service function).
  • an embodiment of the present application provides a server, including:
  • a processing module configured to determine the first map level corresponding to the target vehicle according to the control parameter corresponding to the target vehicle;
  • the transceiver module is configured to send a first message to the target vehicle-mounted system of the target vehicle, the first message indicating the first map level.
  • the processing module is specifically configured to:
  • the first map level corresponding to the target vehicle is determined according to the preset mapping relationship and the control parameter corresponding to the target vehicle, wherein the preset mapping relationship includes the relationship between the first map level and the control parameter Correspondence.
  • control parameter includes one or more of a vehicle speed range, a vehicle acceleration range, a vehicle deceleration range, a vehicle automatic driving level, and a geographic environment classification where the vehicle is located.
  • the processing module before determining the first map level corresponding to the target vehicle according to the control parameters corresponding to the target vehicle, the processing module is further configured to obtain the target vehicle according to the driving condition of the target vehicle. Corresponding control parameters.
  • the transceiver module is further configured to receive the first map level corresponding to the target vehicle according to the control parameters corresponding to the target vehicle before the processing module determines the first map level corresponding to the target vehicle.
  • the driving status of the target vehicle and/or the driving status of the target vehicle uploaded by the target on-board system;
  • the processing module is further configured to obtain the control parameter according to the driving condition of the target vehicle uploaded by the RSU and/or the driving condition of the target vehicle uploaded by the target on-board system.
  • the transceiver module is further configured to receive the driving status of other vehicles uploaded by at least one other on-board system in addition to the target on-board system, where:
  • the processing module is specifically configured to:
  • the first message is used to instruct the target vehicle-mounted system to perform a control operation corresponding to the first map level, where:
  • the control operation includes that the target vehicle-mounted system uses map data of a map accuracy level corresponding to the first map level; and/or,
  • the control operation includes the target vehicle-mounted system controlling the driving of the target vehicle according to the mapping relationship between the first map level and driving parameters, and the driving parameters include: a vehicle speed range, a vehicle acceleration range, a vehicle deceleration range, One or more of the auto-driving level of the vehicle and the hardware configuration level of the vehicle.
  • the map data is provided by the server to the target vehicle-mounted system.
  • the transceiver module before determining the first map level corresponding to the target vehicle according to the control parameters corresponding to the target vehicle, is further configured to receive a request message sent by the target vehicle-mounted system, where: The request message is used to request the server to indicate the map level.
  • the transceiver module before sending a map stop instruction to the target on-board system, is further configured to receive a map stop request message sent by the target on-board system, where the map stop request message includes all Describes the indication information of the first map level.
  • an in-vehicle system including:
  • a transceiver module configured to receive a first message sent by a server, where the first message indicates a first map level, and the first map level is determined according to a control parameter corresponding to the target vehicle to which the target vehicle system belongs;
  • the processing module is configured to perform a control operation corresponding to the first map level.
  • the first map level is determined by the server according to a preset mapping relationship and a control parameter corresponding to the target vehicle, wherein the preset mapping relationship includes the Correspondence between the first map level and the control parameter.
  • control parameter includes one or more of a vehicle speed range, a vehicle acceleration range, a vehicle deceleration range, a vehicle automatic control level, and a geographic environment classification where the vehicle is located.
  • control parameter is acquired according to the driving condition of the target vehicle.
  • control parameter is acquired by the server according to the driving status of the target vehicle uploaded by the roadside unit RSU and/or the driving status of the target vehicle uploaded by the target on-board system Arrived.
  • control parameters are all uploaded by the server according to the driving status of at least one other vehicle, the driving status of the target vehicle uploaded by the RSU, and/or the target vehicle system.
  • the driving status of the target vehicle is acquired, wherein the driving status of the at least one other vehicle is uploaded to the server by at least one other vehicle-mounted system except the target vehicle-mounted system.
  • the processing module is specifically configured to:
  • the driving parameters include: vehicle speed range, vehicle acceleration range, vehicle deceleration range, and vehicle automatic driving level , One or more of the vehicle hardware configuration levels.
  • the map data is obtained by the target vehicle-mounted system from the server.
  • the transceiver module before receiving the first message sent by the server, is further configured to send a request message to the server, where the request message is used to request the server to indicate the map level.
  • the transceiver module is further configured to receive a map stop instruction sent by the server;
  • the processing module is further configured to stop the use of the first map level according to the map stop instruction.
  • the transceiver module before receiving the map stop instruction sent by the server, is further configured to send map stop request information to the server, where the map stop request message includes the first map Level instructions.
  • an embodiment of the present application provides a device, including: a memory, configured to store a program; a processor, configured to execute a program stored in the memory, and when the program stored in the memory is executed, the processor is configured to execute the first aspect or At least one method in the second aspect.
  • an embodiment of the present application provides a computer-readable storage medium that stores program code executable by a device.
  • the program code is executed by the device, the program code is used to implement the first aspect or the second aspect. At least one method in.
  • the embodiments of the present application provide a computer program product containing instructions, which when the computer program product runs on a computer, cause the computer to execute at least one of the above-mentioned first and second aspects.
  • an embodiment of the present application provides a chip.
  • the chip includes a processor and a data interface.
  • the processor reads instructions stored in a memory through the data interface, and executes the instructions in the first aspect or the second aspect. At least one method.
  • the chip may further include a memory in which instructions are stored, and the processor is configured to execute instructions stored on the memory.
  • the processor is configured to execute at least one method in the first aspect or the second aspect.
  • an electronic device in a ninth aspect, includes the server in the third aspect or the in-vehicle system in the sixth aspect.
  • FIG. 1A is a schematic diagram of a scenario of a map service provided by an embodiment of this application.
  • FIG. 1B is a schematic structural diagram of a map service system provided by an embodiment of this application.
  • FIG. 1C is a schematic structural diagram of a server provided by an embodiment of the application.
  • FIG. 1D is a schematic structural diagram of another server provided by an embodiment of this application.
  • FIG. 1E is a schematic structural diagram of another map service system provided by an embodiment of this application.
  • FIG. 1F is a schematic structural diagram of an autonomous vehicle provided by an embodiment of this application.
  • FIG. 2 is a schematic flowchart of a method for indicating a map level according to an embodiment of the application
  • FIG. 3 is a schematic flowchart of another method for indicating a map level according to an embodiment of the application.
  • FIG. 4 is a schematic flowchart of another method for indicating a map level according to an embodiment of the application.
  • FIG. 5 is a schematic flowchart of another method for indicating a map level according to an embodiment of this application.
  • FIG. 6 is a schematic flowchart of another method for indicating a map level according to an embodiment of this application.
  • FIG. 7 is a schematic structural diagram of a server provided by an embodiment of this application.
  • FIG. 8 is a schematic structural diagram of an in-vehicle system provided by an embodiment of the application.
  • FIG. 9 is a schematic structural diagram of another server provided by an embodiment of the application.
  • FIG. 10 is a schematic structural diagram of another vehicle-mounted system provided by an embodiment of the application.
  • FIG. 11 is a schematic structural diagram of a computer program product provided by an embodiment of this application.
  • the on-board system When an existing vehicle is driving, the on-board system will collect the driving status information of the vehicle, determine the map level according to the driving status of the vehicle, and then use the electronic map corresponding to the map level to download/update the map data corresponding to the map level. For safe driving. Therefore, when the driving condition of the vehicle changes significantly, it is necessary to change the map level in time, and download/update the map data in time.
  • the data collection capabilities of the on-board system are relatively local and limited. Therefore, when the driving conditions of the vehicle change rapidly, for example, when the geographic area changes significantly, the vehicle speed is too fast, or the speed changes too fast, etc., the vehicle The system cannot collect the driving status of the vehicle in time, so it cannot determine the map level corresponding to the current driving status in time; in addition, because the data processing capacity of the on-board system is relatively low and slow, when the vehicle is too fast, or When the speed changes too fast and exceeds the speed range or speed change range that the hardware or software capabilities of the on-board system can correspond to, it will not be able to respond to changes in the driving conditions of the vehicle in time.
  • the on-board system uses a map level that does not match the current driving conditions, and thus cannot obtain accurate road condition information, which affects traffic safety.
  • FIG. 1A is a schematic diagram of a map service provided by an embodiment of the application, including the cloud, broadband network (LTE/5G) and intelligent networked vehicles, where the cloud includes a cloud server and a map server with high accuracy Map service function; intelligent networked vehicles include various types of vehicles (various autonomous driving levels or autonomous driving levels), on-board software (computing platform) and hardware (cameras, radars, chips, terminals); intelligent networked vehicles through broadband
  • the network accesses the cloud to obtain the accurate map level provided by the cloud server or map server, and obtain the high-precision map data provided by the cloud server or map server to achieve safe driving; and intelligent networked vehicles also use cameras, radars, and broadband
  • the network obtains each other's driving status information and provides it to the cloud server or map server to obtain more timely and accurate map levels and map data.
  • FIG. 1B is a schematic diagram of the architecture of a map service system provided by an embodiment of the application, including a server 20 and a target vehicle-mounted system 10;
  • the server 20 includes a map server 201 and/or a cloud server 202, wherein the map server 201 and/or the cloud server 202 have the same or different service functions.
  • the cloud server 202 when the cloud server does not have the map service function, the cloud server 202 can be used as a carrier of information interaction to realize the information interaction between the target vehicle-mounted system 10 and the map server 201, and obtain map data from the map server 201; As shown in FIG. 1D, when the cloud server 202 has a map service function, the target vehicle-mounted system 10 can directly interact with the map server 201 and/or the cloud server 202 to obtain map data from the map server 201 or the cloud server 202.
  • the target in-vehicle system 10 includes a target vehicle 100.
  • the server 20 determines the first map level corresponding to the target vehicle 100 according to the control parameters corresponding to the target vehicle 100, and sends a first message to the target vehicle system 10 through the broadband network, and the first message instructs the target vehicle to The system 10 can use the first map level.
  • the map service system also includes a road side unit 30 (Road Side Unit, RSU).
  • the road side unit 30 obtains the driving status of the target vehicle 100, and sends the driving status to the server 20 via the broadband network, so that the server 20
  • the control parameter corresponding to the target vehicle 100 is determined according to the driving condition.
  • the target vehicle system 10 configures the target vehicle 100 in a fully or partially automatic driving mode.
  • the target vehicle 100 can control itself while in the automatic driving mode, and can determine the current conditions of the vehicle and its surrounding environment through human operations, determine the driving conditions or possible behaviors of at least one other vehicle in the surrounding environment, and The confidence level corresponding to the possibility of at least one other vehicle performing the possible behavior is determined, and the target vehicle 100 is controlled based on the determined information.
  • the vehicle 100 may include various systems, such as a traveling system 1201, a sensor system 1202, a control system 1203, one or more peripheral devices 108 and a power supply 110, a computer system 112, and a user interface 116.
  • the vehicle 100 may include more or fewer systems, and each system may include multiple elements.
  • each system and element of the vehicle 100 may be wired or wirelessly interconnected.
  • the travel system 102 may include components that provide power movement for the vehicle 100.
  • the propulsion system 102 may include an engine 118, an energy source 119, a transmission 120, and wheels/tires 121.
  • the engine 118 may be an internal combustion engine, an electric motor, an air compression engine, or a combination of other types of engines, such as a hybrid engine composed of a gasoline engine and an electric motor, or a hybrid engine composed of an internal combustion engine and an air compression engine.
  • the engine 118 converts the energy source 119 into mechanical energy.
  • Examples of energy sources 119 include gasoline, diesel, other petroleum-based fuels, propane, other compressed gas-based fuels, ethanol, solar panels, batteries, and other sources of electricity.
  • the energy source 119 may also provide energy for other systems of the vehicle 100.
  • the transmission device 120 can transmit mechanical power from the engine 118 to the wheels 121.
  • the transmission device 120 may include a gearbox, a differential, and a drive shaft.
  • the transmission device 120 may also include other devices, such as a clutch.
  • the drive shaft may include one or more shafts that can be coupled to one or more wheels 121.
  • the sensor system 104 may include several sensors that sense information about the environment around the vehicle 100.
  • the sensor system 104 may include a positioning system 122 (the positioning system may be a GPS system, a Beidou system or other positioning systems), an inertial measurement unit (IMU) 124, a radar 126, a laser rangefinder 128, and Camera 130.
  • the sensor system 104 may also include sensors of the internal system of the monitored vehicle 100 (for example, an in-vehicle air quality monitor, a fuel gauge, an oil temperature gauge, etc.). Sensor data from one or more of these sensors can be used to detect objects and their corresponding characteristics (position, shape, direction, speed, etc.). Such detection and identification are key functions for the safe operation of the autonomous vehicle 100.
  • the positioning system 122 can be used to estimate the geographic location of the vehicle 100.
  • the IMU 124 is used to sense changes in the position and orientation of the vehicle 100 based on inertial acceleration.
  • the IMU 124 may be a combination of an accelerometer and a gyroscope.
  • the radar 126 may use radio signals to sense objects in the surrounding environment of the vehicle 100. In some embodiments, in addition to sensing the object, the radar 126 may also be used to sense the speed and/or direction of the object.
  • the laser rangefinder 128 can use laser light to sense objects in the environment where the vehicle 100 is located.
  • the laser rangefinder 128 may include one or more laser sources, laser scanners, and one or more detectors, as well as other system components.
  • the camera 130 may be used to capture multiple images of the surrounding environment of the vehicle 100.
  • the camera 130 may be a still camera or a video camera.
  • the control system 106 controls the operation of the vehicle 100 and its components.
  • the control system 106 may include various components, including a steering system 132, a throttle 134, a braking unit 136, a sensor fusion algorithm 138, a computer vision system 140, a route control system 142, and an obstacle avoidance system 144.
  • the steering system 132 is operable to adjust the forward direction of the vehicle 100.
  • it can be a steering wheel system.
  • the throttle 134 is used to control the operating speed of the engine 118 and thereby control the speed of the vehicle 100.
  • the braking unit 136 is used to control the vehicle 100 to decelerate.
  • the braking unit 136 may use friction to slow down the wheels 121.
  • the braking unit 136 may convert the kinetic energy of the wheels 121 into electric current.
  • the braking unit 136 may also take other forms to slow down the rotation speed of the wheels 121 to control the speed of the vehicle 100.
  • the computer vision system 140 may be operable to process and analyze the images captured by the camera 130 in order to identify objects and/or features in the surrounding environment of the vehicle 100.
  • the objects and/or features may include traffic signals, road boundaries, and obstacles.
  • the computer vision system 140 may use object recognition algorithms, Structure from Motion (SFM) algorithms, video tracking, and other computer vision technologies.
  • SFM Structure from Motion
  • the computer vision system 140 may be used to map the environment, track objects, estimate the speed of objects, and so on.
  • the route control system 142 is used to determine the travel route of the vehicle 100.
  • the route control system 142 may combine data from the sensor 138, the GPS 122, and one or more predetermined maps to determine the driving route for the vehicle 100.
  • the obstacle avoidance system 144 is used to identify, evaluate and avoid or otherwise cross over potential obstacles in the environment of the vehicle 100.
  • control system 106 may add or alternatively include components other than those shown and described. Alternatively, a part of the components shown above may be reduced.
  • the vehicle 100 interacts with external sensors, other vehicles, other computer systems, or users through peripheral devices 108.
  • the peripheral device 108 may include a wireless communication system 146, an onboard computer (or display screen) 148, a microphone 150, and/or a speaker 152.
  • the peripheral device 108 provides a means for the user of the vehicle 100 to interact with the user interface 116.
  • the onboard computer (or display screen) 148 may provide information to the user of the vehicle 100.
  • the user interface 116 can also operate the on-board computer (or display screen) 148 to receive user input.
  • the on-board computer (or display screen) 148 can be operated through a touch screen.
  • the peripheral device 108 may provide a means for the vehicle 100 to communicate with other devices located in the vehicle.
  • the microphone 150 may receive audio (eg, voice commands or other audio input) from a user of the vehicle 100.
  • the speaker 152 may output audio to the user of the vehicle 100.
  • the wireless communication system 146 may wirelessly communicate with one or more devices directly or via a communication network.
  • the wireless communication system 146 may use 3G cellular communication, such as CDMA, EVDO, GSM/GPRS, or 4G cellular communication, such as LTE. Or 5G cellular communication.
  • the wireless communication system 146 may use WiFi to communicate with a wireless local area network (WLAN).
  • WLAN wireless local area network
  • the wireless communication system 146 may directly communicate with the device using an infrared link, Bluetooth, or ZigBee. Other wireless protocols, such as various vehicle communication systems.
  • the wireless communication system 146 may include one or more dedicated short-range communications (DSRC) devices. These devices may include communication between vehicles and/or roadside stations. Public and/or private data communication.
  • DSRC dedicated short-range communications
  • the power supply 110 may provide power to various components of the vehicle 100.
  • the power source 110 may be a rechargeable lithium ion or lead-acid battery.
  • One or more battery packs of such batteries may be configured as a power source to provide power to various components of the vehicle 100.
  • the power source 110 and the energy source 119 may be implemented together, such as in some all-electric vehicles.
  • the computer system 112 may include at least one processor 113 that executes instructions 115 stored in a non-transitory computer readable medium such as the data storage device 114.
  • the computer system 112 may also be multiple computing devices that control individual components or systems of the vehicle 100 in a distributed manner.
  • the processor 113 may be any conventional processor, such as a commercially available CPU. Alternatively, the processor may be a dedicated device such as an ASIC or other hardware-based processor.
  • FIG. 1F functionally illustrates the processor, memory, and other elements of the computer 110 in the same block, those of ordinary skill in the art should understand that the processor, computer, or memory may actually include Multiple processors, computers, or memories stored in the same physical enclosure.
  • the memory may be a hard disk drive or other storage medium located in a housing other than the computer 110. Therefore, a reference to a processor or computer will be understood to include a reference to a collection of processors or computers or memories that may or may not operate in parallel. Rather than using a single processor to perform the steps described here, some components such as steering components and deceleration components may each have its own processor that only performs calculations related to component-specific functions .
  • the processor may be located away from the vehicle and wirelessly communicate with the vehicle.
  • some of the processes described herein are executed on a processor arranged in the vehicle and others are executed by a remote processor, including taking the necessary steps to perform a single manipulation.
  • the data storage device 114 may include instructions 115 (eg, program logic), which may be executed by the processor 113 to perform various functions of the vehicle 100, including those functions described above.
  • the data storage device 114 may also contain additional instructions, including sending data to, receiving data from, interacting with, and/or performing data on one or more of the propulsion system 102, the sensor system 104, the control system 106, and the peripheral device 108. Control instructions.
  • the data storage device 114 may also store data, such as road maps, route information, the location, direction, and speed of the vehicle, and other such vehicle data, as well as other information. Such information may be used by the vehicle 100 and the computer system 112 during the operation of the vehicle 100 in autonomous, semi-autonomous, and/or manual modes.
  • the camera 130 may include a driver monitoring system (DMS) camera, a cockpit monitoring system (CMS) camera, and a rear-view camera located to obtain images of the rear vehicle.
  • DMS driver monitoring system
  • CMS cockpit monitoring system
  • the DMS camera is used to obtain an image of the driver's head
  • the CMS camera is used to obtain an image of the interior of the vehicle driven by the driver, and the image shows the driver's head.
  • the processor 113 obtains the spatial position of the driver's eyes based on the image obtained by the DMS camera and the image obtained by the CMS camera.
  • the user interface 116 is used to provide information to or receive information from a user of the vehicle 100.
  • the user interface 116 may include one or more input/output devices in the set of peripheral devices 108, such as a wireless communication system 146, an onboard computer (or display screen) 148, a microphone 150, and a speaker 152.
  • the computer system 112 may control the functions of the vehicle 100 based on input signals received from various systems (for example, the travel system 102, the sensor system 104, and the control system 106) and from the user interface 116. For example, the computer system 112 may use a signal from the control system 106 to control the steering unit 132 to avoid obstacles detected by the sensor system 104 and the obstacle avoidance system 144. In some embodiments, the computer system 112 provides control over many aspects of the vehicle 100 and its various systems.
  • one or more of these components described above may be installed or associated with the vehicle 100 separately.
  • the data storage device 114 may exist partially or completely separately from the vehicle 1100.
  • the aforementioned components may be communicatively coupled together in a wired and/or wireless manner.
  • FIG. 1F should not be construed as a limitation to the embodiment of the present invention.
  • An autonomous vehicle traveling on a road can recognize objects in its surrounding environment to determine the adjustment to the current speed.
  • the object may be other vehicles, traffic control equipment, or other types of objects.
  • each recognized object can be considered independently, and based on the respective characteristics of the object, such as its current speed, acceleration, distance from the vehicle, etc., can be used to determine the speed to be adjusted by the self-driving car.
  • the self-driving car vehicle 100 or the computing device associated with the self-driving vehicle 100 may be based on the characteristics of the identified object and the surrounding environment
  • the conditions e.g., traffic, rain, ice on the road, etc.
  • each recognized object depends on each other's behavior, so all recognized objects can also be considered together to predict the behavior of a single recognized object.
  • the vehicle 100 can adjust its speed based on the predicted behavior of the identified object.
  • an autonomous vehicle can determine what stable state the vehicle will need to adjust to (for example, accelerating, decelerating, or stopping) based on the predicted behavior of the object.
  • other factors may also be considered to determine the speed of the vehicle 100, such as the lateral position of the vehicle 100 on the road on which it is traveling, the curvature of the road, the proximity of static and dynamic objects, and so on.
  • the computing device can also provide instructions to modify the steering angle of the vehicle 100 so that the self-driving car follows a given trajectory and/or maintains an object near the self-driving car (for example, , The safe horizontal and vertical distances of cars in adjacent lanes on the road.
  • the above-mentioned vehicle 100 may be a vehicle that supports autonomous driving, for example, cars, trucks, motorcycles, buses, boats, airplanes, helicopters, lawn mowers, recreational vehicles, playground vehicles, construction equipment, trams, golf carts , Trains, and trolleys, etc., the embodiment of the present invention does not specifically limit.
  • FIG. 2 is a schematic flowchart of a method for indicating a map level according to an embodiment of the application. The method includes but is not limited to the following steps:
  • the server determines the first map level corresponding to the target vehicle according to the control parameter corresponding to the target vehicle.
  • the server can determine the first map level corresponding to the target vehicle according to the preset mapping relationship and the control parameter.
  • the control parameter includes the vehicle speed range, the vehicle acceleration range, the vehicle deceleration range, the vehicle automatic driving level, and the vehicle location.
  • the geographic environment classification may include one or more of urban road types, highway types, landscape types, and geographic terrain types.
  • the types of urban roads may include one or more of express roads, trunk roads, and branch roads.
  • the types of roads may include one or more of expressways, first-class roads, second-class roads, and third-class roads.
  • the first-level highway can be a highway that can be used for vehicles to divide and drive, and partly control access, and/or part of the three-dimensional intersection. It mainly connects important political and economic centers and leads to key industrial and mining areas. It is a national trunk highway. .
  • the four-lane first-class highway can generally adapt to the long-term design year of converting various cars into passenger cars.
  • the annual average day and night traffic volume is 15,000 to 30,000;
  • the six-lane first-class highway can generally adapt to the long-term design year of converting various cars into small passenger cars.
  • the average day and night traffic is 25,000-55,000 vehicles.
  • Secondary roads can be arterial roads connecting political and economic centers or large industrial and mining areas, or suburban roads with heavy transportation.
  • the secondary roads can generally be adapted to the long-term design life of various vehicles converted into medium-duty trucks, with an average annual traffic volume of 3000-7500 vehicles in day and night.
  • the tertiary road connects the general trunk roads of the county and the towns above the county level. Generally, it can adapt to various vehicles.
  • the third-level highway can generally adapt to the long-term design life of various vehicles converted into medium-sized trucks.
  • the annual average day and night traffic volume is 1,000 to 4,000.
  • the landscape type may include one or more of rural roads, suburban roads, urban roads, and urban roads.
  • the geographic terrain type may include one or more of plateaus, mountains, plains, basins, and hills.
  • Table 1 shows the above preset mapping relationship by taking the geographical environment classification as the road type as an example.
  • the server can determine that the first map level of the target vehicle is level two;
  • the vehicle speed range corresponding to the target vehicle is 30-80 km/h, the vehicle acceleration is 0.5-1.0 m/sec, and the auto-driving level of the vehicle is L1 or L2, similarly, the server can determine the first corresponding to the target vehicle.
  • the map level is level two.
  • control parameter may also include map element type and hardware configuration level.
  • the types of map elements may include one or more of lane lines, lane line gradients, lane curvatures, lane guidance, road boundaries, street lights, traffic lights, and traffic signs/billboards.
  • the traffic sign/billboard may be, for example, one or more of open, closed, two-way, one-way, speed limit, traffic limit, and number limit.
  • Each map level corresponds to some or all of the above-mentioned map element types, and the map element types corresponding to different map levels can be different.
  • the hardware configuration level may include: some or all of the first, second, and third levels. Each map level corresponds to some or all of the above hardware configuration levels, and the hardware configuration levels corresponding to different map levels can be different.
  • the hardware configuration corresponding to the target vehicle can be monocular camera, binocular camera or trinocular camera; when the hardware configuration level is level 2, the hardware configuration corresponding to the target vehicle can be Millimeter wave radar or ultrasonic radar; when the hardware configuration level is three, the hardware configuration level of the target vehicle can be 16-line lidar, 32-line lidar, or 64-line lidar.
  • control parameter is merely an example, and the embodiment of the present invention is not limited to this, and other types of control parameters may also be used in practical applications.
  • the landscape type can also include other landscape roads.
  • the geographic terrain type can also include other types.
  • the server sends the first message to the target vehicle-mounted system of the target vehicle.
  • the first message includes indication information of the first map level, and the first map level is indicated by the indication information.
  • the target vehicle-mounted system parses the first message, and determines that the first map level can be used according to the indication information of the first message.
  • the target vehicle-mounted system performs a control operation corresponding to the first map level.
  • control operation includes: the target vehicle-mounted system uses map data of a map accuracy level corresponding to the first map level; and/or, controlling the driving of the target vehicle according to the mapping relationship between the first map level and the driving parameters,
  • the driving parameter includes one or more of the vehicle speed range, the vehicle acceleration range, the vehicle deceleration range, the vehicle automatic driving level, and the vehicle hardware configuration level.
  • the target vehicle-mounted system determines the map accuracy level corresponding to the first map level according to the mapping relationship between the map level and the map accuracy level (for example, when the map level is level 1, the corresponding map accuracy level is also level 1), and obtains the The map element corresponding to the first map level (or the map accuracy level) is then obtained from the server and the map data corresponding to the map element (or the map accuracy level) is used.
  • the target vehicle system downloads the layout information of the traffic lights of the current driving road from the server, and then displays the traffic lights of the road on the target according to the layout information.
  • the display interface managed by the in-vehicle system.
  • the target vehicle-mounted system can control the driving of the target vehicle according to the mapping relationship between the map level and the driving parameter and the first map level. Specifically, after obtaining the value range of the driving parameter corresponding to the first map level, the The driving parameters of the target vehicle are controlled within this value range to achieve safe driving.
  • Table 2 shows the mapping relationship between map levels and driving parameters.
  • the target vehicle system can control the driving speed of the target vehicle in the range of 80-100 km/h, the acceleration control in the range of 1.0-3.0 m/s2, and the deceleration control In the range of 1.0-3.0 m/sq. sec, set the automatic driving level of the target vehicle to L1 and the hardware configuration level to level 1.
  • the server determines the map level of the target vehicle according to the control parameters corresponding to the target vehicle. Because the control parameters contain rich information related to the current driving conditions of the target vehicle, the map level obtained is even higher. Accurate; In addition, because the server has high computing power, it can quickly calculate the map level matching the current driving situation for the target vehicle system, so that the vehicle system can use the matching map level in time; then, the target vehicle system uses the The map data corresponding to the map level and/or control the driving of the target vehicle according to the map level, thereby improving driving safety.
  • FIG. 3 is a schematic flowchart of another method for indicating a map level according to an embodiment of the application.
  • the content of this embodiment that is the same as that of the embodiment shown in FIG. 2 will not be repeated here.
  • the method of this embodiment includes the following steps.
  • the server obtains the control parameter corresponding to the target vehicle according to the driving condition of the target vehicle.
  • the driving status may include the current driving status information and/or current driving status change information of the target vehicle, where the current driving status information is the driving status at the current moment, or within the most recent time period (such as 1 second) before the current moment. Or 1 minute) the average value of the driving situation; the current driving situation change information is the change between the current driving situation information and the driving situation information corresponding to a time period before the current time (for example, 1 second or 1 minute) the amount.
  • the driving status of the target vehicle is sent to the server by the target in-vehicle system, and/or sent to the server by the RSU. That is, the driving status of the target vehicle can be sent to the server by the target vehicle system, or the driving status of the target vehicle can be sent to the server by the RSU, or the driving status of the target vehicle can be sent to the server by the target vehicle system and the RSU, where:
  • the driving conditions of the target vehicle provided by the target vehicle system and the RSU to the server may be the same type of parameters or different types of parameters.
  • the server in addition to receiving the driving status of the target vehicle, can also receive the driving status of other vehicles uploaded by at least one other vehicle-mounted system within the scope of the server's management and/or the driving status of other vehicles uploaded by the RSU.
  • the server comprehensively obtains the control parameter of the target vehicle according to the driving status of the target vehicle and the driving status of the at least one other vehicle. That is, the driving conditions of the target vehicle and the driving conditions of multiple vehicles are combined to determine the global information of the road on which the target vehicle is traveling, and the control parameters of the target vehicle are determined according to the global information. The vehicle affected by the driving of the target vehicle.
  • the driving condition includes one or more of the speed, acceleration, deceleration, level of automatic driving, level of hardware configuration, and geographic environment classification of the vehicle.
  • the server determines the control parameter corresponding to the target vehicle according to the driving condition of the target vehicle. Specifically, the server may determine the control parameter of the target vehicle according to the value interval corresponding to each parameter included in the driving state of the target vehicle. Take obtaining the vehicle speed range as an example to illustrate the process of obtaining the control parameters corresponding to the target vehicle. As shown in Table 1, the vehicle speed range in the control parameters corresponding to the target vehicle is obtained according to the vehicle speed range interval in which the speed of the target vehicle falls.
  • the server determines the first map level corresponding to the target vehicle according to the control parameter corresponding to the target vehicle.
  • the server sends the first message to the target vehicle-mounted system of the target vehicle.
  • the target vehicle-mounted system executes a control operation corresponding to the first map level.
  • the server in this embodiment comprehensively obtains the global information of the road the target vehicle is traveling on according to the received driving status of at least one other vehicle, and determines the control parameters of the target vehicle based on the global information, which solves the problem of the on-board system's data collection ability Limited problem; because the control parameter contains rich information related to the current driving condition of the target vehicle, the map level obtained is more accurate; in addition, because the server has higher computing power, it can quickly calculate for the target vehicle system A map level that matches the current driving situation is generated so that the target on-board system can use the matched map level in time; moreover, the target on-board system uses the map data corresponding to the map level and/or controls the driving of the target vehicle to improve driving safety.
  • FIG. 4 is a schematic flowchart of another method for indicating a map level according to an embodiment of this application.
  • the content in this embodiment is the same as the embodiment shown in FIG. 2 and FIG. 3, and the description will not be repeated here.
  • the method includes the following steps.
  • the target vehicle-mounted system sends a request message to the server.
  • request message performs different request functions when the target in-vehicle system performs different request purposes.
  • the request message when used to request the server to indicate the map level, that is, the request message does not carry any map level indication information, the request message is used to request the server to send the map level to the target vehicle-mounted system.
  • the request message when the request message includes the indication information of the first map level, that is, when the target vehicle-mounted system reports to the server that it wants to use the first map level through the request message, the request message is used to request the server to provide information to the target vehicle-mounted system. Whether the system can use the first map level to confirm.
  • the request message when the request message includes the indication information of the second map level, that is, when the target vehicle-mounted system reports to the server that it wants to use the second map level through the request message, the request message is used to request the server to provide the target vehicle-mounted system. Whether the system can use the second map level to confirm.
  • the server determines the first map level corresponding to the target vehicle according to the control parameter corresponding to the target vehicle.
  • the server before determining the first map level, the server first obtains the control parameters corresponding to the target vehicle according to the driving condition of the target vehicle.
  • the control parameters corresponding to the target vehicle please refer to the description in 301 above, which will not be repeated.
  • the server sends the first message to the target vehicle-mounted system of the target vehicle.
  • the first message is used to indicate the first map level.
  • the target vehicle-mounted system After receiving the first message, the target vehicle-mounted system parses the first message, and determines it based on the indication information in the first message. Out to be able to use the first map level.
  • the first The message may indicate the first map level through the confirmation information, that is, the first message includes the confirmation information of the first map level, and the server indicates that the target vehicle-mounted system can use the first map level through the confirmation information.
  • the server determines that the on-board system that can be used by the target on-board system is the first map level, which is inconsistent with the map level that the target on-board system wants to use, so the first message
  • the server indicates through the indication information of the first map level that the target vehicle-mounted system cannot use the second map level, and the available map level is the first map level.
  • the target vehicle-mounted system performs a control operation corresponding to the first map level.
  • the implementation process of 404 can refer to the content described in 203 above, which is not described in detail here.
  • the target vehicle-mounted system in this embodiment can actively send a map request to the server, which improves the flexibility of the map service function.
  • the server has high computing power, it can respond to the request information in a timely manner; moreover, the server can respond to the request information in time according to the target vehicle.
  • the corresponding control parameters determine the map level of the target vehicle. Because the control parameters contain rich information related to the current driving conditions of the target vehicle, the resulting map level is more in line with the actual driving needs of the target vehicle; in addition, the target vehicle system Use the map data corresponding to the map level and/or control the driving of the target vehicle, thereby improving driving safety.
  • FIG. 5 is a schematic flowchart of another method for indicating a map level according to an embodiment of the application.
  • the content in this embodiment that is the same as the embodiment shown in FIG. 2, FIG. 3, and FIG. 4 will not be repeated here.
  • the method of this embodiment includes the following steps:
  • the server determines the first map level corresponding to the target vehicle according to the control parameter corresponding to the target vehicle.
  • the server determines the first map-level server corresponding to the target vehicle according to the control parameters corresponding to the target vehicle, the server first obtains the control parameters corresponding to the target vehicle according to the driving conditions of the target vehicle.
  • the control parameters For the detailed acquisition process of the control parameters, refer to the above The content described in 301 will not be described in detail.
  • the target vehicle-mounted system may first send a request message to the server.
  • the server may first send a request message to the server.
  • the server sends the first message to the target vehicle-mounted system of the target vehicle.
  • the specific implementation process in 503 can refer to the content described in 403, and will not be described in detail.
  • the target vehicle-mounted system performs a control operation corresponding to the first map level.
  • the server sends a map stop instruction to the target vehicle-mounted system.
  • the map stop instruction is used to instruct the target in-vehicle system to stop the use of the first map level.
  • the server in this embodiment determines the map level of the target vehicle according to the control parameters corresponding to the target vehicle. Because the control parameters contain rich information related to the current driving conditions of the target vehicle, the resulting map level is more consistent with The actual driving demand of the target vehicle; and, because the server has high computing power, it can quickly calculate the map level that matches the current driving situation for the target on-board system, improving the response speed of the map service function; in addition, the server actively shuts down the target The map service of the in-vehicle system can reduce the extra cost of the target in-vehicle system.
  • FIG. 6 is a schematic flowchart of another method for indicating a map level according to an embodiment of the application.
  • the content in this embodiment that is the same as the embodiment shown in FIG. 2, FIG. 3, FIG. 4, and FIG. 5 will not be repeated here.
  • the method of this embodiment includes the following steps:
  • the server determines the first map level corresponding to the target vehicle according to the control parameter corresponding to the target vehicle.
  • the server determines the first map-level server corresponding to the target vehicle according to the control parameters corresponding to the target vehicle, the server first obtains the control parameters corresponding to the target vehicle according to the driving conditions of the target vehicle.
  • the control parameters For the detailed acquisition process of the control parameters, see The content mentioned in 301 above will not be described in detail.
  • the target vehicle-mounted system may first send a request message to the server.
  • the server may first send a request message to the server.
  • the server sends the first message to the target vehicle-mounted system of the target vehicle.
  • the target vehicle-mounted system performs a control operation corresponding to the first map level.
  • the target in-vehicle system sends a map stop request message to the target in-vehicle system.
  • the map stop request message includes indication information of the first map level, and the map stop request message is used to request the server to confirm that the target vehicle system stops using the first map level.
  • the server sends a map stop instruction to the target vehicle-mounted system.
  • the map stop instruction is used to indicate that the target in-vehicle system is allowed to stop using the first map level.
  • the server determines the map level of the target vehicle according to the control parameters corresponding to the target vehicle. Because the control parameters contain rich information related to the current driving condition of the target vehicle, the map level obtained is It is more in line with the actual driving needs of the target vehicle; moreover, due to the high computing power of the server, it can quickly calculate the map level matching the current driving situation for the target on-board system, improving the response speed of map service functions and driving safety; in addition, , The target in-vehicle system can actively request the server to close the map service, thereby reducing the additional overhead of the target in-vehicle system.
  • the target vehicle-mounted system may also interact with the user and/or the server through vehicle-mounted terminals, wearable devices, and user equipment to achieve map-level use or stop.
  • the target vehicle-mounted system receives the first map level input by the user through the touch screen of the vehicle-mounted terminal. After receiving the first map level input by the user, the vehicle-mounted system uses the first map level and executes the map level corresponding to the first map level. Control operation; or, after receiving the input instruction information to stop the first map level, stop using the first map level.
  • the on-board system interacts with the user so that the user can autonomously control the use of the map level, thereby improving the user experience.
  • Fig. 7 is a structural block diagram of a server provided by an embodiment of the application. As shown in FIG. 7, the server 700 includes:
  • the processing module 701 is configured to determine the first map level corresponding to the target vehicle according to the control parameter corresponding to the target vehicle;
  • the transceiver module 702 is configured to send a first message to the target vehicle-mounted system of the target vehicle, the first message indicating the first map level.
  • the processing module 701 is specifically configured to:
  • the first map level corresponding to the target vehicle is determined according to the preset mapping relationship and the control parameter corresponding to the target vehicle, wherein the preset mapping relationship includes the relationship between the first map level and the control parameter Correspondence.
  • control parameter includes one or more of a vehicle speed range, a vehicle acceleration range, a vehicle deceleration range, a vehicle automatic driving level, and a geographic environment classification where the vehicle is located.
  • the processing module 701 before determining the first map level corresponding to the target vehicle according to the control parameters corresponding to the target vehicle, the processing module 701 is further configured to obtain the corresponding target vehicle according to the driving condition of the target vehicle. Control parameters.
  • the transceiver module 702 is further configured to receive the target vehicle uploaded by the roadside unit RSU before the processing module 701 determines the first map level corresponding to the target vehicle according to the control parameters corresponding to the target vehicle.
  • the processing module 701 is further configured to obtain the control parameter according to the driving status of the target vehicle uploaded by the RSU and/or the driving status of the target vehicle uploaded by the target on-board system.
  • the transceiver module 702 is also used to receive driving conditions of other vehicles uploaded by at least one other on-board system in addition to the target on-board system, where:
  • the processing module 701 is specifically configured to:
  • the first message is used to instruct the target vehicle-mounted system to perform a control operation corresponding to the first map level, where:
  • the control operation includes that the target vehicle-mounted system uses map data of a map accuracy level corresponding to the first map level; and/or,
  • the control operation includes the target on-board system controlling the driving of the target vehicle according to the mapping relationship between the first map level and driving parameters, where the driving parameters include: vehicle speed range, vehicle acceleration range, and vehicle deceleration One or more of range, vehicle autopilot level, and vehicle hardware configuration level.
  • the map data is provided to the target vehicle-mounted system in the server 700.
  • the transceiver module 702 is further configured to receive a request message sent by the target vehicle system before the processing module 701 determines the first map level corresponding to the target vehicle according to the control parameters corresponding to the target vehicle, Wherein, the request message is used to request the server to indicate the map level.
  • the transceiver module 702 is further configured to send a map stop instruction to the target vehicle-mounted system, where the map stop instruction is used to instruct the target vehicle-mounted system to stop using the first map level.
  • the transceiver module before sending a map stop instruction to the target on-board system, is further configured to receive a map stop request message sent by the target on-board system, where the map stop request message includes all Describes the indication information of the first map level.
  • the server 700 is presented in the form of a module.
  • the "module” here can refer to application-specific integrated circuits (ASICs), processors and memories that execute one or more software or firmware programs, integrated logic circuits, and/or other devices that can provide the above functions .
  • ASICs application-specific integrated circuits
  • the above processing module 701 and the transceiver module 702 may be implemented by the processor 901 of the server shown in FIG. 9.
  • Fig. 8 is an in-vehicle system provided by an embodiment of the application. As shown in Fig. 8, the vehicle-mounted system 800 includes:
  • the transceiver module 801 is configured to receive a first message sent by a server, where the first message indicates a first map level, and the first map level is determined according to a control parameter corresponding to the target vehicle to which the target vehicle system belongs ;
  • the processing module 802 is configured to perform a control operation corresponding to the first map level.
  • the first map level is determined by the server according to a preset mapping relationship and a control parameter corresponding to the target vehicle, wherein the preset mapping relationship includes the Correspondence between the first map level and the control parameter.
  • control parameter includes one or more of a vehicle speed range, a vehicle acceleration range, a vehicle deceleration range, a vehicle automatic control level, and a geographic environment classification where the vehicle is located.
  • control parameter is acquired by the server according to the driving condition of the target vehicle.
  • control parameter is acquired by the server according to the driving status of the target vehicle uploaded by the roadside unit RSU and/or the driving status of the target vehicle uploaded by the target on-board system Arrived.
  • control parameters are all uploaded by the server according to the driving status of at least one other vehicle, the driving status of the target vehicle uploaded by the RSU, and/or the target vehicle system.
  • the driving status of the target vehicle is acquired, wherein the driving status of the at least one other vehicle is uploaded to the server by at least one other vehicle-mounted system except the target vehicle-mounted system.
  • the processing module 802 is specifically configured to:
  • the driving parameters include: vehicle speed range, vehicle acceleration range, vehicle deceleration range, and vehicle automatic driving level , One or more of the vehicle hardware configuration levels.
  • the map data is obtained by the target vehicle-mounted system from the server.
  • the transceiver module 801 before receiving the first message sent by the server, is further configured to send a request message to the server, where the request message is used to request the server to indicate the map level.
  • the transceiver module 801 is further configured to receive a map stop instruction sent by the server;
  • the processing module 802 is further configured to stop the use of the first map level according to the map stop instruction.
  • the transceiver module 801 before receiving the map stop instruction sent by the server, the transceiver module 801 is further configured to send map stop request information to the server, where the map stop request message includes the first map level Instructions.
  • the in-vehicle system 800 is presented in the form of a module.
  • the "module” here can refer to application-specific integrated circuits (ASICs), processors and memories that execute one or more software or firmware programs, integrated logic circuits, and/or other devices that can provide the above functions .
  • ASICs application-specific integrated circuits
  • the above transceiver module 801 and processing module 802 can be implemented by the processor 1001 of the in-vehicle system shown in FIG. 10.
  • the server 900 may be implemented with the structure in FIG. 9.
  • the server 900 includes at least one processor 901, at least one memory 902 and at least one communication interface 903.
  • the processor 901, the memory 902, and the communication interface 903 are connected through the communication bus and complete mutual communication.
  • the processor 901 may be a general-purpose central processing unit (CPU), a microprocessor, an application-specific integrated circuit (ASIC), or one or more integrated circuits used to control the execution of the above program programs.
  • CPU central processing unit
  • ASIC application-specific integrated circuit
  • the communication interface 903 is used to communicate with other devices or communication networks, such as Ethernet, wireless access network (RAN), wireless local area network (Wireless Local Area Networks, WLAN), etc.
  • devices or communication networks such as Ethernet, wireless access network (RAN), wireless local area network (Wireless Local Area Networks, WLAN), etc.
  • the memory 902 may be a read-only memory (ROM) or other types of static storage devices that can store static information and instructions, random access memory (RAM), or other types that can store information and instructions
  • the dynamic storage device can also be electrically erasable programmable read-only memory (Electrically Erasable Programmable Read-Only Memory, EEPROM), CD-ROM (Compact Disc Read-Only Memory, CD-ROM) or other optical disc storage, optical disc storage (Including compact discs, laser discs, optical discs, digital versatile discs, Blu-ray discs, etc.), magnetic disk storage media or other magnetic storage devices, or can be used to carry or store desired program codes in the form of instructions or data structures and can be used by a computer Any other media accessed, but not limited to this.
  • the memory can exist independently and is connected to the processor through a bus.
  • the memory can also be integrated with the processor.
  • the memory 902 is used to store application program codes for executing the above solutions, and the processor 901 controls the execution.
  • the processor 901 is configured to execute application program codes stored in the memory 902.
  • the code stored in the memory 902 can execute a map level indication method executed by the server in any one of Figures 2 to 6, for example:
  • a first message is sent to the target in-vehicle system of the target vehicle, the first message indicating the first map level.
  • the vehicle-mounted system 1000 can be implemented with the structure shown in FIG. 10.
  • the vehicle-mounted system 1000 includes at least one processor 1001, at least one memory 1002 and at least one communication interface 1003.
  • the processor 1001, the memory 1002, and the communication interface 1003 are connected through the communication bus and complete mutual communication.
  • the processor 1001 may be a general-purpose central processing unit (CPU), a microprocessor, an application-specific integrated circuit (ASIC), or one or more integrated circuits for controlling the execution of the above program programs.
  • CPU central processing unit
  • ASIC application-specific integrated circuit
  • the communication interface 1003 is used to communicate with other devices or communication networks, such as Ethernet, wireless access network (RAN), wireless local area network (Wireless Local Area Networks, WLAN), etc.
  • devices or communication networks such as Ethernet, wireless access network (RAN), wireless local area network (Wireless Local Area Networks, WLAN), etc.
  • the memory 1002 may be a read-only memory (ROM) or other types of static storage devices that can store static information and instructions, random access memory (RAM), or other types that can store information and instructions
  • the dynamic storage device can also be electrically erasable programmable read-only memory (Electrically Erasable Programmable Read-Only Memory, EEPROM), CD-ROM (Compact Disc Read-Only Memory, CD-ROM) or other optical disc storage, optical disc storage (Including compact discs, laser discs, optical discs, digital versatile discs, Blu-ray discs, etc.), magnetic disk storage media or other magnetic storage devices, or can be used to carry or store desired program codes in the form of instructions or data structures and can be used by a computer Any other media accessed, but not limited to this.
  • the memory can exist independently and is connected to the processor through a bus.
  • the memory can also be integrated with the processor.
  • the memory 1002 is used to store application program codes for executing the above solutions, and the processor 1001 controls the execution.
  • the processor 1001 is configured to execute application program codes stored in the memory 1002.
  • the code stored in the memory 1002 can execute the map level indication method executed by the target vehicle-mounted system in any of the above Figures 2-6, such as:
  • An embodiment of the present invention further provides a computer storage medium, wherein the computer storage medium may store a program, and the program includes part or all of the steps of any map level indication method recorded in the above method embodiment when the program is executed.
  • the disclosed methods may be implemented as computer program instructions encoded on a computer-readable storage medium in a machine-readable format or encoded on other non-transitory media or articles.
  • Figure 11 schematically illustrates a conceptual partial view of an example computer program product arranged in accordance with at least some of the embodiments presented herein, the example computer program product comprising a computer program for executing a computer process on a computing device.
  • the example computer program product 1100 is provided using a signal bearing medium 1101.
  • the signal-bearing medium 1101 may include one or more program instructions 1102, which, when run by one or more processors, can provide the functions or part of the functions described above with respect to FIGS. 2-6.
  • the program instructions 1102 in FIG. 11 also describe example instructions.
  • the signal-bearing medium 1101 may include a computer-readable medium 1703, such as, but not limited to, a hard disk drive, compact disk (CD), digital video compact disk (DVD), digital tape, memory, read-only storage memory (Read -Only Memory, ROM) or Random Access Memory (RAM), etc.
  • the signal bearing medium 1101 may include a computer recordable medium 1104 such as, but not limited to, memory, read/write (R/W) CD, R/W DVD, and so on.
  • the signal-bearing medium 1101 may include a communication medium 1705, such as, but not limited to, digital and/or analog communication media (eg, fiber optic cables, waveguides, wired communication links, wireless communication links, etc.). Therefore, for example, the signal-bearing medium 1101 may be communicated by a wireless communication medium 1105 (for example, a wireless communication medium that complies with the IEEE 802.11 standard or other transmission protocols).
  • the one or more program instructions 1102 may be, for example, computer-executable instructions or logic-implemented instructions.
  • a computing device such as that described with respect to FIGS.
  • the program instructions 1102 of the computing device provide various operations, functions, or actions. It should be understood that the arrangement described here is for illustrative purposes only. Thus, those skilled in the art will understand that other arrangements and other elements (for example, machines, interfaces, functions, sequences, and functional groups, etc.) can be used instead, and some elements can be omitted altogether depending on the desired result . In addition, many of the described elements are functional entities that can be implemented as discrete or distributed components, or combined with other components in any appropriate combination and position.
  • the disclosed device may be implemented in other ways.
  • the device embodiments described above are merely illustrative, for example, the division of the units is only a logical function division, and there may be other divisions in actual implementation, for example, multiple units or components may be combined or may be Integrate into another system, or some features can be ignored or not implemented.
  • the displayed or discussed mutual coupling or direct coupling or communication connection may be indirect coupling or communication connection through some interfaces, devices or units, and may be in electrical or other forms.
  • the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, they may be located in one place, or they may be distributed on multiple network units. Some or all of the units may be selected according to actual needs to achieve the objectives of the solutions of the embodiments.
  • the functional units in the various embodiments of the present invention may be integrated into one processing unit, or each unit may exist alone physically, or two or more units may be integrated into one unit.
  • the above-mentioned integrated unit can be implemented in the form of hardware or software functional unit.
  • the integrated unit is implemented in the form of a software functional unit and sold or used as an independent product, it can be stored in a computer readable memory.
  • the technical solution of the present invention essentially or the part that contributes to the existing technology or all or part of the technical solution can be embodied in the form of a software product, and the computer software product is stored in a memory, A number of instructions are included to enable a computer device (which may be a personal computer, a server, or a network device, etc.) to perform all or part of the steps of the method described in each embodiment of the present invention.
  • the aforementioned memory includes: U disk, read-only memory (ROM, Read-Only Memory), random access memory (RAM, Random Access Memory), mobile hard disk, magnetic disk or optical disk and other media that can store program codes.
  • the program can be stored in a computer-readable memory, and the memory can include: a flash disk , Read-only memory (English: Read-Only Memory, abbreviation: ROM), random access device (English: Random Access Memory, abbreviation: RAM), magnetic disk or optical disk, etc.

Landscapes

  • Engineering & Computer Science (AREA)
  • Remote Sensing (AREA)
  • Radar, Positioning & Navigation (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Databases & Information Systems (AREA)
  • Theoretical Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Data Mining & Analysis (AREA)
  • Traffic Control Systems (AREA)
  • Control Of Driving Devices And Active Controlling Of Vehicle (AREA)
  • Navigation (AREA)

Abstract

一种地图级别指示方法、地图级别获取方法及相关产品,方法包括:服务器(20)根据目标车辆(100)对应的控制参数确定目标车辆(100)对应的第一地图级别;服务器(20)向目标车辆(100)的目标车载系统(10)发送第一消息,第一消息指示第一地图级别,有利于提高驾驶安全。

Description

地图级别指示方法、地图级别获取方法及相关产品
本申请要求于2019年09月25日提交中国专利局、申请号为201910915973.0、申请名称为“地图级别指示方法、地图级别获取方法及相关产品”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本发明涉及智能汽车领域,具体涉及一种地图级别指示方法、地图级别获取方法及相关产品。
背景技术
车辆行驶时,车载系统根据车辆的行驶状况确定对应的地图级别,根据地图级别下载相应的地图数据,以保持安全的驾驶,故在车辆的行驶状况发生明显的变化时,例如地理范围的明显改变、车辆速度太快、或速度变化太快等等,就需要及时地改变地图级别。但是,车载系统的数据处理能力相对较低或较慢,不能及时根据车辆行驶状况的变化信息改变地图级别,导致可能会使用与当前行驶状况不匹配的地图级别,从而影响交通安全。
发明内容
本申请提供了一种地图级别指示方法、地图级别获取方法及相关产品,以提升驾驶安全。
第一方面,本申请实施例提供一种地图级别指示方法,包括:
服务器根据目标车辆对应的控制参数确定所述目标车辆对应的第一地图级别;
所述服务器向目标车辆的目标车载系统发送第一消息,所述第一消息指示所述第一地图级别。
第二方面,本申请实施例提供一种地图级别获取方法,包括:
目标车载系统接收服务器发送的第一消息,其中,所述第一消息指示第一地图级别,所述第一地图级别是根据所述目标车载系统所属的目标车辆对应的控制参数确定的;
所述目标车载系统执行与所述第一地图级别对应的控制操作。
在本实施方案中,服务器根据目标车辆对应的控制参数确定该目标车辆对应的第一地图级别,由于服务器对行驶状况的处理速度以及处理能力高于车载系统,可以快速为车载系统计算出匹配的地图级别,保证车载系统可以及时地使用到匹配的地图级别,由于车载系统使用该匹配的第一地图级别,并根据该第一地图级别执行控制操作,进而提升了驾驶安全。
本实施例的方法可以由服务器执行,也可以由服务器中的芯片执行。本实施例中以服务器为例进行说明。进一步的,本实施例中的服务器可以是地图服务器,或者是云端服务器。
可选的,本实施例的方法中,所述服务器根据目标车辆对应的控制参数确定所述目标车辆对应的第一地图级别之前,还包括:
所述服务器接收RSU上传的所述目标车辆的行驶状况和/或所述目标车载系统上传的 所述目标车辆的行驶状况;
所述服务器根据所述RSU上传的所述目标车辆的行驶状况和/或所述目标车载系统上传的所述目标车辆的行驶状况获取所述目标车辆对应的控制参数。
本实施例中,服务器可接收到RSU和/或目标车载系统上传的目标车辆的行驶状况,从而可以全方位的获取到目标车辆当前的行驶状况,确保获取到的控制参数更加符合目标车辆当前的行驶状况,进而使得确定出的第一地图级别与目标车辆当前的行驶状况更加匹配,从而保证目标车载系统使用与匹配的第一地图级别,进而提升驾驶安全。
进一步的,本实施例的方法中,还包括:
所述服务器还接收除所述目标车载系统之外的至少一个其他车载系统上传的其他车辆的行驶状况,
所述服务器根据所述其他车辆的行驶状况,所述RSU上传的所述目标车辆的行驶状况和/或所述目标车载系统上传的所述目标车辆的行驶状况,获取所述目标车辆对应的控制参数。
在本实施方案中,服务器可接收到RSU和/或目标车载系统上传的目标车辆的行驶状以及其他车载系统上传的其他车辆的行驶状况,根据多个车辆的行驶状况综合确定目标车辆的控制参数,从而使该控制参数中包含了目标车辆所行驶道路的全局信息,进而使得确定出的第一地图级别与目标车辆当前的行驶状况更加匹配,从而保证目标车载系统在使用第一地图级别控制目标车辆行驶时,提升了驾驶安全。
在一些可能的实施方式中,所述服务器根据所述目标车辆对应的控制参数确定所述目标车辆对应的第一地图级别,包括:
所述服务器根据预先设置的映射关系以及所述目标车辆对应的控制参数,确定所述目标车辆对应的第一地图级别,其中,所述预先设置的映射关系包括所述第一地图级别与所述控制参数的对应关系。
在本实施方案中,服务器可通过预置的映射关系快速确定出第一地图级别,提高服务器执行地图服务功能的响应速度。
在一些可能的实施方式中,所述控制参数包括:车辆速度范围、车辆加速度范围、车辆减速度范围、车辆自动驾驶级别、车辆所处地理环境分类中的一个或者多个。
在本实施方案中,控制参数包含有丰富的车辆行驶状况信息,服务器根据上述控制参数确定出的第一地图级别更加符合目标车辆的实际行驶需求,进而提高驾驶安全。
例如,控制参数中的车辆速度范围包含车速信息,车辆所处地理环境分类包含道路条件信息,在车速比较慢、道路比较拥挤或堵塞的实际情况下,服务器会确定出较高的地图级别,指示车载系统使用该地图级别对应的较高精度的地图数据,避免车辆发生近距离的交通事故;再如,车辆所处地理环境分类包含了目标车辆当前行驶道路的类型,由于不同类型的道路所能容纳的交通量以及道路设施不同,所以,即使目标车辆的行驶速度一样,但行驶在不同类型的道路时,所需要的地图级别也是不同的,因此,本实施方案中服务器确定出的第一地图级别更加符合目标车辆的实际行驶需求。
在一些可能的实施方式中,所述服务器根据目标车辆对应的控制参数确定所述目标车辆对应的第一地图级别之前,所述方法还包括:
所述服务器根据所述目标车辆的行驶状况获取所述目标车辆对应的控制参数。
在一些可能的实施方式中,所述第一消息用于指示所述目标车载系统执行与所述第一地图级别对应的控制操作。
相应的,所述目标车载系统执行与所述第一地图级别对应的控制操作,包括:
所述目标车载系统使用与所述第一地图级别对应的地图精度级别的地图数据;和/或,
所述目标车载系统根据所述第一地图级别与行驶参数的映射关系控制所述目标车辆的行驶,其中,所述行驶参数包括:车辆速度范围、车辆加速度范围、车辆减速度范围、车辆自动驾驶级别、车辆硬件配置级别中的一个或者多个。
在本实施方案中,由于服务器确定出的第一地图级别符合目标车辆的实际行驶需求,所以,目标车载系统根据该第一地图级别执行对应的控制操作,控制目标车辆的行驶,从而提高目标车辆行驶时的安全性,进而提升交通安全。
在一些可能的实施方式中,所述地图数据是所述服务器提供给所述目标车载系统的。
相应的,所述地图数据是所述目标车载系统从所述服务器中获取的。
在一些可能的实施方式中,所述服务器根据目标车辆对应的控制参数确定所述目标车辆对应的第一地图级别之前,所述方法还包括:
所述服务器接收所述目标车载系统发送的请求消息,其中,所述请求消息用于请求所述服务器指示地图级别。
相应的,所述目标车载系统接收服务器发送的第一消息之前,所述方法还包括:
所述目标车载系统向所述服务器发送请求消息,其中,所述请求消息用于请求所述服务器指示地图级别。
在本实施方案中,目标车载系统主动向服务器发送请求消息,服务器在接收到请求消息后,及时响应该请求消息,向目标车载系统下发匹配的地图级别,从而使目标车载系统可使用与行驶状况匹配的地图级别,并控制目标车辆的行驶,进而提升了驾驶安全。
在一些可能的实施方式中,所述服务器根据目标车辆对应的控制参数确定所述目标车辆对应的第一地图级别之前,所述方法还包括:
所述服务器接收所述目标车载系统发送的请求消息,所述请求消息包括所述第一地图级别的指示信息;
其中,所述第一消息通过确认信息指示所述第一地图级别。
相应的,所述目标车载系统接收服务器发送的第一消息之前,所述方法还包括:
所述目标车载系统向所述服务器发送请求消息,所述请求消息包括所述第一地图级别的指示信息;
其中,所述第一消息通过确认信息指示所述第一地图级别。
在本实施方案中,目标车载系统主动向服务器上报自己想要使用的地图级别,从而提高目标车载系统使用地图服务功能的灵活性;而且,服务器根据目标车辆的控制参数确定目标车载系统实际上可以使用的地图级别,而目标车载系统在接收到自己实际上可以使用的地图级别后,根据该地图级别来控制目标车辆的行驶,进而保证目标车辆行驶的安全性。
在一些可能的实施方式中,所述服务器根据目标车辆对应的控制参数确定所述目标车辆对应的第一地图级别之前,还包括:
所述服务器接收所述目标车载系统发送的请求消息,所述请求消息包括第二地图级别的指示信息;
其中,所述第一消息通过所述第一地图级别的指示信息以响应所述请求消息。
相应的,所述目标车载系统接收服务器发送的第一消息之前,还包括:
所述目标车载系统向所述服务器发送请求消息,所述请求消息包括第二地图级别的指示信息;
其中,所述第一消息通过所述第一地图级别的指示信息以响应所述请求消息。
在本实施方案中,目标车载系统可以主动向服务器上报自己想要使用的地图级别,从而提高目标车载系统使用地图服务功能的灵活性;而且,服务器根据目标车辆的控制参数确定目标车载系统实际上可以使用的地图级别,基于该地图级别确定目标车载系统是否能够使用自己想要的地图级别,而目标车载系统在接收到自己实际上可以使用的地图级别后,根据该地图级别来控制目标车辆的行驶,进而保证目标车辆行驶的安全性。
在一些可能的实施方式中,所述方法还包括:
所述服务器向所述目标车载系统发送地图停止指示,所述地图停止指示用于指示所述目标车载系统停止所述第一地图级别的使用。
相应的,本实施方式中,所述方法还包括:
所述目标车载系统接收所述服务器发送的地图停止指示;
所述目标车载系统根据所述地图停止指示停止所述第一地图级别的使用。
在本实施方案中,服务器主动指示目标车载系统停止使用地图级别,即在目标车载系统不需要地图服务功能时,及时关闭对目标车载系统的地图服务,目标车载系统在接收到地图停止指示后,及时停止使用第一地图级别,从而减少额外开销(如可减少地使用地图服务功能时的费用)。
在一些可能的实施方式中,所述服务器向所述目标车载系统发送地图停止指示之前,所述方法还包括:
所述服务器接收所述目标车载系统发送的地图停止请求消息,所述地图停止请求消息包括所述第一地图级别的指示信息。
相应的,所述目标车载系统接收所述服务器发送的地图停止指示之前,所述方法还包括:
所述目标车载系统向所述服务器发送地图停止请求信息,所述地图停止请求消息包括所述第一地图级别的指示信息。
在本实施方案中,目标车载系统可以主动向服务器请求停止使用地图级别,即请求关闭对目标车载系统的地图服务功能,增加了地图服务功能使用时的灵活性;然后,服务器接收到地图停止请求,如确定出目标车载系统当前确实不需要使用地图服务时,停止对目标车载系统的地图服务,目标车载系统在接收到地图停止指示后,及时停止使用第一地图级别,从而减少额外开销(如可减少地使用地图服务功能时的费用)。
第三方面,本申请实施例提供一种服务器,包括:
处理模块,用于根据目标车辆对应的控制参数确定所述目标车辆对应的第一地图级别;
收发模块,用于向所述目标车辆的目标车载系统发送第一消息,所述第一消息指示所 述第一地图级别。
在一些可能的实施方式中,在根据所述目标车辆对应的控制参数确定所述目标车辆对应的第一地图级别方面,所述处理模块,具体用于:
根据预先设置的映射关系以及所述目标车辆对应的控制参数,确定所述目标车辆对应的第一地图级别,其中,所述预先设置的映射关系包括所述第一地图级别与所述控制参数的对应关系。
在一些可能的实施方式中,所述控制参数包括:车辆速度范围、车辆加速度范围、车辆减速度范围、车辆自动驾驶级别、车辆所处地理环境分类中的一个或者多个。
在一些可能的实施方式中,在根据目标车辆对应的控制参数确定所述目标车辆对应的第一地图级别之前,所述处理模块,还用于根据所述目标车辆的行驶状况获取所述目标车辆对应的控制参数。
在一些可能的实施方式中,所述收发模块,在所述处理模块根据目标车辆对应的控制参数确定所述目标车辆对应的第一地图级别之前,还用于接收路边单元RSU上传的所述目标车辆的行驶状况和/或所述目标车载系统上传的所述目标车辆的行驶状况;以及
所述处理模块,还用于根据所述RSU上传的所述目标车辆的行驶状况和/或所述目标车载系统上传的所述目标车辆的行驶状况获取所述控制参数。
在一些可能的实施方式中,所述收发模块,还用于还接收除所述目标车载系统之外的至少一个其他车载系统上传的其他车辆的行驶状况,其中,
在根据所述RSU上传的所述目标车辆的行驶状况和/或所述目标车载系统上传的所述目标车辆的行驶状况获取所述控制参数方面,所述处理模块,具体用于:
根据所述至少一个其他车辆的行驶状况,以及所述RSU上传的所述目标车辆的行驶状况和/或所述目标车载系统上传的所述目标车辆的行驶状况,获取所述控制参数。
在一些可能的实施方式中,所述第一消息用于指示所述目标车载系统执行与所述第一地图级别对应的控制操作,其中,
所述控制操作包括所述目标车载系统使用与所述第一地图级别对应的地图精度级别的地图数据;和/或,
所述控制操作包括所述目标车载系统根据所述第一地图级别与行驶参数的映射关系控制所述目标车辆的行驶,所述行驶参数包括:车辆速度范围、车辆加速度范围、车辆减速度范围、车辆自动驾驶级别、车辆硬件配置级别中的一个或者多个。
在一些可能的实施方式中,所述地图数据是所述服务器提供给所述目标车载系统的。
在一些可能的实施方式中,在根据目标车辆对应的控制参数确定所述目标车辆对应的第一地图级别之前,所述收发模块,还用于接收所述目标车载系统发送的请求消息,其中,所述请求消息用于请求所述服务器指示地图级别。
在一些可能的实施方式中,在向所述目标车载系统发送地图停止指示之前,所述收发模块,还用于接收所述目标车载系统发送的地图停止请求消息,所述地图停止请求消息包括所述第一地图级别的指示信息。
第四方面,本申请实施例提供一种车载系统,包括:
收发模块,用于接收服务器发送的第一消息,其中,所述第一消息指示第一地图级别, 所述第一地图级别是根据所述目标车载系统所属的目标车辆对应的控制参数确定的;
处理模块,用于执行与所述第一地图级别对应的控制操作。
在一些可能的实施方式中,所述第一地图级别是由所述服务器根据预先设置的映射关系以及所述目标车辆对应的控制参数所确定的,其中,所述预先设置的映射关系包括所述第一地图级别与所述控制参数的对应关系。
在一些可能的实施方式中,所述控制参数包括:车辆速度范围、车辆加速度范围、车辆减速度范围、车辆自动控制级别、车辆所处地理环境分类中的一个或者多个。
在一些可能的实施方式中,所述控制参数是根据所述目标车辆的行驶状况所获取的。
在一些可能的实施方式中,所述控制参数是由所述服务器根据路边单元RSU上传的所述目标车辆的行驶状况和/或所述目标车载系统上传的所述目标车辆的行驶状况所获取到的。
在一些可能的实施方式中,所述控制参数是由所述服务器根据至少一个其他车辆的行驶状况,以及所述RSU上传的所述目标车辆的行驶状况和/或所述目标车载系统上传的所述目标车辆的行驶状况所获取到的,其中,所述至少一个其他车辆的行驶状况是由除所述目标车载系统之外的至少一个其他车载系统上传给所述服务器的。
在一些可能的实施方式中,在执行与所述第一地图级别对应的控制操作方面,所述处理模块,具体用于:
使用与所述第一地图级别对应的地图精度级别的地图数据;
和/或,根据所述第一地图级别与行驶参数的映射关系控制所述目标车辆的行驶,其中,所述行驶参数包括:车辆速度范围、车辆加速度范围、车辆减速度范围、车辆自动驾驶级别、车辆硬件配置级别中的一个或者多个。
在一些可能的实施方式中,所述地图数据是所述目标车载系统从所述服务器中获取的。
在一些可能的实施方式中,在接收服务器发送的第一消息之前,所述收发模块,还用于向所述服务器发送请求消息,其中,所述请求消息用于请求所述服务器指示地图级别。
在一些可能的实施方式中,所述收发模块,还用于接收所述服务器发送的地图停止指示;
所述处理模块,还用于根据所述地图停止指示停止所述第一地图级别的使用。
在一些可能的实施方式中,在接收所述服务器发送的地图停止指示之前,所述收发模块,还用于向所述服务器发送地图停止请求信息,所述地图停止请求消息包括所述第一地图级别的指示信息。
第五方面,本申请实施例提供一种装置,包括:存储器,用于存储程序;处理器,用于执行存储器存储的程序,当存储器存储的程序被执行时,处理器用于执行第一方面或第二方面中的至少一种方法。
第六方面,本申请实施例提供一种计算机可读存储介质,该计算机可读存储介质存储设备可执行的程序代码,该程序代码被该设备执行时,用于实现第一方面或第二方面中的至少一种方法。
第七方面,本申请实施例提供一种包含指令的计算机程序产品,当该计算机程序产品在计算机上运行时,使得计算机执行上述第一方面、第二方面中的至少一种方法。
第八方面,本申请实施例提供一种芯片,所述芯片包括处理器与数据接口,所述处理器通过所述数据接口读取存储器上存储的指令,执行第一方面或第二方面中的至少一种方法。
可选地,作为一种实现方式,所述芯片还可以包括存储器,所述存储器中存储有指令,所述处理器用于执行所述存储器上存储的指令,当所述指令被执行时,所述处理器用于执行第一方面或第二方面中的至少一种方法。
第九方面,提供一种电子设备,该电子设备包括上述第三方面中的服务器或第六方面中的车载系统。
本发明的这些方面或其他方面在以下实施例的描述中会更加简明易懂。
附图说明
图1A为本申请实施例提供的一种地图服务的场景示意图;
图1B为本申请实施例提供的一种地图服务系统的结构示意图;
图1C为本申请实施例提供的一种服务器的结构示意图;
图1D为本申请实施例提供的另一种服务器的结构示意图;
图1E为本申请实施例提供的另一种地图服务系统的结构示意图;
图1F为本申请实施例提供的一种自动驾驶汽车的结构示意图;
图2为本申请实施例提供的一种地图级别指示方法的流程示意图;
图3为本申请实施例提供的另一种地图级别指示方法的流程示意图;
图4为本申请实施例提供的又一种地图级别指示方法的流程示意图;
图5为本申请实施例提供的又一种地图级别指示方法的流程示意图;
图6为本申请实施例提供的又一种地图级别指示方法的流程示意图;
图7为本申请实施例提供的一种服务器的结构示意图;
图8为本申请实施例提供的一种车载系统的结构示意图;
图9为本申请实施例提供的另一种服务器的结构示意图;
图10为本申请实施例提供的另一种车载系统的结构示意图;
图11为本申请实施例提供的一种计算机程序产品的结构示意图。
具体实施方式
下面结合附图对本申请的实施例进行描述。
现有车辆在行驶时,车载系统会收集车辆的行驶状况信息,根据车辆的行驶状况来确定地图级别,再使用与该地图级别对应的电子地图,下载/更新与该地图级别对应的地图数据,以进行安全的驾驶。故在车辆的行驶状况发生明显的变化时,就需要及时地的改变地图级别,及时地下载/更新地图数据。
需要说明的是,车载系统数据收集能力相对较局部、较局限,所以,在车辆的行驶状况变化较快时,例如地理范围的明显改变、车辆速度太快、或速度变化太快等等,车载系统不能及时的收集到车辆的行驶状况,故而无法及时地确定与当前行驶状况相对应的地图级别;另外,由于车载系统的数据处理能力也相对较低、较慢,当车辆速度太快、或速度 变化太快超过了车载系统的硬件或软件能力所能够对应的速度范围或速度变化范围时,则无法及时响应车辆的行驶状况的变化,
因此,由于车载系统数据收集能力以及处理能力的限制,导致车载系统使用与当前行驶状况不匹配的地图级别,从而无法获取到准确的路况信息,进而影响交通安全。
参阅图1A,图1A为本申请实施例提供的一种地图服务的场景示意图,包括云端、宽带网络(LTE/5G)和智能网联车辆,其中,云端包括云端服务器、地图服务器,具有高精度的地图服务功能;智能网联车辆包括各种类型车辆(各种自动驾驶级别或者自动驾驶等级)、车载软件(计算平台)和硬件(摄像头、雷达、芯片、终端);智能网联车辆通过宽带网络访问云端,以获取云端服务器或地图服务器提供的准确的地图级别,并获取云端服务器或地图服务器提供的高精度地图数据,实现安全驾驶;并且智能网联车辆之间还通过摄像头、雷达、宽带网络获得彼此的行驶状况信息,并提供给云端服务器或地图服务器,以获得更加及时准确的地图级别和地图数据。
参阅图1B,图1B为本申请实施例提供的一种地图服务系统的架构示意图,包括服务器20和目标车载系统10;
其中,服务器20包括地图服务器201和/或云端服务器202,其中,地图服务器201和/云端服务器202具有相同或者不同的服务功能。
如图1C所示,当云端服务器不具备地图服务功能时,云端服务器202可作为信息交互的载体,以实现目标车载系统10与地图服务器201的信息交互,从地图服务器201中获取地图数据;如图1D所示,当云端服务器202具备地图服务功能后,目标车载系统10可以直接与地图服务器201和/或云端服务器202进行信息交互,从地图服务器201或云端服务器202中获取地图数据。
目标车载系统10包括目标车辆100。
对于地图级别指示来说,服务器20根据目标车辆100对应的控制参数确定目标车辆100对应的第一地图级别,并通过宽带网络向目标车载系统10发送第一消息,通过该第一消息指示目标车载系统10可以使用第一地图级别。
参阅图1E,地图服务系统还包括路边单元30(Road Side Unit,RSU),路边单元30获取目标车辆100的行驶状况,并将该行驶状况通过上述宽带网络发送给服务器20,以便服务器20根据该行驶状况确定目标车辆100对应的控制参数。
在一些可能的实施方式中,目标车载系统10将目标车辆100配置为完全或部分地自动驾驶模式。例如,目标车辆100可以在处于自动驾驶模式中的同时控制自身,并且可通过人为操作来确定车辆及其周边环境的当前状况,确定周边环境中的至少一个其他车辆的行驶状况或可能行为,并确定至少一个其他车辆执行可能行为的可能性相对应的置信水平,基于所确定的信息来控制目标车辆100。
参阅图1F,车辆100可包括各种系统,例如行进系统1201、传感器系统1202、控制系统1203、一个或多个外围设备108以及电源110、计算机系统112和用户接口116。可选地,车辆100可包括更多或更少的系统,并且每个系统可包括多个元件。另外,车辆100的每个系统和元件可以通过有线或者无线互连。
行进系统102可包括为车辆100提供动力运动的组件。在一个实施例中,推进系统102可包括引擎118、能量源119、传动装置120和车轮/轮胎121。引擎118可以是内燃引擎、电动机、空气压缩引擎或其他类型的引擎组合,例如汽油发动机和电动机组成的混动引擎,内燃引擎和空气压缩引擎组成的混动引擎。引擎118将能量源119转换成机械能量。
能量源119的示例包括汽油、柴油、其他基于石油的燃料、丙烷、其他基于压缩气体的燃料、乙醇、太阳能电池板、电池和其他电力来源。能量源119也可以为车辆100的其他系统提供能量。
传动装置120可以将来自引擎118的机械动力传送到车轮121。传动装置120可包括变速箱、差速器和驱动轴。在一个实施例中,传动装置120还可以包括其他器件,比如离合器。其中,驱动轴可包括可耦合到一个或多个车轮121的一个或多个轴。
传感器系统104可包括感测关于车辆100周边的环境的信息的若干个传感器。例如,传感器系统104可包括定位系统122(定位系统可以是GPS系统,也可以是北斗系统或者其他定位系统)、惯性测量单元(inertial measurement unit,IMU)124、雷达126、激光测距仪128以及相机130。传感器系统104还可包括被监视车辆100的内部系统的传感器(例如,车内空气质量监测器、燃油量表、机油温度表等)。来自这些传感器中的一个或多个的传感器数据可用于检测对象及其相应特性(位置、形状、方向、速度等)。这种检测和识别是自主车辆100的安全操作的关键功能。
定位系统122可用于估计车辆100的地理位置。IMU 124用于基于惯性加速度来感测车辆100的位置和朝向变化。在一个实施例中,IMU 124可以是加速度计和陀螺仪的组合。
雷达126可利用无线电信号来感测车辆100的周边环境内的物体。在一些实施例中,除了感测物体以外,雷达126还可用于感测物体的速度和/或前进方向。
激光测距仪128可利用激光来感测车辆100所位于的环境中的物体。在一些实施例中,激光测距仪128可包括一个或多个激光源、激光扫描器以及一个或多个检测器,以及其他系统组件。
相机130可用于捕捉车辆100的周边环境的多个图像。相机130可以是静态相机或视频相机。
控制系统106为控制车辆100及其组件的操作。控制系统106可包括各种元件,其中包括转向系统132、油门134、制动单元136、传感器融合算法138、计算机视觉系统140、路线控制系统142以及障碍物避免系统144。
转向系统132可操作来调整车辆100的前进方向。例如可以为方向盘系统。
油门134用于控制引擎118的操作速度并进而控制车辆100的速度。
制动单元136用于控制车辆100减速。制动单元136可使用摩擦力来减慢车轮121。在其他实施例中,制动单元136可将车轮121的动能转换为电流。制动单元136也可采取其他形式来减慢车轮121转速从而控制车辆100的速度。
计算机视觉系统140可以操作来处理和分析由相机130捕捉的图像以便识别车辆100周边环境中的物体和/或特征。所述物体和/或特征可包括交通信号、道路边界和障碍物。计算机视觉系统140可使用物体识别算法、运动中恢复结构(Structure from Motion,SFM)算法、视频跟踪和其他计算机视觉技术。在一些实施例中,计算机视觉系统140可以用于为 环境绘制地图、跟踪物体、估计物体的速度等等。
路线控制系统142用于确定车辆100的行驶路线。在一些实施例中,路线控制系统142可结合来自传感器138、GPS 122和一个或多个预定地图的数据以为车辆100确定行驶路线。
障碍物避免系统144用于识别、评估和避免或者以其他方式越过车辆100的环境中的潜在障碍物。
当然,在一个实例中,控制系统106可以增加或替换地包括除了所示出和描述的那些以外的组件。或者也可以减少一部分上述示出的组件。
车辆100通过外围设备108与外部传感器、其他车辆、其他计算机系统或用户之间进行交互。外围设备108可包括无线通信系统146、车载电脑(或显示屏)148、麦克风150和/或扬声器152。
在一些实施例中,外围设备108提供车辆100的用户与用户接口116交互的手段。例如,车载电脑(或显示屏)148可向车辆100的用户提供信息。用户接口116还可操作车载电脑(或显示屏)148来接收用户的输入。车载电脑(或显示屏)148可以通过触摸屏进行操作。在其他情况中,外围设备108可提供用于车辆100与位于车内的其它设备通信的手段。例如,麦克风150可从车辆100的用户接收音频(例如,语音命令或其他音频输入)。类似地,扬声器152可向车辆100的用户输出音频。
无线通信系统146可以直接地或者经由通信网络来与一个或多个设备进行无线通信。例如,无线通信系统146可使用3G蜂窝通信,例如CDMA、EVD0、GSM/GPRS,或者4G蜂窝通信,例如LTE。或者5G蜂窝通信。无线通信系统146可利用WiFi与无线局域网(wireless local area network,WLAN)通信。在一些实施例中,无线通信系统146可利用红外链路、蓝牙或ZigBee与设备直接通信。其他无线协议,例如各种车辆通信系统,例如,无线通信系统146可包括一个或多个专用短程通信(dedicated short range communications,DSRC)设备,这些设备可包括车辆和/或路边站台之间的公共和/或私有数据通信。
电源110可向车辆100的各种组件提供电力。在一个实施例中,电源110可以为可再充电锂离子或铅酸电池。这种电池的一个或多个电池组可被配置为电源为车辆100的各种组件提供电力。在一些实施例中,电源110和能量源119可一起实现,例如一些全电动车中那样。
车辆100的部分或所有功能受计算机系统112控制。计算机系统112可包括至少一个处理器113,处理器113执行存储在例如数据存储装置114这样的非暂态计算机可读介质中的指令115。计算机系统112还可以是采用分布式方式控制车辆100的个体组件或系统的多个计算设备。
处理器113可以是任何常规的处理器,诸如商业可获得的CPU。替选地,该处理器可以是诸如ASIC或其它基于硬件的处理器的专用设备。尽管图1F功能性地图示了处理器、存储器、和在相同块中的计算机110的其它元件,但是本领域的普通技术人员应该理解该处理器、计算机、或存储器实际上可以包括可以或者可以不存储在相同的物理外壳内的多个处理器、计算机、或存储器。例如,存储器可以是硬盘驱动器或位于不同于计算机110的外壳内的其它存储介质。因此,对处理器或计算机的引用将被理解为包括对可以或者可以 不并行操作的处理器或计算机或存储器的集合的引用。不同于使用单一的处理器来执行此处所描述的步骤,诸如转向组件和减速组件的一些组件每个都可以具有其自己的处理器,所述处理器只执行与特定于组件的功能相关的计算。
在此处所描述的各个方面中,处理器可以位于远离该车辆并且与该车辆进行无线通信。在其它方面中,此处所描述的过程中的一些在布置于车辆内的处理器上执行而其它则由远程处理器执行,包括采取执行单一操纵的必要步骤。
在一些实施例中,数据存储装置114可包含指令115(例如,程序逻辑),指令115可被处理器113执行来执行车辆100的各种功能,包括以上描述的那些功能。数据存储装置114也可包含额外的指令,包括向推进系统102、传感器系统104、控制系统106和外围设备108中的一个或多个发送数据、从其接收数据、与其交互和/或对其进行控制的指令。
除了指令115以外,数据存储装置114还可存储数据,例如道路地图、路线信息,车辆的位置、方向、速度以及其它这样的车辆数据,以及其他信息。这种信息可在车辆100在自主、半自主和/或手动模式中操作期间被车辆100和计算机系统112使用。
相机130可以包括驾驶员监控系统(driver monitoring system,DMS)摄像头、座舱监控系统(cockpit monitoring system,CMS)摄像头及位于获取后车图像的后视摄像头。DMS摄像头用于获取驾驶员的头部图像,CMS摄像头用于获取该驾驶员所驾驶车辆内部的图像,该图像显示有驾驶员的头部。处理器113基于DMS摄像头获取的图像和CMS摄像头获取的图像得到驾驶员人眼的空间位置。
用户接口116,用于向车辆100的用户提供信息或从其接收信息。可选地,用户接口116可包括在外围设备108的集合内的一个或多个输入/输出设备,例如无线通信系统146、车载电脑(或显示屏)148、麦克风150和扬声器152。
计算机系统112可基于从各种系统(例如,行进系统102、传感器系统104和控制系统106)以及从用户接口116接收的输入信号来控制车辆100的功能。例如,计算机系统112可利用来自控制系统106的信号控制转向单元132来避免由传感器系统104和障碍物避免系统144检测到的障碍物。在一些实施例中,计算机系统112对车辆100及其各种系统的许多方面提供控制。
可选地,上述这些组件中的一个或多个可与车辆100分开安装或关联。例如,数据存储装置114可以部分或完全地与车辆1100分开存在。上述组件可以按有线和/或无线方式来通信地耦合在一起。
可选地,上述组件只是一个示例,实际应用中,上述各个模块中的组件有可能根据实际需要增添或者删除,图1F不应理解为对本发明实施例的限制。
在道路行进的自动驾驶汽车,如上面的车辆100,可以识别其周围环境内的物体以确定对当前速度的调整。所述物体可以是其它车辆、交通控制设备、或者其它类型的物体。在一些示例中,可以独立地考虑每个识别的物体,并且基于物体的各自的特性,诸如它的当前速度、加速度、与车辆的间距等,可以用来确定自动驾驶汽车所要调整的速度。
可选地,自动驾驶汽车车辆100或者与自动驾驶车辆100相关联的计算设备(如图1F的计算机系统112、计算机视觉系统140、数据存储装置114)可以基于所识别的物体的特性和周围环境的状况(例如,交通、雨、道路上的冰、等等)来预测所述识别的物体的行为。 可选地,每一个所识别的物体都依赖于彼此的行为,因此还可以将所识别的所有物体全部一起考虑来预测单个识别的物体的行为。车辆100能够基于预测的所述识别的物体的行为来调整它的速度。换句话说,自动驾驶汽车能够基于所预测的物体的行为来确定车辆将需要调整到(例如,加速、减速、或者停止)什么稳定状态。在这个过程中,也可以考虑其它因素来确定车辆100的速度,诸如,车辆100在行驶的道路中的横向位置、道路的曲率、静态和动态物体的接近度等等。
除了提供调整自动驾驶汽车的速度的指令之外,计算设备还可以提供修改车辆100的转向角的指令,以使得自动驾驶汽车遵循给定的轨迹和/或维持与自动驾驶汽车附近的物体(例如,道路上的相邻车道中的轿车)的安全横向和纵向距离。
上述车辆100可以为支持自动驾驶的车辆,例如,轿车、卡车、摩托车、公共汽车、船、飞机、直升飞机、割草机、娱乐车、游乐场车辆、施工设备、电车、高尔夫球车、火车、和手推车等,本发明实施例不做特别的限定。
图2为本申请实施例提供的一种地图级别指示方法的流程示意图,该方法包括但不限于以下步骤:
201:服务器根据目标车辆对应的控制参数确定目标车辆对应的第一地图级别。
进一步的,服务器可以根据预先设置的映射关系以及该控制参数,确定目标车辆对应的第一地图级别,该控制参数包括车辆速度范围、车辆加速度范围、车辆减速度范围、车辆自动驾驶级别、车辆所处地理环境分类中的一个或者多个。
地理环境分类可以包括:城市道路类型、公路类型、景观类型和地理地形类型中的一种或多种。
城市道路类型可以包括:快速路、主干路和支路中的一种或多种。
公路类型可以包括:高速公路、一级公路、二级公路和三级公路中的一种或多种。其中,一级公路可以为能够供汽车分向以及分车道行驶,并部分控制出入,和/或部分立体交叉的公路,主要连接重要政治、经济中心,通往重点工矿区,是国家的干线公路。四车道一级公路一般能适应按各种汽车折合成小客车的远景设计年平均昼夜交通量为15000~30000辆;六车道一级公路一般能适应按各种汽车折合成小客车的远景设计年平均昼夜交通量为25000~55000辆。二级公路可以为连接政治、经济中心或大工矿区等地的干线公路,或运输繁忙的城郊公路。二级公路一般能适应按各种车辆折合成中型载重汽车的远景设计年限年平均昼夜交通量为3000~7500辆。三级公路沟通县及县以上城镇的一般干线公路。通常能适应各种车辆行驶,三级公路一般能适应按各种车辆折合成中型载重汽车的远景设计年限年平均昼夜交通量为1000~4000辆。
景观类型可以包括:乡村道路、郊区道路、城市道路和都市道路中的一种或多种。
地理地形类型可以包括:高原、山地、平原、盆地和丘陵中的一种或多种。
表1以地理环境分类为公路类型为例示出了上述预先设置的映射关系。
Figure PCTCN2020116532-appb-000001
Figure PCTCN2020116532-appb-000002
表1
举例来说,当目标车辆对应的车辆速度范围为30~80公里/小时,车辆加速度为0.5~1.0米/平方秒时,则服务器可确定目标车辆的第一地图级别为二级;又如,当目标车辆对应的车辆速度范围为30~80公里/小时,车辆加速度为0.5~1.0米/平方秒,且车辆自动驾驶级别为L1或L2时,同样地,服务器可确定目标车辆对应的第一地图级别为二级。
在一些可能的实施方式中,该控制参数还可以包括地图元素类型和硬件配置级别。
地图元素类型可以包括:车道线、车道线坡度、车道曲率、车道导向、道路边界、路灯、交通信号灯、以及交通标志牌/公告牌中的一种或多种。其中,交通标志牌/公告牌例如可以是开放、封闭、双向、单向、限速、限行、以及限号等中的一种或多种。每个地图级别对应上述地图元素类型中的部分或者全部,不同的地图级别对应的地图元素类型可以不同。
硬件配置级别可以包括:一级、二级和三级中的部分或全部。每个地图级别对应上述硬件配置级别中的部分或者全部,不同的地图级别对应的硬件配置级别可以不同。
举例来说,当硬件配置级别为一级时,目标车辆对应的硬件配置可以为单目摄像头、双目摄像头或者三目摄像头;当硬件配置级别为二级时,目标车辆对应的硬件配置可以为毫米波雷达或者超声波雷达;当硬件配置级别为三级时,目标车辆的硬件配置级别可以为16线激光雷达、32线激光雷达或者64线激光雷达。
需要说明的是,上述控制参数的具体形式仅为举例说,本发明实施例并不限于此,在实际应用中还可采用其他类型的控制参数。例如,景观类型还可以包括其他景观道路。地理地形类型也可以包括其他的类型。
202:服务器向目标车辆的目标车载系统发送第一消息。
该第一消息包括第一地图级别的指示信息,通过该指示信息指示第一地图级别。
进一步地,目标车载系统在接收到第一消息后,解析第一消息,通过第一消息的指示信息确定出能够使用第一地图级别。
203:目标车载系统执行与所述第一地图级别对应的控制操作。
可选的,该控制操作包括:目标车载系统使用与第一地图级别对应的地图精度级别的地图数据;和/或,根据第一地图级别与行驶参数的映射关系控制所述目标车辆的行驶,其中,该行驶参数包括:车辆速度范围、车辆加速度范围、车辆减速度范围、车辆自动驾驶级别、车辆硬件配置级别中的一个或者多个。
具体来说,目标车载系统根据地图级别与地图精度级别的映射关系确定第一地图级别对应的地图精度级别(例如,地图级别为一级时,对应的地图精度级别也为一级),获取该第一地图级别(或者该地图精度级别)对应的地图元素,然后,从服务器中获取与该地图元素对应的(或者该地图精度级别)地图数据,并使用该地图数据。
举例来说,如第一地图级别对应的地图元素包括交通信号灯时,目标车载系统从服务 器中下载当前行驶道路的交通信号灯的布局信息,然后,根据该布局信息将该道路的交通信号灯显示在目标车载系统所管理的显示界面所显示的电子地图上。
进一步地,目标车载系统可根据地图级别与行驶参数的映射关系以及第一地图级别来控制目标车辆的行驶,具体来说,在得到与第一地图级别对应的行驶参数的取值范围后,将目标车辆的行驶参数控制在该取值范围,实现安全驾驶。
表2示出了地图级别与行驶参数的映射关系。
Figure PCTCN2020116532-appb-000003
表2
举例来说,如第一地图级别为一级,目标车载系统可将目标车辆的行驶速度控制在80~100公里/小时范围内,加速度控制在1.0~3.0米/平方秒范围内,减速度控制在1.0~3.0米/平方秒范围内,将目标车辆的自动驾驶级别设定为L1,硬件配置级别设定为一级。
可以看出,本实施例方案中服务器根据目标车辆对应的控制参数确定目标车辆的地图级别,由于该控制参数包含有丰富的与目标车辆的当前行驶状况相关的信息,从而使得到的地图级别更加精确;另外,由于服务器具有较高的运算能力,可快速为目标车载系统计算出与当前行驶状况匹配的地图级别,以便车载系统能够及时使用到匹配的地图级别;然后,目标车载系统使用与该地图级别对应的地图数据和/或根据该地图级别控制目标车辆的行驶,进而提升驾驶的安全性。
图3为本申请实施例提供的另一种地图级别指示方法的流程示意图。该实施例中与图2所示的实施例相同的内容,此处不再重复描述。本实施例的方法包括以下步骤。
301:服务器根据目标车辆的行驶状况获取目标车辆对应的控制参数。
该行驶状况可以包括目标车辆的当前行驶状况信息和/或当前行驶状况变化信息,其中,该当前行驶状况信息为当前时刻的行驶状况、或者当前时刻之前的最近的一个时间段内(比如1秒或者1分钟)的行驶状况的平均值;该当前行驶状况变化信息为当前行驶状况信息与当前时刻之前的一个时间段(比如1秒或者1分钟)所对应的时刻的行驶状况信息之间的变化量。
在一些可能的实施方式中,目标车辆的行驶状况由目标车载系统发送给服务器,和/或,由RSU发送给服务器。即,目标车辆的行驶状况可以由目标车载系统发送给服务器,或者,目标车辆的行驶状况可以由RSU发送给服务器,或者,目标车辆的行驶状况可以由目标车载系统和RSU发送给服务器,其中,目标车载系统和RSU提供给服务器的目标车辆的行驶状况可以是相同类型的参数,也可以是不同类型的参数。
在一些可能的实施方式中,服务器除了会接收到目标车辆的行驶状况,还可接收到该服务器所管理范围内的至少一个其他车载系统上传的其他车辆的行驶状况和/或接收到RSU上传的至少一个其他车辆的行驶状况,服务器根据目标车辆的行驶状况以及至少一个 其他车辆的行驶状况综合得到目标车辆的控制参数。即,综合目标车辆的行驶状况与多个车辆的行驶状况确定目标车辆所行驶道路的全局信息,根据该全局信息确定目标车辆的控制参数,其中,该多个车辆为该至少一个其他车辆中对目标车辆行驶造成影响的车辆。
其中,行驶状况包括车辆的速度大小、加速度大小、减速度大小、自动驾驶级别、硬件配置级别、车辆所处地理环境分类中的一个或多个。
进一步地,服务器根据目标车辆的行驶状况确定该目标车辆对应的控制参数。具体的,服务器可以根据目标车辆的行驶状态中包括的各个参数对应的取值区间确定目标车辆的控制参数。以得到车辆速度范围为例说明得到目标车辆对应的控制参数的过程,如表1所示,根据目标车辆的速度大小落入的车辆速度范围区间,得到目标车辆对应的控制参数中车辆速度范围。
302:服务器根据目标车辆对应的控制参数确定目标车辆对应的第一地图级别。
其中,302的实现过程可参见上述201中所述内容,在此不做详细叙述。
303:服务器向目标车辆的目标车载系统发送第一消息。
304:目标车载系统执行与第一地图级别对应的控制操作。
其中,304的实现过程可参见上述203中所述内容,在此不做详细叙述。
可以看出,本实施方案中服务器根据接收到的至少一个其他车辆的行驶状况,综合得到目标车辆所行驶道路的全局信息,根据该全局信息确定目标车辆的控制参数,解决了车载系统收集数据能力有限的问题;由于该控制参数包含有丰富的与目标车辆的当前行驶状况相关的信息,从而使得到的地图级别更加精确;另外,由于服务器具有较高的运算能力,可快速为目标车载系统计算出与当前行驶状况匹配的地图级别,以便目标车载系统能够及时的使用到匹配的地图级别;而且,目标车载系统使用该地图级别对应的地图数据和/或控制目标车辆的行驶,进而提升驾驶的安全性。
图4为本申请实施例提供的另一种地图级别指示方法的流程示意图,该实施例中与图2和图3所示的实施例相同的内容,此处不再重复描述。该方法包括以下步骤。
401:目标车载系统向服务器发送请求消息。
可以理解,该请求消息在目标车载系统执行不同请求目的时,所起的请求功能不同。
可选的,当该请求消息用于请求服务器指示地图级别时,即该请求消息中不携带任何地图级别的指示信息,则该请求消息用于请求服务器向目标车载系统发送地图级别。
可选的,当该请求消息包括第一地图级别的指示信息时,即目标车载系统通过该请求消息向服务器上报自己想要使用第一地图级别时,则该请求消息用于请求服务器对目标车载系统能否使用第一地图级别进行确认。
可选的,当该请求消息包括第二地图级别的指示信息时,即目标车载系统通过该请求消息向服务器上报自己想要使用第二地图级别时,则该请求消息用于请求服务器对目标车载系统能否使用第二地图级别进行确认。
402:服务器根据目标车辆对应的控制参数确定目标车辆对应的第一地图级别。
可选的,在确定出第一地图级别之前,服务器先根据目标车辆的行驶状况获取目标车辆对应的控制参数,实现过程可参见上述301中所述,不再赘述。
403:服务器向目标车辆的目标车载系统发送第一消息。
当上述请求消息不携带地图级别的指示信息时,该第一消息用于指示第一地图级别,目标车载系统在接收到第一消息后,解析第一消息,通过第一消息中的指示信息确定出能够使用第一地图级别。
当上述请求信息包括第一地图级别的指示信息时,由于服务器确定出目标车载系统所能使用的地图级别也为第一地图级别,与目标车载系统自己想要使用的地图级别一致,所以第一消息可以通过确认信息指示该第一地图级别,即第一消息包括第一地图级别的确认信息,服务器通过该确认信息指示目标车载系统可以使用第一地图级别。
当上述请求信息包括第二地图级别的指示信息时,由于服务器确定出目标车载系统所能使用的车载系统为第一地图级别,与目标车载系统自己想要使用的地图级别不一致,所以第一消息通过第一地图级别的指示信息来响应该请求消息,即服务器通过该第一地图级别的指示信息指示目标车载系统不能使用第二地图级别,其能使用的地图级别为第一地图级别。
404:目标车载系统执行与第一地图级别对应的控制操作。
其中,404的实现过程可参见上述203中所述内容,在此不做详细叙述。
可以看出,本实施方案中目标车载系统可主动向服务器发送地图请求,提高了地图服务功能的灵活性,由于服务器具有较高的运算能力,可及时响应该请求信息;而且,服务器根据目标车辆对应的控制参数确定目标车辆的地图级别,由于该控制参数包含有丰富的与目标车辆的当前行驶状况相关的信息,从而使得到的地图级别更加符合目标车辆的实际行驶需求;另外,目标车载系统使用该地图级别对应的地图数据和/或控制目标车辆的行驶,进而提升驾驶的安全性。
图5为本申请实施例提供的另一种地图级别指示方法的流程示意图。该实施例中与图2、图3以及图4所示的实施例相同的内容,此处不再重复描述。本实施例的方法包括以下步骤:
501:服务器根据目标车辆对应的控制参数确定目标车辆对应的第一地图级别。
需要说明的是,在服务器根据目标车辆对应的控制参数确定目标车辆对应的第一地图级别服务器之前,服务器先根据目标车辆的行驶状况获取目标车辆对应的控制参数,控制参数的详细获取过程参见上述301中所述内容,不再详细叙述。
此外,在服务器根据目标车辆的行驶状况获取目标车辆对应的控制参数之前,目标车载系统可以先向服务器发送请求消息,具体参见上述401中所述内容。
502:服务器向目标车辆的目标车载系统发送第一消息。
其中,503中的具体实现过程可以参见403中所述的内容,不再详细叙述。
503:目标车载系统执行与所述第一地图级别对应的控制操作。
其中,304的实现过程可参见上述203中所述内容,在此不做详细叙述。
504:服务器向目标车载系统发送地图停止指示。
该地图停止指示用于指示目标车载系统停止第一地图级别的使用。
可以看出,本实施方案中服务器根据目标车辆对应的控制参数确定目标车辆的地图级别,由于该控制参数包含有丰富的与目标车辆的当前行驶状况相关的信息,从而使得到的地图级别更加符合目标车辆的实际行驶需求;而且,由于服务器具有较高的运算能力,可 快速为目标车载系统计算出与当前行驶状况匹配的地图级别,提高地图服务功能的响应速度;另外,服务器主动关闭对目标车载系统的地图服务,可减少目标车载系统的额外开销。
图6为本申请实施例提供的另一种地图级别指示方法的流程示意图。该实施例中与图2、图3、图4以及图5所示的实施例相同的内容,此处不再重复描述。本实施例的方法包括以下步骤:
601:服务器根据目标车辆对应的控制参数确定目标车辆对应的第一地图级别。
需要说明的是,在服务器根据目标车辆对应的控制参数确定目标车辆对应的第一地图级别服务器之前,服务器先根据目标车辆的行驶状况获取目标车辆对应的控制参数,其控制参数的详细获取过程参见上述301中所述内容,不再详细叙述。
此外,在服务器根据目标车辆的行驶状况获取目标车辆对应的控制参数之前,目标车载系统可以先向服务器发送请求消息,具体参见上述401中所述内容,不再详细叙述。
602:服务器向目标车辆的目标车载系统发送第一消息。
603:目标车载系统执行与第一地图级别对应的控制操作。
其中,304的实现过程可参见上述203中所述内容,在此不做详细叙述。
604:目标车载系统向目标车载系统发送地图停止请求消息。
该地图停止请求消息包括第一地图级别的指示信息,该地图停止请求消息用于请求服务器对目标车载系统停止使用第一地图级别进行确认。
605:服务器向目标车载系统发送地图停止指示。
该地图停止指示用于指示允许目标车载系统停止使用第一地图级别。
可以看出,在本实施方案中,服务器根据目标车辆对应的控制参数确定目标车辆的地图级别,由于该控制参数包含有丰富的与目标车辆的当前行驶状况相关的信息,从而使得到的地图级别更加符合目标车辆的实际行驶需求;而且,由于服务器具有较高的运算能力,可快速为目标车载系统计算出与当前行驶状况匹配的地图级别,提高地图服务功能的响应速度,以及驾驶安全;另外,目标车载系统可主动向服务器请求关闭地图服务,从而减少目标车载系统的额外开销。
在一些可能的实施方式中,目标车载系统还可以通过车载终端、可穿戴设备、用户设备与用户和/或服务器进行信息交互,以实现地图级别的使用或停止。
例如,目标车载系统接收用户通过车载终端的触摸屏输入的第一地图级别,车载系统在接收到用户输入的第一地图级别后,使用该第一地图级别,并执行与该第一地图级别对应的控制操作;或者,接收输入的停止第一地图级别的指示信息后,停止使用该第一地图级别。
可以看出,在本实施方案中,通过车载系统与用户的交互,以便用户自主地控制地图级别的使用,进而提高用户的体验。
图7为本申请实施例提供的一种服务器的结构框图。如图7所示,服务器700,包括:
处理模块701,用于根据目标车辆对应的控制参数确定所述目标车辆对应的第一地图级别;
收发模块702,用于向所述目标车辆的目标车载系统发送第一消息,所述第一消息指示所述第一地图级别。
在一些可能的实施方式中,在根据所述目标车辆对应的控制参数确定所述目标车辆对应的第一地图级别方面,处理模块701,具体用于:
根据预先设置的映射关系以及所述目标车辆对应的控制参数,确定所述目标车辆对应的第一地图级别,其中,所述预先设置的映射关系包括所述第一地图级别与所述控制参数的对应关系。
在一些可能的实施方式中,所述控制参数包括:车辆速度范围、车辆加速度范围、车辆减速度范围、车辆自动驾驶级别、车辆所处地理环境分类中的一个或者多个。
在一些可能的实施方式中,在根据目标车辆对应的控制参数确定所述目标车辆对应的第一地图级别之前,处理模块701,还用于根据所述目标车辆的行驶状况获取所述目标车辆对应的控制参数。
在一些可能的实施方式中,收发模块702,在处理模块701根据目标车辆对应的控制参数确定所述目标车辆对应的第一地图级别之前,还用于接收路边单元RSU上传的所述目标车辆的行驶状况和/或所述目标车载系统上传的所述目标车辆的行驶状况;以及
处理模块701,还用于根据所述RSU上传的所述目标车辆的行驶状况和/或所述目标车载系统上传的所述目标车辆的行驶状况获取所述控制参数。
在一些可能的实施方式中,收发模块702,还用于接收除所述目标车载系统之外的至少一个其他车载系统上传的其他车辆的行驶状况,其中,
在根据所述RSU上传的所述目标车辆的行驶状况和/或所述目标车载系统上传的所述目标车辆的行驶状况获取所述控制参数方面,处理模块701,具体用于:
根据所述至少一个其他车辆的行驶状况,以及所述RSU上传的所述目标车辆的行驶状况和/或所述目标车载系统上传的所述目标车辆的行驶状况,获取所述控制参数。
在一些可能的实施方式中,所述第一消息用于指示所述目标车载系统执行与所述第一地图级别对应的控制操作,其中,
所述控制操作包括所述目标车载系统使用与所述第一地图级别对应的地图精度级别的地图数据;和/或,
所述控制操作包括所述目标车载系统根据所述第一地图级别与行驶参数的映射关系控制所述目标车辆的行驶,其中,所述行驶参数包括:车辆速度范围、车辆加速度范围、车辆减速度范围、车辆自动驾驶级别、车辆硬件配置级别中的一个或者多个。
在一些可能的实施方式中,所述地图数据是服务器700中提供给所述目标车载系统的。
在一些可能的实施方式中,收发模块702,在处理模块701根据目标车辆对应的控制参数确定所述目标车辆对应的第一地图级别之前,还用于接收所述目标车载系统发送的请求消息,其中,所述请求消息用于请求所述服务器指示地图级别。
在一些可能的实施方式中,收发模块702,还用于向所述目标车载系统发送地图停止指示,所述地图停止指示用于指示所述目标车载系统停止所述第一地图级别的使用。
在一些可能的实施方式中,在向所述目标车载系统发送地图停止指示之前,所述收发模块,还用于接收所述目标车载系统发送的地图停止请求消息,所述地图停止请求消息包括所述第一地图级别的指示信息。
在本实施例中,服务器700是以模块的形式来呈现。这里的“模块”可以指特定应用集 成电路(application-specific integrated circuit,ASIC),执行一个或多个软件或固件程序的处理器和存储器,集成逻辑电路,和/或其他可以提供上述功能的器件。此外,以上处理模块701和收发模块702可通过图9所示的服务器的处理器901来实现。
图8为本申请实施例提供的一种车载系统。如图8所示,车载系统800,包括:
收发模块801,用于接收服务器发送的第一消息,其中,所述第一消息指示第一地图级别,所述第一地图级别是根据所述目标车载系统所属的目标车辆对应的控制参数确定的;
处理模块802,用于执行与所述第一地图级别对应的控制操作。
在一些可能的实施方式中,所述第一地图级别是由所述服务器根据预先设置的映射关系以及所述目标车辆对应的控制参数所确定的,其中,所述预先设置的映射关系包括所述第一地图级别与所述控制参数的对应关系。
在一些可能的实施方式中,所述控制参数包括:车辆速度范围、车辆加速度范围、车辆减速度范围、车辆自动控制级别、车辆所处地理环境分类中的一个或者多个。
在一些可能的实施方式中,所述控制参数是由所述服务器根据所述目标车辆的行驶状况所获取的。
在一些可能的实施方式中,所述控制参数是由所述服务器根据路边单元RSU上传的所述目标车辆的行驶状况和/或所述目标车载系统上传的所述目标车辆的行驶状况所获取到的。
在一些可能的实施方式中,所述控制参数是由所述服务器根据至少一个其他车辆的行驶状况,以及所述RSU上传的所述目标车辆的行驶状况和/或所述目标车载系统上传的所述目标车辆的行驶状况所获取到的,其中,所述至少一个其他车辆的行驶状况是由除所述目标车载系统之外的至少一个其他车载系统上传给所述服务器的。
在一些可能的实施方式中,在执行与所述第一地图级别对应的控制操作方面,处理模块802,具体用于:
使用与所述第一地图级别对应的地图精度级别的地图数据;
和/或,根据所述第一地图级别与行驶参数的映射关系控制所述目标车辆的行驶,其中,所述行驶参数包括:车辆速度范围、车辆加速度范围、车辆减速度范围、车辆自动驾驶级别、车辆硬件配置级别中的一个或者多个。
在一些可能的实施方式中,所述地图数据是所述目标车载系统从所述服务器中获取的。
在一些可能的实施方式中,在接收服务器发送的第一消息之前,收发模块801,还用于向所述服务器发送请求消息,其中,所述请求消息用于请求所述服务器指示地图级别。
在一些可能的实施方式中,收发模块801,还用于接收所述服务器发送的地图停止指示;
处理模块802,还用于根据所述地图停止指示停止所述第一地图级别的使用。
在一些可能的实施方式中,在接收所述服务器发送的地图停止指示之前,收发模块801,还用于向所述服务器发送地图停止请求信息,所述地图停止请求消息包括所述第一地图级别的指示信息。
在本实施例中,车载系统800是以模块的形式来呈现。这里的“模块”可以指特定应用集成电路(application-specific integrated circuit,ASIC),执行一个或多个软件或固件程序的 处理器和存储器,集成逻辑电路,和/或其他可以提供上述功能的器件。此外,以上收发模块801和处理模块802可通过图10所示的车载系统的处理器1001来实现。
如图9所示服务器900可以以图9中的结构来实现,该服务器900包括至少一个处理器901,至少一个存储器902以及至少一个通信接口903。所述处理器901、所述存储器902和所述通信接口903通过所述通信总线连接并完成相互间的通信。
处理器901可以是通用中央处理器(CPU),微处理器,特定应用集成电路(application-specific integrated circuit,ASIC),或一个或多个用于控制以上方案程序执行的集成电路。
通信接口903,用于与其他设备或通信网络通信,如以太网,无线接入网(RAN),无线局域网(Wireless Local Area Networks,WLAN)等。
存储器902可以是只读存储器(read-only memory,ROM)或可存储静态信息和指令的其他类型的静态存储设备,随机存取存储器(random access memory,RAM)或者可存储信息和指令的其他类型的动态存储设备,也可以是电可擦可编程只读存储器(Electrically Erasable Programmable Read-Only Memory,EEPROM)、只读光盘(Compact Disc Read-Only Memory,CD-ROM)或其他光盘存储、光碟存储(包括压缩光碟、激光碟、光碟、数字通用光碟、蓝光光碟等)、磁盘存储介质或者其他磁存储设备、或者能够用于携带或存储具有指令或数据结构形式的期望的程序代码并能够由计算机存取的任何其他介质,但不限于此。存储器可以是独立存在,通过总线与处理器相连接。存储器也可以和处理器集成在一起。
其中,所述存储器902用于存储执行以上方案的应用程序代码,并由处理器901来控制执行。所述处理器901用于执行所述存储器902中存储的应用程序代码。
存储器902存储的代码可执行以上图2-图6任一项中服务器所执行的一种地图级别指示方法,比如:
根据目标车辆对应的控制参数确定所述目标车辆对应的第一地图级别;
向目标车辆的目标车载系统发送第一消息,所述第一消息指示所述第一地图级别。
如图10所示车载系统1000可以以图10中的结构来实现,该车载系统1000包括至少一个处理器1001,至少一个存储器1002以及至少一个通信接口1003。所述处理器1001、所述存储器1002和所述通信接口1003通过所述通信总线连接并完成相互间的通信。
处理器1001可以是通用中央处理器(CPU),微处理器,特定应用集成电路(application-specific integrated circuit,ASIC),或一个或多个用于控制以上方案程序执行的集成电路。
通信接口1003,用于与其他设备或通信网络通信,如以太网,无线接入网(RAN),无线局域网(Wireless Local Area Networks,WLAN)等。
存储器1002可以是只读存储器(read-only memory,ROM)或可存储静态信息和指令的其他类型的静态存储设备,随机存取存储器(random access memory,RAM)或者可存储信息和指令的其他类型的动态存储设备,也可以是电可擦可编程只读存储器(Electrically Erasable Programmable Read-Only Memory,EEPROM)、只读光盘(Compact Disc Read-Only Memory,CD-ROM)或其他光盘存储、光碟存储(包括压缩光碟、激光碟、光碟、数字通 用光碟、蓝光光碟等)、磁盘存储介质或者其他磁存储设备、或者能够用于携带或存储具有指令或数据结构形式的期望的程序代码并能够由计算机存取的任何其他介质,但不限于此。存储器可以是独立存在,通过总线与处理器相连接。存储器也可以和处理器集成在一起。
其中,所述存储器1002用于存储执行以上方案的应用程序代码,并由处理器1001来控制执行。所述处理器1001用于执行所述存储器1002中存储的应用程序代码。
存储器1002存储的代码可执行以上图2-图6任一项中目标车载系统所执行的地图级别指示方法,比如:
接收服务器发送的第一消息,其中,所述第一消息指示第一地图级别,所述第一地图级别是根据所述目标车载系统所属的目标车辆对应的控制参数确定的;
执行与所述第一地图级别对应的控制操作。
本发明实施例还提供一种计算机存储介质,其中,该计算机存储介质可存储有程序,该程序执行时包括上述方法实施例中记载的任何一种地图级别指示方法的部分或全部步骤。
程序产品实施例:
在一些实施例中,所公开的方法可以实施为以机器可读格式被编码在计算机可读存储介质上的或者被编码在其它非瞬时性介质或者制品上的计算机程序指令。图11示意性地示出根据这里展示的至少一些实施例而布置的示例计算机程序产品的概念性局部视图,所述示例计算机程序产品包括用于在计算设备上执行计算机进程的计算机程序。在一个实施例中,示例计算机程序产品1100是使用信号承载介质1101来提供的。所述信号承载介质1101可以包括一个或多个程序指令1102,其当被一个或多个处理器运行时可以提供以上针对图2-图6所描述的功能或者部分功能。此外,图11中的程序指令1102也描述示例指令。
在一些示例中,信号承载介质1101可以包含计算机可读介质1703,诸如但不限于,硬盘驱动器、紧密盘(CD)、数字视频光盘(DVD)、数字磁带、存储器、只读存储记忆体(Read-Only Memory,ROM)或随机存储记忆体(Random Access Memory,RAM)等等。在一些实施方式中,信号承载介质1101可以包含计算机可记录介质1104诸如但不限于,存储器、读/写(R/W)CD、R/W DVD、等等。在一些实施方式中,信号承载介质1101可以包含通信介质1705,诸如但不限于,数字和/或模拟通信介质(例如,光纤电缆、波导、有线通信链路、无线通信链路、等等)。因此,例如,信号承载介质1101可以由无线形式的通信介质1105(例如,遵守IEEE 802.11标准或者其它传输协议的无线通信介质)来传达。一个或多个程序指令1102可以是,例如,计算机可执行指令或者逻辑实施指令。在一些示例中,诸如针对图2-图6描述的计算设备可以被配置为,响应于通过计算机可读介质1103、计算机可记录介质1104、和/或通信介质1105中的一个或多个传达到计算设备的程序指令1102,提供各种操作、功能、或者动作。应该理解,这里描述的布置仅仅是用于示例的目的。因而,本领域技术人员将理解,其它布置和其它元素(例如,机器、接口、功能、顺序、和功能组等等)能够被取而代之地使用,并且一些元素可以根据所期望的结果而一并省略。另外,所描述的元素中的许多是可以被实现为离散的或者分布式的组件的、或者以任何适当的组合和位置来结合其它组件实施的功能实体。
需要说明的是,对于前述的各方法实施例,为了简单描述,故将其都表述为一系列的动作组合,但是本领域技术人员应该知悉,本发明并不受所描述的动作顺序的限制,因为依据本发明,某些步骤可以采用其他顺序或者同时进行。其次,本领域技术人员也应该知悉,说明书中所描述的实施例均属于优选实施例,所涉及的动作和模块并不一定是本发明所必须的。而且,上文的多个实施例,在不冲突的情况下可以相互结合,尤其是相同的操作,可以相互结合。
在上述实施例中,对各个实施例的描述都各有侧重,某个实施例中没有详述的部分,可以参见其他实施例的相关描述。
在本申请所提供的几个实施例中,应该理解到,所揭露的装置,可通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本发明各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。上述集成的单元既可以采用硬件的形式实现,也可以采用软件功能单元的形式实现。
所述集成的单元如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储器中。基于这样的理解,本发明的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的全部或部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储器中,包括若干指令用以使得一台计算机设备(可为个人计算机、服务器或者网络设备等)执行本发明各个实施例所述方法的全部或部分步骤。而前述的存储器包括:U盘、只读存储器(ROM,Read-Only Memory)、随机存取存储器(RAM,Random Access Memory)、移动硬盘、磁碟或者光盘等各种可以存储程序代码的介质。
本领域普通技术人员可以理解上述实施例的各种方法中的全部或部分步骤是可以通过程序来指令相关的硬件来完成,该程序可以存储于一计算机可读存储器中,存储器可以包括:闪存盘、只读存储器(英文:Read-Only Memory,简称:ROM)、随机存取器(英文:Random Access Memory,简称:RAM)、磁盘或光盘等。
以上对本发明实施例进行了详细介绍,本文中应用了具体个例对本发明的原理及实施方式进行了阐述,以上实施例的说明只是用于帮助理解本发明的方法及其核心思想;同时,对于本领域的一般技术人员,依据本发明的思想,在具体实施方式及应用范围上均会有改变之处,综上上述,本说明书内容不应理解为对本发明的限制。

Claims (38)

  1. 一种地图级别指示方法,其特征在于,包括:
    服务器根据目标车辆对应的控制参数确定所述目标车辆对应的第一地图级别;
    所述服务器向所述目标车辆的目标车载系统发送第一消息,所述第一消息指示所述第一地图级别。
  2. 根据权利要求1所述的方法,其特征在于,所述服务器根据所述目标车辆对应的控制参数确定所述目标车辆对应的第一地图级别,包括:
    所述服务器根据预先设置的映射关系以及所述目标车辆对应的控制参数,确定所述目标车辆对应的第一地图级别,其中,所述预先设置的映射关系包括所述第一地图级别与所述控制参数的对应关系。
  3. 根据权利要求1或2所述的方法,其特征在于,所述控制参数包括:车辆速度范围、车辆加速度范围、车辆减速度范围、车辆自动驾驶级别、车辆所处地理环境分类中的一个或者多个。
  4. 根据权利要求1至3中任一项所述的方法,其特征在于,所述服务器根据目标车辆对应的控制参数确定所述目标车辆对应的第一地图级别之前,所述方法还包括:
    所述服务器根据所述目标车辆的行驶状况获取所述目标车辆对应的控制参数。
  5. 根据权利要求1至4中任一项所述的方法,其特征在于,所述服务器根据目标车辆对应的控制参数确定所述目标车辆对应的第一地图级别之前,所述方法还包括:
    所述服务器接收路边单元RSU上传的所述目标车辆的行驶状况和/或所述目标车载系统上传的所述目标车辆的行驶状况;以及
    所述服务器根据所述RSU上传的所述目标车辆的行驶状况和/或所述目标车载系统上传的所述目标车辆的行驶状况获取所述控制参数。
  6. 根据权利要求5所述的方法,其特征在于,所述方法还包括:
    所述服务器还接收除所述目标车载系统之外的至少一个其他车载系统上传的其他车辆的行驶状况,其中,所述服务器根据所述RSU上传的所述目标车辆的行驶状况和/或所述目标车载系统上传的所述目标车辆的行驶状况获取所述控制参数,包括:
    所述服务器根据所述至少一个其他车辆的行驶状况,以及所述RSU上传的所述目标车辆的行驶状况和/或所述目标车载系统上传的所述目标车辆的行驶状况,获取所述控制参数。
  7. 根据权利要求1至6中任一项所述的方法,其特征在于,所述第一消息用于指示所述目标车载系统执行与所述第一地图级别对应的控制操作,其中,
    所述控制操作包括所述目标车载系统使用与所述第一地图级别对应的地图精度级别的地图数据;和/或,
    所述控制操作包括所述目标车载系统根据所述第一地图级别与行驶参数的映射关系控制所述目标车辆的行驶,其中,所述行驶参数包括:车辆速度范围、车辆加速度范围、车辆减速度范围、车辆自动驾驶级别、车辆硬件配置级别中的一个或者多个。
  8. 根据权利要求7所述的方法,其特征在于,所述地图数据是所述服务器提供给所述目标车载系统的。
  9. 根据权利要求1至8中任一项所述的方法,其特征在于,所述服务器根据目标车辆对应的控制参数确定所述目标车辆对应的第一地图级别之前,所述方法还包括:
    所述服务器接收所述目标车载系统发送的请求消息,其中,所述请求消息用于请求所述服务器指示地图级别。
  10. 一种地图级别获取方法,其特征在于,包括:
    目标车载系统接收服务器发送的第一消息,其中,所述第一消息指示第一地图级别,所述第一地图级别是根据所述目标车载系统所属的目标车辆对应的控制参数确定的;
    所述目标车载系统执行与所述第一地图级别对应的控制操作。
  11. 根据权利要求10所述的方法,其特征在于,
    所述第一地图级别是由所述服务器根据预先设置的映射关系以及所述目标车辆对应的控制参数所确定的,其中,所述预先设置的映射关系包括所述第一地图级别与所述控制参数的对应关系。
  12. 根据权利要求10或11所述的方法,其特征在于,所述控制参数包括:车辆速度范围、车辆加速度范围、车辆减速度范围、车辆自动控制级别、车辆所处地理环境分类中的一个或者多个。
  13. 根据权利要求10-12中任一项所述方法,其特征在于,所述控制参数是根据所述目标车辆的行驶状况所获取的。
  14. 根据权利要求10-13中任一项所述的方法,其特征在于,
    所述控制参数是由所述服务器根据路边单元RSU上传的所述目标车辆的行驶状况和/或所述目标车载系统上传的所述目标车辆的行驶状况所获取到的。
  15. 根据权利要求14所述的方法,其特征在于,
    所述控制参数是由所述服务器根据至少一个其他车辆的行驶状况,以及所述RSU上传的所述目标车辆的行驶状况和/或所述目标车载系统上传的所述目标车辆的行驶状况所获取到的,其中,所述至少一个其他车辆的行驶状况是由除所述目标车载系统之外的至少一个其他车载系统上传给所述服务器的。
  16. 根据权利要求10-15中任一项所述的方法,其特征在于,
    所述目标车载系统执行与所述第一地图级别对应的控制操作,包括:
    所述目标车载系统使用与所述第一地图级别对应的地图精度级别的地图数据;和/或,
    所述目标车载系统根据所述第一地图级别与行驶参数的映射关系控制所述目标车辆的行驶,其中,所述行驶参数包括:车辆速度范围、车辆加速度范围、车辆减速度范围、车辆自动驾驶级别、车辆硬件配置级别中的一个或者多个。
  17. 根据权利要求16所述的方法,其特征在于,所述地图数据是所述目标车载系统从所述服务器中获取的。
  18. 根据权利要求10-17中任一项所述的方法,其特征在于,所述目标车载系统接收服务器发送的第一消息之前,所述方法还包括:
    所述目标车载系统向所述服务器发送请求消息,其中,所述请求消息用于请求所述服务器指示地图级别。
  19. 一种服务器,其特征在于,包括:
    处理模块,用于根据目标车辆对应的控制参数确定所述目标车辆对应的第一地图级别;
    收发模块,用于向所述目标车辆的目标车载系统发送第一消息,所述第一消息指示所述第一地图级别。
  20. 根据权利要求19所述的服务器,其特征在于,所述处理模块具体用于按如下方式根据所述目标车辆对应的控制参数确定所述目标车辆对应的第一地图级别:
    根据预先设置的映射关系以及所述目标车辆对应的控制参数,确定所述目标车辆对应的第一地图级别,其中,所述预先设置的映射关系包括所述第一地图级别与所述控制参数的对应关系。
  21. 根据权利要求19或20所述的服务器,其特征在于,所述控制参数包括:车辆速度范围、车辆加速度范围、车辆减速度范围、车辆自动驾驶级别、车辆所处地理环境分类中的一个或者多个。
  22. 根据权利要求19-21中任一项所述的服务器,其特征在于,所述处理模块,还用于根据所述目标车辆的行驶状况获取所述目标车辆对应的控制参数。
  23. 根据权利要求19-22中任一项所述的服务器,其特征在于,所述收发模块,还用于接收路边单元RSU上传的所述目标车辆的行驶状况和/或所述目标车载系统上传的所述目标车辆的行驶状况;以及
    所述处理模块,还用于根据所述RSU上传的所述目标车辆的行驶状况和/或所述目标车载系统上传的所述目标车辆的行驶状况获取所述控制参数。
  24. 根据权利要求23所述的服务器,其特征在于,
    所述收发模块,还用于还接收除所述目标车载系统之外的至少一个其他车载系统上传的其他车辆的行驶状况,其中,
    所述处理模块具体用于按如下方式根据所述RSU上传的所述目标车辆的行驶状况和/或所述目标车载系统上传的所述目标车辆的行驶状况获取所述控制参数:
    根据所述至少一个其他车辆的行驶状况,以及所述RSU上传的所述目标车辆的行驶状况和/或所述目标车载系统上传的所述目标车辆的行驶状况,获取所述控制参数。
  25. 根据权利要求19-24中任一项所述的服务器,其特征在于,所述第一消息用于指示所述目标车载系统执行与所述第一地图级别对应的控制操作,其中,
    所述控制操作包括所述目标车载系统使用与所述第一地图级别对应的地图精度级别的地图数据;和/或,
    所述控制操作包括所述目标车载系统根据所述第一地图级别与行驶参数的映射关系控制所述目标车辆的行驶,所述行驶参数包括:车辆速度范围、车辆加速度范围、车辆减速度范围、车辆自动驾驶级别、车辆硬件配置级别中的一个或者多个。
  26. 根据权利要求25所述的服务器,其特征在于,所述地图数据是所述服务器提供给所述目标车载系统的。
  27. 根据权利要求19-26中任一项所述的服务器,其特征在于,所述收发模块,还用于接收所述目标车载系统发送的请求消息,其中,所述请求消息用于请求所述服务器指示地图级别。
  28. 一种车载系统,其特征在于,包括:
    收发模块,用于接收服务器发送的第一消息,其中,所述第一消息指示第一地图级别,所述第一地图级别是根据所述目标车载系统所属的目标车辆对应的控制参数确定的;
    处理模块,用于执行与所述第一地图级别对应的控制操作。
  29. 根据权利要求28所述的系统,其特征在于,
    所述第一地图级别是由所述服务器根据预先设置的映射关系以及所述目标车辆对应的控制参数所确定的,其中,所述预先设置的映射关系包括所述第一地图级别与所述控制参数的对应关系。
  30. 根据权利要求28或29所述的系统,其特征在于,所述控制参数包括:车辆速度范围、车辆加速度范围、车辆减速度范围、车辆自动控制级别、车辆所处地理环境分类中的一个或者多个。
  31. 根据权利要求28-30中任一项所述的系统,其特征在于,所述控制参数是根据所述目标车辆的行驶状况所获取的。
  32. 根据权利要求28-31中任一项所述的系统,其特征在于,
    所述控制参数是由所述服务器根据路边单元RSU上传的所述目标车辆的行驶状况和/或所述目标车载系统上传的所述目标车辆的行驶状况所获取到的。
  33. 根据权利要求32所述的系统,其特征在于,
    所述控制参数是由所述服务器根据至少一个其他车辆的行驶状况,以及所述RSU上传的所述目标车辆的行驶状况和/或所述目标车载系统上传的所述目标车辆的行驶状况所获取到的,其中,所述至少一个其他车辆的行驶状况是由除所述目标车载系统之外的至少一个其他车载系统上传给所述服务器的。
  34. 根据权利要求28-33中任一项所述的系统,其特征在于,
    所述处理模块具体用于按如下方式执行与所述第一地图级别对应的控制操作:
    使用与所述第一地图级别对应的地图精度级别的地图数据;和/或,
    根据所述第一地图级别与行驶参数的映射关系控制所述目标车辆的行驶,其中,所述行驶参数包括:车辆速度范围、车辆加速度范围、车辆减速度范围、车辆自动驾驶级别、车辆硬件配置级别中的一个或者多个。
  35. 根据权利要求34所述的系统,其特征在于,所述地图数据是所述目标车载系统从所述服务器中获取的。
  36. 根据权利要求28-35中任一项所述的系统,其特征在于,在接收服务器发送的第一消息之前,所述收发模块,还用于向所述服务器发送请求消息,其中,所述请求消息用于请求所述服务器指示地图级别。
  37. 一种装置,其特征在于,包括:
    存储器,用于存储程序;
    处理器,用于执行存储器存储的程序,当存储器存储的程序被执行时,处理器用于执行如权利要求1-9或权利要求10-18中所述的方法。
  38. 一种计算机可读存储介质,其特征在于,所述计算机可读存储介质用于存储设备可执行的程序代码,所述程序代码被所述设备执行时,用于实现如权利要求1-9或权利要求10-18中所述的方法。
PCT/CN2020/116532 2019-09-25 2020-09-21 地图级别指示方法、地图级别获取方法及相关产品 WO2021057662A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2022517302A JP2022549783A (ja) 2019-09-25 2020-09-21 マップレベル指示方法、マップレベル取得方法および関連製品
EP20868762.4A EP4024006A4 (en) 2019-09-25 2020-09-21 CARD LEVEL INDICATION METHOD, CARD LEVEL OBTAINING METHOD AND RELATED PRODUCT
KR1020227012267A KR20220061225A (ko) 2019-09-25 2020-09-21 지도 레벨 표시 방법, 지도 레벨 획득 방법 및 관련 제품
US17/703,079 US20220214189A1 (en) 2019-09-25 2022-03-24 Map Level Indication Method, Map Level Obtaining Method, and Related Product

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910915973.0 2019-09-25
CN201910915973.0A CN112556700A (zh) 2019-09-25 2019-09-25 地图级别指示方法、地图级别获取方法及相关产品

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/703,079 Continuation US20220214189A1 (en) 2019-09-25 2022-03-24 Map Level Indication Method, Map Level Obtaining Method, and Related Product

Publications (1)

Publication Number Publication Date
WO2021057662A1 true WO2021057662A1 (zh) 2021-04-01

Family

ID=75030028

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/116532 WO2021057662A1 (zh) 2019-09-25 2020-09-21 地图级别指示方法、地图级别获取方法及相关产品

Country Status (6)

Country Link
US (1) US20220214189A1 (zh)
EP (1) EP4024006A4 (zh)
JP (1) JP2022549783A (zh)
KR (1) KR20220061225A (zh)
CN (1) CN112556700A (zh)
WO (1) WO2021057662A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100268458A1 (en) * 2009-04-20 2010-10-21 Honeywell International Inc. Enhanced vision system for precision navigation in low visibility or global positioning system (gps) denied conditions
CN101957214A (zh) * 2010-06-03 2011-01-26 宇龙计算机通信科技(深圳)有限公司 一种导航提示方法及导航装置
CN106355923A (zh) * 2016-09-08 2017-01-25 江苏大学 车联网环境下基于实时交通信息的智慧导航系统及导航方法
CN110031012A (zh) * 2019-05-27 2019-07-19 爱驰汽车有限公司 汽车实时匹配高精地图的方法、系统、设备及存储介质
CN110207719A (zh) * 2019-05-21 2019-09-06 北京百度网讯科技有限公司 一种自动驾驶路径的处理方法及装置
CN110276985A (zh) * 2018-03-16 2019-09-24 华为技术有限公司 自动驾驶安全评估方法、装置和系统

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2774468B1 (fr) * 1998-02-03 2000-03-17 Renault Systeme et procedes de guidage dynamique d'un vehicule automobile
SG188275A1 (en) * 2011-05-19 2013-04-30 Sk Planet Co Ltd Real-time map data updating system and method
CN106828371A (zh) * 2017-01-04 2017-06-13 深圳市元征科技股份有限公司 一种车辆控制方法及相关设备
CN107462243B (zh) * 2017-08-04 2019-09-20 浙江大学 一种基于高精度地图的云控自动驾驶任务生成方法
US10203698B1 (en) * 2017-08-10 2019-02-12 GM Global Technology Operations LLC System and method for providing a map to autonomous vehicles via a cloud-based system
KR102396731B1 (ko) * 2018-02-27 2022-05-11 삼성전자주식회사 정밀 지도 데이터 제공 방법 및 이를 위한 시스템
CN109387208B (zh) * 2018-11-13 2021-03-19 百度在线网络技术(北京)有限公司 一种地图数据的处理方法、装置、设备和介质

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100268458A1 (en) * 2009-04-20 2010-10-21 Honeywell International Inc. Enhanced vision system for precision navigation in low visibility or global positioning system (gps) denied conditions
CN101957214A (zh) * 2010-06-03 2011-01-26 宇龙计算机通信科技(深圳)有限公司 一种导航提示方法及导航装置
CN106355923A (zh) * 2016-09-08 2017-01-25 江苏大学 车联网环境下基于实时交通信息的智慧导航系统及导航方法
CN110276985A (zh) * 2018-03-16 2019-09-24 华为技术有限公司 自动驾驶安全评估方法、装置和系统
CN110207719A (zh) * 2019-05-21 2019-09-06 北京百度网讯科技有限公司 一种自动驾驶路径的处理方法及装置
CN110031012A (zh) * 2019-05-27 2019-07-19 爱驰汽车有限公司 汽车实时匹配高精地图的方法、系统、设备及存储介质

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4024006A4

Also Published As

Publication number Publication date
JP2022549783A (ja) 2022-11-29
US20220214189A1 (en) 2022-07-07
EP4024006A4 (en) 2022-11-09
CN112556700A (zh) 2021-03-26
KR20220061225A (ko) 2022-05-12
EP4024006A1 (en) 2022-07-06

Similar Documents

Publication Publication Date Title
WO2021027568A1 (zh) 障碍物避让方法及装置
WO2021135371A1 (zh) 一种自动驾驶方法、相关设备及计算机可读存储介质
WO2021103511A1 (zh) 一种设计运行区域odd判断方法、装置及相关设备
WO2018147041A1 (ja) 走行支援装置と走行支援管理装置およびその方法と走行支援システム
WO2021052213A1 (zh) 调整油门踏板特性的方法和装置
WO2021036592A1 (zh) 后视镜自适应调节方法及装置
WO2021102955A1 (zh) 车辆的路径规划方法以及车辆的路径规划装置
WO2022020996A1 (zh) 视频拼接的方法、装置及系统
WO2021189210A1 (zh) 一种车辆换道方法及相关设备
WO2021204189A1 (zh) 一种驾驶性能调节方法和装置
US20230222914A1 (en) Vehicle reminding method and system, and related device
CN115042821B (zh) 车辆控制方法、装置、车辆及存储介质
US20230174105A1 (en) Autonomous driving control method and apparatus
CN114056347A (zh) 车辆运动状态识别方法及装置
WO2022061702A1 (zh) 驾驶提醒的方法、装置及系统
EP4307251A1 (en) Mapping method, vehicle, computer readable storage medium, and chip
CN115056784B (zh) 车辆控制方法、装置、车辆、存储介质及芯片
CN114771539B (zh) 车辆变道决策方法、装置、存储介质及车辆
CN115202234B (zh) 仿真测试方法、装置、存储介质和车辆
CN115871523A (zh) 电池加热方法、装置、车辆、可读存储介质及芯片
WO2021057662A1 (zh) 地图级别指示方法、地图级别获取方法及相关产品
CN115042814A (zh) 交通灯状态识别方法、装置、车辆及存储介质
CN114828131A (zh) 通讯方法、介质、车载通讯系统、芯片及车辆
WO2022057745A1 (zh) 一种辅助驾驶的控制方法及装置
CN115100377B (zh) 地图构建方法、装置、车辆、可读存储介质及芯片

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20868762

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022517302

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20227012267

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2020868762

Country of ref document: EP

Effective date: 20220331